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RESEARCH OBJECTIVES

The aim of this group continues to be the study of the fundamental properties of
plasmas with more and more emphasis on high-density plasmas and plasmas in magnetic
fields. To carry out this general objective, we have spent a great deal of effort on the
production of plasmas of high-percentage ionization at low pressures under steady-state
conditions, the achievement of which will allow us to carry on the fundamental studies
in which we are most interested. At the present time, we have begun to achieve plasmas
with high-percentage ionization by means of cesium plasmas, and we have several other
schemes under way for producing them.

We are also studying ways of determining the characteristics of plasmas by means
of microwaves, spectroscopic methods, and the diamagnetic effect of electrons. Along
with these production and diagnostic studies, we are continuing measurements on the
fundamental physics studies of loss and gain mechanisms of electrons in plasmas in
magnetic fields. Considerable emphasis is being placed on studying the microwave
radiation from plasmas, with and without magnetic fields, both as a tool for measuring
the plasma temperature and thermal properties and as a means of understanding more
about the motion of electrons and ions in magnetic fields.

Theoretical work has been concentrated on the study of waves in plasmas and of
statistical theories of the nature of a plasma.

S. C. Brown

This work was supported in part by the Atomic Energy Commission under
Contract AT(30-1)1842; and in part by the Air Force Cambridge Research Center
under Contract AF-19(604)-5992.
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1. MAGNETO-AMBIPOLAR PLASMAS

An experimental program is being initiated for the study of dense plasmas in mag-

netic fields. The problems of interest are: (a) diffusion across the magnetic field,

(b) instabilities in the diffusion process, (c) production of highly ionized plasmas, and

(d) basic measurements on highly ionized plasmas. The initial experiments will center

around a plasma column in a solenoid, 2 meters in length, so that both spatial and time

resolution of plasma densities and electron temperatures can be obtained.

If diffusion is the governing loss mechanism of electrons and ions in a plasma col-

umn, the diffusion currents are given by

Radial current density r = (D abn)

Axial current density r = - (Dan)

(1)

(2)

where n is the electron or ion density, Da = (+D_+4_D )/(A ++_) is the ambipolar

diffusion coefficient, and Dab = Da/(1+4+ 4_B ) is the magneto-ambipolar diffusion

coefficient. For low pressures and low magnetic fields, density decay is faster than

electron energy decay, and hence D can be assumed constant. The decay of plasma

density along a cylindrical tube can now be obtained by setting V FP = 0. If the col-

umn is assumed infinitely long, then the density in the lowest mode is given by

n = n J (r/A r ) exp -z/A r (+1+t_B

where noJo(r/Ar) is the density maintained

Ar is the radial diffusion length, R/2.405.

A,

2

_

Ui

LL

U_

/2]

at z = 0 by some active discharge, and

Other assumptions are: (a) no attachment

MAGNETIC FIELD

Fig. II-1. Effective decay length of plasma column in an axial magnetic field.
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Fig. 11-2. Experimental apparatus.

or recombination, and (b) + and p_ are independent of temperature. From Eq. 3, the

decay length of the plasma column in the axial direction is

Az= A 1+ +~pB 2

and is shown plotted in Fig. II-1. Thus we can measure radial current losses by meas-

uring the axial decay of density.

A preliminary microwave discharge experiment has been completed for checking

the theoretical diffusion loss of a plasma across a magnetic field. A quartz tube, 50 cm

long and 1 cm in diameter, was positioned with its axis along the magnetic field. The

tube was thoroughly baked and pumped at 4000C, and hydrogen was admitted to the tube

from a uranium hydride source at a pressure of from 1 to 10 microns. Three micro-

wave cavities were placed along the tube, as shown in Fig. 11-2. An S-band 50-watt

magnetron was used to feed power into the TE111 mode of cavity 1 to produce a dis-

charge at one end of the quartz tube. Two C-band cavities operating in the TMO20 mode,
and spaced as shown in Fig. 11-2, were used to measure the density at two positions

along the tube.

The experiment consisted of measuring the ratio of the densities in the two C-band

cavities as a function of pressure, magnetic field, and electron density. As the

measurements progressed, it became evident that consistent data were not obtainable,
even with considerable effort. There was large scatter in the density ratio as a function

of magnetic field, and at no time did the ratio reach unity - which the theory predicted

for magnetic fields larger than approximately 10 gauss. Also, for a fixed magnetic

field, there was no consistent variation of the ratio with either pressure or electron

density. Some constrictions were observed as in previous microwave discharges.

However, .in these cases there was no direct correlation with the electron density ratio
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Fig. 1I-3. Plot of density ratio versus magnetic field.

variations. Because of these facts, all of the measured ratios are plotted together in

Fig. II-3 as a function of magnetic field and limits to the experimental points are indi-

cated.

The results of this preliminary experiment clearly show that diffusion is not

the controlling loss mechanism of the electrons. Examination of the quartz tube

subsequent to the experiment shows internal depositions of a brown substance,

which is most likely to be silicon reduced from SiO2 by atomic hydrogen. During

such a reaction water vapor is made, and it is probable that attachment to these

impurities in the discharge is the dominant loss mechanism. These low-pressure

discharges in hydrogen are plagued by this difficulty, and if further experiments

are performed in this region, spectral analysis of the impurities will be neces-

sary.

D. R. Whitehouse, Judith S. Vaughen

2. SYNCHROTRON RADIATION LOSS FROM A HOT PLASMA

In Quarterly Progress Report No. 55, pages 11-16, we reported computations

on the contribution of synchrotron emission to the net energy loss by radiation from a

plasma in a magnetic field. These calculations have been improved, in order to remove

the plasma-temperature limitation of the method.

As a matter of convenience, we consider a plasma of electrons whose velocities,

V1l = II c, along the magnetic field are negligible compared with their transverse

components. We thus make use of Schwinger's formula (1) for I n , the power radiated

in the nth harmonic by a single electron of velocity vL = pc whose orbit is station-

ary.
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22 -1
2n obe 21 1 z-

S Ec (1-p2) J2n( 2 np) ~- J2n+1
( 2 n p) - p J2n+2v+(2np) (1)

As in the previous report, we take the spectral distribution as collision broadening with

collision frequency v

(v/rr) dw
I (w) dw = In() df(p) (2)
n [ (p)2 +2

where

w (p) = nob ( 1 p 2 ) 1/ 2  (3)

Were we considering a plasma with significant orbital drift along B-lines, Eq. 1 would

have to be in its angular-dependent form, and to include terms in p1 1. In such a case,

Doppler-shift effects would be included in Eq. 3. Since we only include two degrees of

freedom, the electron-velocity distribution function is the two-dimensional relativistic
kT 8

Maxwellian in an approximate form that is valid for 2 15 Thus
mc

c2 4 _c2 )
df(p) = (R y4 exp t- (y-1 ) dp (4)

in which

y = (1-
2 )- 1/2

The previous calculations approximated the bracketed expression in Eq. 1 by the

leading term in the series expansion of the Bessel functions. Investigation of the next

higher term places the following limit on that calculation: n > >> (n-n-1) / 2 . Thus
Wb

the previous conclusions drawn for 10-kev and 50-kev plasmas are invalid.

A better approximation makes the following substitution:

J (x) = !()exp -a x2

W = 1p-. ((_apx 2)

where the exponential factor (2) approximates A (x), and a has been found empirically
0. 258

to be 1.03 + p This approximation is good within 2 per cent for x < p/2; this inequality

implies n > - > 0. 85 n.
Wb

In view of these limitations, we have made no approximations to Eq. 1. In evaluating

Eq. 2, we have gone to the limit v/wo - 0, so that the factor in braces takes on the char-

acter of a delta function.
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Fig. 11-4. Synchrotron radiation from a plasma: (a) mc /kT = 50;

(b) mc /kT = 10; and (c) mc /kT = 5.
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Thus for a plasma slab of electron density N = mE 2 e2 and thickness L, the

ratio of the power emitted to that of a black body at the same temperature, and within

the same frequency interval, is

I(w) iA mc2 2  3 exp -kT 2 1/2 1
=-T a32-1 2 n [ 2 n ( 1 - a 2l / 2  - a 2 1/ 2 J 2n

B(w) n (la2) 1/2 (1-a) 2n

+ [2n(l-a2)1/2- 2 Jn [2n(1-a2) 1/2

where A=( w L ( c), and a = w/nwb, and the typical range of values for A is 10 3105

I(wo)
The ratioB() has been computed for mc2 /kT = 50, 10, and 5. The results are

shown in Fig. 11-4.

For mc 2/kT = 50, A = 104, it is seen that the black-body cutoff frequency is approx-
imately 5wb . This is to be compared with the results of Trubnikov and Kudryavtsev (3),
who find the cutoff at approximately 3 wb'

For mc /kT = 10 and A = 120, Beard (4) finds the intensity at w = 10wb to be 10-4

of the black-body emission. Our result is larger than this by a factor of 25.
Finally, for mc /kT = 5 and A = 10 , our results give the cutoff frequency to be at

approximately 10 b . For a magnetic field of 10 kilogauss, a black-body emission up
to this frequency is approximately 20 kw/m 2 . To obtain the net radiation loss, the long
tail seen in Fig. II-4c, which extends to higher frequencies, must be included, as well
as the bremsstrahlung.

In order to demonstrate the effect of this synchrotron radiation on the energy bal-
ance of a practical thermonuclear reactor, the magnitude of the radiation will now be
compared with the generated thermonuclear power and with the bremsstrahlung loss.
We now consider the case in which P = N±k(T++T_) (B2/2o )= 1. (Note that this P is
not to be confused with P in Eqs. 1-4.) If other values of P arise through changes in
B, but not in N or T, the values of the thermonuclear power density and the brems-
strahlung remain unchanged, but the magnetic radiation is multiplied by P-3/ 2 , pro-
vided that corresponding values of L are multiplied by p-1/2 The magnetic radiation
is computed by assuming the plasma to radiate as a black body up to the frequency wM,
where X In(w)/B(w) = 1, and not at all thereafter. Since it is a surface effect, the mag-

n
netic radiation has been divided by L for comparison with the thermonuclear yield and
the bremsstrahlung loss. The neglect of the contribution of the long tail extending above
"WM to the magnetic radiation could easily result in underrating the loss several times.
The bremsstrahlung is computed (5) from Pbrem = 5.4 X 10- 31 T 1 / 2 N2 watts/cm 3

brems
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Fig. 11-6. Comparison of synchrotron
radiation with bremsstrahlung
and thermonuclear yield. B =
100 kilogauss.

The thermonuclear power is computed under the assumption of a D-D reaction taking

place, without subsequent burning of the tritium that is formed. Thus, from Post (5),

we have PTN = 2.9 x 10-13 ND (o-v)DD watts/cm 3 . The values of (ov)DD are also

obtained from data of Post (5). Values are computed for B = 10 kilogauss and

B = 100 kilogauss, and the results are summarized in Figs. II-5 and II-6.

The authors wish to acknowledge the assistance of Elizabeth J. Campbell,

Maida Karakashian, and Margaret E. Wirt, of the Joint Computing Group, M.I.T., in

the computations leading to Fig. 11-4.

J. L. Hirshfield, D. E. Baldwin

References

1. J. Schwinger, Phys. Rev. 75, 1912 (1949).

2. E. Jahnke and F. Emde, Funktionentafeln mit Formeln und Kurven (Reprint 4th

edition, Dover Publications, Inc., New York), p. 128.

(continued on following page)



(II. PLASMA DYNAMICS)

3. B. A. Trubnikov and B. S. Kudryavtsev, Plasma radiation in magnetic field,
a paper presented at the Second United Nations International Conference on the Peaceful
Uses of Atomic Energy, Geneva, Switzerland, 1958.

4. D. B. Beard, Phys. Fluids 2, 379-389 (1959).

5. R. F. Post, Revs. Modern Phys. 28, 344 (1956).

3. CESIUM PLASMA

Efforts to produce a highly ionized plasma with cesium (1) continue. An absolute

measurement of the electron density in the plasma has been carried out with the use of

a microwave cavity. The electric field used was the TMO20 mode, aligned with the

electric field parallel to the dc magnetic field. This cavity is shown in Fig. 11-7, and

the results of the density measurements are plotted there for various temperatures of

the hot filament that ionizes the cesium beam. These microwave measurements are

in substantial agreement with the densities calculated from the ion current (1).
In order to know the percentage of ionization in such a cesium plasma, it is neces-

sary to measure the very low pressure of the neutral cesium. For this purpose, a

cesium pressure gauge, which is shown schematically in Fig. 11-8, is being constructed.

The collimating apertures (marked A in Fig. II-8) produce a well-defined beam of
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neutral cesium moving with thermal velocity. The tungsten filament is kept at a suf-

ficiently high temperature that all the arriving cesium is ionized. The ion collector,

which is held at a negative potential with respect to the tungsten filament, draws off all

of the ions produced. The resultant ion current, which is measured, is then a measure

of the pressure of the neutral cesium. The conversion factor from ion current to cesium

pressure is calculable directly from kinetic theory and the geometry of the pressure

gauge.

R. B. Hall, G. Bekefi
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4. HEAT TRANSPORT IN PLASMAS

In a plasma, energy is carried mainly by electrons that drift through the medium

as a result of externally applied fields, electron temperature gradients, and density

gradients. Let the plasma be subjected to a uniform magnetic field B and an arbitrary

electric field E. Assuming for simplicity, a Maxwellian distribution of electron veloc-

ities, and an electron-atom collision frequency vc that is independent of electron veloc-

ity, we obtain (1, 2) for the heat flux H(watts-meter - 2)

H = nU eV+ VU+~n (
3m L 3 3nJ

Here e, m, and n are the charge, mass, and concentration of the electrons, respec-

tively; U = 3/2 kT is the average electron energy; V is the dc electric potential applied

across the plasma; and T is a tensor given by

c 
b 0

2 2 2 2vc + Ob V + ob
c b c b

S Wb v 0
2 2 2 2+ b v +CA b

c b c b

0 0 1
v

c

where wb is the cyclotron frequency, eB/m. The conservation of energy principle

requires that in a given elementary volume of plasma,

anU(U-US- S - V - H- nGvc (U-U e ) (2)
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The parameter S denotes the rate of heating of electrons by external sources; the

last term of Eq. 2 represents the rate of loss of energy of an electron upon collision

with an atom; G is the fractional excess energy loss per collision; and Ue is the equi-

librium energy to which the electron decays when S is removed. Loss of energy

resulting from excitation and ionization is neglected in the calculations.

Consider, now, a long cylinder of plasma of radius R with a magnetic field B applied

along the cylinder axis, z. A section of the plasma column is heated by dc or rf fields,

and thus the electrons are raised to a higher mean energy. We wish to investigate the

time-independent decay of electron energy with distance z, outside the heated region,

where S and V are taken to be zero. In the absence of a magnetic field, or in weak

magnetic fields, the variation of U with z is effected by diffusion cooling to the radial

walls (last term on the right-hand side of Eq. 1) and by axial gradients of electron den-

sity. To take account of density gradients, Eqs. 1 and 2 must be solved in conjunction

with the following equations for the electron flux F, and for the conservation of particles:

= - 3 m VUn (3)

at r -(4)

Diffusion is the only loss mechanism considered. If we assume that radial temperature

variations can be neglected, the time-independent decay of energy with z reduces to the

solution of the nonlinear equation,

d 2 2P = a2 1- (5)

dz 2  dz I

where '& = U/U e , and a = 9 mGv 1OU e . The second term on the left-hand side of

Eq. 5 represents the contribution from gradients of electron density; the parameter P

is the axial decay constant of the product (nU), which varies as

nU = constant X J 0 (2.405r/R) exp(-pz) (6)

with Jo, the zero-order Bessel function, and r, the radial distance in the plasma. In

the limit of ambipolar diffusion, p is given in terms of the electron and ion mobilities,

, L+, by

S2. 405 [I++_B2]-1/2
R +(7)

Equation 5 can be solved approximately in the limit of very low and very high tem-

peratures:

a. When the electrons are heated slightly above their equilibrium temperature, so

that (U-Ue)/Ue << 1, then
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I& - 1 = constant X exp(-yz) (8)

where y = [(a2 + 2 1/2-p]. We note that as the magnetic field becomes very large (p-0),

the energy decay becomes independent of B and R. If, on the other hand, the magnetic

field is weak (or zero), P can greatly exceed a, and y - a /2p.

b. In the range of high electron temperatures, U >> U e , and large magnetic fields,

a > p, we find that

az/ 1 = Z - /2 i/2 (9)

where = w/M when z = 0.

The thermal effects discussed above can influence considerably the spatial decay of

the electron concentration along the z-axis of the plasma column. After we eliminate

the electron energy U from Eq. 6, by making a substitution from Eq. 8 or Eq. 9, we

make the following observations: For moderate magnetic fields, less than a certain

critical magnetic field, the electron density n decays monotonically with z (for all

values of z), but it decays at a greater rate than it does when thermal effects are

omitted. The rate of decay becomes smaller, the larger the magnetic field. For a

magnetic field that is greater than the critical field, the electron density first increases

with z (for small values of z) and then, once again, decreases monotonically. It is

unlikely that the initial increase of n above the value that exists at z = 0 is physically

realizable. At best, n could remain constant over a certain distance z and then fall

off. Nevertheless, the tendency for n to increase with z may give rise to instabilities

in that section of the plasma column.

The critical behavior of the plasma occurs when the energy decay constant y of

Eq. 8 is approximately equal to the decay constant P of Eqs. 6 and 7. Equating these

two decay constants, we obtain the following relation for the critical magnetic field, B c

B ~ 5(fT)1/2 (M/mR) gauss (10)

Equation 10 was derived for a monatomic gas; G of Eq. 10 is 2m/M, with m and M,

the electron and ion masses, respectively. Temperature T of Eq. 10 is given in
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formed. The plasma cylinder is 76

up to 2500 gauss are applied axially.

electron volts, and the plasma radius R in centi-

meters. The parameter f = vc+/Vc- represents

the ratio of the ion to the electron collision fre-

quency and its magnitude is dependent on the gas

used and on the electron and ion temperatures.

For helium, at an electron temperature of 1 ev,

and an ion temperature of 0. 04 ev, f z 0. 014; for

a tube of radius 1 cm, Bc 4200 gauss.

Recent observations (3, 4) of the behavior of

the positive column of dc discharges, subjected

to an axial magnetic field, disclosed an onset of

instabilities at certain critical magnetic fields;

the instabilities were accompanied by an increase

of diffusion to the radial walls. The magnitudes

of the observed critical magnetic fields and their

dependence upon the discharge parameters show

a resemblance to those given by Eq. 10.

Measurements of heat conduction in a helium

plasma of low degree of ionization are being per-

cm long and 2.5 cm in diameter. Magnetic fields

A section of plasma, 3 cm long, is heated within

the gap of a re-entrant cavity that resonates at a frequency of 100 mc; 130 watts of rf

power are available for heating (see Fig. 11-9). The electron energy U is deduced from

the microwave noise emitted (5) by a section of the plasma column that is 1 cm long.

The radiation is sampled by a waveguide or cavity at a frequency of 3000 mc (bandwidth

2 mc). The noise is fed into a radiometer (5) that is capable of detecting temperature

changes of 2ZK. The noise output is proportional to the electron energy U. Figure II-10

shows preliminary measurements of [noise power] 1/2 as a function of z for three helium

gas pressures, po. The ordinate is in arbitrary units because the noise output has not

yet been calibrated in absolute electron temperatures. For convenience of presentation,

the three curves were normalized to the same noise power at a value z - 2 cm. Since

U is known only within a constant of proportionality, the decay constant y cannot be found.

However, measurements support the relationship between U and z given by Eq. 9.

G. Bekefi
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RESEARCH OBJECTIVES

During the coming year, our research program will be concerned with the following
problems:

1. Plasma waveguides.
2. Electron-beam stimulated plasma oscillations.
3. High-power microwave gaseous discharges.
4. Low-pressure gas-arc plasmas.

1. Plasma Waveguides

This is primarily a theoretical program, and its objective is to find the modes of
propagation in a closed waveguide partly filled with a plasma, in the presence of a mag-
netic field. In many ways this is analogous to the ferrite loaded waveguide problem; but
there are important theoretical differences that arise from the nonrigid nature of the
plasma.

First, an "ideal plasma" with no random velocities (T=0 ° K) will be assumed. Later,
an attempt will be made to include the effect of finite temperature.

2. Electron-Beam Stimulated Plasma Oscillations

This program is centered around a projected experiment in which it is planned to
send a high-power, pulsed, electron beam down the axis of a low-pressure gas arc. A
small-signal analysis indicates that there will be a very rapid amplification of a narrow
frequency band around wpa of the arc. Starting from shot-noise fluctuations on the

beam, the oscillation amplitudes should build up to saturation level within a few centi-
meters. Our present theoretical studies are aimed at predicting the saturated level of
these noise-like oscillations. Preliminary estimates indicate that the plasma electrons
may acquire approximately 10 per cent of the incident beam energy. If this oscillation
energy is subsequently randomized by collisions, then a very high plasma temperature
might be achieved with an incident electron beam of 1-2 amp at 10-20 kv.

Experiments will be made on a gas -arc facility that is now under construction.

3. High-Power Microwave Gaseous Discharges

Extensive measurements have been carried out on cw microwave discharges with
available power of approximately 100 watts. There is evidence that the plasma density
and electron temperature increase with power, but cw measurements have not been
made much beyond 1 kw. In the experiments that are now set up, a tunable, 1-Mw,
10 psec, pulsed magnetron will be used. Electron density during the pulse will be
measured in much the same way as in the cw experiments. There is some doubt as to
whether or not the discharge will reach equilibrium within the pulse duration of 10 rsec.
Consequently, we shall attempt to measure electron density and conductivity as a func-
tion of time, during the pulse duration.

L. D. Smullin, A. Bers

This work was supported in part by National Science Foundation under Grant G-9930.
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4. Low-Pressure Gas-Arc Plasmas

An experimental program for the production of highly ionized steady-state plasmas,
by using fast pumping techniques has been initiated. This work is based on methods
originally developed at Oak Ridge National Laboratory. The plasma column is formed
in a solenoidal magnetic field, with gas feed through the cathode region of the arc. With
the use of graphite or of other refractory electrodes, a plasma is to be produced with

11 13 3 3 3
density, 10 11-10 /cm , particle energy 1-100 ev, and volume 10-10 cm , the values
depending on the power level. These plasmas will be used for studying plasma oscil-
lations, wave propagation, ion cyclotron heating, and for other purposes.

D. J. Rose, L. D. Smullin

1. ELECTRON-BEAM STIMULATED PLASMA OSCILLATION

a. Introduction

An experiment (1) is being designed to study the possibility of heating a

plasma by means of an intense electron beam. The ordered kinetic energy of

the drifting beam will be used to excite and sustain oscillations of the electrons

in the plasma through which it drifts. In turn, the organized kinetic energy of

oscillation will be randomized by two main processes: (a) collisions between the oscil-

lating plasma electrons and ions or neutral gas molecules; and (b) by the large-signal

effects that will cause the trajectories of neighboring electrons to intersect, and

thus effect randomization of their velocities in one dimension. The second mech-

anism has been discussed by Buneman (2).

ARC PLASMA

HOLLOW CARBON CATHODE
ANODE

GAS -
BEAM /ELECTRON

IA - V - GUN

MAGNETIC SHIELD

z

Fig. II-11. Schematic diagram of apparatus for observation of
interactions between an electron beam and a plasma.

The experimental apparatus that is being constructed is illustrated schematically

in Fig. 11-11. The plasma for the experiment is provided by a low-pressure gas arc

emanating from a hollow carbon cathode. Typical ranges for the parameters of such

a discharge are:
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Anode-cathode distance, 25-40 cm

Va, 100-200 volts

Ia, 0.5-10 amps

B zo, 100-1000 gauss

Spa' 1011 rad/sec

Highly ionized (>95 per cent).

The electron gun will be pulsed at approximately 10-20 kv, in order to produce a beam

of several amperes. The beam plasma frequency is

3.3 X 108  1/2
Wpb b (Ko

where b is the beam radius in centimeters, V' is the voltage in kv, and K' is the

"microperveance" (I=10 - 6 K'V .3/ Z  Reasonable values ofWpb are in the range 5-10 X

109 rad/sec.

The object of the experiment is to determine how much of the 10-50 kw of injected

beam power can be transformed into random energy of the plasma.

An attempt is being made to gain a theoretical understanding of the phenomena

involved. One of the theoretical difficulties stems from the extremely strong inter-

action that appears to take place between beam and plasma. In the neighborhood of the

arc plasma frequency, Wpa , disturbances grow as exp(a-jp ) z, where pe = w pa/v =

21Tr/p, vo is the beam drift velocity, and a may range from 1/4 to 2Pe. Thus, in

one plasma wavelength (a few millimeters), a disturbance may grow by a factor e up
12

to e . Exactly how rapid the growth will be depends on plasma temperature, beam

diameter, etc. Thus, even initial noise fluctuations are sufficient to produce very large

oscillation levels at a few centimeters beyond the point where the beam enters the

plasma. The nonlinear phenomena that cause the oscillation amplitudes to reach

finite limits are still not understood.

b. Some Small-Signal Relations in a Plasma Reactive-Medium Amplifier

The basic small-signal equations for the interaction between a beam and a plasma

are:

" a 1
- j (J+J b ) (1)

2

jJ = JCe pa v (2)
a 1o1 a
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i0 VobVb 1 (J+Jb) (3)

J- Jp Jb oEo Vb (4)
ob b ob

where va , Ja, pa' are the ac velocity, convection current, and plasma frequency of

the fixed plasma (temperature assumed to be zero); vob' Job are the dc velocity and

current of the electron beam; similarly, for the ac terms. Equations 1-4 can be solved

for p. Thus

cpb

p 1 ± (5)
vob Z 1/2

pa

1 2

From Eqs. 1, 3, and 5 we can write

v Opb
a _ 6 (6)

vob 2 1/2

pa

22where vb = 6 vob*
Similarly, from Eqs. 1, 2, and 5, letting Jb = aJob and wpb = IJob/EVob, we obtain

pa

1- 2

If the plasma were a lossless resonator, which is implied from Eqs. 6 and 7, the

ac velocity modulation would be infinite at w = wpa. If we replace the denominator

(1- 2 / 12\/2 with a function that includes collisions and temperature, F(v , T, w),
pa c

with a finite maximum value at w = wpa, then

2 2V v a a 2 pb F (8)
Vob ob pa
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V v 2 pba a Z p
ob a F (9)

ob opa

The function F can be found from Figs. II-13 and 1I-14.

We now have two expressions for the ac velocity of the plasma electrons, in terms

of the beam drift velocity. If we assume that the system saturates because of the non-

linear behavior of the beam, then Eqs. 8 and 9 allow us to estimate the maximum value

of v . If we assume that pb/pa = 0. 1, V = 10 kv, V = 100 volts (effective temper-
a pb pa ob T

ature of plasma), then (pb/pa) F = 0.6, and V = 0.36 52Vob

Equation 4 can be rewritten as

Jb pbF vb
- F = (10a)

ob pa ob

or

pb
a (p F = 6 (10b)

pa

The absolute upper bound on a is 2 (perfect bunching of the beam into impulses). More

practically, it may be approximately from 0.5 to 0. 7, and this would make 6 approxi-

mately 1/4. From this assortment of numbers, we estimate Va = 100 volts.

c. Effect of Temperature on the Growth of Plasma Oscillations

The zero-temperature dispersion equation for electron-beam-plasma interaction is

not valid near plasma resonance, partly on account of the neglect of the random energy

of the electrons. If the plasma electrons are assumed to have random energy, a new

dispersion equation that is valid at plasma resonance and contains an upper bound on the

space-charge wave amplification constant can be derived.

The mathematical model used for the plasma and beam is exactly the same as that

used for the zero-temperature case, except that the plasma electrons have a random

velocity spread that is symmetric about the origin. Theoretically, the random fluctua-

tions of the electron velocities require the introduction of a distribution function, in

order for the electronic current and charge density to be evaluated. The distribution

function f(v, z, t) must satisfy the Boltzmann equation, which is solved by using the

perturbation method and assuming that first-order quantities vary with z and t as

exp(jt-Pz). We obtain the basic equations



(II. PLASMA DYNAMICS)

dfo(v)

= dv E (11)

1 = -? jW - rv 1

fo(v) dv
J = -jweIE 1  o 2 (12)

v (jw-rv)

(rT=-e/m), where fl, J 1, and E l are the complex coefficients of the first-order per-

turbations of the distribution function, longitudinal current, and longitudinal electric

field, respectively. If we combine Eqs. 11 and 12 with the sinusoidal steady-state

wave equation relating J 1 and E 1 , we obtain the integral form of the dispersion equa-

tion

7e f 0 (v) dv
Eo = 1 (13)

o 0 (jw-rv) 2

This equation, or its equivalent, has been obtained by several authors (3, 4). We shall

now evaluate Eq. 13 for three equilibrium distribution functions f (v).

i. Zero-temperature dispersion equation

As an example of the utility of Eq. 13, we derive the zero-temperature dispersion

as a special case. The equilibrium distribution for beam and plasma is

fo(v) = n a (v) + nb6(v-vbo)

where 6(v) is a delta-function at v = 0. The densities na and nb are assumed to be

constant. From Eq. 13 we obtain directly

Ppb Wpb
S= jpe ± v ' pb v

2 1/2 bo pb Vbo

pa
1-

The beam and plasma electron resonant frequencies are w pb and wpa' respectively.

ii. Triple-stream dispersion equation

We now split the plasma electrons into two beams with the same speeds but opposite

directions. The equilibrium distribution is

n n

f o (v) = -a 6(v+va) + - 6(v-v) + nb6(v-vbo)

From Eq. 13 we obtain
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2W 1+ u
pa 3R (u_2 1 (14)1 u (u-1)

31)

where u = -/jp e and R = v bo/3va . The parameter R is the ratio of the time average

kinetic energy of a beam electron to the total average random energy of a "plasma"

electron, if we assume similar "random" motion in the x and y directions. In the

experiment that is being considered, this ratio is equal to at least several hundred,

therefore an expansion of the first term of Eq. 14 in powers of u /R seems justified.

We have

W + + (wb (ul2 1 (15)(u-1) z

This dispersion equation is identical to that obtained by Boyd (3) for the case of a

Maxwell-Boltzmann distribution function.

iii. Maxwell-Boltzmann dispersion equation

We assume that at equilibrium the plasma electrons have a uniform distribution in

configuration space and a Maxwellian velocity distribution. Therefore

fo(v) = nb (v-vbo) + na 2 exp 2
22rv 2v

p / p

where v = kT/m. We obtain from Eq. 13

exp 2( 2

Wpb 1 + pa 1 1/2 ;)+) dv = 1
(u -1 ) Z2- 

,o 1 - u V °

vbo

The integral can be evaluated by contour integration, as demonstrated by Sumi (5). An

alternative method, mentioned by Boyd, is to expand the denominator of the integrand

in a power series in uv/vbo, and integrate term by term. The resulting series, in

powers of u /R, is

Wpb 1 pa u 5 u
+ 1+ + _ + = 1

(u-1)2  L R 3 R 2

and, to first-order, is identical with Eq. 15 if we equate va and v . Taking only the

first two terms of the series, we obtain a normalized form for which graphical solutions
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have been given by Boyd, Field, and Gould (4) in terms of the parameters r- and A:

(u-1)2 (u2+A) + o = 0 (16)

with

2
pb

pa

2
A=R 1

pa

1/2 mv2o
R= bo

3/2 kT

The root of Eq. 16 that is of primary interest is in the first quadrant of the u-plane.
Using Boyd's (3) data, we have plotted a graph of the imaginary part of this root

[-a/p e, where a=Re(F)] as a function of frequency, for a particular value of R and a-
(Fig. II-12). If the energy ratio is large, the peak of the graph occurs near W = pa.

pa
For R = 100, and a- in the range 0. 001 < c < 4. 0, the peak occurs within 2 per cent
of Wpa and as R increases, the frequency for maximum growth approaches Lpa
At this frequency, A = 0, and we can solve Eq. 16 directly. A graph of (a/ pa)max as
a function of a- is given in Fig. 11-13.

The same data are plotted in Fig. II-14 for a specific beam velocity and plasma
frequency, w pa. The large values of the growth constant (a) indicate that we might
expect an appreciable growth of the initial velocity fluctuations within fractions of a
centimeter.

L. D. Smullin, W. D. Getty
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2. PROPAGATION BETWEEN PARALLEL PLATES FILLED WITH A GYRO-

ELECTRIC MEDIUM TRANSVERSE TO THE STATIC MAGNETIC FIELD

We shall consider the case of electromagnetic propagation between infinite parallel

plates filled with a gyroelectric medium, in which the direction of propagation is trans-

verse to the applied magnetic field. If we define a right-hand rectangular coordinate

system x, y, z, and assume that the applied magnetic field is in the z-direction, the

tensor permitivity of the medium is

k1 jk2 0
E = o -jk2 kl 0

S 0 k3

where

2

0

k =i-1 2 2'
o

2 c

pm
k 2  2 2'

cc

and w is the operating frequency; wp, the

frequency; all are in radians per second.

Assuming time dependence of exp(jwt),

we obtain from Maxwell's equations

2 - -
-p E + P(p E +pE +p E ) +xxyy zz

plasma frequency; and wc the cyclotron

and space dependence of the form exp(jp- r),

k 2 E=O0

where

(1)

xx y+ y y + izz

r= i x+ i y+i z

2 2k =woE0

= 1=
- EE

0

2

p
2

CO

2 -

k 3
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Equation 1 may be conveniently expressed in matrix form:

P2 +P 2 k 2 k PP +jkk 2  PP 0
PPx y jk2 x z E x  0

22 2

pp - jkPk -p + p + p py E (2)

x z yz p2 z + kk3 Ez

We now consider several special cases. Figure 11-15 shows plates parallel to the
z-axis and separated by distance d. We consider propagation in the x-direction with

no variation in the z-direction (pz=0).

In this case, matrix 2 reduces to

k kl - P2 xPy + jkZk 2
k 2 k 1 p Px y +k 2 k2  0

x y - jkk 2  kZkl - 0 (3)

0 0 kk -Px - P

We observe from matrix 3 that E is uncoupled from E and E .z x y

(a) TE Modes

If E = E = 0, we can obtain a nonzero E if
x y z

2 2 2Px + p2y k 3k (4)

E must vanish on the conducting plates at y = 0, y = d. Thus E must have a

y dependence of the form sin( y), where n is a positive integer. This implies that
nT

Py = .d Thus, for this set of modes to exist, we have

2 2 nrr(
Px k 3 k d (5)

2 n 1T2For unattenuated propagation, px is real. This implies that k 3 k 2 > ( and that

k 3 > 0, or w >cp . Here, the cutoff frequency for the n mode is k = . This

case is completely analogous to the TEno modes between air-filled parallel plates.

(b) TM Modes

With reference to matrix 3, we may have a nontrivial solution for E and E if
x y

the 2 X 2 submatrix relating them has its determinant equal to zero. This implies

that

2x + 2 kl 1 (k)2 (6)
x y kl - k1
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Fig. II-15. Plates parallel to z-axis; propagation in x-direction.
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Fig. 11-16. Plot of parameter Q against frequency w.

Plates perpendicular to z-axis; propagation in y-direction.Fig. 11-17.
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Since E must vanish at y = 0 and y = d, p must equal d. This implies thatx yd

P = k k k ?) - (7)

A propagating mode can only occur if px is real. For this to be so, the quantity Q
must be positive, where

Q = k 1 1 - (8)

Let us determine when Q changes sign. It will do so when Q = 0, and when Q has

a singularity. Q = 0 when k 1 = + k2 , and this occurs at frequencies

1 ( 2 2 1/2 2 (2

Q has a singularity when k 1 = 0. This occurs at w3 ( Wc 2c /2 Clearly, o < 3 <

2' Knowing that Q(0) - -0o and Q(oo) = 1, we may sketch the function Q(w) (Fig. 11-16).

Referring to Eq. 7, we observe that only for w 1 < < 3 and w > w2 is a propagating

mode (px real) possible. In this frequency range, the lowest mode cutoff condition

is /k = rr/d. The cutoff condition for the nth mode is Qk = in/d.

(c) B Normal to Plates

We now consider the case shown in Fig. 11-17, in which the magnetic field is normal

to the plates. We consider propagation in the y-direction with no variation in the
x-direction (px=0). In this case matrix 2 reduces to

2 2 2 jkk
-p - p + klk jkk

y z 1 2

2 2 2-jk 2 k - + kk 2 Ppz (9)2 z 1 z

2 20 Pz -Py + 3 k

We observe from matrix 9 that E x , Ey, and Ez are coupled. For a mode to exist,

the determinant of matrix 9 must equal zero. This condition, after simplification, yields

k1 Y 2 + (k+k 3 ) YZ + k3 Z2 - (k+klk3 -k 2 ) Y 2k 1 k3 Z + k3 k2-k) = 0 (10)

where

p 2
Y P
2' 2k k
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For any modes to exist,

S2
nw n

Pz = + IT d Z 1= >0

If we restrict our attention to a particular mode (n fixed), an assumed positive value

of Z specifies the dimensionless parameter kd = wd(POE 0)1/2

Equation 10 is quadratic in Y with coefficients that are functions of the frequency-

dependent quantities k 1 , k2 , and Ic3, and of the parameter Z. To investigate the exist-

ence of propagating modes at a particular frequency, we calculate k 1 , k2, k 3 at that

frequency (we assume that we know wp and oc) and solve for Y as a function of Z. If

there is a range of Z > 0 for which one or both roots of Eq. 10 is positive, then there

are propagating modes.

A somewhat more restricted, but interesting, result is found from the cutoffs for

p~ = 0. In this case, Y = 0, which implies, from Eq. 10, that

Z - 2k Z + k2 - k20 (11)
1 1 2

The roots of this equation are Z = k I + k2, which corresponds to

(wd (nTr)2
c ) k1 kk2

However, we know already that k I = -k2 at w = ol, and k1 = k2 at w = w. An exami-

nation of the characteristics of k1 and k2 versus w shows that for ol <  <WZ'

k I + k2 > 0. For w < 01 and w > w0' kl - k2 > 0. This set of conditions suggests that

a propagating mode can exist at all frequencies for a properly chosen d. This is dif-

ferent from the other cases considered, in which it was found that in some frequency

ranges no propagating mode was possible.
B. Reiffen

3. PROPAGATION IN PLASMA WAVEGUIDES

The study of propagation in plasma-loaded waveguides continues. In the past, this

problem has been studied with the assumption that the motion of the plasma ions was

negligible compared with that of the plasma electrons (1,2, 3). We now include the

effect of the plasma ions.

For the cylindrical system of Fig. II-18, we assume quasi-static modes that are

radially symmetric, and we arrive at the determinantal and boundary-matching equa-

tions
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2 e

2 p pe 2

z 2 2 =rW Woo

J(p3rb)1 r b
r b  1+P bJo(P b)

o r L

2
pl

2 2
Sci - W

c'

2

pi
+ 2 2

ci

2
pe

W -ce

I (Pza)

I (P z
b ) + K 1 (P z b)

Ko(P a)

= -z b
zI (pa)

I o(P b) - K o(P b)
K o(z a)

The quantities wpi and wci are, respectively, the ion plasma and cyclotron frequency,
and ope and wce are, respectively, the electron plasma and cyclotron frequency. The

simultaneous solution of Eqs. 1 and 2 gives the dispersion relation, p , as a function

of w. The propagation constant pz may be pure real or pure imaginary. In the second

case, we have attenuation rather than propagation. The radial wave number Pr may be

pure real (body waves) or pure imaginary (surface waves).

/z

CYLINDRICAL COLUMN
OF PLASMA

METAL
WAVEGUIDE

Fig. 11-18. Geometry of system.
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2

Fig. 11-19. Dispersion in plasma-filled waveguide.
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For the very special case of the completely filled waveguide, that is, with a = b,

Prb is constant with frequency, and assumes the discrete values of the roots of

Jo(Prb) = 0. A typical dispersion characteristic for this case is sketched qualitatively

in Fig. 11-19. For frequencies much higher than w pi and wci' the dispersion relation

becomes independent of the ions.

The case of the partially filled waveguide is being explored and will be reported on

later.
P. Chorney
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4. COVARIANT FORMULATION FOR WAVE MOTIONS IN A PLASMA

Small-amplitude wave motions of the electrons in an unbounded, homogeneous plasma

in a constant external magnetic field have been studied for situations in which

relativistic electrons may be present in the plasma. The effect of close encounters

between particles has not been included in this study. The problem is formulated by

use of a relativistic generalization of the collision-free Boltzmann equation, which is

coupled to the electromagnetic field equations. These coupled equations are reduced to

a single integrodifferential equation for the perturbation in the distribution function by

expressing the fields in terms of this function. The equation is linearized by neglecting

quantities of second order in the perturbation. From this linearized equation the dis-

persion relations for plane waves in the plasma are deduced. These are then applied

to a plasma in thermal equilibrium at a high temperature at which the random electron

velocities are relativistic, and to a low-temperature plasma penetrated by a relativistic

plasma beam.

a. Covariant Form of the Boltzmann Equation

The usual form of the Boltzmann equation is applicable only when particles with non-

relativistic velocities are considered. This is the result of using Newtonian mechanics

to describe the dynamics of the particles when the Boltzmann equation is derived. It

is a simple matter to extend it to the relativistic domain by using relativistic
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mechanics (1, 2, 3). A little care must be taken, however, in defining densities, vol-

umes, and so forth, to conform to the relativistic space-time geometry. The best way

to do this is to use a completely covariant formulation, that is, to write the equations

in such a manner that their form is independent of the particular choice of coordinate

system in which they are written. To do this, it is convenient to introduce the following

variables.

The spatial coordinates are denoted by

x i = (x 1 , x 2 , x 3 ) (1)

where i and subsequent Roman indices run from 1 to 3. The space-time coordinates

are represented by

xa = (x x 2 , x 3 ict) (2)

where a and all Greek indices run from 1 to 4. The proper time, or arc length in

four-dimensional space-time is found from

222 2 2 2
c dT = -dx dx = c dt - dx - dx - dx (3)

a a 1 2 3

The four-velocity of a particle is defined by

dx
u a (4)a( dT

The sum of the squares of its spatial components is denoted by

u.u. u (5)1 1

2
In terms of u , dT may be related to dt by

dx2 + dx 2 + dx
dt = dT 1 + . 2 d T + (6)

The four-velocity may therefore be written in terms of its first three components as

ua (= u, uZ, u 3, ic[1+u2/c2j1/2) (7)

The invariant volume element in u.-space is

duldu2du
dU = (8)

(1+uZ/c 2 )1/2

The distribution function f(xa, ua) is defined to be a function of the eight
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variables x , u . For a physical particle only three of the four velocity components,

say u i , are independent. Nevertheless, as we shall see, it is convenient to define f

as a function of the four components, u . The value of the distribution function on the

hypersurface u 4 = ic(l+u2 /c2) 1/ Z in four-dimensional velocity space is denoted by

' (x a , ui)= (x, ui, ic[l+uZ/c21/2

and f is required to be an invariant, equal to the density of particles in the six-

dimensional space x i , u. at time t. The proper density of particles in configuration

space at time t may be found in terms of the quantities in Eqs. 8 and 9. It is

n(xa) = f(xa, u i ) dU

The average of any function h(x a ) over velocity space is

h(xa) f (x a, u.) h (ui) dU

If f(x, u.i) dUa 1

(10)

(11)

where a tilde over any function of ua denotes its value in the subspace u 4 = ic(l+u2 /c 2 ) 1/Z

For convenience, the tilde will be deleted hereafter when it appears in three-

dimensional velocity integrals since, in this case, the integrand must always be taken

at u 4 = ic(l+u /cZ) / Z .

It is also possible to write these averages as integrals over the whole of the four-

dimensional velocity space, by observing that for any function (ua),

(ui) = 0 (u a ) 6(u 4 -ic[l+u/c2]1/2 )du 4

(12)

Multiplying by dU and integrating over ui , we obtain

o 00

-00 -_00

duldu 2du3

(1+u
2/c2)1/2

100 00 00 00

0 -00 -00 -00

100 00 00 00

0 -00 -00 -00

6 (u4-ic[1+uZ/c211/2)
Y (u ) du dudu 3du4

S2 / 2 1 21/2
(l+u 2 /c ) d

4(u) 2c6( uaua+c2) duldu 2du3du4 (13)
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so that h(x ) may be expressed as

hi a 00=0 ; 0 h (x , u ) f (x , u a ) Z c a u + c ) d u d u d u d u

S 0000 00a a a 1 2 3 4

and f(xa, ua ) Zc6 (Uaua+C2 ) is the density of particles at t in xi, ua-space. That is,

f(x a, ua) Zc6 (Uaa+C2 ) dxldx2 dx3du duZdu3du 4 is the number of particles at time t with

spatial coordinates in the interval (xi, xi+dxi) and with four-velocity components in the

interval (u , u +du ).

After a short interval of time, St, these particles will be located with spatial coor-

dinates in the range (x.+6x., x.+6x +d{xi+xi}), and velocity in the range (ua+S6u, Ua+6a +
d{ua+6ua}). The change in position is given by

6x. = u. T (15)
1 1

The force equation for a relativistic particle is

du
F = m dT (16)

where Fa is the four-vector force, and m the rest mass of the particle. Therefore,

F
6u =a T (17)a m

Since the number of particles under consideration is conserved during the interval 6~T,

f(x a , u a ) dx 1 dx 2 dx3duldu du 3 du 4 = f(xa+ 6x a , u a + u a ) d(x1+6x 1) ... d(u 4 + 6u 4 ) (18)

where the factor 2c6 (Ua u +c 2 ) appearing in the density of particles in xi., ua -space is

an invariant, and has been divided out of Eq. 18. The two seven-dimensional volume

elements are related by

d(x 1+6x 1 ) ... d(u 4 +6u 4 ) = J dx 1 ... du 4  (19)

in which J is the Jacobian of the transformation from t to t + St, and hence the distri-

butions are related by

f(x+ 6x, u +  ) =- f(xu ) (20)

The Jacobian is
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8(x 1+ 6x1 , .

8(x 1, ... u 4 )

a (x.+ 6x.)

aup

8(u + 6u)
auSu

a )
SaU (ui)

aF1 a

ap m a8u

6T + 0(6T
2 )

Therefore, to first order in 6T, we have

aF1 a
f(x a+ x u +6u ) = f(x ,Ua) - m au

a
f(x , Ua )6T

Making an expansion of f(xa+ 6x a , ua+ u a ) to first order in 6T about (xa, u a ) yields

f(x + 6x, ua+Sua )= f(xa, ua) +f 6x
a

a + f
a + au 5ua = f(x a , u a) + u a

a

af
ax a

F
6T + -T a-m aua

Subtracting Eq. 23 from Eq. 22 yields

F 8F
0 = u 6T + F a f 6T + f a

a ax m au m au
a a a

. u 4 + u 4 )

a(x.+ 6x.)
11

ax.

a(ua+ u a )

ax.j

+ a
ax. (ui 6 T)

ax.
1

ax.

au
a

8x.
i

ax.
au

au
a

P

8F1 a
m ax.3

8F1 a
m+-m 8u

(21)

(22)

(23)

(24)

(Fax+-x. m
3x
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or, dividing out 6 T and rearranging results in

af 1 8
u af + m8u (F f) = 0 (25)

a au

This is the covariant generalization of the Boltzmann equation. For forces F of elec-

tromagnetic origin, the force is related to the electromagnetic field by

Fa = q u FaP (26)

where q is the charge on the particle suffering the force, and Fap is the antisymmetric

field tensor:

0 -B 3  B2 E
3 2 c

E
B 0 -B 1

F = (27)
apE

-B 2  B 1  0

c c c

Since Fap is a function only of xai

aF auP
- q F u= q F 6 = 0 (28)

a a

because of the antisymmetry of the field tensor. For electromagnetic forces, the

Boltzmann equation may therefore be written

F
af a af

u + = 0 (29)a ax m au
a a

b. Small Perturbations of a Plasma in a Magnetic Field

The characteristics of small-amplitude perturbations of the electrons in a homoge-

neous, unbounded plasma in a constant external magnetic field will now be studied. The

perturbations are assumed to be plane waves, exp[i(k.x-wt)]. The dispersion relations,

that is, the relations between the wave number k and the frequency W for plane waves,

will be found for all such waves that may propagate in the plasma. From these disper-

sion relations, all characteristics of arbitrary disturbances of the plasma can be deter-

mined.

The four-force in the Boltzmann equation is expressible in terms of the electro-

magnetic field present in the plasma. This, in turn, is related to the perturbation in
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the motion of the plasma electrons, which is actually the source of the field. Hence it

is possible to eliminate the field from the Boltzmann equation by writing them in terms

of the distribution function. The resulting equation for the distribution function is then

linearized by assuming that the perturbations are small, and hence terms in the equa-

tion that are smaller than first order in the perturbation are dropped. The equation is

an integrodifferential equation. It is written in cylindrical coordinates, and through use

of an integrating factor is converted to an integral equation. By taking the three velocity

moments of this equation, a set of three homogeneous algebraic equations in the pertur-

bations of the three velocity moments is obtained. The coefficients in these equations

are known. The vanishing of their determinant leads to the dispersion relations.

The distribution function is written

f(xa, ua) = f0 (ua) + f1(x a , u) = f(ua) + g(ua) exp(ik px) (30)

where fo is independent of x because the undisturbed state of the plasma is homoge-
a 1

neous and time-independent. The perturbation distribution function f is factored into

a function g of velocity and a function of space-time exp(ika x a), with

ka = (k 1 , k 2, k 3 , iw/c) (31)

which represents a plane wave.

Similarly, the field tensor is broken into the tensor F in the undisturbed plasma,
1 aP

and F caused by the perturbation.af

F = F + F (32)
ap a3 aj

The field in the undisturbed plasma is a magnetic field in the 3-direction, so that

0 -B 0 0

o B 0 0 0F K (33)ap 0 0 0 0
0 0 0 0

The perturbation field tensor may be written in terms of the four-vector potential, A

as

ap ax a x

where the potential is expressible in terms of the perturbation current, J , as
a a
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1 o
A (X) - 4ra v 41T

1 is related to fl by
where the integral is taken over all configuration space, and J is related to f bya

J1(x ) = -e
a v

ua f 1 (x v , u ) dU = -e exp(ik x )

Substituting this into the expression for A1 yieldsa

1 e t0
A (x ) - ei

i [k S - ) (37)

(37)uagdU dx e

Carrying out the spatial integration yields

A (xv) - 2 exp(ik xv)
a v 2 v v20

k 2
c

and the field tensor becomes

1 ie Lo
aF 2 exp(ikvxv)

ap 2 v
k

2

uagdU

(kau -kua ) gdU
af3 pa

With the use of the definitions given in Eqs. 30 and 32 the Boltzmann equation for the

unperturbed plasma becomes

e o-- u F
m Pap

8fo a = 0
au

and the equation for the perturbed quantities becomes

af
1

ua
a

e F--mu F
mp ap

af'
au a

e 1 fom u F = 0
mp ap 3u

(40)

(41)

in which the term uF(afl/aua) has been dropped because it is of second order in the

small perturbation. With the use of Eqs. 30 and 39, the first-order Boltzmann equa-

tion finally becomes

e
+u F0  ag

p ap uu
a

2 o/m
u (k u'-k U' ) gdU = 0
2 a

2
k- 2

c

(35)

uagdU (36)

(38)

(39)

iek u g + ie (42)

1x - x
a c

x xf
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It is now convenient to introduce cylindrical coordinates (p, 4, u 3 ) in velocity space with

the axis of symmetry along the magnetic field.

In these coordinates

F f B a
u F = B(u f

a 8ua 1 8u 2

8f afu =B-
2 8ul

Substituting Eq. 43 in Eq. 40 yields

afo - 0

or, equivalently, the zero-order distribution function must be independent of 4.

stituting Eq. 43 in Eq. 42 leads to

(43)

(44)

Sub -

ie 2 o/m
- ik u g - up

aa 2
2wk

2
c

ao
8ua2

(k u'-ku' ) gdU = 0
aI a

where ~c = eB/m is the cyclotron frequency. This equation is a first-order differential

equation with respect to the variable 4. By using the integrating factor exp( / kauad)

it may be converted to c

g(p, u3, u 3 u 4 )

ie 2 o/ma c

k2
kauadI (P, u3, u 4 )

+ e c afo
u (k u -k u' ) g(u' ) dU' d
pau ap Pa v

(46)

where 1 is an arbitrary function independent of 4. The wave is assumed to propagate

in the 1-3 plane with no loss in generality, since fo is independent of 9, so that we may

take

ka = (kt, 0, k 3 , iw/c) (47)

By using Eq. 47, the integrating factor becomes exp ktp sin +k 3 u 3 w(1+u2/c )1/2

With the aid of the Bessel-function expansion

ik p
exp K2c

c
sin 4) = exp(in ) J ktn \ Oc

the integral in Eq. 46 can be evaluated. The right-hand side of Eq. 46, after some

(48)

ag
c a4

(45)
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manipulation, can be written as a linear combination of the three quantities uigdU,
in which the coefficients are known functions. Multiplying this equation successively

by the three components uj, and integrating over velocity, yields the three equations

ujgdU
e 2 /E m
S2 2 2 Mi u gdU

W -k c

In terms of the quantities

S af
F = pk3 83 33u [1+u2 /2 1/2 apo(k3u3- [+u /c )

D Ek 3 u 3 - w(1+u2/c2) 1/2

k
E-u 3 (1+u2/c2) 1 / 2

22 2
k c - W

H k3u3 3 (1+u /c2 )/2

the elements M.. can be expressed as

(49)

M ij= 0
pdpdu

3
mi.

(1+u 2/c2 )/2

nine quantities m.. are
1]

4Tr2
c HF

11 k2 p
t

4TriQ2
c HF21 k t  D

t

4 2
cm

3 1 kt

u3HF

pD
k3ktcZE- 2rr 3 t

W

u 3 (1+u2/c2)1/2

D

4TriQ2
mc F L'm12 kt

= F 42c"- 1
22 DP c

where the

(50)
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2 u3F
m3 = -4vinDC D E '

3Z c D

4 r 2
c EF

13 kt p

4 2 EF
m23 = 4wi2c E '23 c D

2 2 22 C2 1/2
2 u3EF c k3c u3(+u/c)

S-33 4T + 2rr 3
m33 c pD 8u 3  D

in which

2 n2 pkt

S22 2
n=1 c

2 pkt pkt
00 nJ £c)Jn c

n n2 -D

n= 1 = cZ- n 2 D2

n=l c

n=l c

The condition for the existence of a solution to Eq. 49 is that the determinant of the

coefficients vanish; that is,

det M.. - 2-k2c) = 0 (51)
c

c. A Stationary Plasma Penetrated by a Moving Plasma

Equation 51 will now be applied to a zero-temperature stationary plasma through

which a second zero-temperature plasma passes with an arbitrary velocity, less than

that of light, in the 3-direction. For zero magnetic field, the dispersion relation, for

a wave polarized along the 2-axis, is

2 k2 2 2 (52)
w -kc -a - = 0

and, for a wave polarized in the 3-1 plane, it isb

and, for a wave polarized in the 3-1 plane, it is
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2_ 2 2 2N _Zco -k c -a2) W _Q a co( +A 2)1/22
kc cos 0 - o+

) )_ 2
A

+ k2c2 sin2 0 = 0

a Nae2 om 1/2

= Nbe
2 Em 1/2

(stationary plasma)

(moving plasma)

are the plasma frequencies of the two plasmas, 0 is the angle between the velocity of
the moving plasma and the direction of propagation of the wave, and u = cA is the veloc-

ity of the moving plasma.

Thus the propagation of the transverse wave polarized perpendicular to the plasma

velocity is independent of the velocity of the moving plasma. It behaves exactly like a

transverse wave in a single plasma with density Na + Nb'
For waves polarized in the 1-3 plane, no simple longitudinal or transverse waves are

permissible (except for propagation along the plasma velocity or in the nonrelativistic

limit, A << 1). In general, all allowable waves have both longitudinal and transverse com-

ponents. The two special cases, 0 = 0 and 6 = r/2 will now be considered in detail.

For 0 = Tr/2, the dispersion relation becomes

2 22 2 2-k c _ Qa 'b ( 2 2\ 1+ 2(>-4) + A2
A2

or, solving for k c 2 gives

wher) )

where

A2 k2 2
ke22+ ~2 0-2 aw

(54)

(55)

2 1
1, 3 =2 a + T2

1+AZ
2
a

S 2

+ 2 A
1+A

S1/2

2

2
22 
2 = 1+ A

a + A2

where

22

A
2

(53)
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2 2 2
'4 a b

The mapping of real k into the w-plane is given in Fig. 1-20. There are gaps for

0 < IWI < W2 and C 3 < Iol < 4 in whicn there are evanescent (4) waves. In these ranges

of frequency k is pure imaginary. In the nonrelativistic limit A << 1, W2 - W3 - W4 =

2 + 2 )1/2, and there results only a single gap below the plasma frequency

Q__+ 2 1/2. For frequencies outside the gaps simple unattenuated waves propagate.

For 0 = 0 Eq. 53 gives a transverse wave polarized in the 1-direction which

satisfies Eq. 52, and a longitudinal wave that satisfies the dispersion relation

a2-l kc - 1/A2 2 2 - 2 0 (56)

or, if we solve for k, we have

k = - (+A )1/ Z  b (57)

c2 2) /

The mappings of real w into the k-plane are given in Figs. II-21 and II-22 for the posi-

tive and negative signs, respectively. For the positive sign, simple unattenuated waves

with Ik > k0 can propagate. On the other hand, for Ikl < ko the frequency must be

complex. These waves represent instabilities of the plasma. For nonzero temperature

it is found that k no longer approaches infinity at w = 2
a , but the mapping of real w into

complex k forms a continuous contour as w goes from -oo to +oo. The instability is

therefore convective (4), that is, a disturbance localized in space at a given instant of

time will grow in time and move away.

For the negative sign (Fig. II-22) simple waves can propagate at all wavelengths.

However, for frequencies in the range ow < 2a only evanescent waves are permissible.

4. Plasma in Thermal Equilibrium

The propagation of waves in a plasma in thermal equilibrium will now be studied.

The distribution function (5) for such a plasma is

Torc K1(G) exp[-(l+u2 /c2)1/2] (58)
4rc3 K()

where a- = mcZ/KT, and K 1 is the modified Bessel function. The results for several

special cases will be given.

For a longitudinal wave propagating along the magnetic field the dispersion
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Fig. 11-20. Mapping of real k into the complex w-plane for a wave
propagating across the moving plasma.

k r = At -

A 22/ A
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Fig. 11-21. Mapping of real w into the k-plane
along the moving plasma (+).

for a wave propagating

Fig. 11-22. Mapping of real o into the k-plane for a wave propagating
along the moving plasma (-).
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relation is

2 z 0C 00 21/2

1 - 2 exp[--(l+u2 /c2 ) / 2

4Trc K 1 ) - -

2
u3du du2du 3

3 1 2 3 (59)

(ku 3  + /2z + 1/2

The Landau damping of the wave can be calculated for low temperature by finding

the imaginary part of this integral. The integral over u 3 is taken along the real axis,

except for a small semicircle above the pole of the integrand. First, it may be noted

that for phase velocities greater than light, the integrand has no singularity, the integral

is real, and there is no damping. This would be expected because there are no trapped

electrons moving with the wave if its phase velocity is greater than that of light. For

(w/k) < c the imaginary part of w is

22

-
3 / 2  P expjo-[-(1-w2/k2c2)-1/2]} (60)

kc(k c - 2 )

For (w/k) << c this reduces to the usual result for Landau damping (6). For low tempera-

ture, KT/mc << 1, Eq. 59 may be expanded in powers of KT/mc.

To first order, we have

2 2+ 3kcO 2 
- ) KT (61)

Except for the -2 2KT term this is the usual result. This extra term is caused by
p 2me

relativistic effects. It indicates that waves may propagate in the plasma with fre-

quencies below the plasma frequency for a finite temperature. As the temperature gets

very large, the cutoff frequency approaches the limiting value

2 2 2
cutoff 3 p (62)

This value is obtained by solving Eq. 59 for k = 0, in the limit a - 0.

For transverse waves propagating along the magnetic field, we have
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2 2 2

2 c 2
0e UlduldUZdu 3

2 22 Q

42 2 2 Kp p 2c 3 1

=kc +k+ L'c- 2 (64)2±22

Here, the relativistic correction to the usual dispersion relation (the second term in

brackets) is more complicated than for the longitudinal wave; it is a function of the
magnetic field.

For a transverse wave propagating across the magnetic field and polarized parallel

to the field the dispersion relation is2 2

2 2 2 c X- d= k c + +2-21-+ 4)22 - a- u0 e[ 1c ) ]- c 2 22 2n c c 1(m

cthe usual result of nonrelativistic clorrection to the usual dispersion relation (the seond term inby the

brackets) is more complicated that occurs in the denominator of the sudinal wave; it dis a function of the

cmagnetic field.For a transverse wave propagating across the magnetic field and polarized parallel
cyclotron frequency of a relativistic electron depends upon its velocity. ExpandingEq. 65 to first order in relaT/mc yields

2 = k 2 c2 + Q 2 + 2  KT(66)2 2 p2 p u _

c c
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Aside from the -1 in the parentheses, this is the usual result.

For waves propagating across the magnetic field polarized perpendicular to the

magnetic field, the longitudinal and transverse waves are coupled so that the dispersion

relation is considerably more complicated. It is

P2 2
p c

0

S2 J ZkuX

exp[--(l+u
2 /c2) 1/2 1

1 2 2 2 (1 +
c 2c

2
u XdudX

(lX2)l/2

+1

-o 2- 1 00

2c 5 K 1 (
-) 0 0

u4 X 3dudk

(1x2)1/2 (1 +

exp[-G. (1 + u2/c2)1/2 }  1

IL

W2 _ k2 c
2222cr 2 Q 2pc

c K1(,T)k

/o

1 00

o 0

n 22 kuXkn n )

n2 Q2 2  +c 2/
c 2

exp[-o(1+u 2 / c ) 2 ]

n2 JQ fl J'n 2j J kuX I J1kuX
n- c n-c

2 2n2c2 _ 2- +u2
cc

For low temperatures this relation becomes

2 2
3k c

c

2 +
4 KT 2 2 2

2 2 2
Ca - 2 me rc )

2 2
Ca + 82

c
+ 2 2

2 - 4Qcc

2 2
k c

2
Wa

2 2
C +4 2c

2 2
c/

7 o2 3 2
2 2c KT

2 £22 2
c mc

A. Peskoff

00

1

2

(67)

£22
p

2

. 1

22
p

22
c1 c
2

W

r

KT
2

nc

-2

24 222
p c

2 22
c

2 2
6k c
2 22 -40 2

c

(68)
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RESEARCH OBJECTIVES

1. The aim of the magnetohydrodynamics group is still directed at understanding
the collective behavior of plasmas with special emphasis on the character of hydromag-
netic waves in a bounded medium, instabilities in plasmas, and strong shocks.

The study of waves in a finite domain is of importance to the general problem of

hydromagnetic resonators. Since these devices are used in several schemes for the

heating of a plasma, the need for a thorough understanding of the properties of resona-
tors is evident.

The hydromagnetic stabilities that we propose to investigate will be those associated
with a mean flow of the plasma. Since it is not permissible at times to neglect the effect

of the electric forces, several cases proposed for consideration are not pure hydromag-
netic instabilities, but belong instead to the class of electrostatic instabilities.

Our program for the study of shocks continues to be the one indicated in Quarterly
Progress Report No. 52, page 20, and deals with investigations of the structure of

shocks, the radiation from shocks, and the dynamics of plane shocks in plasmas.

O. K. Mawardi

2. The objectives of the energy conversion group are twofold:
(a) To study problems of magnetohydrodynamic flow, in order to obtain a better

understanding of the phenomena involved. For instance, the problem of interaction
between the ionized gas behind a shock wave and a magnetic field will be studied in detail

for both weak and strong interactions, and for steady and time-variant magnetic fields.
(b) To study systems in which energy conversion occurs between flow energy in a

conduction liquid or gas and an electrical system. These studies will include steady and

nonsteady flow, and dc and ac electrical systems.
H. H. Woodson
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