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ABSTRACT

Linear approximation and linear programming duality theory are used

as unifying tools to develop saddlepoint, Fenchel and local duality theory.

Among results presented is a new and elementary proof of the necessity and

sufficiency of the stability condition for saddlepoint duality, an equiva-

lence between the saddlepoint and Fenchel theories, and nasc for an optimal

solution of an optimization problem to be a Kuhn-Tucker point. Several of

the classic "constraint qualifications" are discussed with respect to this

last condition. In addition, generalized versions of Fenchel and Rockafeller

duals are introduced. Finally, a shortened proof is given of a result of

Mangasarian and Fromowitz that under fairly general conditions an optimal

point is also a Fritz John point.



Introduction

The notion of duality plays an essential role in both the theoretical

and applied aspects of nonlinear programming. Results in duality theory can

be'broadly classified as belonging to one of the following three closely

related areas.

(1) optimality conditions which are local in nature

(2) saddlepoint (min-max) theory which we also refer to as global

Lagrange duality, and

(3) Fenchel duality.

Our purpose here is to use a unifying approach of linear approximation

coupled with linear programming duality theory to develop several results in

each of these three areas. This is to be distinguished from the usual

practice of utilizing such tools as separating hyperplanes, conjugate

functions and/or subgradients to develop the nonlinear results and then

treating linear programming as a special case. The two approaches are,

of course, intimately related (e.g., linear programming duality implies

separating hyperplane theorems [22]). A feature of our approach is the

elementary proofs that it provides for many well known results as well as

several extensions to be discussed below. Only basic results from real

analysis and linear programming duality theory are required as a prerequisite.

Given the scope of our coverage, we believe that this paper might

function not only to present new results and proofs, but also to survey

the field. Due to limitations in space, we have omitted applications of

the theory and have given only brief accounts of underlying geometry. For



coverage of this material see Geoffrion [ 1, Luenberger [21] and Variaya [32].

Geoffrion's article in particular might be useful as co-reading to complement

our discussion.

Of course it has been impossible to give a complete coverage of duality.

For example, converse duality and second order conditions have not been in-

cluded. Nor have special dual forms such as symmetric duals [6], quadratic

programming [4], [7], [8], or the dual problems of Wolfe [33 ], Stoer [30 ] or

Mangasarian and Ponstein [ 2. As a guiding principle, we have incorporated

new results, material for which we have a new proof, or results which we

believe are required for the unity of the presentation. Standard texts such

as Luenberger [ 21, Mangasarian [22 ], Rockafeller [ 24], Stoer and Witzgal [31]

and Zangwill [ 34] discuss further topics as well as point to other primary

sources in the literature. See also Fisher and Shapiro [10], Shapiro 27 ],

Gould 4 ], and Kortanek and Evans [19] for recent extensions to integer

programming, generalized Kuhn-Tucker vectors and asymptotic duality.

Summary of Results

Section I introduces notation, presents a linear version of duality

which forms the basis for following linear approximations, and gives some

basic results such as weak duality for the general duality problem.

Section II.A treats the global Lagrange dual. Primary topics that

are covered include the stability condition of Gale [12] and Rockafeller [25],

the classic Slater Condition ['.29], and the generalized Slater Condition.

Our approach is to relate these results to boundedness of optimal dual
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variables to certain linear programming approximations. In each case, non-

convex extensions are given. Even for the convex case, we believe that the

proofs provided by this approach may be of interest.

Fenchel duality is considered in section II.B. Here we establish an

extended version of Fenchel's original result. Instead of using linear

approximation directly as above, we treat this material by displaying an

equivalence between the Fenchel and global Lagrange theories so that

previous results can be applied. The connection between the two theories

is well known, e.g., both can be derived from Rockafeller's general per-

turbation theory [25] (see also [ 211), but apparently the equivalence that

we exhibit is new. The final topic in this section is Rockafeller's dual

[251.

In section III, optimality conditions are presented which generalize

the classical Lagrange theorem and extensions to systems with inequality

constraints given by Fritz John [16] and Kuhn and Tucker [20]. We begin

by giving necessary and sufficient conditions for an optimal solution to

satisfy the Kuhn-Tucker conditions. These results are based upon familiar

linearization procedures (see [3] and [17]) and global Lagrange duality.

To our knowledge, though, nasc of this nature have not been treated before.

(See [11] for a related approach when C=Rn).

Many well known "constraint qualifications" are then discussed with respect

to these nasc.

For the Fritz John condition, we present a simplified proof of a re-

sult due to Mangasarian and Fromowitz [ 2, 3 ].

The final section is devoted to extensions and further relationships

with other work.
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I. Preliminaries

A. Problem statement and notation

We shall consider duality correspondences for the mathematical

programming problem (called the primal): Determine v,

v = inf f(x)

x£C (P)
subject to g(x) 0

where C is a subset of Rn, f is a real valued function defined on C and
g1 (x)

g(x) = ( ) is a column vector of real valued functions each defined on

gm (x

Rn . By g(x) < 0, we mean each component of g(x) is non-positive.

x is called feasible for P if xC and g(x) < 0. The feasible point x is

called optimal if f(y) 2 f(x) for any y feasible for P. Note that there need

not be any optimal points for P, and yet v is well defined. Finally, if no

point is feasible for P, we set v = +oo

The problem below, which is called the perturbed primal, plays a

central role in the theory:

v(0) = inf f(x)
xEC

s.t. g(x) < em

where e is a column vector of m ones, 0 is a real valued parameter, and

v(O) is the value of the perturbed problem as a function of the perturba-

tion . Observe that v(O) is the value of the original primal problem.

Note: The results to be obtained do not depend upon our choice of em

for the right hand side above. Any m-vector with positive components

would suffice.



To avoid repitition of needless transposes lower case Greek letters

will be used for row vectors and lower case Latin letters for column vectors.

The latter will also be used for scalars, e.g., e above; context should in-

dicate the distinction. Following this convention, we let e and £ denote

respectively a column and row vector of m ones. In addition, we reserve

subscripting for components of vectors and use superscripting to denote

distinct vectors.

If 1T is a row vector and x a column vector of the same dimension, then

1x = EZixi, i.e., inner product. As above, vector equalities and inequalities

are assumed to hold componentwise, and 0 is used either as a scalar or zero

row or column vector of appropriate dimension.

For any subset C of R , int(C) denotes the interior of C and ri(C) its

relative interior, i.e., interior with respect to the smallest linear variety

containing C.
1/2

Finally, I Ixi denotes the Euclidian norm of x, i.e., Ixlii = (Ex.)
iI
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B. A Linear Case

The following linear version of P provides the basis fo:

analysis in Part II. Let C be the convex hull of the fixed points

x1 ...,xk of Rn, let A be an m by n matrix, b an m-dimensional column

vector, and an n-dimensional row vector. The problem is:

k
v(0) = min yx or v(e) = min (yxJ)w.

x£C kk

r our

s.t. Axb+ eSm s.t. Z (Ax-b)w. < ees.t. Ax < b+ eI
k

w>0
which is a linear program (LP) in the variables w. We assume that this problem

has a feasible solution for = 0. By LP duality theory [5 , [27].

v(0) = max{o - GTem}

s.t. o < yx + 7r(Ax j- b) j = 1,...,k

> 0 .

Given any , it is optimal to select = min [yxj + (Ax - b)]. Thus
xJ

v(0) = max min [yx j + (Axj- b - em]
r>0 l<j k

In fact, since yx + (Ax - b - e) is linear in x for any fixed ,

v(O) = max min [yx + (Ax - b - e)] .
->0 xEC

Remark 1:

(1)

From paramteric linear programming theory [ 5], there is a e0 > 0

and 2> 0 dual optimal for = 0 such that v(O) - v(G) = eTe

for all 0 < 0 < 00 .O '0
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C. The Saddlepoint Problem and Stability

An elementary argument shows that for the LP problem above

(with f(x) = yx, g(x) = Ax-b)

v(0) = inf sup [f(x) + r(g(x) - eem)] (2)
xCC 7R-0

and we have shown that v(0) = D(0) where

D(e) - sup inf [f(x) + (g(x) - em)] (3)
TrO xC

Indeed, (2) is true for arbitrary f, g and C. We call the sup inf in (3)

with 0 = 0 either the saddlepoint or (global) Lagrange dual to P,

L(m,x) - f(x) + g(x) being called the Lagrangian function. For notational

convenience, let D(e,) - inf [f(x) + r(g(x) - em)] so that (3) becomes
xEC

D(0) = sup D(,r) .
T>0

Observe that D(,r) is concave as a function of .
Note that the primal has no feasible solution if and only if for 0 = 0

the sup in (2) is +o for each xEC, i.e., v(O) = +X. This conforms with our

previous convention.

The next two well known results are immediate consequences of these

definitions.

Lemma 1 (Weak Duality): v(O) > D(O).

Proof: If v(O) = +, there us nothing to prove. If x is

primal feasible, then f(x) > f(x) + Tg(x) D(0,T) for any R > 0.

But then v(O) > D(O,fr) for all - 0, thus v(O) D(0). ///

tluder certain conditions to be discussed later, v(O) = D(O) and we

say that duality holds. Otherwise v(O) > D(O) and we say that there is

a duality gap.
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Lemma 2: Suppose that v(O) = D(O) < + and that there is a > 0

such that D(O) = D(O,r). Let M = e .Then v(O) - v(0) < M for all

o0 0.

Proof: From the hypothesis, Lemma 1, and the definition of D(0),

v(0) - v(0) < D(0) - D(0) < inf [f(x) + g(x)] - inf [f(x) + (g(x)-0em )]
xC XE£C

A^ m= e LLI

As we shall see in the next section, under certain circumstances,

the condition that there is a finite number M such that

v(O) - v(8) M for all 0 > 0 is not only necessary but

sufficient for Lagrange duality to hold. If this condition (often stated

in other forms in the literature) holds for the perturbed problem, then we

say that the primal is stable.

As an example of a simple problem that is not stable, let

C = {x:x>0} c R, take f(x) = -4- and gl(x) = x. In this case, v(O) - v(e) =4 GM

for any M and v(O) D(O,f) for any wER , > 0. This example as well as

several others that illustrate many of the concepts to be considered below

are presented in [13].

II. Global Theory

A. Lagrange (saddlepoint) Duality

An elementary fact from real analysis states that if C is a nonempty

subset of Rn then C is separable with respect to the norm f | , i.e., there

are countable points x ,x ... that are dense in C (each x C and given any

ycC and c > 0 there is an x such that Iy - x < ).
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Let f = (f(x ),f(x ),...,f(xk)) and let gk = (g(x1 ),... g(xk)) denote

respectively a k-dimensional row vector and an m by k matrix determined by

the first k x j's. Consider the following LP approximation to the perturbed

problem (in the variables wj):

k k k
P (0): v (0) = inf fw

ks.t. gw- Gem

E;w = 1

w .

This LP makes piecewise linear approximations to f and the gj over the convex

1 k 1
hull of the points x ,...,x . We assume that xl is feasible for P; thus,

w = (1,0,...,0) is feasible for pk

We call the original problem P regular if there exists x ,... ,x ,...

contained in C with the properties:

(R1) For k=l,2,..., vk(0) overestimates v(e) locally about 0 > 0, i.e.,

there is a 0k > 0 such that vk(0) > v(0) for 0 < 0 < Ok.

(R2) Given any ysC and any E 2 0, there is a subsequence {k.} of {1,2,...}

k j yadlmf (x kj
such that x + y and lim [f(x) + gx)] < f(y) + Tg(y), where

lim denotes limit inferior 6 ].

P is called y-regular if it is regular with x = y.

Remark 2: (i) If C is a convex set, f is convex on C and each g are convex

on Rn, then vk(0) - v(e) for all 0 0 and any choice of xC. Also

(R2) is a standard result of convex functions (see the appendix for

a proof). Thus, the problem is y-regular for any yC and thus

a fortiori regular.

(ii) If each gj is continuous, then

R2 is equivalent to lim f(x ) f(y). If, in addition, f is (upper

semi-) continuous on C, then R2 holds.
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Our main result in this section is that if x* solves P and if P is

x*-regular, then either stability of P or boundedness of the dual variables

in the LP approximations is a necessary and sufficient condition for

duality to hold. The geometry of these results is illustrated in Figure 1.

From LP theory, v k(0) is convex and piecewise linear. Selecting k optimal

for the dual to P k(0) satisfying remark 1, -k e is the slope of the initial

segment of vk(0). Under R1 and R2, these slopes approach the dashed line

segment supporting v(0) at = 0 and consequently their boundedness is

essentially equivalent to stability, i.e., M < +00. Furthermore, the vector

m
T with ge = M solves the dual problem.

We begin by establishing a sufficient condition without the full regu-

larity assumption.

Theorem 1: Suppose that vk (0) > v(O) for k=1,2,... and assume R2.

k k k.
Let k be optimal variables for the dual to pk(0). If i + £R

for some subsequence {k.} of {1,2,...}, then v(0) = D(0) = D(0,r).
J

Proof: From section 1.B, vk (0) = min {f(x j) + rkg(x)}.

l<j<k
kk

Since v (0) v(0) this implies

f(xj) + r g(xJ) > v(0) for all j < k

Consequently, f(xj ) + g(x) 2 v(0) for all xj.

Finally, let ycC. Then by R2 there is a subsequence {k!} of
kvAk!

{1,2,...} with x J y and f(y) + rg(y) > lim [f(x J) + g(x )] > v(0).

Thus, D(O,T) = inf [f(x) + rg(x)] > v(0). But D(0,T) < D and by weak
xEC

duality D(O,1T) < v(O). /1/
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Corollary 1.1: Suppose that vk(0) v(O) for k=1,2,... and assume R2.

If the sequence Vk of optimal dual variables for pk(0)

are bounded, then v(O) = D(O) - D(O,ff) for some fcR ,

r Ž 0.

Proof: Immediate.

Corollary 1.2: (Slater Condition) Suppose that there is an x£C

satisfying g(x) < 0. Assume R2 and that vk(0) v(O)

with x - x. Then there is a 0 2 o such that v(O) = D(O,A).

Proof: From the LP dual to pk(04for k 1, f(x) + kg(x) > v(O) or

T [-g(x)] f(x) - v(O). Since each component of -g(x) is positive

and Tk > O, this implies that the Xk are bounded. Apply Corollary 1.1. LL/

The geometry of this result is illustrated in Figure 2. From LP duality

theory - em is the slope of a supporting line to v k(e) at e = 0. Letting

max [g (x)], vk(x) f() and consequently if vk (0) > , -kem is no
j Z

smaller than the slope D of the line joining (,f(x)) and (O,v(O)).

Theorem 2: Assume that x* solves P and that P is x*-regular. Let k be

koptimal dual variables for pk(0). Then v(O) = D(O,,) for some 7 oif and only if the k are bounded.

Proof: In light of Corollary 1.1, we must only prove necessity. We

k ksimply note that there exists a 00 > 0 such that, for all 0 < e < e00 0

ork e = v(O) - vk (0) v(O) - v(0) < e Tem

'Ilic eL'quality is a result of Remark 1 and the fact that v(O) = v (0) if P

is x*-rcgular and x* solves P; the first inequality is a result of

k
v (U) - v(O) and the final inequality a consequence of Lemma 2. Thus,

1 2 ^m
I ,2 ,... are bounded from above by e and from below by . LLI

Theorem 3: Let x* solve P and suppose that P is x*-regular. Then there

is a r > 0 satisfying v(O) = D(O,f) if and only if P is stable.
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Proof: Lemma 2 provides the necessity. For sufficiency, simply note

that by x*-regularity (each v k(0) = v(O)) and Remark 1, 0Gk e =

v() - vk(0) < v() - v(e) < OM for some > O0. Thus the are

bounded and Theorem 2 applies. ///

Actually, x*-regularity is not required above when C, f and g are convex.

A proof of this fact is given in [13] and [25]. We state the result here

for use in coming sections.

Theorem 3A: Suppose that in P, C is convex, f is a convex function on

C, and each gj is a convex function on R . Then there is a eRm ,

'T 0 satisfying v(O) = D(O,r) if and only if P is stable.

Next, consider the optimization problem

inf f(x) or
xEC

s.t. g(x) 0

h(x) = 0

inf f(x)
xEC

s.t. g(x) < 0

h(x) < 0

-h(x) < 0

hi (X) 
where h(x) = :X)

h(X)

We say that the problem is stable if the form to the right is stable. Writ

the dual to the second form and simplifying, we find

D(O) = sup inf [f(x) + g(x) + ah(x)] sup D(0,',a)
'r0 xcC Tr-O

Rr aR r

I.e., the dual variables corresponding to h(x) are unconstrained in sign.

Let P1 denote the LP approximation to P, i.e., let h (h(x ),...,h(x

and add h w = 0 to P (0).

Arguing as in the proof of Theorem 1, we may prove:

:ing
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Theorem 1A: Suppose that v (0) - v(O) for k=1,2,... and assume R2. Let

k k k
(7k,k ) be optimal dual variables for P If the

k k r
sequences {7 } and {a } are bounded, then there is a >

- 0, a£Rr

satisfying v(O) = D(O) = D(O,r,a).

A consequence of this theorem is a generalized version of Corollary 1,.2.

We say that P satisfies the generalized Slater condition if:

(i) there is an xC satisfying g(x) < 0, h(x) = 0

(ii) for j=l,...,r, there exist y£C, satisfying h(yj) = .juj

yJ cC, satisfying h( ) = -. u j

where uj is the jth unit vector, and the 0. and e. are positive constants.

Corollary 1A.l: Assume R2 and that

P satisfies the generalized Slater condition. Also let vk(0) > v(O)

for k=1,2,... and assume that the points x,yj, in the definition

1 2
of the generalized Slater condition appear in x , x ,... Then there

^ _^r ^ 
is a > 0, aER with v(O) = D(0,r,a).

Proof: Let pd contain the points x, yj, j , j=l,...,r. Then for

k > d i

Tk[-g(x)] < f(x) - v(0)

akh(xi ) v(0) - kg(xi) - f(x i)

iFrom (i) the fkare bounded. Consequently, as x varies over y, ,

(ii) implies that the ac are bounded. Now apply Theorem 1A.

(i)

(ii)

///

Suppose that h(x) is composed of affine functions, h(x) = Ax + b, and let C be a

convex set. Then we may state a condition that easily implies the generalized

Slater condition. Here for the first time we formally use a separating hyper-

plane theorem for convex sets. This is somewhat illusory, however, since it
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is well known that LP duality theory (or one of its equivalents such as

Gordon's Lemma) is equivalent to this separation theorem [22]. In fact,

Theorem 1 itself supplies a simple proof of a separating hyperplane

theorem [13].

Lemma 3: Let h:C+Rr be affine and let C c Rn be convex. Suppose that

there is no a O0 such that ah(x) > 0 for all xC. Then there exist

yJ, J jC j=l,...,r satisfying condition (ii) above.

Proof: Suppose there does not exist a y C with h(yj) -= ju3 for any

j > O. By linearity and the convexity of C, h(C) = {h(x):x£C} is a

convex set disjoint from C = {OuJ:0 > 0}. By the separating hyperplane

theorem, this implies that there is an a O, BeR such that ah(x) >

for all xC, ay < for all yC. This last relation implies that B > O.

A similar argument applies if no yJc gives h(y-j ) = -u j for

any 0. > O. L//

Remark 3: The results presented in this section (besides Remark 2) do not

depend upon properties of Rn . In fact, they are applicable to

optimization problems with a finite number of constraints (equality

or inequality) in any linear topological space as long as C is

1 2
separable (i.e., there are points x , x ,... of C such that for any

yeC and any neighborhood N(y) of y, there is an xcN(y)). In par-

ticular, the results are valid in separable metric spaces.

B. Fenchel Duality

Suppose that f is a convex function and g a concave function defined

respectively on the convex subsets C1 and C2 of R . The Fenchel duality theo-

rem [9] states that under appropriate conditions v - inf [f(x) - g(x)] satisfies

s.t. XC 1 C2
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v = D _ max [g*(7) - f*(7)]
7r

s.t. 7TEC* C2

where f*() = - inf [f(x) - rx] and g*(7r) = inf [rx - g(x)]

xC 1 xC 2

C1 = {r:f*(') < + )} C2 = {r:g*(r) > - oo}

f* and g* are usually referred to respectively as the conjugate convex and

concave functions of f and g.

In this section, an extended version of this result is established.

Our approach is to state the Fenchel problem in the form of P

from the preceding section and then to apply the Lagrange theory. We also

establish an equivalence between the two theories by showing that every

problem P may be treated as a Fenchel problem. For simplicity, attention

will be restricted to the convex case, though non-convex generalization may

be given along the lines of the preceding section.

Let C. j=l,...,r be convex sets in Rn and for j=l,...,r let f. be a

convex function defined C. Consider the optimization problem

r
v - inf f.(x) (F)

j=l 

r

s.t. x /)C.
j=l J

Define C ClxC2x ... xC xR , let x = (x . x ,x)C and define f:C-+R by
r

f(x) = Z f.(xJ). Then C is convex, f is convex on C and F is equivalent
j=l J

to the Lagrange problem:

v = inf f(x) (P)
xEC

s.t. x = x j=l,...,r .

'Ill, 1.aglrauge dual to P is:

r
D - sup inf [f(x) + . J(xJ-x) ]

7.0, .
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r
For the inf to be finite, it is necessary that Z j3 = 0, and thus after

1
rearrangement the dual becomes

r 1pr
D = sup Z inf [f (x) + rx] may D( ,.. )

z7j=O j=l xC. E ZTJ=O

Note that for r=2, this has the form of the Fenchel dual from the first

paragraph of this section. From previous results, we immediately have:
r

Theorem 4: v = D = D = D( ,. ..,r) for some TFsRn, j=l,...,r with Z j = 0

if and only if P is stable.

Below we establish another sufficient condition for this duality to hold.

Often it is easier to establish this condition than stability of P directly.

Lemma 4: Nonsingular affine transformations of Rn do not affect the

duality relationship for F.

Proof: Let L(x) = Ax - y for A a nonsingular n by n matrix and yR n

fixed. Define L(Cj) - {zeRn:z=Ax-y for some xC.}. Then substi-

tuting A- l(z+y) for x in F gives the equivalent problem:
r -l

inf f.[A - l (z+y)]
1 j

r
s.t. z f L(Cj).

Note that f.[A- (z+y)] is convex as a function of z and

that each L(Cj) is convex. The dual to the transformed problem is:

r r
sup [f1 [A1 (z+y)]+ jz] = sup inf [f (x)+^J(Ax-y)].
J=O 1 zcL(Cj) z TJ=O j=l xC 

r r .
But 7rry = (Zr3J)y = O; also defining j. = rjA, Eij = (ZTj^)A = 0. Conse-

quently, this dual is equivalent to the Fenchel dual of F. ///
r

Remark 4: Suppose that int (C ) 95. By the preceding lemma, we may
j=l r

assume that 0 E () int (Cj). But then for j=l,...,r and k=l,...,n,
j=l
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let xjk = (0,...,0,x= u u k,0,...,0) where u is the kth unit vector

in Rn and is chosen small enough so that each xjk and xjk is

contained in C. Substituting in P, the xk's and -xk's provide

the requirements for the generalized Slater condition and conse-

quently, duality holds. The following result generalizes this

observation.
r r

Theorem 5: Suppose that Cn ri(C.) # 4 in F. Then v = D = D( ,..., r)
n j=l r

for some iJeR n , j=l,...,r with = 0.
1

Proof: For simplicity we assume r=2. The general case is treated

analogously. By Lemma 4, we may assume that Oeri(C1) ri\r(C 2). Let

S be the smallest linear subspace containing C1i\C2 and for j=1,2 let

S be the smallest linear subspace containing Cj. By a change of basis

1 doand lemma 4, we may assume that the unit vectors u ,...,u do < n are a

basis for S and that these vectors together with u o+l... ,udl are a

dl+l d2basis for S1 and together with u ,...u are a basis for S2.

Note that for x C1, the components xk = 0 for k > d and for

x2C2 x =0 for k > d or d< k < d Thus F may be rewritten as

v = inf[fl(x1) + f2(x
2 )]

xC

s.t. x. = x. 

X = O j=dol,...dl2 -r X X

j 0

X 2 =0 j=d +l,...,d

The notation here corresponds to that in . But now since Ori(C1)Ari(C2),

for each xk appearing above there is an xC with xk = +0 for some > 0

1 2and with each x, xj xj = 0 jk. That is, the problem above satisfiesand with each x ~j,
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the generalized Slater conditions and duality holds. Let Tij be optimalJ
2 1

dual variables for the problem. For j=p+l,...,dl define j. = -1 ,

22 2 2
noting that r x = 0 since x. = 0 for x eC2. Similarly, for j=dl+l,...,d2

1 2 11 1
define 1 = _-2 and note that 7.x. = 0 for all x C2. In addition,

1 2define 1 = 2 = 0 for j = d2+1,...,n. Combined with the dual to the
j jO~~~~~1 2

problem above, these variables give the desired result v = D(1, ,r ). //

1 doFor the general case, u ,...,u above is taken as a basis for the
r

smallest linear subspace containing / Cj, is extended to a basis for
j=1

the intersection of every (r-l) sets, which in turn is extended to a basis

for the intersection of every (r-2) sets, etc..

Consider next the extension of Fenchel's problem introduced by Rockafeller:

v - inf{fl(x) + f2(Ax)}

s.t. xEC 1 (F)

AxEC 2

where A is a given m by;n matrix. C2 is a convex subset of Rm, f2: A
md R i 

convex function and C and f are as above. As a Lagrange problem, this becomes

( 1 2
1 2- inf [f ( xl ) + f2(x ]

(x ,x ,X)£Cl1XC 2xR

X =X

2 -
x = Ax

its dual is: sup 2 Z inf [f (xj) + iJxj] + inf-(+ 2A)x]}
j1,7 J1 xJEC. i xER

1 2
For the last inf to be finite, 71 = -7 A, thus the dual becomes:

sup {inf [fl(x) - Ax] + inf [f2(x) + x]} = D(-TA,r) .
xT xEC1 xeC2

By arguing as in the previous theorem, our approach provides an alternate

proof to Rockafeller's theorem [25]:

lheorem 6: If there is xri(C1) with Axcri(C2) in F, then v = D(-7A,r)

for some 1icR.
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For the proof, first translate C 1 so that Ori(C1) with AO = Ori(C2).

Then let S2 be the smallest linear subspace of Rm containing C2, let

S2 = {x: Ax e S2 } and proceed as in the proof of theorem 5.

Of course, we also have the obvious result that the conclusion here

holds if and only if the Lagrange version of F is stable.

Above, we have shown that Fenchel duality is a consequence of Lagrange

duality. Now we show the converse, thus establishing that the Fenchel and

Lagrange saddlepoint theories are actually equivalent. Consider the Lagrange

problem P with C a convex set and f and each g convex functions. Let

C1= {y - ( R : Y 0 - f(x) and y - g(x) for some xEC} and letC, ly= (yo c~m~l: yo :f(x) and y y

C2 = {Y = (YO)Rm l y 0, y0 £R}. C1 and C2 are convex sets and the Lagrange
primal is equivalent to:

primal is equivalent to:

inf 

s.t. yeClfC 2

Identifying fl(y) = Y0 and f2(y) - 0, the Fenchel dual to this problem is:

max {inf [ 0 + r0y0
+ y ] + inf [ 0y0 - y]}

0, yC yC 2

Since the second inf is - oo, if 70 # 0 or some j. < 0 j=l,...,m, this dual

can be rewritten as:

max i:lf [Yo + y] = max inf [f(x) + g(x)]
I)LO -t C '110 xcC

willicll is Ltle Lagrange dual. (Note that int(Cl\int22)# P iff P satisfies

the Slater condition.)
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III. Local Duality

Throughout this section, we assume that x solves the optimization problem:

v -min f(x)
xEC

s.t. g(x) O0 (P')

h(x) = 0

where C R,f:C+R, g:R n-R , h:R nR ; also f and each gj and hi are assumed

to be differentiable at x.

We say that x is a Fritz John point of P' if there exists T MR , aOR

and T0cR not all zero such that

[r0oVf(x) + rVg(x) + aVh(x)](x-x) - 0 for all xC (4)

ITg(x) = 0
0

where f(x) = f(x)
where Vf(x) = (af(X) is a row vector, the gradient of f at x,

1 n x=x

Vg1 (x)
Vg(x) = ( : ) an m by n matrix and similarly Vh(x) is an r by n matrix.

Vgm (x)

(70,f,a) is called a Fritz John vector at x and (4) are called the Fritz John

conditions.

x is called a Kuhn-Tucker point if 0 above is 1. In this case, (,a)

is called a Kuhn-Tucker vector at x and (4) the Kuhn-Tucker conditions.

Remark 5: If x is interior to C, then (4) can be replaced by

[Tr0Vf(x) + rVg(x) + aVh(x)] = 0

rg (x) = 0.

IT -O
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Our purpose here is

(i) to give necessary and sufficient conditions for a Kuhn-Tucker vector to

exist at the point x and to discuss several of the well-known "constraint

qualifications" from the literature from this viewpoint.

(ii) To supply a shortened proof that a Fritz John vector exists at x whenever

C is convex and has a non-empty interior and h has continuous first partial

derivatives in a neighborhood of x.

We use linear approximation and either LP duality or the saddlepoint theory

as our principal tools. In this case, however, approximations are based upon

first order Taylor expansions, not upon inner linearization of C as used

previously.

The following elementary fact from advanced calculus will be used often.

If r is differentiable at x£Rn and yRn, then the directional derivative in

the direction y satisfies

lim r(x+ay) - r(x) = Vr(x)y .

a-+O

Consequently, if Vr(x)y < 0, r(x+ay) < r(x) for > 0 sufficiently small.

Also, if r:R R , we denote d by r(de =0

A. Kuhn-Tucker Conditions

Let A = {i: l<i-m, gi(x)=O}, let A(X) denote the vector (gj(x):jA)

and VgA(x) the matrix of gradients determined by gA(), i.e., VgA(x) = (Vgj(x):jA).

Consider making a linear approximation to P' locally about x. Since the gj(')

are continuous at x, gj(x) < 0 for all jA and x in a neighborhood of x. Thus

w( ilor tes constraints and write the approximation as:

v II illt(x) + Vf(x) (x-x) I

s.t. t 'A(X) + Vg () (x-X) = Vg A (x)(x-x) 0

l(x) + Vli(x)(x-,) = V1(x)(x-x) = 0
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We say that P' is regular at x (not to be confused with the global regularity

of section II) if v = v = f(x). Since x=x is feasible,for the linear approxi-

mation, v < v and regularity is equivalent to v = 0 where

v = inf _Vf(x)y
yEC-x

s.t. VgA(x)y 0 (L)

Vh(x)y = 0

i.e., y=O solves L. The dual to L is su inf _ [Vf(x)+ IAVgA(x)+ aVh(x)]y.

7AO yeC-x

aeRr

An example of a problem that is not regular at x is min x1 subject to x<0

and x - x2 < 0 which has (xl,x2 ) = (0,0) as its only feasible solution.

Note also, that (0,0) is not a Kuhn-Tucker point.

The basic result for Kuhn-Tuckervectors which generalizes this observation is:

Lemma 5: There is a Kuhn-Tucker vector at x if and only if P' is

regular at x and saddlepoint duality holds for L.

L
Proof: (Sufficiency) If v = 0 and saddlepoint duality holds, then there

is a Ar > 0 and aeRr with

[Vf(x)+ AVgA(x) + aVh(x)]y - 0 for all yC-x. (5)

Letting Rj = 0 for jA, then rg(x) = 0 and (5) is equivalent to

[Vf(x) + Vg(x) + Vh(x)](x-x) > 0 for all xC.

(Necessity) If (,a) is a Kuhn-Tucker vector, then ij = 0 for

jJA, so that the gradient condition is just (5). But then the inf of

L >
(5) over yC-x is non-negative, so that weak duality implies that v - 0.

Since v - 0, v = O thus L is regular at x and saddlepoint duality holds. ///

Corollary 5.1: Suppose that C is convex. Then there is a Kuhn-Tucker

vector at x if and only if P' is regular at x and L is stable.

Proof. By Theorem 3 saddlepoint duality holds for L in this case if

nd only if L is stable. /IH
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If x is an interior point of C, then regularity at x

is equivalent to v = 0 where

L'
v = inf Vf(x)y

yERn

s.t. VgA(x)y 0 (L')

Vh(x)y = 0

L' < L
Clearly v - v . But if there is a y feasible for L' with Vf(x)y < 0, then

L' >
for some 0 > 0, Oy£C-x is feasible in L with Vf(x)(0y) < 0. Thus v - 0 iff

v - 0. Since L' is a linear program, duality is assured. But the Linear pro-

gramming dual gives precisely the Kuhn-Tucker conditions as stated in remark 5.

In fact, this same argument may be used for the somewhat weaker hypothesis

that C satisfies:

for any y? there is a > 0 such that x + yeC. If this condition holds,

we say that C encloses x.

Consequently, for this case, Lemma 5 becomes

Lemma 6: Suppose that C encloses x. Then there is a Kuhn-Tucker

vector at x if and only if P' is regular at x.

In particular, if x is an interior point of C, then

there is a Kuhn-Tucker vector at x if and only if P' is regular

at x.

There are several properties of problem P' that imply the existence of

Kuhn-Tucker vectors. Among the most well known are:

(i)' Kuhn-Tucker constraint qualification [.20]: (x £ int(C)).

Let yeRn, VgA )y - 0, Vh(x)y = 0.

Qualification: there is a function e:[0,1] + Rn such that

() e (O) = x

(b) e(0) is feasible for P' for all 0t [0,1]

(c) c is differentiable at 0 = 0 and e'(0) A= y for some real number X > 0.
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(ii) Tangent cone qualification [32]: (x e int (C)h(x) - 0((i.e.no equalitycon ) '

'Let C(x) = {ycRn: there are xk k=1,2,... feasible for P' and

k- 1 k
k> 0, EkER such that x x, -(xk- x) = y}

be the tangent cone to P' at x and let D(x) = {yeRm: VgA(x)y < 0}.

Qualification: C(x) = D(x).

(iii) Arrow-Hurwicz-Uzawa constraint qualification [2]: (x int(C), h(x) - 0)

Let Q = { fA: for all xeC, Vg (x)(x-x) 0 implies that g (x) gj(x) = O}

and R = A - Q.

Qualification: There is a zRn satisfying VgQ(x)z < 0

VgR(x)z < 0.

(Note that linear equations may be incorporated into gQ(x).)

(iv) Slater condition (C convex, f and each g convex, and h(x) _ 0)

Condition: there is an xC with g(x) < 0.

(v) Karlin's constraint qualification [18]: (C convex,

each gj convex, h(x) -O)

Qualification: there is no wERm, > 0, # 0 such that

fg(x) > 0 for all xC.

(vi) Nonsingularity conditions:

Qualification (h(x) E 0, C = Rn): Vgj(x) j=l,...,m are linearly independent.

Lagrange's condition (g(x) 0, C = Rn): Vh (x) j=l,...,r are linearly

independent.

Theorem 7: Each of (i)-(vi) implies the existence of a Kuhn-Tucker

vector at x.

Proof: By lemma 6, for (i)-(iii), it suffices to show that P' is

regular at x. That is for (i) assume that y solves VgA(x)y < 0, Vh(x)y = 0

and for (ii) and (iii) assume that VgA(x)y - O. We must show that Vf(x)y 2 0.
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(i) By the chain rule, = Vf[e(0)] e'(O) = XVf(x)y
8d =0

for some > 0. But then if Vf(x)y < 0, f[e(e)] < f[e(O)] = f(x)

for OE[0,1] small enough. Since e(e) is feasible for P', this con-

tradicts x optimal.

(ii) By definition of derivatives, given > 0 there is a K such that for
k-k- k

k K, E [f(x )-f(x)] - Vf(x) -x)I < x-x II
E kEI -: k

k k k
x -x

By the qualification, -+ y and this inequality implies that if
k k

Vf(x)y < 0 then f(xk ) < f(x) for k large enough. But since x is

feasible for P' this contradicts x optimal.

(iii) The qualification implies that VgQ(x)[y+ z] < O

VgR (x)[y+ z] < 0

for any 0 > 0. By definition of Q and (*) this implies that gA[x+a(y+0z)]

- gA(x) 0 for all 0 < a < a some a. Also since x int(C),

x + a(y+ Oz)EC if a is small enough. Finally, if Vf(x)y < 0 then

Vf(x)[y+ z] < 0 for 0 < 0 < for some . But this again implies

that if a is small enough, f(x + a[y+ Oz]) < f(x), i.e., x + a[y+ Oz]

is feasible for P' and contradicts x optimal.

(iv) By Corollary 1.2, there is a > 0 such that f(x) + g(x) > v = f(x)

for all xC. Since g(x) < 0, f(x) + g(x) < f(x) thus equality holds

and g(x) = . Also x solves min [f(x) + g(x)].
xEC

But this implies that [Vf(x) + Vg(x)](x-x) > O for all xEC, i.e.,

f is a Kuhn-Tucker vector at x.

(v) The problem v = inf {oa: g(x) i oem} satisfies the Slater condition.
xEC
ocR

Thus by saddlepoint duality v = inf [g(x)] for some ff > O, re = 1
xEC
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the last condition being implied by OeR in the dual. By the

qualification, though, g(x) < 0 for some xC. Thus v < 0, i.e.,

P' satisfies the Slater condition and (iv) applies.

(vi) If the Vgj(x) are linearly independent, then Vg(x) = 0, > 0, em = 1

has no solution. LP duality (take objective - 0 with the constraints

above) implies that sup a: : Vg(x)y + aem < O} is +-, i.e., there is a

y with Vg(x)y < 0. Then apply (iii).

The proof for Lagrange's condition utilizes the implicit function

theorem and is similar, though easier, than the proofs in the next

section. It is omitted here. L//

For discussions of yet further sufficient conditions for the existence

of Kuhn-Tucker vectors, see [22]. As a final observation in this

section, we show that the Arrow-Hurwicz-Uzawa constraint qualification implies

the Kuhn-Tucker constraint qualification. Abadie [1] has previously given a

partial proof of this result.

Lemma 7: The Arrow-Hurwicz-Uzawa constraint qualification implies the

Kuhn-Tucker constraint qualification.

Proof: Let ycC-x satisfy VgA(x)y < 0, and let z satisfy A-H-U. For any

0 > O,VgR(x)[z+Oy] < O, thus by (*) there is an a > 0 such that

gj(x + a[z+6y]) gj(x) < 0 for all jeR, for all 0 a < a.

Thus for jcR, g(x + e[ey + 02z]) < 0 for all [0,], for all 0c[0,1].

Also VgQ(x)[0yg + a z] (x+ a[0y + 02z]) 0, for all jQ.

Finally, since x E int(C) there is an >0 such that in x +[ey + e2z] EC

for 0< a < a .

Let e (0) = x + a[0y + z] with a min (a a)and small enoughthat g[ey(0)]<0

for all jA and 0E[0,1]. Then e (0) = x, e'(0) =a y and from above,

e :[0,1] C {x:g(x) < 0}. L!
y~~~~~~~~~~~~~~~~~~~~~~~/-
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Remark 6: Conditions (i), (ii) and (iii) can be modified by assuming

that C is convex, and not necessarily that xint(C). As

above the conditions imply regularity at x, thus by corollary

5.1 under any of these conditions there is a Kuhn-Tucker vector

at x if L is stable. Additionally, lemma 7 will hold for the

modified Arrow-Hurwicz-Uzawa and Kuhn-Tucker constraint quali-

fications. The proof is modified by noting:

2 [1 - 2
x + a[x + 2 z] = [1 -a - ae 2x + (ae)(x+y) + (ae )(x+z)c

if O<a < = 1/2 (so that 1 - aO- ae2 > 0).
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B. Fritz John Conditions

- Dh(x) Dh(x)
If x is partitioned as x = ( z ,let V h(x) h() h ]

~aY y k x=x

and similarly define V h(x).

Remark 7 .Let h(x) = 0, x =() Suppose h has continuous:first partial deri-

vatives in a neighborhood of x and that V h(x) is non-singular. Then

n-r
by the implicit function theorem there is an open set r c R with

r
z E r and a function I:r + R such that with y = I(z) and y = I (zN,

h(y,z) - 0 for z r. Furthermore, I has continuous first partial deriva-

tives on r and satisfies: . ...

FACT: Assume Vh(x)v = O. Let Vh(x)v = V h(x)v + V h(x)v , where theY Y z z

partitioning v = (v) of v conforms with that of .. Also, for

all 0 such that z + ev e r let (0) = I(z + Ov ). Then '(0) = v
z z y

Proof: From above, h[P(e),+0v = for all such that Z+Ov Er
.~ ' ~~~~~~Z Z

d
so [$(0),z+=vz] - 0. Thus by the chain rule V h(x)%'(O) +

V h(x)v = 0 (**). But since V h(x) is non-singular the solution for
z z y

' (0) in (**) is unique, thus by hypothesis equal to v. 

Armed with this fact about implicit functions, our proofs are quite easy.

The next result and approach taken here is a shortened version of Mangasarian

and Fromowitz's development [22], [23]:

Lemma 7: (Linearization Lemma) Let C c Rn be convex; let h and g

satisfy the hypothesis of P' and assume that h has continuous

first partial derivatives in a neighborhood of x.

If Vh(x)v = 0

Vg(x)v < 0

x + v E int (C)

has a solution and the vectors Vhj(x) j=l,...,r are linearly independent,

then there is an x' E int (C) arbitrarily close to x with h(x') = O

and g(x') < g(x).

Proof: Vhj(x) linearly independent implies that there is a partitioning

of x, x = (y,z) with V h(x) non-singular. Using the notation in Remark 6
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above, define x(0) = [(6) - e(0), 6v ]. By the fact ) + v as + 0
z 6

and h(x(0) + x) = 0 in a neighborhood of = 0. By the definition of derivative,

given > 0, for each j

IIgj (x(e) + X) - gj (x)} - Vgj (x)x(e) I- I x(e)I

for 101 < some constant K jThus

II{gj (x(0) + x) - gj (x)}- Vgj ()X I I) 
x(6) (+ v, Vg x)

and so since x() + v, Vg)[(x)v < 0 as + 0, and

gj(x() + x) < gj(x)for 6 > 0 small enough.

- - - x(e)Finally, since x + x + v int (C), x + c int (C) for small
8 6+0 6

enough. But if x + x() E int (C) and 0 < e < 1

x + x(0) = O[x + ] + (1-0)x int (C) since C is convex.

Putting everything together: x + x(O) int (C)

h(x + x(6)) = 0, g(x + x(e)) < g(x)

for >0 small enough. Let x' = x + x(6). ///

Remark 7: An analogous result holds when Vh(x) 0 O, i.e., there are no equality

constraints above.

Theorem 8: Consider problem P', suppose that C is convex and has a non-

empty interior, and that h has continuous first partial derivatives in a

neighborhood of x. Then there is a Fritz John vector at x.

Proof: If Vh.(x) are linearly dependent, then there is an a # 0 such

that aVh(x) = O. Letting 0 = 0 and = 0, ( 0 ,i7,c) is a Fritz John

vector. If the Vh.(x) are linearly independent (or h(x) - 0), then

since x is optimal, the previous lemma (for small enough in Lemma 7

gj(x + x(0)) < 0 for jA, thus these constraints may be ignored) implies

that o = 0 where
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a = min -a

s.t. Vh(x)v = 0

VgA(x)v + em < 0

Vf(x)v + a < 0

x + v int (C)

has no solution, with a < 0,

Note that (,v) = (0,0) is feasible here, thus a < 0.

By the hypothesis and Lemma 3 of section I, this optimization

problem satisfies the generalized Slater Condition. Thus by Corollary 1A.1

there is a vector ( (r0r,Ar)A) > 0 such that

inf { (em + 0- 1)o + [0OVf(x)+VgA(x)+aVh(x)]v} = 0
OcR

vEint(C)-x

But then em + = 1 and

[ 0Vf(x) + TrAVgA(x) + Vh(x)]v 0 for all v+x int (C).

Letting Tji = 0 for jA and noting that this relationship is continuous

in v implies

[70Vf(x) + rVg(x) + aVh(x)](x-x) > 0 for all x closure of C. L///

IV. Concluding Remarks

In this section, we give some brief remarks relating our results with

previous work and indicate some possible extensions.

Our approach to the saddlepoint theory is related to Dantzig's genera-

lized programming approach to solve P [5, chapter 24]. There he generates

the xi not as a dense subset of C, but rather by solving a Lagrangian subproblem.
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His results furnish Theorem 1A when C is convex and compact, f is convex on

C, each gj is convex on Rn , and the h. are affine. Note that whereas he

develops a computational procedure for solving P, we do not.

Previous proofs of Theorem 3 [131, [25] have been given when v(') is a

convex function. We have not considered this case, but conjecture that

convexity of v() implies that P is regular. We also believe that theorem 3A

can be obtained from our results by approximating P by problems that have an

optimal solution and applying theorem 3 to these approximations.

In [15], Gould and Tolle give an alternate development of necessary

and sufficient conditions for optimality conditions. They consider: when

is there a Kuhn-Tucker vector at x for every function f such that P has a

local minimum at x?

As to extensions, we note that our approach will provide what seems

to be an almost unlimited variety of dual forms and suggests a number of

additional theorems. For example, for j=l,...,r let C. c Rn and f.:C. + R,

let g:Rn + Rm, and let C c Rn. Consider the composite problem:
r

inf E f.(x)
xEC j=l 3

r
s.t. x f C.

j=l J

g(x) 0 .

By replacing C with Clx ... xC xC and introducing g(x) < 0 into P from

section II.B, we easily see that the problcm has the dual

r r
sup {inf [rg(x) + (UZ3 )x] + Z inf [f.(x) + frrx]}
'ITJ l Rn xeC 1 j=l xC j

Iy using g(x ) ()0 for some j in P, we obtain a different dual. As another

exailllI)e, consider the following extended version of Rockafeller's dual:
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r
inf E [f (AJx)]

j=l j

s.t. Aj x CC . j=l,... ,r

Arguing as before, its dual is

sup
r. =o

1

Aj is an mj by n matrix

C. Rmi
J

r
Z inf [fj(x) + rjx] 

j=l xEC.
J

Finally, we note that the techniques of III.B can be applied to give

Kuhn-Tucker conditions for problems with equality constraints. For details,

see [ 22].
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APPENDIX

If C is convex and f:C -+ R is a convex function, then it is well known

[22] that f is continuous on ri(C). In particular, if C = Rn then f is con-

tinuous. Consequently, each gj in P is continuous and to prove (R2) from

section II.A as asserted in Remark 2, it suffices to establish the condition

only for f. This also is well known but often misquoted; for completeness

we provide a proof here of a somewhat stronger result.

1 2
Lemma: Let x ,x ,... be a dense set of points from the convex set C

and let f:C + R be a convex function on C. Given any yC there is
k. k.

a subsequence {k.} of {1,2,...} such that x + y and f(y) lim f(x ).

(lim denotes limit superior [26 ]).
Proof: If C is a single point, there is nothing to prove. Otherwise,

let z be contained in the relative interior of C and for j{1,2,...} let

zj = (H)z + (l-)y. Then zj + y and f(y) lim f(zj) since by convexity
j j

f(zj) < ()f(z) + ('.l)f(y). Also z ri(C). Since f is continuous on
j j

ri(C) there is an xk with Ilxk j _ zl < (1) and

f(xk j) - f(zJ) < (). Then x -+ y and lim f(xk ) < f(y). ///

k k
Note that this lemma does not say that if x -+ y then lim f(x ) or

kj <
even lim f(x ) - f(y). As a counter-example to this assertion let

C = {x6R : x2 + x2 < 1} and for xEC let

2 2
0 for x1 + x2 < 1

f(x) = 1/2 for x = (1,0)

1 otherwise.

k. 2 2 k kj
Letting x J {x:x + x2 = 1} -{(1,0)}, x - (1,0) gives lim f(x) = 1

with f((1,0)) = 1/2.
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