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0. INTRODUCTION

In this paper we consider an infinite-horizon, dynamic lot-size

problem with cyclic demand and costs. This problem is a natural extension of

the finite-horizon problem first studied by Wagner and Whitin [10].

After formulating the infinite-horizon problem, we interpret the problem as

a minimal cost-to-time ratio circuit problem [2 . With this interpreta-

tion we establish directly that an optimal policy is periodic and specify

an efficient algorithm for finding the optimal policy. Finally we indi-

cate how these results pertain to simple extensions of the problem, first

allowing backorders and then allowing a discounted cost criterion.

1. AVERAGE COST PROBLEM

Define T to be'the number of periods per cycle. For each cycle we

define the following parameters, all of which are nonnegative integers:

di = unit demand in ith period of each cycle, i=1,2,...,T;

hi = unit holding cost for carrying inventory into the i+l t period,

i=1,2,...,T-l, or into the first period of the next cycle for

i=T;

f = fixed setup cost for the ith period, i=1,2,...,T;

Vi = variable unit production cost for the ith period, i=1,2,..,T.

In the infinite-horizon dynamic lot-size problem with cyclic demand

and costs, we assume each cycle of T periods is identical and repeats itself

indefinitely. We denote the ith period of cycle r as period ir. By

convention we understand the notation ir-l to denote the prior period,

and, in particular, to denote period Tr- 1 when i=l; also, ir < js implies

either s > r or s = r and j > i.

The decision variables for this problem are as follows:
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P = quantity produced in period ir, i=l,2,...,T, r=1,2,...
i

Ir = on-hand inventory at the end of i, i=1,2,...,T, r=1,2,...

The problem statement is to determine these production and inventory

values so that all demand is met without backordering and average long-run

production and inventory cost per period is minimized.

This problem statement would seem to be an appropriate representation

of settings with a strong seasonal or cyclic demand component. This

cyclic property may occur due to a natural product seasonality, or may be

induced from the composition of cyclic purchasing patterns of a set of

customers, i.e. customer A buys 100 units once every three periods...

Furthermore, the study of the infinite-horizon problem should provide insight

to and supplement the work on planning horizons for the dynamic lot-size

problem (Wagner and Whitin [10], Eppen, Gould, and Pashigian [3 ], Zabei

[11], Lundin and Morton [9 ], Chand and Morton [1 ]).

Representation as a Minimum Cost-to-Time Ratio Circuit Problem

We assume that at least one holding cost is positive; else it is

optimal to produce an infinite amount on the first occurance of the period

with minimum unit production cost. Let H = h + ... + h, and let fmax

be the largest fixed setup cost. We claim that we may restrict attention

to solutions satisfying the following two properties:

r r
P1: For all r, IrlPr = 0 for i=2,...,T and IT Pr = 0.

i-l i T 1

P2: There are at most T-f /H consecutive periods in which a positive

amount of inventory is held.

Property P is the immediate counterpart to Theorem 1 in [10] and

has the same proof, which we omit. We prove the validity of P2 via an

interchange argument. Suppose that we produce in period ir and store

at least one unit for kT+j consecutive periods for some integers k > fa,,/H,

j > 0. Now consider a modified policy in which production in period ir
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r+k .
is decreased by one unit, while production in period i is increased

by one unit with the incremental unit being held for j periods. The net

savings in cost for the modified policy is at least kH-f i, which is positive

by assumption. Therefore, we can "improve" any policy for which P2 does

not hold.

A direct consequence of P1 and P2 is that an optimal policy exists

such that a positive P is just sufficient to cover all demand requirements
1

from period ir up to but not including period jr+k where ir <j r+k and

r r
k < f max/H. Hence, we have either P = 0 or P= D..+kD for some j,k

max 1 1 1J

integer with ir < j r+k k < f /H andmax

D = d + d2 + ... + dT

di+ ... + d_ if i < j

Dij O if i = j

- D. if i >j

If we consider only solutions satisfying P1 and P2, the resulting

problem is a minimum cost-to-time ratio circuit problem. This interpreta-

tion is an infinite-horizon version of Zangwill's [13] interpretation of

the finite-horizon dynamic lot-size problem as a shortest path problem.

We construct the graph G = (V,E) for the cyclic lot-size problem as

follows: The vertex set is V = {1,...,T} with one vertex for each period

of a cycle. For each pair i,j of vertices and for each k < f ma/H such

that i < jk, we have an edge (i,j) with transit time k. A unit flow on

this edge corresponds to setting Pr = D..+kD for some cycle r. The cost
1 1J

k
on this edge, ci., equals the production and holding costs associated

with the specified Pi from period ir up to but not including period j+k.

The dynamic lot-size problem is to circulate one unit of flow through

the above graph so as to minimize the ratio of the flow cost to the transit
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time for the flow. This is exactly the "tramp steamer problem", (also

called the minimum cost-to-time ratio circuit problem) as proposed and solved

by Dantzig et al. [2]. A directed circuit in the graph whose total transit

time is t corresponds to a production schedule that has initial and

terminal inventories of 0 and repeats after exactly t cycles. If this

schedule is repeated infinitely often, then the average cost per cycle is

the net cost of the circuit divided by t.

An immediate consequence of the correspondence to the "tramp steamer

problem" is that for the infinite-horizon dynamic lot-size problem an

optimal policy exists that is periodic. That is, there is some optimal

pr Pr r+t
policy given by Pi such that Pr = pt where t is integer and denotes

the periodicity of the policy. In particular, t equals the transit time

of the optimal circuit in the minimum cost-to-time ratio circuit problem.

The difficulty with the above representation is the number of mul-

tiple edges. Lawler [8] shows that the minimum cost-to-time circuit

problem may be solved in 0 (IVj IEj log (t* + c* + T) steps, where t* is

the maximum transit time and c* is the maximum edge cost. In our case,

such an algorithm is O[T3 f /H log M*] steps where M* = max(f ,

v , dmax, h , T), and this is not necessarily polynomial in the data.

Of course, one can improve the results slightly by showing a priori that

certain edges cannot appear in an optimal cycle; however, we can improve

dramatically on this result. In the next section we present an O(T 3 log M*)

algorithm, which is in many cases better than O(IEI) = O(T2 · f /H).
max

An Efficient Implementation

A standard technique for determining a minimum cost-to-time ratio

circuit is an iterative procedure based on the following observation:

Remark. Let G be a directed graph, and for each edge e let c and t
e e

denote its cost and transit time. Let X be a real number and let
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c c - t be the reduced cost of edge e. Then any circuit C in Ge e e 

has a cost-to-time ratio of at most X if and only if the reduced cost

of C is nonnegative [7].

The technique based on this remark is to use binary search to find

the minimum value of X for which there is no circuit with negative reduced

cost. At each iteration for each pair i,j we select that edge (i,j)

with minimum reduced cost and ignore all other edges from i to j. In the

next section we show that we can do this efficiently. The net time for

computing whether there is a circuit of negative length is O(T3) via the

Bellman-Ford algorithm [7 ]. The number of iterations is at most

2 log T + log c + log t where c and t are the maximum edgem max max max max

cost and transit time. To see this, note that the cost of a circuit is

bounded above by T-c and bounded below by 1 while the transit time is
max

bounded above by Tt and below by 1. Thus T2 c * t bounds the
max max max

number of values that the ratio of cost-to-time may take; the maximum

number of iterations for a binary search is the logarithm, which is

2 log T + log c + log t . To obtain an explicit upper bound on the
max max

computation time, we calculate c and t in the next section.
max max

Calculating Costs and Transit Times

k k
In the following calculations of the costs cij, let aij denote the

k
holding cost component in c... We therefore have the following relation:

k k
cij fi + v(Dij + kD) + a (1)

k *
The cost aij is computed as

We find it useful to define a.. for i > j even though the corresponding
c?. is not defined; a. for il j is the holding cost savings from
meating demand requirements from period j to i and is needed for (5).
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j-1
a?. = C hDg+ D for i < j,

aij 0 for i = j, (2)

i- i-l
a0 = ZhD h Dj - a for i > j,

ij P=j t a=j J

with

T-1 i-1
aii h [ Z (D-DI + 1)] + hDl + ( hD +li))

ii ~~~i~Z =l

and

k k(k-l)
a = k al + DH for k > 1. (4)ii ii 2

We can compute the remaining values of aij from

k k 0
a..= ai. + a + kDijH for k > 1 . (5)

1J = ij 13

To explain (5) we consider two cases: i < j and i > j. For i < j, the

cost difference between holding inventory from i to jk (ak) and holding
iji

inventory from i to ik (aik) is the cost of holding Dij units from i°

k jk .k 0to i (kDijH) plus the holding cost from i to jj (a). For i > 

the cost for holding inventory from i° to jk (ak ) equals the holding(aij

cost from i to ik (a.i) minus the incremental cost incurred to satisfy
11

k k
requirements (Dji) from j to i . This incremental cost is the cost of

holding Dji units from i to ik (k D.. H = -k D H) minus the cost

savings from jk to ik (aO ).
ij

Note that t is bounded by k = lf /HJ as before, and c ismax max max

bounded above by f + v · k · D + k T h D + k (k - 1)DH/2.max max max

Thus the number of iterations (2 log T + log c + log t ) is 0 (log M ),
max max
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where M = max(f , v d h T). We now show that the algorithm
max5 max, max, max

is O(T3 log M ) by showing that at each iteration the reduced costs may

be calculated in O(T2) steps, and thus do not add to the complexity of the

algorithm.

At each iteration the minimum reduced cost for an edge (i,j) given

parameter A is found by setting the transit time k to be max {o,k } for

i < j and to be max {l,k*} for i > j where

k*= a.( -i vD - HDai )/HD1 . (6)

From (1)-C5) this choice of k minimizes the reduced cost for edge (i,j).

Hence for each pair (i,j) at each iteration of the algorithm the minimum

cost edge is found in a constant number of elementary operations.

A Good Starting Point

In the special case in which we restrict the edges to transit times

of at most k (i.e., we would not produce so as to satisfy demand k cycles

in the future), the minimum cost-to-time ratio circuit can be calculated

in 0( 3T3) steps via the method of Karp and Orlin [5]. One approach to

solving the lot-size problem is to solve first a minimum cost-to-time ratio

circuit problem in which we consider only edges with transit time 0 or 1;

then we may use the resulting optimal ratio X as a starting point to the

original problem with no restrictions on transit times.

3. BACKORDER CASE

The preceding analysis of the infinite-horizon lot-size problem can

be directly extended to a problem definition that allows backordering of

demand. This analysis is analogous to the backorder extension by

Zangwill [12] to the finite-horizon lot size problem. We define gi to
1
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be the unit cost of demand backordered from period i to period i+l for

i=l,...,T-l or from period T to the first period of the next cycle for

i=T. Let G = gl + ... + gT. As before, we let Pi and I denote the

production and inventory in period ir except that here we interpret a

negative value for I as backordered demand.
1

We define period ir+l to be a regeneration point if I = 0 and demand

in period ir+l is non-zero. Property P1 in the case of backorders may

be restated as follows:

Pi': a) If periods ir and j s are successive regeneration points, then

there is exactly one period kt with ir < k < js such that

Pk > 0; i.e., between successive regeneration points, there is

exactly one period of positive production.

b) If P PS > and ir < j , then there exists a period kt with
i j

ir< kt < s such that I =0.

This property is directly analogous to that given by Zangwill [12]

for the finite-horizon problem with backorders. Property P2 is now

supplemented by the following property when backorders are allowed:

P2': There are at most T-f /G consecutive periods in which demand is

backordered, and hence at most R - LT.fmax[(l/G)+(l/H)] periods

between successive regeneration points.

Now, we may interpret the backorder problem as a minimum cost-to-time

ratio circuit problem. Again we construct the graph G = (V,E) with

vertex set V = {1,...,T}. Here we interpret the edges as follows: For

each pair i,j of vertices and k < R there is an associated edge (i,j)

with transit time k; the edge cost c.. is the minimum cost of producing,

storing, and backordering so as to satisfy all demand between successive

r and r+kregeneration points j , for any cycle r. By property P', there



are integers and s such that ir < < jr+k and r is the unique

period of production in any optimal solution using the edge (i,j) with

transit time k.

The dynamic lot-size problem with backordering is again to circulate

one unit of flow through G to minimize the ratio of flow cost to transit

time. We show below that the binary search algorithm of the previous

section can again be efficiently implemented; for the backorder case the

** ** *
complexity of the algorithm is O(T3 log M ) where M = max(M , gmax)

Our analysis proceeds as before. The maximum number of iterations

of the binary search is bounded above by log(T2 cmaxtmax ) = log(T2 cmaxR )

= O(log M ). To derive the O(T31og M**) bound we show that each iteration

may be completed in O(T3) steps.

An Efficient Implementation

The cost of edge (i,j) with transit time k is given by

k s k-s
cij = min {f + (Dij+kD) + b a (7)

where ,s are nonnegative integers such that i < 9s < jk, and where

bs is the total backorder cost from period i up to but not including

period is assuming that period i° is a regeneration point and that period s

is the next production point after this regeneration point.

k k i
The values of b.. can be computed analogously to the values aj [i.e.,

Ij

equations (2)-(5)], and we omit the recursive formulae. The additional

k, and
computational time is at most equal to the time to compute the aij s, and

does not increase the order of computation for the algorithm.

At each iteration of the algorithm, for a given value of we

calculate the reduced costs for each pair of vertices (i,j):

k
ci = mn (. - kX)

= min {in [f + v (Dij + kD) + b + akj - kX]}

k Z,s 1 (8)
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If we substitute t = k-s and rearrange the minimization operations, we

obtain

ci;= min {f+v VD + min (svD + b - s)

+ min (tv D + a - t)} (9)

t

Note that for a set value of Q, the determination of t is identical to

the determination of the best edge from vertex to j for the no-backorder

case. But this can be done by (6) in a constant number of operations.

Similarly, given the determination of s is immediate by means comparable

to (6). Consequently, since may take on values 1,2,...,T, the complexity

of the determination of c is O(T); since the number of edges is

T(T-1)/2, the determination of cij for all edges is O(T3) in complexity.

3. DISCOUNTING

In this section we consider the dynamic lot-size problem in which the

objective is to determine the minimum discounted cost for satisfying demands

over an infinite horizon. We let the discount rate be p per cycle, and

k
we let c.. denote the minimum cost of production, storage, and backordering

for satisfying demand between regeneration points i and j , with costs

being discounted to the present (period 1°).

Let z.i denote the minimum discounted cost of satisfying all demands

over the infinite horizon starting in period i. Then the minimum discounted

cost of satisfying all demands starting in period ir is przi, where pr is

th
the r power of p. Furthermore, the following recursion uniquely deter-

mines the values for z:

Zi inf {cj + PZ (10)
j,k 

_ _I�IP�I_ I_·Lm·____IILI_�^__I_ I_
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k
Once the values of cj.. are known, the values for z.i may be determined

by a standard technique such as policy improvement [4 or linear programming.

Below we show that it is not necessary to calculate all of the values for

cij; instead, we can save much of the computation time by a preprocessing

of the problem data. For the policy improvement procedure, this preprocess-

ing results in each iteration of the procedure having O(T2) computational

requirements. For a linear programming approach to (1) this preprocessing

permits solution via Khachian's algorithm [6] in polynomial time.

k
We note that the straight-forward approach of evaluating c..ij for all

i, j, k has no immediate upper bound because there is no bound on how far

ahead we might backorder demand; indeed, in some cases the optimal solution

may be to never produce, but rather to backorder all demand for all time.

Furthermore, the O(T2) result is surprising in that for the average-cost

problem with backordering the amount of computation per iteration just to

compute the reduced costs was found to be O(T3).

Implementation of Policy Improvement

As before, we restrict ourselves to policies such that between two

successive regeneration points there is exactly one period of production,

and between two production periods there is exactly one regeneration point.

k k
If we let b.j and a.. denote the discounted costs of backordering and storing,

1J 1J

then equation (10) may be rewritten as

r + r k-r k
Zi = inf {bi + k [f + v (Dij + kD) + aj ] + p zj}

j, ,k,r

(11)

where r is the production period between regeneration points i and j k By

letting t = k-r, and by substituting formulae (A13) and (A17) derived in

the Appendix into formula (11), we obtain

I___·II�� �__ 11___1 ·_�
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Zi inf {8i, + [r i, (12)
,r 

(12)

where

Z = inf [Ctaj + t j + ( j + z.)j (13
jt

where the constants (ij' .ij' -ij) and (aij', ij' sij) are derived in
the Appendix. The significance of rewriting (11) as (12)-(13) is that we

can separate the evaluation of z.i into two components, the first of which

is the determination of the number of periods to backorder while the second

is the determination of the number of periods to carry positive inventory.

We show next that this separation permits us to perform each iteration

in a policy improvement algorithm in O(T2) steps.

At each iteration of a policy improvement algorithm we have a current

estimate to the vector z.}. Based on this current estimate, we evaluate

(13) to obtain a revised estimate for {ZI}, which is used in (12) to obtain

an improved estimate to {z.}. To evaluate Z in (13), suppose we specify

a value for j. If ~%j + z.) is nonpositive, the best choice for t is 0

if g < j and 1 if > j, since ij > 0 and 0 < p < 1. If (j + z.) is
Rj + P J

positive, (t&Qj + p (ij f+ z.)) is convex in t and takes its minimum value

over the set of integers at

t = -log(-i + zj)(1-)/aj)/log P; (14)

then the best choice for t in (13) is max(0,t ) if < j and max(l,t ) if

Z > j. In either case, for a given and j in (13), we can obtain the

optimal choice for t in a constant number of elementary operations. Since

j can take on at most T values, the determination of for any value ofZ
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Q requires O(T) steps, and thus the computation of 2z for =!,2,..., T

is O(T2) in total.

For a specified value of in (12), the optimal choice for r is

also immediate due to the following remarks:

Remark: For 0 < p < 1 and C < 0, we define f(r) = C1 + C2 r + C3rpr to

be evaluated on the set of integers. Then -f(r) is unimodal.

Proof: Consider f(r+l) - f(r) given by p r[C 3 - C2(1-p) - C r(l-p)].

If C3 < O, we have

f(r+l) - f(r) < 0 for r < p(l-p) 1 - C2/C3,

-1
and f(r+l) - f(r) > for r > (l-p) - C2/C

Hence, for C3 < 0, -f(r) is unimodal with mode at r = [p(l-p) - C2/C3 1.

With the above remark, having determined 2Q for all Z, we can evaluate

a particular zi.via (12) in O(T) steps since may take on T values in

the minimization, and since the determination of the optimal choice for

r is immediate for a specified value of in the minimization. To see

this, note that if Bi, < 0 the above remark applies. If i,k > 0,

the optimal choice for r for a specified value for is either at its

upper or lower bound, since (ri, + i ) is either unimodal or mono-

tonic in r. Hence, the determination of zi, i=1,2,...,T, given {£g},

also requires O(T2) steps. Consequently, each iteration of a policy

improvement procedure takes O(T2) time; unfortunately we cannot bound the

total computational requirements for the policy improvement procedure

since we have not found a bound on the number of iterations.
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Implementation of Linear Programming

We may solve the discounted problem in polynomial time via the

ellipsoidal algorithm [6]. To see this, we rewrite (10) as its equiva-

lent linear program:

Min l+... + T (15)

subject to

k k
z. > C..j + P Zj

for i,j=l,2,...,T, k=0,1,2,..., and i < jk (16)

Given any vector {zi.}, we can discover in 0(T2) steps, as shown

above, whether it is feasible (and hence optimal) to (15)-(16), and if

not, we find a violated constraint. Therefore, the ellipsoidal algorithm

runs in polynomial time despite the infinite number of constraints im-

plied by the linear program (15)-(16).
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Appendix: Calculating the Parameters for the Discounted Problem

We redefine the parameters fi, vi' gi, and h. to be costs for period

i° discounted to 1. Similarly, aij (bij) is the discounted cost of storage

(backorders) from period i to period jk as defined earlier. We define
T i-I

H.- Z ha + Z h, to be the discounted cost for holding one unit
=l Q=1 v

from period i° to il.

k
We may calculate the values for a.. via recursive formulae analogous

13

to (2) - (5). For k = O we define

j-1

aija.. = L hQD+1,j fori<j,

aij = 0 for i = j, (Al)

i-1 t=1l
a° = Z hDj+ 1 Z h D -a? for i>j.

Z=j ,2 +i =j 

k
To compute the remaining values of a.., we need to use

13

T-1 i-I
ii = [ h(D-Di,+l)] D + hTDli + ) (A2)
ii =i T l=l

Noting that the unit cost of storage from perioc i to period ik is

k -l k
(1- )(l-p) Hi we may form the following recursive formula for aii:

k k-l k-l 1 k-l -1
a.. = a.. + P a.. + (1-p )(l-) HiD. (A3)

It is now easy to prove inductively from (A3) that

aki (1-k)(-p) 1a + [(k-l) - k + ok ](1-p)-2 H.D. (A4)
ii ii 1



k
Finally, we can calculate a.j for i j, k > 1 from

k k a. + (1-0k)(1-p)- H
aij = aii + P a + (-p )(1-p) HDij * (A5)

The explanation of (A5) is identical to that given for (5).

Analogous to the inventory cost determination, we can determine

k o0 k
the backorder cost b from i to j as follows:

13

0 j-1
b.. = Z g D +1 for i < j,

b?. = 0 for i = j, (A6)

i-1 i-1
b°. = Z g D+l i = Z gg D.. -b for i > j.

ij = ji

T i-1
We let G. = g + g be the unit cost of backordering from i°

1 =i =1

to il. Then we may calculate b as

T-1 i-l
bl. g Di + g (D-Di) + gZ (D-D +,i), (A7)

=i li £=l

and we may find b recursively from

k k- k-I k- 
b + P + k . (k-l) D . (A8)

The interpretation of (A8) is that the increased cost of backordering

from i° to ik over backordering from i° to k-l is due to the cost of back-

k-l .k
ordering to satisfy demand from ik - 1 to i plus the cost of backordering

an additional (k-l)D units from period i to i to satisfy demand require-

ments from i to ik-l

The value b.i may be shown by induction to be:

k k -l p k-1 k 2
b. = (-p )(l-p) b + -kp + (k-l)p )(l-p) 2p GiD . (A9)

Finally, by reasoning analogous to that used for (5) we obtain for

isj, k > 1
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k b0 + k k -l
b.. = +b + (1-p)( 1-) G. Dij 

1J 1 ij j (A10)

Now consider the cost expression

biQ + P [f + v (Dij + kD) + ak-r it z z zj (All)

as used in (11) to equal the total discounted costs between successive

regeneration periods i° and j , where period Q is the production period

between the periods i and j By letting t=k-r, we have (All) equal

to

r pr t {bir +p [fi + v (Di + rD)]} + pr {vg (DZj + tD) + aj it k z it z ~~~~~~~~~~Zj(A12)

By use of (A4)-(A5) and (A9)-(A10), we may simplify the components of

(A12) as follows:

{br + r [fz + v (Dig + rD)]} = Si + pr (ri +iQ) (A13)

where

Q = b +( (bp) + G Di) + (1-p) pG- D,

ig =bi (bl-p pG,-1
9 = ( - (l-p) Gz)D 

aig f + vg Dig - (l-p) (b + G Di.) + (l)- 2p)
i Y, z k it( z i

where

(A14)

(A15)

(A16)p G D,

t }
{VZ (D j + tD) + aj = gj + t j + p aj

a2 = DQj + (l-p)-1 (al + H D ) (l-p)- 2 dD ,

-1
a vzD + (l-p) H Dzj z

(A17)

(A18)

(A19)

and
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Hence, by substitution of (A13) and (A1D7) into (A-p2), we obtain formula

(12).
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