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Abstract

Conflict-directed search algorithms have formed the core of practical, model-based
reasoning systems for the last three decades. In many of these applications there is
a series of discrete constraint optimization problems and a conflict-directed search
algorithm, which uses conflicts in the forward search step to focus search away from
known infeasibilities and towards the optimal solution. In the arena of model-based
autonomy, discrete systems, like deep space probes, have given way to more agile
systems, such as coordinated vehicle control, which must robustly control their con-
tinuous dynamics. Controlling these systems requires optimizing over continuous, as
well as discrete variables, using linear and non-linear as well as logical constraints.

This paper explores the development of algorithms for solving hybrid discrete/linear
optimization problems that use conflicts in the forward search direction, generalizing
from the conflict-directed search algorithms of model-based reasoning. We introduce
a novel algorithm called Generalized Conflict-directed Branch and Bound (GCD-BB).
GCD-BB extends traditional Branch and Bound (B&B), by first constructing conflicts
from nodes of the search tree that are found to be infeasible or sub-optimal, and then
by using these conflicts to guide the forward search away from known infeasible and
sub-optimal states. We evaluate GCD-BB empirically on a range of test problems of
coordinated air vehicle control. GCD-BB demonstrates a substantial improvement in
performance compared to a traditional B&B algorithm, applied to either disjunctive
linear programs or an equivalent binary integer program encoding.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor
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Chapter 1

Introduction

Conflict-directed search algorithms have formed the core of practical, model-based

reasoning systems for the last three decades, including the analysis of electrical cir-

cuits [28], the diagnosis of thousand-component circuits [8], and the model-based

autonomous control of a deep space probe [34]. A conflict, also called a nogood

[28, 11, 7], is a partial assignment to a problem′s state variables, representing sets

of search states that are discovered to be infeasible, often in the process of testing

candidate solutions.

At the core of many of the above applications is a series of discrete constraint

optimization problems, whose constraints are expressed in propositional state logic,

and an algorithm, called conflict-directed A* [35], which uses conflicts in the forward

search step to focus search away from known infeasibilities and towards the optimal

feasible solution.

In the arena of model-based autonomy [33], deep space probes [32] have given

way to more agile vehicles, including rovers, airplanes and legged robots [14], which

must robustly control their continuous dynamics according to some higher level plan.

Controlling these systems requires optimizing over continuous, as well as discrete

variables, using linear and non-linear as well as logical constraints. In particular, [20]

introduces an approach for model-based execution of linear, non-holonomic systems,

and demonstrates this capability for coordinated air vehicle search and rescue, using

a real-time hardware-in-the-loop testbed.
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In this framework the air vehicle control trajectories are generated and updated in

real-time, by encoding the plan′s logical constraints and the vehicles continuous dy-

namics as a disjunctive linear program (DLP). A DLP [1] generalizes the constraints

in linear programs (LPs) to clauses comprised of disjunctions of linear inequalities. A

DLP is one instance of a growing class of hybrid representations that are used to en-

code mixed discrete/linear constraints, such as mixed linear logic programs (MLLPs)

[16] and LCNF [36], in addition to the well known mixed integer program (MIP) and

binary integer program (BIP) representations. We will refer to this class of problems

as hybrid discrete/linear optimization problems (HDLOPs).

In this thesis we explore the development of algorithms for solving HDLOPs that

use conflicts in the forward search direction, based on the conflict-directed A* algo-

rithm [35], which uses conflicts to solve discrete optimal satisfiability (SAT) problems.

We introduce an algorithm called Generalized Conflict-directed Branch and Bound

(GCD-BB) applied to the solution of DLPs. GCD-BB extends traditional Branch

and Bound (B&B), by first constructing a conflict from each search node that is

found to be infeasible or sub-optimal, and then by using these conflicts to guide the

forward search away from known infeasible and sub-optimal states. Our algorithm is

composed of three innovations. First, generalized conflict learning efficiently learns

conflicts from subproblems that are inconsistent as well as sub-optimal, when solving

the subproblems. Second, forward conflict-directed search guides the forward step

of search away from regions of state space corresponding to known conflicts. Third,

induced unit clause relaxation forms relaxed subproblems from the set of unit clauses

that are induced from the original problem.

With respect to other HDLOP algorithms, GCD-BB is closely related to the LP-

SAT algorithm [36] in the way in which it extracts conflicts from LPs, and is similar

to activity analysis (AA) [31] in the way in which it encodes sets of sub-optimal

states. Note, however, that LPSAT solves SAT problems, not optimization prob-

lems; it is a combination of an LP solver and a SAT solver. AA solves non-linear

programs (NLPs) using a conflict-based candidate generation algorithm; it does not

include discrete choice variables. GCD-BB, however, differs in the way that it uses

14



this information to guide B&B search towards the optimal solution.

Our experiments on model-based temporal plan execution for cooperative vehicles

demonstrated an order of magnitude speed-up over a traditional B&B algorithm

applied to either DLPs or an equivalent BIP encoding.

1.1 Problem Statement

This thesis addresses the problem of creating an optimal state trajectory, based on

a continuous linear dynamic model and a set of logical constraints. The objective is

two-fold: first, to develop an efficient algorithm based on conflict learning to solve

hybrid discrete/linear problems that are formulated in DLPs; second, to evaluate

and compare the effect of different elements of the algorithm, such as conflict learn-

ing, problem encoding, search order, on real-world cooperative vehicle path planning

problems.

1.2 Hybrid Discrete/Linear Optimization Problems

Elaborating upon earlier discussions, problems that combine discrete and linear op-

timization are usually formulated in three ways. First, by introducing integer (or

binary) variables and corresponding constraints to real-valued LPs, known as MIPs

or BIPs [27, 30, 17]. Second, by augmenting LPs with propositional variables so that

the propositional variables can be used to trigger linear constraints. Examples of this

formulation include MLLP [16] and LCNF [36]. Note that LCNF formulates a SAT

problem, not an optimization problem. Third, through propositional logic formulae

in which each proposition is a linear constraint. A CNF instance of this is known

as a DLP [1]. Note that this form does not add any discrete variables. The algo-

rithm proposed in this thesis solves problems formulated as DLPs, which combine the

expressive power of propositional logic with that of LPs. For example, in Fig.1-1 a

vehicle has to go from point A to C, without hitting the obstacle B, while minimizing

fuel use. Its DLP formulation is Eq. 1.1.
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Figure 1-1: A simple example of a hybrid discrete/linear optimization problem

Minimize f(x)

Subject to g(x) ≤ 0

xt ≤ xL ∨ xt ≥ xR ∨ yt ≤ yB ∨ yt ≥ yT ,

∀t = 1, . . . , n

(1.1)

Here ∨ denotes logical or, and x is a vector of decision variables that includes, at

each time step i(= 1, . . . , n), the position, velocity and acceleration of the vehicle.

f(x) is a linear cost function in terms of fuel use, and g(x) ≤ 0 is a conjunction

of linear constraints on vehicle dynamics, and the last constraint keeps the vehicle

outside obstacle B, at each time step i.

A real-world example of DLP encodings for the coordinated air vehicle control

problem is given in [20]. We use these encodings as test problems, to empirically

evaluate the GCD-BB algorithm. These encodings are discussed in Chapter 2.

1.3 Overview of Approach

We introduce a novel algorithm for efficiently solving DLPs called Generalized Conflict-

Directed Branch and Bound. It extends the B&B algorithm [19] using logical inference

to help identify relaxed LP problem constraints. In addition, it generalizes, from prob-

lem instances, the source of each discovered infeasibility and sub-optimality, called a

conflict. Conflicts are used to guide forward search by pruning the state space. The

GCD-BB algorithm has three key features: Generalized Conflict Learning, Forward

Conflict-Directed Search and Induced Unit Clause Relaxation, which are summarized

in the following subsections through examples.
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1.3.1 Generalized Conflict Learning

Conflicts traditionally are used to summarize discrete variable assignments that are

inconsistent. Generalized Conflict Learning learns conflicts comprised of linear con-

straint sets, rather than variable assignments. In addition, the constraint sets are

those that produce sub-optimality as well as infeasibility. More specifically, during

the search process, whenever a subproblem is identified as infeasible or sub-optimal,

a minimal subset of constraints that cause the infeasibility or sub-optimality is ex-

tracted, using efficient methods. For example, the constraint set {x ≤ 0, y ≥ 7, x ≥ 5}

produces infeasibility and we extract the minimal subset of it, {x ≤ 0, x ≥ 5}, that

causes the infeasibility. An example of a sub-optimal subproblem is in Eq. 1.2, as-

suming the optimal value of the best solution to the overall problem found so far,

called the incumbent, is −10.

Minimize x + y

Subject to x ≥ 0

y ≥ 0

x + y ≤ 5

(1.2)

Its optimal solution is {x = 0, y = 0} and the optimal value is worse than the

incumbent. Hence the subproblem is sub-optimal, and we extract the minimal subset

of the constraints, {x ≥ 0, y ≥ 0}, that causes the sub-optimality.

1.3.2 Forward Conflict-Directed Search

Forward Conflict-Directed Search heuristically guides the forward step of search away

from regions of state space denoted by known conflicts. Backward search methods

also use conflicts to direct search, such as dependency-directed backtracking [28],

backjumping [12], conflict-directed backjumping [25], dynamic backtracking [13] and

LPSAT [36]. These backtrack search methods use conflicts both to select backtrack

points and as a form of dynamic programming when testing candidates. In contrast,

17



methods like conflict-directed A* [26, 35] use conflicts in the forward search, to move

away from known “bad” states. Thus not only is one conflict used to prune multiple

subtrees, but also several conflicts can be combined as one compact description to

prune multiple subtrees. We generalize this idea to guiding B&B away from regions

of state space that the known conflicts indicate as infeasible or sub-optimal.

1.3.3 Induced Unit Clause Relaxation

Induced Unit Clause Relaxation forms a relaxed problem from a subset of the unit

clauses that are induced from the original problem. Previous research [15] typically

solves DLPs by reformulating them as BIPs, where a relaxed LP is formed by relaxing

the binary constraint (x ∈ {0, 1}) to the continuous linear constraint (0 ≤ x ≤ 1). An

alternative way of creating a relaxed LP is to operate on the DLP encoding directly,

by removing all non-unit clauses from the DLP. The latter approach creates a weaker

relaxation than the continuous relaxation of BIP, but it benefits from avoiding the

addition of binary variables and constraints, which increases the dimensionality of the

search problem. Our approach starts with the direct DLP relaxation and overcomes

the weakness of standard DLP relaxation (loss of non-unit clauses) by adding to the

relaxation unit clauses that are logically entailed by the original DLP. Our relaxation

method also avoids adding binary variables and constraints, which can significantly

increase the dimensionality of the search problem.

1.4 Key Empirical Results

The key results of our empirical study are the following. First, the algorithm that

performs the best is the one that uses 1) DLP encodings, 2) conflict-directed for-

ward search, and 3) either best-first search with infeasibility conflict learning or 4)

depth-first search with sub-optimality and infeasibility conflict learning. Second, this

algorithm achieves an order of magnitude speed-up over BIP-BB.
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1.5 Related Work

This thesis builds upon the Conflict-Directed Clausal LP Branch and Bound method

[18], which uses B&B for DLPs and learns infeasible states as conflicts to guide search.

The improvements in this thesis over the Conflict-Directed Clausal LP Branch and

Bound algorithm are the following. First, we extract conflicts more efficiently, that is,

as a by-product of solving an LP problem instead of solving a number of additional LP

problems. Second, we generalize the concept of a conflict to include sub-optimality;

as a result, larger subspaces can be pruned during search. Finally, we perform a more

thorough empirical study, comparing the effect of each element of the algorithm, such

as problem encoding, search order, search method and conflict learning.

GCD-BB is also closely related to LPSAT [36]. LPSAT determines satisfiability of

a hybrid logic LP problem, rather than extracting the optimal solution, as in GCD-

BB. LPSAT is a combination of the CASSOWARY [5] LP solver and the RELSAT [2]

SAT solver. It searches over propositional variables, while a variable assignment may

“trigger” the inclusion of a linear constraint. It learns an inconsistent partial variable

assignment, called a minimal conflict set, and uses it to prune multiple subtrees. The

difference from our algorithm is the following. First, our definition of a conflict is

more general in that it includes sub-optimality as well as infeasibility. Second, we

use the conflicts to guide the forward step of search, instead of during backjumping.

Last, LPSAT terminates with any feasible solution, not the globally optimal solution.

The concept of search directed by conflicts draws from Conflict-Directed A* [35].

This method considerably speeds up the search process by generalizing individual

infeasibilities into regions of the state space that must contain only infeasible states

and by using them to guide the forward step of search. As mentioned earlier, the

concept of conflict learning from sub-optimality draws from activity analysis (AA)

[31], which reasons using qualitative abstractions of sub-optimal subspaces in non-

linear optimization, in order to guide the numerical methods away from subspaces

with the same abstractions. GCD-BB is different from AA in that AA extracts

conflicts from the Karush-Kuhn-Tucker (KKT) conditions, while we learn conflicts
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from solved subproblems that are sub-optimal.

Van Hentenryck′s work [29, 6] on interval and local methods for non-linear opti-

mization problems is related to our algorithm in that they guide search for solutions

using consistency checking, constraint propagation and approximations. Neumaier′s

survey [22] studies the utility and complexity of sub-optimality pruning for non-linear

optimization.

1.6 Chapter Overview

The rest of this thesis is organized as follows. Chapter 2 studies the problem formu-

lation and reviews the cooperative air vehicle coordination problem solved by [20],

as well as its encoding. Chapter 3 reviews the technical background of GCD-BB,

including Branch & Bound, Conflict-Directed A* and Activity Analysis. Chapter

4 introduces the main algorithm, Generalized Conflict-Directed Branch & Bound

(GCD-BB). It develops the three key elements of the algorithm in detail through

examples and pseudo code, examines other options for each algorithmic element, and

then discusses analytically the advantage of our approach. Chapter 5 describes the

experiments, shows the results of comparing different methods, and analyzes empiri-

cally the advantage of our approach, followed by a discussion.
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Chapter 2

Problem Formulation

Recall from Chapter 1 that problems combining discrete and linear optimization are

usually formulated in three ways: (1) MIP and BIP; (2) MLLP and LCNF; or (3)

DLP. The algorithm proposed in this thesis solves problems formulated as DLPs. Our

GCD-BB algorithm, though introduced in the context of DLPs, can be generalized

to other formulations. Our focus is on the generalization of forward conflict-directed

search to these hybrid problems, not on the DLP encoding in particular. In this

chapter, we introduce the concept of a DLP, discuss its relationship to BIP, MLLP

and LCNF encodings, and review the cooperative air vehicle coordination problem

solved by [20] and used as a benchmark in Chapter 5, along with its DLP encoding.

2.1 Disjunctive Linear Programming

In general, a DLP takes the form shown in Eq. 2.1, where x is a vector of decision

variables, f(x) is a linear cost function, and the constraints are a conjunction of n

clauses, each of which (clause i) is a disjunction of mi linear inequalities, Cij(x) ≤ 0.

A DLP reduces to a standard LP in the special case when every clause in the DLP

is a unit clause, that is mi = 1,∀i = 1, . . . , n. A clause is a unit clause if it only

contains one linear constraint. For a DLP to be feasible, every clause in the DLP

must be resolved. A clause is resolved if at least one of the linear inequalities in the
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clause is satisfied.

Minimize f(x)

Subject to
∧

i=1,...,n

(
∨

j=1,...,mi

Cij(x) ≤ 0)
(2.1)

Any DLP can be converted to a BIP, by adding one binary variable for each linear

inequality that appears in a non-unit clause of the DLP and adding one linear con-

straint for each such clause. The general form of the BIP converted from Eq. 2.1

using the big M method is shown in Eq. 2.2.

Minimize f(x)

Subject to

∧
i∈{1,...,n|mi>1}

 ∧j=1,...,mi
Cij(x) ≤M(1− bij)∑
j=1,...,mi

bij ≥ 1


∧i∈{1,...,n|mi=1}Cij ≤ 0

(2.2)

On the other hand, any BIP can also be converted to a DLP. In the most general

case, it is done by enumerating all possible assignments to the binary variables in each

constraint and explicitly making each of those assignments that results in a unique

linear constraint a disjunct in one clause. Each constraint in the BIP is turned into

a clause of the DLP: the constraint that involves no binary variable corresponds to

a unit clause, and the constraint that involves n binary variables corresponds to a

clause with at most 2n disjuncts.
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2.2 Binary Integer Programming

As a different encoding, the example in Fig.1-1 can be formulated as a BIP (Eq. 2.3),

where M is an arbitrarily large positive number.

Minimize f(x)

Subject to g(x) ≤ 0

xt − xL ≤M(1− bt1)

xt − xR ≥M(bt2 − 1)

yt − yB ≤M(1− bt3)

yt − yT ≥M(bt4 − 1)∑
j=1,...,4

btj ≥ 1

btj ∈ {0, 1}, ∀j = 1, . . . , 4

∀t = 1, . . . , n

(2.3)

Table 2.1: Comparison on the worst-case search space: DLP v.s. BIP. Each DLP has
n clauses, each being a disjunction of m linear inequalities.

n
∖

m
2 4 8 12

DLP BIP DLP BIP DLP BIP DLP BIP
1 2 4 4 16 8 256 12 4096
2 4 16 16 256 64 65536 144 1.7E+7
4 16 256 256 65536 4096 4.3E+9 20736 2.8E+14
8 256 65536 65536 4.3E+9 1.7E+7 1.8E+19 4.3E+9 7.9E+28
12 4096 1.7E+7 1.7E+7 2.8E+14 6.9E+10 7.9E+28 8.9E+12 2.2E+43

The transformation from a DLP to a BIP shows that different encodings can have

profoundly different sizes of the complete search tree. In particular, suppose a DLP

has n clauses, each being a disjunction of m linear constraints. Then its B&B search

tree has mn leaf nodes. On the other hand, the B&B search tree for the equivalent

BIP using the big M method has 2m·n leaf nodes. Table 2.1 shows a comparison of
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the worst-case search space size of DLPs and BIPs, as a function of the number of leaf

nodes in the complete search tree. BIP has several methods to formulate HDLOPs

besides the big M method, however, they share the same disadvantage in terms of

growth in search tree size. Note that a method operating on a larger search tree

is not necessarily slower than a method on a smaller search tree. What matters is

the effectiveness of the method at search tree pruning, which controls the amount

of the tree visited. However, tree size is one useful indicator of problem difficulty.

Our experimental results in Chapter 5 demonstrate the effectiveness of the pruning

method.

2.3 LCNF

The LCNF formulation [36] represents another way to combine propositional logic

with metric constraints. The key to LCNF is the concept of triggers: each proposi-

tional variable may trigger a metric constraint, and this constraint is enforced when-

ever the trigger variable is assigned true.

An LCNF problem is a five-tuple < R, V, ∆, Σ, Γ > in which R is a set of real-

valued variables, V is a set of propositional variables, ∆ is a set of linear equality

and inequality constraints over variables in R, Σ is a propositional formula in CNF

over variables in V , and Γ is a mapping from V to ∆ and establishes the constraint

triggered by each propositional variable. LCNF is exactly MLLP without discrete

variables h or the objective function f or the restriction from arbitrary propositional

formula to CNF. Eq. 2.4 is an example introduced in [36]. Italicized variables are

boolean-valued; other variables are real-valued.
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MaxLoad → (load ≤ 30)

MaxFuel → (fuel ≤ 15)

MinFuel → (fuel ≥ 7 + load/2)

AllLoaded → (load = 45)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

MaxLoad

MaxFuel

Deliver

¬Move ∨MinFuel

¬Move ∨Deliver

¬GoodTrip ∨Deliver

¬GoodTrip ∨ AllLoaded

(2.4)

For the obstacle example in Fig.1-1 in Chapter 1, the LCNF formulation is Eq. 2.5.

Any DLP can be converted to LCNF, by assigning each linear inequality a propo-

sitional variable, as seen in Eq. 2.5. On the other hand, any LCNF can also be

converted to a DLP, as LCNF is in CNF form.

Minimize f(x)

Subject to l→ (g(x) ≤ 0)

li1 → (xi ≤ xL)

li2 → (xi ≥ xR)

li3 → (yi ≤ yB)

li4 → (yi ≥ yT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
l ∧ (li1 ∨ li2 ∨ li3 ∨ li4)

∀i = 1, . . . , n

(2.5)

2.4 Mixed Logical Linear Programming

Mixed Logical Linear Programming (MLLP) is another approach to formulating opti-

mization problems that have both discrete and continuous elements. It is more general

and expressive than LCNF. It has been applied to chemical engineering network syn-

thesis problems, warehouse location problems and flow shop scheduling problems, and

demonstrated a better performance than MIP on those problems [16]. It extends MIP

by introducing logic-based modeling. Rather than require that a feasible solution sat-

isfy a fixed set of inequalities, an MLLP model can contain several alternative sets
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of inequalities. The logical formulas govern which sets must be satisfied by a feasible

solution.

As introduced in [16], the MLLP formulation has the form in Eq. 2.6.

Minimize f(x)

Subject to pj(y, h)→ (Ajx ≥ aj), j ∈ J | qi(y, h), i ∈ I.
(2.6)

Each constraint has a logical part, to the right of the vertical bar, and a continuous

part, to the left. The logical part consists of formula qi(y, h) over propositional

variables y = (y1, . . . , yn) and discrete variables h = (h1, . . . , hm), which takes on

values in a finite domain. For example, qi(y, h) could be (y1 ∨ y2) ∧ (h1 6= h2).

The continuous part of the constraint associates logical formula pj(y, h) with systems

Ajx > aj of linear inequalities. A system Ajx > aj is enforced when pj(y, h) is

true. In general, the formula pj and qi may take on any form that is convenient for

the purpose at hand, provided that their truth value is a function of the values of

propositions y and discrete variables h.

Any DLP can be converted to a MLLP, by assigning each linear inequality a

propositional variable. On the other hand, any MLLP can also be converted to a DLP,

by converting the relation between qi(y, h) and pj(y, h) to CNF. A potential problem

with this conversion is that it can be computationally infeasible. For example, if q =∨
i=1,...,20(

∧
j=1,...,5 pij), then the CNF transformation is q =

∧
k=1,...,N(

∨
l=1,...,20 pkl),

where N can be as large as 520.

2.5 A Coordinated Air Vehicle Control Example

GCD-BB is developed to solve the coordinated air vehicle control problems in [20]. We

introduce an example of this problem here, and report benchmark results in Chapter

5.
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Figure 2-1: Map of the terrain for
the fire-fighting example

Encode as

disjunctive

LP

Solve up

to limited

horizon

Extract

control

sequence

Plant

Model

Temporally Flexible 

State Plan

Control Sequence

Plant

State

Figure 2-2: Receding horizon contin-
uous planner

2.5.1 Problem Statement

The example introduced in [20] consists of two fixed-wing unmanned aerial vehicles

(UAVs), whose state variables are their 2-D Cartesian positions and velocities. The

UAVs are in an environment (Fig. 2-1) involving a reported fire that the team has to

extinguish. To accomplish the task, the UAVs must navigate around unsafe regions,

such as obstacles, and drop water on the fire. Once the fire is extinguished, they must

also take pictures in order to assess the damage. A mission state plan specifies the

desired evolution of the states of a dynamic system over time. The state plan for this

fire-fighting mission is shown in Fig. 2-3:

Vehicles v1 and v2 must start at their respective base stations. v1, a water

tanker UAV, must reach the fire region and remain there for 5 to 8 time

units, while it drops water over the fire. v2, a reconnaissance UAV, must

reach the fire region after v1 is done dropping water and must remain there

for 2 to 3 time units, in order to take pictures of the damage. The overall

plan execution must last no longer than 20 time units.

The problem of state execution is to generate a control trajectory that evolves the

state of the vehicles according to the state plan (Fig. 2-3). State execution involves

continuously planning control trajectory over a finite horizon, and then executing

that trajectory.

As shown in Fig. 2-2, [20] solves the continuous planning problem up to a lim-

ited planning horizon, in order to generate a control sequence. It then executes that
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sequence up to a shorter execution horizon, and solves the planning problem again

at that time to adapt to disturbances. This approach achieves tractability by re-

stricting the planner to a small planning window and also allows for on-line, robust

adaptation to disturbances through continuous replanning. Finally, this short horizon

and adaptation compensates for inaccuracies resulting from the linearization of the

vehicle dynamics. [20] encodes the temporal state plan (Fig. 2-3) and the dynamics

of the system within each limited horizon as a disjunctive linear program (DLP), so

that the program can be solved iteratively to obtain a time or fuel optimal trajec-

tory in the plant state space. Several variants of our GCD-BB algorithm have been

tested to solve a range of these benchmark DLPs and have demonstrated significant

improvement over BIP-BB.

Figure 2-3: Temporally flexible state plan

2.5.2 DLP Encodings

In [20] plans and system dynamics are encoded in DLPs. The DLP encoded con-

straints are of two types: state plan constraints and plant model constraints, which

include obstacle avoidance and system dynamics. The following example constraints

are quoted from [20].

As for state plan constraints, consider the activity of imposing s ∈ D∀ at

the time T (eE) when event eE is scheduled, where s is the vector of state

variables, taking on values from the state space S ⊂ Rn, and D∀ is the

domain in S described by linear constraints on the state variables. In the
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fire-fighting scenario, this would be the constraint imposing v2 to be in the

fire region at the event e4. The general encoding is presented in Eq. 2.7,

and translates to the fact that, either there exists a time instant of index t

in the planning window that is ∆T -close to T (eE) and for which st ∈ D∀,

or event eE must be scheduled outside of the current planning window.

∨
t=0...Nt


T (eE) ≥ T0 + (t− 1

2
)∆T

∧ T (eE) ≤ T0 + (t + 1
2
)∆T

∧ st ∈ D∀


∨ T (eE) ≤ T0 − ∆T

2

∨ T (eE) ≥ T0 + (Nt + 1
2
)∆T

(2.7)

As for plant model constraints, Eq. 2.8 constrains st to be outside of each unsafe

region for all t, where the unsafe regions are described by polyhedra. In the fire-

fighting scenario, this corresponds to constraints encoding obstacle avoidance.

∧
t=1...Nt

∨
i=1...nPS

aT
i st ≥ bi (2.8)
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Chapter 3

Technical Background

Recall that GCD-BB solves DLPs by combining Branch and Bound (B&B) [19] with

the ideas drawn from Conflict-Directed A* search [35] and Activity Analysis [31]. We

review each of these in the following sections.

3.1 Branch and Bound

Branch and Bound is frequently used to solve problems involving both discrete and

continuous variables, such as MIPs and BIPs. It uses a ’divide and conquer’ approach

to explore the set of feasible integer solutions. However, instead of exploring the en-

tire feasible set of a constrained problem, it uses bounds on the optimal cost, in order

to avoid exploring subsets of the feasible set that it can prove are sub-optimal. A

subproblem Fi of problem F is sub-optimal if the optimal solution to Fi is not better

than the incumbent, which is the best feasible solution to F found so far. The generic

B&B algorithm [3] is shown in Alg. 1.

3.1.1 Lower and Upper Bounds

It is important to have a relatively efficient way, for every Fi of interest, to compute

a lower bound lb(Fi) for its optimal cost. The basic idea is that while the optimal

31



Alg. 1 Branch-Bound(problem F )

1: incumbent U = +∞
2: select a subproblem Fi

3: if Fi is infeasible then
4: delete Fi {prune the infeasible subproblem}
5: else
6: compute the lower bound lb(Fi)
7: if lb(Fi) ≥ U then
8: delete Fi {prune the sub-optimal subproblem}
9: else if the solution to Fi satisfies all the constraints of F then

10: U ← lb(Fi)
11: else
12: break Fi into subproblems
13: end if
14: end if

cost in a subproblem may be difficult to compute exactly, a lower bound may be

more easily obtained. A general method to obtain such a bound is to use the optimal

cost of the LP relaxation. p′ is a relaxed LP of an optimization problem p, if the

feasible region of p′ contains the feasible region of p, and they have the same objective

function. Therefore, if p′ is infeasible, then p is infeasible. Assuming that we are

performing minimization, if p′ is solved with an optimal value v, the optimal value of

p is guaranteed to be greater than or equal to v.

In the course of the B&B algorithm, we occasionally find that the optimal solution

to a certain relaxed subproblem is also a solution to the original problem. This

solution is used to maintain an upper bound U on the optimal cost of the original

problem. In particular, U is the cost of the best feasible solution encountered thus

far, called the incumbent. Given an incumbent and lower bounds formed from relaxed

subproblems, tree pruning within B&B is based on the following observation. If the

lower bound lb(Fi) of a subproblem satisfies lb(Fi) ≥ U , then this subproblem need

not be considered further. This is because the optimal solution to the subproblem is

no better than the incumbent.
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3.1.2 An Example of B&B for BIPs

Fig. 3-1 shows a simple example of how B&B solves the BIP problem in Eq. 3.1.

Minimize 3x1 + 8x2

Subject to x1 + x2 ≥ 0.5

x1, x2 ∈ {0, 1}

(3.1)

For BIP problems, B&B recursively partitions them into subproblems by assigning

0 and 1 to each binary variable, as shown in Fig. 3-1. A subproblem is defined by

substituting for an assigned binary variable in the original problem. Subproblems are

relaxed by turning binary variables into real-valued variables with domain [0, 1]. In

Fig. 3-1 the relaxed subproblems are written next to their corresponding nodes A−C.

The purpose of a relaxation is to generate a simple problem, whose solution offers

a lower bound (assuming for minimization problems) on the solution to the original

problem, to solve. For BIPs, a relaxed problem is an LP over real-valued variables,

which can be solved using simplex.

Figure 3-1: A simple example of B&B for BIP. Beside each node there is the corre-
sponding relaxed LP to solve. The number in each node is the optimal cost. The
optimal solution at each node is in a box. The node with double circles is an incum-
bent, and the dashed lines represent the subtrees that are pruned.

B&B typically explores a tree in depth first order. In the example (Fig. 3-1), once
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the relaxed LP at node B is solved, its solution is found to be an incumbent. Node C

is supposed to be expanded because its solution does not satisfy the binary variable

x2, however, it needs not to continue to break into subproblems as its lower bound is

greater than the incumbent (3). Hence the subtree is pruned, and at the end of the

search the incumbent proves to be the optimal solution.

3.2 Conflict-Directed A*

The Conflict-Directed A* (CD-A*) algorithm [35] utilizes the concept of a conflict to

guide the search process to a solution of the optimal constraint satisfaction problem

(OCSP). An OCSP is a multi-attribute decision problem whose decision variables are

constrained by a set of finite domain constraints. For example, the task of identifying

the most likely, consistent diagnoses of a circuit introduced in [35] is an OCSP. The

circuit consists of three OR gates and two AND gates, as shown in Fig. 3-2 taken

from [35]. Each component is in one of two possible modes, good (G) or broken (U).

The decision variables are component mode variables, each over domain {G, U}. The

relation of the components described in Fig. 3-2 defines the finite domain constraints

on the decision variables. The attribute utilities are the component failure prob-

abilities and are combined by multiplication, as we assume component failures are

independent. If OR gates fail with probability 1% and AND gates with probability

.5%, then the solution to the OCSP is {O1 = U,O2 = G, O3 = G, A1 = G, A2 = G}.

A* search [10] uses an admissible heuristic to estimate the utility or cost of a state

in the search space, and tests a sequence of candidate solutions in decreasing order

of utility or increasing order of cost. The admissible heuristic corresponds to solving

a relaxed problem in B&B. CD-A* differs from A* in that it uses the sources of con-

flict, identified within each inconsistent candidate, to jump over related candidates

in the sequence. A conflict is any partial variable assignment that violates the OCSP

constraints.
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Figure 3-2: An OCSP example, with observed inputs and outputs indicated.

3.2.1 An Example of CD-A*

For example, consider Fig. 3-4 [35], which illustrates the search process of CD-A*.

Whereas A* (as in Fig. 3-3 [35]) would search every single state in increasing heuristic

cost order, CD-A* is able to identify regions that share infeasibilities and skip over

all the states in these regions after exploring a single inconsistent state. In Fig. 3-

4, CD-A* first selects the state with the lowest cost, S1, which proves inconsistent.

This inconsistency generalizes to Conflict 1, which eliminates states S1 − S3 (Fig. 3-

4a). CD-A* then tests state S4 which resolves Conflict 1. However, S4 also proves

inconsistent, and generalizes to Conflict 2, eliminating states S4 − S7 (Fig. 3-4b).

Similarly, Conflict 3 (Fig. 3-4c) is generalized from inconsistent state S8. Finally, the

search tests state S9 as consistent and returns it as an optimal solution (Fig. 3-4d).

3.2.2 The Process of CD-A*

CD-A* interleaves best-first generation and test. CD-A* generates as a candidate,

the best valued decision state that resolves all discovered conflicts, by expanding a

search tree which makes assignments to a set of decision variables of the OCSP. It

tests each candidate S for consistency against the OCSP constraints. When S tests

inconsistent, the inconsistency is generalized to one or more conflicts, denoting states

that are inconsistent in a manner similar to S. The candidate is tested using any

suitable CSP algorithm that extracts conflicts. CD-A* prunes discovered conflicts

that are subsumed by other discovered conflicts, and then generates the next best
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Figure 3-3: A* Search examines all best cost states leading up to the best consistent
state.

candidate S ′ that resolves all conflicts discovered thus far. The process repeats until

the desired leading solutions are found or all states are eliminated.

The key to CD-A* is the ability to efficiently generate, at each iteration, the

next best candidate resolving all known conflicts. This is accomplished by mapping

known conflicts to partial assignments, called kernels, and by extracting the kernel

containing the best utility state. Each kernel describes a set of states that resolve the

known conflicts. The mapping from conflicts to kernels consists of two steps. The

first step generates constituent kernels. A constituent kernel is a minimal description

of all states that resolve a particular conflict. The second step generates kernels, by

computing the minimal set covering of the constituent kernels. In order to find the

kernel with the best utility state, CD-A* views minimal set covering as a search and

uses A* search to find the best kernel. The search tree for the example in Fig. 3-2 is

shown in Fig. 3-5, where Conflict 1 is {A1 = G, O1 = G, O2 = G} and Conflict 2 is

{A1 = G, A2 = G, O1 = G}. A description of the CD-A* search tree is taken from

[35].

A tree node is expanded by selecting the constituent kernels of a con-

flict that is unresolved by that node, and by creating a child for each

constituent kernel of that conflict. For example, the root node does not

resolve Conflict 1 or 2. Selecting Conflict 1, the children of the root are
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Figure 3-4: Conflict-directed A* focuses search using discovered conflicts. a) - d)
represent snapshots along a prototypical search. Circles represent states. Filled in
circles have been tested for consistency. Regions in grey have been ruled out by
conflicts. Only state S9 is consistent.

{O2 = U}, {O1 = U} and {A1 = U}. Nodes are eliminated when non-

minimal, such as the first and third leaves at the bottom left of the tree.

Next, consider how the best candidate is extracted from a kernel. We

generate the best candidate by assigning the remaining unassigned vari-

ables. To accomplish this we exploit a property called mutual, preferential

independence (MPI). MPI says that to find the best candidate we assign

each variable its best utility value, independent of the values assigned to

the other variables. For example, initially there are no conflicts and the

best kernel is the root node {}. For this kernel, Candidate 1 assigns the

most likely value, G, to every variable, hence all components are working.

Continuing the process, when Candidate 2 is generated (left, Fig. 3-6),

only Conflict 1 has been discovered, hence the kernels correspond to the
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Figure 3-5: The search tree created by Conflict-directed A* to identify all kernels.
Visited nodes that are kernels are check marked, while those that are not are crossed
off.

constituent kernels of Conflict 1. Kernel {O2 = U} contains the most

likely candidate. Its estimated probability combines the probability of

{O2 = U}, .01, with an optimistic estimate (i.e., admissible heuristic) of

the best probability of the unassigned variables. By MPI, this heuristic

selects the best utility value for each unassigned variable, .97, resulting in

.0097, for the best candidate of {O2 = U}.

A key property of the search is that it only expands the best valued child

of {}, which is {O2 = U}, rather than all children. This is valid because

MPI guarantees that {O2 = U} contains a state whose utility is at least

as good as that of every state contained by the other children, such as

{O1 = U}. The best kernel must be {O2 = U}, or one of its descendants.

{O2 = U} resolves the known conflicts, and hence is a kernel. To maximize

utility, the kernels best candidate assigns G to the remaining components,

that is, Candidate 2 has only O2 broken.

When Candidate 3 is generated (right, Fig. 3-6), Conflict 1 and 2 have

been discovered. Node {O2 = U} does not resolve Conflict 2, and is

expanded by creating its best child {O2 = U,O1 = U}. This is a kernel,

whose best candidate has probability .01× .098 = .00098.
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Figure 3-6: Left: Tree expansion for kernel {O1 = U}, producing Candidate 2. Only
the best valued child of the root is expanded, not all children. Right: Tree expansion
for kernel {O1 = U}, producing Candidate 3. When node O2 = U is expanded, its
best child and its next best sibling are created.

At this point it is no longer valid to just expand the best child of {O2 = U}.

Conflict 2 pruned out one or more of the states below node {O2 = U},

hence we are no longer guaranteed that {O2 = U} contains a state that

is as good as its sibling − this sibling may now contain the next best

kernel. To achieve completeness we also expand its next best sibling,

which is {O1 = U}, with probability .0097. The next best sibling has

higher probability than the best child, and hence the sibling is selected

next. It is a kernel, and produces candidate 3, which is our most likely

diagnosis.

Kernel generation of CD-A* described above is key to the forward conflict-directed

search in GCD-BB. The forward conflict-directed search maps conflicts to kernels,

by generating constituent kernels and computing the minimal set covering of the

constituent kernels to form kernels. The difference is that best-first search is not used

to identify the best kernel, because in order to do so we need to solve an LP for each

kernel, which is very costly. Instead, we identify all the kernels that resolve all known

conflicts, and prune those that are propositionally unsatisfiable before solving any

LPs.
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3.3 Activity Analysis

Activity Analysis (AA), as proposed in [31], is a technique that applies to the pervasive

family of linear and non-linear, constrained optimization problems. It draws from the

power of two seemingly divergent perspectives - the global conflict-based approaches of

combinatorial satisfying search, and the local gradient-based approaches of continuous

optimization - combined with the underlying insights of engineering monotonicity

analysis [24, 23].

AA is used to help solve non-linear optimization problems. It strategically cuts

away subspaces that it identifies as sub-optimal, and guides the numerical methods

to the remaining subspaces. The power of eliminating large sub-optimal subspaces is

derived from QKKT, an abstraction in qualitative vector algebra of the foundational

Karush-Kuhn-Tucker (KKT) condition of optimization theory. The underlying algo-

rithm achieves simplicity and completeness by introducing the concept of generating

prime implicating assignments of linear, qualitative vector equations. Finally, AA

can be considered as automating the underlying principle about monotonicity used

by the simplex method to examine only the vertices of the linear feasible space. It

then generalizes and applies this principle to non-linear programming problems.

The KKT conditions provide a set of vector equations that are satisfied for a

feasible point x∗ exactly when that point is stationary:

5f(x∗) + λT 5 h(x∗) + µT 5 g(x∗) = 0T (KKT1)

µT g(x∗) = 0 (KKT2)

µ ≥ 0 (KKT3)

(3.2)

A key property of KKT is that it identifies active inequality constraints. Intu-

itively, a constraint [gi] is active at a point x when x is on the constraint boundary

and the direction of decreasing objective, 5f , is pointing into the boundary. When

this is true, µi is positive. Hence the basic approach of AA is to determine by look-

ing at signs of µ, that the stationary points lie at the intersection of the constraint

boundaries. The regions of the design space where optima can possibly lie is the
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regions with only the stationary points. The regions with no stationary points are

then sub-optimal regions to be eliminated.

The process of AA is the following. First, compute the signs of Jacobians 5f ,

5g and 5h, and expand QKKT1 by expanding matrix sums and products. Second,

compute prime assignments Pi
′s and minimal set covering of the prime assignments

Pi → P , while deleting inconsistent assignments. Third, extract minimal sets of

positive µi from P , and map the positive µi to gi(x) = 0. Finally, formulate and

return a new optimization problem.

Consider the hydraulic cylinder example in [31], the problem is formulated as

Eq. 3.3. After instantiating QKKT1 (Step 1 of the AA process), prime assignments

are computed (Eq. 3.4). The minimal set covering of P (1) − (5) is {{λ1 = −̂, λ2 =

+̂, µ1 = +̂, µ4 = +̂}, {λ1 = 0, λ2 = +̂, µ1 = +̂, µ2 = +̂, µ4 = 0}}. Extracting

the minimal sets of positive µ results in {µ1 = +̂, µ4 = +̂} and {µ1 = +̂, µ2 =

+̂, µ3 = +̂}. Therefore two subspaces are found that could contain the optima, one

subspace where g1 and g4 become strict equalities, and a second where all but g4

become strict equalities. The new optimization problem produced is, to find x∗ such

that x∗ = argminx∈F f(x), F ∈ {F1, F2}, where F1 =< {g2, g3}, {h1, h2, g1, g4} > and

F2 =< {g4}, {h1, h2, g1, g2, g3} >.

Minimize i + 2t

Subject to s− pi

2t
= 0, (h1 = 0)

f − πi2

4
p = 0, (h2 = 0)

F − f ≤ 0, (g1 ≤ 0)

T − t ≤ 0, (g2 ≤ 0)

p− P ≤ 0, (g3 ≤ 0)

s− S ≤ 0, (g4 ≤ 0)

(3.3)
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{λ1 = +̂}
∨
{λ2 = +̂} P (1)

{λ1 = −̂}
∨
{µ2 = +̂} P (2)

{λ2 = 0, µ1 = 0}
∨
{λ2 = +̂, µ1 = +̂} P (3)

{λ1 = 0, µ4 = 0}
∨
{λ1 = −̂, µ4 = +̂} P (4)∨

{λ1 = 0, λ2 = 0, µ3 = 0}
∨

{λ1 = +̂, λ2 = −̂}
∨
{λ1 = +̂, µ3 = +̂}

{λ1 = −̂, λ2 = +̂}
∨
{λ2 = +̂, µ3 = +̂} P (5)

(3.4)

Originally the problem has a 3 dimensional space to explore resulting from 5

variables and 2 equality constraints. AA rules out the interior and boundaries except

some intersections. The first remaining subspace corresponds to a line, and the second

remaining space is a point. Therefore, the complexity of the problem is significantly

reduced.

GCD-BB is similar to AA in that it maps sub-optimal states to minimal set

covering, and uses the covering to formulate and return a new optimization problem.

However, GCD-BB differs from AA in that GCD-BB combines states from several

sub-optimal problems through minimal set covering and uses the covering to expand a

node in the B&B search tree, rather than being restricted in one optimization problem

as in AA.
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Chapter 4

The GCD-BB Algorithm

Recall that the GCD-BB algorithm builds upon B&B and incorporates three key inno-

vative features: first, Generalized Conflict Learning, which learns abstractions (con-

flicts) comprised of constraint sets that produce either infeasibility or sub-optimality;

second, Forward Conflict-Directed Search, which guides the forward step of the search

away from regions of state space corresponding to known conflicts, and third, Induced

Unit Clause Relaxation, which uses unit propagation to form a relaxed problem. In

addition, we compare the influence of different search orders: Best-first Search (BFS)

versus Depth-first Search (DFS). In the following sections, we develop these key fea-

tures of GCD-BB in detail, including examples and pseudo code.

4.1 Branch and Bound for DLPs

B&B, an algorithm to solve problems involving both discrete and continuous variables,

is frequently used by algorithms to solve BIPs. Instead of branching by assigning 0

and 1 to each binary variable, as for BIPs, B&B for DLPs branches by splitting

clauses; that is, a tree node is expanded by selecting one of the DLP clauses, and

then selecting one of the disjuncts of the clause for each of the child nodes. An

example search tree is shown in Fig. 4-1. The node on the bottom left is created from

its parent node by selecting the disjunct g21(x) ≤ 0 from its clause.

BB-DLP (Alg. 2) results from applying the generic B&B algorithm (Alg. 1) to
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Figure 4-1: The search tree of B&B for DLPs branches by splitting clauses. Each
node represents a DLP.

DLPs. Each node in the search tree represents a DLP. The root represents the

original DLP, and its descendents represent subproblems of the original DLP. In the

algorithm, each node has an associated subproblem, its relaxation and its relaxed

solution. More precisely, each node is comprised of: 1) the objective function of the

DLP (node.objective), for example, “minimize f(x)” in the root node in Fig. 4-1,

2) the unit clause set of the DLP (node.unitClauses), for example, h(x) ≤ 0 in the

root node, and 3) the non-unit clause set of the DLP (node.nonUnitClauses), for

example, {g11(X) ≤ 0 ∨ g12(x) ≤ 0, g21(X) ≤ 0 ∨ g22(x) ≤ 0}. As with traditional

B&B, a node also includes a relaxed LP (node.relaxedLP) formed from the DLP

using some relaxation method (Section 4.4), the optimal solution to the relaxed LP

(node.relaxedSolution) and its optimal value (node.relaxedValue).

GCD-BB performs a novel relaxation of a DLP subproblem through propositional

logic. In particular, the relaxation is constructed from the original DLP as follows:

each linear inequality in the original DLP, either in the unit clause set or in the non-

unit clause set, is associated with a propositional symbol. Unique inequalities have

unique symbols, repeated ones share the same symbol, and if one inequality is the

negation of another then ¬ is added. For example, {x ≤ 200, x ≥ 200 ∨ y ≤ 100, y ≤
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100∨x+2y ≥ 10} can be represented as {a,¬a∨ b, b∨ c}. The propositional symbols

will be used in the next three sections, when the form of inequalities is not needed

for our algorithm.

Alg. 2 BB-DLP(DLP )

1: upperBound← +∞
2: timestamp = 0
3: put DLP into a FILO queue
4: while queue is not empty do
5: node ← remove from queue
6: node.relaxedSolution ← solveLP(node.relaxedLP)
7: if node.relaxedLP is infeasible then
8: continue {node is deleted}
9: else if node.relaxedValue ≥ upperBound then

10: continue {node is deleted}
11: else
12: expand = False
13: for each clause in node.nonUnitClauses do
14: if Violated-Clause?(clause, node.relaxedSolution) then
15: expand ← True
16: break
17: end if
18: end for
19: if expand = False then
20: upperBound← node.relaxedValue {a new incumbent was found}
21: incumbent← node.relaxedSolution
22: else
23: put Expand-Node(node, timestamp) in queue
24: timestamp← timestamp + 1
25: end if
26: end if
27: end while
28: if upperBound < +∞ then
29: return incumbent
30: else
31: return INFEASIBLE
32: end if

Similar to standard B&B, BB-DLP performs search in depth-first order (line 3

Alg. 2). At each node a relaxed LP is solved (line 6). If a node is feasible (line 9) and

better than the incumbent (line 11), it is tested (line 13-18) whether further expansion
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Alg. 3 Violated-Clause?(clause, solution)

1: for each disjunct in clause do
2: if solution satisfies disjunct then
3: return False
4: end if
5: end for
6: return True

is needed, using Violated-Clause? (Alg. 3). For example, if the node does not need

expansion (line 19), it is identified as the new incumbent; otherwise, Expand-Node

(Alg. 4) is called, which creates the children of the node and places them in the queue

(line 23).

Finally, GCD-BB needs to know the order in which nodes are created, in order to

perform forward conflict-directed search (Section 4.3). To support this a timestamp

is used to mark the creation time of a node (node.timestamp). Every time node

expansion occurs, the timestamp is incremented by 1 (line 24). Note that timestamps

are also maintained for conflicts, as introduced in Section 4.2 and then later exploited

in Section 4.3.

Alg. 4 Expand-Node(node, timestamp)

1: for each clause in node.nonUnitClauses do
2: if Violated-Clause?(clause, node.relaxedSolution) then
3: add clause to sortList {sortList contains violated clauses in increasing order

of their number of disjuncts}
4: end if
5: end for
6: selectedClause ← sortList(first)
7: for each disjunct in selectedClause do
8: child.unitClauses ← node.unitClauses + disjunct
9: child.nonUnitClauses ← node.nonUnitClauses - selectedClause

10: child.timestamp ← timestamp + 1
11: add child to childList
12: end for
13: return childList

For the function Violated-Clause? (Alg. 3), we define a clause to be violated by a

relaxed solution, if the solution satisfies none of the linear constraints (disjuncts) in

46



the clause.

Consider the function Expand-Node (Alg. 4). In the spirit of the most constrained

variable heuristic of CSPs [4], Expand-Node splits on a violated clause with the

smallest number of disjuncts. To find this clause, we maintain a list, sortList (line 1-

5), which contains the violated clauses in increasing order of their number of disjuncts.

Therefore, sortList(first) is the clause with the least number of disjuncts. For each

disjunct in the selected clause, a child is created (line 7-12). Finally, the list of children

are returned.

B&B for DLPs differs from B&B for BIPs in three respects. First, it forms relaxed

LPs from unit clauses (see Section 4.4), rather than extending the domain of binary

variables to the real-valued interval [0,1]. Second, the condition for performing node

expansion is the existence of violated clauses, rather than unsatisfied (real-valued)

binary variables. Finally, it expands nodes by splitting clauses, rather than assigning

binary variables 0 and 1.

4.2 Generalized Conflict Learning

In the related field of discrete constraint satisfaction, conflict learning methods, such

as dependency-directed backtracking [28], backjumping [12], conflict-directed back-

jumping [25] and dynamic backtracking [13], dramatically improve the performance

of backtrack (BT) search, by learning the source of each inconsistency discovered, and

by using this information, called a conflict (or nogood), to prune additional subtrees

that the conflict identifies as inconsistent.

To apply conflict learning to B&B, we note that B&B prunes subtrees correspond-

ing to relaxed subproblems that are either infeasible or sub-optimal (line 8 and 11

in Alg. 2). Hence two opportunities exist for learning and pruning. We generalize

conflict learning and pruning, in contrast to previous work, in that conflicts are ex-

tracted from both sub-optimal and infeasible subproblems. To accomplish this we

add functions Extract-Infeasibility (Alg. 5) and Extract-Suboptimality (Alg. 6) after

line 7 and 10 in BB-DLP (Alg. 2), respectively. It is valuable to have each conflict as
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compact as possible, so that the subspace that can be pruned is as large as possible.

4.2.1 Conflicts

In the context of DLP, each conflict can be one of two types: an infeasibility conflict,

or a sub-optimality conflict.

Definition 4.2.1 Given a DLP = < x, f, C >, where x ∈ Rn is a vector of variables,

f is the minimizing objective function over x and C is the constraint set over x, α ⊆

disjuncts(C), where disjuncts(C) is the set of all the linear inequalities of C, is an

infeasibility conflict of the DLP if ¬∃x s.t. α(x) is satisfied.

For example, in the DLP shown in Eq. 4.1, the unit clause set {x ≤ 200, y ≤ 200, x ≤

10, x ≥ 80} is an infeasibility conflict, since the constraints are not satisfiable for any

value of x.

Definition 4.2.2 Given a DLP = < x, f, C > and x∗ ∈ Rn s.t.C(x∗) is satisfied, α ⊆

disjuncts(C) is a sub-optimality conflict of the DLP if ∀y ∈ Rn s.t. α(y) is satisfied,

f(y) ≥ f(x∗).

For example, the DLP shown in Eq. 4.2 be a subproblem of the DLP shown in Eq. 4.3.

The best feasible solution to the DLP in Eq. 4.3 found so far has value smaller than

-100, and -100 is the optimal value of the relaxed LP of Eq. 4.2. The unit clause set

{x ≤ 200, y ≤ 200, x ≤ 100, y ≤ 0} is then a sub-optimality conflict.

Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 10

x ≥ 80

x ≤ 100 ∨ y ≤ 50

(4.1)
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Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

y ≤ 0

x ≤ 10 ∨ y ≤ 5 ∨ y ≤ 4

(4.2)

Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100 ∨ y ≤ 50

y ≤ 0 ∨ x ≥ 80 ∨ x ≥ 30

x ≤ 10 ∨ y ≤ 5 ∨ y ≤ 4

(4.3)

4.2.2 Minimal Conflicts

Similar to the above definitions, a minimal conflict can be one of two types: a minimal

infeasibility conflict, or a minimal sub-optimality conflict.

Definition 4.2.3 Given a DLP = < x, f, C >, α ⊆ disjuncts(C) is a minimal infea-

sibility conflict of the DLP if α is an infeasibility conflict and ¬∃δ ⊂ α s.t. δ is an

infeasibility conflict.

For example, the constraint set {x ≤ 10, x ≥ 80} in the DLP of Eq. 4.1 is a minimal

infeasibility conflict, since it is an infeasibility conflict and any proper subset of it is

not an infeasibility conflict.

Definition 4.2.4 Given a DLP = < x, f, C >, α ⊆ disjuncts(C) is a minimal sub-

optimality conflict of the DLP if α is a sub-optimality conflict and ¬∃δ ⊂ α s.t. δ is

a sub-optimality conflict.
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Likewise, the constraint set {x ≤ 100, y ≤ 0} in the DLP of Eq. 4.2 is a minimal sub-

optimality conflict, with respect to the feasible point (100, 0). Note that there can be

more than one minimal conflict (possibly with different cardinalities) involved in one

infeasibility or sub-optimality. In addition a minimal conflict is not guaranteed to

have the minimum cardinality. We extract minimal conflicts instead of any conflicts,

since minimal conflicts can prune larger portion of the state space. We do not try

to extract the minimum conflict of a subproblem, because the computational cost of

searching for this conflict is prohibitive.

4.2.3 Conflict Extraction

To perform generalized conflict learning efficiently, we introduce two novel methods

based on the duality theory [3] to extract a subproblem’s minimal conflict. Recall

that in the Branch and Bound search tree, a relaxed LP is solved at each node. We

run the dual simplex method as the LP solver. For infeasibility, when dual simplex

terminates unbounded, an extreme ray is discovered with it. The non-zero elements

of the extreme ray are used to identify the constraints of the minimal infeasibility

conflict. The proof is in the working paper [21].

For sub-optimality, when dual simplex terminates with an optimal solution, we

can choose to extract the minimal sub-optimality conflict. To accomplish that, we

reduce the constraint matrix so that there are no duplicate constraints and examine

the consequent dual solution vector. Suppose the reduced constraint matrix has m

rows and n columns. Then the corresponding dual vector has m elements. If there are

n or less non-zero elements in the dual vector, all the non-zero elements of the dual

vector correspond to the constraints of the minimal sub-optimality conflict; otherwise,

any n of the non-zero elements are used to identify the minimal conflict.

The principle is explained as follows. According to Complementary Slackness

[3] from linear optimization theory, the non-zero terms of the optimal dual vector

correspond to the set of active constraints S at a given optimal solution to the LP. An

inequality constraint gi(x) ≤ 0 is active at a feasible point x̃ if gi(x̃) = 0. According to

Definition 4.2.4, all the linear inequalities in a minimal sub-optimality conflict must
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be in S. That is, if gi(x) < 0 at the optimum, then removing the constraint does not

alter the optimum. A solution x ∈ Rn is degenerate if more than n constraints are

active at x. When x is non-degenerate and unique, exactly n constraints are active

at x and removing any one of them alters the solution. When x is non-degenerate

and non-unique, there are less than n constraints active at x and removing any one of

them alters the solution. When x is degenerate and unique, more than n constraints

are active at x and as long as n of them are kept active the solution x remains the

same. For example, (0, 5) is a degenerate and unique solution in Fig. 4-2, and any 2 of

the constraints form a minimal sub-optimality conflict. The case when x is degenerate

and non-unique does not exist for our reduced constraint matrix.

Figure 4-2: An example of a degenerate unique optimum.

Functions Extract-Infeasibility and Extract-Suboptimality are shown in Alg. 5

and Alg. 6, respectively. Note that in Extract-Suboptimality (Alg. 6) |activeSet|

can be less than n when the optimum is not unique (line 2). In both functions,

an extracted minimal conflict is stored as a set of propositional symbols in a conflict

database (conflictDB). A conflict is indexed by a timestamp, which marks the conflict′s

discovery time.

Alg. 5 Extract-Infeasibility

1: minimalConflict ← cplex.getIIS()
2: put minimalConflict in conflictDB(timestamp)

To summarize, this section introduced the concepts of conflicts and minimal con-

flicts, and described the efficient approach used in GCD-BB to extract minimal con-
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Alg. 6 Extract-Suboptimality

1: activeSet ← cplex.getDuals() {dual vectors are computed using CPLEX}
2: if |activeSet| ≤ n then
3: minimalConflict ← activeSet
4: else
5: put n constraints from activeSet in minimalConflict
6: end if
7: put minimalConflict in conflictDB(timestamp)

flicts.

4.3 Forward Conflict-directed Search

We use forward conflict-directed search to heuristically guide the forward step of

search away from regions of the state space that are ruled out by known conflicts.

Backward search methods also use conflicts to direct search, such as dependency-

directed backtracking [28], backjumping [12], conflict-directed backjumping [25], dy-

namic backtracking [13] and LPSAT [36]. These backtrack search methods use con-

flicts to select backtrack points and as a cache to prune nodes without testing consis-

tency. We use conflicts in forward search, as in conflict-directed A* (CD-A*) search

[35], to move away from known “bad” states. We generalize the approach in CD-A*

to guiding B&B away from regions of state space that the known conflicts indicate

are infeasible or sub-optimal. To accomplish this, a node is expanded so that each

of its children resolves all the node′s unresolved conflicts. A node resolves a conflict

if at least one of the conflict′s disjuncts is explicitly excluded from the relaxed LP of

the node.

In terms of implementation, we replace function Expand-Node in line 24 of BB-

DLP (Alg. 2) with function General-Expand-Node (Alg. 7). Our experimental re-

sults on a range of cooperative vehicle plan execution problems show that forward

conflict-directed search significantly outperforms backtrack search with conflicts (Sec-

tion 5.1.2).

In General-Expand-Node (Alg. 7), when there is no unresolved conflict, Expand-
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Alg. 7 General-Expand-Node(node, timestamp,conflictDB)

1: conflictSet← conflictDB(timestamp)
2: if conflictSet is empty then
3: Expand-Node(node, timestamp)
4: else
5: Forward-CD-Search(node, conflictSet)
6: end if

Node (Alg. 4) is used, and when unresolved conflicts exist, Forward-CD-Search (Alg. 8)

is performed. Next we elaborate upon the concepts in forward conflict-directed search,

and then present the detailed algorithm.

Recall from Section 3.2.2, that a constituent kernel is a minimal description of

the states that resolve a conflict. In the context of DLPs, a constituent kernel of a

conflict is a linear inequality that is the negation of a linear constraint contained in

the conflict. For example, one constituent kernel of the minimal infeasibility conflict

in Eq. 4.1 is {x ≥ 10}.

Given the set of constituent kernels, recall that CD-A* generates kernels, each of

which resolves all known conflicts, by combining the constituent kernels using minimal

set covering. It views minimal set covering as a search and uses A* to find the kernel

containing the best utility state.

In the context of DLPs, a kernel corresponds to a set of linear inequalities. Ex-

tending a node with the kernels of the unresolved conflicts guarantees that all known

conflicts are resolved by the node and its descendants. For DLPs we build up ker-

nels similar to CD-A*, by combining constituent kernels using minimal set covering.

However, unlike CD-A* we do not use A* search to identify the best kernel. In order

to evaluate the heuristic during A* search, we would need to solve an LP at each

step as we build the kernels; this can be very costly. Instead GCD-BB generates a

DLP candidate with each kernel, as shown in Fig. 4-3, and prunes the DLPs that

are propositionally unsatisfiable, using a fast unit propagation test before solving any

relaxed LP.

Forward-CD-Search (Alg. 8) includes three steps: 1) Generate-Constituent-Kernels

(Alg. 9), 2) Generate-Kernels (Alg. 10) and 3) Generate-And-Test-DLP-Candidates
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Alg. 8 Forward-CD-Search(node, conflictSet)

1: constituentKernelSet← Generate-Constituent-Kernels(conflictSet)
2: kernelSet← Generate-Kernels(constituentKernelSet)
3: return DLPList← Generate-And-Test-DLP-Candidates(kernelSet, node)

(Alg. 14). An example is shown in Fig. 4-3.

Figure 4-3: Each conflict is mapped to a set of constituent kernels, which resolve
that conflict alone. Kernels are generated by combining the constituent kernels using
minimal set covering. A DLP candidate is formed for each kernel, and is checked for
consistency.

Alg. 9 Generate-Constituent-Kernels(conflictSet)

1: for each c in conflictSet do
2: Kc ← {}
3: for each constraint in c do
4: Kc ← Kc ∪ {¬constraint}
5: end for
6: add Kc to constituentKernelSet
7: end for
8: return constituentKernelSet

To generate constituent kernels for a conflict, Generate-Constituent-Kernels (Alg. 9)

forms a set by negating each constraint in the conflict (line 3-5), and then collects

the constituent kernel set for every conflict.

Once the constituent kernels for all the conflicts are generated, we use minimal

set covering to generate the kernels; this is performed by Generate-Kernels (Alg. 10).
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Alg. 10 Generate-Kernels(constituentKernelSet)

1: root ← {}
2: root.unresolved ← constituentKernelSet {initializes node.unresolved}
3: put root in a queue
4: kernelSet← {}
5: nodeDelete ← False {the flag to determine whether to delete a node}
6: while queue is not empty do
7: node ← remove from queue
8: if Consistent?(node) then
9: for each E in kernelSet do

10: if E ⊆ node then
11: nodeDelete ← True {checks whether any of the existing kernels is a

subset of the current node}
12: break
13: end if
14: end for
15: if nodeDelete = False then
16: if Unresolved-Conflict?(node, node.unresolved) then
17: put Expand-Conflict(node, node.unresolved) in queue {checks whether

any conflicts are unresolved by node}
18: else
19: Add-To-Minimal-Sets(kernelSet, node) {avoids any node that is a

superset of another in kernelSet}
20: end if
21: end if
22: end if
23: end while
24: return kernelSet

Alg. 11 Add-To-Minimal-Sets(Set, S)

1: for each E in Set do
2: if E ⊂ S then
3: return Set
4: else if S ⊂ E then
5: remove E from Set
6: end if
7: end for
8: return Set ∪ {S}
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Fig. 4-4(b) demonstrates Generate-Kernels by continuing the example from Fig. 4-3.

In particular, in Fig. 4-4(b) the tree branches by splitting on constituent kernels.

In this example, each node represents a set of chosen constituent kernels: the root

node is an empty set, and the leaf node on the right is {¬c1,¬c2}. At each node,

consistency is checked (line 8 in Alg. 10), and then Generate-Kernels checks whether

any of the existing kernels is a subset of the current node (line 10). If this is the

case, there is no need to keep expanding the node, and it is removed. In this event,

the leaf node is marked with an X in Fig. 4-4(b); otherwise, Generate-Kernels checks

whether any conflict is unresolved at the current node (line 16): if yes, the node is

expanded by splitting on the constituent kernels of the unresolved conflicts (line 17);

otherwise, the node is added to the kernel list, while removing from the list any node

whose set of constraints is a superset of another node (line 19). The node at the far

left of Fig. 4-4(b) resolves all the conflict and, therefore, is not expanded.

Figure 4-4: (a) A partial tree of B&B for DLPs. The creation time of each node is
shown on the left of the node. Two conflicts are discovered at the bottom. (b) The
search tree for minimal set covering to generate kernels from constituent kernels.

Finally, consider the use of timestamps. Recall that a timestamp is used to record

the time that a node is created or a conflict is discovered. We use timestamps to ensure

that each node resolves all conflicts, while avoiding repetition. This is accomplished

through the following rules: 1. if {conflict time = node time}, there is no need to

resolve the conflict when expanding the node, because the node contains at least one
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Alg. 12 Unresolved-Conflict?(node, node.unresolved)

1: for each E in node.unresolved do
2: if E ∩node = ∅ then
3: return True {If node contains no constituent kernel of this conflict, then it

does not resolve the conflict.}
4: end if
5: end for
6: return False

Alg. 13 Expand-Conflict(node, node.unresolved)

1: for each E in node.unresolved do
2: if E ∩node 6= ∅ then
3: remove E from node.unresolved {removes the constituent kernel set of the

resolved conflict}
4: end if
5: end for
6: X ← the smallest set in node.unresolved
7: for each F in X do
8: child ← node ∪ {F}
9: add child in childList {Each child is created by selecting one of the

constituent kernels of an unresolved conflict}
10: end for
11: return childList

Alg. 14 Generate-And-Test-DLP-Candidate(kernelSet, DLP )

1: S ← DLP.unitClauses
2: for each kernel in kernelSet do
3: if Consistent?(S ∪ kernel) then
4: DLP.unitClauses← S ∪ kernel {checks whether kernel is consistent with

the unit clause set of DLP}
5: add DLP in DLPList
6: end if
7: end for
8: return DLPList
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Alg. 15 Consistent?(Set)

1: for each e in Set do
2: if Set ∩ {¬e} 6= ∅ then
3: return False
4: end if
5: end for
6: return True

of the constituent kernels of the conflict, and the node’s descendants all retain that

constituent kernel. For example, in Fig. 4-4, node c3 and its children (if any) are

guaranteed to resolve the two conflicts {b1, c1} and {b1, c2}. 2. If {conflict time >

node time}, we expand the node in order to resolve the conflict using the conflict’s

constituent kernels. For example, node b2 and a2 are to be expanded using Forward-

CD-Search (Alg. 8). 3. If {conflict time < node time}, the conflict is guaranteed to

be resolved by an ancestor node of the current node, and therefore, the conflict does

not need to be resolved again.

This section introduced the search method in GCD-BB, forward conflict-directed

search, which guides B&B away from regions of state space that the known conflicts

indicate as infeasible or sub-optimal, through generating constituent kernels, kernels

and DLP candidates from conflicts.

4.4 Induced Unit Clause Relaxation

Recall from Section 3.1.1 that relaxation is an essential tool for quickly characterizing

a problem when the original problem is hard to solve directly. Relaxation provides

bounds on feasibility and the optimal value of a problem, which are commonly used

by B&B to prune the search space. Previous research [15] typically solves DLPs

by reformulating them as BIPs, where a relaxed LP is formed by relaxing the bi-

nary constraints (x ∈ {0, 1}) to a corresponding set of continuous linear constraint

(0 ≤ x ≤ 1).

An alternative way of creating a relaxed LP is to operate on the DLP encoding

directly, by removing all non-unit clauses from the DLP (a unit clause is one that

58



contains a single constraint). The rationale in [15] for reformulating a DLP as a

BIP relaxation, is that it maintains some of the constraints of the non-unit clauses

through the continuous relaxation from binary to real-valued variables; this is opposed

to ignoring all the non-unit clauses. However, this benefit is at the cost of adding

binary variables and constraints, which increases the dimensionality of the search

problem. For example, consider the DLP in Eq. 4.4 and its equivalent BIP in Eq. 4.5.

The relaxed LP of the DLP is shown in Eq. 4.6, and is formed by ignoring all non-unit

clauses. The relaxed LP of the BIP is in Eq. 4.7. Eq. 4.7 is a more constrained LP

and therefore, a better relaxation than Eq. 4.6. However, the size of the LP in Eq. 4.6

is significantly smaller than that of Eq. 4.7, in terms of the number of variables and

the number of constraints.

Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

x ≥ 200 ∨ y ≤ 100

y ≤ 100 ∨ x ≤ 50 ∨ x ≥ 300

(4.4)
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Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

x− 200 ≥M(b1 − 1)

y − 100 ≤M(1− b2)

x− 50 ≤M(1− b3)

x− 300 ≥M(b4 − 1)

b1 + b2 ≥ 1

b2 + b3 + b4 ≥ 1

b1, . . . , b4 ∈ {0, 1}

(4.5)

Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

(4.6)
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Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

x− 200 ≥M(b1 − 1)

y − 100 ≤M(1− b2)

x− 50 ≤M(1− b3)

x− 300 ≥M(b4 − 1)

b1 + b2 ≥ 1

b2 + b3 + b4 ≥ 1

0 ≤ b1, . . . , b4 ≤ 1

(4.7)

Our approach leverages the reduced state space, by starting with the direct DLP

relaxation. We overcome the weakness of standard DLP relaxation (loss of non-unit

clauses) by adding to the relaxation, unit clauses that are logically entailed by the

original DLP. For example, our relaxation of the DLP in Eq. 4.4 is Eq. 4.8, which

provides a better relaxation than Eq. 4.5 and has a smaller problem size than Eq. 4.7.

Minimize − x− 3y

Subject to x ≤ 200

y ≤ 200

x ≤ 100

y ≤ 100

(4.8)

This relaxation is defined by Induce-Unit-Clause (Alg. 16) and demonstrated in Fig. 4-

5. In the experiment section we compare our induced unit clause relaxation with BIP

relaxation, and show a profound improvement in runtime on a range of cooperative

vehicle plan execution problems (Section 5.1.2).

Recall that in BB-DLP (Alg. 2) the method to obtain node.relaxedLP is not men-
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tioned. To incorporate induced unit clause relaxation, we add function Induce-Unit-

Clause after line 5 in Alg. 2. Induce-Unit-Clause (Alg. 16) performs unit propagation

among the unit and non-unit clauses to induce more unit clauses. Next we elaborate

Alg. 16 Induce-Unit-Clause(DLP )

1: {DLP .unitClauses, DLP .nonUnitClauses} ←
Unit-Propagation({DLP .unitClauses, DLP .nonUnitClauses})

2: DLP .relaxedLP ←< DLP .objective, DLP .unitClauses>
3: return DLP

on Induce-Unit-Clause (Alg. 16) by walking through the example DLP in Eq. 4.4, us-

ing Fig. 4-5. Recall from Section 4.1 that, in the original DLP, each linear inequality

Figure 4-5: An example of induced unit clause relaxation: from Eq. 4.4 to Eq. 4.8

is associated with a propositional symbol. Repeated linear inequalities are given the

same propositional symbol and negated linear inequalities differ from each other by

¬, as shown in Steps (1)-(2) of Fig. 4-5.

Induce-Unit-Clause simplifies a DLP by performing unit propagation on the propo-

sitional clause set of the DLP, and then reflecting the consequences of the propagation

back on the original DLP. More specifically, in line 1 of Alg. 16, Induce-Unit-Clause

calls function Unit-Propagation to simplify the unit and non-unit clause sets of a DLP

(Steps (2)-(5) in Fig. 4-5). A relaxed LP is also formed by combining the objective

function and the unit clause set (line 2).

This section introduced induced unit clause relaxation as our approach to form
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relaxed LPs from DLPs using unit propagation, and demonstrated the advantages

over other relaxation methods.

4.5 Search Order: Best-first versus Depth-first

Given a fixed set of heuristic information, [9] shows that best-first search is the most

efficient algorithm in terms of time efficiency. Intuitively, this is because BFS does

not visit any node whose heuristic value is worse than the optimum, and all nodes

better than the optimum must be visited to ensure that the optimum is not missed.

However, BFS can take dramatically more memory space than DFS. Nevertheless,

with conflict learning and forward conflict-directed search, the queue of the BFS

search tree is significantly reduced. Our experimental results show that BFS can take

memory space similar to DFS, while taking significantly less time to find the optimum

(Section 5.1.3).

An additional issue for GCD-BB is that the concept of sub-optimality is rooted

in maintaining an incumbent. Hence, it can be applied to DFS but not to BFS. To

evaluate these tradeoffs, our experiments in the next section compare the use of BFS

and conflict learning from infeasibility only, with DFS and conflict learning from both

infeasibility and from sub-optimality (Section 5.1.2).

To summarize, this chapter introduced a novel algorithm, Generalized Conflict-

Directed Branch and Bound, for solving DLPs. It extends traditional Branch and

Bound, by first constructing a conflict from each search node that is discovered to be

infeasible or sub-optimal, and then by using these conflicts to guide the forward search

away from known infeasible and sub-optimal states. This is accomplished through

three main features: generalized conflict learning, forward conflict-directed search and

induced unit clause relaxation.
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Chapter 5

Evaluation and Discussion

This chapter provides experimental results of the GCD-BB algorithm on a range of

test problems, for coordinated air vehicle control [20]. GCD-BB is compared with the

benchmark B&B algorithm applied both to DLPs and their equivalent BIP encoding.

We also compare the effect of several algorithmic variants, in particular, infeasibil-

ity conflict learning versus sub-optimality conflict learning, forward conflict-directed

search versus backtrack conflict-directed search, and BFS versus DFS. While each

algorithmic variant terminates with the same optimal solution, GCD-BB achieves an

order of magnitude speed-up over BIP-BB. Our experiments show that the elements

of the algorithm that are most important with respect to achieving this performance

are: generalized conflict learning, forward conflict-directed search and induced unit

clause relaxation. The evaluation is followed by a discussion about future work.

5.1 Empirical Evaluation

As the bulk of the computational effort expended by HDLOP B&B algorithms is

devoted to solving relaxed LP problems, the total number and average size of these

LPs are representative of the total computational effort involved in solving the HD-

LOPs. Note that extracting infeasibility conflicts and sub-optimality conflicts can be

achieved as by-products of solving the LPs and, therefore, does not incur any addi-

tional LPs to solve. We use the total number of relaxed LPs solved and the average
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LP size as our LP solver and hardware independent measures of computation time.

To measure memory space use, maximum queue size is used.

We programmed BIP-BB, GCD-BB and its variants in Java. All algorithms used

the commercial software CPLEX as the LP solver. Test problems were generated using

the model-based temporal planner [20] discussed in Section 2.5, on the performance

of multi-vehicle search and rescue missions. Recall that this planner takes as input a

temporally flexible state plan, which specifies the goals of a mission, and a continuous

model of vehicle dynamics, and encodes them in DLPs. The GCD-BB solver generates

an optimal vehicle control sequence that achieves the constraints in the temporal

plan. For each Clause/Variable set, 15 problems were generated and the average was

recorded in the tables.

5.1.1 The Average LP Size

Each algorithm solves a number of relaxed LPs before reaching the final optimal solu-

tion. Table 5.1 compares the average size of these relaxed LPs, in terms of the number

of constraints in each relaxed LP, solved by each algorithm. Each column represents a

set of test problems with similar dimensionality. For example, the first column 80/36

represents a set of test problems that all have 80 clauses and 36 variables. Each row

specifies performance for a particular algorithm, in terms of the average size of relaxed

LPs solved for each test problem set. Note that the three tables in this chapter use

the same format.

From the table we make three observations. First, the average size of LPs solved in

BIP-BB is larger than that of the LPs solved by any algorithm for DLPs. Second, the

difference increases from about 20% to about 40% as the test problem size increases.

Finally, the average size of LPs solved by each DLP algorithm variant is similar to

one another. These observations agree with the theoretical comparison of the BIP

and DLP formulations, in Section 2.1 and 2.2, in terms of state space size.
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Table 5.1: Comparison on the average size of relaxed LPs
Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 90 889 1909 3911

DLP BFS
without Conflict Learning 72 685 1460 2406

Infeasibility Conflict 70 677 1457 2389
Conflict-directed Backtrack 72 691 1461 2397

DLP DFS

without Conflict Learning 76 692 1475 2421
Infeasibility Conflict 74 691 1470 2403

Conflict-directed Backtrack 75 692 1472 2427
Infeasibility+Suboptimality Conflict 73 691 1470 2403

Suboptimality Conflict 74 692 1471 2410

5.1.2 The Total Number of LPs

Table 5.2 records the number of relaxed LPs solved by each algorithm. In the following

subsections, we use this table, first, to show the reason for using conflict learning

(Section 4.2). Second, to show the reason for using forward conflict-directed search

instead of conflict-directed backtrack search (Section 4.3). Third, to compare BIP

and DLP encodings (Section 4.4), and finally, to address the tradeoffs of BFS and

DFS (Section 4.5).

Table 5.2: Comparison on the number of relaxed LPs
Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 31.5 2009 4890 8133

DLP BFS
without Conflict Learning 24.3 735.6 1569 2651

Infeasibility Conflict 19.2 67.3 96.3 130.2
Conflict-directed Backtrack 23.1 396.7 887.8 1406

DLP DFS

without Conflict Learning 28.0 2014 3023 4662
Infeasibility Conflict 22.5 106.0 225.4 370.5

Conflict-directed Backtrack 25.9 596.9 1260 1994
Infeasibility+Suboptimality Conflict 22.1 76.4 84.4 102.9

Suboptimality Conflict 25.8 127.6 363.7 715.0
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Generalized Conflict Learning

In order to show the reason for using conflict learning, we compare row “DLP BFS

without Conflict Learning” with row “DLP BFS Infeasibility Conflict”, and row “DLP

DFS without Conflict Learning” with row “DLP DFS Infeasibility+Suboptimality

Conflict”. In addition, in order to compare the effect of infeasibility conflicts with

that of sub-optimality conflicts, we compare row “DLP DFS Infeasibility Conflict”

with row “DLP DFS Suboptimality Conflict”.

In both the BFS and the DFS cases, the algorithm with conflict learning performs

significantly better than the one without conflict learning. In addition, the difference

increases with test problem size, from about 20% to about 95% in the BFS case and

from about 20% to about 98% in the DFS case. Finally, for DFS using “Infeasibility

Conflict” performs better than “Suboptimality Conflict”, and the difference increases

from 12% to 48% as the test problem enlarges.

Forward versus Backward Conflict-Directed Search

In order to show the reason for using forward conflict-directed search instead of

conflict-directed backtrack search, we compare row “DLP BFS Infeasibility Conflict”

with row “DLP BFS Conflict-directed Backtrack”, and row “DLP DFS Infeasibility

Conflict” with row “DLP DFS Conflict-directed Backtrack”.

The backtrack algorithm, based on dependency-directed backtracking [28], uses

infeasibility conflicts as a cache to check consistency of a relaxed LP before solving it.

We observe that in both the BFS and the DFS cases, the forward algorithm performs

significantly better than the backward algorithm. This difference increases as the test

problem enlarges, from about 17% to about 90% in the BFS case and from about

12% to about 81% in the DFS case. In summary, the key finding is that forward

conflict-directed search is better than conflict-directed backtrack in time efficiency.
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Induced Unit Clause versus BIP Relaxation

In order to show the reason for using our DLP relaxation instead of the continuous

relaxation of BIP, we compare row “BIP-BB” with row “DLP DFS without Conflict

Learning”.

DLP performs significantly better than BIP, and the difference increases with test

problem size, from about 10% to about 43%. It shows that our induced unit clause

relaxation on DLPs works better than reformulating DLPs to use the BIP relaxation.

Best-first versus Depth-first

In order to address the tradeoffs of BFS and DFS, we compare row “DLP BFS without

Conflict Learning” with row “DLP DFS without Conflict Learning”, and compare row

“DLP BFS Infeasibility Conflict” with row “DLP DFS Infeasibility Conflict” and row

“DLP DFS Infeasibility+Suboptimality Conflict”.

In the “without Conflict Learning” case, BFS performs better than DFS, and the

difference increases with test problem size, from 14% to 43%. In the “Infeasibility

Conflict” case, BFS also performs better than DFS, and the difference increases with

test problem size, from 14% to 65%. Finally, BFS Infeasibility Conflict performs

similar to DFS Infeasibility+Suboptimality Conflict; however, for large test problems,

DFS performs better than BFS by up to 21%.

5.1.3 Maximum Queue Size

Maximum queue size of the search tree of each algorithm is recorded in Table 5.3. Our

goal is to compare the memory use of BFS algorithms with that of DFS algorithms.

BFS without Conflict Learning takes significantly more memory space than any

other algorithm. Compared with DFS without Conflict Learning, its maximum queue

size is from 68% to 90% larger. However, it is notable that using conflict learning,

the memory taken by BFS is reduced to the same level as DFS.

In summary, our key results corresponding to the three key features of GCD-BB

are the following. First, in both the BFS and the DFS cases, the algorithm with
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Table 5.3: Comparison on the maximum queue size
Clause/ 80/ 700/ 1492/ 2456/
Variable 36 144 300 480
BIP-BB 8.4 30.8 46.2 58.7

DLP BFS
without Conflict Learning 19.1 161.1 296.8 419.0

Infeasibility Conflict 6.4 18.3 38.4 52.5
Conflict-directed Backtrack 15.6 101.7 205.1 327.8

DLP DFS

without Conflict Learning 6.1 18.7 25.1 30.3
Infeasibility Conflict 6.5 21.4 45.0 57.3

Conflict-directed Backtrack 6.1 18.4 23.5 28.1
Infeasibility+Suboptimality Conflict 6.5 21.4 33.0 40.9

Suboptimality Conflict 6.5 21.6 38.7 47.0

conflict learning performs significantly better than the one without conflict learning,

and the difference goes up to 98% for large test problems. Second, in both the

BFS and the DFS cases, the forward algorithm performs significantly better than

the backward algorithm, and the difference goes up to 90% for large test problems.

Third, our relaxation method performs significantly better than the BIP relaxation,

and the difference goes up to 43% for large test problems.

5.2 Discussion

This thesis presented a novel algorithm, Generalized Conflict-Directed Branch and

Bound, that efficiently solves DLP problems through a powerful three-fold method,

featuring generalized conflict learning, forward conflict-directed search and induced

unit clause relaxation. The key feature of the approach reasons about infeasible or

sub-optimal subsets of state space using conflicts, in order to guide the forward step of

search, by moving away from regions of state space corresponding to known conflicts.

Our experiments on model-based temporal plan execution for cooperative vehicles

demonstrated an order of magnitude speed-up over BIP-BB.

With respect to future work, empirically we would like to run GCD-BB on a

range of well-known benchmark problems, and compare its runtime against that of

BIP-BB. In addition, it would be interesting to study empirically the reason why sub-

70



optimality conflicts do not speed up search as much as infeasibility conflicts. Finally,

there are several algorithmic improvements we want to explore in the future, such as

applying GCD-BB to a more general form of HDLOPs than DLPs, and extending

conflict learning to non-linear programs.
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