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Abstract

This paper studies a topical and economically significant capacitated network design

problem that arises in the telecommunications industry. In this problem, given point-to-

point demand between various pairs of nodes of a network must be met by installing

(loading) capacitated facilities on the arcs. The facilities are chosen from a small set of

alternatives and loading a particular facility incurs an arc specific and facility dependent

cost. The problem is to determine the configuration of facilities to be loaded on the arcs of

the network that will satisfy the given demand at minimum cost. Since we need to install

(load) facilities to carry the required traffic, we refer to the problem as the network loading

problem.

In this paper, we develop modeling and solution approaches for the problem. We

consider two approaches for solving the underlying mixed integer programming model: (i)

a Lagrangian relaxation strategy, and (ii) a cutting plane approach that uses three classes of

valid inequalities that we identify for the problem. In particular, we show that a linear

programming formulation that includes the valid inequalities always approximates the value

of the mixed integer program at least as well as the Lagrangian relaxation bound (as

measured by the gaps in the objective functions). We also examine the computational

effectiveness of these inequalities on a set of prototypical telecommunications data. The

computational results show that the addition of these inequalities considerably improves the

gap between the integer programming formulation of the problem and its linear

programming relaxation: for 6 - 15 node problems from an average of 25% to an average

of 8%. These results show that strong cutting planes can be an effective modeling and

algorithmic tool for solving problems of the size that arise in the telecommunications

industry.
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In this paper, we study a problem that is becoming increasingly important in the
telecommunications industry: given an organization's forecast for data and voice traffic

between its various locations, what configuration of transmission facilities between the

locations (nodes) will provide the necessary link capacities to carry this traffic at minimum

cost? A similar problem arises in the context of transportation planning; in this setting, the

traffic corresponds to freight and the transmission facilities to different types of trucks.

These problems have substantial economic significance. For example, revenues to the long

distance carriers from the lease of digital transmission circuits used for private

communications networks are about $1.7 billion per annum currently (Business

Communications Review, May 1990). These revenues are generated by over 60,000

circuits and that number is expected to grow at 30 to 40% per annum by one estimate

(Telecommunications, North American Edition, May 1990). In the transportation context,

the total expenditure on trucking is estimated to reach $276.3 billion in 1990 and expected

to grow at an annual rate of 7.5% (US Industrial Outlook, US Department of Commerce,

January 1990).

Despite the importance of these network design applications in a variety of settings,

the available research on them is quite limited. The objective of this paper is to develop

modeling and solution approaches for these problems. Since the models we consider are

special versions of more general capacitated network design problems, we hope that this

paper might also provide some useful insights for solving the notoriously difficult, general

capacitated network design problem.

Before presenting a formal description of the problem that we study, we describe the

telecommunications private network leasing problem that motivated this paper. Private

lines are transmission facilities that customers lease from a telephone company for their

exclusive use. These lines are billed on a fixed (non-usage sensitive) rate. Customers

lease them for a variety of reasons. For example, from a cost perspective, rather than pay

on a per usage basis, an organization might find it cheaper to lease a private line facility

between any two locations that have a large amount of traffic between them. In addition,

private networks offer customers greater flexibility to reconfigure the network to
accommodate changes in traffic patterns, provide improved reliability, and offer higher

operational control than the public, switched network. Due to rapid technological changes

in the telecommunications industry, telephone companies are offering higher bandwidth

(capacity) facilities to private subscribers which allow the customers to use the private

networks for a variety of applications, including voice, data and video transfer. As a
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result, the demand for private lines has been increasing rapidly and is expected to continue

to do so over the next five to ten years.

Private networks have dedicated access lines from the customer premises to the

nearest telephone company switch (central office) and dedicated lines between the central

offices that connect different locations of the customer's organization. The telephone

industry refers to the inter central office part of the network as the backbone network. In

order to send a message from location A to location B on the private network, the network

must contain a path whose arcs all have the required amount of transmission capacity.

Since we assume that the subscriber uses circuit switching (as opposed to packet

switching) to transmit the traffic between the locations, the system uses an equal amount of

capacity in both directions on all the arcs of that path. (We refer the reader to Bertsekas and

Gallager, 1987 for more technical details of these concepts.)

The digital facilities that a customer leases to and between the central offices are
selected from a small set of alternatives - for example, DSO (Digital Signal Level 0), DS 1

(Digital Signal Level 1), and in some cases, DS3 (Digital Signal Level 3) facilities. A DSO

facility allows the transmission of 64 kilo bits per second (kbps), the bandwidth that is

required to transmit one voice call. A DS 1 facility transmits at the rate of 1.54 Mega bits

per second (Mbps), or offers the capacity equivalent to 24 DSO facilities, and a DS3 facility

is equivalent (in capacity terms) to 28 DS 1 facilities. The tariffs for these facilities are

complex; for each service type, the tariff is roughly proportional to the length of the link

and the availability of several facilities of different capacities introduces strong economies

of scale. Typically, a DS 1 circuit, which is equivalent in capacity to 24 DSO circuits, costs

the same as only 8 to 10 DSO circuits.

The cost of any private network corresponds to the leasing cost of the facilities

installed on the arcs; the user incurs no additional routing cost. A fundamental problem that

arises when designing a private network is to determine the configuration of leased facilities

on the backbone links that will satisfy the projected demand at minimum cost. This

problem is difficult because of the complexity of the cost structure. The optimal solution

might use complicated routes for the different commodities: by aggregating traffic on some
arcs, it will take advantage of the economies of scale in the tariff structure. Though
researchers have successfully solved variations of the uncapacitated network design
problem (for example, Balakrishnan, Magnanti and Wong, 1989), the general capacitated
network design problem has proven to be considerably more difficult. The objective of this
paper is to develop modeling and solution approaches for the network loading problem,
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which is a special version of the general capacitated network design problem. The network
loading problem includes the private network leasing problem as a special case and arises in
several other application contexts as well. For example, in the transportation industry, the
facilities might represent trucks of fixed size and a slight variation of the model would

prescribe a load plan (the assignment of trucks to routes) and the loading of freight onto

trucks; see Powell and Sheffi (1983) or Leung, Magnanti and Singhal (1991).

The rest of the paper is organized as follows. Section 1 presents a formal
description and formulation of the network loading problem. In Section 2, we discuss
alternative solution strategies for the problem and provide motivation for our proposed

solution approach. Section 3 provides a partial characterization of the mixed integer
polyhedron that models the problem, and Section 4 describes our solution methodology

and presents our computational results. The last section presents our conclusions, briefly

discusses extensions to the model, and suggests some future research directions.

1. Network Loading Problem: Description and Formulation

The network loading problem models the design of capacitated networks for which
(i) the variable flow costs are zero, and (ii) facilities of fixed capacity are available to carry
flow. We can install (load) these facilities on any of the arcs of the network. The problem
is to determine the number of facilities to be loaded on each of the arcs of the network to
meet given point-to-point demand at minimum cost. In this paper, we assume that only

two types of facilities are available. In general, we may have a choice of facilities with

capacities at many different levels; in the concluding section, we indicate how to extend

our results for the case of multiple facilities. In the context of the private network leasing

problem, the two facilities correspond to DSO and DS 1 circuits, which are the facilities

most widely available. Our model extension would permit us to consider emerging

industrial practice in which telephone companies are beginning to offer DS3 facilities to
private subscribers on selected segments.

We model the network loading problem with two facilities, which we refer to as the
TFLP (for the Two Facility Loading Problem), as follows.
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TFLP:

minimize (aijxi +bijyij)
{ij} EA

subject to:

( -dk ifi = O(k)
- X_ fi = /dk ifi = D(k) forall iN, forallkEK (1)

jEN jEN 0 otherwse

C Cyfl )5 X forall {ij} EA (2)
kEK

xij, yij > O and integer for all {ij} E A; fi, 2 0 forall {ij E A, forall k E K. (3)

In this formulation, N denotes the set of nodes of the network, A the set of arcs, and K the
set of commodities; commodity k has origin O(k), destination D(k), and demand dk. We

refer to the two types of facilities as the low capacity (LC) and the high capacity (HC)

facilities; the LC facility has capacity 1 and the HC facility has capacity C. (For the

telecommunications private network leasing problem with DSO and DS 1 facilities, C = 24.)
The formulation contains two sets of variables: (i) design variables xij and Yij that define

the number of LC and HC facilities loaded on the undirected arc i, j, and (ii) flow

variables f that model the flow of commodity k on arc {i, j} in the direction i to j. The

coefficients aij and bij represent the cost of loading a single LC and HC facility,

respectively, on arc i, j) and the objective function minimizes the total cost incurred in

loading all the facilities. Constraints (1) correspond to the usual flow conservation

constraints for each of the commodities at each node. The capacity constraints (2) model

the requirement that the total flow (in both directions) on an arc cannot exceed the capacity

loaded on that arc.

This formulation seeks to minimize the cost of the installed facilities. The model

assumes that it is sufficient to install just enough capacity to meet demand and that we do

not need to provide extra capacity to address reliability issues. Although this assumption is

valid in situations such as the transportation of freight, it might be less so in the

telecommunications setting where the reliability of the networks is of greater concern. (For

an approach to telecommunications network survivability problems, see Groetschel and

Monma, 1988.) However, our discussions with planners in the telecommunications

industry indicate that the model we are considering is valuable as a first-cut design tool for
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their planning activities and that they would typically use other ancillary models to address

reliability issues.

2. Modeling and Solution Approaches: Motivation

Our approach to modeling and solving the two facility loading problem is rooted in
discoveries made in mathematical programming over the past two decades. Over this
period, many studies of integer programming in a variety of application contexts have
established that the selection of a "good" model for a problem can have a profound effect

upon the performance of solution methods.

These type of modeling results assume two forms. First, in many situations, it is
possible to formulate a model with different sets of decision variables and constraints. For
example, it is possible to model many fixed charge network flow problems with either a
small or a large number of commodities. As an example, if all the flow in a problem
originates at a single node s, we can either formulate a model with a single commodity
originating at node s and with demand at all other nodes, or we can formulate the problem
as a multicommodity flow problem with a separate commodity defined from node s to
every other node in the network. The more disaggregate formulation, if we can solve its
large-scale linear programming relaxation effectively, has proved to be a much better

model. Wolsey (1989) highlights the importance of this type of modeling issue for several

classes of problems. Balakrishnan, Magnanti and Wong (1989) demonstrate the
computational advantages of using the more disaggregate multicommodity flow formulation

for the uncapacitated network design problem by showing that solving a model with
approximately 2 million variables and 2 million constraints, if even approximately, is much

better than solving a more aggregate model with about 45,000 variables and 2500

constraints. Wong (1984, 1980) establishes the same result in the context of the network

Steiner tree and the traveling salesman problems. For related results, see Geoffrion and

Graves (1974), Magnanti and Wong (1984), and Martin (1987).

The second modeling approach is embodied in the burgeoning field of polyhedral
combinatorics which attempts to improve the linear programming approximation to an
integer programming problem by adding (strong) valid inequalities, either a priori to the
original formulation of the problem, or dynamically, via a cutting plane approach, to a
series of linear programming models. The success in solving the classical nonbipartite

matching problem is a landmark example illustrating the power of this modeling approach
as are the strides made in recent years in solving the traveling salesman problem (see
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Groetschel and Padberg, 1985). The many applications of the cutting plane approach

include the economic planning and linear ordering problem (Groetschel et al., 1985a, b),
production planning models (Barany, Van Roy and Wolsey, 1984, Magnanti and Vachani,
1990), the fixed charge problem (Padberg, Van Roy and Wolsey, 1983), the lot sizing

problem (Leung, Magnanti and Vachani, 1989, and Pochet, 1988), the spin glass problem

(Barahona et al., 1988), and models for planning capacity expansion in local access

telecommunications systems (Balakrishnan, Magnanti and Wong, 1990a, b). See Hoffman

and Padberg (1985), Nemhauser and Wolsey (1988), and Pulleyblank (1989) for a general

account of this methodology.

We use both of these modeling approaches to address our problem. We formulate the

problem as a disaggregate multicommodity flow problem and we also identify a number of

valid inequalities for the problem and in fact show that they are the best possible in the
sense that they are facets of the underlying mixed integer polyhedron that models the

problem. We also show that when applied to representative telecommunications data, the

addition of these inequalities considerably improves the gap between the objective function

values of the integer programming model of the problem and its linear programming

relaxation: from an average of 25% on a set of small (6 - 15 nodes), but still practical,

problems to an average of less than 8%.

It is easy to see that, in general, the linear programming relaxation of the TFLP
provides a weak lower bound for the problem (for computational evidence, see Section 4.4

of this paper). In general, the linear programming lower bounds are weak for most

capacitated network design problems and so it is much more difficult to solve these models

than the uncapacitated network design problem. Our objective is to develop stronger

formulations for the TFLP than its linear programming relaxation and, therefore, to develop

more efficient solution techniques than a linear programming based branch and bound

procedure.

An Example

To illustrate and compare different approaches for obtaining stronger lower bounds,

let us consider the three-node problem shown in Figure 1. This example assumes that only

HC facilities are available with C = 24, that the facility cost is the same on all the arcs, i.e.,
bij = 20 for all {i, j}, and that the demand between every pair of nodes (nodes 1 and 2,
nodes 1 and 3, and nodes 2 and 3) is the same, i.e., dk = for all k.

-6-
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C = 24
bij = 20 forall{i,j}
dk = for all k

Figure 1. Three-node example

The optimal solution to this problem depends on 0. If mod (24) < 12 (we use the

convention that 6 mod (C) = C if b is an integer multiple of C), then the optimal solution

loads L/241 facilities on any one of the arcs of the network and r6/241 facilities on the

other two arcs for a total cost of 60*L/241 + 40. If 6 mod (24) > 12, then the optimal

solution loads r6/24] facilities on all three arcs with a corresponding cost of 60*6/241. In

the solution of the linear programming relaxation of the formulation for this example, Yij =
&/24 for all i, j} and the corresponding optimal objective value is 60*/24. The gap

between the optimal solution value for the problem and the value of its linear programming
relaxation could be large depending upon the value of 6. To obtain better lower bounds,

we consider two different approaches.

First, consider a Lagrangian relaxation approach to solving the TFLP. When using

this approach, we can dualize either constraints (1) or (2). If we relax constraints (2),

because the resulting Lagrangian subproblem is a network flow problem which satisfies the

integrality property (i.e., its linear programming relaxation has an integer optimal solution),

the Lagrangian dual problem gives the same lower bound as the linear programming

relaxation of TFLP (Geoffrion, 1974). On the other hand, if we relax constraints (1) using
k kmultipliers v, then the resulting Lagrangian subproblem, with vO(k)= 0, is:

minimize A {aijxij+ bJyy1+ A (4-/~)(/-fk)} + A vDdk
{iJ) EA kEK kEK

subject to: (2) and (3).
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To this problem, we add the following upper bound constraints which do not affect the

optimal objective value of the original formulation (since we can always delete the flow

around cycles for any commodity), but improve the Lagrangian lower bound; we refer to

the resulting Lagrangian subproblem as P(LAG).

Afig..+A. : £dk forall [i,j c A, forall k K (4)

Note that by dualizing the mass balance constraints (1), we have decoupled the problem

into separate subproblems, one for each arc of the network. The subproblem P(LAG) does

not satisfy the integrality property and, therefore, we can expect the lower bound obtained

from the Lagrangian dual to be stronger than that obtained from the linear programming

relaxation of TFLP. The subproblem for each arc can be solved efficiently by an

incremental strategy of "loading" the "profitable" commodities (relative to the facility costs)

on each arc. Vachani (1988) uses this Lagrangian relaxation strategy, with subgradient

optimization to update the Lagrange multipliers and improve the Lagrangian bound, to

solve the TFLP. Her results show that the lower bounds from using this approach indeed

improve upon the linear programming relaxation bounds. For the three-node example of

Figure 1 as well, the Lagrangian dual value improves upon the linear programming

relaxation value; however, the gap between the Lagrangian lower bound and the optimal

solution value varies with 6. For example, if b = 12, then the Lagrangian dual value is

equal to the optimal solution value of 40 (with a choice of v = v = v3 = 0 for the origin1 1 2

1 2 3 1 2 3nodes, v = v3 = v3 = 10/9 for the destination nodes, and v = v = v = 5/9), whereas if 

1 2 3= 13, the Lagrangian dual value is 42.16 (with a choice of vl = v 1 = v 2= 0 for the origin

1 2 3 1 2 3nodes, v2 = v 3 = v3 = 40/37 for the destination nodes, and v 3 = v2 = v 20/37) which is

considerably lower than the optimal value of 60.

The second, polyhedral approach to obtaining better lower bounds uses results

about the polyhedral structure of the problem to strengthen the formulation. To illustrate

this approach, again consider the example of Figure 1. Since the demand between node 1

and the other two nodes of the network (nodes 2 and 3) is 26 units, the network must

contain at least F26/241 HC facilities between node 1 and the other two nodes to carry this

traffic. Thus, the constraint

-8-
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Y1 2 + Y13 Ž r26/247

is valid for the problem. Similar constraints for the other two nodes

Y12 + Y23
> /26/247 (5b)

Y 13 + Y23
/ 26/247 (5c)

are also valid. Note that the linear programming relaxation of the TFLP requires only that

Y 12 + Y13 >26/2 4

and thus, the three (cutset) constraints (5a, 5b and 5c) will strengthen the linear

programming relaxation if 26/241 is significantly larger than 2/24. For example, if 6 =

12, i.e., 26 is a multiple of 24, then constraints (5) are not effective at all since the solution

to the linear programming relaxation satisfies these inequalities. On the other hand, if/ =

13, then the addition of these three constraints in the linear programming relaxation is

sufficient to obtain an optimal integer solution.

The example of Figure 1 shows that the two solution approaches result in stronger

lower bounds than the linear programming relaxation, though their performance depends

upon the value of/ ; one of them is more effective when - 12 whereas the other is more

effective for b = 13. However, changing the demand to 8 units shows that neither the

Lagrangian approach nor including constraints (5) in the linear programming relaxation are

sufficient for obtaining a good lower bound. With 6 = 8, the optimal solution value for the

linear programming relaxation is 20, the optimal integer solution has value 40; the

Lagrangian lower bound is 30, and the enhanced linear program with constraints (5) has

the same linear programming bound of 30. To obtain a linear programming formulation

with an optimal solution cost of 40, we need to identify additional valid inequalities. The

following (three-partition) inequality, obtained by adding constraints (5), dividing the

aggregate constraint by 2 and then rounding up the righthand side to the next nearest integer

since the lefthand side of the inequality is integral, serves this purpose

Y12 + YI3 +Y 23 frl/2 1 r(16)/247 +f(16)/247 +f(16)/2471 7 = 2. (6)

Our discussion of the two different solution approaches raises the following

questions: (i) can we identify situations in which one approach is likely to provide better

lower bounds than the other and, more importantly, (ii) can we combine the two

-9-
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approaches to obtain lower bounds stronger than those that would be obtained from using

either approach by itself? This paper provides a partial answer to these questions and
develops one way of combining the two approaches.

As is evident from the three-node example, constraints (5) strengthen the linear
programming relaxation of the TFLP when their righthand sides are not multiples of C.
The linear programming relaxation of the TFLP provides sufficient capacity on all arcs to
carry the flow; however, the Yij variables might be fractional. Including inequalities (5)

eliminates some of these fractional solutions, but not all of them. On the other hand, in the
solution to the Lagrangian subproblem, the values of the ij variables will be integer, but

since the Lagrangian subproblem relaxes the flow conservation constraints, it does not

guarantee sufficient capacity on the arcs to carry all the demand of the original problem.
These observations show that the Lagrangian dual and polyhedral solution approaches are
complimentary and suggest that incorporating information from the Lagrangian subproblem

into the linear programming-based approach that includes valid inequalities for the problem
might prove useful in eliminating additional fractional solutions.

The strategy that we adopt to combine the two approaches is to identify facets of the
Lagrangian subproblem that are valid inequalities (in fact, facets) for the TFLP. We use
these inequalities to strengthen the formulation of the TFLP. These inequalities apply to

individual arcs of the network (corresponding to the Lagrangian subproblem) and relate the

flow of the commodities on the arc with the capacity on the arc; in contrast (the cutset)
inequalities (5) apply to a set of arcs across a cutset. In fact, we identify inequalities that
together with constraints (2) and (4) completely characterize the convex hull of the feasible
solutions to the Lagrangian subproblem and show that our method of combining the two
solution approaches for the TFLP guarantees a lower bound that is at least as strong as that
obtained from either method independently. The next section provides our main technical
results and the following section then discusses the solution method in more detail.
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3.0 Polyhedral Results

In this section, we discuss the computational complexity of the TFLP and formally

define three classes of inequalities - cutset, arc residual capacity, and three-partition

two of which we illustrated earlier for situations with only HC facilities. We prove that

these inequalities are valid for the TFLP, and that they define facets of the underlying

polyhedron. We then prove that if we include the arc residual capacity inequalities and the

upper bound constraints in the linear programming relaxation of problem [TFLP], the

resulting linear programming lower bound is at least as strong as that obtained using

Lagrangian relaxation. We defer the proofs of most of these results to the Appendix.

As indicated by the next proposition, the TFLP is difficult from a computational

complexity point of view. To show this result, we reduce the combinatorial 3 partition

problem (which is known to be strongly NP-complete, Garey and Johnson, 1979) to the

TFLP; thus, the TFLP belongs to the class of strongly NP-hard problems.

Proposition 1. TFLPis stronglyNP-hard.

Proof. See the Appendix.

Since the TFLP is NP-hard, we do not expect to be able to provide a complete

characterization of the convex hull of its feasible solutions (Groetschel, Lovasz and
Schrijver, 1981; Karp and Papadimitriou, 1982). However, as our computational results

in the next section show, the partial characterization that we obtain is sufficient to reduce

the integrality gap significantly. For details of polyhedral terminology used in this paper,

we refer the reader to the books by Schrijver (1986) and Nemhauser and Wolsey (1988).

Let Conv(TFLP) denote the convex hull of feasible solutions to TFLP. We next

establish the dimension, denoted by dim(Conv(TFLP)), of Conv(TFLP). The formulation
TFLP contains 2*IAI + 2*IAI*IKI variables and (INI-1)*IKI nonredundant equality

constraints. Therefore, dim(Conv(TFLP)) < 2*IAI + 2*IAI*IKI - (INI-1)*lKI. Proposition

2 shows that dim(Conv(TFLP)) is exactly equal to this bound. This proof uses arguments

similar to those used in Theorem 4 and we therefore omit it.

Proposition 2. Dim(Conv(TFLP)) = 2*/A/ + 2*IAI*IK/ - (N/-I)*/K/.

Suppose
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A txi + kk 3kyfk yijxfi + i :,2 (7)
{iJ EA {ij) EA kEK i,J EA

represents any valid inequality for Conv(TFLP). Furthermore, let (x l , yl, f) belong to

Conv(TFLP). The fact that (x 2, yl, f) also belongs to Conv(TFLP) whenever x2 t x l ,
implies that aoij 2 0 for all i,j . Similarly, ij 2 0 for all {i,j . Notice that this argument

does not apply for the coefficients Yij or Yji since the flow conservation constraints restrict

the flows in the network: increasing the flow on one arc might require us to change the

flow on some other arc. Thus, all of the valid inequalities for TFLP of the form (7) will

have caij 0 and ij 0 for all i,j}. In the following discussion, we describe three

classes of valid inequalities that satisfy these conditions.

3.1 The cutset inequality

In our discussion of our solution appproach for the TFLP, we introduced the cutset

inequality (5) through an example for situations with only HC type facilities. We now

generalize this inequality for the TFLP, i.e., for situations with both LC and HC type

facilities. The cutset inequality for the TFLP is described by

XS,T + rYs, T rDS, T/C1 for all S, T; S c N, T = N\S. (8)

In this expression, r = DS,T mod(C). By convention, we set r = C if DS,T is an integer

multiple of C.

This facet defining inequality has several noteworthy properties. First, although it

applies to a formulation in the space of the x, y, and f variables, the inequality does not

contain the flow variables. Second, suppose XS,T were to be always equal to 0 (i.e., the

underlying cost structure were of a pure staircase form), and the problem contained (INI-1)
commodities, each with unit demand and a common origin (say node 1), and with

destinations at nodes (2, 3,..., INI). Now, if C 2 INI-1, then the cutset inequalities reduce

to one set of constraints of the cutset formulation of the minimum spanning tree, i.e., YS,T

2 1. Moreover, for this special case, the optimal solution to the loading problem is a

minimum spanning tree. Third, when C = 1, the problem contains an optimal solution with
YS,T = 0 (assuming, without loss of generality, that bij > aij for all {i,j E A) so that we

can remove these variables from the problem formulation). Inequality (8) then reduces to

XS,T 2 DS,T, which can be derived by aggregating the flow conservation and capacity

constraints across the cutset.
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We use the Chvfital-Gomory procedure to derive the cutset inequality (8) and thus

to establish its validity. This technique consists of repeatedly taking linear combinations of

already known valid inequalities, and then using integrality arguments to round up (or

down) coefficients.

Proposition 3. The cutset inequality (8) is valid for the TFLP.

Proof. For any feasible solution to the problem, the aggregate capacity across the cutset

must be no less than the demand across the cutset. Thus, the "aggregate capacity demand

inequality" is

XS,T+ CYS,T> DS,T= qC+ r

for a suitable choice of the nonnegative integer q. If r = C, then the cutset inequality is

valid because it is equivalent to the aggregate capacity demand inequality. We start with the

aggregate capacity demand inequality and use induction to establish the validity of the cutset

inequality for r < C. Consider the inequality

XS,T+ (C- V) YS,T > q(C- v) + r. (9)

If v = 0, then inequality (9) is the aggregate capacity demand inequality. We will show that

if inequality (9) is valid for v = u, for 0 u < C-r- 1, then the inequality is also valid for v

=u+ 1.

Since the aggregate design variable XS,T is nonnegative, [C XS,T 0
[C - (u+l)]

Adding this inequality to inequality (9) with v = u, we obtain

C- (+)] XS,T+ (C- u) YS,T- q(C- u)+ r.
[C- (u+l)

Thus,

[C- (u+l)]
XS,T+ [C-(u+l)] YS,T q[C-(u +1)] + r (

C- u

= [C- (u +l)+r- ().
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Now, we can use integrality arguments to round up the righthand side to the nearest

integer because the left hand side is necessarily integer. Since r < C - u, we obtain

inequality (9) for v = u + 1 and so the proof is complete. 0

Figure 2 pictorially depicts this derivation in the aggregate space of XS,T and YS,T

variables when DS,T > C. In this figure, the lightly shaded region denotes the convex hull

of feasible solutions to TFLP. We start with the aggregate capacity demand inequality

(defined by line KL in Figure 2). If r < C, we generate a new valid inequality (defined by

the line Ml). We repeat this process of tightening the inequality until we reach the cutset

inequality (line 01). Notice that at each stage we rotate the "current inequality" about point

Z= (q, r) in the anti-clockwise direction; thus, we "cut off" a part of the feasible region (the

triangle, LNZ, at the first stage) to the linear programming relaxation at that stage.
A crPr-tPf cnn-rihSr

Cutset inequality

[q(C- )+r] / (C-1)

Figure 2. Pictorial interpretation of the Chvital-Gomory procedure for the cutset
inequalities.
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Now, suppose S is composed of two "separated" components U and V satisfying

the conditions UUV=S, Unv = and the condition that the arc set {U,V} = . Then any

demand from U to V must flow via T, crossing the cutset { S,T} twice, and, therefore, the

cutset inequality will not hold as an equality if DU,V is sufficiently large. Thus, we

intuitively observe that if the subgraph induced by S or by T is not connected, then (8)

could be a weak inequality. The next theorem shows that this condition on the connectivity

of S and of T is necessary for the cutset inequality to be a facet.

Theorem 4. The following conditions are necessary and sufficient for the cutset inequality

(8) to be a facet of Conv(TFLP):

1. The subgraphs defined byS and by Tare connected.

2. DS, T> O.

Proof. See the Appendix.

Note that if r = C, then the cutset inequality is equivalent to the aggregate capacity

demand inequality. Thus, although the cutset inequality still defines a facet under certain

conditions, it does not add to the formulation of TFLP. Moreover, an immediate

consequence of Theorem 4 applies to a network with existing capacities on some of the

arcs. Corollary 5 shows how to modify the righthand side of inequality (8) so that we

generate a facet for this situation as well.

Corollary 5. Let [S, T} be a partition of N and assume that the network has an existing
capacity of Es T installed between node sets S and T. If Ds T > Es T, r = (D, T - E, T)

mod(C) and Condition 1 of Theorem 4 is valid, then XsT + rYs T rr(Ds,T - ES, T)/C 7

is a facet of Conv(TFLP).

3.2 The arc residual capacity inequality

Magnanti, Mirchandani and Vachani (1990) have studied a core problem that arises

when we use a Lagrangian approach for solving many capacitated network design models.

This problem is essentially a multicommodity network design problem on a single arc with

a single type of facility (HC). In their study of the convex hull of feasible solutions to this

problem, they developed the arc residual capacity inequality. We show that a generalized

version of this inequality defines a facet of Conv (TFLP). More importantly, if we add all

the generalized arc residual capacity inequalities and the upper bound constraints (4) to

- 15-



formulation (TFLP), then the lower bound that we obtain from its linear programming

relaxation is the same as the lower bound that we obtain if we use a Lagrangian approach to

solve the TFLP.

Before introducing the generalized arc residual capacity inequality, we extend our

model by adding the following logical inequality (4) to the original TFLP formulation, that

is,

4~+ -s dk for all {i,j}, for all k.

In addition, if {ij} is a bridge arc (i.e., an arc whose removal causes the network to

separate into two disjoint components), we add the inequalities

A= and = O forallk E K\ K(ij). (10)

In this expression, K(i,j) denotes the set of commodities whose origin and destination

nodes lie on the "opposite" sides ("shores") of the arc i,j}. We can always add the

inequality (10) to the formulation for the same reason that we can add the upper bounding

inequality (4) - that is, because we can assume that the solution for any commodity is

cycle free.

The generalized arc residual capacity inequality, which we will henceforth refer to

as simply the arc residual capacity inequality, is

X, (tiJ+ ) ij- rLYij < (L-1 ) (C-rL) -DL- pLrL. (11)
kEL

In this expression, L is any subset of K, DL = , dk, AL= FDL/C ] and rL = DL mod(C).
kEL

Note that if E (fij + f) = DL for any subset L and j =0, then this inequality forces Yij to
kEL

be at least AL; as we have seen earlier, the linear programming relaxation without this

constraint would permit the fractional solution Yij = DL/C. Note further that because of

inequality (4), which applies to any problem with nonnegative flow costs, the arc residual

capacity inequality (11) reduces to the cutset inequality (8) if {i,j} is a bridge arc and L =

K(i,j).
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To verify the validity of the arc residual capacity inequality for the TFLP

formulation, we rewrite the inequality as A (f i + ) DL - rL (L - Yij) + xij If Yij 2 L,
kEL

then the inequality is valid since A (ftj + ) DL. If Yij = L - for some s > 1, then
kEL

the arc residual capacity inequality reduces to (fj + f ) s DL - rL + Xij which is
kEL

equivalent to or dominated by the capacity constraint ( + i) < C(L - s) + xij

kEK

The next three theorems show, in a theoretical sense, the effectiveness of the arc

residual capacity inequality in tightening the linear programming relaxation of TFLP.

Theorem 6. The arc residual capacity inequality ( 1) defines a facet of the extended

TFLP model if and only if

1. IfrL = C, then L = K.

2. If [ij] is a bridge arc, then L = K(ij).

Proof. See the Appendix.

Theorem 7. The capacity inequality (2), the upper bound inequalities (4), the arc residual

capacityinequalities (11), and the nonnegativity constraints describe the convex hull of the

set of feasible solutions to P(LAG).

Proof. Since the proof of this result is similar to the proof of a more special result given

by Magnanti, Mirchandani and Vachani (1990), we do not provide the details.

Let P(LPR) denote the linear program obtained by appending all the upper bound

constraints (4) and the arc residual capacity inequalities (11) to the linear programming

relaxation of TFLP. Clearly, the optimal solution to P(LPR) provides a lower bound on

the cost of the optimal solution to TFLP.
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Theorem 8. The lower bound provided by the optimal solution to P(LPR) is equal to the

lower bound obtained from the Lagrangian relaxation approach for solving TFLP in which

we relax constraint (1).

Proof. Theorem 7 establishes that inequalities (2), (4) and (11) and the nonnegativity

constraints describe the convex hull of the set of feasible solutions to P(LAG). Thus, we

can replace constraints (3) of P(LAG) by (11) and the corresponding nonnegativity

constraints and obtain an equivalent Lagrangian subproblem. This new (equivalent)

subproblem satisfies the integrality property (Geoffrion, 1974) and, hence, it provides a

Lagrangian lower bound equal to that obtained from solving P(LPR). ®

3.3 Three-partition inequalities

One way to view the cutset inequality is in terms of network aggregation: we

aggregate the network into two "super nodes" S and T and write the inequality as a valid

inequality for the resulting two node network. Building upon this idea, Magnanti,

Mirchandani and Vachani (1990) have described an aggregate three-node (three-partition)

inequality for the single facility case. This Chvaital-Gomory inequality, which we

illustrated in Section 2, is useful for describing the convex hull of feasible solutions to the

single-facility network loading problem. We describe two ways of generalizing this

inequality for the two-facility case. The three-partition inequalities are motivated by the

following consideration: suppose the formulation of the network loading problem consists

of the flow conservation constraints, the capacity constraints, and the cutset inequalities.

Then the linear programming relaxation of the loading problem on a three-node network

can produce a "half-integral solution" in y. For example, if C = 24, d 12 = d1 3 = d23 = 12,

al 2 = a13 = a2 3 = b12 = b 13 = b2 3 , then Y12 = Y13 = Y2 3 = 1/2 and xl 2 = x1 3 = x23 = 0 is a

nonintegral optimal solution to the linear programming relaxation of the problem. (This

problem is essentially our earlier example shown in Figure 1.) Notice that the arcs on

which the solution y is half-integral form a cycle. This phenomenon occurs in larger

networks for the same reason: a "half-cycle" satisfies the cutset constraints, but is cheaper

than any other integral solution. The inequalities we present next are useful for cutting off

such half-integral solutions. We will describe these inequalities for a network with three

nodes; however, these results also apply to larger networks with three aggregate nodes.
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Let 1, 2, and 3 be the three nodes of the network. Let d 12 , d 13 and d23 denote the

demands between nodes 1 and 2, 1 and 3, and 2 and 3 respectively. Furthermore, if i, j

and k are distinct elements of { 1,2,3), define rij = dij mod (C) and ri = (dj+dik) mod(C).

Proposition 9. Let r = min(rl, r2, r3). Then the following inequality is a valid

inequality for the convex hull of feasible solutions to the two facility loading problem on a

three-node, three-arcnetwork:

X12+x1 3+x23 + r(Yl2+YI3+y23 ) C I C I C | (12)

Proof. Consider the cutset inequality with node 1 on one side of the partition and nodes 2

and 3 on the other side. This inequality is

xl2+xl3 + rl (y12+Y13) 2 rl [d12cd1 3

which implies

X 12+X 3 + r(Y12+Y 1 3) 2 rdl2+dl31

We can similarly obtain the corresponding inequalities for nodes 2 and 3. Adding these

three inequalities, dividing by 2 and using integrality arguments to round up the righthand

side gives the desired result. ®

Proposition 10. Consider the two facility loading problem on a three-node, three-arc

network. Then all feasible solutions satisfy the inequality

2 (X12 +X13 +X2 3 ) + (r12+rl3+r2 3 ) (Y 1 2 +Y13 +Y23) >

(r2+rl 3+r23) d12 + d3 d3+d23 +2 )

if and only if

1. None of the remainders r 2, r 3 and r23 equal C.

2. The remainders satisfy the triangle inequality; that is,

r12 + r1 3 2 r23, r12 + r23 2 r 3 and rI3 + r23 ' ri2.

3. If max (dl2, d1 3, d23 ) > C, then r12 + r3 + r2 3 2C.
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Proof.

Necessity.

1. Suppose r12 = C, r 13 < C and r23 < C. Then the feasible solution

Y12 C ,1[2d3 IY23 , 12 = 0, x13 = r 3, and x2 3 =r23

violates inequality (13).

2. Suppose rl 2 + rl3 < r23 < C. Then the feasible solution

Y 12 --LCJ d2Y3l 12 [-T1[d~

= L 21 Y13 = [d 3 , Y23 = x31 2 = r12 , x13 =- r13 , and x23 =0

violates inequality (13).

3. Suppose d 12 > C and r 12 + r13 + r23 > 2C. Then the feasible solution

Y12 [dI 2J 1, Y13 [dI3 , 23 =4d 23j, X12 = C+r1 2 , X13 = r13 and x2 3 = r23

violates inequality (13).

Sufficiency.

Suppose Yl2+Yl3+Y23 [ 7j+[l2+Lddl d 3 + 2. Then inequality (13) is clearly

satisfied. So assume that Yl2+Y1 3+Y23 = [d12+[d1 3j+[d231+ 2 -s for some integer s, 1 s

< [d2 +l[d3 +[d23 + 2 . If s = 1, we can assume (by symmetry) that Y12
> [d1 2 . Since

Y13+Y23 d1 3Cd23 C a cutset argument implies that X13 +X2 3 2 r13 +r2 3
· Substituting this

inequality in inequality (13) and using Condition 2 proves the validity of inequality (13).

Next assume that s a 2. Then the aggregate capacity demand inequality implies that

X12+X13 +X2 3 C (s-2)+ r1 2 +rl 3+r2 3- Substituting for the lefthand side of inequality (13)

and using Condition 3 proves the result. (If max (d12, d13 , d23) < C, then s = 2, Y12 = Y13

= Y23 = 0 and 2(X12+X13+X23) is at least as large as the righthand side of 2(r12+r13+r 2 3);
otherwise we use Condition 3.) 0
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When implemented in our computational study along with the cutset inequality, but

without the arc residual capacity inequality, these valid inequalities were modestly effective

in reducing the integrality gap. With both the cutset and arc residual capacity inequalities

included, the effect of adding the three-partition inequalities on the integrality gap was less

pronounced.

4.0 Computational study

This section describes the results of a computational study designed to test the

effectiveness of the inequalities described in Section 3. As we have shown, under suitable

conditions the cutset and the arc residual capacity inequalities induce facets of the

underlying polyhedron, so we know that they tighten the formulation of TFLP. Moreover,

because the conditions for these inequalities to be facets are quite mild, we might be led to

believe that they would be effective algorithmically in a cutting plane approach.

We have used these inequalities in an algorithmic procedure with two main phases.

(For a discussion of this general approach, see Hoffman and Padberg, 1985, and Van Roy

and Wolsey, 1984.) In the first phase, the algorithm uses a cutting plane approach to

tighten the formulation and generate a good lower bound. If this phase terminates with a

nonintegral solution, then the approach resorts to the second phase; this phase finds a good

- optimal for problems up to 10 nodes - solution using branch-and-bound.

We have tested the cutting plane algorithm on a total of 126 test problems on

networks with 6, 10 and 15 nodes and a variety of demand patterns (see Section 4.3).

These problem sizes might appear to be small; however, the 10 and 15 node problems have

approximately 45 and 65 general integer variables. Moreover, we have attempted to

generate these problems in a way that reflects the demand and cost structures occurring in

practice (that is, they are derived from real data).

4.1 Phase I

The inequalities that we developed in Section 3 could be used conceptually in two

ways. For example, we could add, a priori, the cutset inequalities corresponding to all

nontrivial partitions of N. However, this option would add an exponential number of

constraints to the formulation. Moreover, most of these inequalities would be inactive at

the optimal solution of any particular instance of the problem and are, therefore, not

necessary for the solution of this problem instance.
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The other option dynamically adds the inequalities in a cutting plane based

algorithm. Thus, given a fractional solution for the current formulation, we identify a valid

inequality that this solution violates. We adopted the second option to augment the problem

formulation and used the USER subroutine of LINDO, on the VAX 6640 and 8820

computers, to automate the generation and addition of the facet inequalities.

The separation problem of the cutset inequalities for the single commodity case can

be solved as a max flow problem, or more generally, as a linear program (see Mirchandani,

1989). Solving the separation problem in the multicommodity case is difficult because of

the structure of the cutset inequalities: each cutset can generate a different value of the

remainder, r. A polynomially bounded algorithm does not seem evident. (The separation

problem might well be NP-hard.) In our computational study, for the size of some

problems that are currently of interest to practitioners (10 to 15 nodes), we found that an

exhaustive search for generating violated cuts does not consume excessive computational

time (as compared with the time for re-optimizing the resulting linear program) and does

reduce the integrality gap. We, therefore, adopted the following enumeration heuristic for

solving the separation program associated with the cutset inequalities. This heuristic first

carries out an exhaustive search of cutsets defined by sets S with small cardinality. It then

uses a "growth" strategy, starting from a single node as S and sequentially building S, to

identify violated inequalities.

Heuristic for identifying violated cutset inequalities

Stepl: Check for violated inequalities with ISI = 1. Among all such violated

inequalities, select the one with minimum value for XS,T + rYs,T - r . C.T If

this enumeration identifies a violated inequality, return.

Step 2: Repeat Step 1, but with ISI = 2.

Step 3: Search sequentially through all partitions with ISI = 3, 4 or 5. Add the first
violated inequality found. If this search does not identify a violated inequality,
proceed to Step 4a; otherwise, return.

Step 4a: Initialize:

Di := total demand originating or terminating at node i,
Zi := total current capacity incident to node i (i.e., (xij + Cyij)), and

jEN
S := {i*: i* = argmax Di / Zi}.

iEN
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Step 4b: If ISI < 5, go to Step 4c. Otherwise, check if the current fractional solution
violates the cutset inequality defined by S. If yes, add this inequality. Return.

Step 4c: If ISI = INI-6, (print "violated inequality cannot be identified") stop. Otherwise,
add node j* := argmin di*j / (xi*j + Cyi*j) to S. Go to Step 4b.

jEN

This heuristic adds one violated cutset inequality per iteration in increasing order of

ISI. If the heuristic cannot identify a violated cutset inequality, we first search for violations
of the arc residual capacity and then violations of the three-partition inequalities. For the

arc residual capacity inequality, we check for all violated inequalities with the cardinality of

the commodity set (L in expression (11)) equal to 1 or 2. Since we found that the linear

program solutions to large problems violate many of these inequalities, we added five such

violated inequalities per iteration.

4.2 Phase II

In Phase II, we used branch-and-bound starting with the fractional solution

generated by Phase I. Because the version of LINDO that we were using was not capable

of solving general integer programs, we implemented this phase of the algorithm on an

IBM 4381 computer using MPSX/370 version 2.0.

Prior experience has established the importance of using a good upper bound in the

branch-and-bound procedure. We used the upper bound generated by a Lagrangian

approach for solving the problem (see Vachani, 1988). This approach dualizes the flow

conservation constraints. The relaxed problem then decomposes by arc for given values of

the Lagrange multipliers; furthermore, the subproblem for each arc is a knapsack type

problem that can be solved efficiently. The procedure uses subgradient optimization to

tighten the lower bound. At each iteration, the method also constructs a feasible integer

solution utilizing the Lagrangian solution and improves this solution heuristically.

We also used a bootstrapping approach for the more difficult demand topologies

(see Section 4.4.1). For these problems, we obtained an upper bound after fixing some

integer variables and then carrying out branch-and-bound on the remaining set of variables.

(The reduced number of fractional variables accelerated the branch-and-bound phase.)
Phase II of the cutting plane procedure subsequently used the better of this heuristic

solution and the Lagrangian heuristic solution as an upper bound for finding the optimal
solution.
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4.3 Computational study design

Our test problems, although randomly generated, were based upon information

provided by GTE Laboratories and are representative of cost and demand structures arising

in practice.

Specifically, we tested the algorithm on 3 different network sizes: 6, 10, and 15

nodes. We generated the ordinates and abscissae of these nodes - uniformly distributed

on a unit square - using a random number generator. (This random number generator

satisfies Knuth's (1981) spectral test for dimensions 3, 4, 5 and 6; for all practical

purposes, it has an infinite period (Press et al., 1989).) Given these points, we constructed

the underlying backbone network. Recall that we are allowed to lease LC and HC facilities

only on the arcs of this backbone network. For the 6 node problems, we assumed a fully

connected topology. To avoid an explosive growth in the number of variables, we

assumed that the 10 and 15 node networks were sparse. (The number of variables in a
complete network with a commodity demand between every pair of n nodes equals (n*(n-

1) + 0.5*(n*(n-1)) 2, which for n = 6, 10 and 15 equals 480, 4140 and 22,260

respectively.) For sparse networks, we chose a targeted nodal degree for each node to be

equal to 3 or 5 with a probability of 0.3 and 4 with a probability of 0.4. Starting from node

1, we sequentially cycled through to node INI: at stage i, we determined node i's closest

neighbor (in terms of Euclidean distance) with unsatisfied degree requirements. We added

an arc between this pair of nodes with a probability of 0.80 and repeated the process until

either (i) the topology satisfied node i's degree requirements, or (ii) we had considered all

the nodes with unsatisfied degree requirements once. In case (ii), we identified node i's

closest neighbor, say node j, satisfying the property that the current topology did not

include arc {i,j}, and we added this arc. Consequently, this step would cause us to exceed

node j's degree requirement if it had already been satisfied.

Next, we determined the LC and HC costs. Both these costs have two

components: (i) a fixed cost component, and (ii) a variable cost component which is a

linear function of the arc length. We determined the fixed and variable cost parameters to

ensure that the generated costs are consistent with the range of tariffs offered by the long

distance telephone companies at the time of this study.

We generated three different kinds of demand topologies as follows. We assumed

that the probability of nonzero demand between any pair of nodes is 0.5 for the 10 node

24 -



networks and 0.2 for the 15 node networks. For those pairs of nodes with nonzero

demand, we chose the value of the demand in one of three different ways: (i) uniformly

distributed for all pairs of nodes; (ii) uniformly distributed with a higher mean between a

central node and all the other nodes as compared to the demand between pairs of nodes

from the remaining set; and (iii) uniformly distributed with a higher mean between two

central nodes and all the other nodes as compared to the demand between pairs of nodes

from the remaining set. For each case, we generated two different levels of average

demand: low and high (the variable component for calculating the high level of demand is

twice the variable component for low level of demand).

Further details of the exact expressions used in the calculations of the demand and

cost data and the test problems are available from the authors.

4.4 Computational results

In this subsection, we report our computational results on 126 test problems.

These problems are distributed over 15 problem categories; we tested 6 to 10 problems in
each problem category so that we might determine how the methodology works "on the

average." Our results
+ show that our methodology reduces the integrality gap from the one

provided by the original linear programming formulation by 65% to 80%

for the 6 and 10 node problems and approximately 55% for the 15 node

problems,

+ show that the average integrality gap after the completion of our cutting

plane procedure is 8.13%,
+ show that the approach can solve problems with up to 10 nodes (with up to

45 general integer variables) to optimality in a reasonable amount of time,
show how to strengthen the linear programming formulation, a priori,

* identify network topologies for which the TFLP is more difficult to solve,

and

· compare computationally the Lagrangian and the cutting plane based

approaches.

4.4.1 Aggregate results

For the remaining part of this section, we adopt the following convention for
denoting problem instances:
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(i) the letter C in the first field denotes completely uniform demand between all

pairs of nodes, the letter O denotes one central node, and the letter T denotes

two central nodes,

(ii) the second field denotes whether the magnitude of the demand is high (H)

or low (L),

(iii) the next field denotes the number of nodes in the network,

(iv) the last field contains the problem number.

We will use the following acronyms to denote the respective solutions in this

discussion:

LP: Linear programming model (with the flow conservation and capacity constraints).

LPC: Cutset inequalities + three-partition inequalities + linear programming model.

LPR: Arc residual capacity inequalities + linear programming model.

LPA: All inequalities of Section 3 + linear programming model.

LLB: Lagrangian lower bound.

BES: The best integer solution obtained.

We used three performance measures for our analysis:

BES-LPA
(i) Percentage gap := BES

LPA-LP
(ii) Percentage improvement := LP , and

LPA-LP
(iii) Percentage gap reduction := BES-LP

The first criterion measures the final integrality gap and can be used as a

performance guarantee of the heuristic used to determine BES; it is also one (rough)

indicator of the time required for branch-and-bound (typically, the larger this measure, the

larger the time branch-and-bound will take to solve the problem). The second criterion

measures the improvement from the linear programming solution, while the third criterion

combines the other two measures: it indicates the "effectiveness" of our methodology in

reducing the integrality gap. (Note that for comparing the effectiveness of different

approaches, we could define these performance measures using the LPC, LPR or LLB

values instead of the LPA value.)

Figure 3 presents these performance measures for the problem categories that we
tested.
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Figure 3. Average performance measures

These results indicate that the inequalities under investigation are effective in

reducing the integrality gap, especially for 6 and 10 node problems. The average

percentage gap is high for the O 15 and T 15 problem categories. We suspect that these

larger gaps are attributable to a bad upper bound. However, because we did not run the

branch-and-bound algorithm on these problem categories, we cannot substantiate this

statement. Furthermore, we observe that the completely uniform demand (C) topologies

have the smallest percentage gaps (see Figure 3) and seem to be the easiest to solve, and

that the one and two central node (O and T) topologies are more difficult. Moreover, as the

demand level increases, the percentage gap becomes smaller. Thus, for example, the

percentage gap for OH 10 problems is smaller than the corresponding gap for OL 10

problems.

The percentage improvement, on the other hand, is the lowest for the complete

demand topologies (see Figure 3 again). We can explain this apparent anomaly by

- 27 -

o/NBL
-

I0 1
4

.
l

I

. I
I

I . r

II
l li LI

I 1I I
II

c

.1

,
I . _

l
I I

I

I
I



observing that the linear programming relaxation of the original formulation generates a

smaller integrality gap for these problem categories. We also observe that the average

reduction in the integrality gap does not seem to depend on the demand pattern; this figure

is between 65% and 80% for the nine problem categories with up to 10 nodes (problems

for which we found the optimal solution) and approximately 55% for the 15 node

problems. (Notice that although we haven't reported this data directly, our results show

that the gap between the optimal objective values of the linear programming relaxation and

the integer programming version of the original problem formulation TFLP is as high as

43%.)

In addition to testing the effectiveness of the polyhedral approach for solving the

TFLP, this computational study was designed to identify possible ways to improve the

formulation of the TFLP a priori. We collected information on the reduction of the gap

after the addition of each cut. Figure 4 presents the cumulative improvement after the

addition of each cut and the cumulative time taken up to that stage for two typical problems.

From these figures, we observe that the "cumulative percentage improvement" for the cuts

exhibit a "tailing effect." However, the improvements do jump on occasion: often when

the method identifies a new class of inequality. (Recall that our separation problem

heuristic searches for a violated inequality in a pre-specified order of the class of

inequality.) Notice further that the cumulative time grows slowly in the beginning stages of

the algorithm, but the slope tends to increase as the algorithm proceeds and the linear

programs become larger. Observe that we achieve about 90% of the improvement in the

integrality gap in about 50% of the total solution time.

These observations lead us to conclude that (i) we might try the effect of

randomizing the order in which we select the class of inequality to be considered, and (ii)

we might terminate the cutting plane procedure after we have added a predetermined

number of violated inequalities.

We observed from the timing information that the method spends most of its time

solving the linear program: thus, the time for facet-based optimization could be reduced by

adding, say, 3 to 5 cutset inequalities simultaneously. This implementation would,

however, defeat our objective of checking the progress of the algorithm at each step. This
study's developmental nature prompted us to focus less attention on the algorithm's timing

and to concentrate more on testing the method's effectiveness in reducing the integrality

gap.
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Figure 4. Progress of cutting plane procedure
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Ideally, we would like to analyze the cumulative improvement and the cumulative

timing information aggregated by problem category as well. We could aggregate the

percentage improvement by cut number; however, this approach has two disadvantages.

First, because the jumps do not occur at the same cut number across different problems, we

would lose detail in the aggregation and the jumps seen in these graphs would become

"averaged out." Second, the total number of cuts added varies across problems in the same

category, and, therefore, aggregating might be misleading. Instead, we aggregated the

percentage improvement by cutset inequality class when ISl = 1 and ISI = 2 for the three

network sizes. Table I presents this information.

We observe that adding, a priori, all cutset inequalities (a polynomial number) for

ISI equal to 1 or 2 can be quite effective in strengthening the formulation. As the size of the
problem grows, the impact of adding only these inequalities, though still considerable,

Table I. Average gap reduction by inequality type

Problem Cutset inequalities

category %

(no. of nodes) IS= 1 IS1=2 ISl=1 & IS=2

6 51.9% 21.4% 73.3%

10 26.8% 20.0% 46.8%

15 30.9% 15.6% 46.5%

seems to be less pronounced.

We might note that the total decrease in the integrality gap due to the addition of

these inequalities occurs in two stages: before and after the addition of the arc residual

capacity and the three-partition inequalities. Therefore, the actual improvement in the

integrality gap, if we were to include the cutset inequalities of cardinality 1 and 2 in

advance, would be slightly lower than that suggested by the last column.

4.4.2 Computational Comparison of the Polyhedral and Lagrangian
Methods

This section compares polyhedral methodology with the Lagrangian based

approach. Admittedly, such a comparison would depend on the problem class that we are
investigating, the inequalities identified and implemented for the polyhedral approach, and
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the implementation of the Lagrangian approach. Nonetheless, this comparison could be

useful in an algorithm development process; we believe that this is the first study of its kind

in this respect.

In Theorem 8, we proved that the duality gaps for the following two problems are

equal: (i) the Lagrangian problem that dualizes the flow conservation constraints, and (ii)

problem TFLP extended by adding all the arc residual capacity inequalities. However, in

practice it is difficult to obtain the optimal solutions to both these problems. First, although

the literature suggests a number of strategies for implementing the Lagrangian approach,

the most commonly used strategy, subgradient optimization, does not guarantee theoretical

convergence under practically feasible conditions. Our implementation uses subgradient

optimization for updating the Lagrange multipliers; for this method, we could use any of a

number of empirically tested alternatives for adjusting the step size from one iteration to the

next. We tested several of these possibilities and in our computational evaluation we have

used the best solution value found.

On the other hand, adding the arc residual capacity inequalities, a priori, would

increase the size of the linear program substantially by approximately 220 constraints for the

10 node problems. (For the demand patterns we considered, the 10 node problems

contained approximately 20 commodities.) Instead, we added only a small subset of these

possible inequalities: all those violated inequalities with the cardinality of the commodity set

equal to 1 or 2. Thus, for both the Lagrangian approach and the polyhedral approach (with

only the arc residual capacity inequalities), we obtained lower bounds to the actual solution

values.

Figure 5 compares the average integrality gaps that we obtained using these two

approaches. In this figure, LAG refers to the integrality gap that we obtained using the

Lagrangian approach. ARC, CUT and ALL refer to the integrality gaps obtained using

only the (1 and 2 commodity set) arc residual capacity inequalities, the cutset and the three-

partition inequalities, and all the inequalities of Section 3 in the cutting plane procedure.

The LAG and the ARC gaps are fairly close to each other (although the LAG gaps are

slightly higher for the 15 node problems), suggesting that as the underlying network

becomes larger, the polyhedral approach seems to provide better lower bounds.
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On the VAX 8820, the Lagrangian approach required approximately 20 to 40

seconds to solve 6 node problems, 2 to 4 minutes to solve 10 node problems, and 3 to 6

minutes to solve 15 node problems; this time also includes the time for determining the

heuristic feasible solution. We implemented the polyhedral methodology on the VAX 6440

and the VAX 8820 machines. On these machines, Phase I of the procedure required 2 to 4

seconds to solve 6 node problems, 4 to 50 seconds to solve 10 node problems, and 14 to

350 seconds to solve 15 node problems when only arc residual capacity inequalities were

used. When we included all the inequalities in the cutting plane procedure, the polyhedral

procedure required significantly more time.
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The Lagrangian and polyhedral approaches differ in three other respects:

(1) In order to obtain better lower bounds using the Lagrangian relaxation
approach, we might have to add new constraints to the original problem
formulation. However, doing so can make the relaxed problem much more difficult

(and "inefficient") to solve. Therefore, reducing the integrality gap becomes

increasingly more difficult using the Lagrangian approach. On the other hand, the

polyhedral approach offers an opportunity for continuous improvement through the

identification and implementation of new facets and valid inequalities.

(2) Unlike the Lagrangian approach, the polyhedral approach generates

monotonically increasing lower bounds at every iteration.

(3) As the problem size becomes larger, the size of the linear program to be solved

for the polyhedral approach increases rapidly (especially for fully-connected
networks) and this approach might become difficult to use in practice. On the other

hand, the computational burden of the Lagrangian approach does not increase as
rapidly with problem size.

Figure 5 also shows that the cutset inequalities are more effective in reducing the
integrality gap than are the arc residual capacity inequality across all problem categories.

When both these inequalities are used together, the arc residual capacity inequalities seem to

be more useful for the more difficult (i.e., the O and the T problem) problem categories.

To conclude this section, we note that the percentage gaps are still high for some
problem categories, perhaps because the upper bounds are loose. Nevertheless, a further
study of these network topologies might permit us to identify new valid inequalities and to
improve the performance of cutting plane methods for these problems.

5.0 Conclusions

In this paper, we have modeled and developed solution approaches for a capacitated

network design problem that arises in the telecommunications industry. Our model

assumes that we can install a combination of two types of facilities to satisfy given point-to-
point demand between various pairs of nodes of the network. We study two solution
approaches to the problem: (i) a Lagrangian approach, and (ii) a cutting plane approach.
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One of the objectives of this research is to compare the two approaches theoretically and

computationally.

We have identified a set of arc residual capacity inequalities that when appended to
the original linear programming formulation guarantee a lower bound equal to the

Lagrangian lower bound. However, generating these bounds is difficult in practice

because (i) the Lagrangian lower bound is difficult to achieve under practically feasible

conditions, and (ii) the number of arc residual capacity inequalities grows exponentially in

the number of commodities in the network. In our computational study, we have used only

a polynomial subset of the arc residual inequalities and obtained a bound close to (and, in

most cases, higher than) the Lagrangian lower bound.

In addition to the arc residual inequalities, we also identified two other classes of

valid inequalities (the cutset and the three-partition inequalities) for the underlying

polyhedron. Adding these inequalities ensures that we obtain a lower bound using the

cutting plane approach that is at least as strong as the Lagrangian lower bound. Indeed, our

computational results have shown that these inequalities are quite effective in reducing the

integrality gap. Using the results of the computational study, we have also identified

inequalities that might be added to the formulation, a priori, to reduce the integrality gap

significantly without an enormous increase in the size of the linear program.

As we noted in Section 1, for telecommunications applications, subscribers might

have a choice of a third facility, DS3, with capacity equal to 28 DS 1 facilities. In general,

consider m facilities denoted by HC(1), HC(2), ... , HC(m). Let the capacities of these

facilities be X1C, X2C, X3C,..., XmC for some set of multipliers X' E Z + and X 1; the

facilities are indexed so that Xi > Xi ifj > i. Let y p denote the number of facilities of type p

installed on arc {i,j}. If xij denotes the number of LC facilities (with capacity 1) installed

on arc {ij} and we define aggregate variables across an {S,T} cutset as before, then it is
possible to show that

Xs T+ Er I P rD
p-= 1

(where r = DS,T mod (C) as earlier) is a valid inequality for the underlying multiple facility

polyhedron. In fact, this inequality is facet defining under conditions similar to the
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conditions of Theorem 4. Thus, while we have discussed our results for the two facility

loading problem, they are applicable in more general settings.

In conclusion, we would like to pose some research questions related to this

research. First, under what conditions would the proposed inequalities describe the convex

hull of the feasible solutions to the capacitated network loading problem? Second, can we

identify additional classes of facet inequalities for the problem that might help us in

reducing the integrality gap further? Finally, can we extend the formulation for other

problem classes so that we obtain a bound that theoretically competes with the bound

obtained using Lagrangian relaxation approaches? The answers to these questions might

help us in further understanding the polyhedral structure of the capacitated network design

model and other integer programming problems.
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Appendix

Proposition 1. TFLP is stronglyNP-hard.

Proof.

The three partition problem can be stated as follows:

Given 3n + 1 integers al, a 2, ..., a3n and L satisfying I a i = nL, does there exist a
i

partition of acr, a 2, ..., a3,, consisting ofn sets S1, S2, ..., Sn, each of cardinality 3,

that satisfies the property that Z {aj :jS i = L for all I si n?

To transform the three partition problem into the TFLP, define a fully connected

network with 3n+1 nodes. Call one of these nodes (say node 0) the central node and let doi

= cXi + M for i=l, 2,..., 3n and dij = 0 otherwise, with M chosen to be a sufficiently large

constant. Further, assume that the cost of installing a LC or HC facility between the central

node and any of the other nodes is 1, and the cost of installing either facility between any

other pair of nodes is E (e is strictly greater than 0 and sufficiently small). Let the capacity

of a HC facility be L + 3M.

Note the following properties of any optimal solution to this TFLP.

(i) We can assume an optimal design does not use any LC facilities, since we

can increase our capacity on any arc by installing a HC facility instead of a

LC facility without increasing the cost.

(ii) Any feasible design must place at least n HC facilities on arcs adjacent to

node 0. This result is true because the total demand is nL + 3nM and the

capacity of each HC facility is L + 3M.

(iii) The cost of an optimal solution must be at least n + 2nE, and any solution

with this cost places 2n HC facilities on arcs {i,j} with i 0, j O0 and n

HC facilities on arcs incident to node 0. Moreover, this design does not

place multiple HC facilities on any arc O ,i} for 1 i < n. To establish

this fact, we argue as follows. Since costs are positive, the optimal design

must be a tree and contain 3n arcs. By property (ii), if the cost is n + 2ne,

then exactly n of these arcs are adjacent to node 0. If an optimal design
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places 2 or more HC facilities on any arc {0,j}, then more than 2n arcs {i,j}

with i 0, j # 0 must contain a HC facility and thus the total cost exceeds

n + 2ne.

(iv) In any optimal solution with cost n + 2ne, a node will act as a transshipment

node for at most 2 other nodes. This result is a consequence of properties

(ii) and (iii) and the fact that M is large.

We claim that we would have a Yes instance of 3PP if and only if the optimal

solution to the TFLP has cost n + 2ne. One direction of this claim is easy to prove. For, if

we have a Yes instance to the 3PP, and the partitions are given by Si={i, 2i, 3i} for

1 i n, say, then a Yes instance of the TFLP can be obtained by installing HC

facilities on arcs {0,i}, {i,2i}, and {i,3i} for 1 i - n.

Now, assume that we have a solution to the TFLP with cost n + 2ne. Then we

have used exactly n HC facilities (each with capacity L + 3M) between the central node and

other nodes, and exactly 2n HC facilities on the other arcs. Thus, the design is satisfying

demand for n nodes directly, and the demand for the balance 2n nodes through some

transshipment node. But then properties (ii) - (iv) imply that we have a 3 partition of

nodes and, since the total demand is nL + 3nM, the total demand for each partition is

exactly L + 3M. Consequently, we have a Yes instance to the 3PP. 0

Theorem 4. The following conditions are necessary and suflfcient for the cutset inequality

(8) to be a facet of Conv (TFLP).

1. The subgraphs defined byS and by Tare connected.

2. DS, T> O.

Proof.

Necessity.

1. Assume that S is not connected, and let U and V be two "separated" components
as defined in the discussion preceding the statement of the theorem. Let ru -u ruv 

rv,{UUT, and rs rs - r- rUV),T to simplify the notation in the following proof. Define

single indexed aggregate design and demand variables similarly. Note that the definition of
separated components implies that X s = X U + X v and Ys = Yu + Yv. Note that we can
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assume that r < C. Moreover, if D u = 0 or Dv = 0, then we can tighten inequality (8);

indeed, if Du = 0 then the inequality corresponding to the cutset V, UUT} is tighter than

the inequality corresponding to { S,T}. So, we assume that Du > 0 and Dv > 0.

Now, either r = ru + rv or r = (ru + rv) mod (C). If r = ru + rv, then the Chvdtal-

Gomory procedure for deriving inequality (8) shows that the inequalities

Xu + rYu r [lDu + ru and Xv + rYv r Dv + rv

are valid. Adding these inequalities, we obtain inequality (8); thus, inequality (8) cannot be

a facet.

On the other hand, if r = (ru + rv) mod (C), then r < min (ru, rv). Therefore,

Xu+rYU r cl andXv+rYv r[ Dc.

Adding these inequalities and noting that [ C + [ Cv [' i DU v > ]s, we obtain

inequality (8); thus, it cannot be facet.

A similar argument shows that T must be connected for (8) to be a facet.

2. If DS,T = 0, then (8) is a linear combination of the nonnegativity constraints.

Sufficiency.

To prove that the cutset inequality defines a facet, we will use an interchange

argument. This argument works as follows. We define the face

- = [ (x,y, f) C Conv(TFLP): (x,y, f) satisfies (8) as an equality]

and prove that dim I = dim(Conv(TFLP)) - 1 by showing that any other valid inequality

that is satisfied as an equality by all points in I is a linear combination of (8) and the

equality constraints.

Let

, xij u _ fiijyij kfK (I )
{iJ EA {iJ) EA kEK {ij} A
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represent an arbitrary inequality that is satisfied as an equality by all (x,y,f) E X. In this

expression, each coefficient aij, ij, ijk and 6 is a real number. The interchange argument

permits us to develop the desired relationship between these coefficients. Suppose the

vectors (xl,yl,f l) and (x 2 ,y 2 ,f 2 ) belong to 1, and every component of (xl,yl,fl )
1 2

equals the corresponding component of (x 2 ,y 2 ,f 2 ) except for components Xpq and xpq.

Substituting these two solutions in (I. 1) and subtracting the resulting equations, we obtain
aXpq = 0. On the other hand, if all components of (xl,yl,f l) and (x 2 ,y 2 ,f 2) are equal

except that xrls = q = O and Xpq and Xrs > 0 (i.e., we have interchanged xpq LC facilities in

(xl,yl,f') with xr 2LC facilities in ( 2 ,y 2 ,f 2)), then a similar substitution of both

solutions (xl,yl,f l) and (x 2 ,y 2 ,f 2 ) in (I.1) shows that apq/crs = x2s /q.

Construct a feasible solution (x°,y°,f° ) satisfying (8) as an equality as follows.

For all commodities kE {S,Sj (or kE {T,T} ) connect O(k) and D(k) by rdk / C1

HC facilities along a path fully contained in S (in T). This choice is possible because of

Condition 1 of the Theorem. Send a flow of dk along this path from O(k) to D(k).

Choose a node uES and a node vET for which {u,v} EA. For all commodities

kE {S,T} with O(k) E S, connect O(k) to u by rdk/ C1 HC facilities installed on a path

{O(k),..., u} fully contained in S. Similarly, connect v to D(k) by rdk / C1 HC facilities

installed on a path {v,..., D(k)} fully contained in T. Send a flow of dk along these paths.

Next for all commodities k E {S,T} with O(k) E T, send a flow of dk along some paths

{O(k),..., v fully contained in T and {u,..., D(k)} fully contained in S on suitably

installed HC facilites. Install rDS,T/ C HC facilities on arc {u,v}. Let (v)O = dk for all

kE {S,T with O(k) E S and ()O = dk for all kE {S,T} with O(k) E T. Thus, we obtain

a feasible solution for which XS,T = 0 and YS,T = DS,T / C1 . This solution satisfies (8)

as an equality.

Using the interchange argument with one of the solutions as (x ° , yO, fo), we can

show that

(1) aij= ij-= 0 for all i,j}E{S,S} or {T,T},

-39-



(2) r = P,,, and since the choice of arc {u,v} is arbitrary, raij = Pij for all

i,j} E{S,T}, and

(3) ¥ = -y for all {ij} cE S,S} or {T,T}, for all k E K.

Now, consider arc u,v}; since r < C and DS,T > 0, after we have installed
rDS,T/ C] HC facilities between nodes u and v, this link has a residual capacity of at least

1 unit. So define, for some k E K and 0< 1/2,

yl = yO

X1 = X0

(f1 = (fl) + 
(f)1 = ()O + E

(j)otherwise.

It is easy to verify that (x l, yl, fl) is in A. Using the interchange argument again, we

see that Yuv = ku for k = kl. But since we chose kl and {u,v} arbitrarily, we conclude that

yj = -y for all {i,j} E {S,T} and for all kE K.

Using this result, we will first show that the sum of the y coefficients

corresponding to any cycle in the network equals zero. This result implies that

C C (Yft +Yifji) isaconstant.
kEK {i,j} EA

Consider any node r belonging to N. Let Ar denote the set of (directed) cycles

originating and ending at node r from the arc set A. Note that since the arc set is undirected
we may traverse a particular arc in both the directions and therefore Ar is nonempty. We

assume that each arc is traversed at most once in each direction for all the cycles belonging
to A.

Consider a particular cycle belonging to Ar. Call 6 an s-intersection cycle if it

contains exactly s { S,T} cutset arcs. Note that two directed arcs (p,q) and (q,p) of C may
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use the same undirected cutset arc {p,q}; in this case, these arcs add 1 to the intersection

count, s.

Define the following feasible solution if S is a 0 or -intersection cycle for some

kl E K (we assume that arc {u,v} is the common arc belonging to both {S,T} and S if is

a 1-intersection cycle):

y2 = yo

x2 = x + 1 if {ij} \{S,T},x i = x otherwise

(f)2 = (j)0 otherwise.

This solution maintains feasibility and satisfies (8) as an equality (and thus belongs to X).

(Note that the upper bound on E is necessary to account for the case when the residual

capacity on arc u,v} - on which we have installed rDS,T / C] HC facilities - might be

1.) Comparing the coefficients of (x ° , y0, f) and (x 2, y2 , f2), we find that

k =0 jfor all 0 or 1-intersection cycles EA,
(ij)C i for all rEN, for all kEK.

Now, suppose S is a 2-intersection cycle. Assume {u,v} and {p,q} are the cutset

arcs belonging to cycle ,. Construct a solution (x 3, y3 , f3) as follows: send the flow of

commodities belonging to S,S) (or T,T}) on paths fully contained in S (or T) as we did

FDS,T 1 1
for solution (x ° , y0 , f). Letyuv, = C- 2 and Ypq = 2. By installing additional

facilities on arcs in S,S} and {T,T}, route the commodities belonging to {S,T} so that
1

each of the arcs {u,v) and {p,q} contains at least 2 units of residual capacity. We can

determine a feasible flow that meets this condition because r < C. Note that

(i) this solution belongs to I, and

1
(ii) given this solution, we can send an additional flow of 2 units along , without

increasing the capacity on the cutset arcs.

Now define
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y4 = y 3

X4j =xij + 1 if i,j} E \{S,T, = x otherwise

(ft)4 = (j)3 + , 0<< 1/2, if(ij)E and k = k

(fj) = (j)3 otherwise.

Comparing the coefficients of (x 3 , y3 , f3) and (x 4, y 4, f4), we conclude that

Y k O for all 2-intersection cycles cEr,

(ij)E j for all reN, for all kEK.

Now consider an arbitrary s-intersection cycle ;. We will show that the sum of y

coefficients corresponding to the arcs of this cycle also equals 0. Let

YC = ij
(i,j)E 

that is, y, is the sum of the y's corresponding to the arcs of C. We will show that some 0-

intersection cycle, say w, satisfies y = y,. Since we have already shown that y = 0, this

result would complete our argument.

Figure I. 1. Solid lines denote arcs of cycle . The dashed arc (ri,rl) belongs to qw.
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Let be defined by {(r1 ,r2), (r2,r 3), ... , (rt,rl)} as shown in Figure 1.1. Suppose

r E S. Let (ri, rj) be the first arc of the cycle that crosses the { S,T} cutset and let (rk, r )

be the first subsequent arc that re-enters the set S. Notice that node ri can equal r and/or rk

can equal rj. In any case, {(ri, rj), ... , (rk, r), (rl, ri)} is a either a 1 or 2-intersection
cycle. (Arc { r, ri} need not exist in the underlying network, but this condition does not

change the essence of the following argument.) The sum of the y's on this subcycle must

equal 0, thus yrr, equals the sum of the y's on the path (ri, rj), ... , (rk, r). Thus, we can

replace the path (ri, rj), ... , (rk, r) by the arc (ri, r). Repeating this argument, if
necessary, we can construct a O-intersection cycle qs that satisfies y = ,.

We have now shown that

, yi =O forallEA4, forallrEN,forall kEK.
(i,j)E 4

The above argument also implies

yj = constant, say, y k for any (directed) path r connecting nodes p and q.
(i,j)E path t

In particular, suppose we chose p = O(k) and q arbitrarily in this argument, then the sum of
the y's for all {i,j} (with proper signs) belonging to any path connecting O(k) and q is the
same. Let y(k)q denote this quantity. Thus by setting V (k) = O, we can find unique

k k k kmultipliers vk satisfying the condition v - vi = yi= - yi. Now, using these multipliers

for the flow conservation constraints, we obtain

((V V)fj + (Vk-t)fk (k + Yk
{i,j} E A {i,j} EA

(yok)D(k))dk

; vD(k)dk-

This equality implies
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k
I (kjf i i) ¥ YO(k)D(k)dk

k{i,j} E A

k

= constant.

We can now show that aij = a and 3ij = f3 for all {i,j} E {S,T}. Choose {p,q} E

{S,T}, so that {p,q} * {u,v}, and kl E K. Let P(u,p) be a path from node u to node p

fully contained in S, and P(q,v) be a path from node q to node v fully contained in T.

Define

Yd5v = v- 1

yj = y for all i,j } {u,v}

5v =r-1

5 = 

xij = 1 if {i,j} EP(u,p) or P(q,v)

xij = 0 otherwise

(fj)5 = (fij) + 1 if (i,j)E P(u,p) or P(q,v) and k = kl

(fv) = (fkv) - 1, (fpq)5 = 1 for k = k

(fi) = (f) otherwise.

Using the interchange argument on the solutions (xO, yO, f) and (x 5, y 5, f 5),

we see that

Cuv + YYu,= apq +

(i) EP(u,p) (i,) E P(q,v)

- 44 -



for k = k1. Since the sum of the y's corresponding to any cycle equals zero, we see that

(Xuv = oapq. Furthermore, since arc {p,q} was chosen arbitrarily, we obtain xij = a and,

thus, B3ij = B3 = ra, for all {i,j} E {S,T}.

Thus, (I. 1) is equivalent to aoXs,T + roaYs,T + constant = oa*, which implies oaXS,T

+ rocYs,T = ao0. Since (I.1) is nonvacuous, a * 0. Consequently, XS,T + rYs,T = ao/C =

r DsT/ C since (8) holds as an equality for all points in L. 

Theorem 6. The arc residual capacity inequality (11) defines a facet of the extended

TFLPmodelifand only if

1. If rL = C, then L = K

2. If [ij} is a bridge arc, then L = K(i,j).

Proof.

Necessity.

If rL = C, and L C K, then the arc residual capacity inequality is dominated by the

capacity constraint for arc {i,j}. Now, suppose, that {i,j} is a bridge arc and let

G = L n K(i,j) and H = L\G. Also, for simplicity of notation, let rij = rK(ij), Dij = DK(ij)

and ij = K(ij). Since A (f + i )=DG and f ( fj + )= 0, the arc residual
kEG kEH

capacity inequality is equivalent to xij + rLyij PL rL - DH. If L = K(i,j), then this
inequality becomes xij + rijYij > ij rij.

We first show that UG rL 2 PL rL - DH. Since P1G = (DG + C - rG)C and PL =

(DG + DH + C - rL)/C, we can write G rL - PL rL + DH as rL(rL - rG)/C + DH(1 - rL/C)

which is nonnegative if rL > rG. If rL < rG, then rL < min (rG, rH) ' DH and, therefore,

rL(rL - rG)/C + DH(1 - rL/C) > DH(rL - rG)/C + DH(1 - rL/C) 2 0. Thus PG rL > AL rL -

DH.

Case (i). rL 'rij.

In this case, we show that the arc residual capacity inequality xij + rij Yij Pij rij
for L = K(i,j) dominates the arc residual capacity inequality for the given choice of L.
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Since ij PIG, the arc residual capacity inequality for L = K(ij) is stronger than xij +

riij Yij G rij. The last inequality dominates xij + rL Yij > PG rL if rL < rij and Yij < PG

(if yij > PG, the inequality xij 2 0 implies that xj + rL Yij > IG rL). Since PG rL > PL rL-
DH, the necessity of Condition 2 follows if rL < rij.

Case (ii). rL > rij.

If rL is greater than rij, then consider the following linear combination of xij + rij Yij

> ij rij (the arc residual capacity inequality for L = K(i,j)) and xij + C Yij > Dij (the

aggregate capacity demand inequality across arc (ij ):

C-rL ( ij + rijyij) + (C-rii )(x ij + Cy ij )> C- (ril ij r i j + (-ri DIj

Simplifying this inequality, we obtain xij + rL Yij rL pij + rij - rL. The righthand side of
this inequality is greater than rL G if PG < ij and so the residual capacity inequality is no

stronger than a weighted combination of the other two constraints. So assume that PG =

Pij. This assumption implies that PL > ij, thus

Xij + rL-ij )- r-ij + rL(IL-Jij) - C(JIL-Jij) + rij - rL

= rL - C(L-Pij) + rij - rL
= rLiL - DL + Dij

> rLPL - DL + DG

= rTLJL - DH.

Therefore, since the residual capacity constraint for a bridge arc is implied by a weighted

combination of two valid inequalities, it cannot be a facet.

Sufficiency.

We will use an interchange argument, similar to the one used for Theorem 4, to

prove the sufficiency part of the theorem. As earlier, define L to be the set of points that

belong to Conv(TFLP) and satisfy (11) as an equality. Let (I. 1) be an arbitrary inequality

that is satisfied as an equality by all points belonging to l. First, construct a feasible

solution (xO,y°,fO) that belongs to I¶.

Consider a (nonbridge) arc {u,v}. For each k E K\L, install Fd/C] HC facilities

on a path connecting O(k) and D(k) that does not contain arc {u,v} and set f.j = dk for all

arcs lying on this path.
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For each k E L, consider a path connecting O(k) and D(k) that contains arc {u,v}
and install F dk/C] HC facilities on all arcs of this path except arc {u,v}. Now send dk

kEL

units by of flow for all k E L by installing r Edk/Cl HC facilities on arc {u,v}.
kEL

Arguments similar to those used to prove Theorem 4 permit us to show that

(1) aij = ij = 0 for all {i,j} {u,v},

(2) rLaxuv = Puv,

Yj(3) 4
(i,j) E 

=( for all cycles C, for all k EK\L

for all cycles C for which neither (u,v) nor (v,u)

(4) auv + I yj = 0 for all cycles C for which (u,v) or (v,u) E ,
(i,j) E 4

E , for all kL,

for all k L.

Set O(k) = 0 for all k and define:0(k)

for all ke K\L, for all (ij)

for all k E L, for all (ij) * (u,v) or (v,u)

for all kEL and for (ij) = (u,v) or (v,u).

We can now find unique multipliers, using Ok as arc lengths, so k k kthat v. - v. = O.. for all
J 1 1J

(ij) and for all k. Multiplying the flow conservation constraint for node i, commodity k by

multiplier vi, and adding, we obtain

kEK {iJf EK
= I Vk dk

kEK

or

= some constant, say O.
kEK {iJ E K

ykfk + y k.4 + V + 1u)
II uv

kE:L
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Thus, inequality (I. 1) is equivalent to

O - E aufk + fvu) + (uvxuv + rLaUVYUv 
kcL

which proves the theorem. 0
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