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ABSTRACT

Consider a multi-priority, nonpreemptive, N-server Poisson arrival queueing
system. Service times are negative exponential. In order to save available servers
for higher priority customers, arriving customers of each lower priority are
deliberately queued whenever the number of servers busy equals or exceeds a given
priority-dependent cutoff number. A queued priority i customer enters service the
instant there are fewer than the respective cutoff number of servers busy and all
higher priority queues are empty. The principal result is the priority i waiting time
mean, second moment, and distribution (in transforms). The analysis is extended to
systems in which any subset of priority levels may overflow to some other system,
rather than join infinite capacity queues. The paper concludes with illustrative
computational results.



1 INTRODUCTION

We consider a multi-server queueing system with different priority classes of

customers. Arrivals in each priority stream occur in a random (i.e., Poisson)

manner, and each customer's service requirements are governed by a negative

exponential distribution whose mean is independent of priority class. Associated

with each priority class i there is a "server cutoff number" Ci, where i=1,2,...,

T number of different priority classes. If a priority i customer finds upon arrival

fewer than Ci servers busy, then she enters service immediately. Otherwise (i.e., if

Ci or more servers are busy upon arrival), the customer joins an infinite capacity

first-in-first-out (FIFO) queue of other priority i customers. In order to depict the

relative urgencies of the respective priority levels, we assume the Ci's are ordered so

that CT< .. <C 2<C C 1 . If Ci+ 1 < Ci, the priority i queue, if nonempty, is reduced by

one upon the instant that fewer than Ci servers are busy. If two or more priority

streams have the same server cutoff number (i.e., if Ci+ 1 = Ci), then all the higher

priority customers are served in a head-of-the-line manner before any of the lower

priority customers. (By convention, i = 1 designates "highest priority.")

The model is motivated by applications in police and ambulance dispatching,

hospital bed management, communications channel allocation, and any other

priority queueing system in which it is desirable to retain a "strategic reserve" of

servers for higher priority customers. The current practice of most police

departments, for instance, is to deplete the pool of available servers (i.e., police patrol

cars) to zero before delaying any customers ("police calls for service") in queue. Yet

it is well known (Larson [1972], Tien [1976]) that in most police departments there

are from three to seven different priority classes of police calls for service and only

the most urgent (e.g., felony in progress, officer in trouble) require immediate

service. Our model, when exercised with typical police operational data and
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reasonable delay cost structures, reveals the desirability of deliberately delaying

lower priority customers in queue, even while available servers are present, as an

"insurance" against near-term more urgent customers who may arrive.

We derive the following performance measures for the system, assumed to be

operating in steady state: mean and higher moments of the delay in queue

experienced by priority i customers; probability that a priority i customer

experiences no queueing delay; server utilization factor. We also generalize our

results to allow any particular priority classes to be "lost to the system" when

arrivals find too many servers busy, rather than to enter a queue. In applying the

model, we determine optimal server cutoffs (Ci) under alternative cost structures.

Our analysis of the system hinges on developing an iterative scheme for

determining the probability distribution for the number of busy servers. By starting

at the highest priority level (i = 1), and continuing through each successively lower

priority level, we replace at each priority level the actual multi-server queue with a

fictitious but equivalent single server queue with general service time. This

replacement is motivated by the fact that each queue (priority i = 1,2,...) acts when

nonempty as if it were a Poisson arrival, single server, general service time queue.

Given this observation, the analysis utilizes standard busy period and semi-Markov

methods.

In Sections 2 and 3, respectively, we define the model and review the related

literature. The detailed analysis is developed in Section 4, with several derivations

relegated to an appendix. Extensions to loss type systems are developed in Section 5,

and illustrative computational results are given in Section 6.
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2 MODEL DESCRIPTION

In this section we provide details of the basic model, which assumes that arriving

customers either enter service immediately or join a priority-specific infinite

capacity FIFO queue. Section 5 extends this model to loss systems.

Customers are assumed to arrive in a homogeneous Poisson manner to an N

server queueing system, with arrival rate A i (customers/unit time) for priority i

customers (i = 1,2,...,T). All Poisson streams operate independently. By convention,

type i customers have higher priority than type j customers if i <j. Service time is

assumed to be negative exponential with mean 1/p, independent of the priority of the

customer or the identity of the server.

The service discipline is assumed to be non-preemptive. Priority i customers

enter service immediately upon arrival only if there are less than Ci servers busy.

Otherwise they are backlogged in a queue of other priority i customers; this queue is

depleted in a FIFO manner, with each depletion instant corresponding to a moment

of service completion arising when precisely Ci servers are busy. If Ci-l = Ci, then the

priority i-1 queue must be empty before priority i customers are serviced (HOL). By

convention, the server cutoff number for the highest priority customers is C1 = N, the

number of servers.

A proposed shorthand notation for our model is M/M{Ci}, designating Markovian

(Poisson) input, Markovian (negative exponential) service times, and a set of server

cutoffs (Ci}. The model is summarized as follows:

* N identical servers

* T priority levels of customers
hi = Poisson arrival rate of type i customers, i = 1,...,T
p = exponential service rate (identical for all priority levels)

* Type i customers enter service immediately upon arrival only if less than Ci
servers are busy, where 0 <CT< CT-1 ... C2 < C1 = N; otherwise they join a
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FIFO queue of other priority i customers, the queue being depleted at instants
of service completion arising when precisely Ci servers are busy. If two or
more adjacent priority levels have the same server cutoff number, then higher
priority customers are always served before any queued lower priority
customers (i.e., the discipline is HOL by priority.)
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3 LITERATURE REVIEW

The two priority case, namely M/M/{N,C2}, has been studied by various

researchers since 1966, when it was first formulated by Benn [1966] who applied it to

a railroad transportation problem. A detailed solution of this two-priority problem

was published by Jaiswal [1968, p. 204ff.], who analyzes the following variants: high

and low priority calls queued; high priority calls queued, low priority calls lost; and,

high priority calls lost, low priority calls queued. The analysis proceeds from the

steady state balance equations. Using a fairly involved discrete transform

technique, Jaiswal obtains the steady state probabilities for the number of busy

servers; unfortunately, these results are in a very inconvenient form. Other

researchers have used the same model in various applications, mostly in health care

planning: Shonick and Jackson [1973], Abol'nikov and Yasnogorodskiy [1974],

McClain [1976], Esogbue and Singh [1976].

Our own work was largely motivated by a recent paper by Taylor and Templeton

[1980] who improved upon the solution for the two-priority problem published in

Jaiswal. Paralleling the derivation in Jaiswal [1968], Taylor and Templeton set up

the steady state global balance equations for states defined by (n, ql, q2), where n is

the number of busy servers; ql, the number of high priority customers queued; and

q2, the number of low priority customers queued. In order to obtain the steady state

probabilities, they take z-transforms of the balance equations with respect to the

variable q2. Then, departing from Jaiswal, they proceed to solve for

Pn = Probability that precisely n servers are busy (n = 0,1,...,N), by inversion of a

band matrix. The procedure is recursive and fairly involved, but the results are

interesting and remarkably simple.

The steady state probabilities for the number of busy servers are given by
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n

P =P forO<n<C2
n o tn!

C2 n-C 2

P =P 1 2 forC n<C,=N

0n n! C2 - p2 S(C 2

C N-C 2

P Pi C2 N
P = P forn=C1 =N

0n N! C2 - P2S(C 2) N-Pj

where

Al A2
1 2

P = P2 = - ' P=P + 2 '

N-1 p p

SO =0pJ E i! + N -N-
S i=j for N-1,

and Po is obtained by normalization.

No interpretation of S(j) is given by Taylor and Templeton [1980] and there is no

further investigation into the apparent structure of the results. Although the final

result appears to be a closed form expression, it really is not: S(C2) has to be

computed recursively. Given the complexity of the derivation, there is little hope of

extending the results to more than two priorities using the Taylor and Templeton

method. Taylor and Templeton [1980] also derive waiting time distributions and

discuss some variants of the two-priority problem. While these results are most

interesting indeed, we should stress the lack of physical intuition emerging from

them. The "closed form" of the low priority waiting time transform, for example, is

extremely complicated. We believe it would be better to leave the results under a

recursive form in terms of quantities that have a physical meaning. This we shall

endeavor to do in Section 4 when we analyze the T-priority cutoff model. The insight
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we shall gain into the structure of the problem will help us solve it by inspection for

any number of priority classes.

Finally, to conclude the literature review, there has been little work done on the

T-priority problem (T_3) to the authors' knowledge. Cooper [1972] mentions an

unpublished paper by Descloux that seems to have taken a closer look at some

aspects of the problem. The authors have been unable to obtain a copy of this paper.

Cobham's [1954] well-known head-of-the-line T-priority problem has no server

cutoffs; hence, in our notation, Cobham's model is a queue of type

M/M/{Ci = N:i = 1,2,...,T}. We shall derive Cobham's results as a special case.
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4 ANALYSIS

4.1 The M/G/1 Approach

This paper extends the results of the model described above to more than two

priorities by following a probabilistic approach based on M/G/1 queueing theory.

Contrary to Jaiswal [1968] and Taylor and Templeton [1980], we do not work with

the global balance equations directly. Our method is based on continuous as opposed

to discrete transforms. This approach yields a physical understanding of the

problem.

For the analytical developments of the following sections, it is helpful to think of

the queueing system in the following way: Suppose customers of priority i are

waiting in queue i and have no information about the queues of other priorities,

which form in other waiting rooms of the service facility (Figure 1). For all they

know, they may be in the only queue in the system. Assume that the customers in

queue i can only observe how their own queue behaves, i.e., when the next customer

in their queue begins service. Then, the following is true: Either a new priority i

arrival finds no queue and a free server on arrival (i.e., fewer than Ci servers are

busy) and enters service immediately; or the arrival finds the system busy for her

purpose, (i.e., at least Ci servers are busy), in which case she joins the end of a queue

of other priority i customers; she observes that the times between successive "move

ups" in queue position (say from position k to k-l, kŽ 1) are independent, identically

distributed (i.i.d.) with a general distribution for the time between move ups. This

queueing behavior is identical to that of an M/G/1 system, where G depicts a general

service time distribution represented here by the time between successive move ups.

G is not, however, the distribution of time actually spent in service by a type i

customer; that distribution remains M (negative exponential) with mean 1/p. The
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observed G for times between move ups is in fact the probability distribution of a

busy period ("busy" for class i) induced by higher priority arrivals (i.e., of priorities

1,2,...,i-1), whose existence she is unaware of.

This, then, is how we shall proceed in Section 4: Determine the "general" service

time distribution seen by a queued priority i customer. As we shall see, it is then

easy to derive the probabilities Pn that n servers are busy (for n = 0, ... ,N), as well as

the waiting time distributions (in transform domain) for the various priorities.

4.2 The Distribution of the Number of Busy Servers

To get a better understanding of the structure of the problem, it is helpful to look

at the three-dimensional state transition diagram of the (two-priority) cutoff

problem (Figure 2). (The two-dimensional view of the state space (of, e.g., Jaiswal [1968 p. 209]) hides some of the

geometric structure.) Let II (n, ql, q2) be the steady state probability that the system is in

state (n, ql, q2); then

Pn E (n,qlq2)
qlq2

Figure 2 shows that the Pn's, the probabilities that there are n servers busy,

represent the total probability of being in a (hyper-)plane orthogonal to the n-axis

and passing through (n,0,0). Note that this result holds for T priorities, (T- 2).

Indeed then, the state space representation analogous to Figure 2 is

(T + l)-dimensional and Pn is the probability of being in a T-dimensional hyperplane

orthogonal to the n-axis and passing through (n,0,0,...,O).

From here on, we shall concern ourselves with the general T-priority problem.

We shall no longer be interested in the micro-states (n, ql, q2,...,qN), but rather we

shall work with a "macro-state space" where the (macro-)states are {Sn}, the number

of busy servers, and Pn, the corresponding steady state probabilities.

Using "balance-of-flow" results from M/M/N queues, it is easy to see that

T A.

Pn = Pn- forO<n<CT wherep E (1)
n ~-n ~j=1
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Similarly, it is easy to see by summing the global balance equations over qi (see

Figure 2) that

Pc i A.
P =P,_ for1l<i<Tand C i+. <n<Ci, wherep- (2)n n-l n j I P (2)

j=1

Equations (1) and (2) show that, to obtain the steady state probabilities Pn, all that

remains to be determined are the relationships between Pci-l and Pci, for i =1,...,T.

Normalizing the sum of the Pn's to 1 then yields Po.

In order to derive the probability distribution for the number of busy servers, we

need to introduce some additional concepts and notation. Let the r.v. Rn denote the

first passage time from Sn to Sn-1 (n = 1,2,...,N). Let the r.v. Rnj be the first pasage

time from Sn to Sn-i (n = 1,2...,N) for a system with arrival streams of priority 1

through i only. (Figure 3 illustrates the definitions of the random variables R) Due to the preferential

service discipline enjoyed by higher priority customers, it should be clear that

R 1-= Rn for all n > Ci, since Sci is that state at which priority i customers may be seen as

being queued. If C i < Cil any service completion occurring from (macro-) state Sci

will immediately result in either: (1) a reduction of the priority j queue by one, where

j is the highest priority nonempty queue for which Cj = Ci, or: (2) cause a downward

(macro-) state transition to state S(ci,) (if all queues having cutoffs equal to Ci are

empty). If Ci = Ci-1, then the priority i queue can be depleted only when the priority

(i-1) queue is empty (i.e., the priority (i-1) queue empties before the priority i queue).

Focusing on the priority i queue, suppose the ( + 1)st priority i customer waiting

in the priority i queue becomes the th customer in line at time i and the (e-1)st

customer in line at time i ( > 1); then Ti - ti is defined to be the queue move up time

Bi for priority i customers. Due to the Markovian nature of the entire system, it

should be clear that the Bi's are i.i.d. (independent of , of course). Since the entry of

a queued priority i customer into service leaves the system in (macro) state Sci, the
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next queued priority i customer (if any) will enter service (i.e., move up to position 0

in line) upon the next service completion arising from state Sci, assuming Ci < Ci-1. If

Ci=Ci-1, then move ups in the priority i queue occur at moments of service

completion arising from state Sci when queue i-1 is empty. The move up time is

equivalent to a first passage time from Sci to Sci1 , assuming that no priority i (or

lower priority) customers existed. Hence,

B i = R- i=1,2,...,T, (3)C

defining R- B 1

We now have the ingredients for a recursive procedure to analyze the system.

Derivation of the Pn's will require knowledge of the mean first passage times E[R]

for a certain combination of indices n and i; we will derive these quantities

recursively starting with the highest priority customers.

Let the cumulative distribution function (cdf) of R be denoted by

Rfy) Prob{- y}, with Laplace-Stieljtes transform

R (s) e'Y dR (y)=E e ].

Starting with customers of priority class 1 (highest priority), it should be clear that

any priority 1 customer waiting in queue experiences a queue move up time that is

exponentially distributed with rate Np. Hence, recalling B 1 -R O ,

ro (s) Np
RN (S)Np+s (4)

Note that the priority 1 queue moves (during a nonempty period) as if the N

individual servers, each having service rate p, were replaced by a single server

having service rate Np.
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Ignoring the existence of lower proirity customers, the first passage time RN from

SN to SN 1 is a busy period for all N servers sustained by priority 1 customers. This

busy period is equivalent to the busy period of an M/G/1 system having arrival rate

Xl and negative exponential service time distribution with rate Np. Following the

usual sub-busy period argument (see Kleinrock [1975]), we first condition on the

duration of the first service, X1, of the busy period in the equivalent M/G/1 system

and on the number k of arrivals during X 1, then we can write

E -RN X =y,K=k = e | R() ( 

Deconditioning on k, we find

e N Xl=Y = e - Sy
E I| -Y[S+-IRN(s)]

k=O 

Finally, removing the conditioning on X1,

Rh(S) -E eN J = E ~eN Xy J dX(y)

or,

RN(S) = (S+X _AX (S))

If C2 < N, then RN = RN and we must confront the problem of computing RN-1. If

C2 = N, that is, if arriving priority 2 customers are also served immediately if at least

1 server is free, then by (3) B 2=R1 and a similar argument based on sub-busy

periods applies. Generalizing, any priority i level queue can be seen to move (when

nonempty) as an M/G/1 queue with arrival rate Xi and service time (i.e., move up

time) equal to the first passage time from (macro) state Sci to Sci-1 for a system
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having customers of priority 1 through i-1 only. Hence,

Rc.(s) = s+,-X iR C (s)5)

A somewhat different (and easier) argument is required to obtain equivalent

functional equations for the transforms of RA for Ci + 1 n < Ci. Given that there are

precisely n servers busy (Ci+ 1 - n <Ci), then the probability that the next transition

in the number of servers is to n + 1 is

AC i

r = where X E k
XC +np k=1

and the probability that the next transition is to n-1 busy servers is 1-rn. Let the r.v.

Vn represent the time until the next transition and let Vn( s ) be the Laplace

transform of its distribution; clearly Vn is exponentially distributed with rate

hi+ np. Conditioning on the type of transition, we can write for Rn,

E e n|upwardtransition = (s)Rin+l(s)Rn(s)

and

E e n downward transition = V (s).

Removing the conditioning we find

i (S)= rnV n(s)R n+ (S) RN(S)+ (1-r n) Vn(s),

or,
-1

R (S) = (1-r) V(s) 1-r V(s)Rn+ (s) 

Substituting known values for rn and Vn(s), we find

R (s) = np s+ np + iC l(s) (6)
n i i n

for Ci+ 1<n<Ci, 1<-i <T.

Equations (4), (5), and (6) provide the results necessary for computing the Pn's.

Straightforward differentiation of (4), (5), and (6) yields the following recursive
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equations relating the first moments:

E[ R N1 . (7)E N Np

ErI = l[ -xeR-1] i=1,2...T (8)

E[Ri = l+cE +1 ) C n<C (9)
np i+ 1n

Recall also that

EIBi =E IRcR.] |i= 1,2... T

A flow chart illustrating the use of (7), (8) and (9) for computing all the relevant

E[R]J's is given in Figure 4.

Armed with the above results, it is now easy to derive the relationships between

the steady state probabilities Pci-1 and Pci. For notational simplicity, define n+ as

the superstate, "At least n servers are busy." Let Pn denote the steady state

probability corresponding to this superstate. Define f as the lowest priority class

whose cutoff is Ci (i.e., f= max{k:Ck = Ci} and g as the highest priority whose cutoff is

Ci (i.e., g=min{k:Ck=Ci}). The system leaves state Ci-1 for superstate C + with
Rf

exponential rate Af. The holding time in superstate Ci is given by the r.v. R0 i. Now,

applying Little's law locally to superstate C+, we can write

PC. = c P )E f (10)

Of course, we can repeat this procedure with state Ci + 1. Transitions to superstate

(Ci + 1)+ (from state Ci) occur with conditional exponential rate Xg-i and the holding
g-1

time on (Ci + 1)+ is given by the r.v. Rc,+1. Hence,

PC=+l (X- 1P )E 1 R-1 (11)
&+ I 9 I C i Ci+ 1
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Using the fact that P +1 = P + - Pci, we can write

Ac P [I~- 11 =XCP E[Rf -ig- C C.+ f ci-1i P '

or,

A E Rf|

PC =PC.- -E [ (12)
i I' 1 + g E R g -'

Using (8) and (9), (12) can be rewritten as

PCi P C E[Rg 1] Pf (13)

Applying (8) repeatedly, we can write

PCf K k-1 (14)
k:c=c-1c. i 1-AkE RC.

This then concludes the derivation of the steady state probabilities, P, of the

number of busy servers. Equations (2) and (14), repeated below, fully determine the

Pn's:

c
PCP =P n- forli<T,C i <ln<C. andfori=T,O- n<CN (2)n n-1 n i+1

CC(I ) foraUllC.s; wheref=max{k:Ck=Ci} (14)C C- Cik:C =C i 1 -'kE R 

We can now write down the Pn's by inspection, in terms of the expected service

times seen by the various queues, where for the priority i queue the expected service

time is E[Bi] =E[Rli]. For example, for a four-priority system with arrival rates Al,

A2, 3 , X4, individual server service rate p, and cutoffs 0 < C4 < C 3 = C2 < C 1 = N, the

19



steady state probabilities are as follows:

P =P
n 0 n!

C P

3 3 1

1 - 4E[B 4]
C4 _ n <C = C 2

( )f 1 1 1

n! 1 - X4E[B4] 1 - 3E[B3] 1-A 2E[B2 ]

C 3 = C2 n<C =N2- 1

P Pcn O pc

Finally, note

the form

C4 ( 3C3 Pi 1 1 1
-' tatetiindtofrtn byTeut=N=C

n!, 1-A 4 E[B4] 1-A 3 E[B 31 1 - 2E[B 2] 1-,XE[B1 ]

that the stability conditions for the system are given by T equations of

< (E R 1 ) = E[Bo] -1 forliT.

or, equivalently,

PiT<(E Rci 1 ) =pE[Bot forli T. (15)

The constraint on pi depends both on the server cutoffs C1 through Ci and on the

partial loads pj (j<i) of the higher priority arrival streams. If inequality (15) is

violated for some i, then the system is unstable for all customers of priority k, where

k->i.
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4.3 The Waiting Time Distributions

Consider an M/G/1 system with the following definitions:

S(s) - Laplace transform of the service time distribution

A - average customer arrival rate

E[B] - average duration of a busy period

W waiting time in queue

It is well known (Conway [1967]; Kleinrock [1975], pp. 219-223) that the conditional

Laplace-Stieltjes transform of in-queue waiting time W, conditioned on the arriving

customer entering a busy period, is

E e-sW arrivalduringabusyperiod = 1 -S(s) (16)
s- A + S(s) )EB]

This result is directly applicable to the M/M/{Ci} system. For arrivals of priority i,

let Wi denote the in-queue waiting time. In applying (16), A should be replaced with

hi and S(s) with Rci(s) = Bi(s). A busy period here, in M/G/1 parlance, corresponds to

the continuous period of time during which the system is in superstate Ci, assuming

Ci+ 1 < Ci. If Ci+ 1 = Ci, then the busy period for analysis of the priority i "M/G/1"

queue is the "service time" of the priority i + 1 "M/G/1" queue. In either case, the

busy period for priority i, which we shall call the "level i" busy period, is the r.v. Rci.

Thus, we can write

E e- sW arrivalduringaleveli busyperio = 1-B(s)

Finally, removing the condition that the arrival occurs during a level i busy period,

using (8), and the fact that Poisson arrivals see time averages (Wolff [1982]),
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we find:

Wi(s) - i =( P ) + 1 B ) 3 | + (17)S C -X6-h+X+h-R.(S(r ) E BiI (17)

For i =1, in particular, we can invert the transform Wi(s) of the waiting time

distribution, and we find, not surprisingly, that the waiting time is exponentially

distributed; with a probability mass of (1-PN) at the origin,

Np - A,

Wl(S)= (1-PN) + PN _ S (18)

or,
-(Np - 1 )y

WY) -- P{W<y} = 1-PNe y==O (19)

It is, in general, difficult to invert the transforms and to obtain the waiting time

distributions under closed form; we shall therefore content ourselves with first and

second moments of the waiting times. As with M/G/1 systems, the kth moment of the
i-1

waiting time, Wi, is a function of the first k + 1 moments of the service time, Rc - Bi.

Differentiating (17) and setting s to 0 (using l'Hopital's rule), we find the expected

waiting time:

EfWJ E[ ) 1 (20)

Differentiating again, we obtain, after some algebra,

E (W)J 2E I+( ) E[(B)J 1 (21)

The first, second and third moments of Bi are derived in the appendix. For ease

of reference, the recursions defining E[Bi], E[(Bi)2] and E[(Bi) 3] are also summarized

there.
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Our results for mean waiting times do not depend on the FIFO queue discipline

within each priority class. Since the duration of a busy period is invariant under all

workload conserving queueing disciplines, our equations for E[Wi] are valid under

any workload conserving queue disciplines for priorities 1,2,...,i-1 and, for priority i,

under any workload conserving queue discipline that is independent of customer-

specific service times. [Here we are referring to true service times, selected from the

negative exponential distribution with mean l/p, not the Bi's.] As an example,

suppose the priority 1 queue discipline is shortest job first (SJF), the priority 2

discipline is service in random order (SIRO), and the priority 3 is last come, first

served (LCFS); then our equations for E[W 2] and E[W 3] remain valid, whereas our

equation for E[W1] does not.

To conclude this section on waiting times, consider the special case Ci = N Vi. The

expected waiting time for priority i is given by (20). By repeated application of

equations (8) and (27), we can write, forj (1,...,N},
2

ERi 1-A R E R-l

or,

[ ( N =( n E (22)

Therefore the expected in-queue waiting time for priority i customers can be written

as

i-1

EIW =( n
k=l

l

1 )(H
1 \ k=R

1- E R1
k N

1

k [N
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Now, remarking that f= max{k:Ck = N = N and g min{k:Ck = N} = 1, we may apply

equation (8) to equation (23), to obtain

EW.i = - 1 1 N[(R)] (24)
1- Ak E RN 1- XE R 2E RN 

k=l k=l

Under this form, when we replace E[RN] by (Np)-1 and E[(RN)2] by 2(Np)-2 , our

expected waiting time yields as a special case the famous Cobham formulas for

prioritized M/M/N systems (Cobham [1954]),

(1-Np E k ) 1-- k
N" , NPN k=l
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5 EXTENSION TO LOSS SYSTEMS

Armed with the methodology of Section 4, it is now easy to extend the results to

M/M/{Ci} systems where customers of certain classes are queued if the system is busy

(for their purposes) upon arrival, while customers of other arrival streams are lost

under the same circumstances.

Essentially, all we need to do is to modify slightly our derivations of the

distributions of the first passage times (the R's). Note that the recursions defining

the respective Laplace-Stieltjes transforms, R(s), are unchanged for n " Ci. We only

need to concern ourselves with R, for i= 1,...,N. If, by assumption, priority i

customers are queued when they arrive while at least Ci servers are busy, then the

results of Section 4 hold for R ±. If on the other hand they are lost, by assumption,

then Rc is the same as Ril. Therefore, in that case, equation (5) has to be modified to

R'(s) = R- l (s) i1,(25)
it 

Consequently, equations (8), (32) and (35) must be replaced by, respectively,

E R i = E R i-ii= 1,2,... T (26)
C Ci

2 2

E[(R) | =E[(R,) i i= 1,2,...,T (27)

ER' ) |= [ ERc 1 | =1,2, ... T (28)

In order to obtain the steady state probabilities, Pn, of the number of busy

servers, we apply equations (2) and (12) combined with equations (7), (9), and,

depending on the queue/loss discipline, (8)/(26). It is easy to see that the Pn's are
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then derived from:

P =P Pi1 f _orO n<CNandfor Ci+l-n<Ciwhere1i•T-1 (29)

PC n ( l )for n=Ci (30)

n n-I n

k:Ck AEIRCI wke re n axCk.

priority queued f

Consider, for example, a three priority system with 0<C3 < C2 < C1 =N, where

the priority 1 and the priority 3 customers queue (Q) if the system is busy when they

arrive, while the priority 2 customers are lost (L) if the system is busy (i.e., at least

C2 servers are busy). Almost by inspection this QLQ-system has the following

solution:

Pn Po n! On<C3

c P2

p =p (P3)C3(2 l C

n O ( Pc (pC 2 2n! C n<C

n pc p n! 1 3 E[ 2 | 1 | n=C 1=N2 1 - E
c3

2 1 -1
i-1 i

where the E[RCi] are obtained from the above equations, and Po is determined, as

usually, by normalization.
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We can derive moments of the waiting time distributions just as easily. Of

course, for arrival streams that are lost if the system is busy, there is no waiting

time; for queued arrival streams, on the other hand, equations (17) still holds.

Therefore, the waiting times are computed in exactly the same way as in Section 4,

but with the modified recursions (25), (26), (27), (28) for the first passage times Rn,

where appropriate.

For the three-priority QLQ-system above, for example, the expected waiting

times for priorities 1 and 3 are given by

where the E[R]' are derived from equations (7) , (8)/(26) and (9).

where the E[R']'s are derived from equations (7), (8)/(26) and (9).
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6 COMPUTATIONAL RESULTS

We used the model to determine, for a hypothetical police department, the

optimal cutoff number of patrol cars, Ci, beyond which no priority i calls should be

served, lest the police response to higher priority calls be intolerably delayed. Our

goal was to minimize a weighted sum of the expected waiting times for the various

arrival streams, heavily weighting delays incurred by higher priority arrivals:
T A.

MinimizeZ1 =E K i ' E W i

whereAX = , i = and KK 2>-...KTO.
i=

(This objective function does not, of course, make sense for loss systems, e.g., the

QLQ-system of Section 5.) Alternatively, one can, for example, minimize a weighted

sum of the probabilities that a priority i arrival encounters a busy system:
T A.

MinimizeZ2 = D A Pc ,whereDl>D2 >-. >DT-
i=1

Since we essentially optimize whatever objective function we choose by implicit

enumeration of the solutions of all feasible M/M/{Ci} systems, objectives other than

the above can be equally easily implemented. For certain objective functions, such

as expected weighted waiting times, monotonicity and convexity arguments can

substantially reduce the number of cases to be enumerated. We have not, however,

investigated this objective-specific branch and bound procedure in any detail.

The computational results below were obtained on a PRiME 850 computer. The

largest problem we solved was a 25 server problem with 5 priorities. The run

computed statistics and performance measures for some 2070 M/M/{Ci} queueing

systems in 76 seconds of CPU time. The high speed of execution, we felt, did not

warrant taking advantage of objective-specific improvements in our enumeration

scheme.

28



Table 1 shows computational results for a three-priority system with nine

servers. The arrival streams are characterized by Xl/p = 3, X2/p = 1 and X3/p = 2. A

maximum number of 9 servers are available, but results are also shown for a total of

8, 7 and 6 servers available. (In terms of patrol units this determines the optimal

cutoffs for the case when one or more units are not operational for one reason or

another.) We assume infinite queue capacity, so that all calls are queued if they find

the system busy. For illustrative purposes we use the objective or cost functions

A1 A A
Z 1 = 100 A E[W1] + 10 E[W 2] + - E[W3 ] ,and

1 2 3
Z 2 = 25 PN + 5 P2 P

Table 1 summarizes the most important system statistics, as well as the above

"performance measures." The optimal values for Z1 and Z 2 respectively are marked

by an asterisk.
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APPENDIX

Moments of First Passage Times

In section 4, we derived the Laplace transforms for what we loosely call the "first

passage times" Rn (equations (4), (5) and (6):

Ro0 (s) Np (4)R N (S) = 
Np+s

i 1. 1

rCi c, _ (6)

Ri(s) = nA AC+n'+ n + s-AcR+i(S) (6)

Remember also that by definition

Bi(S)=R- (s) i= 1,2,...,T

The steady state probabilities and the moments of the waiting times for the

various priorities derived in Section 4 are expressed in terms of the moments of the

Rn 's. Their first, second and third moments are derived here. The algebra is very

straightforward, albeit rather unedifying. For notational convenience define

ai(s) s+Ai-AIR (s) and pl(s)=AC+nP+s-AXCRi(s)

Differentiating equations (5) and (6) once with respect to s yields
-i -i -'i I

dR (s) dR (s) dRC. 1-A c dC. (a(C.s)

ds ds d(a(s))

and,

dR = (s) dR' (s)

ds -np 1- ds n
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Setting s to zero, the first moments of the recursions are given by

E R N N R° | = Np (7)

E Ri-1]

•ERLI | L(+ E[L )i=1,2...T (8)
1-1E RC|

ERn | = - 1+ cE R 1 (9)
n np ,1 n+! Ci+l-<n<Ci

Differentiating equations (5) and (6) a second time yields:

d2 R (s) d2 R (s) dR (a(s)) ( dR (s) d2R -(a(s))

ds ~ i ds2 d(ai(s)) tds ) d(a (s))2

(

and,

dW () d R( + ts) 2 + 2np(1-c d (s) )

ds ds ds

Setting s to zero, we find the second moments:

1+NE R NE(R) (31)

1-AiE R

E| R i ) E |R~ = + E(R^. ) | i=1,2 ... T (32)

Rn np n+l in E C,+l -n<C.
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Finally, differentiating equations (5) and (6) a third time yields:

d3Rk (s) d3Rk (s) dR (a(s)) A (s) dR (s) d2R~- (a,(s))
- =-A -3. 1-A.

ds3 i ds3 d(ai(s)) ds2 ds d(ai(s))2

idRC (s) d3Rc- (ai(s))

3 ~ds ~ dsd(a (s))3

and,

d3P () d3i (s)
ds3 i 2

d2i (S) (s) (s 3

_ 6npAC n + f
n+1 x C n+1 i -3

- 6np~c I-s dsi dS2 i ds

dRn (s) 3 d 3' n (s)

Whence the third moments of the first passage times, setting s to zero,

E[I(RN) = (Np)3

1

i = 1,2,...,T- 1
Ci+1 'n<Ci 

(34)

(35)

I+XE R 1+XE R'
C. 3 C. 2+3. 

i-1 +3. -tE R E Ri-i ] 1,=< i < Ti<
i-I ci t i-1 ci1-iE i c

] 1_E R. C.

E(R)i = | =E[(R )I] +6E[(R )IEIR'I 6E Ri ]n np n+l n n n
i=1,2...,T-1
Cil+,n<C
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