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RESEARCH OBJECTIVES

The research on noise in electron devices has two objectives:

(i) The study of specific devices, such as the parametric amplifier and the maser,
to determine the physical sources of noise and the limitations they impose on the noise
performance of the amplifier.

The parametric amplifier with coherent input signals at both the signal and idler
frequency, and the degenerate parametric amplifier are the impetus for the second
objective.

(ii) The determination of a measure of the optimum noise performance of multiter-
minal linear amplifiers. The optimum noise performance of a linear twoport amplifier
is known to be expressible in terms of its minimum noise measure, a quantity that is
characteristic of the amplifier. The optimum noise performance of a multiterminal
pair amplifier excited by a multiterminal pair source is at present under study for the
purpose of devoloping an analogous measure for the optimum noise performance of
such an amplifier.

H. A. Haus, P. Penfield, Jr., R. P. Rafuse

A. SOLUTIONS TO THE PROBLEM OF THE OPTIMUM NOISE PERFORMANCE

OF MULTITERMINAL AMPLIFIERS

In a previous report1 we showed that under certain restrictions the stationary values

of signal-to-noise ratio which can be obtained for a specified value of exchangeable

signal power at a single-output terminal pair by imbedding an n-terminal pair source

and an m-terminal pair amplifier in an n + m + 1 terminal pair lossless network are

governed by two coupled matrix equations - Eqs. I and 2.

Ena E t  + 2k(Z + Zt) x = 0 (1)na na 2 a a 2

EEtx + i E + n+2k(Z+Zt)l = 0 (2)ss 1 n n

By a simpler derivation, it has been established that Eqs. 1 and 2 are valid regardless

of the nature of the matrices characterizing the source and amplifier networks; how-

ever, for simplicity we shall assume here that EsE is positive definite, Z + Zf is

positive definite, and Z + Zt is indefinite.a a
Components of the vectors xl and x 2 may be interpreted as complex voltage ratios.

For instance, with all voltage sources in the source and amplifier short-circuited
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except the source represented by Es 1 , which is the open-circuit signal voltage at the

first terminal pair of the source network, the open-circuit voltage at the output termi-

nal pair is x 1 1 E s 1 , where x1 1 is the first component of the vector xI. Similarly, the

components of x2 relate the open-circuit noise voltage at the output terminal pairs to the

open-circuit voltages of the amplifier. Imbedding the source and amplifier networks in

a given n + m + 1 terminal pair lossless network enables us to define a unique pair of

vectors xl and x2 . The reverse is not true; it can be shown that there are an infinite

number of lossless networks corresponding to a particular pair of vectors xl and x2.(i)For Eq. 1 there are n eigenvalues Xi and eigenvectors x2  We may express the

eigenvalue X. in terms of its eigenvectors as
1

(i)tE  Et x (i)
2 na na 2

1 2x Z +Z (i)
a a) x2

For convenience later, we shall label the smallest positive eigenvalue as X1 and the

remaining positive eigenvalues in ascending order, and we shall label the smallest neg-

ative eigenvalues Xm and the remaining negative eigenvalues in descending order.

Equation 2, on the other hand, has n solutions for each of the m eigenvalues k. of
1

Eq. 1; this gives us a total of n X m sets of solutions to Eqs. 1 and 2. Using a

double-subscript notation for these eigenvalues and eigenvectors, we may express the

eigenvalue pij in terms of . and the eigenvector x(ij)as

(ij) I j) + 2 x (ij)t(z+zt (ij)
Sx 1  EE nnx + 2.x (Z+Z )x

Sj n (4)ij xiJ) E Etx(ij)
1 s sl1

Here, we number our eigenvalues for a given ki by the order of the value of their recip-

rocals; the minimum value of 1/ i (which may be negative) is 1/ il and the maximum

is 1/pin.

We would now like to relate the quantities of interest, namely the signal-

to-noise ratio at the output and the exchangeable signal power at the output,

to the eigenvalues derived from Eqs. 1 and 2. For the optimal imbedding net-

work corresponding to a set of values X. and 4ij we write the signal-to-noise

ratio as

x(ij) EE x(iJ)
1 S= Es s l

".. -(5)

1 n n 1 2 na na 2

and the exchangeable signal power as
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(6)
x~ii) E Et x ~ (i

1 ss 

2x (Z + ) + xx2x (Z+Zt) )xj + 2x(')t Z ,+Z4 x1 1 2 ( 2

We now see why these quantities do not appear directly as eigenvalues. In Eq. 3 we see

that X. is independent of the magnitude of x 2 ; similarly, tij in Eq. 4 is independent of

the magnitude of x . On the other hand, both of the quantities defined in Eqs. 5 and 6
(i) a i j )

are dependent on the relative magnitude of x 2 and xl ) We can explicitly demonstrate

the consequences of this by considering the particular realization of the optimal network

that places this fact in evidence.

Consider an imbedding of the m-terminal pair amplifier in an arbitrary m + 1 ter-

minal pair lossless network. We know that we can always pick this network in such a

manner that the mean-square voltage and the real part of the impedance at the output

terminal pair are x na naE and 1/2 x Z + Z  , respectively, where

(i)' (i)x 2  is a vector that is proportional to x2 Similarly, we can losslessly reduce the

source network to a one-terminal pair network with mean-square signal voltage

IDEAL
I:n

Fig. XII-1. Realization of the optimal network.
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x(i)t EEEx j), mean-square noise voltage x E x , and impedanceI s s1 1 n n 1

1/2 x i ) (Z+ Z) x i ) . Combining these two reduced networks as shown in Fig. XII-1,
we see that the signal-to-noise ratio and the exchangeable signal power at the output are

(i) G)given by Eqs. 5 and 6, respectively, where x2 = nx This network is optimal in the

sense of Eqs. I and 2 for any value of n. We see that varying the transformer ratio is

equivalent to varying the ratio of Ix )J to Ix~i)l . Physically, then, when we vary n

or x(/ xij, we are changing the amount of our use of the amplifier, since we are

changing the exchangeable signal power at the output and, thereby, also changing the

signal-to-noise ratio at the output. This interpretation is actually completely general

and independent of the particular imbedding network that we are using. However, in

general, variation of the ratio of Ix()l to Ix(lJ)l can correspond to some complex

variation of the imbedding network because of the multiple feedback loops that may

exist between the source and amplifier networks. Figure XII-1, then, just gives a

convenient way of visualizing the effects of varying the ratio of IxM)I to I xl J

We see then that setting the ratio of I x') to xl equal to zero or, equivalently,

setting n=O is the same as throwing away the amplifier. The values of aij and pij for

this limit are just the signal -to -noise ratio and the exchangeable power of the source

network alone. We designate these two quantities as

x(iJ)t E Et x(i j )
S=1 ssl(7)

i, S x(ij)t E Et x j)
1 nnl

xij)t Et x(ij)Pij, s 1 s s l ,
2x(iJ) (Z+Z ) x(ij)

respectively.

It follows that for a given pair of eigenvalues ki and Lij we may vary ij and pij
by varying the ratio of the magnitudes of the eigenvectors, that is, by varying only the

transformer ratio in Fig. XII-1. Such a variation enables us to plot the stationary

values of signal-to-noise ratio as a function of the exchangeable signal power at the out-

put corresponding to this particular solution to Eqs. 1 and 2. For this purpose we need

the relation

1/crij= ij - ki/Pij, 9)

which may be verified by using Eqs. 3-6. From Eq. 9 we see that it is more conven-

ient to plot characteristic curves of 1/aij as a function of 1/p... In the I/ij. - 1/pij
plane these characteristic curves are straight lines with slopes -X. and intercepts

1/ i j with the 1/rij axis. Thus a set of eigenvalues k. and Lij merely determine a
13 13 1 i
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characteristic line in the 1/hij - 1/Pij plane; moreover, we see that for the stated

problem there are n X m such lines.

It must be pointed out, however, that only one-half of a characteristic line is real-

izable. Comparing Eqs. 5 and 7, we see that

1 1- , (10)
1] 13, s

and, using Eqs. 4, 7, 8, and 10 in Eq. 9, we find that either

. > 0 and i/pij < 1/Pij,

or (11)

. < 0 and i/Pij > 1/pi

The equality signs in Eqs. 10 and 11 will hold only when I x') /I x ij) is zero, that is,

the realizable one-half of the characteristic line ends at the point determined by the

source - the point whose coordinates are 1/i, s and 1/pij . Hence, in the 1/0-ij - 1/pijij, s ij, s
plane we can realize only the one-half of the characteristic line that is above and to the

left of the source point for negative Xi, and above and to the right of the source point for

positive Xi. We can only achieve a signal-to-noise ratio equal to 4ij at infinite exchange-

able signal power if 1/pij = 0 satisfies one of the inequalities of Eq. 11.

In displaying the solution to the optimization problem in the 1/cr. - 1/p. plane, we
13 ij

shall show only those solutions for a given Xi which correspond to 1/pil, the minimum

value of 1/. i , and 1/pin, the maximum value of 1/pi. We would like to find where the

end points of these characteristic curves lie in the 1/ij - 1/pij plane. If we consider

how these end points change as k. changes, we find that they generate a closed curve.

This is illustrated in Fig. XII-2, in which several of these characteristic curves are

shown as they must appear for positive X's and minimum 1/ i.  With reference

to Fig. XII-1, when we vary ki we are changing amplifiers and then reoptimizing the

source for use with this new amplifier and thereby obtaining a new source point.

3

2 3 >  2 
>  X1 0

1/P. i

Fig. XII-2. Characteristic curves for Xi > O, i/pi l

QPR No. 68



(XII. NOISE IN ELECTRON DEVICES)

Fig. XII-3. Typical set of characteristic curves.

The closed curve generated is tangent to each of the characteristic lines. Physically,

this curve represents the boundary of the region of values of the noise-to-signal ratio

and the reciprocal of the exchangeable signal power that may be obtained at the output

by imbedding only the source network, and not the amplifier, in an arbitrary lossless

imbedding network.

In Fig. XII-3 we show a typical plot of characteristic curves for a positive definite

source and an amplifier having both positive and negative eigenvalues. We have shown

only those characteristics corresponding to extremal values of 1/i. for four values of

X. - the two smallest positive eigenvalues and the two smallest negative eigenvalues.

(All solutions corresponding to intermediate eigenvalues of 1/L i would give rise to

characteristic curves that terminate at points inside the source region. ) All of these

characteristics may be interpreted. The line characterized by Xi and 4ij is the true

optimum-performance curve. It is the curve of the maximum signal-to-noise ratio as

a function of exchangeable signal power for exchangeable signal power greater than pa'
The line characterized by XI and ln represents the worst way of increasing exchange-

able signal power with the best reduction of the amplifier. The line characterized by

X2 and L21 is just a locus of points of stationary signal-to-noise ratio for fixed

exchangeable signal powers. This same statement applies to all of the curves shown.

The line characterized by Xm and Lml represents the best way of reducing the
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exchangeable signal power below pp. Since Xm is negative here, we are using the

amplifier as a positive resistor; for that matter, we are using the least noisy positive

resistor appearing in the cannonic form of the amplifier.

W. D. Rummler
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