
XVIII. PROCESSING AND TRANSMISSION OF INFORMATION

Prof. W. B. Davenport, Jr. Dr. A. Wojnar A. R. Hassan

Prof. P. Elias T. Adcock J. L. Holsinger
Prof. R. M. Fano T. M. Anderson T. S. Huang

Prof. R. G. Gallager M. H. Bender R. S. Kennedy
Prof. F. C. Hennie III E. F. Berlekamp L. Kleinrock

Prof. E. M. Hofstetter J. E. Cunningham A. H. Molin

Prof. D. A. Huffman H. Dym J. E. Savage

Prof. I. M. Jacobs P. M. Ebert J. R. Sklar

Prof. A. M. Manders D. Ecklein I. G. Stiglitz

Prof. B. Reiffen D. D. Falconer I. E. Sutherland

Prof. W. F. Schreiber E. F. Ferretti W. R. Sutherland

Prof. C. E. Shannon G. D. Forney, Jr. O. J. Tretiak

Prof. J. M. Wozencraft U. F. Gronemann W. J. Wilson

Dr. C. L. Liu P. W. Hartman H. L. Yudkin

RESEARCH OBJECTIVES

This group continues its investigation of sources that generate information, channels

that transmit it, and machines that process it.

Work is continuing on the processing of pictures by means of computers. The broad

objective of this work is to elucidate the fundamental properties of vision as they apply

to image transmission and reproduction. Among the more specific objectives are the

design of efficient image-transmission systems, and the development of devices capable

of performing some "human" operations, such as noise reduction, image detection, and

quality improvement.

The efficient transmission of speech by digital means is also receiving some atten-

tion. The objective of this work is the early exploitation for speech communication of

digital transmission systems employing encoding and decoding.

During the past year, significant new results have been obtained on the properties

of sequential encoding and decoding, and on feedback strategies for noisy two-way chan-

nels. Increased emphasis is being placed on the exploitation of these techniques in con-

junction with physical channels, and on the design of the necessary encoding and decoding

equipment. Plans for the future include the development of acoustic channels capable

of simulating multipath and scattering phenomena of practical interest, and of encoding

and decoding equipment sufficiently flexible to permit experimentation in real time in

conjunction with these channels.

An effort is being made to bring into sharper focus the relation between the newer

encoding techniques and older modulation schemes. For this purpose, the behavior near

threshold of frequency modulation and pulse-position modulation are being investigated
by experimental, as well as analytical, means.

Work continues, also, on the structural characteristics of digital machines. A prime

objective of this work is the establishment of relations among the reaction time of

machine, the complexity of the data processing to be performed, the number of storage

elements, and the speed of the elementary components.
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A. PICTURE PROCESSING

1. A STUDY OF THE PICTURE-SAMPLING PROCESS

Every picture-transmitting system involves a stage in which an electric signal is
abstracted from a source image, and a stage in which the electric signal is converted
to another image. The first of the above-mentioned stages may be thought of as a
sampling process, and the second as a filtering operation.

If the picture-transmitting system is one that sends a sequence of signal values
(sampled data), the over-all system may be modeled as the block diagram shown in
Fig. XVIII-1. While this block diagram is not a good description of all possible image-
transmission systems, many systems do fit our model. Note that the input function is
a function of two dimensions (space) if the picture is a photograph, and of two spatial
dimensions and time for a real image. The present study is restricted to still pictures;

thus the filters and functions are defined on two variables - they are two dimensional.

ELECTRICAL
SOURCE LINEAR SAMPLER SIGNAL; LINEAR OUTPUT

PICTURE SAMPLE PICTURE
VALUES

Fig. XVIII-1. Diagram of image-transmission system.

The purpose of this study is to investigate the effect of the impulse responses of the

two linear filters in Fig. XVIII-1 on the quality of the transmitted picture. The exper-

iments will be performed with the digital television equipment built by our group. 1 The

filter used before sampling is synthesized by defocusing the scanner lens, and placing a

transparency on the lens. The impulse response of such an optical system is just the

transmittance distribution of the transparency on the lens. The linear filter that con-

verts the sample values into the final picture is a similar combination of defocused lens

and transparency in the recording camera.
O. J. Tretiak

References
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2. THE MATHEMATICAL FOUNDATION OF THE SYNTHETIC HIGHS SYSTEM

The Synthetic Highs1 system is a channel-capacity reduction technique that is useful

for efficient coding of television signals. Figure XVIII-2 illustrates the logic used, and

Figure XVIII-3 shows waveforms illustrating the underlying principle. Figure XVIII-3a
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Fig. XVIII-2. Diagram of Synthetic Highs system.

is an exemplary video signal. The low-frequency component (Fig. XVIII-3b) is trans-

mitted conventionally. The edge detector is essentially a differentiator, giving the

output, (Fig. XVIII-3c). This signal is transmitted by some form of run-length coding,

put back in real time by the decoder, and applied to the synthetic highs generator (a

linear filter) to produce the waveform (Fig. XVIII-3d). This waveform is added to the

transmitted lows to produce the output video.

a I I

C Fig. XVIII-3. Waveforms of Synthetic Highs system.

+CJ-

It has always been evident from qualitative considerations that if the edge detection

(differentiation), coding, and decoding were error-free, then a linear filter could be

found to generate a high-frequency component to produce a video output identical with

the input. 2 This has been confirmed by experiment, but never proved mathematically.

The purpose of this note is to present a proof and to extend the theory to two- and

three-dimensional coding.

a. One-dimensional Case

Consider a picture whose brightness as a function of position is called B(x). If the

spatial impulse response of the lowpass filter is M(x), and the output of the edge

QPR No. 68 141



(XVIII. PROCESSING AND TRANSMISSION OF INFORMATION)

detector is dB/dx, then we have the problem of finding a filter whose impulse response

H(x) satisfies the following equation:

dB(x) H(x-x') dx' = B(x)- )B(x') M(xLx) dx'. (1)

Put into words, the edge signal dB/dx is applied to the filter H, and the output is to be

the high-frequency component of the original video, expressed as the entire signal minus

the low-frequency component. This equation is solved by taking transforms of both sides.

sides. Thus

jw b(w) h(w) = b(w) - b(w) m(w). (2)

As long as b(w) 0,

jw h(w) = 1 - m(o). (3)

Taking inverse transforms, we obtain

dH
dx = U(X)- M(x) (4)

x
H(x) = u 1(x) - M(x') dx' (5)

-oo

which is precisely the result that was obtained experimentally.

b. Two-Dimensional Case

Since the correlation between vertically disposed picture elements is fully as great

as that between horizontally disposed elements, it is clear that increased savings are

available by extending the technique to two dimensions. The first successful attempt

to do this was reported by a member of our group recently. 3 In his work, John W. Pan

detected both horizontal and vertical edges and transmitted them to the receiver by

fitting a series of straight lines to the outlines of objects in the picture. The high-

frequency signal was synthesized in terms of either a vertical or horizontal edge, which-

ever was closer to the fitted line segment. Artifacts occurred at the corners of objects

and along contours of approximately 450, the former being partially eliminated by a

special "rounding" routine.

An alternative procedure suggests itself in connection with the preceding mathemat-

ical derivation. Suppose that we use a system very similar to that in Fig. XVIII-2, but

in which the filters are two-dimensional, the edge detector is a contour detector, and

the run-length coder is some form of contour tracer and coder. The question then

arises about whether there is a two-dimensional filter into which one can put data on

the contours of an image (such data being efficiently codable) and out of which one might

obtain the two-dimensional high-frequency component of the image. The filter should
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be invariant with the image so that all possible images might be handled without intro-

ducing spurious artifacts in special cases such as at corners of objects. It has been

found possible to solve this problem if the gradient of the image, VB is used as an edge

detector, and if the filter is specified by its vector impulse response.

The output of the filter, which is the scalar high-frequency component, is then

defined as the dot product convolution of the input VB and the response H. Thus we

have a relation analogous to (1) to define H.

VB OH = B - B( M, (6)

where & is the conventional scalar convolution, and 0 is the dot product convolution.

Taking the transform of both sides, we have

[jw b(w)] - h(w) = b(w) - b(w) m(w). (7)

For b / 0,

jw - h = 1 - m(w) (8)

which, by rule (A-5) in the Appendix, can now be retransformed into the space domain

to yield

V - H = U (r) - M(r). (9)

We solve for H by integrating throughout the circle of radius r.

2Ts r 2 r 2w rV r H r drd = [u (r) - M(r) ] r drdO = 1 - M(r) r drdO (10)

0 0 0 0 0 0

We simplify this equation by assuming radial symmetry and by applying the diver-

gence theorem to the left-hand side.

H n r dO = 1 - 2r L(r) rdr

(11)

H wr 2ir = 1 - 2 r L(r) rdr

H r L(r) rdr (12)Tr r 0

This general result indicates that it is possible to implement the system of Fig. XVIII-2

in two dimensions. The reconstructed picture should be identical to the original if the

gradient field is transmitted without error. Previous experience with the tolerance of

human vision to errors caused by nonexact gradient transmission in one dimension indi-

cate that quite high efficiency; that is, more than ten-to-one reduction in data rate
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should be possible with quite small quality impairment. To achieve this, it will be
necessary to fit curves of at least second degree to the detected gradient points, so that
discontinuous second derivatives of the outlines may be avoided.

c. Three-Dimensional Case

The relation (9) is valid for any number of dimensions, since it was derived in vector
form, the only restriction being the transformability of the function involved. We may
thus solve for H in three dimensions, assuming radial symmetry,

V • H dV = 1 - L(F) dV, (13)

where § dV signifies a volume integral within the sphere of radius r. Again using
r

the divergence theorem, we obtain

H n dS = I- M(F) dV (14)

S4r=r-1r - M(r)dV (15)
r

H = 1r - M(i") dV (16)

The three-dimensional situation arises when we deal with images that change in
time. The input is then B(x, y, t). From our analysis, it appears possible to recon-
struct B(x, y, t) at the receiver by combining a low-frequency component (that is,
a low-definition, low frame-rate picture) with a synthetic highs component. The last
component is found from the dot product convolution of the transmitted gradient and a
spatio-temporal filter H.

To economize on the transmission of the gradient data, presumable it would
be possible to perform a contour-tracing operation and then transmit a few par-
ameters of the contours. In this case, the "contours" would be surfaces rather
than curves.

It is evident that the restriction to radially symmetrical three-dimensional filters
means that the errors introduced into the space and time domains of the moving image
which are due to quantizing errors, will be similar. Since the spatial and temporal
frequency responses of human vision, as deduced from threshold measurements, are
similar in shape (some worker believe they are physiologically related) it is to be
expected that similar distortions will be similarly acceptable.
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APPENDIX

FOURIER TRANSFORMS IN VECTOR NOTATION

1. Introduction

Using capitals to represent functions in the space domain and lower case letters for

their corresponding transforms, we have

rxi + yj

W = xI + yJ

H(r) = H(x, y) = H x + H .

(Do not confuse j = N1Y withj, the unit vector in the y or y direction. )

We define the two-dimensional transform

S(W) = M(r) e-J - r dA.

Here, dA is the area element in the space domain. On this basis, and using the linearity

properties of Fourier transforms, we have

h(w) = hx ()i + h yw)j

x y=i Hx(r) e- r dA + SH(i) e-jwr dA

h(w) = -H(r) e- *r dA

which we write

h(w) = H(r) (A-l)

hx(:) ==Hx (r) (A-2)

hy(1) Hy( ). (A-3)

2. Differential Operators

Since h(w) = H(r) e-Jw 'r dA, it can be shown for reasonable H's that

H(r) SSh(w) ej~ r

(2)where d is the area element in the frequency domain. Thus

where di is the area element in the frequency domain. Thus
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8H = j xh() ejwr.T do
8 x x (2Tr) 2

aH =  jSSyh(a) e Jw d2

a y (21r) 2

Since VH = 1-- + J y' we have

VH = j-h(w) eJ r
(2r)2

V H =-- joh (A-4)

aH
If H is a vector, so that H h ,= then -x -==, j xhx' and so on.

aH
- H y j r

Since V. H- x + SS- j(wh +wh ) e r d2
ax x yy (27)2

V H <== j~.h (A-5)

3. Convolutions

In multidimensional space, we can take convolutions among vectors, scalars or

vectors and scalars. It is of interest to find the equivalent operation in the frequency

domain to these various convolutions in the space domain. By strict analogy with the

one-dimensional use, we have

P Q == pq (A-6)

P ® Q q, where ) - scalar convolution. (A-7)

Since P - Q = PxQx + PyQy

P (D Q = . q, (A-8)

where O scalar product convolution.
W. F. Schrieber
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B. FREQUENCY -COMPRESSIVE FEEDBACK SYSTEMS

1. Introduction

The main purpose of this research project is to extend the analysis of a signal-

tracking FM systeml which has recently been applied successfully in space commun-

ication. A system with a frequency-compressive feedback loop around the frequency

demodulator was devised 2 as early as 1939, but its applications did not appear until the

late 1950's, and, in fact, a careful analysis was not begun until the appearance of Enloe's
3

paper, in 1962. Enloe's prediction of the second threshold in the closed loop seems to

be qualitatively correct; the purpose of the present research is to provide a quantitative

verification.

In order to extend the analysis of threshold phenomena in FM systems, an attempt

has been made to develop new formulas for determining the input and output signal-to-

noise ratios at the "threshold of full improvement. " Thus, we seek to bridge the gap

between exact analysis (leading to complex nondiscussible expressions) and elementary

approximations with limited validity.

Our final aim is to prescribe the synthesis procedure for optimum FM reception

filters and to determine the power-bandwidth "trade-off" relations.

2. Threshold in the Conventional System

Threshold in an FM system is the transition region between linear and nonlinear

input-output behavior, as well as between Gaussian and non-Gaussian output noise

domains. Early progress in analyzing the FM threshold phenomena has been achieved

mainly by the very complex computations of Rice4,5 and Stumpers. Rice's results

were exploited by Skinner, 3 who produced the threshold curves of the conventional FM

system with ideal filters and an ideal demodulator.

Skinner's plot 3 clearly shows that the carrier -to-noise power ratio (CNR) producing

the threshold (of full improvement7) depends on filter bandwidths and can hardly be con-

sidered constant. The widely assumed existence of a fixed threshold CNR leads inev-

itably to errors of approximately 5 db, or more.

To facilitate the analysis of the real, sliding threshold, we propose a new simple

expression:

SBIF
tB 'L F

where rt is the demodulator input CNR at the threshold (in the if band), BIF is the

equivalent two-sided noise bandwidth of the predemodulator filter, and BLF is the equiv-

alent noise bandwidth of the postdemodulator filter.

Comparison of this formula with the Skinner-Replogle 8 exact threshold curves shows
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db
30

< 25

0O
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u301/1

Fig. XVIII-4. Comparison of the new expression for threshold carrier-to-
noise power ratio in the baseband with the Skinner-Replogle
exact threshold curve.

that now the errors -do not exceed 2 db in the very wide range

BIF
F 3 + 30.

LF

(See Fig. XVIII-4.)

The well-established expression for output signal-to-noise power ratio at and above

the threshold of full improvement is

3 2
R=2m r,

where both the input CNR, denoted r, and the output SNR, denoted R, are determined in

a bandwidth that is equal to the baseband; m denotes the modulation index of an FM sig-
nal. Hence, we obtain a new formula for SNR at threshold:

3 2 3 2 BIF 2
Rt= m rt=Tm

LF
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Let us also assume that the if filter of nearly rectangular shape has a noise band-

width equal to the approximate bandwidth of the FM signal:

BIF = B S  
2 fm(l+m),

where fm denotes the baseband width or the maximum modulating frequency. Then, with

the postdemodulator filter also matched to the baseband (BLF fm), we obtain

r t 4(l+m)2

Rt =6m (l+m) 2

10 20 30 40 db

INPUT CARRIER-TO-NOISE RATIO (REFERRED TO THE BASEBAND)

Fig. XVIII-5. Optimum conventional FM systems.
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This set of simple but fairly accurate formulas can be used to analyze quantitatively

the threshold behavior in a conventional FM system. Note, for instance, that if the

signal power, the noise power spectral density, and the baseband remain fixed, there

exists a unique minimum value of the signal modulation index

minmin
Rt + 1

/ 6 -4 2

which will yield the required system output performance Rt with minimum signal-

bandwidth consumption.

Since rt and R t are strictly interrelated in an optimal fashion, we can represent all

optimal conventional systems by a single locus (Fig. XVIII-5)

R t 3 =r t -r + 1 .
t 2 t\4 t

Each point on the locus graph corresponds to one value of the signal characteristic

m = I - 1.
2 t

OUTPUT

SMALL PHASE
DEVIATIONS

(iD(s)

Fig. XVIII-6.

INPUT
MIXE

SMALL INDEX
ANGLE - MODULATED

Linearized baseband analog for a frequency-compressive
FM system.

OUTPUT

Fig. XVIII-7. Block diagram for a frequency-compressive
feedback FM system.
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3. Thresholds in the Frequency-Compressive Feedback System

In order to analyze the threshold behavior in the frequency-compressive feedback

loop, we adopt Enloe's reasoning and results. 3' 8 In particular, the fundamental limi-

tation in exchanging power and bandwidth is believed to occur because of the so-called

closed-loop feedback threshold.

When using the linearized baseband analog (Fig. XVIII-6) of the actual system

(Fig. XVIII-7) note that a variety of feedback filter structures is possible, but for the

if filter the single-pole bandpass structure is imposed by stability requirements. Enloe

has found that the input noise in quadrature with the carrier prodpces angle noise mod-

ulation of the variable oscillator. If the rms phase deviation of this noise modulation

is no longer small compared with unity, a new (feedback) threshold occurs.

As a measure for the location of this feedback threshold, Enloe suggested the input

carrier-to-noise ratio pc in the closed-loop noise bandwidth Bc , and evaluated it as

5 (jF-1)2 c 

c

where F is the feedback factor, which equals the frequency deviation compression ratio.

Noise bandwidth B must be defined for the transfer from signal input to the oscillator
c

input of the mixer.

The last formula may easily be translated to the customary baseband width fm, and

it becomes

B

m

This threshold CNR can now be directly compared with the conventional (so-called open-

loop) threshold rt that occurs in the usual way in the frequency demodulator, preceded

by a narrow-band if filter. Since both thresholds are independent, it is obvious that

maximum system sensitivity occurs with p = rt. This condition can be met by proper

location of transfer poles around the feedback loop.

When positioning the pole of the if filter the compression of the signal modulation

index, which is now m/F in the if path, should be implemented. Thanks to the reduction

of nonlinear distortion in the feedback loop, it is no longer necessary that the signal

bandwidth equal the filter noise bandwidth. 8 It is now sufficient to make the analog

single-pole filter natural frequency, a/2r, equal to the if signal-frequency deviation,

mfm/F. Hence

a f m
Zwr mF

a
and with the if filter noise bandwidth BIF , we find

IF Z'
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BIF m

m

so that for the conventional threshold,

rt= 2= 10 2

The closed-loop noise bandwidth Be depends for the most part on the structure and
parameters of the feedback filter. With certain simple structures, however, a propor-
tional relation of the type Be c  2 fmF is approximately valid. In this case we have

(F-1) 2

p-10 F

To fulfill the condition of maximum sensitivity, p = rt, we then require

(F-1) 2

10( 2 = 10 F

From this equation, we obtain the optimum signal index

Mopt = (F-1)
opt

for a most sensitive feedback system with the compression ratio F. If the output per-
formance Rt is prescribed, there is then no choice for F except

F = 1 + = 1 + 0. 51 t,opt15 t

and algebraically we can find

5. 1 4T
t

P= 4
1. 97 + rR-

t

Now, a power comparison of the threshold rt of a conventional FM system with that of
a feedback system (p) is straightforward. Of course, equal performance Rt of both sys-
tems at the threshold should be assumed:

32 32Rt =- m rt = m p,
F

where the subscript F pertains to the feedback system. Since for the conventional sys-
tem, then, we have
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rt = 1+ 1+2 3 2

the extension of threshold amounts to

r 1+ 1+2
P t

5. 1R I .t97+4

Assuming, for example, that Rt = 104, or 40 db, we obtain the following feedback

system parameters.

Fopt = 1 + 5. 1 10 6. 1

m = 5. 1 ' .1= 12.6.

opt

The power saving, in comparison with the standard system is, then

r
S= 4. 5, or 6. 5 db.
P

Note that there is actually a trade-off between bandwidth and power, since the signal

bandwidth increases proportionally as 1 + mF. This leads to

BS F  1 + m 1 + (F-l)NT

BS 1+m

t + 1

In our example, it amounts to

B 1
SF 13. 6

- - 1.97,
B 6. 9

that is, the 6. 5-db power saving will require a 97 per cent increase in spectrum occu-

pancy. It is, however, not the best trade-off obtainable with an optimally designed feed-

back filter.

4. Optimization of the Feedback Loop

For the feedback loop to be stable and to have finite noise bandwidth, it is necessary

to interrelate the number of poles and the number of zeros in the open-loop transfer

function. Two choices are possible: the number of poles exceeds the number of zeros
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by 1 (this gives a better stability margin), or the number of poles exceeds the number
of zeros by 2 (this is still stable, although with a smaller margin).

Practical tests have shown that three poles in the open loop, excluding the chain of
broadband if amplifiers, is the upper limit. It is known, also, that only one pole is
allowed in the narrow-band if filter for stability reasons. Therefore one need only
consider the following structures for the feedback filter: Ip; lp and lz; 2p and lz; Zp
and 2z.

In this list, the class with one zero can be subdivided into two groups: the zero can-
cels the if filter pole, and the zero does not cancel the if filter pole. The latter will
subsequently be called a stabilizing zero. It is obvious that in the "2p and 2z" filter,
one zero is of the cancelling type and the other of the stabilizing type.

The main requirements for the optimum feedback loop synthesis are: (a) open-loop
transfer function should be reasonably uniform over the baseband (in order to have the
if frequency deviation compressed for all modulation frequencies); and (b) closed-loop
noise bandwidth should be minimized by a judicious choice of the feedback filter struc-
ture and of the location of its stabilizing zero.

It is important to note again that the closed-loop transfer and bandwidth are defined
between the two inputs of the mixer (Fig. XVIII-7). The closed-loop transfer function
Hc(s) is uniquely determined by the open-loop transfer function H (s).

Ho(s)
Hc(s) = + Ho(s )

The definition of the closed-loop noise bandwidth that has been adopted is
1/2T j jc

B = J Hc(s) Hc(-s) dsc [He(0)]2 -j c

and the integration can easily be performed for rational transfer functions. 9

In particular, the open-loop transfer function of the highest permitted order has
the form

a b s+c
H (s)- X X  X (F-l),

o s+a s+b c '

which directly corresponds to the most general "2p and Zz" case, and also to the
" Ip and lz" (stabilizing) case. Then the closed-loop transfer function is

ab(F- 1)(s+c)/c
H(S) = 2

s + [a+b+ab(F-l)/c] s + abF

and the closed-loop noise bandwidth can be shown to be
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2
abF c + abF

B x
c Z(a+b) c 2 + abc(F-l)/(a+b)

It is now possible to prove that there is only one choice of value for c to mini-

mize B :
c

c F (a+b)+,/' (a +b2)+ab(F+1/F) .
opt F- 1

After tedious algebraic manipulations, we obtain the minimum noise bandwidth of the

closed-loop with an optimum stabilizing zero

abF 2  abF

cmina + b + c pt(Fl +b +ab (F+

This is a quite general result of considerable interest for the system design.

In the apparently best "2p and Zz" class of feedback filters, there are two special

cases of particularly advantageous performance. The following simple expressions

hold true for the binomial filter with two cascaded real poles, a = b,

F+ N F __

c op t =b B b
opt - 1 Cmin (1+ T) 2

For the Butterworth filter, with two conjugate poles, we denote

A A
a = (1+j) b = (1-j) -aj

and it follows that

opt F - 1 F

AFJT
B

mi n  F 2 + 1 + - F

Other possible filter structures have been catalogued during this work together with

their noise bandwidths. The determination of the feedback-filter parameters with

regard to the baseband width will be the subject of further study.

In order to prepare an orientation for the expected results, we shall continue with

the example given above for the optimum Butterworth filter. If we assume that half-

power bandwidth of the open-loop transfer function coincides with the highest modula-

tion frequency fm' we must set A = 2?rf m . Consequently,
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B c 2TrFmin
f ,mm //F + + N1 T

and

10r(F- 1)2/F
rtF= P

F

Furthermore, it can be found that

Rt = 150(F-1) 4

S F+ 2

Solving this for F, with R = 104 as before, we obtain

F = 6. 74opt

wherefrom

m F  = 13.2 and p = 38. 0.
opt

Finally, the power saving is evaluated as 7 db at the expense of a 106 per cent
increase in signal bandwidth. Note that the efficiency of power-bandwidth exchange
remains virtually unaffected by the optimization of the feedback filter.

5. Direction of Further Study

After the final choice of the best filter structure, the design procedure for the feed-
back filter will be formulated. Then the optimization problem of the feedback system
will be resolved. The analytical results will be summarized in a general chart in which
the optimum system parameters m F , F will be indicated, as well as the system perfor-
mance at threshold in terms of r t and Rt. The expected threshold extension will also be
obtainable from the chart.

Preliminary measurements have resulted in qualitative agreement with the analysis.
The principal analytical conclusions will undergo a comprehensive experimental verifi-
cation.
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