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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Magnetohydrodynamics

Our work in magnetohydrodynamics is broadly concerned with the interactions

between electromagnetic fields and electrically conducting fluids, particularly in those

situations to which a continuum fluid description is applicable. Both plasmas and liquid

metals are employed in the experimental aspects of our work and the development of

measurement techniques receives particular attention. An important extension of this

activity is the study of blood flow and related topics in biomedical engineering.

(a) Plasma Magnetohydrodynamics

The past year has been spent in improving the capabilities of the magnetic annular

shock tube for producing clearly defined quantities of shock-heated gas and for meas-

uring values of the physical quantities relevant to the experiments. These improve-

ments are based upon experience with the original version of the shock tube. In

particular, the following changes have been made:

(i) The duration and magnitude of the pre-ionization current have been increased to

improve initial gas breakdown.

(ii) The sinusoidal drive current has been replaced by a square pulse to reduce time-

variant effects.

(iii) All low-melting-point insulating materials have been removed, or covered with

Pyrex, to reduce ablation from the surface of these insulators.

(iv) Eight magnetic field coils have been inserted around the annulus to measure the

azimuthal distribution of drive current.

(v) A magnetic field coil has been provided to measure the variation of azimuthal

magnetic field with time at a fixed axial position.

*This work was supported in part by the U. S. Air Force (Aeronautical Systems

Division) under Contract AF33 (615)-1083 with the Air Force Aero Propulsion Labora-

tory, Wright-Patterson Air Force Base, Ohio; and in part by the National Science

Foundation (Grant G-24073).
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(vi) An electrostatic probe to complement the azimuthal magnetic field probe is being
designed.

Experiments have begun and the results of these changes should soon be known. These
experiments are particularly designed to test the azimuthal uniformity of the drive cur-
rent. The long-range goals of these experiments are still the improvement of this type
of shock tube and the careful investigation of magnetohydrodynamic shock waves.

A. H. Shapiro, W. H. Heiser, J. B. Heywood

(b) Mathematical Methods in Continuum Magnetohydrodynamics

This research is concerned with mathematical methods for the analysis of the inter-
actions occurring in magnetohydrodynamics. The present work has grown out of the
investigation of MHD channel flows; particularly out of the analytical and numerical tech-
niques that were used to obtain solutions to the nonlinear differential equation governing
the interaction of a traveling AC magnetic field with an MHD channel flow.

Our research concerns the application of techniques, such as perturbation expansions
and iterational and variational methods, to a variety of nonlinear continuum MHD prob-
lems. The purpose of this effort is twofold: first, to produce solutions to specific prob-
lems that are of practical interest; second, to obtain a better understanding of the broad
classes of problems to which these techniques are applicable. The analysis of the flow
of an electrically conducting fluid around a sphere with a dipole magnetic field is at pres-
ent being undertaken for the case in which the dipole axis is perpendicular to the direc-
tion of fluid flow.

J. P. Penhune

(c) Magnetohydrodynamic Wave Phenomena

One of our experiments is concerned with the excitation of Alfv6n waves in a liquid
metal (NaK alloy). Generation of these waves by using a current-sheet excitation has
been verified, and shown to be markedly superior to the mechanical methods used in
experiments reported previously. The systematic study of the excitation transmission,
attenuation, and reflection of these waves in the hydromagnetic waveguide continues.

A second waveguide study is concerned with MHD wave propagation in nonuniform
magnetic fields. NaK alloy again serves as the working fluid for the experimental part
of this investigation.

A theoretical study of MHD surface waves on fluids of finite electrical conductivity
is also being undertaken. An experimental study of some aspects of these waves has
recently been initiated, and will also use NaK as the working fluid.

W. D. Jackson, J. P. Penhune

(d) Magnetohydrodynamic Channel Flow and Turbulence

The flow characteristics of electrically conducting fluids in channels or ducts are
of interest in connection with many engineering applications of magnetohydrodynamics.
While these include both liquid and ionized gas flows, the use of liquid metals has advan-
tages for a considerable range of laboratory investigations.

A closed-loop flow facility has been constructed with NaK used as the working fluid.
This loop is being used for study of pressure drop versus flow-rate relations (including
those for MHD power-conversion devices), and the characteristics of turbulence in the
presence of magnetic fields.

The character of MHD turbulence is modified when a pronounced Hall effect occurs
in the flow. The characteristics of turbulence in this situation are being investigated,
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and work continues on the application of Norbert Wiener's "Calculus of Random
Functionals" to the study of turbulent-flow situations.

W. D. Jackson

(e) Local Fluid-Velocity Measurement in an Incompressible

Magnetohydrodynamic Flow

The behavior of different types of velocity probes is being investigated to develop
devices capable of measuring the local fluid velocity in an MHD flow for the case in
which the applied magnetic field is perpendicular to the fluid velocity. The develop-
ment of such probes will be important for experimental investigation of MHD flows,
particularly those associated with MHD power-generation schemes.

The behavior of a nonconducting Pitot tube is being investigated experimentally. Here
the J X B forces increase the pressure measured at the stagnation point above the usual
stagnation pressure. The velocity-pressure correlation has been determined experi-
mentally as a function of applied magnetic field for a probe with a flat front end perpen-
dicular to the axis of the tube. The effects of probe angle of attack and nose shape are
now being studied.

A miniaturized electromagnetic flowmeter is also receiving attention.

A feasibility study is being made to determine whether a hot-wire anemometer can
be constructed with sufficient sensitivity to be useful in the sodium-potassium eutectic
liquid-metal flow loop described in (d) above.

A. H. Shapiro, W. D. Jackson, R. S. Cooper, D. A. East

(f) Ionization Waves in Weakly Ionized Plasmas

During the past year, some further studies have been made on the nature of certain
macroscopic instabilities observed in the plasma of glow discharge tubes. The region
of tube operation in which the instability is incipient has been defined for several gases,
and the properties of shock-excited waves generated by external sources have been
thoroughly examined in these regions.

Further work is being done toward the development of a theory to describe the behav-
ior exhibited by the plasma in these experiments. Some new experiments are being per-
formed to find additional methods of exciting the observed ionization waves. The
interaction of the waves with internally generated sonic waves in the neutral gas is also
being investigated both experimentally and theoretically.

R. S. Cooper

(g) Blood-Flow Studies

Electrical methods are widely used in blood-flow measurement, and prominent
among the devices used is the magnetohydrodynamic or electromagnetic flowmeter.
Work reported under (e) above is being adapted for both mean and local blood-flow
measurement and magnetohydrodynamic, thermal, and ultrasonic techniques are at
present under investigation.

A second aspect of our blood-flow work is concerned with the application of engi-
neering methods to the study of the cardiovascular system. We are engaged in this
research jointly with Dr. Dexter and his associates at Peter Bent Brigham Hospital.
A study of the pressoreceptor system has recently been completed as a step in the

*This work is supported in part by the National Institutes of Health (Grant
No. 5 TI HE 5550-02).
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identification and analysis of the mechanisms responsible for the regulation of cardio-
vascular functions.

G. O. Barnett, W. D. Jackson

2. Energy Conversion

Our studies include both magnetohydrodynamic and thermionic methods of generating
electrical power, and involve over-all system considerations, properties of working
fluids, and operating characteristics of conversion devices.

(a) Magnetohydrodynamic Power Generation with Liquid Metals

The generation of electrical power in space vehicles offers a potential application
for MHD generators to operate on a closed-cycle system in which a nuclear reactor is
the thermal-energy source. An important feature of an MHD system is the absence of
rotating parts, and, to utilize it, a working fluid is required with a sufficiently high elec-
trical conductivity at the temperatures involved. A scheme in which a liquid metal is
used as the working fluid in the MHD generator duct is under investigation. Kinetic
energy is imparted to this flow by driving it with its own vapor in a condensing-ejector
system.

A cycle analysis has been completed and has revealed efficiencies that are suffi-
ciently attractive to warrant detailed investigation. During the coming year, the oper-
ation of condensing ejectors on alkali metals will be considered, the conductivity of
two-phase flows in the presence of magnetic fields will be measured, the study of
liquid-metal generator configurations will continue, and further cycle analysis will be
performed.

W. D. Jackson, G. A. Brown

(b) Magnetohydrodynamic Induction Generator

The MHD induction machine utilizes the interaction between a traveling magnetic
field (such as that produced by a polyphase winding) and a channeled, flowing fluid that
may be either a plasma or a liquid metal.

The theoretical analysis of this machine has been extended to include such real
machine effects as entry and exit conditions, finite core permeability, and velocity pro-
file effects. This work has clearly demonstrated that the reactive power requirements
of an induction generator are excessive when operated on a plasma flow but that satis-
factory operation should be obtained with liquid metals.

A preliminary experimental investigation of a linear induction generator operating
on an NaK flow with a two-phase, traveling-field coil system has demonstrated elec-
trical power generation. This work will be extended and developed during the coming
year.

W. D. Jackson

(c) Alkali-Metal Magnetohydrodynamic Generators

The over-all objective of this research is to investigate the feasibility of operating
magnetohydrodynamic generators with alkali metals as working fluids. Our immediate
objective is to establish the electrical properties of both superheated and wet alkali-
metal vapor at temperatures up to 20000K.

Dr. G. O. Barnett is Established Investigator, American Heart Associate, Harvard
Medical School, Boston, Massachusetts.
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A small potassium loop, capable of a mass flow of 10 grams per second,
has been constructed and is now being put into operation. Meanwhile, analyt-
ical studies of the wet vapor have been carried to the stage at which electrical

conductivities can be computed, if the distribution in size of the droplets can

be determined.

J. L. Kerrebrock

(d) Thermionic Energy Conversion

The research objectives of our group are oriented toward the evaluation of possible

improvements of thermionic -converter performance based on the recent developments

in the areas of surface and transport effects. The following studies are at present being

conducted:

(i) Parametric evaluation of ideal converter performance as determined by the prop-

erties of cesium films on polycrystalline and single-crystal metallic surfaces.

(ii) Detailed study of the processes responsible for the creation of the highly con-

ducting plasma in the interelectrode region of cesium thermionic converters, and inter-

pretation of experimental current-voltage characteristics in the ignited mode.

(iii) Extension of previous measurements of the thermal conductivity of cesium vapor

to higher temperatures and possibly to other alkali metals.

E. N. Carabateas

(e) A-C Properties of Superconductors

Recent intensive efforts to fabricate hard superconductors have opened up a wide

range of possibilities for utilizing these materials in the production of high DC fields,

particularly in situations for which these are required in large volume. The advan-

tages associated with reducing field-power dissipation also apply to the production of

AC fields, but there is an additional problem in that reactive power has to be circu-

lated. This problem essentially implies zero-loss capacitive energy-storage elements,

in addition to essentially infinite Q inductors. It is thus of interest to investigate the

behavior of superconducting materials carrying AC currents in the presence of AC mag-

netic fields. As well as establishing the merits of superconducting materials in inductor

and capacitor fabrication, such investigations provide an additional method of gaining
insight into the mechanism of superconductivity.

Present investigations deal with superconducting materials in the form of wire or

ribbon, and two experimental techniques are being pursued.

(i) The current-carrying capacities of short, straight lengths of superconducting

wire or ribbon are being determined as a function of frequency in the range up to 10 kc.

(ii) A-C solenoids, fabricated to avoid electric eddy currents and insulated to accom-

modate electrical fields arising from aB/aT effects, are being tested. In both cases,

the AC current required for transition to normal conductivity has been obtained and, in

the case of solenoids, the Q has been measured.

A third investigation is planned to obtain data on the behavior of superconductors

in an externally applied AC field. These data will be derived either from a rotating

magnet system or from a separate copper -conductor AC solenoid.

The work is, at present, experimental in character, but future theoretical studies

are envisaged.

W. D. Jackson
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A. WORK COMPLETED

1. LARGE-SIGNAL BEHAVIOR OF A PARAMETRIC MAGNETOGASDYNAMIC

GENERATOR

This report summarizes an Sc. D. thesis with this title which was submitted to the

Department of Electrical Engineering, M. I. T., September 20, 1963, and will appear

as an RTD Technical Documentary Report

In this study the large-signal behavior of a parametric magnetogasdynamic generator,

consisting of a cylindrical coil with batches of highly conducting plasma traveling along

the coil axis, is considered. In this limit, the gas behavior is strongly affected by the

magnetic forces. The purpose of this study was to determine (i) whether the require-

ments on the conductivity and velocity of the gas found for small-signal behavior are

relaxed because of any enhancing mechanism during the interaction; (ii) what fraction

of the gas power could be extracted as useful electrical power, that is, the over-all gen-

erator efficiency; (iii) how the interaction between the field and the gas leads to gas

behavior that limits the growth of the parametric oscillations so that a stable operating

point is reached; (iv) an estimate of the minimum size and power of a generator with

present technology; and (v) the factors that control the scaling of the parametric gener-

ator.

To answer these questions, an analysis is presented for the small-signal behavior

to establish the important parameters and provide a basis of comparison for the large-

signal behavior. The large-signal electrical and gas behavior are treated separately

as far as possible. A criterion is established for determining the steady-state oper-

ating point in terms of the electrical terminal behavior. The gas -flow interaction with

the field is analyzed by using a quasi one-dimensional-flow model with the constraints

for a strong interaction that the magnetic pressure balance the static gas pressure in

the radial direction, and the power given up by the gas balance the gross electrical

power generated.

A. T. Lewis

B. ALFVEN WAVE STUDIES

1. SOME PROPERTIES OF MAGNETOHYDRODYNAMIC WAVEGUIDES

The dispersion equation for the MHD waveguide has been derived by a number of
1-7

investigators. Basically, the MHD waveguide consists of a hollow, rigid-wall cyl-

inder of arbitrary, but constant, cross section immersed in a uniform, steady mag-

netic field aligned parallel to the cylinder axis as in Fig. XVII-1, and filled with a

homogeneous electrically conducting fluid.

The total behavior of such a waveguide may be described in terms of transverse
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t-z B

Fig. XVII-1. Coordinate system for the
MHD waveguide.

the modes of greatest interest are the TM

magnetic (TM) and transverse electric

(TE) modes. In general, any wave prop-

agated consists of infinite sums of the

two types of modes. In particular, if

the fluid is inviscid and if the cross sec-

tion and excitation are symmetric, single

modes may be excited. 7

In most magnetohydrodynamic wave-

guide problems, the critical fluid prop-

erties are the mass density and the

electrical conductivity. Thus viscosity

and displacement are neglected. Also,

modes and these do not compress the fluid,

so that compressibility may also be neglected.

The resultant differential equation for the TM modes is

2
V e +T e = 0,tez mn z

2
where e z is the longitudinal component of the electric field, and V2 is the transverse

Laplacian operator. Other symbols are defined as follows:

2 2 + iwrnt w2 2
mnn ioNp C 2 + i ont

i(ot+p mn z )

where the propagation has been taken as e

B
2

C 2  0 = Alfv6n velocity;

1
S -= longitudinal magnetic diffusivity;

oI

t = transverse magnetic diffusivity;

with B o , the magnitude of the applied magnetic field; p, the mass density of the fluid;

, the longitudinal electric conductivity; at' the transverse electric conductivity; and

Lo' the permittivity of free space.
The solutions of (1) in rectangular coordinates are sinusoids and yield8

2 2m1)2 ( T2- 2.
T = (m+1)M a)2 + (2n+1 imn\2/\b
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Here, a and b are the half-widths of a rectangular waveguide. In cylindrical coordi-

nates the solutions of (1) are Bessel functions and yield

2 (m2
T 2 ) (4)

th th

Here, a is the radius of a cylindrical waveguide, and a is the n root of the m -

order Bessel function.

The propagation constant P is obtained from (2).

ST 2  +i ]
2 r mn
mn t 1 + C 2 /i t (5)

At very low frequencies (w-0) (5) becomes

T Wm mn (6)
mn c (1-i). (6)

At very high frequencies (w-cc) (5) becomes

Pmn =  (1-i). (7)

At intermediate frequencies such that

2 2(8)
STmn << << C /T t ,  (8)

(5) becomes approximately

Pmn = ( - + n+ T (9)

Equations 6 and 7 are characteristic of diffusion phenomena. At low frequencies

the magnetic field diffuses through the fluid in a time short compared with the period

of the excitation. Thus the field is not convected by the fluid. At high frequencies the

field cannot penetrate the fluid. Thus the fluid is not convected by the field. But if w

satisfies (9), there is a region in which mutual convection of the fluid and the field gives

rise to the Alfv6n wave.

If the asymptotes of Re (P) and -Im (f) in (6), (7), and (9) are plotted in log-log

coordinates, Fig. XVII-2 results. An exact evaluation of (5) for a shock-excited gas

experiment is also plotted in Fig. XVII-2, and shows that the asymptotes are a very

good approximation to the exact curves.
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The intersections of the asymptotes are interesting points, two of which corre-

spond to condition (8). Notice that the lower limit of the Alfv6n region is controlled

2- 1 3 C

C

2rt

Re (mn)

-Im (pm)

2 25/3 2

107 1010 10

Fig. XVII-2. Typical shock-excited gas experiment.

= 0= 4.5 X 10 v/m (Te 3.5 ev); p = 1.7 X 10-5 kg/m 3

(15=+.5 2+

(n= 1.5 x0 15/cc H ); B = 1.6 w/m2; b = 0.07 m; T 0 1

3.8/b (J 1 (Tb) = 0); Va = 5 X 10 5 m/sec; r = Tt =1.8 X

2 310 m /sec; w 2 /w 1 = 2.6 X 10 .

by conductivity and geometry, while the upper limit is controlled by conductivity,

density, and applied field. The frequency below which, under condition (8), the

waveguide is distortionless is twice the geometric mean of the upper and lower

QPR No. 72
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2-1/3 C

I C
2 qt

Re (pmn)

Fig. XVII-3. Typical liquid-metal experiment.

Tf = Ot = 2.63 X 106 v/m; p = 8.5 X 10 2 kg/m 3 (NaK);

Bo = 0.8 w/m 2 ; b = 0.19 m; T 0 1 = 3.8/b (J 1 (Tb) = 0);

Va = 24.5 m/sec; 7, =. = 0.3 m 2 /sec; w2 / 1 = 16.

limits. In Fig. XVII-3 data are plotted for a typical liquid-metal experiment for

comparison.

In view of these results, Eq. 5 should be rewritten

W 11- Zi

2i W2

Now,

2w 2 = magnetic Reynolds number

1 mn

2  C 2

- = Lundquist number.
o Cot

(10)

Thus, in order that an Alfv6n wave exist, both the magnetic Reynolds and Lundquist

numbers must be large compared with unity.

Listed below in tabular form is a comparison of a number of Alfv6n wave experi-

ments in terms of the critical frequencies.

QPR No. 72
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Experimenter Medium fl f2

1. Jephcott, Stocker, arc plasma 46.5 kc 51.3 me

and Woods 4

2. Wilcox, da Silva, shock plasma 41.4 kc 111.0 mc

Cooper, and Boley 3

3. DeCourey and Bruce9 irradiated gas 57.2 mc 4.07 mc

8
4. Gothard, and NaK 9.75 cps 158 cps

Jackson and Carson

5. Lundquist 1  Hg 159 cps 10.3 cps

6. Lehnert2  Na 21.5 cps 770 cps

See W. D. Jackson and J. F. Carson (Sec. XVII-B2).

G. B. Kliman
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2. EXPERIMENTS WITH A LIQUID-METAL MAGNETOHYDRODYNAMIC

WAVEGUIDE

The presence of hydromagnetic waves in conducting fluids was first established by

Alfv6n, in 1942. Since that time, much progress has been made in the theoretical

study of these waves, but experimental work has proceeded slowly. Lundquist, 2 in

1951, tried to excite waves in mercury, and Lehnert 3 repeated and improved the

experiment, in 1954, using liquid sodium. Other experimental work has been done
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with shock-excited plasmas. 4' 5 Most of the results thus far have been somewhat incon-

clusive, showing only partial agreement with theoretical predictions.

Many of the difficulties in experimental work have been caused by the need for a high-
conductivity working fluid to avoid excessive attenuation. The Lundquist number, a
reciprocal magnetic Reynolds number based on Alfv6n velocity and wavelength, is defined
as

Lu =
O

where f is the excitation frequency, B the applied magnetic field, p the fluid density,
and a- the fluid electrical conductivity. It provides a convenient basis on which the suit-
ability of a medium may be established and, to ensure propagation without undue attenu-
ation, it must be much less than one, which in turn requires that the ratio of electrical

conductivity to mass density be as large as possible. Lehnert was able to achieve

improvement in the Lundquist number of over 100 by using sodium instead of mercury.

Handling and instrumentation problems are always present in alkali-metal research, and
the high temperature necessary to liquify sodium leads to additional complications. The

use of sodium-potassium eutectic alloy as the working fluid affords an increase over

mercury in the conductivity-density ratio about three times less than that of pure

sodium. Sodium potassium affords the advantage of being liquid at room temperature,

and accordingly has been chosen as the working fluid for this experiment.

Lundquist attempted to launch waves, using a vibrating disk with vanes attached. The
device was intended to couple mechanically to the fluid and to cause torsional disturb-

ances that would propagate along the axial magnetic-field lines, but the mechanism at

work was really motional induction. Therefore Lehnert used a copper disk without

vanes. The rotation of the disk in the magnetic field caused an induced electric field

in the disk. Matching of tangential electric-field components across a boundary requires

an induced current to flow in the fluid. This current in turn reacts with the magnetic

field to form a J X B force that acts on the fluid to generate vorticity and, if conditions

permit, the vorticity will propagate.

The search for an optimal means of excitation led to the use of a directly injected

current sheet to launch the waves. A small disk, 5 cm in diameter, in the center of

the waveguide shown in Fig. XVII-4 is fed with alternating current. A copper collecting

ring soldered to the outside wall of the waveguide provides a return. The feed conduc-
tors leading from the ring to the source are designed to give equal resistance in all
paths, and result in a reasonably symmetrical current-sheet excitation. Exciting

currents are of the order of 100 amps.

The waveguide itself is constructed of stainless steel, and has an internal diameter
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Fig. XVII-4. MHD waveguide showing excitation structure.

of 38 cm. The length of the waveguide is 18 cm, and is limited by the gap length of the

magnet that was available. The applied magnetic field is 0.8 weber/meter 2 . The rec-

tangular chamber on the left of the waveguide contains the elevating mechanism for the

exciter probe. With this arrangement it is possible to position the probe at any height

within the waveguide. The chamber on the right contains the mechanism for both radial

and axial movement of probes for local magnetic-field measurements. Counters attached

to the shafts provide information about the location of the probes. The waveguide is filled

and drained with the aid of a filling-station apparatus that contains the necessary valves

and fittings for transferring the sodium potassium from storage cans to the waveguide.

If a sinusoidal drive and an exp(k - r) space dependence are assumed, the dispersion

relation is obtained from the pertinent hydrodynamic equations that yield values of the

real and imaginary parts of the propagation vector as a function of frequency. The values

of Alfv6n speed v, wavelength X, and attenuation a calculated for the conditions of the

experimental apparatus are shown in Fig. XVII-5. The frequency dependence of v above

-200 cps indicates that this is a diffusion-controlled region and that waves should only

be observed below this frequency. The method of excitation used in this experiment pro-

duced waves with magnetic-field components in the transverse plane only. The addition

of a conducting center column would allow propagation of purely transverse electromag-

netic waves.

Lundquist used a floating mirror to detect waves. Lehnert refined the measurement

somewhat by measuring potential difference in the moving fluid with two probes. The

approach taken in the present experiment was to look at the waveguide in as many ways
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10 100 1000 10,000
f (CPS)

Fig. XVII-5. Wave properties as a function of frequency.

as possible. Two measurement schemes are possible when direct electric excitation is
used. The relation of voltage and current at the driving terminals may be examined, and
the internal fields of the waveguide may be measured. The field probe used for this
experiment consisted of a solenoid, 3/8 in. in diameter, with 300 turns of number 37
wire. The coil was oriented so that the magnetic field induced in the c direction was
measured. The output of the probe was examined with an oscilloscope and voltmeter.

A probe to measure local velocity in the fluid is under development, but was not avail-
able when the present experiment was performed.

Since the waveguide is of finite length, examination of the terminal impedance yields
resonances. The results are shown in Fig. XVII-6 to be consistent with theoretical pre-
dictions based on calculated values of wavelength. The waveguide is essentially being

run as a resonant cavity when operating at these points. The internal-field measure-

ments were made at the resonances indicated on the impedance graph.

The measurements illustrated were taken with the exciter probe located at a height

of 3 cm; this enabled the excitation of the X/2 and 3X/2 resonances as indicated. Move-
ment of the probe in the radial direction provided profiles of the type shown in
Fig. XVII-7, while axial profiles obtained at a radius of 12 cm are given in Fig. XVII-8.
To check that wave propagation was occurring, one set of data was obtained with a free

surface at the top of the waveguide. Excitation without the applied field yielded a decay
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TERMINAL IMPEDANCE

EXCITER DISK RADIUS = 2CM

Bo= 0.8 WEBER/M 2
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Fig. XVII-6. Resonance measurements.

of the induced field away from the

Bo= 0.8 WEBER/M'

f 80 c/s

h= 172 CM

h11.7 CM

INDUCED B FIELD
RELATIVE AMPLI-

TUDE

h=4.5 CMI

EXCITERX

AI/I/I/ // / II

18 16 14 12 10 8 6 4 2 0

RADIAL DISTANCE,CM

Fig. XVII-7. Induced B field -
radial traverses.

exciter, while, with the field applied, an indication

of free-surface motion was obtained as shown

in Fig. XVII-8.

The growth of the induced field along the

axis is particularly evident in the case of the

3X/2 resonance, and is probably explained

by the near-effects of the exciting-current

sheet. The exciting disk was insulated on

both top and bottom surfaces, and thus the

fluid immediately above and below it is

weakly coupled to the electromagnetic effects.

The data of Fig. XVII-7 are consistent with

ithe existence of a stationary volume of liquid

above the exciter, but further experimental

work is required to clarify the behavior in

this region, and the waveguide is now being

modified for this purpose.

The work reported here is of a prelimi-

nary nature, but it has served to indicate

the feasibility of using a sodium-potassium
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alloy as the working fluid in the study of Alfv6n waves, as an alternative to the tran-

sient conditions of a shock-excited plasma. Conduction-type direct electrical excita-

tion has been shown to be greatly superior to the vibrating disks used by early

1.0

0.8 -

INDUCED FIELD STRENGTH PROBE 12 CM

FROM CENTER B - 0.8 WEBER M
2

0

POSITION

0 2 4 6 8 10 12 14 16 18

HEIGHT (CM

Fig. XVII-8. Induced B field - axial traverses.

experimenters, and magnetic field probes have proved to be satisfactory for the detec-

tion of wave conditions inside the waveguide. This study will continue, and will be con-

cerned with both transverse magnetic and transverse electromagnetic modes, a different

excitation, and different boundary conditions.

W. D. Jackson, J. F. Carson
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C. MAGNETOHYDRODYNAMIC POWER GENERATION WITH LIQUID METALS

Preliminary studies on a liquid-metal MHD power system employing a condensing

ejector have been completed. The objective was to determine the expected cycle effi-

ciencies and specific weights by using available fluid-dynamic, thermodynamic, and

PuMP Fig. XVII-9. Liquid-metal MHD power system
employing a condensing ejector.

MHD CONDENSING

GENERATOR EJECTOR

PUMP

RADIATOR/COOLER

heat-transfer information for the components and processes of the cycle. For the pres-

ent, the liquid-metal MHD generator has been characterized as having a specified effi-

ciency. Later studies will integrate the generator performance parameters with those

of the components that are used to produce the liquid-metal stream in a complete system

study.

The basic cycle is shown in Fig. XVII-9. Three loops are required for the conversion

system. Energy from a nuclear reactor is transferred to a flowing liquid, perhaps lith-

ium, which boils the primary working fluid, cesium, in the boiler section between the

first and second loops. The cesium vapor then enters the condensing ejector at

state ( ) . The condensing ejector also receives "cool" liquid cesium, state ( ) , which

is returned from the radiator in the third loop. These two streams are mixed in the con-

densing ejector so as to produce a liquid-cesium stream having a high stagnation pres-

sure. The liquid cesium stream is then split with a fraction being returned to the boiler

and the remainder being returned to the radiator.

Available analytical and experimental data have been used to calculate the perform-

ance of the condensing ejector. Calculations have been made to establish the pressure

drops and weights for the boiler and radiator, including state-of-the-art results for the

two-phase flow, which occurs in the boiler under zero gravity conditions.
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o 5-

5 ip "-300 PSIA T "=1600RUo o

U.J ~lp =IOPSIA T0'=2400R

Sg=0.7 'd=0.9C ..0 g

NO PUMP WORK

30 50 100 150 200
INLET VAPOR STAGNATION PRESSURE,po0 , PSIA

Fig. XVII-1O. Effect of vapor stagnation pressure on
cycle efficiency.

The cycle efficiency for the best conditions found thus far is shown in Fig. XVII-10.
The conditions are for a space power system with a 300-kwe output. Cesium vapor is
supplied to the condensing ejector at 2400 R and for the stagnation pressures shown in
Fig. XVII-10. The cesium liquid enters at 1600 R and 300 psia. Both streams are then
accelerated to a pressure of 10 psia in the condensing ejector. The liquid-cesium stream
from the ejector is usually available at a high velocity, and can be diffused to any desired
stagnation pressure before entry into the generator. A diffuser efficiency of 90 per cent
has been used. A generator efficiency of 70 per cent has also been employed. The cycle
efficiency is very low, approximately 2 per cent, when p" is 30 psia, but increases
steadily to approximately 12.5 per cent at 170 psia. The omission of the pump power for
the reactor loop will drop the cycle efficiency by an increment of approximately 0.5 per
cent.

Since the calculated cycle efficiencies and specific weights for the liquid-metal MHD
power system are quite competitive with other systems now under consideration, further
studies of it are planned.

G. A. Brown, W. D. Jackson, K. S. Lee

D. EXPERIMENTAL STUDY OF INDUCTION-COUPLED LIQUID-METAL

MAGNETOHYDRODYNAMIC CHANNEL FLOW

The direct generation of electrical power from the kinetic power carried by an elec-
trically conducting fluid may be achieved through the utilization of the inductive coupling
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between a traveling magnetic field and the moving fluid. It has been shown1 that the

operating characteristics of an MHD induction generator can be determined from the

magnetic Reynolds number, based on wave speed and velocity and the velocity differ-

ence between the wave and the fluid. The conductivity and velocity attainable with ion-

ized gas flows are too low to yield satisfactory operating conditions, but liquid metals

yield more promising results as is indicated in Table XVII-1. Two methods of con-

verting the thermal energy of a power-system heat source to the kinetic energy of a

moving fluid have recently been proposed.2,3

Table XVII-1. Experimental results.

Liquid Metal Metal Vapor

velocity v 102 103 m/sec

conductivity a 106 10 2 mhos/m

magnetic field B 2 2 wb/m 2

1 2B2 10 8 3
power density 4-v B2B 10 10 W/m 3

wavelength X 50 50 cm

magnetic o vkX
Reynolds ZTr 10 10
number

The magnetic Reynolds number criterion used in Table XVII-1 is attained from a

one-dimensional analysis that ignores real machine effects, all of which may be

expected to degrade performance. An induction-coupled liquid-metal MHD channel flow

has been set up to investigate directly real machine effects such as end losses, fluid

viscous losses, magnetic-field configuration, and edge effects. Eutectic sodium potas-

sium alloy (NaK) was selected as the working fluid for a closed-loop flow facility driven

by a positive displacement pump with a capacity of 20 gallons per minute at a head of

20 p.s.i. A 300 gallon per minute centrifugal pump will be obtained for future experi-

ments. The entire flow loop is fabricated from stainless steel with neoprene connectors

and O-rings. Figure XVII-11 shows the general layout of the flow facility, including the

instrumentation used for the experimental study. Details of the design and construction

of the loop have already been given.4-6

The traveling-field coil system is contained in the horizontal cylindrical tank on the

table shown in Fig. XVII-11. It comprises 24 pairs of saddle coils assembled around a

4 1/4 inch diameter tube as shown in Fig. XVII-12. The coil pairs are spaced 6 inches
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4.25
DIA.

Fig. XVII-12. Traveling-field coil structure.

apart, and are connected to produce a two-phase system with a wavelength of 1 ft. The

coil structure is kerosene-cooled, and powered from a 60-cps alternator rated at 44 kva

at 230 volts. A variable-speed DC motor drive enables the alternator frequency to be

varied.

A high aspect ratio rectangular channel was used in these experiments. The internal

dimensions were 2 3/4 in. X 3/8 in. which yielded a velocity of approximately 10 ft per

second at maximum capacity. The long sides of the channel were insulated with epoxy

but, to minimize electrical losses in the chosen geometry, the remaining two sides of

COIL

Fig. XVII-13. Power-flow measurement circuit details.
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Fig. XVII-14. Normalized pressure vs slip.
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Fig. XVII-15. Normalized power vs slip.

the channel were of nickel-plated copper. Transition sections were provided at each

end of the generator channel to connect to the 1.1 in. flow-loop tubing. Provision was

made for fluid pressure to be measured at 6-inch intervals along the channel.

Measurements were made of fluid velocity, pressure drop along the MHD channel

section, and power flow between the alternator and the coil system. The system was

first filled with alcohol to check out operation and calibrate the venturi flowmeter. To

minimize flow pulsations introduced by the positive displacement pump, the fluid veloc-

ity was kept at maximum value throughout runs with NaK, and the slip between the field

and the fluid was varied by adjusting the speed of the alternator drive motor. Direct-

reading NaK manometers did not function satisfactorily, and so a single mercury
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manometer was used. This was connected by a system of valves to the appropriate pres-

sure measurement point.

Because of the small amount of electrical power flow involved in the MHD interaction,

relative to the 1500 volts required to drive the field coils, direct measurement of power

flow could not be made. Instead, the differential amplifier scheme shown in Fig. XVII-13

was used, and was calibrated directly by means of dummy loads connected across the

coil terminals. Pressure-slip and power flow-slip data are given in Figs. XVII-14 and

XVII-15, respectively, and a comparison with theoretical predictions is made.

The normalization of the experimental results and the theoretical curves are obtained

in the following way. The power Ps delivered by the fluid to the coils 7 is given by

IJ 0cXN 2 VsSRma
P22s (1)s K+a 1+ s2R2 ,

ma

where o is the fluid permeability, X is the wavelength, vs is the wave speed, NI is

the magnetomotive force, c is the over-all width of the machine, and

s = 1 - v/v s  (a)

o -favs
R = o s (2b)
ma K+ a

a = ak (2c)

K= o (2d)
c

In these definitions, s denotes the slip between vs and the average fluid velocity v;

Rma is the relevant magnetic Reynolds number; -f, the fluid conductivity; a, the

channel half-width; K, the ratio giving o to the field-structure permeability 4c;
and a, the ratio that is a measure of the ratio of a to X in terms of the wave

number k.

As the experimental results are for a constant value of v, and the effect of changing

sR is of interest, it is convenient to define a constant value of magnetic Reynoldsma
number R' as

ma

v omfav
R' = R - (3)

ma ma v K + a

The normalized power P is then obtained as
sn
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s
R'P (K+a) mls)2 map = s (s R

sn I0cX(NI) v 1 + (Rma )

For the experimental conditions, R' = 0.041.ma
In a similar fashion, the pressure change along the channel, 7 Ap, is given by

N2I2L sR
o ma

2a(K+a) 1 + R2  
(5)ma

and the normalized (Ap) n is
s
sR'

2a(K+a) 1-s ma
n 2 (s2 R' 2 (6)LL (NI) 1 + 1- (Rma)

For the region of experimental interest,

sR' 2
- << 1 (7)

and

(AP)n -s (8)

The correlation of theory with experiment in Figs. XVII-14 and XVII-15 is quite sat-
isfactory when the difficulty of measuring values of Ps less than 0.5 watt is taken into
account. It should be noted that the sign of both the pressure drop and power flow indi-
cates generator action in the region of negative s, and shows that electrical losses
resulting from end effects, etc., were not of sufficient magnitude to absorb the generated
power. Because of the very low Hartmann number involved, fluid losses for the inter-
action region were estimated by using ordinary friction factor curves to the 21.31 watts
for v = 10 ft per second. This is in good agreement with the measured value of
22.2 watts, and confirms the prediction that ordinary friction losses are the predominant
effect in this experiment. The experimental apparatus is now being modified to obtain
the stronger magnetohydrodynamic interactions that are evidently required for further
study of induction-coupled flows.

W. D. Jackson, R. P. Porter
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E. NEURAL PATTERNS IN BLOOD-PRESSURE REGULATION

This study is concerned with the description of a part of the pressoreceptor reflex

system, a biological control system involved in the regulation of blood pressure. The

system consists of stretch-sensitive receptors located in the walls of certain arteries

which transduce the pressure signal into related electrical activity on the nerve asso-

ciated with the sensors; the nerve itself, which transmits the information to the brain;

the vasomotor center of the brain, which processes the information; and the efferent

nerves, which transmit the control signals to the heart and blood vessels, thereby

closing the control loop.

The work reported on here deals with the transduction of the pressure signals into

nerve firings on the nerve involved. Specifically, the relation between the firing fre-

quency on the carotid sinus nerve and the pressure at the carotid sinus is considered.

From the published data of single-fiber studies, it is possible to construct a model that

qualitatively at least reproduces the behavior of the biological system.

The static behavior of the system is characterized by no neural activity below a

threshold level of pressure, a firing rate proportional to pressure above the threshold

value, and an asymptotic approach to a maximum firing frequency as the static pressure

is raised to a sufficiently high level.

The dynamic response of the system, as determined by the system response to step-

like variations in pressure, exhibits a rapid increase of firing rate upon application of a

positive step which is followed by a decay to a final value that is higher than the value of

This work was supported in part by the National Institutes of Health (Grant
No. 5 TI HE 5550-02.
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PRESSURE

Fig. XVII-16.

Fig. XVII- 16.

FIRING RATE

ASYMPTOTE
OF RESPONSES

Step responses on a
single fiber.

firing rate before application of the step. A

negative step produces an initial cessation of

firing, after which the firing rate grows back

to a steady value lower than its initial value.

If the pressure steps are started at

0 mm Hg and their amplitude is increased,

the (idealized) responses are observed as

shown in Fig. XVII-16. These observations,

as well as observations of ramp responses,

suggest that the system may be modeled in

the manner of Fig. XVII-17. The first non-

linear section results in the successive step

responses approaching an asymptotic response.

The use of the linear filter corresponds to

approximating the step response by the sum

of a step and a single decaying exponential. The effect

corresponds to that of the static threshold and accounts

to negative steps.

of the second nonlinear section

for the nature of the responses

OUT LINEAR OUT
PRESSURE H(s) Os+ a IN FIRING RATE

a>O b>O

a<b

Fig. XVII-17. Model whose response approximates the response
of a single fiber.

The complexity of this model can be increased by adding more poles and zeros

(approximating the step response by sums of decaying exponentials).

The experimental part of this study consisted of the application of (almost) sinus-

oidal pressure variations imposed upon static levels of pressure, and the recording of

the resultant activity on the carotid sinus nerve. The recordings were obtained from

multifiber preparations. The activity corresponding to 10 cycles of each stimulus fre-

quency at each static level was recorded, so that some averaging could be performed

to reduce the effects of noise (noncorrelated) components in the outputs.

The data-reduction scheme consists of thresholding the outputs to obtain a clean base

line, and counting the number of firings in a window whose position with respect to the

stimulus is controllable, as indicated in Fig. XVII-18. Using this scheme, we obtained

curves of firing rate vs time corresponding to the stimulation; a typical example appears
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NERVE
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FROM COUNTER
TAPE

GATE
PULSE

TRIGGERED TRGERED

GENERATOR SYNCHRONIZED
VA LE WITH PRESSURE

VARIABLE SINUSOID,
DECONTROL FROM TAPE

CONTROL

Fig. XVII-18. Block diagram of data
reduction scheme.

rate vs time minus angle of pressure) is

coefficients of the decaying exponentials

in Fig. XVII-19. Qualitatively, the peaks

of these curves tend to occur in the region

in which the corresponding pressure is

near its peak. Since these curves are not

sinusoidal, their first harmonics are being

calculated, and the amplitude and phase of

the first harmonics with respect to the

amplitude and phase of the pressure are

being examined. Preliminary results indi-

cate that the angle of the system function

(angle of first harmonic of averaged firing

positive. This agrees with the fact that the

used to approximate the step response are

positive, that is, that the residues in the poles of H(S) are positive, which implies that

No. OF FIRINGS IN 50 MS WINDOW

LOCATED AT TIMES INDICATED,

SUMMED OVER 10 CYCLES OF

STIMULATION.

T - 1.03 sec

MEAN PRESSURE '~ 90 mm Hg

PEAK-TO-PEAK VARIATION

" 12.5 mm Hg

TIME IN FRACTIONS OF 1 PERIOD

Fig. XVII-19. Typical experimental curve of firing rate vs time
obtained from gross recordings.

QPR No. 72 165



(XVII. PLASMA MAGNETOHYDRODYNAMICS)

the negative real poles and zeros of H(S) alternate, with a zero nearest the origin.

Requiring the critical frequency nearest the origin to be a zero, together with requiring

the number of poles to equal the number of zeros, implies positive phase shift.

These preliminary results also indicate that the system gain (amplitude of first har-

monic of the averaged firing rate versus time divided by amplitude of the pressure

sinusoid) is an increasing function of frequency. This trend agrees with the amplitude

vs frequency behavior of the system function H(S) - s + bO < a < b.
s + b

D. H. Pruslin

F. PENETRATION OF AN ION THROUGH AN IONIC DIPOLE LAYER

AT AN ELECTRODE SURFACE

When cesium is adsorbed on a metallic surface in the form of ions, these ions and

their images form a dipole layer. 1,2 If an ion is introduced to the surface, it travels

through a fraction f of the potential difference caused by this dipole layer from the

image plane to a point at infinity, 2 as shown in Fig. XVII-20. Values of the penetration

SURFACE

Fig. XVII-20. Potential of an ion with
respect to the potential

AO. = fa, I of a substrate surface
I e A e = Vo as a function of distance

S- _ from the surface.

r

coefficient have been computed by Rasor and Warner 3 and by Kennedy. 4 In this report

it is shown that the penetration coefficient can be evaluated as a function of coverage in

two different ways, one for an immobile film, and the other for a completely mobile

film. Subsequently, values of the penetration coefficient can be obtained from the

Langmuir-Taylor data for cesium on tungsten in two different ways. Both methods give

values for the penetration coefficient which agree closely with each other over the entire

range of the coverage, and these values fall between the theoretical expressions for f

obtained for the cases of immobile and mobile films.

1. Penetration Coefficient for an Immobile Film

For an immobile film the cesium ions occupy fixed lattice sites, as shown in

Fig. XVII-21a. A cross -section view of the surface is shown in Fig. XVII-2 b. The

following nomenclature is used.
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Symbol Definition

d lattice constant of the crystal

X distance of the center of charge of an adsorbed ion from the
image plane, taken to be equal to the hard-core ionic radius
of cesium

r distance of an ion from the image plane

r.. distance between an ion at r and any adsorbed ion at i,j

r.. distance between an ion at r and an image of any adsorbed
ion at i,j

r distance between an adsorption site and any other site at i,j

1.

6. = ionic coverage
1 l

l surface density of adsorbates at full coverage
4d

x rj
2d/ i J 9

II

2d

SAMPLE SITE

(a)

(b)

Fig. XVII-21. (a) Immobile adsorbate-substrate system. (b) Cross
section of adsorbate-substrate system.

The potential on an ion at any r as a result of being in the field of the remaining

adsorbed ions and their images can be expressed as

V(r) = q -(rP (1)

in which the summation is performed over every adsorbate, and each adsorbate corre-

sponds to a distinct distance r... For the square lattice model with perfect arrangement

of adsorbates,
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2 2rij+ = (r-k) + rij (2a)

2 2rij - = (r+X) + rij (2b)

with

22 4d 2 (i2+j)
r- (2c)

i

Equation 1 is rewritten

r.. - r.. (r.. +r..j+)
1]- 1+ 1]- 1+

(r) rij+rij (r j+r j+ )

or

2 2
r.. - r..

V(r) =q 2 2 (3)

1ij+ 1- 1J+ 1]-

Substituting Eq. 2 in Eq. 3, for r = X, yields

V(r=k)= 4qX2  
2 1

-co2 2 1/2 2 1/2 22 + 4d 2(i+j Z  4d + 4 d 22[4 2 i2 + (i+ j ) (i +j

(4)

in which i,j take on all values except i = j = 0.
2

Since 2 << d. (i2+j2 ), we neglect X2 in the denominator of Eq. 4 to obtain
1

qk263/2 oc

V(r=X) 1 (5)
4d 3 (i2+j2 3/2

Evaluating the sum 5 then gives the potential of an adsorbed ion resulting from the other
adsorbed ions, in other words, the value of V in Fig. XVII-21b, which is equal to

2.21qX 2
V(r=X) = - (6)

The potential at infinity with respect to the image surface is identified as V in
Fig. XVII-20. For large r, the potential felt by an ion from the discrete dipoles is
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approximately the same as that which would be felt from a continuously distributed dipole
1,6

layer. This value has been stated to be

lim V =V = V = 2rMo- 1 i  for M = 2qX. (7)
r-oo00

2. Mobile Films

For mobile films the cesium ions can move freely from one lattice site to another,

and hence each lattice site has the same probability of being occupied by a cesium ion

that is simply the coverage. Hence

p(O) = 0. (8)

The potential, then, of an ion at distance r is obtained by summing over each lattice

site and multiplying this potential by the probability of occupation. For the mobile film,
2 i+ 2

r.. = 4d (i +j , so that
13

V(r=) = P(0) (9)
4d3 - 2 .23/2-00 (i+j)

Evaluating the sum gives

2.21qk2.
V(r=k) = 3 1 (10)

d

3. Determination of f

The penetration coefficient is determined by the relation f , where A.i is the
e

change of ionic work function, and A $e is the change of electron work function. The

increase in ionic work function occurs because the ion penetrates through the potential

V - V of Fig. XVII-20. Thus A i = V - V. The electron work function decreases

as a result of the accelerating potential V o, so that A e = V . Thus we obtain the rela-

tion

f = 1 V  (11)
Voo

Substituting the calculated values for V and V , we obtain for the immobile film

f. = 1 2.21 ° .1 / 2 = 1 - 0.3628 1/2 (12)
Im 1 1

For the completely mobile film independent of coverage,

QPR No. 72 169



(XVII. PLASMA MAGNETOHYDRODYNAMICS)

2.21Xfm = 1 = 0. 6 3 2 . (13)
rrd

4. Ionic Coverage

The ionic coverage is related to the total coverage by Fermi-Dirac statistics, and
the following relation has been derived. 7

Fig. XVII-22. Born-Haber cycle.
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Fig. XVII-23. Ionic coverage vs total coverage for various
surface temperatures.
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0. = (14)
1 + exp(-E/kT)

where E is the difference in energy between a bound 6S electron of a surface adsorbate

atom and the Fermi level of the substrate. This quantity is determined from experiment

in the following manner. Consider the Born-Haber cycle of Fig. XVII-22. Two energy

balances result from this cycle:

fa = e - Vi +  
(15)

and

fa a + E. (16)

Equation 15 can be solved for f by using the atomic heat of adsorptions data of Taylor
2 a

and Langmuir. If it is assumed that a does not change with coverage - which is rea-

sonable since the atom is not acted upon by the electric forces of the dipole layer - and

if f for various materials tends towards the same value at higher coverages, thena
knowing f = f (0) and a , we can calculate the value of E = E(O) and substitute it in

a a
Eq. 13; this procedure yields 0. = 0.(0). This is plotted for various temperatures in

1 1

Fig. XVII-23 for cesium tungsten.

5. Correlation of Experimental Results

Theoretical values for f from Eqs. 11 and 12, for the two limiting cases of mobile

and immobile films, are plotted against 0 in Fig. XVII-24. Curves are also drawn

i 2,8
on the same coordinates by computing f i from previous experimental data. '8 The

e
values of f computed from Taylor-Langmuir data fall between the theoretical values

obtained for the two limiting cases considered. Furthermore, values of f calculated

in two different ways from the Taylor-Langmuir measurements agree within experi-

mental uncertainties. Curve 4 is calculated from direct measurement of i. By using

the cycle of Fig. XVII-22, together with the relations

4i ( 0) = io + A i, (17)

-A e = e - eo' (18)

A i = fA'e' (19)

so that

i( ) = io +  f(eo e) (20)

(where the zero subscripts denote values at zero coverages), the expression for f is

obtained.
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Fig. XVII-24. Penetration coefficient
vs coverage.

0.4

No. 7

0.3

No. 
5\

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0

4

CESIUM ON

No. 1 Tungsten
2

No. 2 Rhenium
9

No. 3 Tungsten
9

3- No.4 Molybdenum
9

f No. 1
2 No. 2

No.
No.4

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. XVII-25. Atomic heater adsorption vs coverage.
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Table XVII-2. Experimental values of relevant potentials and penetration coefficients.

e (eV) i (eV)
(measured) e (measured )

1.1

.99

.90

.73

.58

.45

.34

.26

.205

.165

4.62

4.12

3.75

3.10

2.62

2.20

1.89

1.74

1.70

1.78

0

.5

.87

1.52
2,0

2.42

2.73

2.88

2.92
2.84

2.05

2.46

2,76

3.22

3.58

3,87

4.06

4.13

4.07

3.96

Curve 3 Curve 4
fa(eV) f f

(measured) (computed) (computed)

0

.41

.71
1.17

1.53

1.82

2.01

2.08

2.02
1.91

2.82

2.72
2.63
2.47
2.32
2.19

2.09

1.98

1.90
1.84

.80

.782

.77

.75

.739

.733

.704

.685

.655

.82

.817
.77
.765
.751

.737

.723
.693
.673

0

.05

.1

.2

.3

.4

.5

.6

.7

.8
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fa + Vi- io- e
f=a 1 e

eo - e

(21)

Equation 17 is used with the Taylor-Langmuir measurements of f = f (0) to calculate
a a

curve 3. This double agreement increases the confidence placed in the Taylor-Langmuir

data. Table XVII-2 lists the numerical values used in the calculations.

The results of Charbonnier and others8 for the variation of the energy of adsorption

with coverage are shown in Fig. XVII-25. From this figure it is seen that there is a

much stronger variation of the energy of desorption with coverage; this result is in dis-

agreement with the Taylor-Langmuir data. In Fig. XVII-24, the penetration coefficient

as obtained from Eq. 17, with data of Charbonnier, Swanson, Cooper, and Strayer8 used,

is also shown. The values obtained for f versus coverage do not fall between the two

limiting cases of mobile and immobile films, as do the values obtained from Taylor-

Langmuir data.

J. W. Gadzuk
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