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A. FORCE DENSITY IN POLARIZABLE MATTER OBTAINED FROM THE

PRINCIPLE OF VIRTUAL WORK

The force density in a moving, deforming polarizable material with a particular

single-valued constitutive law relating the polarization P 0 and electric field E 0 in the

rest frame has been obtained previously from Hamilton's principle. The principle of

virtual work offers an alternate way of obtaining the same result. The advantage of this

approach is that it is less dependent on the assumed constitutive law. In fact, the results

obtained are valid for any lossless dispersive polarizable fluid (e. g., gyroelectric fluid)

in which the constitutive law relating P 0 and E 0 is an integro-differential equation in

time.

The principle of virtual work in a form that is suitable for the determination of force

densities in continua starts from the law of energy conservation. We consider a moving

and deforming medium and single out a moving and deforming volume V of the medium

enclosed by a surface S that is assumed to move along with the local velocity V(F, t) of

the medium. Denote the tensor stress in the medium by t, the power flow passing the

surface by -, the energy density by w, and the power conversion density by c. The

law of energy conservation is then

d . V+ g • da + w dv = f dv. (1)

S S V V

It should be noted that g is the power passing through the surface S, such as electro-

magnetic power or heat flow; the contribution to the time rate of change of the energy

in V from the work of the surface stresses is contained in the first integral. As stated,

Eq. 1 is of general validity and applies to dissipative or active systems and is not lim-

ited to nonrelativistic motion as long as the various terms are all evaluated in the lab-

oratory frame. The law of energy conservation is made into a principle of virtual work

by restricting it to nondissipative systems, to small virtual velocities v, and to systems

for which the quantities t, s, w, and 4 may be expressed in terms of the velocity v,

and the stress to, energy, force, power conversion, and momentum densities w 0 , f,

0' and G0 in the rest frame. Once such relations are known (or postulated) it is pos-

sible to find tO f0, and G O in terms of s0' w 0, and 0. Some of these relations are

simple. Because t is a force per unit area, it is, in the nonrelativistic limit (to first

order in V) equal to its rest-frame counterpart

t = to (2)
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The power flow density is also invariant

s = sO. (3)

The power conversion density in the laboratory frame #, is related to 0 in the rest

frame by

c = + f0 " v. (4)

The second term takes into account the power conversion density contributed by the force

density f 0 working on a fluid moving with the velocity v.

The relation between w and w0 is less intuitive if power flow and momentum densi-
ties are present in the rest frame. An expression between w and w0 is obtained if one

postulates that the energy-momentum tensor

t+ vG 1 r
icG -w

transforms as a four-tensor. One finds for the 4, 4-component

w = w 0 + 2 + G O ' (6)
c

By introducing (2)-(6) in Eq. 1, using the particle (or mass) density n, one has, to first
order in ',

7 0 0 • (t- V) + f " V. (7)

The derivatives are given with respect to the laboratory-frame coordinates. If one knows
the expressions for g, w0 , and 50 in terms of the physical variables, if one makes use
of the equations of motion of these physical variables, and if one retains only terms
up to first order in V, the left-hand side of Eq. 7 becomes a first-order expression in
v. Comparing the result with the right-hand side, one finds f%, GO, and t0 from a term-
by-term indentification. This procedure is best illustrated by the following example.

We apply the principle of virtual work to a dielectric fluid, without free charge or
free current. This fluid contains electric dipoles, with density (number per unit vol-
ume) n and dipole moment P/n. The fluid energy (per unit volume) in the rest frame
of the material may be assigned to each dipole: w0 /n 0 . The rate of change a/8t 0 (w0 /n 0 )
is caused in two ways. Energy is fed into the dipole by the electric field in the rest
frame (where the subscript 0 on t denotes it as the rest-frame coordinate) when the
dipole moment is changed. Thus, one contribution is
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E a (8)

This would be the only contribution if the microscopic and macroscopic electric fields

were the same, and if there were no fluid pressure. Since the two are generally not

the same, there is an additional contribution that is proportional to the time rate of

change of the density

0 0 (9)
n at 0

The physical meaning of Tr 0 will emerge later on. The time rate of change of the energy

per dipole is

8 w0 a /P0 Tr0 an
ao  E a  (10)

at0 n0 0 at0 n 0 2 at0

The rate at which power (per unit volume) is fed into the fluid by the electromagnetic

field can be obtained on a macroscopic basis from the Poynting theorem

V • (EX H) + . E OE 2 0 H = -E • Jpol (11)

where Jpol is the current density associated with the polarization,

- 8aPJ + V X (PX V). (12)
pol at

Therefore, by applying this equation in the rest frame, the rest-frame power conversion

density is

S= E 0 JpolO. (13)

The power-flow vector of the fluid system in the rest frame, sO, is zero. Since the

partial derivative with respect to the rest-frame time is equal to the substantive deriv-

ative in the laboratory frame, the left-hand side of (7) is thus

- d P-0 T 0 d n 0
n (0E + dt E ' Jpolo = F. (14)

0 0 dt n0 n0 dt 0 polO

All terms in (14) must be expressed in terms of the physical variables in the laboratory

frame because we want to make use of the equation of motion to bring (14) into the form

of the right-hand side of (7), where all derivatives are given with respect to laboratory-

frame coordinates. To eliminate the zero-order terms in Eq. 14, we use the transfor-

mation laws, correct to first order in V,

PO =  (15)
0
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E0 = E + v X j0 H

n0 = n

Jpolo= Jpol- pol +V x (PX-V) +- v * P +=+V (VP) - P V v.at at
(18)

In the rest frame, the law of conservation of particles is

1 dn0
V- v = - -

n 0dt

If this is substituted in Eq. 18, we find

d P VV
pol = n0 dt n 0 0 " V

to first order in v. Now, use of Eqs. 14, 19, and 20 results in

F= P 0  (VV) . EO - 70 v = v. (V 0 PoE 0 ) [(- 0 -POE) .v]

and hence from Eq. 7 we recognize that the rest-frame stress tensor is

t 0= r POE0,

the rest-frame momentum density is

G0 = 0,

and the rest-frame force density is

f0 = r - V . PE *

When these quantities are transformed to an arbitrary reference frame, we find

t = Tr06 - P(E+vX t0 H)

S= Vi(O0 +w) - P(E V)

w = w 0 +V. G,

(21)

(22)

(23)

(24)

(25)

(26)

(27)

where G is the relativistic momentum associated with the energy and stress in the fluid

2 2

G=v 2 V' Y 2 [T0 5- P(E +vX 0 )]. (28)
c c

Now let us add the stress-energy tensor for the polarization to the stress-energy tensor
for the fields. The result is
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tot = ttot + VGtot 0 EE +- 0H) - (EE+P)E - P(vX 0o ) + VG (Z9)

Gt = G + 2 (30)
c

stot = v0 + v(w 0 +V. G) - P(E v) + EX H (31)

1 2 1 H2Wto= w + v - +- E +- H . (32)

The divergence of the stress-energy tensor yields a force density of electromagnetic

origin

fe = (P -V)E + n d X 0H + V X (P -17) H - VT - n d ' (33)em dt n0 0 dt n

which is in agreement with the force density for the same situation predicted by means

of Hamilton's principle. 2

H. A. Haus, P. Penfield, Jr.
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