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A. CESIUM BEAM TUBE INVESTIGATION

Frequency comparison measurements have been made on two cesium clocks by using

the new frequency-impulse modulation system described in Quarterly Progress Report

No. 72 (pages 1-6). As was stated in that report, the NC-2001 beam tube construction

does not permit cavity correction directly and, therefore, an electronic waveform cor-

rection technique was devised that would essentially perform the desired action. Sub-

sequent testing showed that this waveform correction loop was adversely affecting the

primary control loop. Extensive measurements performed on the NC-Z001 tube showed

that it is hard to cause a differential detuning of the individual cavities. As a result

of these tests we decided to use only the primary control loop.

Data taken over two 12-hour periods (Fig. I-i) show the stability to be within ± 1

part in 1012 with a standard deviation of approximately 6 X 10- ,13 both for 1-hour

averaging times. Daily variations in the offset frequency were +0. 5, -1, +0. 2, +0. 5,

+0. 1 X 1012. On the day when the -1 X 10-2 variation occurred it is possible that the
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Fig. I-1. Frequency-stability data.
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(I. MOLECULAR BEAMS)

vacuum in one of the tubes was deteriorating because of troubles occurring in the vac-

ion supply. No room-temperature stabilization was attempted for these measurements,

although changes of 10-20OF were noted. These data were taken with the C-fields of

the two beam tubes connected in series to minimize any frequency variations attrib-

utable to current supply drifts.

Several tests were also conducted on the electronic system with the results tabu-

lated below.

Test Results

Servo gain +50% from Slight increase in short-
normal operation term instabilities, long-

term unaffected

RF power level +ldb Effect in noise, less

than X 10-12

Temperature cycling of No effect over 25-75°C
silicon transistor used temperature range
for synchronous detector

From the results of the tests reported here and of many others performed on elec-

tronic subsystems, and from the temperature cycling on the beam tube, any long-term

drifts (1 hour or more) in frequency appear to be caused by changes in the magnetic field

in the beam tube.

The magnetic-field dependence of the (4, 0-3, 0) transition is given by

f = f + 427B , (1)

where fo = 9192. 631770 mc; B is in gauss; and f is the operating or clock frequency.

The B in Eq. 1 is the average magnetic field seen by a cesium atom while traversing

the drift space between the two RF cavities. The sensitivity to changes in this field is

given by

Af = 5. 1 X 10 - 1 2 b (2)

where b is change in average field in milligauss, and Af is change in operating fre-

quency.

To measure the axial field sensitivity, cylindrical coils were wound around the

wooden racks containing the beam tubes. It was found that the axial shielding is an order

of magnitude poorer than the radial shielding. An axial field of 100 milligauss resulted

in a frequency change of 4 X 10- 1 2 which corresponds to an internal axial field change

of approximately 1 milligauss. Stated shielding factors for radial fields are 1000, that
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(I. MOLECULAR BEAMS)

is, 1 gauss external produces approximately 1 milligauss.

An experiment now under way involves locating the precise clock frequency with

respect to the zero-field frequency. Since the operating frequency offset is square-law

dependent on the magnetic field (Eq. 1) the following tests are being conducted. After

demagnetizing the C-field and microwave enclosure, the change in operating frequency

is measured as a function of the current (both positive and negative) supplying the C-

field coil. In Fig. I-2 is shown a typical curve obtained by this technique. Note that

"majorama flop" prohibits taking measurements at low current levels. The solid curve

-500 -400 -300 -200 -100 0 100 200

C-FIELD CURRENT (MA) OF BLACK CLOCK

300 400 500

Fig. I-2. Square-law dependence of offset frequency.

represents the best-fit parabola. Since the curve should be completely symmetrical

about the zero-current point, any offset is caused by a permanent field in the drift region

of the beam tube. Similar tests will be performed on the orthogonal magnetic axis while

operating at some known level on this curve.

R. S. Badessa, V. J. Bates, C. L. Searle
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B. AMMONIA MASER WITH SEPARATED OSCILLATING FIELDS

A two-cavity maser has been constructed with a cavity separation of 105 cm. This
device employs Ramsey's method of separated oscillating fields to obtain a molecular
resonance linewidth of 350 cps at 23 kmc. The 3-2 inversion resonance in ammonia
was used with a servomechanism system to obtain a molecular resonance clock that,
at present, has a stability of a few parts in 1010. This system was also used as a high-
resolution spectrometer to study the magnetic hyperfine structure of the 3-2 ammonia
line.

The ammonia resonance clock system was used to compare the frequency of the 3-2
inversion resonance in ammonia with the hyperfine resonance in cesium. The ammonia
signal was obtained by locking a harmonic of a crystal oscillator to the resonance with
a servo loop. The cesium resonance signal was provided by V. J. Bates and R. S.
Badessa from a National 2001 cesium beam tube. The A 1 time scale was used in these
measurements. The A 1 system locates the cesium resonance at 9, 192, 631, 770 cps.
The measurements were made over 100-sec intervals; 63 of these measurements were
made on four separate days. The average of these measurements is 22, 834, 185, 108. 1
+ 6. 2 cps. The standard deviation is 3 parts in 1010, but the absolute accuracy may
be much worse. The resonance frequency in the present device is quite dependent upon
the power level of the stimulating signal. The frequency increases by one part in 109

for a 3-db decrease in stimulating power, and decreases by 2 parts in 109 for a 2-db
increase in stimulating power. These changes were relative to the optimum stimulating
power (transition probability is 1/2 in the first cavity). The frequency deviation of the
present device appears to be a result of this power-dependent frequency shift. The
dependence of the frequency on external magnetic fields or focusser voltage is much too
small to be significant here.

The magnetic hyperfine structure of the 3-2 line in ammonia was investigated. The
theoretical analysis of this line was reported by Hadley, 1 and subsequent measurements
were made with 6-kc resolution by Shimoda. 2 We observed Ramsey resonance patterns

Fig. ------3. Resolved doublet (22, 834, 207. 2 kc and 22, 834, 210. k).-AI------- --------- i- ----

Fig. 1-3. Resolved doublet (22,834,207.2 kc and 2Z,834,210.0 kc).
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of 350-cps linewidth, and easily resolved the pairs of lines separated by less than 3 kc

on each side of the main line. Our measurements agree with the form of the theoretical

spectrum given by Hadley. The measured spectrum is symmetrical about the main line

within the accuracy of our measurements. Figure I-3 shows the pair of lines at

22, 834, 207. 2 kc and 22, 834, 210. O0 kc as an indication of the resolution and signal-to-

noise ratio of the system. The satellites have lower intensity than the main line by a

factor of approximately 30.

The frequencies of the measured lines are:

22, 834, 247, 950 ± 100 cps

22, 834, 210, 000 ± 100 cps

22, 834, 207, 200 ± 100 cps

22, 834, 185, 108 ± 6 cps

22, 834, 163, 000 ± 100 cps

22, 834, 160, 250 ± 100 cps

22, 834, 122, 250 ± 100 cps.

A diagram of the apparatus is shown in Fig. 1-4. The stimulating signal is applied

to both cavities. A microwave receiver is connected to the second cavity in order to

observe the resonance. A directional coupler is used at the second cavity to reduce the

amount of stimulating power going directly into the receiver.

In the separated oscillating field scheme the resonance is shifted by a phase dif-

ference between the two fields. This shift has approximately the same dependence on

the cavity tuning as with the single-cavity maser. 4 But in this two-cavity maser the

linewidth is much narrower so this device is more than an order of magnitude less sens-

itive to cavity tuning than the conventional ammonia maser.5 The phase difference

between the RF fields is detected by modulating the phase of the stimulating signal with

VACUUM ENVELOPE

BEAM FOCUSSER CAVITY CAVITY
SOURCE I 1 2

L-1

ATTENUATORS DIRECTIONAL
COUPLER

PHASE SHIFTER

STIMULATING MICROWAVE

SIGNAL RECEIVER

Fig. I-4. Diagram of the apparatus.
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(I. MOLECULAR BEAMS)

a square wave and using a synchronous detector 90' out of phase with the modulation. 6

This quadrature synchronous detector provides an output proportional to the phase dif-

ference between the RF fields. This signal is used to correct the phase difference.

Another synchronous detector operating in phase with the modulation is used in a servo
loop to control the frequency of the stimulating signal.

The two-level ammonia system is described by a wave function =a), where a
is the complex amplitude of the upper inversion state, and b is the complex amplitude
of the lower state. For our system the beam entering the first cavity is described by

= (0), a beam containing only upper-state molecules. The Hamiltonian of this sys-

tem is 3 o = - 0 - ) if we adjust the energy scale so that zero is centered between

the two inversion levels. The energy of the initial system is 4 H o o . The RF
fields provide a perturbation of the form

0 hbe -iwt
(hbe- iWt 0

which causes transitions between the states (), Q). This problem is solved for both

the one- and two-cavity cases by Ramsey.7

The level and frequency of the RF field in the first cavity are such that the beam has
0

the wave function 1 =e _i t for the region between the cavities. If the first cavity

is short compared with the cavity separation, the frequency range over which this con-
dition is satisfied is large compared with the Ramsey resonance width. In the region
between the cavities the perturbing fields are small, so the Hamiltonian is Xo and eval-
uating 1 HoL 1 gives zero.

The energy of the beam molecules leaving the second cavity (Ef) is determined by
Ramsey's equation for the total transition probability for the two-cavity system.

E = hlo 1  Ppq sin 2 2bT cos 2 1 [(W-)T-6J,

where T is the transit time for each cavity, T is the transit time between cavities, and
6 is the phase difference between the RF fields. Therefore the power delivered to the
second cavity (P 2 ) must be -nEf, where n is the number of molecules per second passing
through the second cavity. Consequently, we see that measuring the power delivered to
the second cavity provides a direct measure of the transition probability Ppq

PZ =-nEf = nlio (pq4 T

Thus we obtain the typical Ramsey resonance curve by this method.
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The important factor in the transition probability (P pq) for (W -0 ) < l/T is

cos2 ~ 1[( - w)T-6] = cos 1 . A more general expression for ' is I = 6 + (w0O-W(T)) dT.

2 -T

This reduces to the previous form when w(T) is nearly constant over intervals of length

T, that is, when the stimulating frequency is modulated very slowly.

Square-wave phase modulation of the stimulating signal produces a periodic step in

1. The function 4 returns to zero (if w = 0 ) in a time T after the step produced by the

modulation. If the average value of w = , the square-wave phase modulation will pro-

duce equal changes in cos for positive and negative steps. If the average value of

w is not at oa , positive and negative steps in 4 will not produce equal changes in
21

cos Z and the "in-phase" synchronous detector will indicate an error signal and cor-

rect the average value of o.

If there is a phase difference 6 between the RF fields, then the "in-phase" synchro-

nous detector will adjust the average value of w so that the average value of ' is zero.

The presence of this condition will be detected by the quadrature synchronous detector.

If the period of the modulation is 4T (T is the average transit time between the cav-
a a 21

ities) the quadrature synchronous detector compares values of cos for T < Ta with

those for T > T a . This provides the error signal that allows us to correct the cavity

phase difference 6. This method has been discussed in greater detail by Bates and

Badessa.
S. G. Kukolich
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C. AMMONIA DECELERATION EXPERIMENT

A modified apparatus has been designed and work on its construction started. This

apparatus differs from the previous one in the following respects.

Deflection of the molecular beam by a nonuniform electric field will be used to pro-

vide velocity sensitivity. The beam will be detected by a detector based on the principle
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of high-field ionization. We have made experimental tests of the detector, using the
device to measure the pressure in a vacuum system and calibrating it against an ioni-
zation gauge for various gases. No attempts to detect an actual beam have yet been

2
made.

Experimental results on high-voltage discharges in vacuum indicate that a 1-mm
gap between invar electrodes can withstand voltages in excess of 30 kv. This allows
the new apparatus to be considerably shorter than the old one. The decelerator will con-
sist of 9 stages and will be approximately 8 inches long. Molecules will be decelerated
from approximately 35 0 K to 1*K, or approximately a factor of 6 in velocity. (The
source temperature will be approximately 100°K, so the output molecules will have v =
a/10.)

Some theoretical work has been done on the focussing and phase-stability properties
of the proposed decelerator. These problems have been treated to first order in devi-
ations from the design trajectory. The focussing and phase-stability problems were
assumed to be independent.

As the focussing properties depend on the geometry of the electrodes, these calcu-
lations were used to select the geometry.

The phase-stability characteristics depend primarily on the shape of the voltage
pulse applied to the electrodes. The tops of the voltage pulses were assumed to have
a linear drop in time. This will cause slow molecules that tend to arrive late at a given
stage to lose less energy than fast molecules. Liouville's theorem (the fact that the vol-
ume in phase space occupied by a distribution of noninteracting molecules remains con-
stant in time if the forces acting are conservative) indicates that the linear drop that
produces bunching will not increase the intensity.

Let the direction of beam travel be the X direction. Then Liouville's theorem
requires that (for a one-dimensional problem)

x Spx = 6x 6v m = constant.

But in order to calculate intensity, we are interested in distributions in arrival time
rather than distributions in position,

6x = v6t

and the Liouville condition becomes

6t Sv vout t
o6tut 6out v. in in'(in

where subscripts in and out refer to the input and output of the decelerator. 6tout is
only limited to the half-cycle during which the voltage is on. 6vou t will be determined
by experimental conditions, that is, by the resolution of the velocity selector. The
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intensity is proportional to the product t. inv. , (6v. <<v. ), so that for a fixed spread

in output variables the intensity is fixed independently of voltage-waveform drop. For

flat-top square waves only a small range of input velocities will produce output velocities

in a given range, but the arrival time at the first stage will not have any appreciable

effect as long as the molecules arrive during the half-cycle when the voltage is on. If,

on the other hand, there is a fairly large linear drop (20 per cent) at the top of the

pulses, a wide range of input velocities will be bunched into a given output velocity

range, but this will occur only for those molecules that arrive at the first stage during

a relatively small time interval.

Although the intensity is independent of waveform at the tops of the pulses, some

drop is desirable, in order to provide stability against random errors in construction

and voltage and frequency instability.

R. Golub, G. L. Guttrich
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D. LOW-TEMPERATURE HELIUM BEAM EXPERIMENT

The initial design phase of this experiment has been completed during the past

quarter and construction of an apparatus is now under way. The design capabilities of

the apparatus are such as to permit the following studies.

1. Production and detection of atomic beams of helium, utilizing either gas or liquid

sources at operating temperatures from -2 K to 4. 2*K.

2. Semiquantitative velocity analysis of the beams.

3. Data on intensity fluctuations ("shot noise") and correlation interference effects

for gas and liquid sources.

To permit these studies, a detector for helium with a fairly fast resolving time and

high efficiency is required. For correlation or interference studies a "small" detector,

in terms of angular aperture seen from the source, is also necessary. After tests on

an "Omegatron" mass spectrometer with an electron bombardment ion source had indi-

cated a detection efficiency several orders of magnitude too small, because of low ioni-

zation probability, a field-ionizing detector was chosen.

This form of detector is essentially the same as the field-ionization microscope in

operation, with a sharp (~1000Atip radius) tungsten needle operated at +50-90 kv exposed

QPR No. 74



(I. MOLECULAR BEAMS)

to the beam. Field-ionized atoms are repelled from the tip to a phosphor screen viewed

by a photomultiplier. The practical resolving time is limited by the phosphor's rise and

decay times (5X10 - sec 1/e decay time for P-16 phosphor), and the efficiency is

~25-30 per cent, determined by the solid angle of the phosphor screen seen by the needle

tip. For 1"K helium atoms, the detector "size" is approximately 50 times the tip's
-6 2

physical radius or approximately 10 cm cross-section area. For beam intensities

of 106 atoms/sec the detector chamber residual pressure must be below 3 X 10 - 10 torr

for acceptable signal-to-noise ratio, since the detector functions as a total pressure

manometer. It is possible, however, that atoms other than helium, since they are more

easily ionized, will have less energy upon hitting the phosphor and can be taken out of

the signal by pulse-height discrimination following the photomultiplier stage.

Since the source end of the apparatus must fit into a dewar, all pumping lines, etc.

must come out the detector end. This complicates the pumping problem of removing

background gas from the beam chamber. It was decided to introduce an adsorption

pumped separating chamber between the source and the velocity analyzer. This consists

of a thin-wall copper tube, 12 in. long, 1-1/4 in. O. D., filled with Zeolite except for

an axial hole of ~3-mm diameter for the beam to pass through. Such a "trap" was tested
-5

at 4*K and showed a sticking probability for He of 99. 999 per cent (1-10-5 ) or greater,

and did not saturate after adsorbing half a mole of helium.

Velocity analysis is to be accomplished with a single disc chopper that admits a pulse

of 2-msec duration, repeated 10 times a second, through a 30-cm drift space to the

detector.

The source end of the separating chamber is designed to accept either a gas source

or a liquid source, with provision for use of an He3 refrigeration cycle to further cool

the liquid source. A reliable method for filling the liquid source remains to be devised.

W. D. Johnston, Jr.
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