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Abstract

In this paper we focus on the parallel computation of large - scale equilibrium and op-

timization problems arising in the social and economic sciences. In particular, we consider

problems which can be visualized and conceptualized as nonlinear network flow problems.

The underlying network structure is then exploited in the development of parallel decom-

position algorithms. We first consider market equilibrium problems, both dynamic and

static, which are formulated as variational inequality problems, and for which we propose

parallel decomposition algorithms by time period and by commodity, respectively. We

then turn to the parallel computation of large-scale constrained matrix problems which

are formulated as optimization problems and discuss the results of parallel decomposition

by row/column.



Many problems in the social and economic sciences can be visualized as nonlinear

network flow problems. Examples include both equilibrium problems in which agents

compete for scarce resources until the system is driven to an equilibrium state and op-

timization problems with a single objective function. Applications of nonlinear networks

include: interregional/international trade, urban transportation and land use analyses, the

study of human migration patterns, financial planning, and macroeconomic forecasting.

The advantage of a network formalism lies not only in its use as a conceptualization

tool in yielding new and general models, but also in the stimulus that it provides in the

development of algorithms to exploit the special network structure.

For example, networks are being used to model market equilibrium problems over

space and time ([1]), in which commodities are being produced in competitive markets,

inventoried at different locations, and shipped to the consumers ([2], [3]). Such dynamic

network equilibrium models with transportation and inventory links can also handle, via

the addition of arc multipliers, gains and/or losses of the commodities over space and time

due to accretion, increases in value and/or perishability, losses, or thefts ([4]).

Networks can also assist in policy analyses, where the effects of regulatory instruments

such as price controls in the form of price floors and ceilings, trade restrictions, tariffs, and

taxes are to be determined. Such policy interventions are used by governments as part

of both agricultural and energy programs and may result in disequilibrium situations in

which the markets no longer clear ([5]). It has now been established (see, e.g., [6]) that

such market disequilibrium problems can be reformulated as network equilibrium problems

over specially-structured networks in which the nodes of the network no longer correspond

to locations in space.

Another network problem with wide application in the social and economic sciences,

which unlike the above equilibrium problems, has an optimization formulation, is the

constrained matrix problem ([7]). Applications of constrained matrix problems include:

the estimation of input/output tables, social-national accounting matrices, the analysis of

political voting patterns, the treatment of census data, and the projection of migration

flows.

The computational approach to both equilibrium and optimization problems in the

social and economic sciences has been, heretofore, primarily serial in nature. In this
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paper we show how parallel computation can be applied to solve both equilibrium and

optimization problems which are extremely large and which have an underlying network

structure.

Computational Procedures

Equilibrium problems governed by distinct equilibrium concepts can be formulated as

variational inequality problems. Originally introduced for the study of partial differential

equations (see, e.g., [8]), in which the applications were derived from mechanics, the the-

ory of variational inequalities has now been used to formulate and study such equilibrium

problems in economics and the social sciences as oligopolistic market equilibrium prob-

lems, general economic equilibrium problems, traffic equilibrium problems, and migration

equilibrium problems (see, [9], [10], [11], [12], and the references therein). The theory of

variational inequalities provides not only a methodology for the study of qualitative proper-

ties of existence, uniqueness, and sensitivity of equilibrium solutions, but also provides for

mathematically correct algorithms for the computation of solutions to equilibrium prob-

lems for which no equivalent optimization formulation exists. Furthermore, the synthesis

of variational inequalities and networks induces the creation of highly efficient algorithms

which are especially suited for large-scale equilibrium problems which have a characteristic

underlying network structure.

The finite-dimensional variational inequality problem VI(f, K) is to determine the

vector 2 in a closed convex subset K of the n-dimensional Euclidean space R n such that

f(x).(2'-x)> 0, for all 'EK (1)

where f(.) is a known function from K to R n .

VI(f,K) contains, as special case, complementarity problems, fixed point problems,

min/max problems, as well as minimization problems. For example, the connection be-

tween variational inequalities and minimization problems is as follows. Let F(.) be a

continuously differentiable scalar-valued function defined on some open neighborhood of

K and denote its gradient by VF(.). If there exists an E K such that

F(x) = min F(x') (2)
z'EK
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then x is a solution to the variational inequality

VF(x) (x'- x) > 0, for all x' E K. (3)

On the other hand, if f(.), again on an open neighborhood of K, is the gradient of a convex

continuously differentiable function F(.), then VI(f, K) and the minimization problem (2)

are equivalent. Hence, an optimization form of a variational inequality exists only when

the Jacobian matrix [ ], is symmetric, but VI(f, K) can also handle problems with asym-

metric Jacobians (which can arise in multicommodity problems) for which no equivalent

optimization formulation exists. The network structure of a variational inequality problem

is manifested in the feasible set K.

In the case where the feasible set K can be expressed as a Cartesian product of sets,

i.e.,

K= H Ka (4)
a=l

where each Ka, is a subset of Rn-, then parallel variational inequality decomposition al-

gorithms can be applied for the computation of the equilibrium solution to VI(f, K).

The motivation is to resolve the variational inequality problem into simpler variational

inequality or optimization problems, each of which can then be allocated to a distinct pro-

cessor. Many equilibrium problems in economics and the social sciences are defined over

a feasible set K of the form (4). For example, in the case of multicommodity problems,

each subset K , would correspond to the constraints of commodity a ([13]); in the case of

multiclass problems in human migration, each K, would correspond to a distinct class a

([12]). Similarly, in the case of multimodal traffic networks, each K , would correspond to

the constraints of the transportation mode a ([11]).

Since variational inequality problems are, hence, usually solved iteratively as mathe-

matical programming problems, the overall efficiency of a variational inequality algorithm

depends on the efficiency of the mathematical programming algorithm used at each itera-

tion. The linearized parallel variational inequality decomposition algorithm which we now

describe decomposes VI(f,K) into simpler subproblems, which are quadratic program-

ming problems. This construction has further stimulated the development of equilibration

algorithms ([14], [15]). Each of these problems, in turn, can be allocated to a distinct pro-
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cessor and all can be solved simultaneously and in parallel. The statement of the algorithm

is as follows:

Initialization

Start with an initial vector z E K. Set k = 1.

Step k, k = 1,2,...:

Construct the functions

f() = D,(xk-I) () + (fa(k - 1) - Da(zk-1))z - l) (5)

for a = 1,..., , where Da(xk- l ) is the diagonal part of Vaf,~(z), and solve the C sub-

problems:

fi(C') (', -2:a,) >O for all , E K. (6)

Let the solution to (6) be xk, a = 1,..., .

If equilibrium conditions are satisfied, then stop; else, set k = k + 1, and go to (5).

Convergence results for the above algorithm are given in [16].

In the subsequent sections we first consider equilibrium problems, and apply two

linearization decomposition algorithms, by time period, and by commodity, for the com-

putation of market equilibrium problems. We then turn to the computation of constrained

matrix problems, and describe our experiences with the parallel Splitting Equilibration Al-

gorithm (SEA) which we have developed for the solution of these large-scale optimization

problems.

Dynamic Market Equilibrium Problems - Parallel Decomposition by Time Pe-

riod

In this Section we describe the above parallel decomposition algorithm applied to

a dynamic market equilibrium problem when the decomposition is by time period. In

particular, we consider a finite time horizon problem with T time periods in which a

commodity is produced at m supply markets, inventoried at the supply markets, and

shipped to the consumers at the n demand markets. The dynamic network representation

of this problem is given in Figure 1. The market equilibrium conditions (cf. [2] and [3])

state that a commodity will be produced, traded, and consumed, between a pair of markets
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if the supply price at the supply market plus the transaction/transportation cost between

the markets is equal to the demand price at the demand market. Similarly, the commodity

will be inventoried between two time periods if the supply price at the supply market is

equal to the supply price at the next time period. This problem has been formulated as a

variational inequality problem in [17].

The motivation for the parallel decomposition algorithm by time period lies in the

special network structure. In particular, we define the Cartesian product K as the product

of two subsets K 1 and K 2, where K 1 contains all the commodity shipment variables (the

vertical arcs in Figure 1), whereas K 2 contains all the inventory variables (the horizontal

arcs). The constraints require only that these variables be nonnegative. The algorithm

then decomposes the problem into T + 1 subproblems, of the form depicted in Figure 2;

the first T problems are static spatial price equilibrium problems with a special bipartite

network structure in m x n variables each, for which numerous efficient algorithms exists

(cf. [141, [15]), whereas the T + 1-st subproblem, is a very simple inventory problem in

m(T - 1) variables, which can be solved using a Gauss-Seidel algorithm.

We considered large-scale dynamic market equilibrium problems with linear separable

functions and with nonlinear asymmetric functions with five cross-terms. In the case of the

nonlinear examples, the supply and demand price functions associated with the nodes were

quadratic functions, the transportation cost functions associated with the vertical arcs were

quartic, and the inventory cost functions associated with the horizontal arcs were linear.

We solved four series of problems, two of which were linear and two of which were nonlinear,

with 25 supply markets and 25 demand markets, and 50 supply markets and 50 demand

markets, ranging from 5 time periods to 50 time periods. The computations were conducted

on the IBM 3090/600J at the Cornell National Supercomputer Facility using a FORTRAN

code of the algorithm, which was compiled using the FORTVS compiler, optimization level

3. Figure 3 depicts the CPU behavior of the algorithm when the algorithm is implemented

in serial as the number of time periods is increased. The linear behavior of the algorithm

is to be contrasted with the behavior of earlier algorithms, which is at least quadratic ([1]).

We then proceeded to embed the algorithm with parallel constructs provided by Par-

allel FORTRAN (PF) and proceeded to run four examples in a standalone environment on

the IBM 3090/600J, after the algorithm was compiled using the PF compiler, optimization
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level 3. The IBM 3090/600J is a shared memory multiprocessor system with six processors.

The four examples had been solved in Figure 3. The speedup measure used and reported

in Figure 4 was defined as:

Speedup SN = (7)
TN

where '1 is the elapsed time to solve the problem using the serial implementation of the

algorithm on a single processor, and T'N is the elapsed time to solve the problem using the

parallel implementation of the algorithm on N processors. Convergence verification was

done in serial and after every other iteration. As can be seen from Figure 4, the linear,

separable problems exhibited substantial speedups, whereas the nonlinear, asymmetric

problems, lower speedups. This is due, in part, to the serial bottleneck of convergence

verification, which is more time- consuming for the general problems. However, practition-

ers are concerned with obtaining solutions and, hence, convergence verification is essential.

Moreover, these results illustrate a substantial overall savings in elapsed time on extremely

large problems. Indeed, prior to this research, the largest problems of this form that had

been solved consisted of only 20 supply markets, 20 demand markets, and 10 time periods

([11).

Dynamic and Static Market Equilibrium Problems - Parallel Decomposition

by Commodity

In this Section we describe the parallel decomposition algorithm applied to multi-

commodity static and dynamic market equilibrium problems. In this decomposition, each

feasible set Kca corresponds to a particular commodity a.

We considered three multicommodity market equilibrium problems. The first exam-

ple, MSP, was a static problem consisting of 12 commodities, 50 supply markets and 50

demand markets and with quadratic supply price and demand price functions and quartic

transportation cost functions. We note that the decomposition of the multicommodity

static problem results in the solution of as many static problems of the form of the static

problems depicted in Figure 2 as there are commodities. For each of these "classical"

bipartite spatial price equilibrium problems we again used the equilibration algorithms

introduced in [14]. The second example, DMSP1, consisted of 12 commodities, 40 mar-

kets total, and 2 time periods, whereas the third example, DMSP2, consisted of the same
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number of commodities and markets as DMSP1, but had 5 time periods. The form of the

functions was as in the static example, with the cost functions on the horizontal links now

being quadratic. The equilibration algorithm embedded in the dynamic problems was the

one describe in [1]. The decomposition of the multicommodity dynamic problems yields

as many problems of the form in Figure 1 as there are commodities.

These algorithms were also embedded with PF constructs and compiled using the PF

compiler, optimization level 3. The parallel runs were conducted under the Strategic Users'

Program on the IBM 3090/600E and are reported in Figure 5. Additional serial results

on the IBM 3090/600E for dynamic market equilibrium problems can be found in [18] and

additional parallel results for static problems can be found in [13].

We remark that an idea for future research is to combine decomposition by time period

and by commodity to introduce another level of parallelism in the computation of dynamic

multicommodity market equilibrium problems.

Parallel Decomposition by Row/Column of Large-Scale Constrained Matrix

Problems

In this Section we report the results of the Splitting Equilibration Algorithm, which

we have recently developed and for which a complete theoretical analysis, including com-

putational complexity, now exists ([19], [20]). The algorithm is a general parallelizable

procedure which decomposes a wide spectrum of constrained matrix problems into series of

row/column equilibration problems, each of which can be solved exactly in closed form and

allocated to a distinct processor. SEA splits the constraints which are of transportation-

type so that the objective function is considered subject to either the row constraints, or the

column constraints. Its theoretical analysis is based on its interpretation as a dual method.

SEA has now been applied to compute the solution to social and economic datasets, in-

cluding input/output matrices, social-national accounting matrices, and migration tables.

Constrained matrix problems with as many as 9 x 106 variables have now been solved and

computational comparisons with several existing algorithms conducted (see, also, [21]).

The constrained matrix problem is to compute the best possible estimate of an un-

known matrix, given some information to constrain the solution set, and requiring either

that the matrix be a minimum distance from a given matrix or that it be a functional
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form of another matrix. The network representation of the constrained matrix problem

is given in Figure 6, and the parallel decomposition algorithm depicted in Figure 7. We

note that the problem that we are now solving is an optimization problem, of the form

(3), where F(z) is now a quadratic objective function. We note also that F(z) may differ,

depending on whether the row and column totals are known, or need to be estimated. In

the case that the row and column totals need to be estimated as well, then provided that

the distance measure is Euclidean, and the weights induce a diagonal objective function,

then this constrained matrix problem is isomorphic to the static spatial price equilibrium

problem depicted in Figure 2.

In Figure 8 we report the speedups obtained for SEA on three examples, IO072b, a

1972 input/output matrix of the United States economy with 485 rows and 485 columns, a

1000 x 1000 matrix with 106 variables, and SP500 x 500, a constrained matrix problem in

which the row and column totals need to be estimated, as well, and which is isomorphic to

classical spatial price equilibrium problems, consisting of 500 rows and 500 columns. These

runs were conducted on the IBM 3090/600E in a standalone environment. We note that

in the case of the serial implementation of SEA, the CPU time required for the solution of

IO072b was 438.52 seconds, the CPU time required for the 1000 x 1000 matrix was 483.20

seconds, and the CPU time for SP500 x 500 was 540.70 seconds.

SEA is a massively parallel algorithm which thus far has been implemented on a

parallel system with only six processors. Future research will entail implementing the

algorithm on a massively parallel architecture, such as the Thinking Machine's, Connection

Machine, the CM-2.

8



Acknowledgements

This research was supported by NSF Grant RII-880361 under the NSF Visiting Pro-

fessorships for Women program while the first author was a visiting faculty member in the

Transportation Systems Division at MIT and by a 1989 Faculty Fellowship Award from

the University of Massachusetts at Amherst while the first author was a Visiting Scholar

at the Sloan School at MIT. Support was also provided by a Faculty Summer Research

Grant from the School of Management at the University of Massachusetts.

This research was conducted on the Cornell National Supercomputer Facility, a re-

source of the Center for Theory and Simulation in Science and Engineering, which receives

major funding from the National Science Foundation and the IBM Corporation, with ad-

ditional support from New York State and members of the Corporate Research Institute.

The authors would like to thank Francesca Verdier for her assistance in the standalone

runs.

9



References

1. Nagurney, A. and J. Aronson, "A general dynamic spatial price equilibrium model:

formulation, solution, and computational results," Journal of Computational and Applied

Mathematics, 22, 359-377, 1988.

2. Samuelson, P. A., "Intertemporal price equilibrium: A prologue to the theory of spec-

ulation," Weltwirtschaftliches Archiv., 79, 181-219, 1957.

3. Takayama, T. and G. G. Judge, Spatial and temporal price and allocation mod-

els, North-Holland, Amsterdam, 1971.

4. Nagurney, A. and J. Aronson, "A general dynamic spatial price network equilibrium

model with gains and losses," Networks, 19, 751-769, 1989.

5. Thore, S., "Spatial disequilibrium," Journal of Regional Science, 26, 660-675, 1986.

6. Nagurney, A. and L. Zhao, "A network equilibrium formulation of market disequilibrium

and variational inequalities," to appear in Networks.

7. Bacharach, M., Biproportional scaling and input-output change, Cambridge

University Press, Cambridge University, UK, 1970.

8. Kinderlehrer, D. and G. Stampacchia, An introduction to variational inequalities,

Academic Press, New York, 1980.

9. Dafermos, S. and A. Nagurney, "Oligopolistic and competitive behavior of spatially

separated markets," Regional Science and Urban Economics, 17, 245-254, 1987.

10. Dafermos, S., "Exchange price equilibria and variational ineuqalities," Mathematical

Programming, 46, 391- 402, 1990.

11. Nagurney, A., "Competitive equilibrium problems, variational inequalities, and re-

gional science", Journal of Regional Science, 27, 503-517, 1989.

12. Nagurney, A., "Migration equilibrium and variational inequalities," Economic Letters,

1989.

13. Nagurney, A. and D. S. Kim, "Parallel and serial variational inequality decomposition

algorithms for multicommodity market equilibrium problems," The International Journal

of Supercomputer Applications, 3, 34-58, 1989.

10



14. Dafermos, S. and A. Nagurney, "Supply and demand equilibration algorithms for a

class of market equilibrium problems," Transportation Science, 23, 118-124, 1989.

15. Eydeland, A. and A. Nagurney, "Progressive equilibration algorithms: the case of

linear transaction costs," Computer Science in Economics and Management, 2, 197-219,

1989.

16. Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and distributed computation,

Prentice Hall, Englewood Cliffs, NJ, 1989.

17. Nagurney, A. and D. S. Kim, "Parallel computation of large- scale dynamic market

network equilibria via time period decomposition," School of Management, University of

Massachusetts, Amherst, MA, 1990.

18. Nagurney, A., "The formulation and solution of large-scale multicommodity equi-

librium problems over space and time," European Journal of Operational Research, 42,

166-177, 1989.

19. Nagurney, A., A. Eydeland, and D. S. Kim, "Computation of large-scale constrained

matrix problems: the Splitting Equilibration Algorithm," to appear in the Proceedings of

Supercomputing '90.

20. Nagurney, A. and A. Eydeland, "The Splitting Equilibration Algorithm for the com-

putation of large-scale constrained matrix problems," presented at the annual meeting of

the Society for Economic Dynamics and Control, June, 1990, St. Paul, Minnesota.

21. Nagurney, A., D. S. Kim, and A. G. Robinson, "Serial and parallel equilibration

of large-scale constrained matrix problems with application to the social and economic

sciences," The International Journal of Supercomputer Applications, 4, 49-71, 1990.

11



t = 2

Supply Market Nodes

Demand Market Nodes

Figure 1: A Network Represention of the

Market Equilibrium

t Tt = 1

Dynamic Problem



Subproblem Subproblem

1

Subproblem

2 T

Subproblem

T+ 1

Figure 2: Parallel Decomposition of the Dynamic

Market Equilibrium by Time Period

... *X m...
1,1~ 2 )··(~t ( 2 ~22 · · ( mZ ). · 1JK r )··(mI



1500

1250

1000

750

500

250

0
0 5 10 15 20 25 30 35 40 45 50

Number of Time Periods
LS 25X25

o : NA 25X25
o : LS 50x50
v : NA 50X50

Figure 3: CPU Behavior for the
Decomposition
Time Period

Algorithm

I I I I I I I I I I

C
0-_0O,

E

a.
U

x 00

by

C~ ·-C~fi~c~----I I I I I I I



6

5

4

3

2

1

1 2 3

Number

o : LS 50X50X25
v : NA 50X50X25

4 5 6

of Processors
: LS 50X50X50
: NA 50X50X50

Figure 4: Parallel Speedup

for the Algorithm

()
V)

10.
3

Q)
nQ.V)



1 2 3

Number of Processors

: MSP o: DMSP1 V . DMSP2

Figure 5: Parallel Speedup for the
Decomposition
Commodity

Algorithm

3

z
V)

0

(/3a-(,4

2

1

by



Figure 6: Bipartite Network Representation

of Constrained Matrix Problems



Row Equilibration

Column Equilibration

Figure 7: Parallel Decomposition
Row/Column of Constrained
Matrix Problems

Step

by

.

l

Ste p



1 2 3 4 5

Number of Processors

: 1072b o: 100Ox1000 V . SP500X500

Figure 8: Parallel Speedup for SEA
Decom position
Row/Column

Algorithm

6

5
z

n
aQ
0

0.

4

3

2

1

by


