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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Communications

The work of the group is focused on the dual problems of ascertaining the best per-

formance that can be attained with a communication system, and developing efficient

techniques for actually achieving performance substantially this good.

a. Coding Techniques

An experimental facility permitting the application of sequential decoding to a wide
1

variety of modems and channels has now been completed and tested. The facility con-

sists of a portable data acquisition system and a special programming language for use

with a PDP-6 general-purpose computer. The data acquisition system will accept ana-

log outputs from a wide variety of channel demodulators and, by means of sample-and-

hold and analog-to-digital converter circuits, will record the outputs together with

appropriate timing information on a digital tape recorder. Circuitry and software permit

a ready transfer of data from the recorder to the computer memory (DEC-tape). The

special programming language, a modification of FORTRAN, permits experimenters

without detailed programming background to write efficient programs for implementing
a variety of sequential decoding algorithms, collect performance statistics, and control

the program by means of a light pen on the basis of a real-time display of the tree

search. This facility has already proved useful in debugging a modified sequential

decoding algorithm and in obtaining preliminary data on the performance of a short con-

straint length convolutional code operating on a simulated deep-space link. This work

continues.

On the theoretical side of sequential decoding, it has been shown 2 that the probability

distribution of the number of computations, L, required to decode a digit is of the form

KL - a when a can be upper- and lower-bounded as a function of the channel and trans-

mission rate. Techniques are now being investigated to avoid this computational problem
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by using several sequential decoders in parallel.

A new coding and decoding technique, called concatenated coding, has been investi-
gated. 3 By using this technique, decoding can be accomplished for any transmission rate
less than capacity with a computational complexity that is an algebraic function of the
constraint length and with an error probability that is an exponentially decaying function
of the constraint length. Some examples indicate that this technique might have a number
of practical applications.

The time-bandwidth product of the bubble-tank has been increased and instrumenta-
tion for discrete signaling at both high and low energy-to-noise ratios completed. Instru-
mentation for analog signaling is in the process of development. This equipment will be
used in the coming year to investigate experimentally the performance of various coding
techniques on randomly time-variant dispersion channels.

R. G. Gallager, I. M. Jacobs
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b. Optical Communications

Preliminary studies of communication systems employing optical frequencies have
indicated three topics to which the concepts and techniques of modern communication
theory may most profitably be addressed. They are (i) the import of quantum electro-
dynamics for the characteristics of efficient communication systems, (ii) the relevant
description of device noise as it affects the performance of communication systems, and
(iii) the statistical characterization of the atmosphere as a propagation channel at optical
frequencies.

A fundamental comprehension of these topics requires familiarity with a mixture of
probability theory, physics, and experimental methods. Accordingly, a substantial
effort has been invested in the acquisition of the prerequisite background in physics and
optical techniques. Concurrent studies of specific modulators, demodulators, and chan-
nels have been completed and summarized in Quarterly Progress Report No. 79
(page 205).

R. S. Kennedy

c. Theoretical Bounds on Error Performance

A considerable amount of research has been done on finding the reliability of various
channel models. The reliability of a channel as a function of transmission rate is the
exponent with which the probability of decoding error can be made to vanish with
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increasing block length. For channels with additive nonwhite Gaussian noise, upper and

lower bounds on reliability have been found which agree both for rates between Rcrit and
1

capacity and in the limit as the rate approaches zero.

Other classes of channels being actively investigated are randomly time-variant

channels and parallel coupled channels without crosstalk. Efforts are also being made
to achieve a fundamental understanding of the effect of a lack of time synchronization on

error probability.

R. G. Gallager, I. M. Jacobs
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d. Vocoded Speech

A voice-excited vocoder has been successfully simulated on the IBM 7094 computer

and satisfactory quality of voice has been reconstructed with 220-660 cps frequency used
as the voice-excitation band. Experiments are under way to convert the vocoder output
to a binary data stream and investigate the effect of channel coding techniques on the

reconstructed voice.

R. G. Gallager, I. M. Jacobs
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e. Switching Circuits and Logical Machines

Closely related work is concerned with switching theory and its application to compu-

tation problems. During the past year, effort has been concentrated on a study of gener-
alized threshold functions and their application to the problem of detecting malfunctions
in computing circuitry. A mathematical formulation of the realizability requirements
for multithreshold and compound-weight functions has provided an iterative synthesis
procedure for the compound-weight case. This formulation has also clarified the
relationships among the various types of threshold functions.

Further investigations will be made of multithreshold and compound-weight realiza-
tions. Also, a study will be made of the relationships among (i) the graphical description
of a machine, (ii) the physical structure of the machine, and (iii) the problem of detecting
malfunctions in the machine.

F. C. Hennie III
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A. TRUNCATING A CONVOLUTIONAL CODE

1. Introduction

The sequential nature of a convolutional code requires that the code be periodically

truncated when used on a one-way communication system. This enables the system to

continue to decode blocks of data even after a block is received which is too noisy to be

decoded. The problem of efficiently truncating a convolutional code will be discussed in

this report.

A binary convolutional code is generated as the information digits are shifted into a

shift register which is initially set with all zeros in it. For every shift of the input data,

v code digits are obtained by tapping v modulo-2 adders. Each adder is connected to a

different set of register stages. Thus, knowledge of the connections to the modulo-2

adders determines a unique mapping of information digits into code digits.

Conventionally, a convolutional code, generated by a K-stage shift register, is trun-

cated by having a tail of K - 1 zeros follow the block of L information digits that are to

be coded1 (see also Sec. XXII-B). This implies that the rate per use of the channel over

the entire code block is

L
Log 2 2 RN

R = = -lbits, (1)
(L+K-1) v 1 +K

L

where RN, the rate that would result if there was no loss owing to truncation, is 1/v.

We see that, for a low rate loss, L must be made considerably larger than the length of

the shift register K. (For example, in an experimental simulation (see Sec. XXII-B), an L

of twenty times K was used.) It should be noted, however, that a very large block length

will deteriorate the code's performance. This results because both the probability of

error on decoding a block '1, 2 and the probability of a buffer overflow3 ' 4 when using

sequential decoding are bounded by functions which increase linearly with L. A scheme

for truncation which enables one to use smaller block lengths than these will be consid-

ered.

2. Analysis

The error performance of a convolutional code can be studied by using a decoding

procedure that makes a decision on each successive digit by selecting the most probable

sequence over the constraint length of the digit in question. (Sequential decoding achieves

similar performance by means of an algorithm that is much easier to implement.) The

constraint length of the i t h digit, Ni, is the number of code digits influenced by this

information digit. Generally, over this constraint length there will be K. - 1 information

digits following the ith digit. Thus, one of 2 possible sequences of idigits following the i digit. Thus, one of 2 possible sequences of information digits
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is selected in order to decode the ith digit. The average probability of error, over the

ensemble of all possible coder connections, for decoding the ith digit with the past digits

known, is bounded1 by

K.-l -N.R -NI o N.I
P(e) < 2 2 1 o <2 L , (2)

where Ro is a constant determined by the channel. Furthermore, the probability of an

error on decoding the entire block of L digits can be upperbounded by

L

P(e) < 7 P(ei). (3)

i=1

For a convolutional code without any truncation, we have

P(e) <2 o] for 1 i L- K 1, (4)

since these digits pass through the shift register with an N = Kv and K. = K. Note that

the exponent in (4) is positive, since Ro, the computational cutoff rate for sequential

decoding, is greater than RN = llv. Now for i > L - K + 1, N i d e c r e as e s in steps of v

and K. decreases in steps of 1, so that upon looking at the exponent in (2) we see that
1

N(R -K/N) > N (R -i+l) (5)
1 o 1 1+1 o Ni+ 1

since

NiR ° - K i > N.R - K. - (VR -1), (6)

which implies that P(ei) is increasing with i. To avoid having a high probability of

an error on the digits near the end of the block, the constraint lengths must be increased.

Since the last digit has the highest probability of error, an N L will be found so that

P(eL) has the same exponent as was the case for i < L - K + 1. Equating exponents, we

have

NL R - J KvLR1 -. (8)

which yields

NL = (K-) - + v. (9)

Since before truncation NL = v, the amount of code length added is
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N = (K-l) v - ) (10)

This added code length can be obtained by having just

K = (K-1) (11)

zeros follow the block of L information digits. Since only Ko zeros are shifted into the

K-stage shift register, the information digits still left in the register would be dumped

before the new block of information digits enters the register.

We must now verify the fact that no further code length increase is required for the

range L - K + 1 < i < L. For L - K + 1 < i < L - K + K + 1, N. remains constant
o 1

at Kv and K i decreases in steps of 1, so that for this range P(ei) is decreasing. For

L - K + K + 1 < i < L, N. decreases in steps of v and K. decreases in steps of 1, so as

in (5) and (6), P(ei) increases with i. But P(ei) is bounded by P(eL), so the code length

increase given by (10) is all that is needed.

For this form of truncation, P(e ) is constant for i < L - K + 1, then starts to

decrease and finally increases to its original value as i approaches L. It is possible,

by shortening the constraint lengths in the range L - K + 1 < i < L, to have a uniform

P(ei) for all i. Since the same total code length increase of No is still required,

however, no improvement in rate loss is achieved.

3. Discussion

The essential result obtained from this analysis is that the increase in length

required to truncate a convolutional code without deteriorating its error performance is

N = (K-1) (v =N [I RN, (12)

where the conventional length is

N = (K-l)v (13)conv

The rate over the whole block, including the added length for truncation, is

L N
R = L N bits (14)

Lv + N R
1+ Ll (1 N

which is to be compared with (1) for the conventional case.

For inefficient operation, when R N is much less than Ro, only a small gain is

achieved over the ordinary method of truncation. For efficient operation when RN
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approaches R o , the amount of length added decreases toward zero. This enables one to

improve the code's performance by having an L that is only slightly greater than K and

yet still have R sufficiently close to RN.

D. Chase
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B. SIMULATION OF SEQUENTIAL DECODING FOR A TELEMETRY CHANNEL

A coherent binary antipodal (PSK) signaling scheme, utilizing convolutional encoding
1,2

and sequential decoding, has been proposed for use in a deep space telemetry system.

The purpose of this research is to study the performance of the sequential decoder by

computer simulation.

1. Description of the System and its Simulation

In the signaling scheme, successive binary information and parity digits emerging

from a convolution encoder are transmitted as binary antipodal waveforms with energy E.

The transmitted waveform corresponding to a particular information or parity digit is

assumed to be received together with independent additive white Gaussian noise with

power spectral density N /2. The resultant received waveform is crosscorrelated with

the positive binary waveform by sampling the output of a matched filter. This sample

is quantized into one of eight possible levels (3-bit quantization). The cascade of modu-

lator, additive white Gaussian noise channel, matched filter, sampler, and quantizer is

equivalent to a discrete memoryless channel with two input letters and 8 output letters.

The original binary information sequence is extracted from the output of this channel with

a sequential decoder.

In the simulation, binary convolution codes with rate 1/7 bits per channel waveform
E

were used. Three signal-to-noise ratios, defined as 10 log 10 !- db, were considered,

-6 db, -6. 5 db, and -7 db. The quantization scheme that was chosen for the matched-

filter output is shown in Fig. XXII-1. Figure XXII-2 shows the transition probabilities

calculated for this quantization scheme for a signal-to-noise ratio of -6 db.

For a channel having a P-letter input alphabet with probability distribution
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Pi', i=1, 2, ... , P} and Q-letter output alphabet with transition probabilities {qij, i=1, 2,

... ,P, j=1, 2, ... , Q} Savage 3 and Jacobs and Berlekamp4 have established bounds which

indicate that the distribution of the number of computations per decoded digit, C, is

Pareto. That is,

pr(C >X) - X - a (X>>1),

where a, the Pareto exponent, satisfies the relation

E (a)
R- a

in which R is the information rate in bits per channel waveform, and

E(a) = -log 2

1 1+a
1 +

pi qij
j= 1

Thus a may be calculated from the transition probabilities and the input probability dis-

tribution. For R = 1/7, a = 1. Z for the channel of Fig. XXII-2. If a is less than 1, the

expectation of C is theoretically infinite. The rate corresponding to a = 1 is known as

R . For rates above R , the bound on the mean computation diverges. R
comp comp comp

E(1) is also calculated from the transition probabilities and input distribution. For the
1

transition probabilities of Fig. XXII-2 with p1 = p , R = . 160.
The signal-to-noise ratio of -6 db and the rate of /7 wer chosen so that with omp

The signal-to-noise ratio of -6 db and the rate of 1/7 were chosen so that with 21 bits
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of quantization per information bit at the decoder input, the energy required per bit,

E/R, was only 0. 4 db greater than the required energy per bit for an infinite-bandwidth,
1

unquantized Gaussian channel with the same values of No/2 and a . In other words, with

these parameters, the quantization scheme contributed a degradation of only 0.4 db of

required signal energy.

The sequential decoder design was based on the Fano algorithm. No attempt was

made to optimize the threshold spacing, since previous experiments5 have suggested

that the mean computation per decoded digit has a very broad minimum with respect to

this parameter. The tilted distance function used for the path metric was the usual Fano

distance function,ll with the bias equal to the rate, 1/7 bits per channel waveform.

The simulation of the sequential decoder was accomplished on a PDP-6 computer by

means of a sequential decoding simulation facility developed by Niessen. 6 The computer

program allows a display of the branches that are being searched, as well as a facility

for collecting histograms of quantities of interest in sequential decoding. The simulated

sequential decoder could perform approximately 2, 500, 000 computations per hour. Pre-

sumably, a special-purpose machine could be built to increase this speed several orders

of magnitude.

Since the simulated channel (including the modulator, matched filter, and quantizer)

is symmetric from the input, the error probabilities are independent of the input infor-

mation sequence. Consequently, for convenience, an all-zero information sequence was

assumed to be transmitted.

The discrete memoryless channel was simulated on the computer with a random-

number generator whose output was quantized in accordance with the calculated transi-

tion probabilities. A description of the random-number generator and its statistical

properties has been given by Green, Smith, and Klem. 7

As a consequence of the sequential nature of the decoding process, an unusually large

number of computations to decode some digit may unavoidably delay the decoding of all

succeeding digits, unless the decoder is "resynchronized" at periodic intervals. For

this reason, in the absence of a feedback link, the information-bit stream should be

organized into blocks, and a constraint length of zeros inserted between successive

blocks before the resulting bit stream is allowed to enter the encoder. Each encoded

sequence of information digits and its associated "tail" of zeros is now referred to as a

block. Thus the decoder may start to decode from the beginning of any block without the

knowledge of any previous decoding decisions. From the last information digit of a

block, the decoder is constrained to follow a path for which all information digits till the

end of the block are zeros. In the simulation, the number of information bits per block

was chosen to be twenty times the constraint lengthl2; thus the decrease in effective rate

caused by the resynchronization between blocks was 5 per cent, and the resulting

increase in the energy required per information bit was just under 1/4 db.
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In the application of sequential decoding considered here, the problem of undecoded

data overflowing a finite storage buffer does not arise, since it is assumed that the data

received from the channel may be recorded and then decoded off-line. In practice, there

will be some upper limit on the number of computations that one is willing to do to decode

any block. The occasional block for which this limit is exceeded may be termed an

"undecodable" block and constitutes a type of system failure. Another type of system

failure is the undetected block error, in which errors remain in a block after it has been

decoded. Clearly, constraint lengths that are long enough to make the undetected error

probability much less than the undecodable block probability would complicate the

encoder unnecessarily. Consequently, an important aspect of the simulation was to

determine approximately the minimum constraint length necessary to yield an undetected

error probability comparable to the undecodable block probability, with a reasonable

limit on the maximum number of computations per block. A further practical constraint

on the simulated conditions was that the undetected error and undecodable block proba-

bilities be large enough that at least a few of these events would be observed within a

reasonable interval of computer running time. With, say, 20 hours of computer time

available (and block lengths greater than 300) this would preclude the measurement of

undetected block error probabilities less than 10-4

The choice of the convolution code affects the error probability and the mean compu-

tation, especially if the constraint length is relatively short, as in our case. Binary

convolution codes with optimum "front ends" for use on a binary symmetric channel have

been found by computer search techniques.8, 9 It was decided more or less arbitrarily,

to use combinations of these codes to yield codes with rate 1/7. The generators used

are listed in Table XXII-1. Each generator (corresponding to one of the 6 parity checks

per information bit) is listed as a sequence of octal numbers, each representing 3 suc-

cessive binary digits. Note that two different codes with a constraint length of 18 were

tested. The generators of Code I were the 5 generators from an optimized rate 1/6

binary code, together with the generator of an optimized rate 1/2 code. 8 Code II was

obtained by replacing the first 7 binary digits of each generator of Code I with optimum

"front ends" compiled by Lin and Lyne. 9 Code III was similar to Code II but to each

generator was appended 6 binary digits, also obtained from Blustein. 8 Code II, when

used with the simulated channel and sequential decoder yielded a rather surprising

three-fold increase in error probability over Code I, and consequently Code II was dis-

carded. Optimization of codes for this channel is not considered rewarding, since it is

easier to lower the undetected error probability by increasing the constraint length

slightly.

During each run, the number of blocks decoded, the total number of computations

performed, and the number of undetected block errors were counted. One computation

was said to occur each time the decoder compared a path metric to a threshold. An
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Table XXII-1. Convolution code generators.

undetected error occurred when the decoder accepted a block, including the tail, but

decoded one or more of the information digits in the block as ones.

Programs were written to generate three kinds of histograms for data generated

during each run as follows:

i. The distribution of the number of computations per decoded block.

ii. The distribution of the search depth. A search, starting at some node J, con-

stitutes all computations done in the time interval between first reaching J and first

reaching the next succeeding node. The search depth is the maximum depth which the

decoder backs up during a search.

iii. The distribution of the number of computations per search. This is closely

related to the distribution of computation studied by Savage and by Jacobs and Berlekamp.

2. Results

a. Undetected Errors

The relative frequencies of undetected errors are tabulated in Table XXII-2, together

with 99 per cent confidence bounds on the true error probabilities. Note that the sample

sizes were too small to yield accurate estimates of the true error probabilities. The

99 percent confidence bounds were evaluated by using a Chernoff bound for the tail

of the binomial probability distribution.1 0 If r is the observed number of erroneous

QPR No. 80

Constraint Length Generators

18 I 736036 II 442036

543122 537122

652436 552436

632705 632705

536106 652106

607363 723363

24 III 44203601

53712256

55243601

63270547

65210662

72336305

36 Same as III, but each was given
a randomly chosen 12-bit tail.
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blocks out of a total of N,

pr(r<Nl) < exp N (po) - H(pl) o) in for pl < Po (1)

where po is the true error probability, and H(p) is the binary entropy function.

To get the 99 per cent confidence bounds, we set the right-hand side of (1) equal to

. 01 with

observed number of undetected errors
Pl number of blocks decoded

and then solve for po. Then, on the basis of the observed relative frequencies, the true

error probability is less than this value of po with 99 per cent probability.

Table XXII-2. Occurrences of undetected block errors.

99% Confidence
bounds on prob-

Number of Number of ability of unde-
Constraint Blocks Undetected tected error per

10 log 1 0 E/No Length Decoded Errors block, po

-6 db 18 5436 4 .002

-6 db 24 7822 0 .0006

-6.5 db 18 1027 1 .008

-6.5 db 24 1331 0 .003

-7 db 24 167 0 .03

-7 db 36 202 (360 Bit 0 .02
Blocks)

It will be noticed that all errors occurred when the constraint length was 18, which
suggests a strong dependence on the constraint length. The error probability for sequen-
tial decoding has been shown to be bounded by an exponential function of constraint
length. 1 1

The number of incorrectly decoded binary digits constituting an undetected block

error was typically approximately 5. The largest number of erroneous bits per block

that was observed was 16. An interesting topic for future research would be a closer

study of statistics of the number and positions of erroneous binary digits within a block,
and how they are influenced by the code parameters.

b. Distribution of Computations

The calculated Pareto exponents for the three signal-to-noise ratios simulated are
given in Table XXII-3.
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Table XXII-3. Calculated Pareto exponents.

10 log 1 0 E/No Pareto Exponent, a

-6 1. 20

-6.5 1. 04

-7 0.80

It is seen that for a signal-to-noise ratio of -7 db, a is less than one, which implies

an infinite mean for the Pareto distribution. This corresponds to operation at a rate

above R
comp.

The observed average number of computations per decoded digit, including the tails,

are tabulated in Table XXII-4. At -7 db, the measured mean varied rather erratically

as expected, and the measured "averages" for three different runs are shown for a con-

straint length of 24. (The law of large numbers does not hold when the mean is infinite.)

Table XXII-4. Average computation per decoded digit.

10 log 1 0 E/N o
Constraint

Length -6 db -6. 5 db -7 db

18 4.52 7.81 -

24 3. 22 6. 29 12. 7, 13. 7, 23. 2

36 -- 25. 6

Figures XXII-3 and XXII-4 show the distribution of the number of computations per block

for constraint lengths of 18 and 24. The tail of the distribution of computation per block

is expected to be identical to the tail of the distribution of computation per decoded digit,

except for a multiplicative factor that depends on block length. Consequently, the mag-

nitude of the slope of each curve should equal the corresponding Pareto exponent.

Figures XXII-3 and XXII-4 show that the magnitude of the slope increases with the

signal-to-noise ratio as expected, but the sample sizes are too small to display the true

tail behavior. These graphs do allow estimates of the undecodable block criterion that
- 3 -4

is necessary to achieve an undecodable block probability of 10- or 10. For instance,

it appears that a maximum of 200, 000 computations, or approximately 10 minutes of

computer time per block, must be tolerable to achieve an undecodable block error proba-

bility of 10-3 when the number of bits per block is 360 and the signal-to-noise ratio is

-6 db.
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Figure XXII-5 shows the cumulative distribution of the search depth for a constraint

length of 24. (The corresponding curves for a constraint length of 18 show no essential

differences and are not reproduced here.) As expected, the distribution appears to be

an exponential function of the search depth. Note that searches of up to 80 or 100 nodes

which caused no errors were observed, even though the constraint length was 24 nodes.

The observed distribution of the number of computations per search for a constraint

length of 24 is shown in Fig. XXII-6. The corresponding curves for the other constraint

lengths show no noticeable difference from those of Fig. XXII-6. The tails of these

curves plot as straight lines whose slopes are equal in magnitude to the corresponding

Pareto exponents. The slopes are listed on the graph and agree very closely with the

calculated Pareto exponents of Table XXII-4.

c. Operation at a Rate Exceeding R comp

Perhaps the most striking aspect of the simulation was the sustained operation of the

system above Rcomp. With constraint lengths of 24 and 36, 167 720-bit blocks and 202

360-bit blocks, respectively, were decoded without error. The mean computation per

decoded digit was high and varied erratically, but in spite of more and longer searches,

the dynamics of the sequential search procedure were similar to those for operation

below Rcomp. Most digits were decoded with only a few computations, as Fig. XXII-6

shows.

The implications of the results at -7 db with 720-bit blocks are that continuous opera-

tion of this system above Rcomp may require unreasonable decoding times, but that rela-

tively short excursions above Rcomp, because of a temporary decrease in received

signal power, are tolerable. Figure XXII-6 shows clearly that the Pareto distribution

of computation still holds for values of a less than one, that is, for rates greater than

Rcomp. The concatenation of block codes with convolution codes is now being investi-

gated as a means of increasing the Pareto exponent at any rate below channel capacity

and thereby reducing the computational variability associated with sequential decoding.

D. D. Falconer, C. W. Niessen
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