
Autonomous Flight in Unstructured and Unknown Indoor

Environments

by

Abraham Galton Bachrach

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

September 4, 2009

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Nicholas Roy

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .
Terry P. Orlando

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Autonomous Flight in Unstructured and Unknown Indoor

Environments

by

Abraham Galton Bachrach

Submitted to the Department of Electrical Engineering and Computer Science
on September 4, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis presents the design, implementation, and validation of a system that enables
a micro air vehicle to autonomously explore and map unstructured and unknown indoor
environments. Such a vehicle would be of considerable use inmany real-world applications
such as search and rescue, civil engineering inspection, and a host of military tasks where
it is dangerous or difficult to send people. While mapping andexploration capabilities
are common for ground vehicles today, air vehicles seeking to achieve these capabilities
face unique challenges. While there has been recent progress toward sensing, control,
and navigation suites for GPS-denied flight, there have beenfew demonstrations of stable,
goal-directed flight in real environments.

The main focus of this research is the development of real-time state estimation tech-
niques that allow our quadrotor helicopter to fly autonomously in indoor, GPS-denied en-
vironments. Accomplishing this feat required the development of a large integrated system
that brought together many components into a cohesive package. As such, the primary
contribution is the development of the complete working system. I show experimental re-
sults that illustrate the MAV’s ability to navigate accurately in unknown environments, and
demonstrate that our algorithms enable the MAV to operate autonomously in a variety of
indoor environments.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Consider the partially building collapsed shown in figure 1-1. Sending rescue personnel

into the building to search for survivors puts them in grave danger. Without knowing what

awaits them inside the building, it is very difficult to make good decisions about where it is

safe to venture and where to look for survivors. If instead, the building could be searched

by a robot, the risks taken by the rescue workers would be greatly diminished. Indeed,

there are many situations where it is dangerous and difficultfor humans to acquire sensing

information and where robots could be of use.

Figure 1-1: A partially collapsed building after an earthquake. [Photo credit: C.E. Meyer,
U.S. Geological Survey]
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While the utility of robots performing such sensing tasks may be obvious, creating the

robots is certainly not. Operating within a partially collapsed building, or other similar

environments requires a robot to be able to traverse cluttered, obstacle strewn terrain. Over

the years, researchers have tackled these problems and designed a number of ground robot

systems, such as the ones shown in figure 1-2 capable of traversing rough terrain. Despite

the progress toward this goal, it is still an active area of research and no matter how far

the field advances, there will always be some terrain which a ground robot is simply not

physically capable of climbing over. Many researchers havetherefore proposed the use of

Micro Air Vehicles (MAVs) as an alternative robotic platform for rescue tasks and a host

of other applications.

(a) (b)

Figure 1-2: Two ground robots designed for traversing roughterrain. [Photo credit:
(a)DARPA Learning Locomotion Project at MIT, (b) NIST]

Indeed, MAVs are already being used in several military and civilian domains, includ-

ing surveillance operations, weather observation, disaster relief coordination, and civil en-

gineering inspections. Enabled by the combination of GPS and MEMs inertial sensors,

researchers have been able to develop MAVs that display an impressive array of capabili-

ties in outdoor environments without human intervention.

Unfortunately, most indoor environments and many parts of the urban canyon remain

without access to external positioning systems such as GPS.Autonomous MAVs today are

thus very limited in their ability to operate in these areas.Traditionally, unmanned vehi-

cles operating in GPS-denied environments can rely on dead reckoning for localization, but
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these measurements drift over time. Alternatively, with onboard environmental sensors, si-

multaneous localization and mapping (SLAM) algorithms build a map of the environment

around the vehicle from sensor data while simultaneously using the data to estimate the

vehicle’s position. Although there have been significant advances in developing accurate,

drift-free SLAM algorithms in large-scale environments, these algorithms have focused al-

most exclusively on ground or underwater vehicles. In contrast, attempts to achieve the

same results with MAVs have not been as successful due to a combination of limited pay-

loads for sensing and computation, coupled with the fast andunstable dynamics of air

vehicles. While MAV platforms present the promise of allowing researchers to simply fly

over rough and challenging terrain, MAVs have their own hostof challenges which must

be tackled before this promise can be realized.

1.1 Key Challenges

In the ground robotics domain, combining wheel odometry with sensors such as laser

range-finders, sonars, or cameras in a probabilistic SLAM framework has proven very suc-

cessful [92]. Many algorithms exist that accurately localize ground robots in large-scale

environments; however, experiments with these algorithmsare usually performed with sta-

ble, slow moving robots such as the ones shown in figure 1-3, which cannot handle even

moderately rough terrain.

Unfortunately, mounting equivalent sensors onto a MAV and using an existing SLAM

algorithms does not result in the same success. MAVs face a number of unique challenges

that make developing algorithms for them far more difficult than their indoor ground robot

counterparts. The requirements and assumptions that can bemade with flying robots are

sufficiently different that they must be explicitly reasoned about and managed differently.

Limited Sensing Payload MAVs have a maximum amount of vertical thrust that they

can generate to remain airborne, which severely limits the amount of payload available for

sensing and computation compared to similar sized ground vehicles. This weight limita-

tion eliminates popular sensors such as SICK laser scanners, large-aperture cameras and

17



Figure 1-3: Examples of robots commonly used for SLAM research. [Photo credit: Cyrill
Stachniss]

high-fidelity IMUs. Instead, indoor air robots must rely on lightweight Hokuyo laser scan-

ners, micro cameras and lower-quality MEMS-based IMUs, which generally have limited

ranges, fields-of-view and are noisier compared to their ground equivalents.

Limited Onboard Computation Despite the advances within the community, SLAM al-

gorithms continue to be computationally demanding even forpowerful desktop computers

and are therefore not usable on today’s small embedded computer systems that might be

mounted onboard MAVs. The computation can be offloaded to a powerful ground-station

by transmitting the sensor data wirelessly; however, communication bandwidth then be-

comes a bottleneck that constrains sensor options. For example, camera data must be com-

pressed with lossy algorithms before it can be transmitted over wireless links, which adds

noise and delay to the measurements. The delay is in additionto the time taken to transmit

the data over the wireless link. The noise from the lossy compression artifacts can be par-

ticularly damaging for feature detectors that look for highfrequency information such as

corners in an image. Additionally, while the delay can oftenbe ignored for slow moving,

passively stable ground robots, MAVs have fast and unstabledynamics, making control

under large sensor delay conditions impossible.

18



Figure 1-4: Ground truth velocities (blue) compared with integrated acceleration (green).
In just 10 seconds, the velocity estimate diverged by over.25m/s. Position estimates
would diverge commensurately faster.

Indirect Relative Position Estimates Air vehicles do not maintain physical contact with

their surroundings and are therefore unable to measure odometry directly, which most

SLAM algorithms require to initialize the estimates of the vehicle’s motion between time

steps. Although one can compute the relative motion by double-integrating accelerations,

lightweight MEMs IMUs are often subject to unsteady biases that result in large drift rates,

as shown in figure 1-4. We must therefore recover the vehicle’s relative motion indirectly

using exteroceptive sensors, and computing the vehicle’s motion relative to reference points

in the environment.

Fast Dynamics MAVs have fast dynamics, which results in a host of sensing, estima-

tion, control and planning implications for the vehicle. When confronted with noisy sensor

measurements, filtering techniques such as Kalman Filters are often used to obtain better

estimates of the true vehicle state. However, the averagingprocess implicit in the these

filters mean that multiple measurements must be observed before the estimate of the un-

derlying state will change. Smoothing the data generates a cleaner signal, but adds delay to

the state estimates. While delays may have insignificant effects on vehicles with slow dy-
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namics, the effects are amplified by the MAV’s fast dynamics.This problem is illustrated

in figure 1-5, where we compare the normal hover accuracy to when state estimates are

delayed by150ms. While our vehicle is normally able to hover with an RMS error of 6cm,

with the delay, the error increases to18cm.

Figure 1-5: Comparison of the hover accuracy using the stateestimates from our system
without additional delay (blue), and the accuracy with150ms of delay artificially imposed
(green).

Need to Estimate Velocity In addition, as will be discussed further in Section 3.3, MAVs

such as the quadrotor that we use are well-modeled as a simple2nd-order dynamic system

with no damping. The underdamped nature of the dynamics model implies that simple pro-

portional control techniques are insufficient to stabilizethe vehicle, since any delay in the

system will result in unstable oscillations, an effect thatwe have observed experimentally.

We must therefore add damping to the system through the feedback controller, which em-

phasizes the importance of obtaining accurate and timely state estimates for both position

and velocity. Traditionally, most SLAM algorithms for ground robots completely ignore

the velocity states.

Constant Motion Unlike ground vehicles, a MAV cannot simply stop and performmore

sensing when when its state estimates have large uncertainties. Instead, the vehicle is likely
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to be unable to estimate its velocity accurately, and as a result, it may pick up speed or

oscillate, degrading the sensor measurements further. Therefore, planning algorithms for

air vehicles must not only be biased towards paths with smooth motions, but must also

explicitly reason about uncertainty in path planning, as demonstrated in [41]; motivating

our exploration strategy in section 3.5.

3D Motion Finally, MAVs operate in a truly3D environment since they can hover at

different heights. While it is reasonable for a ground robotto focus on estimating a2D map

of the environment, for air vehicles, the2D cross section of a3D environment can change

drastically with height and attitude, as obstacles suddenly appear or disappear. However, if

we explicitly reason about the effects of changes due to the3D structure of the environment,

we have found that a2D representation of the environment is surprisingly useful for MAV

flight.

1.2 Problem Statement

In the research presented in this thesis, we sought to tacklethe the problems described

above and develop a system that integrates sensing, planning, and control to enable a MAV

to autonomously explore indoor environments. We seek to do this using only onboard

sensing and without prior knowledge of the environment.

1.3 Related Work

In recent years, the development of autonomous flying robotshas been an area of increasing

research interest. This research has produced a number of systems with a wide range of

capabilities when operating in outdoor environments. For example vehicles have been

developed that can perform high-speed flight through cluttered environments [84], or even

acrobatics [20]. Other researchers have developed systemscapable of autonomous landing,

terrain mapping [90], and a host of high level capabilities such as coordinated tracking and

planning of ground vehicles [12], and multi-vehicle coordination [32, 93, 17]. While these
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are all challenging research areas in their own right, and pieces of the work (such as the

modeling and control techniques) carry over to the development of vehicles operating in

indoors, these systems rely on external systems such as GPS,or external cameras [63] for

localization. In our work, we focus on flying robots that are able to operate autonomously

while carrying all sensors used for localization, control and navigation onboard. This is in

contrast to approaches taken by other researchers [45, 43] who have flown indoors using

position information from motion capture systems, or external cameras [8, 9].

Outdoor Visual Control While outdoor vehicles can usually rely on GPS, there are many

situation where it would be unsafe for a vehicle to rely on it,since signal can be lost due

to multipath fading, satellites being occluded by buildings and foliage, or even intentional

jamming. In response to these concerns, a number of researchers have developed systems

that rely on vision for control of the vehicle. The capabilities of these systems include

visual servoing relative to a designated target [64], landing on a moving target [80],

and even navigation through urban canyons [47]. While the systems developed by these

researchers share many of the challenges faced by indoor MAVs, they operate on vehicles

that are orders of magnitude larger, such as the one shown in figure 1-6, with much greater

sensing and computation payloads.

Figure 1-6: The USC AVATAR helicopter, built around a BergenIndustrial Twin RC
helicopter, which is a common helicopter platform for outdoor experiments. [Photo
credit: Dr. Stefan Hrabar and the USC Robotic Embedded Systems Laboratory
(http://robotics.usc.edu/resl)]
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Indoor Obstacle Avoidance Using platforms that are of a similar scale to the ones tar-

geted in this thesis, several researchers [75, 14, 62] use a small number of ultrasound or

infrared sensors to perform altitude control and basic obstacle avoidance in indoor environ-

ments. While their MAVs are able to hover autonomously, theydo not achieve any sort of

goal directed flight that would enable the systems to be controlled at a high level such that

they could be used for higher level applications.

Known Structure Instead of using low resolution sonar and infrared sensors,several au-

thors have attempted to fly MAVs autonomously indoors using monocular camera sensors.

To enable the vision processing to be tractable, they make very strong (and brittle) assump-

tions about the environment. For example, Tournier et al. [95] performed visual servoing

over known Moire patterns to extract the full 6dof state of the vehicle for control; and

Kemp [54] fit lines in the camera images to the edges of a3D model of an office environ-

ment with known structure. Reducing the prior knowledge slightly, Johnson [49] detects

lines in a hallway, and used the assumption of a straight hallway to back out the vehicle

pose. Similarly, Celik et al presented their MVCSLAM systemin [19], which tracks cor-

ner features along the floor of a hallway. While impressive, it is unclear how their work

could be extended to other environments. Their applicability is therefore constrained to

environments with specific features, and thus may not work aswell for general navigation

in GPS-denied environments.

Using a2D laser scanner instead of a camera, prior work done in our group [41] pre-

sented a planning algorithm for a quadrotor helicopter thatis able to navigate autonomously

within an indoor environment for which there is a known map. Recently, [10, 35] designed

quadrotor configurations that were similar to the one presented in [41]. Grzonka et al.

and Angeletti et al. [10] scan-matched successive laser scans to hover their quadrotor heli-

copter, while [35, 36] used particle filter methods to globally localize their MAV. However,

none of these papers presented experimental results demonstrating the ability to stabilize

all 6 degrees of freedom of the MAV using the onboard sensors,and all made use of prior

maps, an assumption that is relaxed in this thesis.
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Indoor SLAM Finally, perhaps the closest work to ours was that of Ahrens [7], where

monocular vision SLAM was used to stabilize a quadrotor. Extracted corner features

were fed into an extended Kalman filter based vision-SLAM framework, building a low-

resolution3D map sufficient for localization and planning. Unfortunately, an external mo-

tion capture system was used to simulate inertial sensor readings, instead of using an on-

board IMU. As such, their system was constrained to the motion capture volume where they

had access to the high quality simulated IMU. It remains to beseen whether the work can

be extended to use lower quality acceleration estimates from a more realistic MAV-scale

IMU.

Adopting a slightly different approach, Steder et al [86] mounted a downward-pointing

camera on a blimp to create visual maps of the environment floor. While interesting al-

gorithmically, this work does not tackle any of the challenges due to the fast dynamics

described in section 1.1.

Where many of the above approaches for indoor flight fall short is that they did not

consider the requirements for stabilizing the MAV both locally and in larger scale envi-

ronments in a coherent system. The previous work either focused on local hovering and

obstacle avoidance in known, constrained environments, orattempted to tackle the full

SLAM problem directly, without stabilizing the vehicle using local state estimation meth-

ods. SLAM processes are generally too slow to close the loop and control an unsteady

MAV, resulting in systems that work well in simulation, however are unworkable when

applied on real hardware. In our work, we developed a multi-layer sensing and control

hierarchy which tackles both of these challenges in a coherent system.

1.4 Contributions

In this thesis, I present the design, implementation, and validation of a system for localizing

and controlling the quadrotor helicopter shown flying in figure 1-7, such that it is capable of

autonomous goal directed flight in unstructured indoor environments. As such, the primary

contribution is the development of the working system. While the system builds upon

existing work from the robotics community, many of the individual components required
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Figure 1-7: A photo of our vehicle flying autonomously in an unstructured indoor environ-
ment

adaptation to be used on MAVs. More specifically, the contributions of this thesis are:

1. Development of a fully autonomous quadrotor that relies only on onboard sensors for

stable control, without requiring prior information (maps) about the environment.

2. A high-speed laser scan-matching algorithm that allows successive laser scans to be

compared in real-time to provide accurate velocity and relative position information.

3. An Extended Kalman Filter data fusion module, and algorithm for tuning it that

provides accurate real-time estimates of the MAV position and velocity

4. A modified SLAM algorithm that handles the3D environment structure in a2D map

5. A framework for performing dense reconstruction and mapping of the full 3D envi-

ronment around the vehicle

6. A visual object tracking system that allows the vehicle tofollow a target designated

in a camera image.
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Figure 1-8: Schematic of our hierarchical sensing, controland planning system. At the base
level, the onboard IMU and controller (green) creates a tight feedback loop to stabilize the
MAV’s pitch and roll. The yellow modules make up the real-time sensing and control
loop that stabilizes the MAV’s pose at the local level and avoids obstacles. Finally, the red
modules provide the high-level mapping and planning functionalities.

1.5 System Overview

To compute the high-precision, low delay state estimates required for indoor flight, we

designed the 3-level sensing and control hierarchy, shown in figure 1-8, distinguishing

processes based on the real-time requirements of their respective outputs. The first two

layers run in real-time, and are responsible for stabilizing the vehicle and performing low

level obstacle avoidance. The third layer is responsible for creating a consistent global map

of the world, as well as planning and executing high level actions.

At the base level, the onboard IMU and processor creates a very tight feedback loop

to stabilize the MAV’s pitch and roll, operating at1000Hz. At the next level, fast, high-

resolution relative position estimation algorithms, described in chapter 2, estimate the ve-

hicle’s motion, while an Extended Kalman Filter (EKF) fusesthe estimates with the IMU

outputs to provide accurate, high frequency state estimates. These estimates enable the

LQR-based feedback controller to hover the MAV stably in small, local environments. In
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addition, a simple obstacle avoidance module ensures that the MAV maintains a minimum

distance from observed obstacles.

At the top layer, a SLAM algorithm uses the EKF state estimates and incoming laser

scans to create a global map, ensuring globally consistent state estimates by performing

loop closures. Since the SLAM algorithm takes 1-2 seconds toincorporate incoming scans,

it is not part of the real-time feedback control loops at the lower levels. Instead, it provides

delayed correction signals to the EKF, ensuring that our real-time state estimates remain

globally consistent. Finally, a planning and exploration module enables the vehicle to

plan paths within the map generated by the SLAM module, and guide the vehicle towards

unexplored regions.

1.6 Outline

In the chapters 2 and 3, I describe the components of the system that enable flight in un-

constrained indoor environments. Chapter 2 covers the algorithms for obtaining relative

position estimates using either high-speed laser scan-matching or stereo visual odometry.

Chapter 3 describes how these estimates are used in the complete system, along with the

details of the system components.

After describing the complete system, I describe the hardware we use, and present

experimental results validating our design and demonstrating the capabilities of our system

in chapter 4.

In chapter 5 I present a framework for performing dense mapping of the3D environ-

ment around the vehicle, which would enable generating motion plans in3D. Finally, in

chapter 6 I present a vision based object tracking system that allows the vehicle to perform

high level tasks such as following a person before presenting future work and concluding

remarks in chapter 7.
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Chapter 2

Relative Position Estimation

In this chapter I describe the algorithms used for estimating the MAV’s relative position in

real-time. Both laser and stereo-vision based solutions are presented and compared. The

high quality relative position estimates provided by thesealgorithms are the key enabling

technology for indoor flight.

The stereo-vision based visual odometry solution was developed in collaboration with

Markus Achtelik [6].

2.1 Introduction

MAVs have no direct way to measure their motion, and must therefore rely on sophisticated

algorithms to extract synthetic proxies for the wheel encoder based odometry available on

ground robots from other sensors. While one may be tempted todouble-integrate accel-

eration measurements from inertial sensors to obtain relative position estimates, the drift

rates of small lightweight MEMs IMUs are prohibitively high. Instead one must rely on

exteroceptive sensors, matching incoming measurements with one another to back out the

vehicle’s relative motion. This process can be performed onboth laser scans and camera

images, each having distinct advantages and disadvantagesin terms of their computational

requirements, accuracy, and failure modes.

While air vehicles do not have the luxury of using wheel odometry to measure relative

position, many ground robots have faced similar challenges, since in many situations the
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estimates from wheel odometry can be quite poor, such as whena robot is traversing rough

terrain. As a result, there has been considerable work on developing relative position esti-

mation algorithms for ground robots. Researchers have often found that the performance of

both scan-matching and visual odometry greatly outperforms wheel odometry [70, 46]. Al-

though the algorithms have largely been developed for ground robots, they can be adapted

for use on MAVs, but with the additional challenging requirements of both high resolution

matching and fast real-time performance. The high resolution matching is particularly im-

portant due to the need to estimate the velocity of the MAV forcontrol purposes. To obtain

these velocity estimates, we must differentiate the computed relative position estimates. So

while a positional error of a few centimeters may be insignificant for a ground robot, when

divided by the time between scans, a few centimeter error in position will result in a large

error in velocity. In addition, since MAVs operate in the full 3D environment, we must

ensure that the algorithms are robust to motion in all 6 degrees of freedom.

The relative position estimation algorithms can generallybe broken down into two sub-

routines:

1. Correspondence:Find matches between “features” in the measurements

2. Motion Extraction: Given sets of corresponding features, determine the optimal

rigid body transform between them.

As we shall see, the existing algorithms take different approaches to each of these subrou-

tines, with different robustness, accuracy, and computational complexity properties.

In addition, different types of sensors have unique characteristics that lead to varying

levels of effectiveness in different environments. Laser range-finders operate by emitting a

beam of laser light, and measuring the time until the beam is reflected back onto a photo

sensor. This process provides a measurement of the distanceto the nearest obstacle in

the direction of the laser beam. By sweeping the laser beam ina circle, and taking suc-

cessive point measurements at fixed intervals, the sensor isable to generate a “scan” of

the environment that contains the range to the nearest obstacle at a fixed set of bearings.

When converted from this polar-coordinate form to Cartesian coordinates we obtain a set

of points such as the ones shown in Figure 2-1(a). Since laserrange finders provide a set
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of distances, laser scans can only be matched when the environment has unique physical

structure or shape. As a result, the matching process can fail around homogeneous building

structures such as long corridors. In addition, since the sensors only generate2D slices of

the environments, they cannot make use of structure outsidethe sensing plane.

In contrast, camera sensors, which measure the intensity oflight falling onto a2D

sensor plane, can make use of information from the full3D environment around the vehicle.

However, camera sensors only measure the intensity of the light, and therefore do not

provide direct information about the underlying3D structure that generated the image. To

be able to extract that information from image data the environment must contain unique

visual features, and requires sophisticated image processing. In general, camera sensors

have more limited angular field-of-views and are computationally intensive to work with.

Different exteroceptive sensors are therefore better suited for autonomous MAV op-

eration under different environmental conditions. However, since the laser scanner and

cameras rely on different environmental features, they should have complementary fail-

ure modes. As a result, integrating both sensors onto a single MAV platform will enable

autonomous navigation in a wide range of generic, unstructured indoor environments.

2.2 Laser Scan-Matching

Laser scan-matching algorithms must solve the following problem: given two overlapping

laser range scansSt ∈ ℜ2×n andSt−1 ∈ ℜ2×n, find the optimal rigid body transform

∆ ∈ SO(3) = [R, t] that aligns the current laser scan with the previous scan such that

applying the transform∆ to St−1, denoted∆ ⊗ St−1, results in a scan that is close toSt.

To find the best alignment, one needs a method for scoring candidate transforms based on

how well they align to past scans. The first challenge in doingthis is that laser scanners

provide individual point measurements of locations in the environment. Successive scans

will generally not measure the same points in the environment due to the motion of the

vehicle. Each scan-matching algorithm must therefore find away to overcome this issue to

find correspondences. This is usually done in one of3 ways:
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1. Point-to-Point: The individual points from the current scan are matched directly to

one (or multiple) points in the previous scan, such as in the Iterative Closest Point

(ICP) [101] algorithm described below.

2. Feature-to-Feature: Points are grouped into higher level features such as corners

and lines that are then matched, such as in the HAYAI algorithm [58]. Since the

features can often be accurately corresponded directly, the resulting motion estimate

can be computed in closed form, without needing the iterative refinement of the cor-

respondences used in ICP.

3. No-Correspondences:The points from previous scans are used to create a likelihood

map, and the current scan is matched to this map by searching for the pose which

gives the scan a maximum likelihood with respect to the map. This is the approach

taken by, Vasco [39, 2], Olson [70], and our scan-matcher. One of the benefits of this

approach is that it does not require explicit correspondences to be computed.

When considering the algorithm to use on a MAV, robustness tooutliers is particularly

important. The laser scanner measures ranges in a 2D plane, while the vehicle moves in

the full 3D environment. Motion out of the plane of the laser can result in portions of

the laser scan changing dramatically. As a result, while thescan-matching algorithms for

ground robots must only worry about errors due to sensor noise, which is generally fairly

low, our algorithm must be very robust to regions of the scan changing due to 3D effects.

This requirement essentially precludes the use of the feature based approaches since they

are very susceptible to incorrect correspondences betweenfeatures.

2.2.1 Iterative Closest Point

The iterative closest point algorithm [101] is one of the simplest and most commonly used

algorithms for laser scan-matching. It is an iterative algorithm which alternates between

finding correspondences between individual points and their nearest neighbor, and finding

the optimal rigid body transform that minimizes the Euclidean distance between the points,

as shown in algorithm 1. The optimal rigid body transform (ina least-squares sense) be-

tween two sets of corresponded points can be computed in closed form [97], which is
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(a) (b) (c)

Figure 2-1: (a) The original set of points for 2 laser scans, showing a region with significant
differences due to 3D effects. (b)The alignment computed byICP. Notice the misalignment
due to poor correspondences in the non-matching region. (c)The alignment computed by
our algorithm, which robustly matches the two scans.

attractive due to its computational efficiency. While the rigid body transform for a given

set of corresponding points is computed in closed form, the algorithm as a whole does

not necessarily find the global optimum, since it may be susceptible to local minima when

computing the point correspondences.

While this basic form of the ICP algorithm is extremely simple and fairly efficient, it

suffers from robustness issues in the presence of regions ofthe scans that do not match, such

as the scans in figure 2-1(a). The region in the bottom right ofthe figure has considerable

differences between the two scans due to out of plane motion.Since the ICP algorithm

finds correspondences for these points despite the fact thatthey have no match, it skews

the computed transform, resulting in the slight rotation between the scans in figure 2-1(b).

Many researchers have proposed variants of this basic ICP algorithm, which use a different

distance function, or add an outlier rejection step which improves the matching robustness

and/or efficiency [78, 77, 66]. However these variants add significant complexity without

solving the fundamental problem: corresponding points which are not measurements of the
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Algorithm 1 The Iterative Closest Point algorithm
Require: S1 andS2 (the scans to be matched)
Require: ∆ (initial guess of the transformation)

while ∆ not convergeddo
Ŝ2 = ∆⊗ S2 (projectS2 using current transform)
for x1

i ∈ S1 do
yi = argmin

x2

i
∈Ŝ2

||x1
i − x2

i ||2

end for

∆ = [R, t] = argmin
[R,t]

N∑

i=1

||Ryi + t− x1
i ||2

end while

same point in the environment.

2.2.2 Map Based Probabilistic Scan-Matching

As an alternative to computing the correspondences explicitly, a challenging and error

prone process, one can create an occupancy grid mapM from previous scans [91], and

then match the new scan against that map. Each cell in the map stores the likelihood of the

ith laser return being measured at the pointxi as

P (xi|M) (2.1)

This map then allows us to compute the likelihood for an entire scan by computing

the likelihood that all laser readings fall where they do. Assuming that each of the point

measurements in a laser scan are independent, the likelihood for an entire scan can be

computed as

P (S|M) =
N∏

i=1

P (xi|M) (2.2)

By searching over candidate rigid body transforms∆ ∈ SO(3) to find the one that maxi-

mizes the likelihood of the laser reading, we can then find theoptimal∆∗ which provides

the best alignment of the incoming laser scan:

∆∗ = argmax
∆

P (∆⊗ S|M) (2.3)
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where∆⊗ S is the set of laser pointsS transformed by the rigid body transform∆

This is the approach used by the Vasco scan-matcher in the Carmen robotics toolkit [39,

2], and the scan-matcher developed by Olson [70, 69], upon which our work is based.

While similar in concept, the algorithms differ in their methods for constructing and search-

ing the likelihood map.

In Vasco the map is constructed by storing the number of timeseach cell is hit by a

laser measurement and then integrating over small errors with Gaussian smoothing. This

smoothing captures the uncertainty present in the laser measurements. There is noise in

both the range and bearing of each laser measurement, which means that points near a cell

that is hit should also have an increased likelihood of generating a laser return. The optimal

scan alignment with respect to the map is then computed by performing a greedy hill-

climbing process. Starting from an initial guess of the correct transform, Vasco successively

tests new transforms around the current best, and keeps modifications that increase the

likelihood of the resulting transformed scan as shown in algorithm 2.

Algorithm 2 Vasco Hill Climbing Algorithm
Require: S (scan to be matched)
Require: M (the likelihood map)
Require: ∆ (initial guess of the transformation)
L← P (∆⊗ S|M) (evaluate likelihood of initial guess)
while ∆ not convergeddo

for ∆̂ = ∆ + δ ∈ {Forward,Back, Left, Right, TurnLeft, TurnRight} do
if P (∆̂⊗ S|M) > L then
L← P (∆̂⊗ S|M)
∆← ∆̂

end if
end for

end while

While this scan-matching method has proven quite successful, and is an improvement

over ICP, it still has two flaws which are corrected in Olson’sapproach. First, since laser

scanners have a limited angular resolution, readings far from the sensor will be spaced far

apart. As a result, if a subsequent measurement at timet+ 1 falls in between two readings

taken at timet, the later measurement will appear to be low likelihood despite the fact

that it probably reflected off the same object. Second, and more worrisome for use on
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Figure 2-2: A cross section of the pose likelihood map showing the likelihood of a scan at
different translations, with a fixed rotation. Notice the multiple local maxima.

MAVs is the use of the hill-climbing strategy. As can be seen in figure 2-2, which shows

a 2D cross section of the 3D pose likelihood map, there are several local maxima. Unless

we were lucky enough to start near the global optima, hill climbing is unlikely to find it.

Vasco mitigates this problem by using the estimate from wheel odometry to initialize the

hill-climbing process, however MAVs do not have that luxury.

2.2.3 Robust High-Speed Probabilistic Scan-Matching

After surveying the algorithms available for performing laser scan-matching we decided

to base our algorithm on the one developed by Olson, which focused on robustness, while

still managing to be computationally efficient through careful implementation. Like Vasco,

Olson’s method performs probabilistic scan matching usinga map, however it differs in

two significant ways:

1. The points in a laser scan are connected into a set of piece-wise linear contours,

creating continuous surfaces in the map instead of individual points.

2. The algorithm performs a more robust exhaustive search over a set of candidate align-
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ments instead of using hill climbing.

Our algorithm uses this same approach, however we made several changes to adapt it such

that it could handle the3D environment and run in real-time with the high resolution re-

quired by the MAV. In addition, we added a “polishing” step after the exhastive search

where we use the gradient ascent method shown in algorithm 2 to refine the pose estimate.

Since we start the gradient ascent from the optimum found by exhaustive search, the opti-

mization is very fast, and we are more likely to find the globaloptima than if we did not

perform the exhaustive search first.

Local Map Generation

To find the best alignment for an incoming laser scan, one needs a method for scoring

candidate poses based on how well they align to past scans. Asmentioned above, laser

scanners provide individual point measurements. Successive scans will generally not mea-

sure the same points in the environment since when the laser scanner moves the measured

points are shifted accordingly. Since the points do not necessarily measure the same points,

attempting to correspond points explicitly can produce poor results due to incorrect match-

ing. However, many indoor environments are made up of planarsurfaces with a2D cross

section that is a set of piecewise linear line segments. While individual laser measurements

do not usually measure the same point in the environment, they will usually measure points

on the same surface. We therefore model the the environment as a set of polyline contours.

Contours are extracted from the laser readings by an algorithm that iteratively connects the

endpoints of candidate contours until no more endpoints satisfy the joining constraints as

shown in algorithm 3.

The algorithm prioritizes joining nearby contours, which allows it to handle partially

transparent surfaces such as the railings in the environment depicted by Figure 2-3(a). If

we instead tried to simply connect adjacent range readings in the laser scan, there would

be many additional line segments connecting points on either side of the corner. Candidate

contour merges are scored and stored in a Min-heap data-structure, which allows the best

candidate to be extracted efficiently. As a result, the overall contour extraction algorithm

takes around0.5ms to process a 350 point scan on modern hardware.
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Algorithm 3 Extract Contours
Require: S (set of points)
Require: priority queue for candidatejoins {parent,child,score} sorted byscore
priority queue← ∅
for x ∈ S do

addjoin of x with nearest free point topriority queue
end for
while priority queue 6= ∅ do

remove bestjoin from priority queue
if join.parent already has a childthen

discardjoin
else ifconnectingjoin.child to join.parent incurs too much costthen

discardjoin
else ifjoin.child already has a parentthen

addjoin of x with nearest free point topriority queue
else

merge the contours ofjoin.child andjoin.parent
end if

end while
return Final set of contours

Once we have the set of contours extracted from the previous scan, we can evaluate

the likelihood of an alignment of the current scan. We assumethat all point measurements

in a scan are independent, and we compute the likelihood of alignment of a scan as the

product of likelihoods for each individual point in the scan. As mentioned above, laser

range-finders provide noisy measurements of the range and bearing of obstacles in the

environment. While each of these degrees of freedom has an independent noise term, we

assume a radially symmetric sensor model for simplicity. Our noise model approximates

the probability of a single lidar point(x, y) as proportional to the distanced to the nearest

contourC, such that

P (x, y|C) ∝ e(−d/σ), (2.4)

whereσ is a variance parameter that accounts for the sensors noise characteristics. As

was done for Vasco, we compute a grid-map representation where each cell represents the

approximate log-likelihood of a laser reading being returned from a given location.

For most ground robotics applications, a map resolution of10cm or more is often suf-

ficient. However, to accurately estimate thevelocityof the vehicle, where small rounding
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(a) (b)

Figure 2-3: (a) Contours (blue lines) extracted from the rawlaser measurements alongside
the raw laser readings (red dots). Notice how the contour extraction algorithm handles the
partially transparent railing on the left. (b) The resulting likelihood map generated from
the contours. Brighter colors (red) indicates higher likelihood.

errors in the position are magnified significantly, we require a high resolution map with a

cell size less than1cm. For example, if we use a map resolution of10cm and the laser scans

arrive at40Hz, an alignment that is rounded off by half a cell would result in an error on

the order of2m/s. Since the vehicle is usually moving at less than1m/s this error would

be very significant. This effect is seen in the experimental results shown in Figure 2-5.

While generating these high resolution maps is computationally intensive, one can

leverage their sparsity to make generating them tractable.If one examines a likelihood

map such as the one shown in figure 2-3(b), one quickly realizes that with any reasonable

value ofσ, the vast majority of cells will be zero. So, while conventional methods compute

a value for every cell in the map, and therefore require at leastO(n2) operations, wheren

is the number of cells along an edge, we developed a likelihood map generation algorithm

that exploits the sparsity in the grid map, resulting in a computational complexity ofO(m)

wherem≪ n2 is the number of occupied cells.

In Olson’s work, he computed the likelihood map by restricting the likelihood calcula-

tion to a local window around each line segment in the contour, and computing the distance
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from each pixel in the window to the line segment. While an improvement over computing

the distance to the nearest line segment for the entire map, this method still does not run in

real-time at the required resolution. Computing the distance to the line segment for each

pixel is computationally intensive, and to make matters worse, the windows around each

line segment have significant overlap, which means that eachpixel ends up being modified

many times.

In order to create the high resolution likelihood maps in real-time, we developed a

drawing primitive that explicitly “draws” the non-zero likelihoods around each line seg-

ment. This primitive does not require us to compute the distance to the line segment for

each pixel and has much less overlap in the pixels around the line segment endpoints that

are touched such that in general each pixel is only written once. We accomplish this by

sliding a Gaussian shaped kernel along the pixels of the linesegment (as output by the Bre-

senham line drawing algorithm [16]), applying amax operator between the current map

value and the kernel’s value. Naively using a square kernel,with values set based on equa-

tion 2.4 would result in cells being written many times as thekernel slides along the line;

however, one can avoid this problem by using a 1 pixel wide horizontal or vertical cross

section of the kernel depending on the slope of the line. For lines that are not perfectly

horizontal or vertical, this kernel must be stretched by1/cos(s), wheres is the slope of the

line. As a final optimization, the kernelmax operation can be performed using optimized

matrix libraries. With the new drawing primitive, creatingthe likelihood map simply re-

duces to drawing all the line segments in the extracted contours, which takes around20ms

even for extremely large7.5mm resolution likelihood maps.

We create the map from a set ofk previous scans so that the relative position and ve-

locity estimates are consistent within the local map. Comparing a new scan to an aggregate

of previous scans gives much more accurate position estimates than comparing each scan

only to the scan from the previous time step, as it reduces theintegration of small errors

over time. For example if the vehicle is stationary, the veryfirst scan received should be the

only scan in the map so that the position estimate will remaindrift free. On the other hand,

if we only compare each pair of incoming scans, any small errors on previous position esti-

mates will be retained and integrated into the current position estimate, resulting in drift. In
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addition, since the likelihood map must be recreated every time a scan is added or removed

from the map, comparing each pair of incoming scans is computationally inefficient.

In both Vasco, and Olson’s work a new scan is added to the map only after the vehi-

cle has moved some minimum distance. This heuristic is meantto ensure that scans are

added to the map with enough overlap to match them effectively, while not adding scans

unnecessarily frequently. The heuristic works well for ground vehicles where in general

the scans only change due to motion of the vehicle. However, on a MAV the heuristic is

problematic due to the drastic changes to the scan that can occur as the vehicle changes

height. When the vehicle changes height, the environment may change, such that large

portions of the map are quite different, despite the fact that the vehicle has not moved very

far in any dimension. In this situation, we want to add the newscan to the map so that

we can match against this region as well. However, if the environment has vertical walls

such that the cross-section does not change as the vehicle changes height, then we do not

want to add the new scan. As a result, we use a new policy whereby scans are added when

they have insufficient overlap with the current map. To do this, we compute the fraction of

points in an incoming scan that are above a given likelihood in the current map. When this

fraction drops below a threshold, the new scan is added to themap. The threshold is set

high enough that incoming scans are still able to be matched accurately, but low enough

that scans are not added too often. The new heuristic reducedthe amount of drift incurred

by in the scan-matching process compared to the distance based one.

In addition to mitigating drift, constructing the map from multiple recent scans handles

3D effects nicely. As can be seen in figure 2-4(b), areas that vary considerably with height,

such as the sides of the room, get filled in such that the entirearea has high likelihood. The

likelihood of a laser point being measured in those areas become almost uniform, while the

likelihoods in areas that remain constant, such as the corners of the room in figure 2-4(b),

are strongly peaked. Since the entire area has high likelihood its influence on the matching

process will be reduced.
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(a) (b)

Figure 2-4: (a) A cluttered lab space (b) The resulting likelihood map generated by the
scan-matcher after changing heights, with the current scanoverlaid. The sides of the room
are very cluttered, resulting in an almost uniform distribution in some areas, while the
corner remains sharply peaked and provides good alignment.

Scan-to-Map Alignment

Once we have computed the likelihood map, the second task is to find the best rigid body

transform∆∗ for each incoming scan with respect to the current likelihood map. Many

scan-matching algorithms such as Vasco use gradient descent techniques to optimize the

values of the transform. However, as we mentioned in section2.2.2, the three dimensional

pose likelihood space is often very complicated, even for fairly simple environments. As a

result, we chose to follow Olson, and use a very robust, if potentially computationally inef-

ficient, exhaustive search over a three-dimensional volumeof possible poses. The number

of candidate poses in the search volume is determined by the size of the search volume

(how far we search) and the translational and angular step size (how finely we search). Un-

fortunately, the chosen step sizes limit the resolution with which we can match the scans,

so we modify Olson’s approach to perform gradient ascent from the global optima chosen

by the exhaustive search.

While this exhaustive search might initially seem hopelessly inefficient, if implemented

carefully, it can be done very quickly. A naive implementation of this search might perform

the search using three nested for-loops to iterate through all poses in the search volume. A
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fourth for-loop would then iterate over all points in the scan, projecting them, and looking

up their likelihood in the map. Much of the computational cost in this search is taken up

by performing the projection of the laser scan in the innermost loop. However, for a given

candidate angleθ, the projected points in a laser scan are related by a simple translation.

As a result, if we iterate overθ in the outermost loop, and perform the rotation component

of the projection of each point there, the inner loops only have to perform a simple addition

to complete the projection. Furthermore, if we set the resolution of the likelihood map to

be equal to the translational step size, then the set of likelihoods for all translations of a

test point are contained in the cells that surround the test point in the map. Iterating over

the translational search window is therefore much faster since the innermost loop which

iterates over the points only performs a table lookup and does not have to project the test

points. As a final optimization, the entire translational search window can be accumulated

into the3D pose likelihood map in one step using the optimized image addition functions

available in the Intel Performance Primitives [23], which provide a factor of2 speed up.

The optimized exhaustive search implementation is considerably faster than a naive

implementation, however, we still must ensure that the areaover which we search is not

too large. Since we do not have wheel odometry with which to initialize the scan-matching,

we assume that the vehicle moves at a constant velocity between scans. With this starting

point, the range of poses that must be searched over can then be selected based on the

maximum expected acceleration of the vehicle, which means that at high scan rates, the

search volume is manageable.

In Olson’s method, the resolution with which we build the maplimits the accuracy with

which we can estimate the pose of the vehicle since we match the translational step size

to the map resolution. However, step sizes smaller than the map resolution can change the

scan likelihood due to points near the boundary between map cells being moved across the

boundary. To improve the accuracy of our relative position estimates beyond the resolution

used to create the map, we added a polishing step to the scan-to-map alignment where

we apply the gradient ascent method described in algorithm 2to optimize the final pose

estimate. Using gradient ascent on top of the exhaustive search retains the robustness of

Olson’s method, while improving the accuracy considerablyas shown in Figure 2-5. Since
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Figure 2-5: Comparison of the RMS error in velocity as a function of the map resolution,
and whether gradient ascent polishing was used. The blue line shows the error for each
map resolution without performing the gradient ascent polishing step, while the green line
shows the same experiment with gradient ascent turned on.

we initialize the gradient ascent from the global optima found by the exhaustive search,

the algorithm converges very quickly (usually∼ 1ms), and is likely to find the true global

optima.

In our implementation, we use step sizes (and grid spacing) of 7.5mm in x, y, and

.15◦ in θ. At this resolution, it takes approximately5ms to search over the approximately

15, 000 candidate poses in the search grid to find the best pose for an incoming scan. This

means that we are able to process them at the full40Hz data rate. When a scan needs to be

added to the likelihood map, this is done as a background computational process, allowing

pose estimation to continue without impeding the real-timeprocessing path.

Covariance Estimation

In addition to being very robust, computing the best alignment by exhaustive search has

the advantage of making it easy to obtain a good estimate of the covariance in the relative-

position estimates by examining the shape of the pose likelihood map around the global

optimum. This estimate of the covariance is important when we integrate the relative posi-
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tion estimates with other sensors in the data fusion module described in section 3.2. While

the entire pose likelihood map has many local maxima as shownin Figure 2-2, in the im-

mediate vicinity of the global optima the pose likelihood isusually a fairly smooth bell

shape. If the environment surrounding the vehicle has obstacles in all directions, such as in

a corner, the alignment of scans will be highly constrained,resulting in a very peaked pose

likelihood map. On the other hand, if the environment does not constrain the alignment, the

pose likelihood map will be nearly flat at the top. An example of two such environments is

shown in Figure 2.2.3.

(a) (b)

Figure 2-6: Examples of the covariance estimate output by the scan-matcher in different
environments. (a) shows an environment with obstacles facing all directions which con-
strains the alignment of subsequent scans. (b) shows a hallway environment with very little
information along the hallway.

While one could compute the covariance of the goal distribution across all degrees of

freedom, for implementation simplicity we compute the covariance in rotation separately

from translation, making the assumption that rotation is independent of translation. For

translation we look at the2D slice of the pose likelihood map at the optimal rotation. We

then threshold this2D map at the95th percentile, and fit an ellipse to the resulting binary

image. The area and orientation of this ellipse is used as ourestimate of the measurement

covariance. For rotation, we find the score of the best translation for each rotation, and

look at the width of the resulting bell shaped1D curve. In the future, we intend to fit a
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multi-variate Gaussian directly to the pose likelihood map, following the example of [69].

Contributions

While the scan-matching algorithm described above is basedon the original implementa-

tion by Olson, it required several modifications to enable itto be used on the MAV. Specif-

ically, these contributions are:

1. The drawing primitive described in section 2.2.3 allows us to generate the high reso-

lution likelihood map in real-time.

2. Our notion of a “local map” differs from [70]: scans are added based on insufficient

overlap rather than distance traveled.

3. Our use of image addition primitives to accumulate the pose likelihood map.

4. Adapting the search window based on the maximum expected acceleration of the

vehicle.

5. Using gradient ascent to refine the relative motion estimate is new.

6. The method for obtaining a covariance estimate is new.

2.2.4 Laser Based Height Estimation

The laser scan-matching algorithms described above only estimate the relative motion of

the vehicle inx, y, andθ. In order to control the MAV we must also be able to accurately

estimate the relative position inz. While the laser range-finder normally only emits beams

in a2D plane around the vehicle, we are able to redirect a portion ofthe beams downward

using a right-angle mirror as shown in Figure 2-7.

Since there are so few range measurements redirected towardthe floor, it is impossible

to recognize distinctive features that would allow us to match measurements together to

disambiguate the motion of the vehicle from changes in the height of the floor. We there-

fore cannot use techniques similar to the the scan-matchingalgorithms described above

to simultaneously estimate the height of the vehicle and thefloor. If we assume that the
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Figure 2-7: Image of the right-angle mirror used to deflect a portion of the laser beams
downward to estimate height. The yellow line shows an example beam for visualization.

vehicle is flying over a flat floor, we can use the range measuredby the laser scanner,rt,

directly as the estimate of the height of the vehicle at timet. However, if the vehicle flies

over an object such as a table, these height estimates will beincorrect. To make matters

worse, flying over the table will appear as a large step discontinuity in the height estimate,

as shown in the red line in Figure 2-8(a), which can result in aggressive corrections from

the position controller. However, if we look at the vehicle velocity that these height esti-

(a) (b)

Figure 2-8: Plots showing a comparison of the height (a) and velocity (b) estimates from
our algorithm (green) alongside the raw measurements (red), and the ground truth (blue).
The large discontinuities in the red lines are places where the vehicle flew over the edge of
an object. The object was roughly15cm tall.

mates would imply, we see that there are very large outliers that occur when the vehicle
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flies over an object. As a result, we can use the maximum expected acceleration of the

vehicle to discard changes in height that are too large, assuming that the height of the floor

changed instead of the vehicle. Unfortunately, in reality,both the vehicle and the floor

height change simultaneously, so simply discarding the relative height estimate will result

in drift over time.

To mitigate this drift, one would ideally adopt a SLAM framework that is able to rec-

ognize when the vehicle returns to the same place and closes the loop. However, while this

could be done using a camera, or another3D sensor, with only the2D laser scanner there

is not enough information about the shape of the floor to identify loop closures. We there-

fore cannot rely on being able to accurately estimate the height of the floor which would

then allow us to estimate our height relative to this floor estimate. Instead, we leverage the

assumption that the vehicle would predominantly be flying over open floor, but sometimes

fly over furniture or other objects. In this situation, over long time periods the raw height

measurements from the downward pointed laser beams are usually correct, but over short

time periods they may be perturbed by flying over obstacles. We therefore chose to mitigate

the drift in our height estimate by slowly pushing them back towards the raw measurements

rt. While we are still above an object, we do not want to push the height estimate towardrt

since this measurement will not correspond to the actual height of the vehicle. Instead we

would like to wait until the vehicle has moved away from the object and is above the floor.

Unfortunately, we don’t have a way to identify whether the vehicle is above the floor or a

new obstacle. As a result, we make this decision based on thex-y distance the vehicle has

moved since it noticed that the height of the surface underneath it changed. We choose this

distance threshold by estimating the average size of objects that the vehicle will encounter.

Rather than make a hard decision, we make a soft decision about when corrections should

be applied and scale the magnitude of the correction by a logistic function that is centered

over the average obstacle size.

More formally, our approach estimates the height of the vehicle, by integrating the

difference between successive height range measurementsrt andrt−1 filtered such that they

obey the maximum acceleration constraint. This estimate ofthe height will incur errors

when the vehicle goes over obstacles. As a result, we apply a correction term which pushes
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the estimatêht back towards the raw height,rt, measured by the laser. The magnitude of

this correction is a logistic function of the planar distance d to the last discarded height

measurement.

ĥt = h′ + sgn(rt − h
′)

α

(1 + e(σdd̄−d))
(2.5)

whereh′ is the height estimate after adding the filtered estimate,α is a small scaling con-

stant on the correction term,σd is a parameter that controls the width of the logistic func-

tion, andd̄ is the center of the logistic function. We chosed̄ to be large enough that we

expect the vehicle to no longer be above an object when the larger corrections are being

applied. The current height estimate can be arbitrarily faraway from the current measured

height, which is why we use only the direction of the error in the correction, and ignore the

magnitude. The correction is scaled such that the maximum correction is small enough to

induce smooth motions of the vehicle. The complete height estimation process is shown in

algorithm 4.

Algorithm 4 Laser Height Estimation

Require: ĥt−1 (previous height estimate)
Require: rt, rt−1 (current and previous height measurements)
Require: vt−1 (previous velocity estimate)
Require: d (distance to previous discarded measurement)

if |(rt − rt−1)/dt− vt−1| > MAX ACCELERATION then
h′ = ĥt−1

d = 0
else
h′ = ĥt−1 + (rt − rt−1)

end if
ĥt = h′ + sgn(rt − h

′)α/(1 + exp(σdd̄− d))
return ĥt, d

2.3 Visual Odometry

While the laser-based relative position estimation solution is efficient and works surpris-

ingly well in 3D environments despite the2D nature of the sensor, using a camera sensor

to compute relative position estimates is attractive for increased robustness in the face of
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significant3D structure in the environment. Despite this appeal, camera data can be much

more difficult to work with due to the lack of range information, and the large amount of

raw data. We have developed a stereo-vision based visual odometry solution which man-

ages to overcome these difficulties to provide relative position estimates that are sufficient

to stabilize the MAV. This section provides an overview of the developed solution. For

a more complete description and analysis of the algorithm, Irefer the reader to Markus

Achtelik’s thesis [6].

In general, a single camera is sufficient for estimating the relative motion of the vehicle

by corresponding features from consecutive image frames. If enough feature correspon-

dences (at least 7-8) are available, the fundamental matrixdescribing the motion of the

camera can be computed. Decomposing this matrix yields the relative rotation and transla-

tion motion of the camera. However, this estimate cannot resolve the scale of the motion,

just the relative degree of different motions [61]. While the rotation can be uniquely com-

puted with respect to this scalar factor, we can only computethe translational direction of

the motion, and not its magnitude.

To resolve this scale ambiguity, either scene knowledge is necessary, or two successive

views must have distinct vantage points and a sufficiently large baseline between them,

since motion in the direction of the camera’s optical axis cannot be computed accurately.

Given that scene knowledge for unknown environments is typically unavailable, and MAVs

often move slowly and forward with the camera facing front, autonomous navigation for

MAVs with a signle camera has proven to be very challenging (refer to section 1.3). This

motivated our choice of a stereo camera to reconstruct the 3D-position of environmental

features accurately. The stereo-rig not only enforces a baseline distance between the camera

views, but also allows us to reconstruct the feature positions in a single time step, rather

than using consecutive frames from a monocular camera. In this section,left and right

denote the images taken from the left and right stereo cameras respectively, as seen from

the MAV’s frame of reference.

Our approach for stereo visual odometry is outlined in figure2-9. Image features are

first detected in theleft frame from the previous time-step (1). These features are then found

in the previousright frame (2), enabling us to reconstruct their positions in 3D-space using
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Figure 2-9: Steps performed on each frame in the stereo visual odometry algorithm: 1)
Perform feature detection. 2) Find correspondences between left andright frame for depth
reconstruction. 3) Find correspondences between the previous and current frames. 4) Re-
peat step 2 on current frames. 5) Frame to frame motion estimation.

triangulation. Successfully reconstructed features are then tracked from the previousleft

to the currentleft frame (3), and a similar reconstruction step is performed for the current

frames (4). This process results in two “clouds” of featuresthat relate the previous and

current views. With these correspondences, the quadrotor’s relative motion in all 6dof can

be computed in a least-squares sense in closed form (5).

2.3.1 Feature detection

Image features are locations in the image which are distinctly recognizable such that finding

the correspondence between the same features in different images is possible. In general

image features can be any visually distinct pattern in the image, however for our purposes

we seek to find “corner-features” which are characterized bystrong intensity gradients in

two directions. Feature detection is a basic image processing primitive underlying many

computer vision algorithms, and there are many options available which have different per-

formance and computational characteristics. Although SIFT [60] and SURF [13] features

are popular choices for visual feature detectors due to the ease with which they can be

corresponded, computing them fast enough for our purposes on modern hardware remains
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computationally infeasible given the control requirements of our quadrotors discussed in

section 1.1. Instead, we adopted the FAST (Features from Accelerated Segment Test) [76]

feature detector, which was introduced by Rosten et al. The FAST feature detector pro-

vides a good balance between fast speed, and feature quality. In order to avoid detecting

many distinct features that are in close geometric proximity to each other, we down-sample

the image before running the feature-detector, and projectthe feature locations back to the

full size image after detection. Unfortunately, many spurious features are still detected by

FAST, leading to inaccurate feature-tracking results. We therefore filter the FAST features

using their Harris corner-response [40]. The use of the FASTdetector beforehand allows us

to compute the more computationally intensive image-gradients and corner-responses used

by the Harris detector only for the areas detected by the FASTdetector – a small subset of

the entire image.

Unfortunately, the combination of FAST and Harris metrics might still result in fea-

tures that are located in close proximity with other features even for low-resolution images.

Spatial redundancy of features incurs unnecessary computational cost during the feature

matching from image to image and makes feature-tracking error-prone. We therefore prune

our feature set by computing the distance between all feature pairs, eliminating one of the

features if the distance is less than a specified threshold. While this process theoretically

has a complexity ofO(n2), the computation in practice is much faster because the features

are already presorted by the FAST feature detector. The feature pruning take3-4ms for

about 500 feature candidates and leaves around 150 valid features. After pruning out all

the undesired features, the remaining feature locations are refined to sub-pixel accuracy

using the OpenCV function cvFindCornerSubPix which requires an additional6ms.

2.3.2 Feature Correspondence

To correspond the features between theleft andright frames, as well as from the previous

to the current frames, we use the pyramidal implementation of the KLT optical flow tracker

available in OpenCV [15]. This implementation allows us to track features robustly over

large baselines and is robust to the presence of motion blur.For correspondences between
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the left and right frames, error-checking is done at this stage by evaluating the epipolar

constraint

xTrightFxleft = 0± ǫ, (2.6)

wherex denotes the feature location in the respective frame,F is the fundamental matrix

pre-computed from the extrinsic calibration of the stereo rig, andǫ is a pre-defined amount

of acceptable noise.

2.3.3 Frame to frame motion estimation

Once we have the two sets of image features in both the previous and current pair of im-

ages with known correspondences, the features are projected to a 3D-space by triangulation

between the left and right cameras. Given two estimates of 3D-feature locations taken at

different times, we can estimate the relative motion from the previous to the current time

using the closed form method proposed by Umeyama [97]. This method computes rotation

and translation separately, finding an optimal solution in aleast squares sense. Unfortu-

nately, least square methods are sensitive to outliers, andwe therefore use Umeyama’s

method to generate a hypothesis for the robust MSAC estimator [94], a refinement of the

popular RANSAC method. After finding a hypothesis with the maximum inlier set, the

solution is recomputed using all inliers.

2.3.4 Nonlinear motion optimization

As mentioned in the laser scan-matching section, small measurement errors will accumu-

late over time, resulting in drifting position estimates over time. However, because many

of the visual features remain visible across more than two consecutive frames, we can esti-

mate the vehicle motion across several frames to obtain moreaccurate estimates. This can

be done using bundle adjustment [96] (shown in figure 2-10), where the basic idea is to

minimize the following cost function:

c(Xi, Rj, tj) =

m∑

i=0

n∑

j=0

E(xij , PjXi)
2 with Pj =

[
KjRj Kjtj

]
(2.7)
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Figure 2-10: Bundle adjustment incorporates feature correspondences over a window of
consecutive frames.

whereE(xij , PjXi) is the re-projection error due to the projection of the 3D-feature,Xi,

onto the camera’s image plane using thej-th view, so as to obtain the 2D-point,xij . Here,

m andn are the number of 3D-features and views respectively, whileKj is the intrinsic

camera matrix, which is assumed to be constant.

We are therefore seeking to find the optimal arrangement of 3D-features and camera-

motion parameters so as to minimize the sum of the squared re-projection errors. This prob-

lem can be solved using an iterative nonlinear least squaresmethods, such as the technique

proposed by Levenberg-Marquardt. Although the cost function in equation 2.7 appears

simple, the problem has a huge parameter space. We have a total of 3m + 6n parameters

to optimize – three parameters for each 3D-feature and six parameters for each view. In

addition, in each Levenberg-Marquardt step, at leastm re-projections have to be computed

per view. Computation in real-time therefore quickly becomes infeasible with such a large

parameter space. Fortunately, the problem has a sparse structure, since each 3D-feature

can be considered independent, and the projection ofXi into xij depends only on thej-th

view. This sparse-bundle-adjustment problem can be solvedusing the generic package by

Lourakis and Argyros [59], which we used for our application.

The standard bundle adjustment approach is susceptible to outliers in the data, and

because it is an iterative technique, good initial estimates are needed for the algorithm

to converge quickly. We avoid both problems by using the robust frame-to-frame MSAC

motion estimates, as described in section 2.3.3, as well as their inlier sets of 3D features.

Running bundle adjustment over all frames would quickly lead to computational in-

tractability. Instead, we pursue a sliding-window approach, bundle-adjusting only a win-

dow of the latestn frames. By using the adjustment obtained from the old windowas an

initial estimate of the next bundle adjustment, we ensure that the problem is sufficiently-

constrained while reducing the uncertainties due to noise.The presence of good initial
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estimates also reduces the number of optimization steps necessary. Performing bundle ad-

justment for 150 features using a window size ofn = 5 takes approximately30-50ms.

The feature correspondences necessary for bundle adjustment are found by chaining the

matches from frame-to-frame. The number of features diminishes over successive frames,

so new features are added at every time step. When the new features are located close to

old features, the old ones are preferred.

2.4 Comparison

While both the laser and vision based relative position estimation algorithms described

above provide estimates that enable indoor flight when combined with the rest of the system

described in chapter 3, they are very different solutions tothe same problem, with different

performance characteristics. Overall, we found that the state estimates obtained from the

laser data tended to have less drift as can be seen in figure 2-11. In addition, the laser

data requires less time to transmit over the wireless and thescan-matching algorithm is

able to process incoming scans at a faster rate resulting less delay in its position estimates

as shown in Table 2.1. The measurement delay is critical for stable flight. Finally, the

Computation Time Bandwidth
Laser Scan-Matching 5 ms/measurement 170 KB/s
Visual Odometry 65 ms/measurement 1300 KB/s

Table 2.1: Comparison of the computational and bandwidth requirements of the laser and
vision based relative position estimation algorithms.

laser scan matching handles fast motion more easily. Duringfast motion, the cameras can

experience significant motion blur, corrupting the state estimates. Much of this difference

is due to inherent differences in the active vs. passive sensing modalities. With sufficient

light, the exposure time for the stereo cameras could be reduced to mitigate the effect of

fast motion, however that is unlikely to be possible in general environments without much

larger lenses and a high power flash.

While the laser scan-matching currently seems to provide better performance, the vi-

sual odometry natively provides estimates for all6 degrees of freedom, which is a major
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(a) Laser scan-matching (b) Visual odometry

Figure 2-11: Comparison of the relative position estimatesfrom laser scan-matching and
visual odometry (Red) against ground truth (Blue) on similar trajectories.

advantage. The laser scan-matching shows remarkable resilience to3D structure in the

environment, however, it is unlikely that it will work in completely unconstrained environ-

ments, such as a cave.

Both methods experience failure modes when there are insufficient environmental fea-

tures to perform data association. The laser scan-matchingfails in long hallways, where

readings in different places along the hallway are indistinguishable. On the other hand

the visual odometry will fail in areas without distinctive intensity features, such as when

looking at a blank wall. Fortunately, these failure modes result from very different environ-

mental structures, which would indicate that the best performance would be obtained by

using both relative position estimation algorithms simultaneously.
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Chapter 3

System Modules

This chapter describes the complete system that enables autonomous flight in indoor en-

vironments. Each module is a critical piece of the overall system, and required for safe

and robust operation. The modules described in this chapterare highlighted in the blue

rectangle of the system diagram, repeated in figure 3-1.

The planning and exploration module described in section 3.5 was developed in collab-

oration with Ruijie He.

Figure 3-1: Schematic of our hierarchical sensing, controland planning system repeated
for the reader’s convenience. At the base level, the onboardIMU and controller (green)
creates a tight feedback loop to stabilize the MAV’s pitch and roll. The yellow modules
make up the real-time sensing and control loop that stabilizes the MAV’s pose at the local
level and avoids obstacles. Finally, the red modules provide the high-level mapping and
planning functionalities.
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3.1 Communication

We developed the hierarchical software system shown in figure 3-1 as a set of independent

modules. Each software module runs in a separate process either onboard the MAV, or at

the ground station. The processes communicate using the Lightweight Communications

and Marshalling (LCM) library [4, 48], originally developed for team MIT’s entry into

the DARPA Urban Challenge [57]. LCM uses UDP multicast to provide efficient, low-

latency communication without requiring a centralized hub. The lack of a centralized hub

is particularly important since it allows a separate cluster of processes to run onboard the

MAV, without requiring all messages to traverse the wireless link. However, by itself, LCM

does not handle transmissions over wireless links, since itwas designed for use on high

bandwidth dedicated networks, and therefore does not seek to correct for lost or dropped

packets, expecting these events to be rare or due to congestion. Unfortunately wireless

networks experience random drops due to interference or other factors relatively frequently,

which makes error handling critical.

Instead of using the default UDP multicast scheme used in LCMover the wireless link

between the MAV and the ground station, we create a point-to-point tunnel that encapsu-

lates the LCM messages for transmission over the wireless link. While using a standard

TCP stream for this tunnel would seem to be an obvious way to achieve reliable transmis-

sion, TCP is known to provide poor performance in wireless environments [99] due to the

assumption that dropped packets are a signal of congestion rather than random errors. As

a result, when TCP experiences a dropped packet, it will slowdown its transmission rate

in an attempt to be fair to other flows. This behavior is undesirable on a dedicated wireless

link since it reduces the throughput and adds a significant amount of latency for some pack-

ets. As a result, we instead turn to using a UDP datastream with forward error correction

(FEC) [67] applied for reliability. FEC adds a set of parity packets to the datastream that

can be used to reconstruct lost packets. The packets add a constant amount of overhead,

however as long as the aggregate bandwidth required does notoverload the wireless link,

this solution provides low latency delivery of the time critical sensor data. To encode the

data stream we use low density parity check codes which provide high efficiency in both
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the amount of overhead and computation required to encode and decode the data.

3.2 Data Fusion Filter

While the relative position estimation algorithms described in the previous chapter provide

accurate and timely relative position estimates, to compute the full MAV state estimate,

including the velocities, we use an Extended Kalman Filter (EKF) to fuse the relative po-

sition estimates with the acceleration readings from the IMU. This setup is inspired by the

standard practice for making use of GPS and an IMU on outdoor UAVs [51]. Using a data

fusion filter has several advantages over directly using therelative position estimates and

their derivatives to control the vehicle. While the IMU readings drift significantly and are

therefore not useful over extended time periods, they are useful over short time periods and

allow us to improve our estimate of the vehicle velocities.

Another advantage to using the EKF for data fusion is that it provides a clean way to in-

terpolate the state estimates used by the feedback controller. This is particularly important

since the wireless link and processing time adds a variable delay to the raw measurements,

which can cause problems for controlling the vehicle. Therefore, in our EKF formulation,

we perform the measurement updates asynchronously whenever they arrive, while the mo-

tion model prediction step is performed on a fixed clock. Thissetup is also robust against

measurements that get lost completely due to wireless interference.

3.2.1 Extended Kalman Filter Background

The Kalman filter [53] is an efficient recursive filtering algorithm for estimating the prob-

ability distribution over the state of a dynamic system, called the belief state, from a stream

of noisy measurements. The algorithm alternates between aprocessupdate, where the next

state is predicted from the current state and control input,and ameasurementupdate where

a sensor measurement corrects the current belief. In the special case where the state tran-

sition and observation models are linear and subject to Gaussian noise, the Kalman filter

provides the optimal belief estimates for the system in a least-squares sense.

However, in many real-world applications, the assumption that the observations are
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linear functions of the state and that the state transition function is a linear function of

the state and control breaks down. For example, a simple robot making translational and

rotational actions cannot be described by linear state transitions. Plain Kalman filters are

therefore inapplicable to many robotics problems, such as estimating the state of our MAV.

The extended Kalman filter was developed to overcome some of these fundamental

limitations of the pure Kalman filter. The EKF allows the sameinference algorithm to

operate with non-linear transition and observation functions by linearizing these functions

around the current mean estimate. More formally, let the statest and observationzt at time

t be given by the following functions:

st = g(st−1, ut, wt), wt ∼ N(0,Wt), (3.1)

and zt = h(st, qt), qt ∼ N(0, Qt), (3.2)

Here,ut refers to the control action, andwt andqt are random, unobservable noise vari-

ables. The functionsg andh represent the non-linear control and measurement models

respectively.

In the EKF, the belief state is represented by a Gaussian distribution, parameterized by a

mean estimate,µt, and a covariance matrix,Σt, which represents the associated uncertainty.

The EKF computes the state distribution at timet in two steps: a process step that is based

only on the control inputut and the belief state in the previous time step,(µt,Σt), as well

as a measurement step that incorporates measurementzt to obtain the new belief estimate.

The process step is calculated as follows:

µt = g(µt−1, ut), (3.3)

Σt = GtΣt−1G
T
t + VtWtV

T
t , (3.4)

whereGt is the Jacobian ofg with respect tox and Vt is the Jacobian ofg with re-

spect tow. For convenience, we denoteRt , VtWtV
T
t . The result is the predicted be-

lief state, represented by the predicted mean estimateµt and predicted covarianceΣt.
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Algorithm 5 The Extended Kalman Filter algorithm
Require: Previous belief stateµt−1,Σt−1, actionut, observationzt

1: µt = g(ut, µt−1)
2: Σt = GtΣt−1G

T
t +Rt

3: Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1

4: µt = µt +Kt(zt − h(µt))
5: Σt = (I −KtHt)Σt

6: return bel(µt,Σt)

Similarly, the measurement step is calculated as follows:

µt = µt +Kt(Htµt − zt), (3.5)

Σt = (I −KtHt)Σt, (3.6)

Kt = ΣtH
T
t

(
HtΣtH

T
t +Qt

)−1
. (3.7)

whereHt is the Jacobian ofh with respect tos. Kt is known as the Kalman gain, which

represents the mapping of the measurementszt from measurement space to state space

that will yield the Minimum Mean-Square Error (MMSE) estimate. The EKF algorithm is

summarized in Algorithm 5.

3.2.2 Process Model

Our filter is a standard EKF, implemented using the open source KFilter library [3]. We use

the filter to estimate the positions, velocities, and accelerations of the vehicle, along with

the biases in the IMU. More specifically we represent the state as:

s = [xg, yg, zg, θ, φ, ψ, ẋb, ẏb, żb, θ̇, φ̇, ψ̇, ẍb, ÿb, z̈b, biasẍ, biasÿ, biasz̈ , biasφ, biasψ] (3.8)

The position and orientation(xg, yg, zg, θ, φ, ψ, ) are represented in the global coordi-

nate frame, with the origin placed where the vehicle is initialized, and angles represented

using Euler angles. The velocities and accelerations are represented in the body frame,

where the origin is located at the center of body with thex-axis pointing towards the front

of the vehicle,y to the left, andz up.
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In section 3.3 we present a dynamics model used for control, which models the relation

between the control inputs and the vehicle accelerations. While this model is sufficiently

accurate for control, the errors are sufficiently large compared the measurements from the

IMU that for simplicity we do not include the control inputs in the process model. As a

result, the nonlinear state update equations forxg andyg are:

xgt = xgt−1 + ∆t(ẋbt−1 cos(θt−1)− ẏ
b
t−1 sin(θt−1)) + ωx, ωx ∼ N(0, σx)

ygt = ygt−1 + ∆t(ẋbt−1 sin(θt−1) + ẏbt−1 cos(θt−1)) + ωy, ωy ∼ N(0, σy) (3.9)

where∆t is the filter update period, andωx,y are zero mean Gaussian noise terms. The rest

of the position and the linear velocity states are updated bydiscrete integration:

vt = vt−1 + ∆tvt−1 + ωv, ωv ∼ N(0, σv)

wherev = [zg, θ, φ, ψ, ẋb, ẏb, żb] is a sub-vector of the vehicle states. Finally, the angular

velocities, linear accelerations, and bias terms are updated with a zero mean Gaussian noise

term :

at = at−1 + ωa, ωa ∼ N(0, σa) (3.10)

wherea = [θ̇, φ̇, ψ̇, ẍb, ÿb, z̈b, biasẍ, biasÿ, biasz̈ , biasφ, biasψ].

3.2.3 Measurement Model

To incorporate the measurements into the filter, we created amodular design that allows us

to use the same basic filter setup for different combinationsof sensors. The IMU is treated

as if it measures the accelerations and attitude plus the associated bias.

ztIMU =




ẍtb + biastẍ

ÿtb + biastÿ

z̈tb + biastÿ

pt + biastp

rt + biastr




(3.11)
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Adding the relative position estimates to the filter is not quite as straightforward since

we much choose whether to treat the estimates as either position or velocity measurements.

The relative position estimation modules measure the distance between sensor measure-

ments, which gives us the option to either integrate these relative measurements into po-

sition measurements, or divide by the time between measurements to get velocity mea-

surements. In general, since the wireless link can add an unknown delay to the sensor

measurements we prefer to integrate the relative position estimates given by either laser

scan-matching or visual odometry alone as position measurements. However, when we

want to fuse all three sensing modalities, laser, vision, and inertial, we cannot add both the

laser and vision as positions since they will not necessarily be consistent with each other

and may be in very different coordinate systems. This is due to the fact that the position

estimates of each sensor are the result of an integration, soany errors will be propagated

along indefinitely. This is particularly problematic if there are errors inθ, which results in

the incoming measurements being in different coordinate frames. If this happens, we do not

want the state estimate to be a weighted average of the two coordinate-system estimates,

which is what the filter would compute if we naively add both asposition measurements

without rotating the coordinate frames into alignment. If we knew the transformation be-

tween the two coordinate-systems, we could transform the measurements before adding

the measurements to the filter, however, we do not have accessto this transformation. We

instead choose to add the laser scan-matching estimates as position measurements, and the

visual odometry estimates as velocity measurements. The laser scan-matching does not

measure pitch and roll, so the laser measurements are given as

ztPOS = [xtg, y
t
g, z

t
g, θ

t]⊤ (3.12)

whereas the visual odometry measures all 6 degrees of freedom

ztV EL = [ẋtb, ẏ
t
b, ż

t
b, θ̇

t, ṗt, ṙt]⊤ (3.13)

We chose to use the laser odometry for position because it usually had less drift than the

visual odometry estimate.
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The remaining design work for the data fusion filter was to determine reasonable vari-

ance parameters for the process and measurement models. We chose to make all the pro-

cess and measurement covariance matrices diagonal to limitthe number of parameters that

needed to be tuned. For the measurement covariances of the relative position estimates, we

assumed the variance was a scalar multiple of the estimated covariance computed by the

odometry module described in section 2.2.3. Despite the simplifying assumption of diag-

onal covariances, there were still a very large number of parameters that must be tuned to

achieve good filter performance. Doing this process by hand would have been a very time

consuming and error prone process, so we learned the variance parameters using a method

similar to the one described in [5].

3.2.4 Filter Tuning

To learn the variance parameters, we make use of the highly accurate state estimates avail-

able when flying inside of our Vicon [98] motion capture environment. The motion capture

system consists of a calibrated array of cameras which trackreflective markers placed on

the vehicle. The system provides the sub-millimeter accurate position and orientation es-

timates of the vehicle at120Hz, which can be considered “ground truth” data. We collect

a log containing the data fusion module’s input datad as given byzIMU , zPOS, andzV EL

alongside the ground truth state valuess∗ from motion capture. We then replay the log to

compute the output of the EKF with parameter vectorΘ, containing the variance parame-

tersσ from equations 3.9, 3.10 and 3.10:

s̃ = K(d;Θ) (3.14)

To evaluate the filter performance we must choose a cost function, that penalizes de-

viations from the ground truth values. In the setting described in Abbeel et al’s work [5],

they used a high quality GPS unit as the ground truth measurements for a lower quality

GPS unit. They compared several cost functions and found that the RMS error between the

state estimates computed with the lower quality GPS and the ground truth provided the best

results. In our setting, the ground truth position estimates will not be in the same coordi-
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nate frame as our filter’s estimate due to drift in the relative position estimates, as discussed

above. This will cause a small error at the beginning of the log to incur a disproportionately

large cost compared to an error near the end of the log. Since there is no reason to prefer

errors at one time versus another, we must treat the errors inx, y, andθ differently from the

rest of the states. For these states, we penalize errors in relative motion∆t = [∆x
t ,∆

y
t ,∆

θ
t ]

rather than absolute position.

∆x
t = (xt − xt−1) cos(θt−1)− (yt − yt−1) sin(θt−1) (3.15)

∆y
t = (xt − xt−1) sin(θt−1) + (yt − yt−1) cos(θt−1) (3.16)

∆θ
t = θt − θt−1 (3.17)

Since only a subset of the states are used for control (the rest are estimated to improve

the estimates of the others), forsrest = [z, p, r, ẋ, ẏ,ż]⊤, we compare the values directly,

and ignore the remaining states. Finally, to reduce over-fitting, and encourage smooth

state estimates we incorporate a smoothness term in our costfunction. The resulting cost

function for timet is:

Ct(s̃t, s̃t−1, s
∗
t , s

∗
t−1) = ||∆̃t −∆∗

t ||2 + ||s̃rest − s
∗
rest||2 + ||s̃t − s̃t−1||2 (3.18)

The cost for the entire logC(s̃, s∗) is the summation of the cost for each individual

time step. Since each of the state variables have different units and scales, we also include

weighting parameters that balance out the contribution of each state.

We then use stochastic gradient descent (SGD) to optimize the variance parameters with

respect to this cost function. SGD is particularly attractive since it does not require us to

explicitly compute the performance gradients, which wouldbe quite challenging due to the

complex interactions of the variance parameters with the estimated states, and the nonlinear

cost function. The SGD algorithm follows the cost surface gradient in expectation and is

guaranteed to converge to a local optima. While other optimization methods might be

faster, the optimization is a one-time cost, so ease of implementation was chosen over
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performance. The final parameter filter tuning algorithm is presented out in algorithm 6.

We initialize the variance parameters by computing the variance of the difference between

the input measurement data and the ground truth estimates.

Algorithm 6 The Filter Tuning Algorithm
Require: d (the data to be filtered)
Require: s∗ (ground truth state estimates)
Require: σ, η (noise and learning rater parameters)
Require: Θb ← Θ0 (initial guess for variances)

while Average Cost Decreasesdo
#perturb parameters:
Θp = Θb +N (0, σ)
#compute state estimates:
s̃b = K(d;Θb)
s̃p = K(d;Θp)
#compute costs:
cb = C(s̃b, s

∗)
cp = C(s̃p, s

∗)
#update variances:
z = Θp −Θb

Θb = Θb − α(cb − cp)z
end while

The parameter learning algorithm generally converges after a couple hours of compu-

tation time depending on the length of the input log used. It is able to significantly reduce

the error on a held out test log as shown in figure 3-2. Overall,the tuned EKF produces

state estimates that are significantly more accurate than the filter performance obtained with

variance parameters chosen by hand. For example, on severallogs of real flight data, the

average velocity error from the filter using learned parameters was half that of the filter

using hand-chosen parameters. In addition, and perhaps more importantly, the velocity

estimate is much smoother without being any more delayed.

Figure 3-2(a) demonstrates the quality of our EKF state estimates. We compared the

EKF state estimates with ground-truth state estimates recorded by the Vicon motion cap-

ture system, and found that the estimates originating from the laser range scans match the

ground-truth values closely in both position and velocity.Throughout the1 minute flight,

the average distance between the two position estimates wasless that1.5cm, and the aver-

age velocity error was0.015m/s.
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(a) (b)

Figure 3-2: (a) Comparison of the ground truth velocity(blue) with the estimate from the
EKF before(red) and after(green) optimization. (b) The velocity error for the same trajec-
tory.

3.3 Position Control

While the primary challenge for enabling indoor flight was obtaining sufficiently accurate

real-time sensing, a smooth, stable and accurate controller is also necessary. While UAVs

operating outdoors can generally afford to hover with an RMSerror of several meters,

indoor environments are much more constrained, requiring ahover precision on the order

of tens of centimeters. While there has been a tremendous amount of work on performing

system identification and designing controllers over the years [18, 43, 79, 20] , this section

describes our relatively simple method for designing the vehicle controller, which was

sufficient for our purposes.

The Ascending Technology quadrotors are already equipped with attitude stabilization,

which uses an onboard IMU and processor to stabilize the MAV’s pitch and roll [38]. This

stabilizer tames the nastiest portions of the quadrotor’s extremely fast, nonlinear, and un-

stable dynamics [43], allowing us to focus on stabilizing the remaining degrees of freedom

in position and orientation. While the onboard controller simplifies the problem substan-

tially, the quadrotor is still underdamped, requiring careful controller design to stabilize the

vehicle.
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The onboard controller takes 4 inputs:

u = [uφ, uψ, ut, uθ] (3.19)

whereuφ anduψ denote the desired set points for the onboard PD control loops in pitch

and roll respectively. Unlike these two control inputs,uθ sets the desired rotational velocity

in heading rather than specifying an absolute orientation.Finally ut controls the desired

baseline rotation rate for all four motors in the motor speedcontroller.

On a quadrotor, the vehicle acceleration is proportional tothe pitch angle of the vehicle.

ẍb ∝ cos(φ) (3.20)

ÿb ∝ cos(ψ) (3.21)

Therefore, by making a small angle assumption, the quadrotor’s dynamics can be approxi-

mated as a simple2nd order linear system with the following equations:

ẍb = kφuφ + bφ z̈ = ktut + bt

ÿb = kψuψ + bψ θ̇ = kθuθ + bθ (3.22)

whereẍb and ÿb are the resultant accelerations relative to the body coordinate frame, and

k∗ andb∗ are model parameters that are functions of the underlying physical system such

as mass and inertias.

To learn the parameters of this model we collect a log of input-output data by flying

inside a Vicon [98] motion capture system while recording the pilot’s control inputs. We

first characterize the delay in each channel by computing thecross-correlation between

the acceleration and the associated control input for a range of delays. We then align the

accelerations with the control input, and use regression tocompute the parameters of the

control model. We use regularized least squares regression[74] to mitigate over-fitting.

The learned model is able to predict the accelerations with reasonable accuracy as shown

by the green line in figure 3.3. The figure shows a comparison between the predictions of

our model and the measured accelerations.
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Figure 3-3: Comparison of the measured accelerations in thex-direction (blue) with the
accelerations predicted by the dynamics models on a held outtest data set. The predictions
for other axes looks very similar. The green line shows the predictions from the dynamics
model in equation 3.22, while the red line shows the predictions of the model with damping
in equation 3.23.

In addition to the simple control model described in equation 3.22 we experimented

with several other more complicated models such as

ẍb = kφuφ + kẋẋ+ bφ z̈ = ktut + kżż + bt

ÿb = kψuψ + kẏẏ + bψ θ̇ = kθuθ + bθ (3.23)

which included damping terms. When we fit data to this model, we found that the pa-

rameters on the damping terms were approximately zero. Thisconfirmed our previous

qualitative observation as pilots that the system is underdamped. The predictions made by

this dynamics model are shown as the red line in Figure 3.3, where we can see that the

predictions made by the two models are almost identical.

As mentioned in section 1.1 the underdamped nature of the system means that propor-

tional control techniques alone will be insufficient to hover the vehicle, since any delay in

the system will cause unstable oscillations. Fortunately,the state estimates computed by

the data fusion module provide accurate, low delay velocityinformation that can be used
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by a derivative term in the feedback controller to add damping to the system.

We also experimented with other even more complicated models which included cross-

coupling terms as well:

ẍb = kẍu + kẋẋ+ bẍ z̈ = kz̈u + kżż + bz̈

ÿb = kÿu + kẏẏ + bÿ θ̇ = kθ̇u + bθ̇ (3.24)

wherek∗ is a vector of parameters, one for each control input. As in the damped model, we

found that the additional terms seemed to have a negligible effect. We thought that these

terms might have more complex and potentially nonlinear interactions with the system, so

we experimented with using kernel-regression methods to fitthe data. While the regular-

ized least squares regression method that we employ helped reduce the amount of over-

fitting, the more complicated regression methods still overfit to the training data slightly,

and performed worse than the simple linear models on held outtest data. The results of

these experiments are shown in table 3.1. Since none of the alternative dynamics models or

regression methods significantly improved the fit of the data, we decided to use the simple

2nd order dynamics model without damping or cross-coupling terms in the design of our

feedback controller.

(a) (b)

Figure 3-4: Demonstration of the trajectory following performance with commanded po-
sition (blue) and actual position (green). The vehicle was commanded to move along the
X-axis. (a) shows the position of the vehicle alongside the desired trajectory and (b) shows
the cross-range error for this trajectory. The maximum cross-range deviation was8cm. The
vehicle was flying autonomously with the state estimates generated by our system.
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Regression Type Dynamics Model Training error Testing error
linear simple2nd order 0.086340 0.136492
linear damping 0.084906 0.133933
linear damping+cross 0.084570 0.131545
2nd degree poly simple2nd order 0.086305 0.138765
2nd degree poly damping 0.084708 0.137631
2nd degree poly damping+cross 0.083843 0.160786
3rd degree poly simple2nd order 0.086306 0.138572
3rd degree poly damping 0.084739 0.138129
3rd degree poly damping+cross 0.083762 0.163946

Table 3.1: Comparison of the performance of different dynamics models with parameters
fit by different regression methods. We fit the parameters of the dynamics model using
kernel regression with the kernel designated in theRegression Typecolumn. Thesimple
2nd order model corresponds to equation 3.22, while thedampingmodel corresponds to
equation 3.23, anddamping+crosscorresponds to equation 3.24

Once we obtained the parameters for the system dynamics in equation 3.22, we use the

MatlabR© linear quadratic regulator (LQR) toolbox to find appropriate feedback gains for

the dynamics model. Despite the contrast between the seemingly complex dynamics of the

vehicle and the model’s apparent simplicity, this controller achieves a stable, precise hover.

The controller initially had a fairly large steady state error, which was mitigated by adding

a low gain integral feedback term around the LQR controller.The final controller is able to

hover the quadrotor, and accurately follow trajectories with under6cm cross-range error.

An example of the vehicle following a simple trajectory, along with the cross-range error

is shown in Figure 3.3.

3.4 SLAM

The odometry and data fusion EKF combine to provide locally accurate state estimates

which enable the vehicle to hover and move around room sized environments, however, as

the vehicle moves around larger areas, small errors in the odometry will accumulate, result-

ing in position drift over time. With the MAVs fast dynamics canceled out by lower layers

we can leverage SLAM algorithms originally developed for other platforms, to close loops
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and create globally consistent maps. The SLAM process couldbe integrated directly inside

of the EKF data fusion filter described above, however, this would likely add a significant

amount of computational delay to the real-time loop since the filter state would expand

to include the positions of environmental features. Instead we chose to keep the SLAM

process separate, and have it provide corrections for the real-time position estimates. This

allows the SLAM algorithm to take much more time to integrateinformation than would

be possible if it was in the real-time loop. In addition, the system is modular, allowing

different SLAM algorithms to be tested without modifying the rest of the system.

While there has been a tremendous amount of research on SLAM algorithms, the vast

majority of the algorithms have focused on building2D maps. There has been success

using3D laser scanners for3D SLAM [21, 68, 39], but these sensors are still outside the

realm of possibility for indoor MAVs. More recently, several groups have begun to achieve

success with using either monocular [28, 56] or stereo cameras [72] for performing SLAM.

These systems appear to work quite well in practice and warrant further consideration how-

ever none of the publicly available implementations scale to large enough environments to

be of use in our situation. Perhaps the most exciting solution to the loop closure problem

has recently been proposed by Cummins et al who use a purely appearance based method

to close loops in large scale environments [26]. In recent work, they have combined this

approach with a high performance visual odometry system to perform large scale real-time

topometric SLAM with very impressive results.

Despite the recent progress in visual SLAM, we decided not totackle the problem of

building our own3D SLAM system. Instead we made use of the publicly available im-

plementation of the GMapping [34] algorithm that is available in the OpenSlam repository

[71], which performs slam in2D. Despite the fact that the MAV operates in the full3D

environment, the algorithm works surprisingly well and serves as a proof of concept for

implementing SLAM on a MAV. In the future, we hope to replace this module with a more

capable fully3D SLAM approach.

GMapping is an efficient Rao-Blackwellized particle filter which learns grid maps from

laser range data. We chose it due to its outstanding accuracy, real-time performance, and

its ability to handle changes to the map that occur due to changing height and attitude.
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While the algorithm worked reasonably well out of the box, wemade modifications that

improved its performance when used in3D environments on a MAV. The motion model for

the particles in the GMapping algorithm was based on a standard motion model for ground

robots with wheel odometry. However, since we use the odometry estimates computed by

the laser scan-matching module, we modified the motion modelto propagate the particles

using the uncertainties computed by the odometry module rather than using fixed noise

terms.

In addition to the motion model, we modified the map representation so that the map

updates rapidly in response to changes in height. The algorithm computes the probability

that each grid cell is occupied or free based on the number of times a laser beam reflects off,

or passes through the cell. If a particular cell has been hit many times, the algorithm places

a very high confidence in the fact that the cell is occupied. However, if the MAV changes

heights, and the cell becomes part of free space, this confidence is no longer warranted.

With the original map representation, the laser must pass through the cell at least as many

times as it was hit before the algorithm will be convinced that the cell is actually now

free, resulting in a very slow adaptation of the map. As a result, we modified the map

representation to cap the maximum confidence for each grid cell, allowing it to change

from occupied to free (or visa-versa) more rapidly.

With these modifications, we are able to create large scale maps of the environment

which will be shown in chapter 4. GMapping usually takes1 to 2 seconds to process

incoming laser scans which allows it to be run online, but is not suitable to be directly

incorporated into the real-time control loop. Instead the GMapping algorithm periodically

sends position corrections to the data fusion EKF to correctthe drift in the position esti-

mates due to errors in the odometry. Since the position corrections are delayed significantly

from when the measurement upon which they were based was taken, we must account for

this delay when we incorporate the correction. This is done by retroactively modifying the

appropriate position estimate in the state history. All future odometry estimates are then re-

computed from this corrected position, resulting in globally consistent state estimates. By

incorporating the SLAM corrections after the fact, we allowthe state estimates to be pro-

cessed with low enough delay to control the MAV, while still incorporating the information
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from SLAM to ensure drift free position estimates.

3.5 Planning and Exploration

In addition to allowing us to compute globally consistent state estimates, the map generated

by the SLAM algorithm is used for planning autonomous actions for the vehicle. To achieve

full autonomy, we require a high-level planner that enablesthe MAV to either explore en-

vironments autonomously. While exploration has been well-researched in ground robotics,

differences between air and ground vehicles, as discussed in section 1.1, require differ-

ent considerations when deciding where to go next. In particular, the need to constantly

provide control signals to the MAV means that while we seek toexplore the environment,

we must ensure that the MAV always remains well-localized. Our algorithm trades off

the speed with which our robot completes coverage of the environment with safety. For

example when confronted with a large open area, an exploration algorithm for a ground

robot would drive directly into the open area, thereby uncovering the maximum number

of unexplored cells whereas our algorithm moves the vehicleto positions in which known

environmental features are visible as well as unexplored areas. These positions allow the

vehicle to localize itself, however they uncover less of theunexplored environment.

We use a modified definition of frontiers, first proposed in [100], to choose possible

positions in free space where the MAV should fly to next such that it explores previously

unexplored regions in the environment. In [100], free cellsthat are adjacent to unknown

cells are grouped into frontier regions as possible goals for the robot. We use a similar

method to identify frontier regions, however, for each of these frontier regions, we seek to

find a frontier pose that maximizes both the amount of unexplored space that is expected to

be explored and the ability of the MAV to localize itself, which we define below.

The first step in our exploration algorithm is to identify candidate frontier regions.

Frontier regions are areas in the map where there is a direct transition between free and

unexplored cells. Since the walls in occupancy maps such as those generated by GMap-

ping may have small gaps, the set of regions is then filtered toremove spurious frontiers.

The algorithm must then identify the pose within these frontier regions that provides the
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best tradeoff between localization ability, and uncoveredarea. Searching over all poses in

the frontier regions is too slow to allow the algorithm to runonline, so frontier poses are

sampled in each region. For each sample, two metrics are usedto calculate a weight asso-

ciated with each sample. First, the amount of unexplored space that the MAV will explore

can be calculated by simulating the laser sensor data that the MAV is expected to obtain at

the sampled pose, given the latest map. By extracting the number of grid cells within the

laser’s field-of-view that are currently unexplored and dividing by the maximum number of

grid cells covered by a laser range scan, we get a normalized weight,IUR(x) in the range

of [0, 1] for the amount of unexplored information that the MAV is expected to observe.

Using this metric alone will result in frontier points that are at the extreme borders of

the map facing the unexplored region, since such a pose will maximize the number of grid

cells in the laser’s field-of-view that are unexplored. Unfortunately, this pose provides no

guarantees that the MAV will be able to localize itself, since the unknown environment

may not contain enough structure for the relative position estimation algorithms to match

against. In the extreme case, the MAV could be facing an open space where the nearest

walls are beyond the maximum range of the laser scanner, giving the MAV no information

with which to localize itself.

We therefore add an additional “Sensor Uncertainty” metric, first coined in [89]. Sen-

sor uncertainty is used to quantify the MAV’s ability to localize itself at different positions

in the map. A sensor uncertainty field maps locationsx in the map to expected informa-

tion gain,x → ISU(x), by calculating the difference in entropy of the prior and posterior

distribution

ISU(x) = H(p(x))−H(p(x|z)) (3.25)

where entropy is

H(p(x)) = −

∫
p(x) log p(x)dx (3.26)

Shown in [41], the measure of information gain for laser datais typically insensitive to the

choice of prior. We therefore use a constant priorp(x) = Σ0 such thatH(p(x)) = C, as
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Figure 3-5: The blue pointers indicate frontiers that allowthe MAV to explore and self-
localize simultaneously. The laser’s field-of-view at those frontiers is drawn in brown.
Notice that at the edges of free space, the chosen frontiers position the vehicle such that the
expected laser scan spans both unexplored regions for exploration and unique obstacles for
localization.

well as Bayes’ rule to computep(x|z) = p(z|x) · p(x), such that

ISU(x) = C −H(p(z|x))Σ0 (3.27)

We compute the entropy ofp(z|x) by deterministically extracting a set of sigma points [50],

or samples along the main axes of the current covariance estimate, and observing how

they are transformed when they are passed through the measurement function. For each

sample, we simulate the sensor measurements and find the probability of observing the

sensor measurement at each of the sigma points. The lower theprobability of observation

at the neighboring sigma points, the smaller the entropy of the posterior distribution, and

therefore the greater the information gain. Locations withhigh information gain correspond

to locations that generate sensor measurements that we expect to maximize the localization

accuracy of the vehicle. After normalizing this with the prior entropy,ISU(x) is also a

weight that lies in the range of[0, 1].

Using these two weights, we are able to find frontiers that maximize both the explo-
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ration and localization capabilities of the MAV. In each frontier region, we sample a set of

candidate poses, and accept as the goal point for that region, the sample that maximizes the

weighted sum of the two information metrics, such thatI(x) = IUR(x) + ISU(x). Fig-

ure 3-5 shows the frontier points generated accordingly, where points are chosen such that

the expected laser scan will both uncover unexplored regions and observe known obstacles,

enabling the MAV to simultaneously explore and localize.

To achieve autonomous exploration of an unknown environment, the planner uses the

nearest frontier as its goal and computes a path using the path dynamic programming based

path planner in the Carmen Robot Navigation Toolkit [2]. Thefrontier extraction modules

run fast enough that they are able to generate plans, and re-plan online as the vehicle moves

through the environment and the map is updated.

3.6 Obstacle Avoidance

The final necessary piece of our system is the obstacle avoidance module. While the planner

plans paths that should keep the vehicle a safe distance fromany obstacles, things do not

always work out as planned. For example, the map updates and plans take several seconds

to generate, during which time new obstacles can appear due to height changes. In addition,

while the integral term in the controller should eliminate biases in the vehicle position, it

is not always perfect. As a result the vehicle will sometimesstray dangerously close to

obstacles. Even the slightest bump can result in crashes anddamage the MAV, so it is

critical to ensure that it always maintains a safe distance from any obstacles.

Since the map updates can have high latency, resulting in a map that is out of date, we

use the raw point cloudP generated by the laser and stereo in the body-centered coordinate

to perform obstacle avoidance. By computing the obstacle locations in the body frame, we

allow the obstacle avoidance module to be independent of therest of the modules in the

system. When the obstacle avoidance module detects that it is too close to an obstacle it

sends a message directly to the control module which shifts the entire trajectory that the

vehicle is trying to follow. The obstacle avoidance module does not attempt to reason about

the current goal of the robot, instead relying on the planning module to re-plan if necessary
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to get the robot back on course.

To determine the direction and magnitude of the correction required, we compute a

vector which is the weighted sum of the repulsion forces for all the points that are too

close. More concretely, letp ∈ P be the location of a point in the body coordinate frame,

and letd be the maximum distance for which we want to apply a correction; if PC , the set

of points withind of the vehicle is not empty, we compute the correction vectorv as

v =
∑

pi∈PC

d

||pi||2
(−pi) (3.28)

This vector is scaled by a constant factor that depends on therate at which we send correc-

tions and the maximum expected velocity of the vehicle such that the correction is applied

gradually and does not overwhelm the position controller.
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Chapter 4

Experiments

In this chapter, we present results demonstrating the capability of our system. We inte-

grated the suite of technologies that were described in previous chapters to perform fully

autonomous navigation and exploration in a variety of unstructured and unknown indoor

environments. The experiments were performed using3 different hardware configurations

with different sensor suites. We first describe the hardwareused before presenting the re-

sults from flight tests. To get a full picture of our system in action, we suggest that the

reader also view the videos taken of these experiments available at:

http://groups.csail.mit.edu/rrg/videos.html.

4.1 Hardware

We addressed the problem of autonomous indoor flight as primarily a software challenge,

focusing on algorithms rather than exotic hardware. To thatend, we used consumer off-

the-shelf hardware throughout the system.

Our system was primarily built around the Hummingbird quadrotor helicopter designed

by Ascending Technologies GmBH [1]. This vehicle provided us with an extremely robust,

stable, and safe platform with which to experiment. This robustness was critical for the

development of the system, as any attempts at performing indoor flight will inevitably

result in crashes. With the Hummingbird quadrotor, even when we did experience crashes,

the damage was usually minimal, only requiring replacementof the soft plastic rotors.
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Figure 4-1: Our laser-equipped quadrotor helicopter. Sensing and computation compo-
nents include a Hokuyo Laser Range-finder (1), laser-deflecting mirrors for altitude (2), a
monocular camera (3), an IMU (4),

The Hummingbird is able to carry roughly250g of payload, which allowed us to carry

either a laser range scanner, or a stereo camera rig, but not both.

4.1.1 Laser Configuration

The first vehicle that we achieved autonomous flight with, shown in Figure 4-1, was equipped

with a Gumstix [37] microcomputer and a lightweight Hokuyo [44] UTM-30LX laser

range-finder. The laser range-finder provides a270◦ field-of-view at40Hz, up to an ef-

fective range of30m. We deflect some of the laser beams downwards using a right angle

mirror to estimate the vehicle’s height, while the rest are used for localization. In earlier ex-

periments we also used the shorter range (5.6m) Hokuyo URG-04LX, which worked well

for small environments, but would not allow the MAV to localize in larger environments.

All computation is done offboard with the Gumstix used solely to obtain sensor data and

transmit data and commands between the vehicle and the ground-station over 802.11g. A

lightweight webcam was mounted as well to obtain first personvideo of the flight, however

it was not useful for localization due to the low frame rates and distortion caused by the

rolling shutter.
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Figure 4-2: Our quadrotor helicopter equipped with a stereocamera rig, Intel AtomR© based
onboard computer and USB Wifi dongle.

4.1.2 Stereo Configuration

The second vehicle to achieve autonomous flight, shown in Figure 4-2, was equipped with

a synchronized pair of lightweight uEye LE WVGA monochrome USB cameras [88] and a

more powerful embedded computer. We chose to use monochromecameras due to their su-

perior light sensitivity and lower data rates. The fast motion of the vehicle mandates the use

of cameras with global shutters, which eliminates the possibility of using cheap webcam

cameras such as the one mounted on the laser vehicle. Interfacing with the new cameras

required an onboard computer with full high-speed USB2.0 capability, which meant that

we had to search for a replacement for the Gumstix microcomputer.

Intel recently introduced its AtomR© platform for mobile devices, an ideal choice for

our application. Compared to other platforms, such as thoseequipped with Via or Arm

processors, the Atom platform has some major advantages. Since the processor uses the

x86 architecture, standard operating systems and even moreimportant, standard drivers for

devices like cameras, and WiFi dongles could be used. This became important especially

in cases where only binary drivers are available. Furthermore, Intel’s performance libraries

like IPP (Integrated Performance Primitives, [23]) and MKL(Math Kernel Library, [24])

are available for the Atom processor which significantly increases the speed of tasks such
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Figure 4-3: Our Intel AtomR© based flight computer.

as image compression or large matrix operations. For example, the use of IPP for JPEG

compression yielded an order of magnitude speedup.

Lippert Embedded [33] recently packaged an Intel Atom processor into a Computer-

On-Module (COM) form factor. This device has dimensions of only 58 × 65mm, weighs

26g, but includes a1.6Ghz Atom processor, chipset, and1GB of RAM. All I/O and inter-

faces such as USB are only available on a high density 220-pinconnector which required

us to design a carrier-board to provide access to the necessary interfaces. Altogether with

the carrier board, the complete computer weighs a total of60g. The complete computer is

shown in Figure 4-3. We attached a standard Linksys 802.11n USB wifi dongle to provide

a high bandwidth link to the ground-station.

In addition to the improved performance of the new computer over the Gumstix, per-

haps the most important change was that since it ran the same operating system and en-

vironment as the base-station, it became easy to move processes that had been run on the

base-station to run onboard the quadrotor, without having to deal with cross-compilation or

library availability issues. Moving the position controller and data fusion module onboard

reduced the delay, and made the vehicle less susceptible to failures due to the wireless

connection.
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Figure 4-4: The Asctec Pelican, outfitted with both the laserrange-finder and stereo camera.
A third color camera is mounted in the center.

4.1.3 Combined Configuration

While the two platforms described above were very capable, both the laser and stereo

sensors have environments where they are unable to localizethe vehicle. As a result, we

sought to combine the two sensing modalities on a single vehicle. Unfortunately, as it

was we were pushing the payload limits of the Hummingbird quadrotor, so a new vehicle

was needed to be able to support the larger payloads. In collaboration with Ascending

Technologies we built a larger quadrotor named the Asctec Pelican, shown in Figure 4-4

that is able to carry the500g payload containing the stereo pair, laser scanner, computer,

and all supporting cables, connectors, and mounting hardware. The new vehicle uses larger

10-inch rotors and more powerful motors compared to the hummingbird. The larger rotors

increase the maximal dimension of the quadrotor from55cm to 75cm.

4.2 Flight Tests

We performed a number of experiments with each of the sensingmodalities described in

this thesis, testing the performance of our systems in different real world environments. For

each sensor system, we thoroughly tested each of the modulesby flying inside the motion
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capture studio described in section 3.2.4 before venturinginto real world environments.

These tests ensured that the vehicle is able to accurately flyin small environment where

we have access to the ground truth state of the vehicle for debugging, and as a “safety

net” in case something goes wrong. Once we were convinced that the system was working

sufficiently well, we moved to fly in other larger, and less constrained environments.

4.2.1 Laser Only

Autonomous navigation in open lobbies To test the large scale navigation capabilities

of our laser based system, we flew the vehicle around the first floor of MIT’s Stata Center.

The vehicle was not given a prior map of the environment, and flew autonomously using

only sensors onboard the MAV. In this experiment, the vehicle was guided by a human op-

erator clicking high-level goals in the map that was being built in real-time, after which the

planner plans the best path to the goal. The vehicle was able to localize itself and fly stably

throughout the environment, and Figure 4.2.1 shows the finalmap generated by the SLAM

algorithm at the end of the experiment. As can be seen from themap, the Stata Center has

a very free-form floor plan which would prevent the use of specific environmental assump-

tions such as straight hallways, as was done in [19] and [49].Despite these challenges,

our system worked quite well, allowing the vehicle to fly until the battery was exhausted.

During the8 minute flight, the vehicle flew a distance of208.6m.

Figure 4-5: Map of the first floor of MIT’s Stata center constructed by the vehicle during
autonomous flight. The blue dots indicate goal points selected by the user.
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Autonomous navigation in cluttered environments While unstructured, the first floor

is a wide open environment without much3D structure, which allows our2D map assump-

tion to hold fairly well. To verify that the laser system is robust against significant amounts

of 3D structure, we next tested our system by flying through the cluttered lab space shown

in the insert of Figure 4-6(a), operating close to the ground. At this height, chairs, desks,

robots, plants, and other objects in the area cause the 2D cross-sectional scan obtained by

the laser range-finder to vary dramatically with changes in height, pitch, and roll. The

resultant SLAM map of the environment is shown in Figure 4-6(a). The gray features lit-

tered within the otherwise free space denote the objects that clutter the environment and

are occasionally sensed by the laser range-finder. Despite the cluttered environment, our

vehicle was able to localize itself and maintain a stable flight for 6 minutes over a distance

of 44.6m, a feat that would not have been possible with a static map assumption.

(a) Map of MIT Stata Center, 3rd Floor. (b) Map of MIT Stata Center, base-
ment.

Figure 4-6: (a) Map of a cluttered lab space with significant 3D structure, the blue dots are
the high level goals selected by the user. (b) Map of constrained office hallway generated
while performing completely autonomous exploration.

Autonomous exploration in office hallways Finally, to demonstrate fully autonomous

operation of the vehicle, we closed the loop with the exploration algorithms described

in section 3.5. The MAV was tasked to explore the hallway environment shown in Fig-
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ure 4-6(b). Once the MAV took off it was completely autonomous, with no human control

over the MAV’s actions as it explored the unknown environment. The MAV continuously

searched for new frontier goals and generated paths to theseareas of new information. Fig-

ure 4-6(b) shows the map built from7 minute autonomous flight, after traveling a distance

of 75.8m.

4.2.2 Stereo Only

Since we did not develop a visual slam solution to perform mapping, or close loops and

correct for drift in the visual odometry algorithm, we were not able to test the large scale

autonomous flight capabilities of the vehicle with stereo only. However, we were able to

verify that we can close the loop and stabilize the vehicle using only vision and inertial

sensing in a number of environments. In fact, these experiments verified the generality of

our multi-layered sensing architecture asno modificationswere required to switch between

using the laser scan-matching and the visual odometry. The lower data rates, and slightly

higher noise of the visual odometry made the vehicle oscillate more, but achieving closed

loop control on the first try was very gratifying. Figure 4-7 shows the comparison of the

position and velocity estimates to the ground truth state estimates from motion capture.
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Figure 4-7: Position and speed over 1200 frames estimated bysimple visual odometry
from frame to frame (green) and by optimization with bundle adjustment (blue) compared
to ground truth (red). The vehicle was flying with position control based on the estimates
from bundle adjustment
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In addition to these quantitative experiments performed inthe controlled motion cap-

ture environment, we also flew the vehicle autonomously in a variety of other environments.

Figure 4-8 shows the vehicle operating under vision based control in several of the envi-

ronments in which we tested.

Figure 4-8: Pictures of the quadrotor flying autonomously using stereo vision only in a
variety of environments.

4.2.3 Laser and Stereo

The system presented in this thesis was used in our winning entry as Team MIT-Ascending

Technologies in the 2009 International Aerial Robotics competition (IARC), hosted by

the Association of Unmanned Vehicle Systems International(AUVSI). Our team used the

Asctec Pelican quadrotor described above and employed the complete system presented in

this thesis for state estimation, control and mapping. We developed an additional set of

new modules that performed tasks specific to the competition. These modules fit into the
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system at the top of the system hierarchy, and therefore did not need to be concerned with

any of the state-estimation or control issues.

The 5th mission of the International Aerial Robotics Competition was founded on the

premise of advancing the state-of-the-art in indoor aerialrobotics. After organizing 4 out-

door missions over a span of nearly two decades, the5th mission was started in 2009. The

5th mission was based around a disaster recovery scenario, where a MAV was to be used

to help diagnose a fault in a melting down nuclear power plant. The MAV was given the

task of entering the plant through an open window and searching the plant to find a control

panel that contained critical information for the team of technicians trying to diagnose the

fault in the nuclear reactor. Our vehicle was able to complete the mission in its entirety

thereby winning the competition. In the19 year history of the IARC, this was the first time

that a team managed to complete the mission in its first year.

The actual competition was held in a gym, where artificial walls were set up to simulate

the interior of a powerplant. An overhead view of the30x15m competition arena is shown

in Figure 4.2.3. Prior to the mission, the arena layout was unknown. The specific mission

entailed the following tasks:

1. Takeoff roughly3m from the opening of the arena.

2. Identify and fly into the arena through a1x1m window opening.

3. Explore the unknown environment and search for the control panel. The correct

gauge on the control panel was designated by a steady blue LED.

4. Autonomously designate and send imagery of the gauge to the judges.

The mission had to be performed completely autonomously in under 10 minutes. Once

the operator told the vehicle to start, no human input was allowed until the mission was

complete. Each team was given4 attempts at completing the mission

One of the most challenging parts of the mission was flying through the window to

enter the arena. The window opening was only25cm wider than the width of the Pelican

quadrotor. Assuming that we were able to perfectly identifythe center of the window,

the dimensions were such that we could only afford a12cm maximum deviation from the
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desired straight line trajectory through the window. However, this is well within the 6cm

error of our controller described in section 3.3. Any offsetin the position controller, or

error in the localization of the window center could easily result in a catastrophic crash.

To detect the window, we decided to use the laser scanner to generate a3D point cloud

of the window from which we could extract the location of the window. The laser scanner

only measures the2D plane around the vehicle, so to generate the3D point cloud of the

window, we used the vehicle to perform a vertical “sweep” with the laser. With the accurate

position estimates generated by our state estimation system, we were able to register the set

of laser scans into the dense3D point cloud shown in Figure 4-9(b). The3D point cloud

allowed us to identify the window location by explicitly searching for a region in the data

which had a roughly1x1m rectangular hole in an otherwise connected flat surface. The

resulting window location is designated by the pink lines inFigure 4-9(b). Once we de-

tected the location of the window, the planning module instructed the vehicle to fly through

a set of waypoints that took the vehicle through the center ofthe window along a path that

was perpendicular to the window. A photo of the vehicle executing this path is shown in

Figure 4-9(a).

(a) (b)

Figure 4-9: (a) A photo of our MAV autonomously flying throughthe 1x1m window to
enter the competition arena. (b) A3D rendering of the point cloud used to detect the
window. The detected position of the window is designated bythe pink lines.

The window detection, and window entry routine described above performed flawlessly
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at the IARC competition. We were able to successfully detectand fly through the window

over ten times during the course of the competition. This performance is a clear demon-

stration of the accuracy and precision of the state estimates generated by our system. If

the state estimates had more noise or delay, it would not be possible to perform precision

maneuvers such as flying through the narrow window. The quality of the3D point cloud is

another clear demonstration of the accuracy of our state estimates. While we do not have

ground truth information for the3D shape of the environment, we can visually inspect the

point cloud and see that the walls are not significantly distorted.

Figure 4-10: Photo of the IARC control panel. This is one of the frames from the video
stream sent to the judges.

Once through the window, the vehicle switched into exploration mode, and began

searching the environment for the control panel. The vehicle searched the building us-

ing an exploration strategy based on the one described in section 3.5. During the first three

attempts, the vehicle explored much of the environment, however we were unable to reach

the room with the control panel. On the way to the room, there were several doors which

were exactly1m wide. We had not anticipated that the vehicle would have to gothrough

openings that small other than the window into the arena, so we had set the “safety regions”

for the obstacle avoidance and path planning modules such that they thought the doorways

were impassable. After adjusting parameters, on our fourthattempt we managed to enter
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the control room and take the picture of the control panel shown in 4-10, which completed

the mission. The path followed by the vehicle during the successful attempt is shown on

top of the constructed map in Figure 4-12. We completed the mission in just4.5 minutes,

however, we were lucky that the exploration strategy randomly decided to go left at the

junction near the end of the initial hallway.

We were very happy with the performance of our vehicle, and the system presented in

this thesis. The system provided a very robust and stable platform on top of which we were

able to build the necessary additional components that carried out the mission. All of these

components were linked into the system at the top level of thehierarchy, which meant that

the modules could take as much time as they needed, and did nothave to be concerned

with stabilizing the vehicle or any of the other real-time concerns that make developing

algorithms for MAVs particularly challenging.
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Figure 4-11: An overhead view of the competition arena used for the 2009 AUVSI Inter-
national Aerial Robotics Competition,5th mission.

Figure 4-12: The map built by the vehicle as it explored the IARC arena searching for the
control panel. White areas are obstacles (or no-fly zones), black is free space, and gray is
unexplored. Starting from the red “X” on the left, the green line shows the path taken by
the vehicle. The blue and yellow cross is the final position ofthe vehicle. The magenta
square in front of the vehicle is the location of the autonomously designated control panel.
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Chapter 5

Dense 3D Environment Modeling

In this chapter I discuss initial progress towards developing a more complete3D model of

the environment around the MAV. I first present the motivation for tackling this problem

and related work, before describing our approach.

While the2D model used throughout the system described in previous chapters allowed

us to successfully stabilize and operate the vehicle in3D, it did not allow us toplanactions

in 3D. For example, when the vehicle encountered an obstacle suchas a table, while it

was perfectly capable of flying over the table if instructed to do so by a human operator

(who had a3D model in their head), with a2D world model, the vehicles path planner

could only plan a path around the table, rather than over it. We are particularly interested

in tackling problems that enable planning, sensing and control in the full 3D environment,

a domain that is unique to autonomous air vehicles. Without this capability, operating in an

environment such as the one shown in figure 5-1 would likely beimpossible.

To plan actions in3D, one needs to create a more suitable representation of the environ-

ment. Specifically this representation should represent the full 3D environment including

overhangs and concavities such as windows and doorways. In addition, the representation

must be sufficiently dense that the planner does not mistakenly decide to fly through a wall.

While 2D laser scanners provide very rich information about the environment around

the vehicle, they contain no information regarding the areaabove and below its sweep.

However, since the vehicle is able to change height, we are able to plan actions that explore

the space above and below the vehicle, such that we can obtaindense point clouds of
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Figure 5-1: A room in a partially collapsed building. Flyingin this room would likely be
impossible with a2D world model. [Photo credit: Sean Green. Picture taken of collapsing
rural dwelling in Ora SC]

the surrounding environment, such as the one shown in figure 5-2. However, moving the

vehicle is slow, and potentially dangerous since the mirrors deflecting beams above and

below the vehicle will only detect obstacles immediately above and below the vehicle, and

could easily miss an obstacle such as a low hanging light.

Fortunately, cameras capture data that contains rich information about the full3D en-

vironment around the vehicle, although extracting this information is notoriously difficult,

even for stereo imagery. This is particularly true in environments with large featureless

areas such as blank walls, which can be common in many indoor environments. The exis-

tence of these types of environments eliminates purely feature based approaches, such as in

common visual SLAM algorithms [72, 28]. In addition, the environments pose a problem

for correlation based dense stereo [42]. So while, these methods have been used in very

impressive work by Kagami et al [52] and Mordohai et al [65], using them on a MAV

platform could prove dangerous. In our work, we combine the laser and camera sensors, so

as to leverage each of their strengths.
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Figure 5-2: The3D point cloud obtained by the vehicle performing a “height-sweep”.

5.1 Background

Over the years there has been considerable work on stereo algorithms. Most of this work

has focused on either sparse feature based stereo such as wasdiscussed in section 2.3, or

dense correlation based approaches which seek to estimate the depth of every pixel in one

image by matching a window around the pixel to a window in the second. However, more

recently, researchers have used global image information to infer the depth of pixels for

which there is no unambiguous correspondence between images [83, 30, 87]. This infer-

ence can framed as a Markov Random Field(MRF), which balances the the estimate of the

individual pixel’s depth with the likelihood that it is at the same depth as similar neighbor-

ing pixels. This allows regions of low confidence to be filled in from neighboring regions

with high confidence in a principled manner. Unfortunately these algorithms discretize the

space of disparities such that the resolution obtained is fairly low. This effect is particu-

larly problematic for horizontal planes such as the ground-plane, which would look like a

staircase instead of a flat plane.

A more promising approach for our use is the work by Saxena et al [81] dubbed

“Make3D”, which uses monocular cues to predict the3D structure of a scene. While

the major focus of their work is on learning a classifier modelthat is able to predict depth
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given only a single image, the classifier is used in conjunction with a MRF model that in-

fers the overall scene structure from the classifier’s noisydepth predictions. Their model

segments the image into superpixels which are assumed to be planar faces of the environ-

ment. Although they make the assumption that the superpixels are planar, unlike the belief

propagation based stereo algorithms mentioned above, theydo not make the assumption

that the planes are fronto-parallel. The MRF model then allows them to jointly reason

about the most likely depth and orientation of each plane given the depth estimates pre-

dicted from monocular features as well as the relations between neighboring planes, such

as coplanarity, connectedness, etc. While the output of their algorithm is visually pleasing,

due to the inherent scale ambiguity of monocular image cues,by itself the algorithm would

be challenging to use for planning. Fortunately as they showed in subsequent work, the

MRF formulation allows them use depth information from other sensing modalities, such

as stereo triangulation in addition to the monocular cues. They showed that the combination

outperforms both individual approaches.

While Saxena et al’s approach sought to predict the depth fora single image, to plan

paths for the MAV, we seek to build a consistent3D representation of the entire environ-

ment, including areas out of the the current field of view of the camera. In addition, we

would like to incrementally build and improve the map as the MAV moves through the

environment.

5.2 Our Approach

As an initial step towards solving this problem, we develop an approach that integrates both

the laser and camera sensors so as to leverage on their respective strengths. The laser gives

us very dense measurements in the 2D plane around the vehicle, while stereo gives sparse

measurements of visually distinct features in3D. Finally monocular image cues give us

information about the global structure of the environment.

We start by using monocular image cues to over-segment the environment into triangu-

lar patches which respect image intensity boundaries. By projecting the current set of laser

and stereo points onto the image, we obtain measurements of the location and orientation
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for some of these planar patches. We then use a MRF to infer themost likely configura-

tion of all triangular patches. Like Make3D, the MRF encourages neighboring patches to

be connected and/or coplanar, while still respecting the measurements from the stereo and

laser. Where our work differs from Make3D, is that our MRF models the full location of

each surface patch, rather than the depth with respect to thecamera. By estimating the full

location without tying each triangle to a particular image,we can incrementally grow the

triangular mesh over time as new images and range measurements arrive.

5.2.1 Triangular Segmentation

In order to efficiently model the environment around the vehicle, we need a representation

that is compact, yet descriptive enough to model arbitrarily shaped surfaces. To this end,

we chose a triangle mesh representation due to its simplicity and generality. A key issue in

this selection is the fact that both the image space projection and the full3D representation

are simple and easy to reason about. When the current triangle mesh is projected into a

subsequent image, it will result in a triangular segmentation of the regions of the image it

covers.

Unfortunately image segmentation algorithms generally break an image into a set of

amorphous blobs which attempt to capture distinct object boundaries. While these blobs

can be used easily in image space, such as in Make3D, representing them in3D is unwieldy.

As a result, our first step was to develop a method for segmenting an image into a set of

triangular regions that respect object boundaries to within some tolerance.

We first segment the image using the algorithm developed by Felzenszwalb et al [31],

which gives us a segmentation such as the one shown in figure 5-3. The segmentation

algorithm return the pixel boundaries between regions, which we join into a set of contours

using a binary image edge-linking routine.

We then apply the Douglas-Peucker line simplification [29] algorithm to obtain a set

of piecewise linear line-segments that approximate the segmentation boundaries as shown

in figure 5-4. The algorithm preserves all junctions of3 or more regions, and ensures that

the approximate boundaries do not differ from the original by more than a given number
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Figure 5-3: The original image segmented by [31].

of pixels. To remove small regions we merge endpoints that are within a given distance of

each other.

Figure 5-4: The Segmented image after applying the simplification routines.

Finally, we break these polygonal regions into triangles byperforming a constrained

Delauney triangulation using the open source Triangle package [85], resulting in the final

triangular segmentation shown in figure 5-5.

For subsequent images after the first image is processed, thetriangular segmentation is

only applied in regions of the image which are not covered by the current triangular mesh.

These regions are obtained by projecting the current mesh onto the new image to mark the

covered regions. The uncovered regions will be composed of the borders of the image,
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Figure 5-5: The final triangular segmentation of the image. The red lines are the nodes,
and connectivity in the associated MRF.

locations where new surfaces enter the field of view due to camera motion, and regions

that were previously occluded by a foreground object. The new triangles are assumed to be

adjacent to their neighbor from the old mesh in image space. While this assumption could

pose problems due to incorrect correspondences, we assume the vehicle is well localized,

such that object boundaries in the new and old image match with reasonable accuracy.

5.2.2 Data Association

In addition to the monocular image information used for the segmentation, we have the

range measurements obtained from the laser and stereo. To use these measurements, we

assume that range measurements are points on a surface observed in the camera images.

We associate each measurement with a specific triangular image patch by projecting the

range measurement into the current camera image to identifywhich triangle it falls in. We

then project the range measurement to the point in3D using the current location of the

vehicle.

This 3D point serves as a soft constraint on the location of its associated triangular
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patch in our MRF. An important feature of performing the dataassociation in this manner

is that it allows us to add measurements for planar patches after the image was captured.

For example, to measure the vehicle height above the surface, we deflect some of the laser

beams downwards. These beams hit surfaces that are out of thefield of view of the camera.

However, as the vehicle moves forward, they will hit surfaces that were in the field of

view in previous camera images, providing very useful measurements for previously empty

triangular patches. This effect is seen in the measurementsat the bottom of the image in

figure 5-6

Figure 5-6: Laser points projected onto the camera image. The point color is a function of
the distance from the camera (red is close).

5.2.3 Inference

Given a set of planar patches, some of which have associated point measurements, we wish

to infer the most likely configuration of all patches. Since some patches do not have enough

point measurements, the problem is under-constrained. However, not all configurations are

equally likely. Adjacent patches are likely to be connected, except in the case of an oc-

clusion boundary. Furthermore, adjacent patches are likely to be close to coplanar since

we over-segment the images. This inference problem can be formulated as a Markov ran-

dom field, with potential functions characterizing the likelihood of a given configuration of

neighboring patches.
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The MRF has three types of variables:

1. z ∈ ℜ3 are range measurement nodes

2. e ∈ [0, 1] are discontinuity nodes

3. y ∈ ℜ9 are patch nodes

The first two types of nodes,z ande, are computed directly from the data, and are fixed

given the observed data. The last type of node,y, are the variables that we are trying to

estimate from the data. We parameterize the planar patchy by the3D position of its three

corners. The variablesz represent known locations which should be on the surface repre-

sented by the associated planar patchy. Finally, the edge nodese represent the likelihood

of a discontinuity or fold occurring between two planar patches. We compute this likeli-

hood as a function of the number of images in which the segmentation algorithm indicates

that the two patches are part of the same segment. A normal configuration of these types

of nodes is shown in figure 5-7.

Figure 5-7: Part of the MRF used to model the environment.

Each clique of nodes has an associated potential function describing the likelihood of a

surface configuration given by:
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Ψ(yi|Zi) = exp(−
∑

zj∈Zi

d(zj , yi)) (5.1)

whereZi is the set of measured ranges attached to pathyi, andd(zj , yi) is the distance from

pointzj to the planar patchyi, and

Φ(yi, yj|ei,j) = exp(−ei,jf(yi, yj)) (5.2)

wheref(yi, yj) is a function of the angle between the normal vectors of the two planes,

and the distance between the adjacent corners. The first potential encourages the model to

fit the data well, while the second potential encourages “smooth” solutions. The resulting

overall likelihood for the entire model is obtained taking the product of all clique potentials.

The MRF is therefore defined as

P (y|z, e) =
1

η(z, e)

N∏

i=1

Ψ(yi|Zi)
N∏

i,j=1

Φ(yi, yj|, ei,j) (5.3)

whereη(z, E) is the normalization constant (partition function).

To initialize the model, we set allyi for whichZi 6= ∅ to be the least-squares fit of the

measured data. For all other patches, we assume that the environment consists of vertical

walls and a flat floor, and use the vehicle’s current height, and laser scan to set their initial

position and orientation.

While exact inference on belief graphs with cycles has been proven to be NP-complete,

there are a number of approximate algorithms that have been shown to work well in prac-

tice. We hope that we will be able to use one of these approximation methods, such as

loopy belief propagation. However, the continuous valued variables and non-linear poten-

tial functions make applying standard algorithms difficult. Identifying a method to perform

inference in our model is left for future work.
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Chapter 6

Object Tracking

While much of the work in this thesis focused on enabling a MAVto localize and control

itself in indoor environments, this chapter describes an object tracking system that would

allow the MAV to follow a person or other designated object asthey move through the

environment.

We wished to make our tracking system general, without relying on specific features

such as color, shape, or motion to identify the object to be tracked. This precludes us-

ing general object detection algorithms, such as “people detectors” to initialize and track

the target objects. Instead, we focused on object tracking,relying on a human operator to

detect the initial appearance of each object in the scene, and then track the object in suc-

cessive frames. While object tracking has been studied extensively in the computer vision

community, attempting to track objects from a camera mounted on a MAV poses unique

challenges that prevent us from using existing work directly. To perform object tracking

from a MAV platform one must handle:

1. Fast camera motion from an unsteady MAV platform

2. Low resolution and low frame-rate cameras due to weight and bandwidth constraints

3. Small objects, since the MAV will usually be observing theobject from a distance.

These challenges are in addition to the usual visual tracking challenges of changing appear-

ance and lighting. These challenges eliminate many of the techniques for object tracking
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that are common in the literature. Low resolution and small objects size make perform-

ing descriptor based tracking [102] difficult since the objects to be tracked will generally

not have enough pixels associated with them to generate a sufficient number of features to

track.

Even more challenging than the low resolution is the fast camera motion (combined

with low frame rates) which prevents the use of background subtraction methods [55],

and also leads to failure when using common tracking algorithms such as mean-shift track-

ing [22], since they are not able to adapt fast enough to handle the camera motion. Fast

camera motion also limits the amount of temporal smoothing that can be done to average

multiple noisy estimates of the object location in the image, since the location in the image

can change drastically between frames. A survey of trackingmethods for other difficult

situations is given in [73].

In order to meet the challenges of object tracking from a MAV platform, we developed

a new object tracking system which explicitly handles the fast motion of the vehicle.We

developed a modified version of the classifier-based adaptive ensemble tracker, developed

by Avidan [11]. Our algorithm, which we call Agile Ensemble Tracking (AET), uses the

same object appearance classifier; however, instead of using mean-shift to track the object

across frames, we use a more robust, particle-filter based, Bayesian filter approach that it is

able to handle the fast motion of the MAV-mounted camera. While our approach does not

provide completely autonomous operation, it significantlyreduces the amount of attention

required from the operator for the MAV to track an object overtime.

6.1 Learning Object Appearance Models

Once an initial estimate of the target object in an image is identified by a human operator,

we use a machine learning classifier to learn a model of the object’s appearance. The

classifier is trained to distinguish pixels that belong to the object from background pixels.

To train the classifier, we assume that the object is localized within a knownn × m sub-

block of the image; pixels within that sub-block are given positive labels, and pixels outside

that sub-block are given negative labels. Each pixel is described byd local features, e.g.,
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local color features and a histogram of local oriented gradient features [27]. Each pixeli

at image locationpi is therefore a separate training instance consisting of ad-dimensional

feature vectorxi ∈ X and a labelyi ∈ Y . To distinguish the object from the background,

we learn a classifier that predicts the label for each pixel based on the local image features.

Following Avidan’s work, we use a boosting method inspired by AdaBoost [82] to learn

this classifier. AdaBoost requires a weak classifier, which in this algorithm is implemented

as a linear separating hyper-planeh, such that

ŷ(xi) = h(xi) = sign(hTxi) (6.1)

whereŷ(x) is the classifier output label for instancex. The separating hyper-plane for a set

of examples is computed using weighted least squares. This weak classifier is then boosted

to learn an ensemble of classifiersH = {h1, . . . ,hK} with associated weightsα1, . . . , αK .

K is the total number of classifiers that are maintained by the algorithm. These weights are

chosen iteratively, as shown in Algorithm 7.

Algorithm 7 : ADABOOST

Require: N training instances{xi, yi}
1: Initialize weights{wi}Ni=1 to be 1

N

2: for k = 1 . . .K do
3: Normalize{wi}Ni=1 to sum to1
4: Train weak classifierhk
5: err =

∑N
i=1wi|hk(xi)− yi|

6: αk = 1
2
log 1−err

err

7: Updatewi = wie
αk|hk(xi)−yi| for i = 1 . . . n

8: end for

9: return H(xi) =

K∑

k=1

αkhk(xi)

In order to capture the appearance characteristics of an object at different scales, we

train a separate ensemble of classifiers for a range of image scales. We then classify the

pixels of a new image using the multi-scale, boosted, ensemble classifier, such that each

pixel receives a (normalized) weighted vote for each label from each classifier based on the

local image features at each pixel. The output of the classifier is a new image where each

pixel has an associated likelihood value that it belongs to the tracked object.
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Figure 6-1(a) illustrates an example training image, wherethe pixels in the inner block

are positive training instances and the pixels in the outer block are negative training in-

stances. Figure 6-1(b) shows the weighted classifier response to the same image after

training. Notice that pixels along the sharply distinct color boundaries have the greatest

classifier response.

(a) Original Image (b) Ensemble Classifier Response

Figure 6-1: (a) An example training sub-block. The pixels inthe smaller, inner block are
assumed to be positive training instances, and the pixels inthe outer block are negative
training instances. (b) The response of the weighted classifiers across the sub-image of the
detected vehicle. The intensity of each pixel is the likelihood of belonging to the object as
provided by the classifier.

During tracking, the appearance of both the object and the background will vary over

time; for instance, the orientation of edge features will change as objects rotate in the

image frame. We therefore continually learn new classifiersfrom the incoming images.

After tracking has been performed on each image, the image isused as a new training

instance for learning new classifiers. Using boosting, theB best classifiers are retained

from the currentK classifiers, whileK − B additional classifiers are trained and added to

the set of weak classifiers. This process of updating the classifiers is shown in Algorithm 8.

In order to ensure that this retraining does not result in a drift over time away from the

original image, we also investigated a variation where a subset of the originalK classifiers

are kept, regardless of the performance of this classifier subset at the current time step. This

modification would ensure that there always exist at least some classifiers that are known

to be correct.
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Algorithm 8 : ADABOOST ONLINE UPDATE

Require: N training instances{xi, yi}, existing strong classifierHin = {h1, . . . ,hK}
1: Initialize weights{wi}Ni=1 to be 1

N

2: Hout = {∅}
3: for k = 1 . . . B do
4: Normalize{wi}Ni=1 to sum to1
5: for hj ∈ Hin do
6: Computeerrj =

∑N
i=1wi|hj(xi)− yi|

7: end for
8: Choosêh ∈ Hin with minimum êrr
9: α̂ = 1

2
log 1− cerr

cerr

10: Removêh fromHin and add toHout

11: Updatewi = wie
α̂|ĥ(xi)−yi| for i = 1 . . . n

12: end for
13: for k = B + 1 . . .K do
14: Normalize{wi}Ni=1 to sum to1
15: Train weak classifierhk as in ADABOOST

16: Add hk toHout

17: end for
18: return Hout

6.2 Image Space Object Tracking

In the original ensemble tracker [11], the estimate of the object’s location is found using

mean-shift on the likelihood image computed from the classifier response. Starting from

the previous target rectangle, mean-shift uses a hill-climbing technique to find them × n

rectangular region which contains the greatest aggregate response. While this approach

works quite well for relatively stationary cameras, we found that the mean-shift approach

was unable to handle the fast motion of our MAV platform.

As a result, we modified the tracking algorithm to use a particle-filter based Bayes filter

to update the position estimate of the object. We incorporate an estimate of the camera

ego-motion as a prior for predicting the location of the object in a subsequent image. This

ego-motion estimate is essential for compensating for unpredictable motions of the camera,

which would otherwise cause the tracker to lose track of the object. The attitude of the

vehicle, as estimated by its onboard IMU, was too noisy to provide an adequate estimate

of this ego-motion. Instead we estimate it directly from theimagery by computing optical

flow between the entire previous and current images. We make use of the Pyramidal-Lucas-
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Kanade optical flow implementation available in the OpenCV package [25]. The optical

flow algorithm computes a sparse set off feature matches{pt−1
i ,pti}

f
i=1, wherept−1

i is

the2D pixel location of featurei in the imageIt−1, andpti is its corresponding location in

imageIt at the next time-step. Using these feature matches, we can estimate the camera

ego-motion as an a3× 2 affine transformation matrix∆ such that:

pt+1
i ≈

[
1 pti

]
∆ (6.2)

This affine transformation captures translation, rotation, scaling, and shearing effects

in image space. Due to the height of the vehicle, and the nearly planar ground surface, an

affine transformation is generally a reasonable approximation.

Since some of the feature matches may be wrong or correspond to moving objects, we

refine the ego-motion estimate by performing expectation-maximization (EM) to identify

the affine transformation that best explains the apparent camera motion. Other methods

such as RANSAC could also be used. The affine transformation∆ is then used in the

motion model of a Bayes filter, while the learned object appearance modelH is used in the

associated sensor model. We use a particle filter to approximate the posterior distribution

p(pt|z0:t) according to

p(pt|z0:t) = αp(zt|pt)

∫

Xt−1

p(pt|pt−1)p(pt−1|z0:t−1)dt. (6.3)

wherept is the location of the object in the image at timet, zt is the object measurement

calculated from the image at timet, p(pt|pt−1) is our motion model,p(zt|pt) is our sensor

model, andp(pt−1|z0:t−1) is the prior distribution of the object’s location.

The object measurementzt is obtained by using the learned object appearance model

to classify the image at timet. The classifier outputs a real value in the interval[0, 1] for

each pixelqt in the image, and Figure 6-1(b) is a sample measurement. Our sensor model

p(zt|pt) can therefore be characterized as follows,

zt(qt)|pt =

{
1 + ǫz
0 + ǫz

qt = pt,

otherwise,
ǫz ∼ N(0, σz), (6.4)
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wherezt(qt) is the response of the classifier at pixelqt. Equation 6.4 essentially predicts

that the classifier will respond with a1 at the predicted locationpt in the image, and0

everywhere else, where the measurements have Gaussian noise ǫz. The model is clearly

approximate since the noise is not Gaussian (and measurements can never exceed 1), but

the Gaussian model worked well experimentally.

It is computationally expensive to run the classifier on the entire image. Hence, we only

run the classifier in the vicinity of the current particle filter mean estimate, and assume that

the object has a minimal likelihood of being at all other locations in the image. Addition-

ally, we smooth the classifier responseszt across the image using a Gaussian blur operator

to obtain a spatially smooth likelihood map, and each particle is given a weight equal to

the value in the Gaussian-blurred probability image at its location in the image. Although

this Gaussian smoothing creates minor correlations between image pixels, we continue to

assume that the likelihood of object detection at each pixelis independent; experimentally

the Gaussian smoothing of the classifier responses led to more robust object tracking even

with this independence assumption, and more closely matched our Gaussian model of the

classifier.

The motion modelp(pt|pt−1) is equal to the ego-motion estimated from optical flow

with additive Gaussian noise

pt|pt−1 =
[

1 pt−1

]
∆ + δp, δp ∼ N(0, σp) (6.5)

Algorithm 9 presents the complete Agile Ensemble Tracking algorithm. For clarity,

although the algorithm is presented as if the images are all given to the algorithm at the

start, on the real system, the images are actually processedin real-time as they are streamed

from the vehicle.

In contrast to more conventional filtering techniques such as the Kalman filter [53], the

particle filter is better at modeling the non-linearities inthe sensor and motion models. In

contrast to ground vehicles and fixed-wing aircraft that generally have stable attitudes, the

attitude of the MAV is particularly dynamic and non-linear.Frequent attitude changes of

the MAV would cause very large object displacements in the image.
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Table 6.1(b) illustrates the benefits of the particle filter.Using the modified motion

model, we were able to maintain a track of the person in Figure6-2(b) for over 2 minutes,

requiring human intervention only once when the person leftthe frame for a few seconds.

In contrast, a much higher rate of human intervention to reacquire lost tracks was required

when the original (non-optical-flow-based) motion prediction was used.

Algorithm 9 : AGILE ENSEMBLE TRACKING

Require: T video framesI1 . . . IT , initial object bounding boxr1
1: Learn initial strong classifierH1 from I1 andr1 using ADABOOST

2: for It = I2 . . . IT do
3: Compute ego-motion estimate∆ from It−1 to It
4: Propagate image space particle locations using∆
5: UseHt−1 to update the likelihood of each particle and perform importance sampling

6: Use filter’s maximum likelihood estimate as prediction of rectanglert
7: ComputeHt using ADABOOST ONLINE UPDATE

8: end for

6.3 Tracking Analysis

Human intervention is still required to ensure that the object is continuously being tracked,

to potentially restart the tracker when it fails, and to initialize the tracker when new objects

of interest appear. We evaluated the tracker under different configurations, including with

and without the motion prediction given by optical flow, withand without retraining, as

well as retaining different numbers of original classifiers. We tested the object tracker on

very different targets across a wide variety of scenes, measuring the number of times that

the estimate of the object’s location diverged from hand-labeled, ground-truth data.

The easiest object tracking problem was the vehicle from overhead, shown in Fig-

ure 6-2(a). This data set contained 17 seconds of video, for atotal of 250 frames.1 Due to

the large vehicle size, crisp features and stable hover of the MAV, we obtained good perfor-

mance for all tracker configurations. As Table 6.1(a) reveals, even with the non-optical-flow

motion model, or the online retraining of the classifier, thetracker never lost the vehicle

1We typically received data from the vehicle at 15 Hz, but thisnumber varied depending on the character-
istics of the local RF field.
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(a) EOD Vehicle (b) Person (c) MAV ’08 Guard Vehicle

Figure 6-2: Examples of the variety of objects tracked. (a) Avehicle from overhead. (b) A
walking person. (c) The guard vehicle from the MAV ’08 competition. (a) was relatively
easy to track, but (b) and (c) required a better motion prediction model.

No optical flow, no retraining 0 Hz (0)
No retraining 0 Hz (0)
Keep first 3 classifiers 0 Hz (0)
Full retraining 0 Hz (0)

(a) 250 frames, 17 seconds

No opt. flow, no retrain. 0.140 Hz (21)
No retraining 0.040 Hz (6)
Keep first 3 classifiers 0.027 Hz (4)
Full retraining 0.007 Hz (1)

(b) 2683 frames, 150 seconds

No opt. flow, no retrain. 0.39 Hz (21)
No retraining 0.26 Hz (14)
Retain first 3 classifiers 0.28 Hz (15)
Full retraining 0.30 Hz (16)

(c) 1000 frames, 54 seconds

Table 6.1: Performance comparison for the Agile Ensemble Tracking algorithm, comparing
the effect of retraining, and the optical flow based motion model. The frequency of required
track re-initializations is shown, with the total number oferrors in parentheses

after initialization. In addition, retaining different numbers of the original classifiers had

no effect on the tracker’s performance for this target.

Tracking the walking person, shown in Figure 6-2(b), was much more challenging due

to the small size of the person in the image. Nevertheless, bytaking advantage of the ego-

motion estimation, the AET algorithm was still able to achieve excellent performance. As

Table 6.1(b) demonstrates, optical flow played an importantrole in keeping the tracking

estimate on target. In addition, adapting the object appearance over time led to improved

tracking. Although the appearance of the person moving around the field was relatively

constant, the background changed dramatically when the person moved from the green

grass to the gray dirt patches. Retraining and adapting the classifier therefore ensured

that the classifier was able to maintain enough discrimination between the person and the

background to continue tracking accurately.

Finally, we evaluated the tracker performance in tracking the guard vehicle in the MAV

’08 competition. With a forward-pointing camera, image changes between frames due to
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the MAV motion became more pronounced. In addition, as shownin Figure 6-2(c), the

hedges surrounding building were exactly the same color andsimilar shape as the guard

vehicle. As a result, the tracker lost track of the guard vehicle far more often than in the

other data sets we tested on.

In this data set, the camera motion, rather than changes in appearance, was the major

factor that resulted in the tracker becoming lost. The guardvehicle was moving slowly

enough that its motion should have had a negligible effect. Instead, from watching the

video of the guard vehicle, there were several situations where the pitching and rolling of

the MAV caused abnormally large inter-frame motion. In someof these cases, the optical

flow was able to estimate and compensate for this ego-motion.In others, however, the

optical flow computation failed to compensate for the cameramotion, and many of these

large inter-frame motion coincided with the tracker losingtrack of the vehicle. As a result,

retraining the classifiers actually reduced performance slightly, since newer classifiers in

the ensemble were trained on bad data as the tracker began to get lost, thereby creating

a positive feedback cycle from which the tracker could not recover. While it is clear that

the optical flow plays an important role in keeping the tracking on target, the optical flow

algorithm may be unable to capture the full camera motion in some domains, resulting in

the classifier becoming lost.

Fundamentally, to solve the tracking problem in the face of potentially large inter-frame

camera motion, more sophisticated object detection is needed. Once the ensemble-based

tracker loses the target, there is no way to recover by using alocal appearance-based tracker

that is learned online, since any corruption of the current object estimate will be propagated

forward. Subsequent classifiers would then get corrupted. As a result, an object detector

with higher-level learned invariants is needed to recover from object tracker failures in the

general case.

6.4 Person Following

One possible use of the object tracker is to use it to provide high level commands, such as

“follow this person”. To achieve this goal, we had to close the loop around controlling the
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vehicle using the object tracker. However, the object tracker described above performs its

tracking purely in image space. To follow an object, we must first determine its position in

the world, and then instruct the vehicle to move such that it keeps the object in the field of

view.

Given the tracked position of an object in the image, we can recover the position of the

object in the world co-ordinates from knowledge of the intrinsic camera properties, such as

camera focal length, center of projection, etc. if we know the depth. While the monocular

camera used for the tracking does not give us this depth directly, we can estimate it using

other sensors. We estimate the depth differently dependingon whether we are indoors, with

a forward facing camera as shown in figure 6-3 or outdoors, with the camera pointing down

as shown in figure 6-2.

When the MAV is outdoors under GPS control, we use knowledge of the MAV GPS

position and attitude along with an assumption that the ground plane is flat to estimate the

depth. However, the GPS localization and attitude of the MAVare not known perfectly and

in particular, small errors in attitude can lead to substantial errors in projecting from image

co-ordinates to world co-ordinates.

On the other hand, when indoors, with a forward facing camera, we can use the laser

range-finder to estimate the depth. We know the relative transformation between the camera

and laser, which allows us to use the camera to identify whichlaser beams are reflecting

off of the object being followed. These laser beams can then be used to estimate the depth

of the object being tracked.

Since both of these methodologies provide noisy estimates of the objects location, we

apply a second level of Bayesian filtering to maintain a cleaner estimate of the target lo-

cation in the global coordinates. In contrast to the image-space filter, where we generally

assume that the motion variance is large and emphasize the measurement model, when

tracking in global coordinates, we place more weight on the motion model and model the

projections from image coordinates to world coordinates asvery noisy measurements. In

this way, we average over many measurements to attain a more accurate estimate of the

target location. Once we have this estimate of the target’s global position, we can send a

waypoint to the vehicle controller instructing it to move near the object.
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(a) frame 1 (b) frame 28 (c) frame 57

(d) frame 97 (e) frame 141 (f) frame 170

Figure 6-3: A sequence of frames showing the object trackingsystem closing the loop and
controlling the vehicle to follow a person.

A simplified version of this closed loop following is shown inFigure 6-3. In this test,

the object tracker controls the yaw of the vehicle, while hovering in one spot. The system

manages to follow a person as they walk in a full circle aroundthe vehicle.
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Chapter 7

Conclusion

In this concluding chapter I give a brief summary of the work presented in this thesis before

describing future work that would improve the capabilitiesof the system presented.

7.1 Summary

This thesis presents the system that we have developed to enable flight in unstructured and

unknown indoor environments. As discussed in the introduction, this capability is very de-

sirable, and would be of use in a number of scenarios such as disaster rescue, surveillance,

and inspection among others. MAVs present a number of challenging problems that must

be solved to enable indoor flight, however, as we have shown inthe previous chapters, by

carefully examining the algorithmic requirements for the system, these challenges can be

overcome.

Our solution leverages the different real-time requirements for controlling the vehicle

at multiple layers to develop a working system. At the base level, we use a very capable

hardware platform that has onboard attitude stabilization. From there we developed the set

of relative position estimation algorithms described in chapter 2 which provide high quality

real-time motion estimates. These motion estimates were then fused with measurements

from the onboard IMU to provide high quality real-time estimates of the vehicles position

and velocity that were sufficient for local control and stabilization of the vehicle. With this

base, we could integrate a SLAM module that closed loops and provided globally consistent
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state estimates enabling flight in large scale environments. In addition, the SLAM module

provides a2D map of the environment that enables autonomous planning andexploration

behaviors.

While the2D world model used in the work described above proved sufficient for a

range of uses, to enable planning actions in the full3D environment we need a more com-

plete environment representation. Towards this end, we started developing a framework for

performing dense reconstruction of the full3D environment around the vehicle. This work

is still in progress, however we believe that the framework outlined in chapter 5 will prove

useful with more time.

Finally as a demonstration of high level closed loop autonomy, we developed the object

tracking system described in chapter 6 which allows the vehicle to autonomously follow a

person.

7.2 Future Work

While the system that we have developed is very capable, indoor flight is by no means

a “solved” problem. As it stands right now, the system provides a MAV platform that

would enable a human operator to easily fly the vehicle through a first-person-view onboard

camera. However, there is still a tremendous amount of work to be done, to improve the

robustness and autonomy capabilities of indoor MAVs.

1. 3D Capabilities: Perhaps the most important direction of future work is extending

the vehicle’s capabilities in perceiving, planning, and operating in3D environments.

Replacing the2D SLAM implementation with a fully3D visual SLAM solution

would improve the flight capabilities considerably, and make the state estimates glob-

ally consistent in3D. In addition, completing the framework developed in chapter 5

to provide a dense3D environment representation will enable planning actions in

3D.

2. Faster Speed:One of the appeals of MAVs is that they are capable of high speeds rel-

ative to their ground vehicle counterparts. However, the system as it is currently de-
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signed assumes that the vehicle always remains within the hover regime, and moves

slowly through the environment. While the quadrotor vehicles are capable of higher

speeds, the sensing and control algorithms currently employed are not. More work

will need to be done to be able to maintain high quality state estimation in the face

of motion blur and reduced reaction time. Increasing the speeds will also likely re-

quire improving the control model and controller employed by our system beyond

the simple LQR-based feedback controller.

3. Onboard Computation: The current system setup performs most of the computa-

tion offboard at the ground-station. This is a major limitation of the system. Using

offboard computation limits the effective range of the vehicle since the bandwidth

required to send the sensor data to the ground-station is more than long-range com-

mercially available wireless links currently provide. Moving all computation on-

board would improve the system performance and make the system far more robust.

While computer hardware will continue to get faster, more work should be done to

explore what modifications to the algorithms are possible that would improve their

computational efficiency.
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