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Abstract

This thesis presents the design, implementation, andataid of a system that enables
a micro air vehicle to autonomously explore and map unsiredtand unknown indoor
environments. Such a vehicle would be of considerable usamy real-world applications
such as search and rescue, civil engineering inspectiona &ost of military tasks where
it is dangerous or difficult to send people. While mapping argloration capabilities
are common for ground vehicles today, air vehicles seelarachieve these capabilities
face unique challenges. While there has been recent psgpesrd sensing, control,
and navigation suites for GPS-denied flight, there have Eemnlemonstrations of stable,
goal-directed flight in real environments.

The main focus of this research is the development of rea-8tate estimation tech-
niques that allow our quadrotor helicopter to fly autonontpusindoor, GPS-denied en-
vironments. Accomplishing this feat required the develeptrof a large integrated system
that brought together many components into a cohesive gackas such, the primary
contribution is the development of the complete workingesys | show experimental re-
sults that illustrate the MAV'’s ability to navigate accuelgtin unknown environments, and
demonstrate that our algorithms enable the MAV to operateraumously in a variety of
indoor environments.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor of Aeronautics and Astronautic
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Chapter 1

Introduction

Consider the partially building collapsed shown in figlrél.1Sending rescue personnel
into the building to search for survivors puts them in grasager. Without knowing what
awaits them inside the building, it is very difficult to makeagl decisions about where it is
safe to venture and where to look for survivors. If instead, luilding could be searched
by a robot, the risks taken by the rescue workers would betlgrdaminished. Indeed,
there are many situations where it is dangerous and diffisuliumans to acquire sensing

information and where robots could be of use.

4 14 '|||.¢>-0‘i | 4 -
RN ETERE SR R

Figure 1-1: A partially collapsed building after an eartage. [Photo credit: C.E. Meyer,
U.S. Geological Survey]
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While the utility of robots performing such sensing tasks/rha obvious, creating the
robots is certainly not. Operating within a partially cgiéed building, or other similar
environments requires a robot to be able to traverse ohatf@bstacle strewn terrain. Over
the years, researchers have tackled these problems agaei@si number of ground robot
systems, such as the ones shown in fifluré 1-2 capable ofsiageough terrain. Despite
the progress toward this goal, it is still an active area eskagch and no matter how far
the field advances, there will always be some terrain whichoargd robot is simply not
physically capable of climbing over. Many researchers libeeefore proposed the use of
Micro Air Vehicles (MAVS) as an alternative robotic platforfor rescue tasks and a host

of other applications.

(b)

Figure 1-2: Two ground robots designed for traversing rotgyhain. [Photo credit:
(a)DARPA Learning Locomotion Project at MIT, (b) NIST]

Indeed, MAVs are already being used in several military aaian domains, includ-
ing surveillance operations, weather observation, desastief coordination, and civil en-
gineering inspections. Enabled by the combination of GREMEMSs inertial sensors,
researchers have been able to develop MAVs that display pressive array of capabili-
ties in outdoor environments without human intervention.

Unfortunately, most indoor environments and many parthiefurban canyon remain
without access to external positioning systems such as &8nomous MAVs today are
thus very limited in their ability to operate in these ared@gaditionally, unmanned vehi-

cles operating in GPS-denied environments can rely on deening for localization, but
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these measurements drift over time. Alternatively, witb@erd environmental sensors, si-
multaneous localization and mapping (SLAM) algorithmddbai map of the environment
around the vehicle from sensor data while simultaneoushguihe data to estimate the
vehicle’s position. Although there have been significanmaadtes in developing accurate,
drift-free SLAM algorithms in large-scale environmentsgse algorithms have focused al-
most exclusively on ground or underwater vehicles. In @stfrattempts to achieve the
same results with MAVs have not been as successful due to hioation of limited pay-
loads for sensing and computation, coupled with the fastwarsiable dynamics of air
vehicles. While MAV platforms present the promise of allogiresearchers to simply fly
over rough and challenging terrain, MAVs have their own tadsthallenges which must

be tackled before this promise can be realized.

1.1 Key Challenges

In the ground robotics domain, combining wheel odometryhveénsors such as laser
range-finders, sonars, or cameras in a probabilistic SLAdvhéwork has proven very suc-
cessful [92]. Many algorithms exist that accurately laoalground robots in large-scale
environments; however, experiments with these algoritarasisually performed with sta-
ble, slow moving robots such as the ones shown in figure 1-&haannot handle even
moderately rough terrain.

Unfortunately, mounting equivalent sensors onto a MAV asithg an existing SLAM
algorithms does not result in the same success. MAVs facendeuof unique challenges
that make developing algorithms for them far more diffichéirt their indoor ground robot
counterparts. The requirements and assumptions that caratie with flying robots are

sufficiently different that they must be explicitly reasdrabout and managed differently.

Limited Sensing Payload MAVs have a maximum amount of vertical thrust that they
can generate to remain airborne, which severely limits theumt of payload available for
sensing and computation compared to similar sized grouhgties. This weight limita-

tion eliminates popular sensors such as SICK laser scanaeys-aperture cameras and
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Figure 1-3: Examples of robots commonly used for SLAM reseafPhoto credit: Cyrill
Stachniss]

high-fidelity IMUs. Instead, indoor air robots must rely oghitweight Hokuyo laser scan-
ners, micro cameras and lower-quality MEMS-based IMUs civigienerally have limited

ranges, fields-of-view and are noisier compared to themmgcequivalents.

Limited Onboard Computation Despite the advances within the community, SLAM al-
gorithms continue to be computationally demanding evempdoverful desktop computers
and are therefore not usable on today’s small embedded demgystems that might be
mounted onboard MAVs. The computation can be offloaded toneedal ground-station
by transmitting the sensor data wirelessly; however, comoation bandwidth then be-
comes a bottleneck that constrains sensor options. Forggaoamera data must be com-
pressed with lossy algorithms before it can be transmitted wireless links, which adds
noise and delay to the measurements. The delay is in adtlititre time taken to transmit
the data over the wireless link. The noise from the lossy agesgion artifacts can be par-
ticularly damaging for feature detectors that look for hfggguency information such as
corners in an image. Additionally, while the delay can oftenignored for slow moving,
passively stable ground robots, MAVs have fast and unstdyab@mics, making control

under large sensor delay conditions impossible.
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Figure 1-4: Ground truth velocities (blue) compared wittegrated acceleration (green).
In just 10 seconds, the velocity estimate diverged by ovebm/s. Position estimates
would diverge commensurately faster.

Indirect Relative Position Estimates Air vehicles do not maintain physical contact with
their surroundings and are therefore unable to measure etdpmirectly, which most
SLAM algorithms require to initialize the estimates of thehicle’s motion between time
steps. Although one can compute the relative motion by deirtiegrating accelerations,
lightweight MEMs IMUs are often subject to unsteady bia$ed tesult in large drift rates,
as shown in figurE1}4. We must therefore recover the vebicitative motion indirectly
using exteroceptive sensors, and computing the vehicleteomrelative to reference points

in the environment.

Fast Dynamics MAVs have fast dynamics, which results in a host of sensisgma-

tion, control and planning implications for the vehicle. @ihconfronted with noisy sensor
measurements, filtering techniques such as Kalman Filtersfeen used to obtain better
estimates of the true vehicle state. However, the averggiogess implicit in the these
filters mean that multiple measurements must be observenebtife estimate of the un-
derlying state will change. Smoothing the data generatésaaer signal, but adds delay to

the state estimates. While delays may have insignificaatesffon vehicles with slow dy-
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namics, the effects are amplified by the MAV's fast dynamitisis problem is illustrated
in figure[1-5, where we compare the normal hover accuracy envgtate estimates are
delayed byl 50ms. While our vehicle is normally able to hover with an RMSewf 6¢m,

with the delay, the error increasesligrm.

n4r

03

nzZr

01r

Y-Pasition {m)

-0

-0EF
1 L 1 1 1 1 1 1 1
-0.6 -0.5 -0.4 -0.3 -0z -0.1 ] 0.1 n.z
H-Position {m)

Figure 1-5: Comparison of the hover accuracy using the sistienates from our system
without additional delay (blue), and the accuracy wistms of delay artificially imposed
(green).

Need to Estimate Velocity In addition, as will be discussed further in Secfiod 3.3, MAV
such as the quadrotor that we use are well-modeled as a sitfpteder dynamic system
with no damping. The underdamped nature of the dynamics hragées that simple pro-
portional control techniques are insufficient to stabilize vehicle, since any delay in the
system will result in unstable oscillations, an effect tivathave observed experimentally.
We must therefore add damping to the system through the ée&diontroller, which em-
phasizes the importance of obtaining accurate and timatg ststimates for both position
and velocity. Traditionally, most SLAM algorithms for gnodi robots completely ignore

the velocity states.

Constant Motion Unlike ground vehicles, a MAV cannot simply stop and perfonore

sensing when when its state estimates have large uncestailtstead, the vehicle is likely
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to be unable to estimate its velocity accurately, and as @tresmay pick up speed or
oscillate, degrading the sensor measurements furtherefdne, planning algorithms for
air vehicles must not only be biased towards paths with simowitions, but must also
explicitly reason about uncertainty in path planning, andestrated in | [41]; motivating

our exploration strategy in sectibnB.5.

3D Motion Finally, MAVs operate in a trul3D environment since they can hover at
different heights. While it is reasonable for a ground rdbdbcus on estimating 2D map

of the environment, for air vehicles, tRé cross section of &0 environment can change
drastically with height and attitude, as obstacles sugdempear or disappear. However, if
we explicitly reason about the effects of changes due td fhstructure of the environment,
we have found that aD representation of the environment is surprisingly usesuMAV
flight.

1.2 Problem Statement

In the research presented in this thesis, we sought to télckléhe problems described
above and develop a system that integrates sensing, ptaramd control to enable a MAV
to autonomously explore indoor environments. We seek tohdousing only onboard

sensing and without prior knowledge of the environment.

1.3 Related Work

In recent years, the development of autonomous flying rdimd$een an area of increasing
research interest. This research has produced a numbestefrsy with a wide range of
capabilities when operating in outdoor environments. B@ngple vehicles have been
developed that can perform high-speed flight through dletkenvironments| [84], or even
acrobatics|[20]. Other researchers have developed systgmable of autonomous landing,
terrain mapping[90], and a host of high level capabilitiestsas coordinated tracking and

planning of ground vehicles _[12], and multi-vehicle cooaion [32] 93, 17]. While these
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are all challenging research areas in their own right, ardgs of the work (such as the
modeling and control techniques) carry over to the devekgrof vehicles operating in
indoors, these systems rely on external systems such asoGE8ernal camerasl}&] for
localization. In our work, we focus on flying robots that abdesto operate autonomously
while carrying all sensors used for localization, contmad @mavigation onboard. This is in
contrast to approaches taken by other researc 5,8hawve flown indoors using

position information from motion capture systems, or mﬁﬂecamerasu 9].

Outdoor Visual Control ~ While outdoor vehicles can usually rely on GPS, there aregman
situation where it would be unsafe for a vehicle to rely orsimce signal can be lost due
to multipath fading, satellites being occluded by buildiragnd foliage, or even intentional
jamming. In response to these concerns, a number of resgarchve developed systems
that rely on vision for control of the vehicle. The capai@kt of these systems include
visual servoing relative to a designated tar E' [64], lagddn a moving target | [30],
and even navigation through urban canyohs [47]. While tistesys developed by these
researchers share many of the challenges faced by indoorsiMiA¢y operate on vehicles
that are orders of magnitude larger, such as the one showguiref-6, with much greater

sensing and computation payloads.

Figure 1-6: The USC AVATAR helicopter, built around a Bergemustrial Twin RC
helicopter, which is a common helicopter platform for owid@xperiments. [Photo
credit: Dr. Stefan Hrabar and the USC Robotic Embedded Byssteaboratory
(http://robotics.usc. edu/resl)]
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Indoor Obstacle Avoidance Using platforms that are of a similar scale to the ones tar-
geted in this thesis, several researchers |[75, 14, 62] useakh sumber of ultrasound or
infrared sensors to perform altitude control and basicasbstavoidance in indoor environ-
ments. While their MAVs are able to hover autonomously, ttieyot achieve any sort of
goal directed flight that would enable the systems to be obeatt at a high level such that

they could be used for higher level applications.

Known Structure Instead of using low resolution sonar and infrared sensexgral au-
thors have attempted to fly MAVs autonomously indoors usiegocular camera sensors.
To enable the vision processing to be tractable, they makestong (and brittle) assump-
tions about the environment. For example, Tournier etlaf] p@rformed visual servoing
over known Moire patterns to extract the fulld®f state of the vehicle for control; and
Kemp [54] fit lines in the camera images to the edges&bamodel of an office environ-
ment with known structure. Reducing the prior knowledgghgly, Johnson | [49] detects
lines in a hallway, and used the assumption of a straightvaglto back out the vehicle
pose. Similarly, Celik et al presented their MVCSLAM system[19], which tracks cor-
ner features along the floor of a hallway. While impressivés unclear how their work
could be extended to other environments. Their applidghsi therefore constrained to
environments with specific features, and thus may not woskedkfor general navigation

in GPS-denied environments.

Using a2D laser scanner instead of a camera, prior work done in ourpgifdd] pre-
sented a planning algorithm for a quadrotor helicopterithable to navigate autonomously
within an indoor environment for which there is a known mapcéntly, [10] 35] designed
guadrotor configurations that were similar to the one priesem [41]. Grzonka et al.
and Angeletti et al. | [10] scan-matched successive lasesgoahover their quadrotor heli-
copter, while [[35, 36] used particle filter methods to glbphrcalize their MAV. However,
none of these papers presented experimental results deatorgsthe ability to stabilize
all 6 degrees of freedom of the MAV using the onboard sensmd all made use of prior

maps, an assumption that is relaxed in this thesis.
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Indoor SLAM  Finally, perhaps the closest work to ours was that of Ahreiis Where
monocular vision SLAM was used to stabilize a quadrotor. r&octed corner features
were fed into an extended Kalman filter based vision-SLAMniesvork, building a low-
resolution3 D map sufficient for localization and planning. Unfortungtein external mo-
tion capture system was used to simulate inertial sensdings, instead of using an on-
board IMU. As such, their system was constrained to the mai@pture volume where they
had access to the high quality simulated IMU. It remains tgden whether the work can
be extended to use lower quality acceleration estimates &anore realistic MAV-scale
IMU.

Adopting a slightly different approach, Steder etlall [86]unted a downward-pointing
camera on a blimp to create visual maps of the environment fidthile interesting al-
gorithmically, this work does not tackle any of the challeaglue to the fast dynamics
described in section1.1.

Where many of the above approaches for indoor flight fall stsothat they did not
consider the requirements for stabilizing the MAV both lbcand in larger scale envi-
ronments in a coherent system. The previous work eithersidtwn local hovering and
obstacle avoidance in known, constrained environmentsttempted to tackle the full
SLAM problem directly, without stabilizing the vehicle agj local state estimation meth-
ods. SLAM processes are generally too slow to close the loopcantrol an unsteady
MAV, resulting in systems that work well in simulation, hoves are unworkable when
applied on real hardware. In our work, we developed a maitet sensing and control

hierarchy which tackles both of these challenges in a colhsgestem.

1.4 Contributions

In this thesis, | present the design, implementation, ahidatton of a system for localizing

and controlling the quadrotor helicopter shown flying in figflti=7, such that it is capable of
autonomous goal directed flight in unstructured indoorremrents. As such, the primary
contribution is the development of the working system. Whhe system builds upon

existing work from the robotics community, many of the indival components required
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Figure 1-7: A photo of our vehicle flying autonomously in arstractured indoor environ-
ment

adaptation to be used on MAVs. More specifically, the contrdms of this thesis are:

1. Development of a fully autonomous quadrotor that relidg on onboard sensors for

stable control, without requiring prior information (majadout the environment.

2. A high-speed laser scan-matching algorithm that allavesassive laser scans to be

compared in real-time to provide accurate velocity andiradgosition information.

3. An Extended Kalman Filter data fusion module, and algaritfor tuning it that

provides accurate real-time estimates of the MAV positiod 2elocity

4. A modified SLAM algorithm that handles tBé environment structure inaD map

5. A framework for performing dense reconstruction and nivagppf the full 3D envi-

ronment around the vehicle

6. A visual object tracking system that allows the vehicléoltow a target designated

in a camera image.
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Figure 1-8: Schematic of our hierarchical sensing, comtnol planning system. At the base
level, the onboard IMU and controller (green) creates a figexdback loop to stabilize the

MAV's pitch and roll. The yellow modules make up the real-¢irsensing and control

loop that stabilizes the MAV's pose at the local level andids@bstacles. Finally, the red
modules provide the high-level mapping and planning fumalities.

1.5 System Overview

To compute the high-precision, low delay state estimatgaired for indoor flight, we
designed the 3-level sensing and control hierarchy, shawiigure[I=8, distinguishing
processes based on the real-time requirements of theiectap outputs. The first two
layers run in real-time, and are responsible for stabiyjzime vehicle and performing low
level obstacle avoidance. The third layer is responsibler®ating a consistent global map

of the world, as well as planning and executing high levabast

At the base level, the onboard IMU and processor createsyatiggnt feedback loop
to stabilize the MAV’s pitch and roll, operating &000H z. At the next level, fast, high-
resolution relative position estimation algorithms, désed in chaptell2, estimate the ve-
hicle’s motion, while an Extended Kalman Filter (EKF) fuske estimates with the IMU
outputs to provide accurate, high frequency state estsnaitaese estimates enable the

LQR-based feedback controller to hover the MAV stably in Bnhacal environments. In
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addition, a simple obstacle avoidance module ensuresht@aAY maintains a minimum
distance from observed obstacles.

At the top layer, a SLAM algorithm uses the EKF state estimated incoming laser
scans to create a global map, ensuring globally consistate estimates by performing
loop closures. Since the SLAM algorithm takes 1-2 secondgtrporate incoming scans,
it is not part of the real-time feedback control loops at thedr levels. Instead, it provides
delayed correction signals to the EKF, ensuring that ourthee state estimates remain
globally consistent. Finally, a planning and explorationdule enables the vehicle to
plan paths within the map generated by the SLAM module, amndiegihe vehicle towards

unexplored regions.

1.6 Outline

In the chapterEl2 arld 3, | describe the components of themsyth enable flight in un-
constrained indoor environments. Chajifler 2 covers theittigts for obtaining relative
position estimates using either high-speed laser scaohingtor stereo visual odometry.
Chaptei LB describes how these estimates are used in theaterspstem, along with the
details of the system components.

After describing the complete system, | describe the harewa use, and present
experimental results validating our design and demonsty#tte capabilities of our system
in chaptef®.

In chapteb | present a framework for performing dense nrappf the3D environ-
ment around the vehicle, which would enable generatingongilans in3D. Finally, in
chaptefD | present a vision based object tracking systehaltiosvs the vehicle to perform
high level tasks such as following a person before presgititure work and concluding

remarks in chaptdi 7.
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Chapter 2

Relative Position Estimation

In this chapter | describe the algorithms used for estingdtie MAV's relative position in
real-time. Both laser and stereo-vision based solutioegpeesented and compared. The
high quality relative position estimates provided by thalgorithms are the key enabling
technology for indoor flight.

The stereo-vision based visual odometry solution was dpedlin collaboration with
Markus Achtelikl[5]

2.1 Introduction

MAVs have no direct way to measure their motion, and mustetioee rely on sophisticated
algorithms to extract synthetic proxies for the wheel ercdzhsed odometry available on
ground robots from other sensors. While one may be tempteduble-integrate accel-
eration measurements from inertial sensors to obtainivelpbsition estimates, the drift
rates of small lightweight MEMs IMUs are prohibitively higlnstead one must rely on
exteroceptive sensors, matching incoming measuremetiisowe another to back out the
vehicle’s relative motion. This process can be performethath laser scans and camera
images, each having distinct advantages and disadvantaggms of their computational
requirements, accuracy, and failure modes.

While air vehicles do not have the luxury of using wheel odtgn® measure relative

position, many ground robots have faced similar challengieee in many situations the
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estimates from wheel odometry can be quite poor, such as ahaot is traversing rough
terrain. As a result, there has been considerable work oel@i@wng relative position esti-
mation algorithms for ground robots. Researchers have &ftend that the performance of
both scan-matching and visual odometry greatly outpersoammeel odometry. [70, 46]. Al-
though the algorithms have largely been developed for gteabots, they can be adapted
for use on MAVS, but with the additional challenging requaients of both high resolution
matching and fast real-time performance. The high resmiutiatching is particularly im-
portant due to the need to estimate the velocity of the MAttmmtrol purposes. To obtain
these velocity estimates, we must differentiate the coatprelative position estimates. So
while a positional error of a few centimeters may be insigatiiit for a ground robot, when
divided by the time between scans, a few centimeter erroogitipn will result in a large
error in velocity. In addition, since MAVs operate in thelf@8D environment, we must
ensure that the algorithms are robust to motion in all 6 degyof freedom.

The relative position estimation algorithms can genetadlyoroken down into two sub-

routines:
1. Correspondence:Find matches between “features” in the measurements

2. Motion Extraction: Given sets of corresponding features, determine the optima

rigid body transform between them.

As we shall see, the existing algorithms take different apphes to each of these subrou-
tines, with different robustness, accuracy, and compariaticomplexity properties.

In addition, different types of sensors have unique chargstics that lead to varying
levels of effectiveness in different environments. Las@ge-finders operate by emitting a
beam of laser light, and measuring the time until the beareflsated back onto a photo
sensor. This process provides a measurement of the distaribe nearest obstacle in
the direction of the laser beam. By sweeping the laser beaancircle, and taking suc-
cessive point measurements at fixed intervals, the sensdilesto generate a “scan” of
the environment that contains the range to the nearestabstha fixed set of bearings.
When converted from this polar-coordinate form to Cartesi@ordinates we obtain a set

of points such as the ones shown in Figure 2}1(a). Since tasge finders provide a set
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of distances, laser scans can only be matched when the emerd has unique physical
structure or shape. As a result, the matching process dardaind homogeneous building
structures such as long corridors. In addition, since the@s only generateD slices of

the environments, they cannot make use of structure outsgdeensing plane.

In contrast, camera sensors, which measure the intensiighdffalling onto a2D
sensor plane, can make use of information from the3flllenvironment around the vehicle.
However, camera sensors only measure the intensity of g, land therefore do not
provide direct information about the underlyiBg structure that generated the image. To
be able to extract that information from image data the emvirent must contain unique
visual features, and requires sophisticated image primgestn general, camera sensors

have more limited angular field-of-views and are compuretily intensive to work with.

Different exteroceptive sensors are therefore betteeduir autonomous MAV op-
eration under different environmental conditions. Howewince the laser scanner and
cameras rely on different environmental features, theyishbave complementary fail-
ure modes. As a result, integrating both sensors onto aesMgV platform will enable

autonomous navigation in a wide range of generic, unstredtundoor environments.

2.2 Laser Scan-Matching

Laser scan-matching algorithms must solve the followirapfgm: given two overlapping
laser range scans, € R2*" and S,_; € 2>, find the optimal rigid body transform
A € SO(3) = [R,t] that aligns the current laser scan with the previous scah that
applying the transform to S;_;, denotedA ® S;_1, results in a scan that is close $o.

To find the best alignment, one needs a method for scoringdatedransforms based on
how well they align to past scans. The first challenge in ddimgis that laser scanners
provide individual point measurements of locations in thei®mnment. Successive scans
will generally not measure the same points in the envirorirdee to the motion of the
vehicle. Each scan-matching algorithm must therefore fiwdyato overcome this issue to

find correspondences. This is usually done in ongways:
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1. Point-to-Point: The individual points from the current scan are matchedctiréo
one (or multiple) points in the previous scan, such as in theative Closest Point
(ICP) [101] algorithm described below.

2. Feature-to-Feature: Points are grouped into higher level features such as corner
and lines that are then matched, such as in the HAYAI algorifs8]. Since the
features can often be accurately corresponded directyetbulting motion estimate
can be computed in closed form, without needing the itezainement of the cor-

respondences used in ICP.

3. No-CorrespondencesThe points from previous scans are used to create a likalihoo
map, and the current scan is matched to this map by searahirige pose which
gives the scan a maximum likelihood with respect to the mdps i6 the approach
taken by, Vasca [39, 2], Olson [70], and our scan-matchee @the benefits of this

approach is that it does not require explicit correspondena be computed.

When considering the algorithm to use on a MAV, robustnesaitbers is particularly
important. The laser scanner measures ranges in a 2D pléuile, thve vehicle moves in
the full 3D environment. Motion out of the plane of the lasanaesult in portions of
the laser scan changing dramatically. As a result, whilesttas-matching algorithms for
ground robots must only worry about errors due to sensoenaikich is generally fairly
low, our algorithm must be very robust to regions of the sdaenging due to 3D effects.
This requirement essentially precludes the use of the feditaised approaches since they

are very susceptible to incorrect correspondences betigatures.

2.2.1 Iterative Closest Point

The iterative closest point algorithm [101] is one of the giiest and most commonly used
algorithms for laser scan-matching. It is an iterative athon which alternates between
finding correspondences between individual points and tresrest neighbor, and finding
the optimal rigid body transform that minimizes the Euclidelistance between the points,
as shown in algorithril1. The optimal rigid body transformdifeast-squares sense) be-

tween two sets of corresponded points can be computed iecchmsm [97], which is
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Figure 2-1: (a) The original set of points for 2 laser scaheysng a region with significant
differences due to 3D effects. (b)The alignment computeli®y Notice the misalignment
due to poor correspondences in the non-matching regiorm.hgalignment computed by
our algorithm, which robustly matches the two scans.

attractive due to its computational efficiency. While thgidibody transform for a given
set of corresponding points is computed in closed form, tgerdhm as a whole does
not necessarily find the global optimum, since it may be suiie to local minima when

computing the point correspondences.

While this basic form of the ICP algorithm is extremely simpind fairly efficient, it
suffers from robustness issues in the presence of regidhe etans that do not match, such
as the scans in figufe 2-1(a). The region in the bottom rigthe@figure has considerable
differences between the two scans due to out of plane motamce the ICP algorithm
finds correspondences for these points despite the facthteyathave no match, it skews
the computed transform, resulting in the slight rotatiotwisen the scans in figufe Z-1(b).
Many researchers have proposed variants of this basic &fitdm, which use a different
distance function, or add an outlier rejection step whicpriowes the matching robustness
and/or efficiencyl[78, 77, 66]. However these variants adgdiicant complexity without

solving the fundamental problem: corresponding pointstvlare not measurements of the
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Algorithm 1 The Iterative Closest Point algorithm
Require: S; andS; (the scans to be matched)
Require: A (initial guess of the transformation)
while A not convergedlo
Sy =A® S5 (projectS, using current transform)
for x} € S; do
yi = argmin||x; — x|
x?€§2
end for

N
A=[Rt= argminz |Ry: + 1t — x|
end while

same point in the environment.

2.2.2 Map Based Probabilistic Scan-Matching

As an alternative to computing the correspondences e#tgli@ challenging and error
prone process, one can create an occupancy grid vhdpm previous scans [91], and
then match the new scan against that map. Each cell in the toiags $he likelihood of the

ith laser return being measured at the pairds
P(z;|M) (2.1)

This map then allows us to compute the likelihood for an engican by computing
the likelihood that all laser readings fall where they do.séwsing that each of the point
measurements in a laser scan are independent, the likdlifoocan entire scan can be

computed as
N

P(S|M) = [ ] P(xil M) (2.2)

i=1
By searching over candidate rigid body transforfng SO(3) to find the one that maxi-
mizes the likelihood of the laser reading, we can then findoghtenal A* which provides

the best alignment of the incoming laser scan:

A" = argmaxP(A ® S|M) (2.3)
A
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whereA ® S is the set of laser pointS transformed by the rigid body transfori

This is the approach used by the Vasco scan-matcher in tlee@anbotics toolkit [39,
4], and the scan-matcher developed by Olson [70, 69], upachabur work is based.
While similar in concept, the algorithms differ in their rhets for constructing and search-
ing the likelihood map.

In Vasco the map is constructed by storing the number of tieaeh cell is hit by a
laser measurement and then integrating over small errdhs®@aussian smoothing. This
smoothing captures the uncertainty present in the lasesune@ents. There is noise in
both the range and bearing of each laser measurement, wiei@hsthat points near a cell
that is hit should also have an increased likelihood of getiey a laser return. The optimal
scan alignment with respect to the map is then computed bprp@ng a greedy hill-
climbing process. Starting from an initial guess of the eortransform, VVasco successively
tests new transforms around the current best, and keepdicatidns that increase the

likelihood of the resulting transformed scan as shown io@digm[2.

Algorithm 2 Vasco Hill Climbing Algorithm
Require: S (scan to be matched)
Require: M (the likelihood map)
Require: A (initial guess of the transformation)
L — P(A ® S|M) (evaluate likelihood of initial guess)
while A not convergedlo
for A=A+de {Forward, Back, Left, Right, TurnLeft, TurnRight} do
if P(A® S|M)> Lthen
L — P(A® S|M)
A— A
end if
end for
end while

While this scan-matching method has proven quite sucdessfd is an improvement
over ICP, it still has two flaws which are corrected in Olsaapgproach. First, since laser
scanners have a limited angular resolution, readings dan the sensor will be spaced far
apart. As a result, if a subsequent measurement atitimefalls in between two readings
taken at timet, the later measurement will appear to be low likelihood desjne fact

that it probably reflected off the same object. Second, antemmrrisome for use on
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Figure 2-2: A cross section of the pose likelihood map shguire likelihood of a scan at
different translations, with a fixed rotation. Notice theltiple local maxima.

MAVs is the use of the hill-climbing strategy. As can be seefigure[2-2, which shows
a 2D cross section of the 3D pose likelihood map, there arerakelocal maxima. Unless
we were lucky enough to start near the global optima, hithbing is unlikely to find it.

Vasco mitigates this problem by using the estimate from Wwbdemetry to initialize the

hill-climbing process, however MAVs do not have that luxury

2.2.3 Robust High-Speed Probabilistic Scan-Matching

After surveying the algorithms available for performingéa scan-matching we decided
to base our algorithm on the one developed by Olson, whichsked on robustness, while
still managing to be computationally efficient through ¢aremplementation. Like Vasco,
Olson’s method performs probabilistic scan matching usingap, however it differs in

two significant ways:

1. The points in a laser scan are connected into a set of pimeelinear contours,

creating continuous surfaces in the map instead of indaligaints.

2. The algorithm performs a more robust exhaustive searehaset of candidate align-
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ments instead of using hill climbing.

Our algorithm uses this same approach, however we madeaseli@anges to adapt it such
that it could handle th8 D environment and run in real-time with the high resolution re
quired by the MAV. In addition, we added a “polishing” stepgeafthe exhastive search
where we use the gradient ascent method shown in algdlitltmedine the pose estimate.
Since we start the gradient ascent from the optimum foundkhguestive search, the opti-
mization is very fast, and we are more likely to find the glotyaiima than if we did not

perform the exhaustive search first.

Local Map Generation

To find the best alignment for an incoming laser scan, one shaeahethod for scoring
candidate poses based on how well they align to past scansnefifoned above, laser
scanners provide individual point measurements. Suaaessans will generally not mea-
sure the same points in the environment since when the leaensr moves the measured
points are shifted accordingly. Since the points do not s&m&ly measure the same points,
attempting to correspond points explicitly can producerpesults due to incorrect match-
ing. However, many indoor environments are made up of plandaces with 2D cross
section that is a set of piecewise linear line segments. &Vhdividual laser measurements
do not usually measure the same point in the environmentwiteusually measure points
on the same surface. We therefore model the the environreenset of polyline contours.
Contours are extracted from the laser readings by an ahgothat iteratively connects the
endpoints of candidate contours until no more endpointsfgahe joining constraints as
shown in algorithniI3.

The algorithm prioritizes joining nearby contours, whidloas it to handle partially
transparent surfaces such as the railings in the envirohdegicted by Figurg 2-3(a). If
we instead tried to simply connect adjacent range readim¢fsel laser scan, there would
be many additional line segments connecting points onreside of the corner. Candidate
contour merges are scored and stored in a Min-heap dattseuwhich allows the best
candidate to be extracted efficiently. As a result, the diveoatour extraction algorithm

takes aroun®.5ms to process a 350 point scan on modern hardware.
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Algorithm 3 Extract Contours
Require: S (set of points)
Require: priority_queue for candidatgjoins {parent,child,score} sorted byscore
priority_queue «— ()
for x € S do
addjoin of x with nearest free point tpriority_queue
end for
while priority_queue # () do
remove besjoin from priority_queue
if join.parent already has a chilthen
discardjoin
else ifconnectingjoin.child to join.parent incurs too much coghen
discardjoin
else ifjoin.child already has a paretiten
addjoin of x with nearest free point tpriority_queue
else
merge the contours gbin.child andjoin.parent
end if
end while
return Final set of contours

Once we have the set of contours extracted from the previcas, sve can evaluate
the likelihood of an alignment of the current scan. We asstiraeall point measurements
in a scan are independent, and we compute the likelihoodigrfiraent of a scan as the
product of likelihoods for each individual point in the scaAs mentioned above, laser
range-finders provide noisy measurements of the range amihfeof obstacles in the
environment. While each of these degrees of freedom hasd@pé@mdent noise term, we
assume a radially symmetric sensor model for simplicityr @aise model approximates
the probability of a single lidar poiritr, y) as proportional to the distandeto the nearest
contourC, such that

P(z,y|C) oc =47, (2.4)

whereo is a variance parameter that accounts for the sensors nogsacteristics. As
was done for Vasco, we compute a grid-map representatiorevetaeh cell represents the

approximate log-likelihood of a laser reading being redégrfrom a given location.

For most ground robotics applications, a map resolutiotDefr, or more is often suf-

ficient. However, to accurately estimate tocityof the vehicle, where small rounding
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(a) (b)

Figure 2-3: (a) Contours (blue lines) extracted from the la@ser measurements alongside
the raw laser readings (red dots). Notice how the contouaetibn algorithm handles the
partially transparent railing on the left. (b) The resudtiikelihood map generated from
the contours. Brighter colors (red) indicates higher likedd.

errors in the position are magnified significantly, we reguirhigh resolution map with a
cell size less thaihern. For example, if we use a map resolutiori 0fm and the laser scans
arrive at40H z, an alignment that is rounded off by half a cell would resmlan error on
the order of2m/s. Since the vehicle is usually moving at less thany s this error would
be very significant. This effect is seen in the experimemsiliits shown in Figufe2-5.

While generating these high resolution maps is computaliprintensive, one can
leverage their sparsity to make generating them tractalblene examines a likelihood
map such as the one shown in figlire Z3(b), one quickly reattzat with any reasonable
value ofo, the vast majority of cells will be zero. So, while convenabmethods compute
a value for every cell in the map, and therefore require &tl@én?) operations, where
is the number of cells along an edge, we developed a liketimap generation algorithm
that exploits the sparsity in the grid map, resulting in a patational complexity 0 (m)
wherem < n? is the number of occupied cells.

In Olson’s work, he computed the likelihood map by restnigtihe likelihood calcula-

tion to a local window around each line segment in the contma computing the distance
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from each pixel in the window to the line segment. While anriowement over computing
the distance to the nearest line segment for the entire miganethod still does not run in
real-time at the required resolution. Computing the distato the line segment for each
pixel is computationally intensive, and to make matterssepthe windows around each
line segment have significant overlap, which means that paxethends up being modified

many times.

In order to create the high resolution likelihood maps in-teae, we developed a
drawing primitive that explicitly “draws” the non-zero gkhoods around each line seg-
ment. This primitive does not require us to compute the distao the line segment for
each pixel and has much less overlap in the pixels aroundrteeségment endpoints that
are touched such that in general each pixel is only writtezteor'We accomplish this by
sliding a Gaussian shaped kernel along the pixels of theskgenent (as output by the Bre-
senham line drawing algorithm [16]), applyingnéax operator between the current map
value and the kernel’s value. Naively using a square kewitl,values set based on equa-
tion[Z.4 would result in cells being written many times askbmel slides along the line;
however, one can avoid this problem by using a 1 pixel widezbaotal or vertical cross
section of the kernel depending on the slope of the line. paslthat are not perfectly
horizontal or vertical, this kernel must be stretched pyos(s), wheres is the slope of the
line. As a final optimization, the kernalax operation can be performed using optimized
matrix libraries. With the new drawing primitive, creatitige likelihood map simply re-
duces to drawing all the line segments in the extracted costovhich takes arour2bms

even for extremely largé.5mm resolution likelihood maps.

We create the map from a set bfprevious scans so that the relative position and ve-
locity estimates are consistent within the local map. Caingaa new scan to an aggregate
of previous scans gives much more accurate position eg#iaan comparing each scan
only to the scan from the previous time step, as it reducegtbgration of small errors
over time. For example if the vehicle is stationary, the \fast scan received should be the
only scan in the map so that the position estimate will rerdaiihfree. On the other hand,
if we only compare each pair of incoming scans, any smalrgiwa previous position esti-

mates will be retained and integrated into the current rséstimate, resulting in drift. In
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addition, since the likelihood map must be recreated every & scan is added or removed

from the map, comparing each pair of incoming scans is coatiouially inefficient.

In both Vasco, and Olson’s work a new scan is added to the migpafter the vehi-
cle has moved some minimum distance. This heuristic is m®a@hsure that scans are
added to the map with enough overlap to match them effegtivédiile not adding scans
unnecessarily frequently. The heuristic works well forugrd vehicles where in general
the scans only change due to motion of the vehicle. Howeveg MAV the heuristic is
problematic due to the drastic changes to the scan that cam as the vehicle changes
height. When the vehicle changes height, the environmegtehange, such that large
portions of the map are quite different, despite the fadttthavehicle has not moved very
far in any dimension. In this situation, we want to add the rsean to the map so that
we can match against this region as well. However, if therermnent has vertical walls
such that the cross-section does not change as the vehatgeh height, then we do not
want to add the new scan. As a result, we use a new policy wherzns are added when
they have insufficient overlap with the current map. To de,thie compute the fraction of
points in an incoming scan that are above a given likelihoatié current map. When this
fraction drops below a threshold, the new scan is added tontje The threshold is set
high enough that incoming scans are still able to be matchedrately, but low enough
that scans are not added too often. The new heuristic redbeeimount of drift incurred

by in the scan-matching process compared to the distanee loas.

In addition to mitigating drift, constructing the map fronuttiple recent scans handles
3D effects nicely. As can be seen in figlire Z-i(b), areas #rgtaonsiderably with height,
such as the sides of the room, get filled in such that the esntér@ has high likelihood. The
likelihood of a laser point being measured in those areasrhe@lmost uniform, while the
likelihoods in areas that remain constant, such as the oofehe room in figur@ Z-4(b),
are strongly peaked. Since the entire area has high likatilits influence on the matching

process will be reduced.
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Figure 2-4: (a) A cluttered lab space (b) The resulting llk@bd map generated by the
scan-matcher after changing heights, with the current eeariaid. The sides of the room
are very cluttered, resulting in an almost uniform disttiba in some areas, while the
corner remains sharply peaked and provides good alignment.

Scan-to-Map Alignment

Once we have computed the likelihood map, the second taskiisc the best rigid body
transformA* for each incoming scan with respect to the current likelthomap. Many
scan-matching algorithms such as Vasco use gradient deteodmiques to optimize the
values of the transform. However, as we mentioned in seBii&2, the three dimensional
pose likelihood space is often very complicated, even folyfaimple environments. As a
result, we chose to follow Olson, and use a very robust, €ptdlly computationally inef-
ficient, exhaustive search over a three-dimensional voloihpessible poses. The number
of candidate poses in the search volume is determined byizeeo§the search volume
(how far we search) and the translational and angular steglsow finely we search). Un-
fortunately, the chosen step sizes limit the resolutiomwihich we can match the scans,
so we modify Olson’s approach to perform gradient ascem fitee global optima chosen
by the exhaustive search.

While this exhaustive search might initially seem hopdieisefficient, if implemented
carefully, it can be done very quickly. A naive implemeraatof this search might perform

the search using three nested for-loops to iterate throliglbses in the search volume. A
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fourth for-loop would then iterate over all points in the scprojecting them, and looking
up their likelihood in the map. Much of the computationaltdosthis search is taken up
by performing the projection of the laser scan in the innesinhmop. However, for a given
candidate anglé, the projected points in a laser scan are related by a simgoislation.
As a result, if we iterate oveltin the outermost loop, and perform the rotation component
of the projection of each point there, the inner loops onletta perform a simple addition
to complete the projection. Furthermore, if we set the rgsmh of the likelihood map to
be equal to the translational step size, then the set ofliketls for all translations of a
test point are contained in the cells that surround the w@ist ;n the map. Iterating over
the translational search window is therefore much fastaresthe innermost loop which
iterates over the points only performs a table lookup and ¢t have to project the test
points. As a final optimization, the entire translationarsé window can be accumulated
into the3 D pose likelihood map in one step using the optimized imagé&iaddunctions

available in the Intel Performance Primitives![23], whicloyide a factor oR speed up.

The optimized exhaustive search implementation is corsldle faster than a naive
implementation, however, we still must ensure that the axea which we search is not
too large. Since we do not have wheel odometry with whichit@iize the scan-matching,
we assume that the vehicle moves at a constant velocity bata@ans. With this starting
point, the range of poses that must be searched over can éealécted based on the
maximum expected acceleration of the vehicle, which melatdt high scan rates, the

search volume is manageable.

In Olson’s method, the resolution with which we build the nliapts the accuracy with
which we can estimate the pose of the vehicle since we mag&lranslational step size
to the map resolution. However, step sizes smaller than #enesolution can change the
scan likelihood due to points near the boundary between miégpleing moved across the
boundary. To improve the accuracy of our relative positistmeates beyond the resolution
used to create the map, we added a polishing step to the geaag alignment where
we apply the gradient ascent method described in algofdhondptimize the final pose
estimate. Using gradient ascent on top of the exhaustivelseatains the robustness of

Olson’s method, while improving the accuracy consideralslghown in Figure2}5. Since
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Figure 2-5: Comparison of the RMS error in velocity as a fiorcof the map resolution,

and whether gradient ascent polishing was used. The blaeshows the error for each
map resolution without performing the gradient ascentghiatig step, while the green line
shows the same experiment with gradient ascent turned on.

we initialize the gradient ascent from the global optimanfduy the exhaustive search,
the algorithm converges very quickly (usuallylms), and is likely to find the true global
optima.

In our implementation, we use step sizes (and grid spacih@)sonm in z,y, and
.15°in . At this resolution, it takes approximatélyns to search over the approximately
15,000 candidate poses in the search grid to find the best pose foicaming scan. This
means that we are able to process them at the@ul> data rate. When a scan needs to be
added to the likelihood map, this is done as a background atatipnal process, allowing

pose estimation to continue without impeding the real-torecessing path.

Covariance Estimation

In addition to being very robust, computing the best aligntri®y exhaustive search has
the advantage of making it easy to obtain a good estimatesafdtiariance in the relative-
position estimates by examining the shape of the pose liketi map around the global

optimum. This estimate of the covariance is important whenntegrate the relative posi-
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tion estimates with other sensors in the data fusion modeseribed in section-3.2. While
the entire pose likelihood map has many local maxima as showigure[Z2-2, in the im-
mediate vicinity of the global optima the pose likelihoodusually a fairly smooth bell
shape. If the environment surrounding the vehicle has olestén all directions, such as in
a corner, the alignment of scans will be highly constraimesilting in a very peaked pose
likelihood map. On the other hand, if the environment dogsanstrain the alignment, the
pose likelihood map will be nearly flat at the top. An examgleam such environments is
shown in Figuré2.2]3.

— ‘

@) (b)

Figure 2-6: Examples of the covariance estimate output bystdan-matcher in different
environments. (a) shows an environment with obstaclesdaall directions which con-

strains the alignment of subsequent scans. (b) shows adyadimvironment with very little

information along the hallway.

While one could compute the covariance of the goal distidouécross all degrees of
freedom, for implementation simplicity we compute the a@ace in rotation separately
from translation, making the assumption that rotation dependent of translation. For
translation we look at theD slice of the pose likelihood map at the optimal rotation. We
then threshold thi@ D map at thed5™* percentile, and fit an ellipse to the resulting binary
image. The area and orientation of this ellipse is used agstimate of the measurement
covariance. For rotation, we find the score of the best tatiosl for each rotation, and

look at the width of the resulting bell shapéd curve. In the future, we intend to fit a
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multi-variate Gaussian directly to the pose likelihood pfaflowing the example of L [69].

Contributions

While the scan-matching algorithm described above is basdtie original implementa-
tion by Olson, it required several modifications to enabte lhie used on the MAV. Specif-

ically, these contributions are:

1. The drawing primitive described in section 212.3 allowsagenerate the high reso-

lution likelihood map in real-time.

2. Our notion of a “local map” differs from_[70]: scans are addased on insufficient

overlap rather than distance traveled.
3. Our use of image addition primitives to accumulate theepiglihood map.

4. Adapting the search window based on the maximum expedeeleaation of the

vehicle.
5. Using gradient ascent to refine the relative motion egénsanew.

6. The method for obtaining a covariance estimate is new.

2.2.4 Laser Based Height Estimation

The laser scan-matching algorithms described above otilpa&e the relative motion of
the vehicle inx, y, andf. In order to control the MAV we must also be able to accurately
estimate the relative position in While the laser range-finder normally only emits beams
in a2D plane around the vehicle, we are able to redirect a portidheobeams downward
using a right-angle mirror as shown in Figlirel2-7.

Since there are so few range measurements redirected ttveafidor, it is impossible
to recognize distinctive features that would allow us tochaneasurements together to
disambiguate the motion of the vehicle from changes in thghtef the floor. We there-
fore cannot use techniques similar to the the scan-matdlgwyithms described above

to simultaneously estimate the height of the vehicle andltdwe. If we assume that the
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Figure 2-7: Image of the right-angle mirror used to deflecobdipn of the laser beams
downward to estimate height. The yellow line shows an exarbpam for visualization.

vehicle is flying over a flat floor, we can use the range meadoyetie laser scanner;,

directly as the estimate of the height of the vehicle at timdowever, if the vehicle flies
over an object such as a table, these height estimates wiicoerect. To make matters
worse, flying over the table will appear as a large step diseoity in the height estimate,
as shown in the red line in Figure Z-§(a), which can resultggrassive corrections from

the position controller. However, if we look at the vehickdacity that these height esti-
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Figure 2-8: Plots showing a comparison of the height (a) aldcity (b) estimates from
our algorithm (green) alongside the raw measurements, (aadl) the ground truth (blue).
The large discontinuities in the red lines are places whee/¢hicle flew over the edge of
an object. The object was roughl$cm tall.

mates would imply, we see that there are very large outlleas accur when the vehicle
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flies over an object. As a result, we can use the maximum eggextceleration of the
vehicle to discard changes in height that are too large naisguthat the height of the floor
changed instead of the vehicle. Unfortunately, in realityth the vehicle and the floor
height change simultaneously, so simply discarding thegivel height estimate will result

in drift over time.

To mitigate this drift, one would ideally adopt a SLAM framesk that is able to rec-
ognize when the vehicle returns to the same place and closésdp. However, while this
could be done using a camera, or anothBrsensor, with only thé D laser scanner there
is not enough information about the shape of the floor to iflelatop closures. We there-
fore cannot rely on being able to accurately estimate thghtheif the floor which would
then allow us to estimate our height relative to this floomeste. Instead, we leverage the
assumption that the vehicle would predominantly be flyingraxpen floor, but sometimes
fly over furniture or other objects. In this situation, ovendj time periods the raw height
measurements from the downward pointed laser beams aryusaraect, but over short
time periods they may be perturbed by flying over obstaclestharefore chose to mitigate
the drift in our height estimate by slowly pushing them bamkards the raw measurements
r;. While we are still above an object, we do not want to push #iglt estimate towarct
since this measurement will not correspond to the actughteif the vehicle. Instead we
would like to wait until the vehicle has moved away from thgeaband is above the floor.
Unfortunately, we don't have a way to identify whether théicke is above the floor or a
new obstacle. As a result, we make this decision based an-thdistance the vehicle has
moved since it noticed that the height of the surface und@ghnechanged. We choose this
distance threshold by estimating the average size of abjleat the vehicle will encounter.
Rather than make a hard decision, we make a soft decisiort alb@n corrections should
be applied and scale the magnitude of the correction by atiodunction that is centered

over the average obstacle size.

More formally, our approach estimates the height of the alehiby integrating the
difference between successive height range measuremamid-; _; filtered such that they
obey the maximum acceleration constraint. This estimatieheight will incur errors

when the vehicle goes over obstacles. As a result, we apmyraation term which pushes
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the estimate, back towards the raw height,, measured by the laser. The magnitude of
this correction is a logistic function of the planar distamcto the last discarded height

measurement.
(0%

Y N N AN
hy =h + sgn(n h ) (1 + e(cmc?—d))

(2.5)

whereh’ is the height estimate after adding the filtered estimaits,a small scaling con-
stant on the correction term, is a parameter that controls the width of the logistic func-
tion, andd is the center of the logistic function. We chogéo be large enough that we
expect the vehicle to no longer be above an object when tgera&orrections are being
applied. The current height estimate can be arbitrarilyaf@ay from the current measured
height, which is why we use only the direction of the erroria torrection, and ignore the
magnitude. The correction is scaled such that the maximunecton is small enough to
induce smooth motions of the vehicle. The complete heigithesion process is shown in
algorithm(3.

Algorithm 4 Laser Height Estimation

Require: h;_; (previous height estimate)
Require: 1,11 (current and previous height measurements)
Require: v, 4 (previous velocity estimate)
Require: d (distance to previous discarded measurement)
it |(ry — re_1)/dt —v_y| > MAX_ACCELERATION then
h/ == ]Alt_l
d=0
else
h' = hyy + (re —re—-1)
end if
he = W +sgn(r, — h)a/(1 + exp(oqd — d))
return Ay, d

2.3 Visual Odometry

While the laser-based relative position estimation sotuts efficient and works surpris-
ingly well in 3D environments despite ti#¥) nature of the sensor, using a camera sensor

to compute relative position estimates is attractive fareased robustness in the face of
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significant3 D structure in the environment. Despite this appeal, camati@ahn be much
more difficult to work with due to the lack of range informaticand the large amount of
raw data. We have developed a stereo-vision based visuai@tdp solution which man-
ages to overcome these difficulties to provide relativetpmsestimates that are sufficient
to stabilize the MAV. This section provides an overview o¢ ttieveloped solution. For
a more complete description and analysis of the algorithrefdr the reader to Markus
Achtelik’s thesisl|[5].

In general, a single camera is sufficient for estimating #ative motion of the vehicle
by corresponding features from consecutive image framfesndugh feature correspon-
dences (at least 7-8) are available, the fundamental madsxribing the motion of the
camera can be computed. Decomposing this matrix yieldstatve rotation and transla-
tion motion of the camera. However, this estimate cannatlveshe scale of the motion,
just the relative degree of different motions![61]. While tlotation can be uniquely com-
puted with respect to this scalar factor, we can only comfhedranslational direction of

the motion, and not its magnitude.

To resolve this scale ambiguity, either scene knowledgedgssary, or two successive
views must have distinct vantage points and a sufficientigeldaseline between them,
since motion in the direction of the camera’s optical axisnz be computed accurately.
Given that scene knowledge for unknown environments isgllyi unavailable, and MAVs
often move slowly and forward with the camera facing fronttomomous navigation for
MAVs with a signle camera has proven to be very challengiefg(rto sectiofi 113). This
motivated our choice of a stereo camera to reconstruct thpdiion of environmental
features accurately. The stereo-rig not only enforcesainadistance between the camera
views, but also allows us to reconstruct the feature posstia a single time step, rather
than using consecutive frames from a monocular camera. igns#ittion,left and right
denote the images taken from the left and right stereo camespectively, as seen from

the MAV’s frame of reference.

Our approach for stereo visual odometry is outlined in figf® Image features are
first detected in thieft frame from the previous time-step (1). These features arefdund

in the previousight frame (2), enabling us to reconstruct their positions insgiace using
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Figure 2-9: Steps performed on each frame in the stereo visleametry algorithm: 1)
Perform feature detection. 2) Find correspondences betlgéieandright frame for depth
reconstruction. 3) Find correspondences between thequewand current frames. 4) Re-
peat step 2 on current frames. 5) Frame to frame motion estima

triangulation. Successfully reconstructed features laea tracked from the previousft
to the currenteft frame (3), and a similar reconstruction step is performedHe current
frames (4). This process results in two “clouds” of featutest relate the previous and
current views. With these correspondences, the quadsatgdtive motion in all @lof can

be computed in a least-squares sense in closed form (5).

2.3.1 Feature detection

Image features are locations in the image which are digfiretognizable such that finding
the correspondence between the same features in diffenagiess is possible. In general
image features can be any visually distinct pattern in thegen however for our purposes
we seek to find “corner-features” which are characterizedtlgng intensity gradients in
two directions. Feature detection is a basic image proocggzimitive underlying many
computer vision algorithms, and there are many optionsaaiwhich have different per-
formance and computational characteristics. Althoughr36€] and SURFI[13] features
are popular choices for visual feature detectors due to d@ise gith which they can be

corresponded, computing them fast enough for our purpasesoalern hardware remains
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computationally infeasible given the control requirenseoit our quadrotors discussed in
sectior L1l Instead, we adopted the FAST (Features frorel&ated Segment Test) |76]
feature detector, which was introduced by Rosten et al. R&THeature detector pro-
vides a good balance between fast speed, and feature qualibyder to avoid detecting
many distinct features that are in close geometric proyitoieach other, we down-sample
the image before running the feature-detector, and prdjedeature locations back to the
full size image after detection. Unfortunately, many spusi features are still detected by
FAST, leading to inaccurate feature-tracking results. h¢gdfore filter the FAST features
using their Harris corner-responsel[40]. The use of the FA&&ctor beforehand allows us
to compute the more computationally intensive image-gradiand corner-responses used
by the Harris detector only for the areas detected by the Fd&@ctor — a small subset of

the entire image.

Unfortunately, the combination of FAST and Harris metricgm still result in fea-
tures that are located in close proximity with other feagueeen for low-resolution images.
Spatial redundancy of features incurs unnecessary cotignahcost during the feature
matching from image to image and makes feature-trackirgg-@none. We therefore prune
our feature set by computing the distance between all fegtairs, eliminating one of the
features if the distance is less than a specified thresholuleWhis process theoretically
has a complexity of)(n?), the computation in practice is much faster because therfesat
are already presorted by the FAST feature detector. Therie@rruning take3-4ms for
about 500 feature candidates and leaves around 150 vatigdrdea After pruning out all
the undesired features, the remaining feature locatiomsedined to sub-pixel accuracy

using the OpenCV function cvFindCornerSubPix which reggiain additionadms.

2.3.2 Feature Correspondence

To correspond the features betweenldfeandright frames, as well as from the previous
to the current frames, we use the pyramidal implementatitmeoKLT optical flow tracker
available in OpenCV [[15]. This implementation allows usreck features robustly over

large baselines and is robust to the presence of motionBdurcorrespondences between

52



the left andright frames, error-checking is done at this stage by evaluatiegepipolar
constraint

Fxleft == 0:|:€ (26)

mght

wherex denotes the feature location in the respective frafes the fundamental matrix
pre-computed from the extrinsic calibration of the steigpande is a pre-defined amount

of acceptable noise.

2.3.3 Frame to frame motion estimation

Once we have the two sets of image features in both the prewand current pair of im-
ages with known correspondences, the features are projecte3D-space by triangulation
between the left and right cameras. Given two estimates efediure locations taken at
different times, we can estimate the relative motion froe phevious to the current time
using the closed form method proposed by Umeyama [97]. Thihou computes rotation
and translation separately, finding an optimal solution Ieast squares sense. Unfortu-
nately, least square methods are sensitive to outlierswentherefore use Umeyama’s
method to generate a hypothesis for the robust MSAC estinf@4¢, a refinement of the
popular RANSAC method. After finding a hypothesis with theximaum inlier set, the

solution is recomputed using all inliers.

2.3.4 Nonlinear motion optimization

As mentioned in the laser scan-matching section, small aneasent errors will accumu-
late over time, resulting in drifting position estimatesotime. However, because many
of the visual features remain visible across more than tvmseoutive frames, we can esti-
mate the vehicle motion across several frames to obtain awrerate estimates. This can
be done using bundle adjustment|[96] (shown in fiJure12-1Gere the basic idea is to

minimize the following cost function:

(X, Ry t;) ZZEXU,PX wih P= KR, Kt| @7

=0 j=0
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Figure 2-10: Bundle adjustment incorporates feature spoedences over a window of
consecutive frames.

where E'(x;;, P;X;) is the re-projection error due to the projection of the 3Btfee, X,
onto the camera’s image plane using jkh view, so as to obtain the 2D-point;;. Here,
m andn are the number of 3D-features and views respectively, whiles the intrinsic
camera matrix, which is assumed to be constant.

We are therefore seeking to find the optimal arrangement efe@ures and camera-
motion parameters so as to minimize the sum of the squanebjeetion errors. This prob-
lem can be solved using an iterative nonlinear least squae#isods, such as the technique
proposed by Levenberg-Marquardt. Although the cost famctn equatioriZl7 appears
simple, the problem has a huge parameter space. We havd aftdta + 6n parameters
to optimize — three parameters for each 3D-feature and senpeters for each view. In
addition, in each Levenberg-Marquardt step, at leas¢-projections have to be computed
per view. Computation in real-time therefore quickly beesnmnfeasible with such a large
parameter space. Fortunately, the problem has a sparstustrusince each 3D-feature
can be considered independent, and the projectioXy, afito z;; depends only on thg-th
view. This sparse-bundle-adjustment problem can be salsed) the generic package by
Lourakis and Argyros [59], which we used for our application

The standard bundle adjustment approach is susceptiblatlers in the data, and
because it is an iterative technique, good initial estismaie needed for the algorithm
to converge quickly. We avoid both problems by using the sbiiame-to-frame MSAC
motion estimates, as described in secfion2.3.3, as wdlleasinlier sets of 3D features.

Running bundle adjustment over all frames would quicklydléa computational in-
tractability. Instead, we pursue a sliding-window appigdmindle-adjusting only a win-
dow of the latest frames. By using the adjustment obtained from the old windsvan
initial estimate of the next bundle adjustment, we ensuag tite problem is sufficiently-

constrained while reducing the uncertainties due to noiRee presence of good initial
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estimates also reduces the number of optimization stegssany. Performing bundle ad-
justment for 150 features using a window sizewof 5 takes approximatel§0-50ms.

The feature correspondences necessary for bundle adpistnresfound by chaining the
matches from frame-to-frame. The number of features dshes over successive frames,
so new features are added at every time step. When the nawdegatre located close to

old features, the old ones are preferred.

2.4 Comparison

While both the laser and vision based relative positiomestion algorithms described
above provide estimates that enable indoor flight when coetbwith the rest of the system
described in chaptét 3, they are very different solutiorteécsame problem, with different
performance characteristics. Overall, we found that theeststimates obtained from the
laser data tended to have less drift as can be seen in figufe Paladdition, the laser
data requires less time to transmit over the wireless ang¢ha-matching algorithm is
able to process incoming scans at a faster rate resultingligday in its position estimates

as shown in TableZ2.1. The measurement delay is criticaltbdle flight. Finally, the

Computation Time | Bandwidth
Laser Scan-Matching| 5 ms/measurement 170 KB/s
Visual Odometry 65 ms/measurement 1300 KB/s

Table 2.1: Comparison of the computational and bandwidijirements of the laser and
vision based relative position estimation algorithms.

laser scan matching handles fast motion more easily. Ddastgnotion, the cameras can
experience significant motion blur, corrupting the staterestes. Much of this difference
is due to inherent differences in the active vs. passiveisgmsodalities. With sufficient
light, the exposure time for the stereo cameras could beceztito mitigate the effect of
fast motion, however that is unlikely to be possible in gahenvironments without much
larger lenses and a high power flash.

While the laser scan-matching currently seems to providiebperformance, the vi-

sual odometry natively provides estimates forGatlegrees of freedom, which is a major
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Figure 2-11: Comparison of the relative position estimétesy laser scan-matching and
visual odometry (Red) against ground truth (Blue) on sintilajectories.

advantage. The laser scan-matching shows remarkablenesilto3D structure in the
environment, however, it is unlikely that it will work in cgstetely unconstrained environ-
ments, such as a cave.

Both methods experience failure modes when there are ioguffienvironmental fea-
tures to perform data association. The laser scan-matdailsgn long hallways, where
readings in different places along the hallway are indggtishable. On the other hand
the visual odometry will fail in areas without distinctivetéensity features, such as when
looking at a blank wall. Fortunately, these failure modesiliefrom very different environ-
mental structures, which would indicate that the best perémce would be obtained by

using both relative position estimation algorithms siranéously.
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Chapter 3

System Modules

This chapter describes the complete system that enablescmous flight in indoor en-
vironments. Each module is a critical piece of the overadtem, and required for safe
and robust operation. The modules described in this chapéehighlighted in the blue
rectangle of the system diagram, repeated in figurk 3-1.

The planning and exploration module described in sedfi@was developed in collab-

oration with Ruijie He.

Ground [ siam H PIannerJ ~0.3Hz
Station
Relqt_ive Data Fusion [
Position Filter
Estimation
- Yy 10-40Hz
Obstacle Position
"LAvoidanoe Controller
- ~
Exteroceptive !
Sensors
Attitude
[ Controller @J 1000Hz

Helicopter

Figure 3-1: Schematic of our hierarchical sensing, cordgrml planning system repeated
for the reader’s convenience. At the base level, the onbidatéland controller (green)
creates a tight feedback loop to stabilize the MAV'’s pitcld aoll. The yellow modules
make up the real-time sensing and control loop that stasilihe MAV's pose at the local
level and avoids obstacles. Finally, the red modules pmoti@ high-level mapping and
planning functionalities.
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3.1 Communication

We developed the hierarchical software system shown ind[@tl as a set of independent
modules. Each software module runs in a separate procéss eitboard the MAV, or at
the ground station. The processes communicate using thewaight Communications
and Marshalling (LCM) library([4| 48], originally develogdor team MIT’s entry into
the DARPA Urban Challenge [67]. LCM uses UDP multicast tovte efficient, low-
latency communication without requiring a centralized.hibe lack of a centralized hub
is particularly important since it allows a separate clustgrocesses to run onboard the
MAV, without requiring all messages to traverse the wirslésk. However, by itself, LCM
does not handle transmissions over wireless links, sina@gt designed for use on high
bandwidth dedicated networks, and therefore does not seetrtect for lost or dropped
packets, expecting these events to be rare or due to comgedtinfortunately wireless
networks experience random drops due to interference er tahtors relatively frequently,

which makes error handling critical.

Instead of using the default UDP multicast scheme used in lo@&t the wireless link
between the MAV and the ground station, we create a poippiot tunnel that encapsu-
lates the LCM messages for transmission over the wirelegs Mhile using a standard
TCP stream for this tunnel would seem to be an obvious wayhe®e reliable transmis-
sion, TCP is known to provide poor performance in wirelesgrenments 1[99] due to the
assumption that dropped packets are a signal of congestilbarrthan random errors. As
a result, when TCP experiences a dropped packet, it will slown its transmission rate
in an attempt to be fair to other flows. This behavior is un@dse on a dedicated wireless
link since it reduces the throughput and adds a significaousutof latency for some pack-
ets. As a result, we instead turn to using a UDP datastreaimfarivard error correction
(FEC) [67] applied for reliability. FEC adds a set of paritggiets to the datastream that
can be used to reconstruct lost packets. The packets addstanbamount of overhead,
however as long as the aggregate bandwidth required doesebad the wireless link,
this solution provides low latency delivery of the time imd@l sensor data. To encode the

data stream we use low density parity check codes which gedvigh efficiency in both
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the amount of overhead and computation required to encatldecode the data.

3.2 Data Fusion Filter

While the relative position estimation algorithms desedlin the previous chapter provide
accurate and timely relative position estimates, to compioe full MAV state estimate,
including the velocities, we use an Extended Kalman FilE<K) to fuse the relative po-
sition estimates with the acceleration readings from th& IMhis setup is inspired by the
standard practice for making use of GPS and an IMU on outdédsJ51]. Using a data
fusion filter has several advantages over directly usingdlaive position estimates and
their derivatives to control the vehicle. While the IMU r&agb drift significantly and are
therefore not useful over extended time periods, they atilgver short time periods and
allow us to improve our estimate of the vehicle velocities.

Another advantage to using the EKF for data fusion is thattiges a clean way to in-
terpolate the state estimates used by the feedback centrHis is particularly important
since the wireless link and processing time adds a variadd&ydo the raw measurements,
which can cause problems for controlling the vehicle. Tfeees in our EKF formulation,
we perform the measurement updates asynchronously whaheyearrive, while the mo-
tion model prediction step is performed on a fixed clock. Hatup is also robust against

measurements that get lost completely due to wirelesSenégrce.

3.2.1 Extended Kalman Filter Background

The Kalman filter [53] is an efficient recursive filtering algbm for estimating the prob-
ability distribution over the state of a dynamic systemlazhthe belief state, from a stream
of noisy measurements. The algorithm alternates betweercasaipdate, where the next
state is predicted from the current state and control ird,ameasuremenipdate where
a sensor measurement corrects the current belief. In tlete$pgase where the state tran-
sition and observation models are linear and subject to Sausoise, the Kalman filter
provides the optimal belief estimates for the system in stisgquares sense.

However, in many real-world applications, the assumptiwat the observations are
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linear functions of the state and that the state transitiorction is a linear function of
the state and control breaks down. For example, a simpld rabking translational and
rotational actions cannot be described by linear statesittans. Plain Kalman filters are

therefore inapplicable to many robotics problems, suclstisating the state of our MAV.

The extended Kalman filter was developed to overcome somkesktfundamental
limitations of the pure Kalman filter. The EKF allows the samference algorithm to
operate with non-linear transition and observation fuoriby linearizing these functions
around the current mean estimate. More formally, let thie staand observation; at time

t be given by the following functions:

st = g(se—1, up, wy), wy ~ N(0, W), (3.1)

and 2t = h(stv qt)v gt ~ N(Ov Qt)v (32)

Here, u; refers to the control action, and, andg; are random, unobservable noise vari-
ables. The functiong andh represent the non-linear control and measurement models

respectively.

In the EKF, the belief state is represented by a Gaussiandigon, parameterized by a
mean estimatey;, and a covariance matriX,;, which represents the associated uncertainty.
The EKF computes the state distribution at titme two steps: a process step that is based
only on the control input;, and the belief state in the previous time stgp, %), as well

as a measurement step that incorporates measurepterdbtain the new belief estimate.

The process step is calculated as follows:

By = g(He—1, ), (3.3)
it - Gtzt_lG;F —|‘ ‘/tWt‘/tT, (34)

where G, is the Jacobian ofy with respect toxr andV; is the Jacobian of} with re-
spect tow. For convenience, we denofg = V,W, V. The result is the predicted be-

lief state, represented by the predicted mean estimatnd predicted covariance,.
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Algorithm 5 The Extended Kalman Filter algorithm

Require: Previous belief statg; 1, ¥;_;, actionu;, observatior;
Lty = g(ue, fie—1)

Y = C_;tzt—lG%F_‘i‘ R,

Ky, =S H (HXH + Q)

pe = Ty + K (20 — b))

Et — (I - Kth)Et

return  bel (s, 3¢)

o akrwn

Similarly, the measurement step is calculated as follows:

e = T + Ky (Hyft, — 2), (3.5)
Zt - ([ - Kth)it, (36)
K, =S HT (HSHT + Q). (3.7)

where H; is the Jacobian of with respect tos. K; is known as the Kalman gain, which
represents the mapping of the measuremenfsom measurement space to state space
that will yield the Minimum Mean-Square Error (MMSE) estiteaThe EKF algorithm is

summarized in Algorithrl5.

3.2.2 Process Model

Ouir filter is a standard EKF, implemented using the open sdiFglter library [3]. We use
the filter to estimate the positions, velocities, and acedilens of the vehicle, along with

the biases in the IMU. More specifically we represent theesdat
s = [29,9y7,29,0, o, 1,3 b, 20,6, g‘b,@b,féb,yb,éb,biasi,biasy,biasé,bias¢,biasw] (3.8)

The position and orientatiofx?, y9, 29,0, ¢, 1, ) are represented in the global coordi-
nate frame, with the origin placed where the vehicle isahized, and angles represented
using Euler angles. The velocities and accelerations gmesented in the body frame,
where the origin is located at the center of body with:tkaxis pointing towards the front

of the vehicley to the left, and: up.
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In sectior3.B we present a dynamics model used for conttothwmodels the relation
between the control inputs and the vehicle accelerationsiléthis model is sufficiently
accurate for control, the errors are sufficiently large cared the measurements from the
IMU that for simplicity we do not include the control inputs the process model. As a

result, the nonlinear state update equations:faandy, are:

x =a? |+ At(EP | cos(0,1) — 9P sin(0,_1)) + we, we ~ N(0,0,)

ytg = yiq—1 + At(fg—l Sin<6t—1) + 95—1 COS(et—l)) + Wy, Wy ~ N<07 Uy) (3.9)

whereAt is the filter update period, ang, , are zero mean Gaussian noise terms. The rest

of the position and the linear velocity states are updatedisgrete integration:
Vi = Vi1 + AtVt—l T Wy, Wy N(O, Uv)

wherev = (29,0, 6,4, 2%, 1, 2%] is a sub-vector of the vehicle stateFinally, the angular
velocities, linear accelerations, and bias terms are epldaith a zero mean Gaussian noise
term :

a; = a;_1 + Wa, wa ~ N(0,04) (3.10)

wherea = [0, ¢, 1), %, ij?, 5%, bias®, bias?, bias®, bias®, bias?).

3.2.3 Measurement Model

To incorporate the measurements into the filter, we createddular design that allows us
to use the same basic filter setup for different combinatidrsensors. The IMU is treated

as if it measures the accelerations and attitude plus tloeiassd bias.

& + bias};

Ziyy = | 5+ biast (3.11)
pt + bias

t
T
t
i
t
i
t
p
t
T

rt + bias
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Adding the relative position estimates to the filter is notejas straightforward since
we much choose whether to treat the estimates as eitheigmositvelocity measurements.
The relative position estimation modules measure the ristdetween sensor measure-
ments, which gives us the option to either integrate thelséive measurements into po-
sition measurements, or divide by the time between measmsnto get velocity mea-
surements. In general, since the wireless link can add anawik delay to the sensor
measurements we prefer to integrate the relative posistimates given by either laser
scan-matching or visual odometry alone as position measmts. However, when we
want to fuse all three sensing modalities, laser, visiod,iaartial, we cannot add both the
laser and vision as positions since they will not necesshgl consistent with each other
and may be in very different coordinate systems. This is dubé fact that the position
estimates of each sensor are the result of an integraticemyserrors will be propagated
along indefinitely. This is particularly problematic if tieeare errors i, which results in
the incoming measurements being in different coordinat®és. If this happens, we do not
want the state estimate to be a weighted average of the twalioate-system estimates,
which is what the filter would compute if we naively add bothpasition measurements
without rotating the coordinate frames into alignment. & linew the transformation be-
tween the two coordinate-systems, we could transform thesarements before adding
the measurements to the filter, however, we do not have atwdsis transformation. We
instead choose to add the laser scan-matching estimatesitisppmeasurements, and the
visual odometry estimates as velocity measurements. He# Ecan-matching does not

measure pitch and roll, so the laser measurements are given a
Zpos = 24, yh, 20, 0']" (3.12)

whereas the visual odometry measures all 6 degrees of freedo
Zvern = [ U 4 étyptaf’t]T (3.13)

We chose to use the laser odometry for position because allyhad less drift than the

visual odometry estimate.
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The remaining design work for the data fusion filter was tedatne reasonable vari-
ance parameters for the process and measurement model$oééeto make all the pro-
cess and measurement covariance matrices diagonal tdHemiumber of parameters that
needed to be tuned. For the measurement covariances ofdatieerosition estimates, we
assumed the variance was a scalar multiple of the estimatediance computed by the
odometry module described in section2.2.3. Despite thelfiying assumption of diag-
onal covariances, there were still a very large number cdipaters that must be tuned to
achieve good filter performance. Doing this process by hamaldvhave been a very time
consuming and error prone process, so we learned the vanmmameters using a method

similar to the one described in [5].

3.2.4 Filter Tuning

To learn the variance parameters, we make use of the higblyae state estimates avail-
able when flying inside of our Vicon [98] motion capture eoviment. The motion capture
system consists of a calibrated array of cameras which teftdctive markers placed on
the vehicle. The system provides the sub-millimeter adeypsasition and orientation es-
timates of the vehicle at20H z, which can be considered “ground truth” data. We collect
a log containing the data fusion module’s input dats given byz; 7, zpos, andzy gy,
alongside the ground truth state valuégrom motion capture. We then replay the log to
compute the output of the EKF with parameter veéiprcontaining the variance parame-
terso from equation§3]9, 310 abd 31 10:

5= K(d;0) (3.14)

To evaluate the filter performance we must choose a costitumdhat penalizes de-
viations from the ground truth values. In the setting ddsmtiin Abbeel et al’'s work [5],
they used a high quality GPS unit as the ground truth measmsnior a lower quality
GPS unit. They compared several cost functions and fouridited&MS error between the
state estimates computed with the lower quality GPS andrtheng truth provided the best

results. In our setting, the ground truth position estimatél not be in the same coordi-
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nate frame as our filter’'s estimate due to drift in the relaposition estimates, as discussed
above. This will cause a small error at the beginning of tigedancur a disproportionately
large cost compared to an error near the end of the log. Siere ts no reason to prefer
errors at one time versus another, we must treat the erratgirandé differently from the
rest of the states. For these states, we penalize errorgtiveemotionA,; = [A?, AY AY]

rather than absolute position.

Af = (.Tt — xt—l) COS(@t_l) — (yt — yt—l) sin(@t_l) (315)
AY = (v — x1)sin(0_1) + (s — yi—1) cos(0;_1) (3.16)
AV =0, -0, (3.17)

Since only a subset of the states are used for control (thearesestimated to improve
the estimates of the others), fer.,; = [z, p,7,%,79,Z]", we compare the values directly,
and ignore the remaining states. Finally, to reduce ovémgit and encourage smooth
state estimates we incorporate a smoothness term in oufurwsion. The resulting cost

function for timet is:

C'(51, 311, 57, 511) = 1A = Al + [[Brest = Sreallz2 + 1150 = 5eal2 (3.18)

The cost for the entire log'(s, s*) is the summation of the cost for each individual
time step. Since each of the state variables have differgts and scales, we also include

weighting parameters that balance out the contributioraohestate.

We then use stochastic gradient descent (SGD) to optimézeditiance parameters with
respect to this cost function. SGD is particularly attnaesince it does not require us to
explicitly compute the performance gradients, which wdagdjuite challenging due to the
complex interactions of the variance parameters with thmated states, and the nonlinear
cost function. The SGD algorithm follows the cost surfacadggnt in expectation and is
guaranteed to converge to a local optima. While other ogaition methods might be

faster, the optimization is a one-time cost, so ease of impfgation was chosen over
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performance. The final parameter filter tuning algorithmrisspnted out in algorithid 6.
We initialize the variance parameters by computing theavene of the difference between

the input measurement data and the ground truth estimates.

Algorithm 6 The Filter Tuning Algorithm
Require: d (the data to be filtered)
Require: s* (ground truth state estimates)
Require: o, 7 (noise and learning rater parameters)
Require: ©, «— O, (initial guess for variances)
while Average Cost Decreasds
#perturb parameters:
@p = @b+N(O,U)
#compute state estimates:

§b = K(d, @b)

5,= K(d;6,)

#compute costs:

Cp = C(gb, S*)

¢, = C(5,,5")

#update variances:

Z = @p — @b

O, =0y —alc, —cp)z
end while

The parameter learning algorithm generally converges aft®uple hours of compu-
tation time depending on the length of the input log useds #tile to significantly reduce
the error on a held out test log as shown in figurd 3-2. Ovetadl tuned EKF produces
state estimates that are significantly more accurate tlediitér performance obtained with
variance parameters chosen by hand. For example, on stagsadf real flight data, the
average velocity error from the filter using learned paramsetvas half that of the filter
using hand-chosen parameters. In addition, and perhaps im@ortantly, the velocity
estimate is much smoother without being any more delayed.

Figure[3-2(a) demonstrates the quality of our EKF stateredtis. We compared the
EKF state estimates with ground-truth state estimategdeddby the Vicon motion cap-
ture system, and found that the estimates originating filugridser range scans match the
ground-truth values closely in both position and velocifirroughout thel minute flight,
the average distance between the two position estimateessthatl.5cm, and the aver-

age velocity error waB.015m/s.
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Figure 3-2: (a) Comparison of the ground truth velocity@)lwith the estimate from the
EKF before(red) and after(green) optimization. (b) Theou#y error for the same trajec-
tory.

3.3 Position Control

While the primary challenge for enabling indoor flight wagahing sufficiently accurate
real-time sensing, a smooth, stable and accurate comtiokkdso necessary. While UAVs
operating outdoors can generally afford to hover with an R&M®r of several meters,
indoor environments are much more constrained, requiringvar precision on the order
of tens of centimeters. While there has been a tremendousrgrabwork on performing

system identification and designing controllers over trery¢l8) 43| 79, 20] , this section
describes our relatively simple method for designing thiicle controller, which was

sufficient for our purposes.

The Ascending Technology quadrotors are already equipjitachttitude stabilization,
which uses an onboard IMU and processor to stabilize the MAitth and rolll[38]. This
stabilizer tames the nastiest portions of the quadrotatiemely fast, nonlinear, and un-
stable dynamics [43], allowing us to focus on stabilizing ttmaining degrees of freedom
in position and orientation. While the onboard controllien@ifies the problem substan-
tially, the quadrotor is still underdamped, requiring ¢areontroller design to stabilize the

vehicle.
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The onboard controller takes 4 inputs:
U = [Ugp, Uy, Ut, Ug| (3.19)

whereu, andu,, denote the desired set points for the onboard PD controklaopitch
and roll respectively. Unlike these two control inputg sets the desired rotational velocity
in heading rather than specifying an absolute orientatkinally «; controls the desired

baseline rotation rate for all four motors in the motor speeatroller.

On a quadrotor, the vehicle acceleration is proportiontdiégitch angle of the vehicle.

i oc cos(o) (3.20)
ij” o cos(z) (3.21)

Therefore, by making a small angle assumption, the quadsatgnamics can be approxi-

mated as a simpl&*¢ order linear system with the following equations:

fL"b = ]{?¢U¢ + b¢ zZ= ktut + bt

i7° = kyuy + by 0 = koug + by (3.22)

wherei® andj® are the resultant accelerations relative to the body coatdiframe, and
k. andb, are model parameters that are functions of the underlyiygipal system such
as mass and inertias.

To learn the parameters of this model we collect a log of iquiput data by flying
inside a Vicon[98] motion capture system while recording phlot’'s control inputs. We
first characterize the delay in each channel by computingtbss-correlation between
the acceleration and the associated control input for agrafglelays. We then align the
accelerations with the control input, and use regressiaomopute the parameters of the
control model. We use regularized least squares regrefsigrio mitigate over-fitting.
The learned model is able to predict the accelerations w#isanable accuracy as shown
by the green line in figure—3.3. The figure shows a comparistndsn the predictions of

our model and the measured accelerations.
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Figure 3-3: Comparison of the measured accelerations in-tlieection (blue) with the
accelerations predicted by the dynamics models on a helgsidata set. The predictions
for other axes looks very similar. The green line shows tlegligtions from the dynamics
model in equatiof 3.22, while the red line shows the prealictiof the model with damping
in equatior-3.23.

In addition to the simple control model described in equaid?2 we experimented

with several other more complicated models such as

flf’b = ]{5¢U¢ + k‘xllf + b¢ zZ= ktut + kzz + bt

i = kyuy + kg + by 0 = kgug + by (3.23)

which included damping terms. When we fit data to this mode,feund that the pa-
rameters on the damping terms were approximately zero. ddnfirmed our previous
gualitative observation as pilots that the system is urataped. The predictions made by
this dynamics model are shown as the red line in Figure 3.&revive can see that the

predictions made by the two models are almost identical.

As mentioned in sectidn].1 the underdamped nature of theraysieans that propor-
tional control techniques alone will be insufficient to hotlee vehicle, since any delay in
the system will cause unstable oscillations. Fortunatbly,state estimates computed by

the data fusion module provide accurate, low delay velaoiftyrmation that can be used
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by a derivative term in the feedback controller to add dampathe system.
We also experimented with other even more complicated nsadeich included cross-

coupling terms as well:

2 = kyu + kg + by Z=keu+k:Z+0b:

yb = kyu + kyy + by 6= k;u + b, (3.24)

wherek, is a vector of parameters, one for each control input. Aserddimped model, we
found that the additional terms seemed to have a negligifdete We thought that these
terms might have more complex and potentially nonlinearaxttions with the system, so
we experimented with using kernel-regression methods tbdidata. While the regular-
ized least squares regression method that we employ hefglede the amount of over-
fitting, the more complicated regression methods still fivey the training data slightly,

and performed worse than the simple linear models on heldestitdata. The results of
these experiments are shown in tdblé 3.1. Since none oftdreative dynamics models or
regression methods significantly improved the fit of the datadecided to use the simple
2m? order dynamics model without damping or cross-couplingitein the design of our

feedback controller.
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Figure 3-4: Demonstration of the trajectory following pmrhance with commanded po-
sition (blue) and actual position (green). The vehicle wammanded to move along the
X-axis. (a) shows the position of the vehicle alongside thared trajectory and (b) shows
the cross-range error for this trajectory. The maximumsrasge deviation wasm. The
vehicle was flying autonomously with the state estimategggad by our system.
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Regression Type Dynamics Model|  Training error| Testing error
linear simple2"? order 0.086340 0.136492
linear damping 0.084906 0.133933
linear damping+cross 0.084570 0.131545
2nd degree poly simple2"? order 0.086305 0.138765
2" degree poly damping 0.084708 0.137631
2nd degree poly damping+cross 0.083843 0.160786
3¢ degree poly simple2™? order 0.086306 0.138572
374 degree poly damping 0.084739 0.138129
37 degree poly damping+cross 0.083762 0.163946

Table 3.1: Comparison of the performance of different dyicarmodels with parameters
fit by different regression methods. We fit the parameterdiefdynamics model using
kernel regression with the kernel designated inRegression Typeolumn. Thesimple
2nd order model corresponds to equatibn3.22, while trenpingmodel corresponds to
equatior.3.23, andamping+crossorresponds to equati@n 3124

Once we obtained the parameters for the system dynamicsiatieg[3.22, we use the
Matlab® linear quadratic regulator (LQR) toolbox to find appropeifgedback gains for
the dynamics model. Despite the contrast between the sggncimmplex dynamics of the
vehicle and the model’s apparent simplicity, this conaoichieves a stable, precise hover.
The controller initially had a fairly large steady stateogrwhich was mitigated by adding
a low gain integral feedback term around the LQR controllée final controller is able to
hover the quadrotor, and accurately follow trajectorieshwinder6cm cross-range error.
An example of the vehicle following a simple trajectory, rdowith the cross-range error

is shown in Figur&3]3.

3.4 SLAM

The odometry and data fusion EKF combine to provide locatiyusate state estimates
which enable the vehicle to hover and move around room sizeidogmments, however, as
the vehicle moves around larger areas, small errors in tmetty will accumulate, result-
ing in position drift over time. With the MAVs fast dynamicarnceled out by lower layers

we can leverage SLAM algorithms originally developed fdreatplatforms, to close loops
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and create globally consistent maps. The SLAM process dmiidtegrated directly inside
of the EKF data fusion filter described above, however, ttosla likely add a significant
amount of computational delay to the real-time loop sineefther state would expand
to include the positions of environmental features. Irte@a chose to keep the SLAM
process separate, and have it provide corrections for Hidinee position estimates. This
allows the SLAM algorithm to take much more time to integrat®rmation than would

be possible if it was in the real-time loop. In addition, tlystem is modular, allowing

different SLAM algorithms to be tested without modifyingetrest of the system.

While there has been a tremendous amount of research on Slgkvitams, the vast
majority of the algorithms have focused on buildin maps. There has been success
using3D laser scanners f&D SLAM [21,168,139], but these sensors are still outside the
realm of possibility for indoor MAVsS. More recently, sevegaoups have begun to achieve
success with using either monocular [28, 56] or stereo casr[@®] for performing SLAM.
These systems appear to work quite well in practice and welugther consideration how-
ever none of the publicly available implementations scalatge enough environments to
be of use in our situation. Perhaps the most exciting saiubdhe loop closure problem
has recently been proposed by Cummins et al who use a punedaegnce based method
to close loops in large scale environments [26]. In recerrkwiiey have combined this
approach with a high performance visual odometry systenetfopm large scale real-time

topometric SLAM with very impressive results.

Despite the recent progress in visual SLAM, we decided ntadkle the problem of
building our own3D SLAM system. Instead we made use of the publicly available im
plementation of the GMapping [34] algorithm that is avaidgin the OpenSlam repository
[71], which performs slam i2D. Despite the fact that the MAV operates in the fD
environment, the algorithm works surprisingly well andvesras a proof of concept for
implementing SLAM on a MAV. In the future, we hope to replab&stmodule with a more
capable fully3D SLAM approach.

GMapping is an efficient Rao-Blackwellized particle filtelnish learns grid maps from
laser range data. We chose it due to its outstanding accuesdytime performance, and

its ability to handle changes to the map that occur due togihgrheight and attitude.
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While the algorithm worked reasonably well out of the box, mvade modifications that
improved its performance when usedib environments on a MAV. The motion model for
the particles in the GMapping algorithm was based on a stdndation model for ground

robots with wheel odometry. However, since we use the odgnestimates computed by
the laser scan-matching module, we modified the motion modaelopagate the particles
using the uncertainties computed by the odometry modukeerahan using fixed noise

terms.

In addition to the motion model, we modified the map represt@rt so that the map
updates rapidly in response to changes in height. The #gocomputes the probability
that each grid cell is occupied or free based on the numbeénesta laser beam reflects off,
or passes through the cell. If a particular cell has been aityrtimes, the algorithm places
a very high confidence in the fact that the cell is occupiedweier, if the MAV changes
heights, and the cell becomes part of free space, this corkdis no longer warranted.
With the original map representation, the laser must passitfin the cell at least as many
times as it was hit before the algorithm will be convincedt ttinee cell is actually now
free, resulting in a very slow adaptation of the map. As alteste modified the map
representation to cap the maximum confidence for each gtidadlewing it to change

from occupied to free (or visa-versa) more rapidly.

With these modifications, we are able to create large scafesrafthe environment
which will be shown in chaptdil 4. GMapping usually take$o 2 seconds to process
incoming laser scans which allows it to be run online, butas suitable to be directly
incorporated into the real-time control loop. Instead tiMapping algorithm periodically
sends position corrections to the data fusion EKF to cottexdrift in the position esti-
mates due to errors in the odometry. Since the position ciiores are delayed significantly
from when the measurement upon which they were based was, takemust account for
this delay when we incorporate the correction. This is doneetroactively modifying the
appropriate position estimate in the state history. Allifatodometry estimates are then re-
computed from this corrected position, resulting in glbpabnsistent state estimates. By
incorporating the SLAM corrections after the fact, we allthe state estimates to be pro-

cessed with low enough delay to control the MAV, while stitorporating the information
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from SLAM to ensure drift free position estimates.

3.5 Planning and Exploration

In addition to allowing us to compute globally consisteatstestimates, the map generated
by the SLAM algorithm is used for planning autonomous actin the vehicle. To achieve
full autonomy, we require a high-level planner that enakidesMAV to either explore en-
vironments autonomously. While exploration has been vesdearched in ground robotics,
differences between air and ground vehicles, as discussedction LI, require differ-
ent considerations when deciding where to go next. In pdaicthe need to constantly
provide control signals to the MAV means that while we see&xplore the environment,
we must ensure that the MAV always remains well-localizedir @gorithm trades off
the speed with which our robot completes coverage of the@mvient with safety. For
example when confronted with a large open area, an exporaigorithm for a ground
robot would drive directly into the open area, thereby urecmg the maximum number
of unexplored cells whereas our algorithm moves the velicfositions in which known
environmental features are visible as well as unexploredsarThese positions allow the
vehicle to localize itself, however they uncover less ofuhexplored environment.

We use a modified definition of frontiers, first proposedLin(lQo choose possible
positions in free space where the MAV should fly to next suct thexplores previously
unexplored regions in the environment. In_[100], free ct#ikt are adjacent to unknown
cells are grouped into frontier regions as possible goalshfe robot. We use a similar
method to identify frontier regions, however, for each afgt frontier regions, we seek to
find a frontier pose that maximizes both the amount of uneeplspace that is expected to
be explored and the ability of the MAV to localize itself, whiwe define below.

The first step in our exploration algorithm is to identify daate frontier regions.
Frontier regions are areas in the map where there is a dnawdition between free and
unexplored cells. Since the walls in occupancy maps suchasetgenerated by GMap-
ping may have small gaps, the set of regions is then filteredrtmve spurious frontiers.

The algorithm must then identify the pose within these fiemtegions that provides the
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best tradeoff between localization ability, and uncovexesh. Searching over all poses in
the frontier regions is too slow to allow the algorithm to ramline, so frontier poses are
sampled in each region. For each sample, two metrics aretosedculate a weight asso-
ciated with each sample. First, the amount of unexploredestieat the MAV will explore
can be calculated by simulating the laser sensor data thi&V is expected to obtain at
the sampled pose, given the latest map. By extracting thébauof grid cells within the
laser’s field-of-view that are currently unexplored anddiivg by the maximum number of
grid cells covered by a laser range scan, we get a normalieéghtyZ,, (x) in the range

of [0, 1] for the amount of unexplored information that the MAV is eg{eel to observe.

Using this metric alone will result in frontier points thataat the extreme borders of
the map facing the unexplored region, since such a pose &iimize the number of grid
cells in the laser’s field-of-view that are unexplored. Utidoately, this pose provides no
guarantees that the MAV will be able to localize itself, grtbe unknown environment
may not contain enough structure for the relative positistimeation algorithms to match
against. In the extreme case, the MAV could be facing an opaneswhere the nearest
walls are beyond the maximum range of the laser scannenggikie MAV no information

with which to localize itself.

We therefore add an additional “Sensor Uncertainty” mefiist coined in([89]. Sen-
sor uncertainty is used to quantify the MAV’s ability to Idea itself at different positions
in the map. A sensor uncertainty field maps locations the map to expected informa-
tion gain,x — Zgy(z), by calculating the difference in entropy of the prior andteoior

distribution
Zsu(z) = H(p(z)) — H(p(z[2)) (3.25)

where entropy is
Hip@) =~ [ plo) ogpla)ds (3.26)

Shown in [41], the measure of information gain for laser datgpically insensitive to the

choice of prior. We therefore use a constant pgi@r) = X, such thatd (p(z)) = C, as
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Figure 3-5: The blue pointers indicate frontiers that alkhv MAV to explore and self-
localize simultaneously. The laser’s field-of-view at tbdsontiers is drawn in brown.
Notice that at the edges of free space, the chosen frontisisgn the vehicle such that the
expected laser scan spans both unexplored regions forrakiplvand unique obstacles for
localization.

well as Bayes’ rule to computgx|z) = p(z|x) - p(z), such that

Tsulx) = C — H(p(=|))%o (3.27)

We compute the entropy of z|x) by deterministically extracting a set of sigma points [50],
or samples along the main axes of the current covariancea&stj and observing how
they are transformed when they are passed through the neeasotr function. For each
sample, we simulate the sensor measurements and find thabgitybof observing the
sensor measurement at each of the sigma points. The lowprdhbability of observation
at the neighboring sigma points, the smaller the entrophefaosterior distribution, and
therefore the greater the information gain. Locations Wit information gain correspond
to locations that generate sensor measurements that wet éxpeaximize the localization
accuracy of the vehicle. After normalizing this with thegsrentropy,Zs,(z) is also a

weight that lies in the range ¢d, 1].

Using these two weights, we are able to find frontiers thatimepe both the explo-
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ration and localization capabilities of the MAV. In eachrit@r region, we sample a set of
candidate poses, and accept as the goal point for that rggmeample that maximizes the
weighted sum of the two information metrics, such that) = 7, (z) + Zsy(z). Fig-
ure[3-5 shows the frontier points generated accordinglgre/ipoints are chosen such that
the expected laser scan will both uncover unexplored regaod observe known obstacles,
enabling the MAV to simultaneously explore and localize.

To achieve autonomous exploration of an unknown enviroriyiiea planner uses the
nearest frontier as its goal and computes a path using thalgaamic programming based
path planner in the Carmen Robot Navigation Toolkit [2]. Ttuatier extraction modules
run fast enough that they are able to generate plans, arldmepline as the vehicle moves

through the environment and the map is updated.

3.6 Obstacle Avoidance

The final necessary piece of our system is the obstacle aw@daodule. While the planner
plans paths that should keep the vehicle a safe distanceadnynobstacles, things do not
always work out as planned. For example, the map updateslansl fake several seconds
to generate, during which time new obstacles can appeaodeght changes. In addition,
while the integral term in the controller should eliminatades in the vehicle position, it
is not always perfect. As a result the vehicle will sometiragay dangerously close to
obstacles. Even the slightest bump can result in crashesl@amadge the MAV, so it is
critical to ensure that it always maintains a safe distarm® fany obstacles.

Since the map updates can have high latency, resulting inpatma&is out of date, we
use the raw point clou® generated by the laser and stereo in the body-centeredicated
to perform obstacle avoidance. By computing the obstaclations in the body frame, we
allow the obstacle avoidance module to be independent ofetteof the modules in the
system. When the obstacle avoidance module detects tlsatioib iclose to an obstacle it
sends a message directly to the control module which shiésentire trajectory that the
vehicle is trying to follow. The obstacle avoidance moduwesinot attempt to reason about

the current goal of the robot, instead relying on the plagmiodule to re-plan if necessary
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to get the robot back on course.

To determine the direction and magnitude of the correctequired, we compute a
vector which is the weighted sum of the repulsion forces fbthee points that are too
close. More concretely, Igi € P be the location of a point in the body coordinate frame,
and letd be the maximum distance for which we want to apply a corracifoF-, the set

of points withind of the vehicle is not empty, we compute the correction vectas
d
pi€Pc bi

This vector is scaled by a constant factor that depends omatbéat which we send correc-
tions and the maximum expected velocity of the vehicle shahthe correction is applied

gradually and does not overwhelm the position controller.
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Chapter 4

Experiments

In this chapter, we present results demonstrating the dépatf our system. We inte-
grated the suite of technologies that were described iniquewchapters to perform fully
autonomous navigation and exploration in a variety of wtstired and unknown indoor
environments. The experiments were performed u3idiferent hardware configurations
with different sensor suites. We first describe the hardwassl before presenting the re-
sults from flight tests. To get a full picture of our system ati@n, we suggest that the
reader also view the videos taken of these experimentsaiaiat:

http://qgroups.csall.mt.edu/rrg/videos. htm.

4.1 Hardware

We addressed the problem of autonomous indoor flight as phnaasoftware challenge,
focusing on algorithms rather than exotic hardware. To ¢mat, we used consumer off-
the-shelf hardware throughout the system.

Our system was primarily built around the Hummingbird quéolr helicopter designed
by Ascending Technologies GmBH [1]. This vehicle provideduith an extremely robust,
stable, and safe platform with which to experiment. Thisusthess was critical for the
development of the system, as any attempts at performingomtlight will inevitably
result in crashes. With the Hummingbird quadrotor, evennwilie did experience crashes,

the damage was usually minimal, only requiring replaceréttte soft plastic rotors.
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Figure 4-1: Our laser-equipped quadrotor helicopter. fBgnand computation compo-
nents include a Hokuyo Laser Range-finder (1), laser-deftpatirrors for altitude (2), a
monocular camera (3), an IMU (4),

The Hummingbird is able to carry rough®j0g of payload, which allowed us to carry

either a laser range scanner, or a stereo camera rig, bubtiot b

4.1.1 Laser Configuration

The first vehicle that we achieved autonomous flight withyehim Figurd4-1, was equipped
with a Gumstix |[;|7] microcomputer and a lightweight Hokuy®] UTM-30LX laser
range-finder. The laser range-finder providexr@® field-of-view at40H z, up to an ef-
fective range oB0m. We deflect some of the laser beams downwards using a righe ang
mirror to estimate the vehicle’s height, while the rest esedifor localization. In earlier ex-
periments we also used the shorter range (5.6m) Hokuyo URG:0which worked well
for small environments, but would not allow the MAV to loaiin larger environments.
All computation is done offboard with the Gumstix used spkel obtain sensor data and
transmit data and commands between the vehicle and thedystation over 802.11g. A
lightweight webcam was mounted as well to obtain first pekgdeo of the flight, however

it was not useful for localization due to the low frame ratad distortion caused by the

rolling shutter.
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Figure 4-2: Our quadrotor helicopter equipped with a steegoera rig, Intel Aton® based
onboard computer and USB Wifi dongle.

4.1.2 Stereo Configuration

The second vehicle to achieve autonomous flight, shown inreig=2, was equipped with
a synchronized pair of lightweight uEye LE WVGA monochrorrféBJcameras@S] and a
more powerful embedded computer. We chose to use monocltvameras due to their su-
perior light sensitivity and lower data rates. The fast mobf the vehicle mandates the use
of cameras with global shutters, which eliminates the fil#tyi of using cheap webcam
cameras such as the one mounted on the laser vehicle. bwteyfaith the new cameras
required an onboard computer with full high-speed USB2@abdity, which meant that
we had to search for a replacement for the Gumstix microcoenpu

Intel recently introduced its Atofd platform for mobile devices, an ideal choice for
our application. Compared to other platforms, such as tlegsgpped with Via or Arm
processors, the Atom platform has some major advantagese 8ie processor uses the
x86 architecture, standard operating systems and evenimpoetant, standard drivers for
devices like cameras, and WiFi dongles could be used. Tltizrbe important especially
in cases where only binary drivers are available. Furtheeriatel’s performance libraries

like IPP (Integrated Performance Primitives,|[23]) and M@lath Kernel Library, Hﬁl])

are available for the Atom processor which significantly@&ases the speed of tasks such
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Figure 4-3: Our Intel Aton® based flight computer.

as image compression or large matrix operations. For exa@rtip use of IPP for JPEG

compression yielded an order of magnitude speedup.

Lippert Embedded [33] recently packaged an Intel Atom pseoeinto a Computer-
On-Module (COM) form factor. This device has dimensionsayd&8 x 65mm, weighs
26¢, but includes d.6Ghz Atom processor, chipset, and: B of RAM. All I/O and inter-
faces such as USB are only available on a high density 22@gumnector which required
us to design a carrier-board to provide access to the negaasarfaces. Altogether with
the carrier board, the complete computer weighs a toté)@f The complete computer is
shown in FiguréZ43. We attached a standard Linksys 802. 5 Wifi dongle to provide
a high bandwidth link to the ground-station.

In addition to the improved performance of the new computer the Gumstix, per-
haps the most important change was that since it ran the sparatmg system and en-
vironment as the base-station, it became easy to move pexésat had been run on the
base-station to run onboard the quadrotor, without hawragal with cross-compilation or
library availability issues. Moving the position contelland data fusion module onboard
reduced the delay, and made the vehicle less susceptibltoes due to the wireless

connection.
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Figure 4-4: The Asctec Pelican, outfitted with both the lagege-finder and stereo camera.
A third color camera is mounted in the center.

4.1.3 Combined Configuration

While the two platforms described above were very capald¢h the laser and stereo
sensors have environments where they are unable to lo¢chbzeéehicle. As a result, we
sought to combine the two sensing modalities on a singleclehiUnfortunately, as it
was we were pushing the payload limits of the Hummingbirddgator, so a new vehicle
was needed to be able to support the larger payloads. InbooHiion with Ascending
Technologies we built a larger quadrotor named the Asctéicad®e shown in Figuré&Z4i4
that is able to carry th800g payload containing the stereo pair, laser scanner, compute
and all supporting cables, connectors, and mounting haedwWwée new vehicle uses larger
10-inch rotors and more powerful motors compared to the hungipird. The larger rotors

increase the maximal dimension of the quadrotor ffgiam to 75¢m.

4.2 Flight Tests

We performed a number of experiments with each of the semsdglities described in
this thesis, testing the performance of our systems inréiffiereal world environments. For

each sensor system, we thoroughly tested each of the mduufsng inside the motion
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capture studio described in section3.2.4 before venturitggreal world environments.
These tests ensured that the vehicle is able to accurateiy fignall environment where
we have access to the ground truth state of the vehicle faugigbg, and as a “safety
net” in case something goes wrong. Once we were convincéthiiaystem was working

sufficiently well, we moved to fly in other larger, and less stvained environments.

4.2.1 Laser Only

Autonomous navigation in open lobbies To test the large scale navigation capabilities
of our laser based system, we flew the vehicle around the fit éif MIT’s Stata Center.
The vehicle was not given a prior map of the environment, agw dutonomously using
only sensors onboard the MAV. In this experiment, the vehighs guided by a human op-
erator clicking high-level goals in the map that was beinidf bureal-time, after which the
planner plans the best path to the goal. The vehicle was albbedlize itself and fly stably
throughout the environment, and Figlire4.2.1 shows thetiaa generated by the SLAM
algorithm at the end of the experiment. As can be seen frormtqe the Stata Center has
a very free-form floor plan which would prevent the use of gpeenvironmental assump-
tions such as straight hallways, as was donelin [19] and [B8Fpite these challenges,
our system worked quite well, allowing the vehicle to fly lithie battery was exhausted.

During the8 minute flight, the vehicle flew a distance Zii8.6m.

Figure 4-5: Map of the first floor of MIT’s Stata center constad by the vehicle during
autonomous flight. The blue dots indicate goal points seteby the user.
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Autonomous navigation in cluttered environments While unstructured, the first floor
is a wide open environment without mugh structure, which allows oD map assump-
tion to hold fairly well. To verify that the laser system idtest against significant amounts
of 3D structure, we next tested our system by flying through thetesked lab space shown
in the insert of Figuré€ 4-6(p), operating close to the groukthis height, chairs, desks,
robots, plants, and other objects in the area cause the A3-sgrtional scan obtained by
the laser range-finder to vary dramatically with changeseigit, pitch, and roll. The
resultant SLAM map of the environment is shown in Figure d}6{The gray features lit-
tered within the otherwise free space denote the objectscthtter the environment and
are occasionally sensed by the laser range-finder. Desgteltttered environment, our
vehicle was able to localize itself and maintain a stabléfifigr 6 minutes over a distance

of 44.6m, a feat that would not have been possible with a static mamgstson.

(a) Map of MIT Stata Center, 3rd Floor. (b) Map of MIT Stata Center, base-
ment.

Figure 4-6: (a) Map of a cluttered lab space with significddtsBucture, the blue dots are
the high level goals selected by the user. (b) Map of conmstchoffice hallway generated
while performing completely autonomous exploration.

Autonomous exploration in office hallways Finally, to demonstrate fully autonomous
operation of the vehicle, we closed the loop with the exploraalgorithms described

in sectionf3.b. The MAV was tasked to explore the hallway emment shown in Fig-
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ure[4-6(0). Once the MAV took off it was completely autonoreowith no human control
over the MAV’s actions as it explored the unknown environmmdime MAV continuously
searched for new frontier goals and generated paths to éineas of new information. Fig-
ure[4-6(b) shows the map built fromminute autonomous flight, after traveling a distance

of 75.8m.

4.2.2 Stereo Only

Since we did not develop a visual slam solution to perform piragy or close loops and
correct for drift in the visual odometry algorithm, we weret mble to test the large scale
autonomous flight capabilities of the vehicle with steretyoirowever, we were able to
verify that we can close the loop and stabilize the vehiciagisnly vision and inertial
sensing in a number of environments. In fact, these expatsnerified the generality of
our multi-layered sensing architectureresmodificationsvere required to switch between
using the laser scan-matching and the visual odometry. Gerldata rates, and slightly
higher noise of the visual odometry made the vehicle oseiltaore, but achieving closed
loop control on the first try was very gratifying. Figure ¥Hfosvs the comparison of the

position and velocity estimates to the ground truth statieneses from motion capture.

position X vs. y speed x vs. time

speed x [m/s]

i i i i i i
— 0 5 10 15 20 25 30
£ time [s]

> speed y vs. time

visual odometry
-4 visual odometry +

bundle adjustment
ground truth

speed y [m/s]

i i i i i i i i i
-3 -2 -1 0 1 2 3 0 5 10 15 20 25 30
x [m] time [s]

Figure 4-7: Position and speed over 1200 frames estimatesiniyyle visual odometry
from frame to frame (green) and by optimization with bundlgiatment (blue) compared
to ground truth (red). The vehicle was flying with positiomtol based on the estimates
from bundle adjustment
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In addition to these quantitative experiments performethéecontrolled motion cap-
ture environment, we also flew the vehicle autonomously iargety of other environments.
Figure[4-8 shows the vehicle operating under vision basetfr@ion several of the envi-

ronments in which we tested.

Figure 4-8: Pictures of the quadrotor flying autonomousiyngistereo vision only in a
variety of environments.

4.2.3 Laser and Stereo

The system presented in this thesis was used in our winniing & Team MIT-Ascending
Technologies in the 2009 International Aerial Robotics petition (IARC), hosted by
the Association of Unmanned Vehicle Systems InternatiGhdVSl). Our team used the
Asctec Pelican quadrotor described above and employedthplete system presented in
this thesis for state estimation, control and mapping. Weldped an additional set of

new modules that performed tasks specific to the competifitiese modules fit into the
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system at the top of the system hierarchy, and thereforeatideed to be concerned with
any of the state-estimation or control issues.

The 5th mission of the International Aerial Robotics Conitpmt was founded on the
premise of advancing the state-of-the-art in indoor aeolabtics. After organizing 4 out-
door missions over a span of nearly two decades)thmission was started in 2009. The
5™ mission was based around a disaster recovery scenariog\wHdAV was to be used
to help diagnose a fault in a melting down nuclear power plahie MAV was given the
task of entering the plant through an open window and seagdhie plant to find a control
panel that contained critical information for the team afteicians trying to diagnose the
fault in the nuclear reactor. Our vehicle was able to congpleé mission in its entirety
thereby winning the competition. In tH® year history of the IARC, this was the first time
that a team managed to complete the mission in its first year.

The actual competition was held in a gym, where artificialsvakere set up to simulate
the interior of a powerplant. An overhead view of & 15m competition arena is shown
in Figure[4.Z.B. Prior to the mission, the arena layout waswawn. The specific mission

entailed the following tasks:
1. Takeoff roughly3m from the opening of the arena.
2. Identify and fly into the arena throughi alm window opening.

3. Explore the unknown environment and search for the cbpaoel. The correct

gauge on the control panel was designated by a steady blue LED
4. Autonomously designate and send imagery of the gauge fodges.

The mission had to be performed completely autonomousindeul0 minutes. Once
the operator told the vehicle to start, no human input wasnaatl until the mission was
complete. Each team was givémttempts at completing the mission

One of the most challenging parts of the mission was flyingugh the window to
enter the arena. The window opening was diilym wider than the width of the Pelican
guadrotor. Assuming that we were able to perfectly identify center of the window,

the dimensions were such that we could only affor®an maximum deviation from the
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desired straight line trajectory through the window. Howrvhis is well within the 6cm
error of our controller described in sectibnl3.3. Any offgethe position controller, or
error in the localization of the window center could easdgult in a catastrophic crash.

To detect the window, we decided to use the laser scannentrgte & point cloud
of the window from which we could extract the location of thmdow. The laser scanner
only measures th2D plane around the vehicle, so to generate3hepoint cloud of the
window, we used the vehicle to perform a vertical “sweep’hite laser. With the accurate
position estimates generated by our state estimationrayste were able to register the set
of laser scans into the den3® point cloud shown in Figurg 4-9(b). T3 point cloud
allowed us to identify the window location by explicitly sehing for a region in the data
which had a roughlyix1m rectangular hole in an otherwise connected flat surface. The
resulting window location is designated by the pink linegrigure[4-9(0). Once we de-
tected the location of the window, the planning module ungtied the vehicle to fly through
a set of waypoints that took the vehicle through the centéh@fvindow along a path that

was perpendicular to the window. A photo of the vehicle ekaguthis path is shown in

Figure[4-9(d).

(b)
Figure 4-9: (a) A photo of our MAV autonomously flying througte 1x1m window to

enter the competition arena. (b) D rendering of the point cloud used to detect the
window. The detected position of the window is designatethieypink lines.

The window detection, and window entry routine describealalperformed flawlessly
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at the IARC competition. We were able to successfully dedadtfly through the window
over ten times during the course of the competition. Thiggoerance is a clear demon-
stration of the accuracy and precision of the state estsrgg@erated by our system. If
the state estimates had more noise or delay, it would not bsille to perform precision
maneuvers such as flying through the narrow window. The tyuaflthe 3D point cloud is
another clear demonstration of the accuracy of our staimatgts. While we do not have
ground truth information for th8 D shape of the environment, we can visually inspect the

point cloud and see that the walls are not significantly distb

Figure 4-10: Photo of the IARC control panel. This is one & ttames from the video
stream sent to the judges.

Once through the window, the vehicle switched into exploratmode, and began
searching the environment for the control panel. The velselarched the building us-
ing an exploration strategy based on the one described iios&ES. During the first three
attempts, the vehicle explored much of the environment dvewwe were unable to reach
the room with the control panel. On the way to the room, thezeevgeveral doors which
were exactlylm wide. We had not anticipated that the vehicle would have tthgough
openings that small other than the window into the arena esbad set the “safety regions”
for the obstacle avoidance and path planning modules satlhiby thought the doorways

were impassable. After adjusting parameters, on our faattdmpt we managed to enter
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the control room and take the picture of the control panehshia [4=10, which completed
the mission. The path followed by the vehicle during the ssstul attempt is shown on
top of the constructed map in Figure 4+12. We completed thesion in just4d.5 minutes,
however, we were lucky that the exploration strategy rangiatacided to go left at the
junction near the end of the initial hallway.

We were very happy with the performance of our vehicle, aedsifstem presented in
this thesis. The system provided a very robust and stabti®ptaon top of which we were
able to build the necessary additional components thaiedaout the mission. All of these
components were linked into the system at the top level ohtearchy, which meant that
the modules could take as much time as they needed, and dithwetto be concerned
with stabilizing the vehicle or any of the other real-timencerns that make developing

algorithms for MAVs patrticularly challenging.
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Figure 4-11: An overhead view of the competition arena usedhe 2009 AUVSI Inter-
national Aerial Robotics Competition* mission.

Figure 4-12: The map built by the vehicle as it explored thBR@\arena searching for the
control panel. White areas are obstacles (or no-fly zonémjklis free space, and gray is
unexplored. Starting from the red “X” on the left, the greerelshows the path taken by
the vehicle. The blue and yellow cross is the final positiomthef vehicle. The magenta
square in front of the vehicle is the location of the autonastpdesignated control panel.
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Chapter 5

Dense 3D Environment Modeling

In this chapter | discuss initial progress towards develg@ more completgD model of
the environment around the MAV. | first present the motivatior tackling this problem
and related work, before describing our approach.

While the2 D model used throughout the system described in previousetsegdlowed
us to successfully stabilize and operate the vehickinit did not allow us tgplanactions
in 3D. For example, when the vehicle encountered an obstacleasiahtable, while it
was perfectly capable of flying over the table if instructedld so by a human operator
(who had a3D model in their head), with @D world model, the vehicles path planner
could only plan a path around the table, rather than over &.avé particularly interested
in tackling problems that enable planning, sensing androbint the full 3D environment,
a domain that is unique to autonomous air vehicles. WithHaatdapability, operating in an
environment such as the one shown in fiduré 5-1 would likelyni@ossible.

To plan actions ir3 D, one needs to create a more suitable representation ofthieren
ment. Specifically this representation should represenfuth 3D environment including
overhangs and concavities such as windows and doorwaysldihan, the representation
must be sufficiently dense that the planner does not miskakiecide to fly through a wall.

While 2D laser scanners provide very rich information about therenvnent around
the vehicle, they contain no information regarding the aave and below its sweep.
However, since the vehicle is able to change height, we deg@lplan actions that explore

the space above and below the vehicle, such that we can degase point clouds of
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Figure 5-1: A room in a partially collapsed building. Flyingthis room would likely be
impossible with &D world model. [Photo credit: Sean Green. Picture taken dapsing
rural dwelling in Ora SC]

the surrounding environment, such as the one shown in figiteHowever, moving the
vehicle is slow, and potentially dangerous since the nsraeflecting beams above and
below the vehicle will only detect obstacles immediatelg\aband below the vehicle, and

could easily miss an obstacle such as a low hanging light.

Fortunately, cameras capture data that contains richritdton about the fulBD en-
vironment around the vehicle, although extracting thisinfation is notoriously difficult,
even for stereo imagery. This is particularly true in enmireents with large featureless
areas such as blank walls, which can be common in many indmmoements. The exis-
tence of these types of environments eliminates purelyfedtased approaches, such as in
common visual SLAM algorithm EIZS]. In addition, the @omments pose a problem
for correlation based dense sterea| [42]. So while, thesbadsthave been used in very
impressive work by Kagami et al|:JL52] and Mordohai et m [65ing them on a MAV
platform could prove dangerous. In our work, we combine #iset and camera sensors, so

as to leverage each of their strengths.
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Figure 5-2: Thes D point cloud obtained by the vehicle performing a “heighesy’.
5.1 Background

Over the years there has been considerable work on stereatlahgs. Most of this work
has focused on either sparse feature based stereo such dswesed in sectidn 2.3, or
dense correlation based approaches which seek to estineadepth of every pixel in one
image by matching a window around the pixel to a window in theosid. However, more
recently, researchers have used global image informationfer the depth of pixels for
which there is no unambiguous correspondence between :j&ge30/)87]. This infer-
ence can framed as a Markov Random Field(MRF), which batatieethe estimate of the
individual pixel’'s depth with the likelihood that it is atelsame depth as similar neighbor-
ing pixels. This allows regions of low confidence to be filladriom neighboring regions
with high confidence in a principled manner. Unfortunatélyde algorithms discretize the
space of disparities such that the resolution obtainedily faw. This effect is particu-
larly problematic for horizontal planes such as the groplashe, which would look like a

staircase instead of a flat plane.

A more promising approach for our use is the work by Saxend €fi8d] dubbed
“Make3D”, which uses monocular cues to predict B structure of a scene. While

the major focus of their work is on learning a classifier mddat is able to predict depth
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given only a single image, the classifier is used in conjamcivith a MRF model that in-
fers the overall scene structure from the classifier's ndegyth predictions. Their model
segments the image into superpixels which are assumed tiauhar faces of the environ-
ment. Although they make the assumption that the supegparel planar, unlike the belief
propagation based stereo algorithms mentioned above dineypt make the assumption
that the planes are fronto-parallel. The MRF model thernmalthem to jointly reason
about the most likely depth and orientation of each planergihe depth estimates pre-
dicted from monocular features as well as the relations éetwneighboring planes, such
as coplanarity, connectedness, etc. While the output afakgorithm is visually pleasing,
due to the inherent scale ambiguity of monocular image duesself the algorithm would
be challenging to use for planning. Fortunately as they glbin subsequent work, the
MREF formulation allows them use depth information from ateensing modalities, such
as stereo triangulation in addition to the monocular cueégyEhowed that the combination
outperforms both individual approaches.

While Saxena et al's approach sought to predict the depth ®ngle image, to plan
paths for the MAV, we seek to build a consist&i? representation of the entire environ-
ment, including areas out of the the current field of view & damera. In addition, we
would like to incrementally build and improve the map as th&Wmoves through the

environment.

5.2 Our Approach

As an initial step towards solving this problem, we develogpproach that integrates both
the laser and camera sensors so as to leverage on theirtresgéengths. The laser gives
us very dense measurements in the 2D plane around the vehitle stereo gives sparse
measurements of visually distinct features3in. Finally monocular image cues give us
information about the global structure of the environment.

We start by using monocular image cues to over-segment theament into triangu-
lar patches which respect image intensity boundaries. Bjgpting the current set of laser

and stereo points onto the image, we obtain measuremertie tddation and orientation
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for some of these planar patches. We then use a MRF to infendse likely configura-
tion of all triangular patches. Like Make3D, the MRF enca@&s neighboring patches to
be connected and/or coplanar, while still respecting thasmements from the stereo and
laser. Where our work differs from Make3D, is that our MRF ralsdthe full location of
each surface patch, rather than the depth with respect tathera. By estimating the full
location without tying each triangle to a particular image, can incrementally grow the

triangular mesh over time as new images and range measuiearane.

5.2.1 Triangular Segmentation

In order to efficiently model the environment around the gkhiwe need a representation
that is compact, yet descriptive enough to model arbiyrasflaped surfaces. To this end,
we chose a triangle mesh representation due to its simpéiodl generality. A key issue in
this selection is the fact that both the image space projeetnd the fulBD representation
are simple and easy to reason about. When the current tiangsh is projected into a
subsequent image, it will result in a triangular segmeotatif the regions of the image it
covers.

Unfortunately image segmentation algorithms generalBakran image into a set of
amorphous blobs which attempt to capture distinct objeandaries. While these blobs
can be used easily in image space, such as in Make3D, represgrem in3 D is unwieldy.
As a result, our first step was to develop a method for segmgath image into a set of
triangular regions that respect object boundaries to wigbime tolerance.

We first segment the image using the algorithm developed laeRszwalb et all [31],
which gives us a segmentation such as the one shown in figdre Bie segmentation
algorithm return the pixel boundaries between regionschvhie join into a set of contours
using a binary image edge-linking routine.

We then apply the Douglas-Peucker line simplification [2gp&athm to obtain a set
of piecewise linear line-segments that approximate thensegation boundaries as shown
in figure[5=4. The algorithm preserves all junctions3afr more regions, and ensures that

the approximate boundaries do not differ from the originahiore than a given number
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Figure 5-3: The original image segmented IE [31].

of pixels. To remove small regions we merge endpoints theatathin a given distance of

each other.

Figure 5-4: The Segmented image after applying the simatitia routines.

Finally, we break these polygonal regions into trianglegpbyforming a constrained
Delauney triangulation using the open source Triangle agek[85], resulting in the final
triangular segmentation shown in figlrels-5.

For subsequent images after the first image is processetlighgular segmentation is
only applied in regions of the image which are not coveredieydurrent triangular mesh.
These regions are obtained by projecting the current metshtio@ new image to mark the

covered regions. The uncovered regions will be composeteoborders of the image,
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Figure 5-5: The final triangular segmentation of the imaghe Ted lines are the nodes,
and connectivity in the associated MRF.

locations where new surfaces enter the field of view due toecamrmotion, and regions
that were previously occluded by a foreground object. Thetn@ngles are assumed to be
adjacent to their neighbor from the old mesh in image spadaléfhis assumption could
pose problems due to incorrect correspondences, we asbemeliicle is well localized,

such that object boundaries in the new and old image matd¢hregisonable accuracy.

5.2.2 Data Association

In addition to the monocular image information used for tegrsentation, we have the
range measurements obtained from the laser and stereo.eTihese measurements, we
assume that range measurements are points on a surfaceesbsethe camera images.
We associate each measurement with a specific triangulayeipatch by projecting the
range measurement into the current camera image to idevttityh triangle it falls in. We
then project the range measurement to the poit/inusing the current location of the
vehicle.

This 3D point serves as a soft constraint on the locationsoa#sociated triangular
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patch in our MRF. An important feature of performing the dataociation in this manner
is that it allows us to add measurements for planar patchiestat image was captured.
For example, to measure the vehicle height above the suriecdeflect some of the laser
beams downwards. These beams hit surfaces that are outfedlthef view of the camera.
However, as the vehicle moves forward, they will hit surkatieat were in the field of
view in previous camera images, providing very useful mesments for previously empty
triangular patches. This effect is seen in the measurenagite bottom of the image in
figure[5-6

Figure 5-6: Laser points projected onto the camera image.pbimt color is a function of
the distance from the camera (red is close).

5.2.3 Inference

Given a set of planar patches, some of which have associatethpeasurements, we wish
to infer the most likely configuration of all patches. Sinoeng patches do not have enough
point measurements, the problem is under-constrained ekewnot all configurations are
equally likely. Adjacent patches are likely to be connecexdtept in the case of an oc-
clusion boundary. Furthermore, adjacent patches areyltkebe close to coplanar since
we over-segment the images. This inference problem canrbrufated as a Markov ran-
dom field, with potential functions characterizing the likeod of a given configuration of

neighboring patches.
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The MRF has three types of variables:
1. z € R3 are range measurement nodes
2. e € |0, 1] are discontinuity nodes

3. y € ®? are patch nodes

The first two types of nodes, ande, are computed directly from the data, and are fixed
given the observed data. The last type of nagegre the variables that we are trying to
estimate from the data. We parameterize the planar palghthe3 D position of its three
corners. The variablesrepresent known locations which should be on the surfagetep
sented by the associated planar pajclrinally, the edge nodesrepresent the likelihood
of a discontinuity or fold occurring between two planar pats. We compute this likeli-
hood as a function of the number of images in which the segatientalgorithm indicates
that the two patches are part of the same segment. A normadjaaation of these types

of nodes is shown in figuie 3-7.

Figure 5-7: Part of the MRF used to model the environment.

Each clique of nodes has an associated potential functiseritééng the likelihood of a

surface configuration given by:

101



U(y;|Z;) = exp(— Z d(z,yi)) (5.1)

2;€2Z;
whereZ; is the set of measured ranges attached togadndd(z;, y;) is the distance from

point z; to the planar patcl;, and

(b(yivyj|6i,j) = €$P(—€i,jf(yu yj)) (5.2)

where f(y;, y;) is a function of the angle between the normal vectors of tre gilanes,
and the distance between the adjacent corners. The firsit@dtencourages the model to
fit the data well, while the second potential encourages tghicsolutions. The resulting
overall likelihood for the entire model is obtained takihg product of all clique potentials.
The MREF is therefore defined as

=2

N

i=1 ij=1

P(ylze)

wherer(z, F) is the normalization constant (partition function).

To initialize the model, we set all;, for which Z; # () to be the least-squares fit of the
measured data. For all other patches, we assume that threrement consists of vertical
walls and a flat floor, and use the vehicle’s current height,lager scan to set their initial
position and orientation.

While exact inference on belief graphs with cycles has beevegm to be NP-complete,
there are a number of approximate algorithms that have demmrsto work well in prac-
tice. We hope that we will be able to use one of these apprdiomanethods, such as
loopy belief propagation. However, the continuous valuadables and non-linear poten-
tial functions make applying standard algorithms difficldientifying a method to perform

inference in our model is left for future work.
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Chapter 6

Object Tracking

While much of the work in this thesis focused on enabling a M&\ocalize and control
itself in indoor environments, this chapter describes geatliracking system that would
allow the MAV to follow a person or other designated objecttzsy move through the
environment.

We wished to make our tracking system general, without mglyin specific features
such as color, shape, or motion to identify the object to bekied. This precludes us-
ing general object detection algorithms, such as “peoplectiers” to initialize and track
the target objects. Instead, we focused on object trackatgng on a human operator to
detect the initial appearance of each object in the scenmkthem track the object in suc-
cessive frames. While object tracking has been studiechexigy in the computer vision
community, attempting to track objects from a camera malptea MAV poses unique
challenges that prevent us from using existing work diyecflo perform object tracking

from a MAV platform one must handle:
1. Fast camera motion from an unsteady MAV platform
2. Low resolution and low frame-rate cameras due to weigtiteamdwidth constraints
3. Small objects, since the MAV will usually be observing tigect from a distance.

These challenges are in addition to the usual visual trgadallenges of changing appear-

ance and lighting. These challenges eliminate many of ttleniques for object tracking
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that are common in the literature. Low resolution and smijécts size make perform-
ing descriptor based tracking [102] difficult since the algeto be tracked will generally
not have enough pixels associated with them to generatdiaisnf number of features to
track.

Even more challenging than the low resolution is the fastezranmotion (combined
with low frame rates) which prevents the use of backgrouriraation methods | [55],
and also leads to failure when using common tracking algmstsuch as mean-shift track-
ing [22], since they are not able to adapt fast enough to leattd! camera motion. Fast
camera motion also limits the amount of temporal smoothirag tan be done to average
multiple noisy estimates of the object location in the imasyece the location in the image
can change drastically between frames. A survey of trackiethods for other difficult
situations is given in[73].

In order to meet the challenges of object tracking from a MAatfprm, we developed
a new object tracking system which explicitly handles ths faotion of the vehicle.We
developed a modified version of the classifier-based adaptigemble tracker, developed
by Avidan [11]. Our algorithm, which we call Agile Ensemblea€king (AET), uses the
same object appearance classifier; however, instead af osan-shift to track the object
across frames, we use a more robust, particle-filter bassggdsan filter approach that it is
able to handle the fast motion of the MAV-mounted camera. [8Mbuir approach does not
provide completely autonomous operation, it significangiguces the amount of attention

required from the operator for the MAV to track an object owere.

6.1 Learning Object Appearance Models

Once an initial estimate of the target object in an imageesiified by a human operator,
we use a machine learning classifier to learn a model of thectbjappearance. The
classifier is trained to distinguish pixels that belong te divject from background pixels.
To train the classifier, we assume that the object is locdzighin a knownn x m sub-

block of the image; pixels within that sub-block are givesitive labels, and pixels outside

that sub-block are given negative labels. Each pixel isriesd byd local features, e.g.,
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local color features and a histogram of local oriented gnaidieatures [27]. Each pixel
at image locatiop; is therefore a separate training instance consistingdeflenensional
feature vectok; € X and a label;; € Y. To distinguish the object from the background,
we learn a classifier that predicts the label for each pixeétan the local image features.
Following Avidan’s work, we use a boosting method inspirgdAalaBoost [82] to learn
this classifier. AdaBoost requires a weak classifier, whidhis algorithm is implemented

as a linear separating hyper-plamesuch that

§(x;) = h(x;) = signh”x;) (6.1)

wherey(x) is the classifier output label for instaneeThe separating hyper-plane for a set
of examples is computed using weighted least squares. ®ak alassifier is then boosted
to learn an ensemble of classifigls= {h,, ..., hx} with associated weights,, . . ., ak.

K is the total number of classifiers that are maintained by ldp@r@hm. These weights are

chosen iteratively, as shown in AlgoritHh 7.

Algorithm 7 : ADABOOST

Require: N training instance$x;, y; }
1: Initialize weights{w;}X, to be+
2. fork=1...Kdo
3:  Normalize{w;}¥ , to sum tol

4:  Train weak classifieh,,

5 err= ZlewAhk(xi) — i

6: —lOgl err

7: Updatew = geek i) vl for j — 1
8: end for

9: return H(x;) = Zo‘khk X;)

In order to capture the appearance characteristics of atctodaf different scales, we
train a separate ensemble of classifiers for a range of imaajess We then classify the
pixels of a new image using the multi-scale, boosted, enkentassifier, such that each
pixel receives a (normalized) weighted vote for each latwehfeach classifier based on the
local image features at each pixel. The output of the classgfia new image where each

pixel has an associated likelihood value that it belongbhéatacked object.
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Figure[6-1(a) illustrates an example training image, whieegpixels in the inner block
are positive training instances and the pixels in the outeckbare negative training in-
stances. FigurE_8-1(b) shows the weighted classifier resgptmthe same image after
training. Notice that pixels along the sharply distinctaraboundaries have the greatest

classifier response.

(a) Original Image (b) Ensemble Classifier Response

Figure 6-1: (a) An example training sub-block. The pixelsha smaller, inner block are

assumed to be positive training instances, and the pixelseirouter block are negative
training instances. (b) The response of the weighted lasssacross the sub-image of the
detected vehicle. The intensity of each pixel is the liketiti of belonging to the object as
provided by the classifier.

During tracking, the appearance of both the object and thkdvaund will vary over
time; for instance, the orientation of edge features wikrdpe as objects rotate in the
image frame. We therefore continually learn new classifiens the incoming images.
After tracking has been performed on each image, the imagsed as a new training
instance for learning new classifiers. Using boosting, Bhbest classifiers are retained
from the currenty classifiers, whilek’ — B additional classifiers are trained and added to
the set of weak classifiers. This process of updating thsifilexs is shown in Algorithrl8.
In order to ensure that this retraining does not result inifh dver time away from the
original image, we also investigated a variation where &stubf the originak classifiers
are kept, regardless of the performance of this classiflesesiat the current time step. This
modification would ensure that there always exist at leastesdassifiers that are known

to be correct.
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Algorithm 8 : ADABOOST ONLINE UPDATE

Require: N training instance$x;, y; }, existing strong classifielf;,, = {h;, . ..

1: Initialize weights{w;}, to be+

2: Hout = {(D}

3:fork=1...Bdo

4:  Normalize{w;}¥ , to sum tol

5. for h; € H;, do

6: Computeerrj = szil w,|hj(xl) — yz‘
7:  end for

8: Chooseh € H;, with minimumérr

9 a= %loglg/g\’"

10:  Removeh from H,, and add ta,,;

11:  Updatew; = w;e®P™)-%lfori=1...n
12: end for

13: fork=B+1...K do

14:  Normalize{w;}Y, to sum tol

15:  Train weak classifieh, as in ADABOOST
16: Add hy to H,,,

17: end for

18: return H,,;

7hK}

6.2

In the original ensemble tracker [11], the estimate of thipats location is found using
mean-shift on the likelihood image computed from the cfassiesponse. Starting from
the previous target rectangle, mean-shift uses a hilltilg technique to find the: x n
rectangular region which contains the greatest aggregagonse. While this approach

works quite well for relatively stationary cameras, we fduhat the mean-shift approach

Image Space Object Tracking

was unable to handle the fast motion of our MAV platform.

to update the position estimate of the object. We incorgoaat estimate of the camera
ego-motion as a prior for predicting the location of the obja a subsequent image. This
ego-motion estimate is essential for compensating foregiptable motions of the camera,
which would otherwise cause the tracker to lose track of thjead. The attitude of the
vehicle, as estimated by its onboard IMU, was too noisy twigean adequate estimate
of this ego-motion. Instead we estimate it directly from itliagery by computing optical

flow between the entire previous and current images. We nskefithe Pyramidal-Lucas-

As a result, we modified the tracking algorithm to use a plaritter based Bayes filter
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Kanade optical flow implementation available in the OpenG¥¢kage![25]. The optical
flow algorithm computes a sparse setfofeature matche$p' ™', p/}/_,, wherep!~! is

the2D pixel location of feature in the imagel; ;, andp! is its corresponding location in
image!; at the next time-step. Using these feature matches, we tamaés the camera

ego-motion as an & x 2 affine transformation matrid such that:

P~ 1 pl A (6.2)

This affine transformation captures translation, rotatsmaling, and shearing effects
in image space. Due to the height of the vehicle, and theyphar ground surface, an

affine transformation is generally a reasonable approxamat

Since some of the feature matches may be wrong or correspand\ing objects, we
refine the ego-motion estimate by performing expectati@ximization (EM) to identify
the affine transformation that best explains the apparaneca motion. Other methods
such as RANSAC could also be used. The affine transformatios then used in the
motion model of a Bayes filter, while the learned object apgeeae modeH is used in the
associated sensor model. We use a particle filter to appedgithe posterior distribution

p(P¢|z0.t) according to

P(Pe]20:4) = ap(2e|py) / P(Pt|Pi—1)P(Pt-1]20:4—1)dt. (6.3)
Xi—1

wherep; is the location of the object in the image at time; is the object measurement
calculated from the image at timep(p;|p:—1) iS our motion modelp(z|p;) is our sensor

model, and(p;_1|20.+—1) iS the prior distribution of the object’s location.

The object measurement is obtained by using the learned object appearance model
to classify the image at time The classifier outputs a real value in the interall] for
each pixelg; in the image, and Figufe8-1(b) is a sample measurement. €dsps model

p(z:|p:) can therefore be characterized as follows,

1+e, q: = Pt,
= i .~ N(0,0,), 6.4
z(a)[pr { 0+ e, otherwise, © (0,02) (6.4)
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wherez;(q;) is the response of the classifier at pixgl Equatior 64 essentially predicts
that the classifier will respond with hat the predicted locatiop; in the image, and
everywhere else, where the measurements have Gaussiannoiche model is clearly
approximate since the noise is not Gaussian (and measutega@nnever exceed 1), but

the Gaussian model worked well experimentally.

It is computationally expensive to run the classifier on thigre image. Hence, we only
run the classifier in the vicinity of the current particledilimean estimate, and assume that
the object has a minimal likelihood of being at all other limas in the image. Addition-
ally, we smooth the classifier responsgacross the image using a Gaussian blur operator
to obtain a spatially smooth likelihood map, and each pariegiven a weight equal to
the value in the Gaussian-blurred probability image atitation in the image. Although
this Gaussian smoothing creates minor correlations betieage pixels, we continue to
assume that the likelihood of object detection at each pex@ldependent; experimentally
the Gaussian smoothing of the classifier responses led te rabust object tracking even
with this independence assumption, and more closely matocbheGaussian model of the

classifier.

The motion modep(p;|p;—1) is equal to the ego-motion estimated from optical flow

with additive Gaussian noise
Dbt = | 1 piy [A+dp 0y~ N(0,0p) (6.5)

Algorithm [@ presents the complete Agile Ensemble Trackilggprthm. For clarity,
although the algorithm is presented as if the images arenahgo the algorithm at the
start, on the real system, the images are actually procésseal-time as they are streamed

from the vehicle.

In contrast to more conventional filtering techniques swctha Kalman filter [53], the
particle filter is better at modeling the non-linearitieghe sensor and motion models. In
contrast to ground vehicles and fixed-wing aircraft thategatly have stable attitudes, the
attitude of the MAV is particularly dynamic and non-line&requent attitude changes of

the MAV would cause very large object displacements in thaegen
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Table[61(b) illustrates the benefits of the particle filtelsing the modified motion
model, we were able to maintain a track of the person in Figtlléb) for over 2 minutes,
requiring human intervention only once when the persortlheftframe for a few seconds.
In contrast, a much higher rate of human intervention toqe#e lost tracks was required

when the original (non-optical-flow-based) motion preidictwas used.

Algorithm 9 : AGILE ENSEMBLE TRACKING
Require: T video framed; ... I, initial object bounding box;
1: Learn initial strong classifief/; from I; andr; using ADABOOST
2. for I, =1,...Ir do
3: Compute ego-motion estimatefrom 1;_; to [,
4:  Propagate image space particle locations uging
5. UseH,_; to update the likelihood of each particle and perform imaioce sampling

6: Use filter's maximum likelihood estimate as prediction aftemgler;
7. ComputeH, using ADABOOST ONLINE UPDATE
8: end for

6.3 Tracking Analysis

Human intervention is still required to ensure that the cligcontinuously being tracked,
to potentially restart the tracker when it fails, and toialize the tracker when new objects
of interest appear. We evaluated the tracker under diff@@nfigurations, including with
and without the motion prediction given by optical flow, wiahd without retraining, as
well as retaining different numbers of original classifievge tested the object tracker on
very different targets across a wide variety of scenes, mrgggthe number of times that
the estimate of the object’s location diverged from harzkled, ground-truth data.

The easiest object tracking problem was the vehicle fronthmae, shown in Fig-
ure[B-2(a). This data set contained 17 seconds of video, timahof 250 frame. Due to
the large vehicle size, crisp features and stable hoveredfilv, we obtained good perfor-
mance for all tracker configurations. As Tabld 6.1(a) reyealen with the non-optical-flow

motion model, or the online retraining of the classifier, tteeker never lost the vehicle

We typically received data from the vehicle at 15 Hz, but thisnber varied depending on the character-
istics of the local RF field.
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(a) EOD Vehicle (b) Person (c) MAV '08 Guard Vehicle

Figure 6-2: Examples of the variety of objects tracked. (aphicle from overhead. (b) A
walking person. (c) The guard vehicle from the MAV '08 compen. (a) was relatively
easy to track, but (b) and (c) required a better motion ptexticnodel.

No optical flow, no retraining| 0 Hz (0) No opt. flow, no retrain| 0.140 Hz (21)  No opt. flow, no retrain| 0.39 Hz (21)
No retraining 0 Hz (0) No retraining 0.040 Hz (6) No retraining 0.26 Hz (14)
Keep first 3 classifiers 0 Hz (0) Keep first 3 classifiers | 0.027 Hz (4) Retain first 3 classifiers| 0.28 Hz (15)
Full retraining 0 Hz (0) Full retraining 0.007 Hz (1) Full retraining 0.30 Hz (16)
(a) 250 frames, 17 seconds (b) 2683 frames, 150 seconds (c) 1000 frames, 54 seconds

Table 6.1: Performance comparison for the Agile EnsemldeKing algorithm, comparing
the effect of retraining, and the optical flow based motiomeioThe frequency of required
track re-initializations is shown, with the total numbereofors in parentheses

after initialization. In addition, retaining different mbers of the original classifiers had

no effect on the tracker’s performance for this target.

Tracking the walking person, shown in Figlirel6-2(b), was Immore challenging due
to the small size of the person in the image. Neverthelessgkgpg advantage of the ego-
motion estimation, the AET algorithm was still able to asleiexcellent performance. As
Table[61(b) demonstrates, optical flow played an impontalet in keeping the tracking
estimate on target. In addition, adapting the object agmear over time led to improved
tracking. Although the appearance of the person movingratdbe field was relatively
constant, the background changed dramatically when th@peanoved from the green
grass to the gray dirt patches. Retraining and adapting ltssitier therefore ensured
that the classifier was able to maintain enough discrinonatetween the person and the

background to continue tracking accurately.

Finally, we evaluated the tracker performance in trackirggguard vehicle in the MAV

'08 competition. With a forward-pointing camera, image gpes between frames due to
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the MAV motion became more pronounced. In addition, as shiowfFigure[6-2(c), the
hedges surrounding building were exactly the same colorsandar shape as the guard
vehicle. As a result, the tracker lost track of the guard elehiar more often than in the
other data sets we tested on.

In this data set, the camera motion, rather than changegeeagnce, was the major
factor that resulted in the tracker becoming lost. The gwatucle was moving slowly
enough that its motion should have had a negligible effenstelad, from watching the
video of the guard vehicle, there were several situationsrevthe pitching and rolling of
the MAV caused abnormally large inter-frame motion. In sahthese cases, the optical
flow was able to estimate and compensate for this ego-mofiorathers, however, the
optical flow computation failed to compensate for the canmeotéion, and many of these
large inter-frame motion coincided with the tracker losiragk of the vehicle. As a result,
retraining the classifiers actually reduced performanightty, since newer classifiers in
the ensemble were trained on bad data as the tracker bega lwsg thereby creating
a positive feedback cycle from which the tracker could nobver. While it is clear that
the optical flow plays an important role in keeping the tragkon target, the optical flow
algorithm may be unable to capture the full camera motioromesdomains, resulting in
the classifier becoming lost.

Fundamentally, to solve the tracking problem in the facecdéptially large inter-frame
camera motion, more sophisticated object detection isete@nce the ensemble-based
tracker loses the target, there is no way to recover by udiogghappearance-based tracker
that is learned online, since any corruption of the currépat estimate will be propagated
forward. Subsequent classifiers would then get corruptexa Aesult, an object detector
with higher-level learned invariants is needed to recox@nfobject tracker failures in the

general case.

6.4 Person Following

One possible use of the object tracker is to use it to provigle level commands, such as

“follow this person”. To achieve this goal, we had to close kbop around controlling the
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vehicle using the object tracker. However, the object taclescribed above performs its
tracking purely in image space. To follow an object, we must fietermine its position in
the world, and then instruct the vehicle to move such thagéids the object in the field of

view.

Given the tracked position of an object in the image, we caaver the position of the
object in the world co-ordinates from knowledge of the mdgic camera properties, such as
camera focal length, center of projection, etc. if we knoedlepth. While the monocular
camera used for the tracking does not give us this depththir@e can estimate it using
other sensors. We estimate the depth differently deperainghether we are indoors, with
a forward facing camera as shown in figlirel 6-3 or outdooré, thiid camera pointing down

as shown in figurE6}2.
When the MAV is outdoors under GPS control, we use knowledgheoMAV GPS

position and attitude along with an assumption that the mplqalane is flat to estimate the
depth. However, the GPS localization and attitude of the M#&/not known perfectly and
in particular, small errors in attitude can lead to substhetrors in projecting from image

co-ordinates to world co-ordinates.

On the other hand, when indoors, with a forward facing cameeacan use the laser
range-finder to estimate the depth. We know the relativestemmation between the camera
and laser, which allows us to use the camera to identify wiashr beams are reflecting
off of the object being followed. These laser beams can tieemsied to estimate the depth

of the object being tracked.

Since both of these methodologies provide noisy estimdtdseabjects location, we
apply a second level of Bayesian filtering to maintain a ckeastimate of the target lo-
cation in the global coordinates. In contrast to the imaupges filter, where we generally
assume that the motion variance is large and emphasize tasuneenent model, when
tracking in global coordinates, we place more weight on tleéion model and model the
projections from image coordinates to world coordinateseag noisy measurements. In
this way, we average over many measurements to attain a moueaée estimate of the
target location. Once we have this estimate of the targétisad position, we can send a

waypoint to the vehicle controller instructing it to movean¢he object.
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(a) frame 1 (c) frame 57

(d) frame 97 (e) frame 141 (f) frame 170

Figure 6-3: A sequence of frames showing the object trackystem closing the loop and
controlling the vehicle to follow a person.

A simplified version of this closed loop following is shownkigure[6-B. In this test,
the object tracker controls the yaw of the vehicle, whiledravg in one spot. The system

manages to follow a person as they walk in a full circle arativedvenhicle.
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Chapter 7

Conclusion

In this concluding chapter | give a brief summary of the workgented in this thesis before

describing future work that would improve the capabilibéshe system presented.

7.1 Summary

This thesis presents the system that we have developedhtedhght in unstructured and
unknown indoor environments. As discussed in the intradacthis capability is very de-
sirable, and would be of use in a number of scenarios suclhsastdr rescue, surveillance,
and inspection among others. MAVs present a number of cigifig problems that must
be solved to enable indoor flight, however, as we have showmeiprevious chapters, by
carefully examining the algorithmic requirements for tgstem, these challenges can be
overcome.

Our solution leverages the different real-time requireteéor controlling the vehicle
at multiple layers to develop a working system. At the baselleve use a very capable
hardware platform that has onboard attitude stabilizattwom there we developed the set
of relative position estimation algorithms described iagtei 2 which provide high quality
real-time motion estimates. These motion estimates wene fiised with measurements
from the onboard IMU to provide high quality real-time estites of the vehicles position
and velocity that were sufficient for local control and skiabtion of the vehicle. With this

base, we could integrate a SLAM module that closed loops emdged globally consistent
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state estimates enabling flight in large scale environmémtzddition, the SLAM module
provides & D map of the environment that enables autonomous planningxpidration
behaviors.

While the2D world model used in the work described above proved suffidiema
range of uses, to enable planning actions in the3lllenvironment we need a more com-
plete environment representation. Towards this end, wiestdeveloping a framework for
performing dense reconstruction of the faub environment around the vehicle. This work
is still in progress, however we believe that the framewarttioed in chaptell5 will prove
useful with more time.

Finally as a demonstration of high level closed loop autopome developed the object
tracking system described in chadier 6 which allows thealetio autonomously follow a

person.

7.2 Future Work

While the system that we have developed is very capable omflight is by no means
a “solved” problem. As it stands right now, the system presgid MAV platform that

would enable a human operator to easily fly the vehicle thnauiiyst-person-view onboard
camera. However, there is still a tremendous amount of wabketdone, to improve the

robustness and autonomy capabilities of indoor MAVs.

1. 3D Capabilities: Perhaps the most important direction of future work is ecteq
the vehicle’s capabilities in perceiving, planning, anéi@ting in3D environments.
Replacing the2D SLAM implementation with a fully3D visual SLAM solution
would improve the flight capabilities considerably, and mtie state estimates glob-
ally consistent irs D. In addition, completing the framework developed in chelpte
to provide a dens8D environment representation will enable planning actions i
3D.

2. Faster Speed:One of the appeals of MAVs is that they are capable of highdses-

ative to their ground vehicle counterparts. However, theteay as it is currently de-
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signed assumes that the vehicle always remains within therlmtegime, and moves
slowly through the environment. While the quadrotor vedschre capable of higher
speeds, the sensing and control algorithms currently gregdlare not. More work
will need to be done to be able to maintain high quality statevetion in the face
of motion blur and reduced reaction time. Increasing thedpavill also likely re-
quire improving the control model and controller employgddorr system beyond

the simple LQR-based feedback controller.

. Onboard Computation: The current system setup performs most of the computa-
tion offboard at the ground-station. This is a major limdatof the system. Using
offboard computation limits the effective range of the adhisince the bandwidth
required to send the sensor data to the ground-station is than long-range com-
mercially available wireless links currently provide. Mog all computation on-
board would improve the system performance and make themyfar more robust.
While computer hardware will continue to get faster, morekaghould be done to
explore what modifications to the algorithms are possibd¢ Would improve their

computational efficiency.
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