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ABSTRACT

Simultaneous Inversion of Surface Wave Phase Velocity

and Attenuation for Continental and Oceanic Paths

by

Wook Bae Lee

Submitted to the Department of Earth
and Planetary Sciences on 4 November 1977

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

An inversion study of surface wave attenuation and

dispersion has been conducted to investigate the vertical

and lateral variations of shear attenuation and shear

velocity structure in the earth's mantle. Variation of

lithosphere thickness and of shear attenuation in the

asthenosphere can be related to temperature variations,

partial melting and even some indications of the tectonic

history of the earth. Possible attenuation mechanisms in

the earth's mantle are expected to be thermally activated

relaxation mechanisms. The relatively small strains

associated with seismic wave amplitudes satisfy linearity

at least approximately for such mechanisms. The linearity

assumption is particularly important because of its



computability. Causality and superposition principals are

the main characteristic of linearity. Anelastic dispersion,

which arises from linearity, is an important consequence

due to causality. In a viscoelastic medium, anelastic

dispersion (due to causality) is considered by a given

dispersion-attenuation relation and implemented into the

inversion schemes.

A formalism for simultaneous inversion is developed

and applied to data from North America and the Pacific.

The simultaneous inversion approach is formally different

and gives a different result from the approximate inversion

scheme of Anderson and Hart (1976). The L1 norm concept

in the inversion process is particularly advantageous for

the sparse and inaccurate seismic attenuation data. The

set theoretical approach (Lee and Solomon, 1975), which

includes the square matrix inverse and linear programming

(L 1 norm inversion) was used for the actual inversion.

Inversion results show: (1) a distinctive low-Q

zone everywhere in North America and the Pacific; (2) a

varying thickness for the high-Q lid; 60+20 km (Pacific);

80+20 km (western North America), 130+30 km (east-central

North America); (3) the LVZ and LQZ coincide in western

North America and the Pacific, and overlap in eastern

North America; (4) anisotropy may be a problem in

western North America but is not a problem in east-

central North America; (5) the data do not discriminate



among possible dispersion relations because errors in Q-1

data are too large; (6) the predicted dispersion in the

low velocity zone varies from region to region and

according to the intrinsic dispersion relation assumed.

Thesis Supervisor: Sean C. Solomon

Title: Associate Professor of Geophysics
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CHAPTER I

Introduction

Seismic wave amplitudes attenuate while propagating

through the earth. This fact provides information to

understand the interior of the anelastic earth. Anelastic

properties (seismic attenuation, viscosity, etc.) can be

more sensitive to composition, temperature, pressure,

microstructure and the presence of fluid phases than are the

elastic properties (seismic velocities, density). Therefore,

knowledge of the anelastic properties of the upper mantle

is complementary to knowledge of the elastic properties and

would improve our understanding considerably of the state of

the mantle and the tectonic history of the earth. Toward

this goal, this thesis presents the solution to the inverse

problem of surface wave attenuation over continental and

oceanic paths. While solving the inverse problem and

determining seismic attenuation as a function of depth is

important to problems of seismic wave propagation, earthquake

source mechanisms, and the discrimination of nuclear explosions

from earthquakes, the main motivation of this study is to

better define physically realizable anelastic earth models,

to characterize the lateral variation of seismic properties,

and ultimately to provide clues to the sublithospheric mantle

convection flow patterns. In this study, we will suggest an

inversion scheme which is appropriate for the characteristics

(sparse and inaccurate) of seismic attenuation data. Relating
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the seismic observations and linear attenuation mechanisms,

the inverse problem will be recast to take account of the

intrinsic dispersion that arises from linearity, which has

been often neglected.

The concepts of lithosphere and asthenosphere (Daly 1940)

form an essential basis for plate tectonics (Isacks, Oliver and

Sykes 1968). In strictest terms, the major distinction between

lithosphere and asthenosphere is in their differing long-term

deformation in response to non-hydrostatic stresses. A common

alternative distinction amenable to ready quantification using

seismic waves is that the seismic anelasticity, as measured

by the reciprocal Q-1 of the specific quality factor, is

greater by roughly an order of magnitude or more in the

asthenosphere than in the lithosphere. There is no theoretical

basis for believing that these two different viewpoints will

give, for instance, the same value for the thickness of the

lithosphere. Nonetheless, the mechanisms of viscous deformation

and seismic wave attenuation are both probably thermally

activated and might be expected to show a qualitatively similar

dependence on the temperature distribution in the mantle. More

convincingly, it was the contrast in seismic attenuation that

led to the idea (Oliver and Isacks 1967; Utsu 1966) that

lithosphere is subducted on a grand scale in island arc regions.

The advantages of the surface wave method for studying Q in

the earth were summarized by Anderson et al. (1965): the long

period waves suffer less inhomogeneities, more readily sample
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the depths in the mantle where the most seismic energy is

dissipated, and allow the geometrical spreading factor to be

evaluated more accurately. Since surface waves are often the

most visible portion of seismograms, it is convenient to

measure their amplitudes.

In a linear, perfectly elastic medium, the amplitude of a

stress wave propagating a distance x is proportional to

ei(k x - w t ) , where w is the angular frequency, k is the wave

number, and t is time. In a linearly viscoelastic medium, the

wave number of a travelling wave may be considered complex, so

that amplitude is proportional to e-k*x+i(kx-wt), where k* is

the imaginery part of k. Then the dimensionless quality factor

Q and its inverse Q-1, which are the most common measures of

attenuation in seismology, are defined as

k -1 2k
Q Q (1.1)

2k ' k

These quantities will be used as the measure of attenuation for

most sections of this thesis.

In this thesis we will first consider in Chapter II the

classical linear inverse problem based on the Anderson and

Archambeau theory (1964). Although this traditional theory will

be supplanted in Chapter V, it provides a framework to

investigate an inversion scheme for highly inaccurate and

sparse attenuation data. In Chapter II, observations of

surface wave attenuation in two different regions of North

America are inverted to determine Q-1 as a function of depth z
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in the crust and upper mantle.

In the traditional theory of Anderson and Archambeau

(1964), the dissipation Q-1 of surface waves over a layered

medium at a given period is equal to the sum of the dissipation

in each layer if we assume Q-2(z) is small:

-1 1J D L  -1
QL c

j=1 L j j
M

-1 C 3cR -1 (1.2)
QR -  c Q a.

j=1 R j ]

where the subscript j is the layer index; the subscripts L, R,

a and p associated with Q-1 identify the wave types Love,

Rayleigh, P and S, respectively; cj and 9j are the compressional-
J

and shear-wave velocity in layer j; and cL and cR are Love- and

Rayleigh-wave phase velocities. With the additional assumption

that the losses under purely compressive stress are negligible,

so that

Q-1 4 -1
a 3 a

(Anderson, Ben Menahem and Archambeau 1965), equation (1.2) can

be expressed as the linear equations

M
= a = b. , i = 1,2, .. ,N (1.3)j3
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or, in matrix notation,

Ax = b (1.4)

where b. = QL -or QR-1 at the ith frequency and xj = Qj- in

the jth layer,

-1
It is usually assumed that Q is independent of

frequency, though there are several grounds for believing

otherwise (Tsai and Aki 1969; Jackson and Anderson 1970;

Jackson 1971; Solomon 1972a,b). Suppose, therefore, that

Q 1 in layer j is a function of frequency f. Then Q -1

may be approximated as a polynocaial in f (Backus and Gilbetr

1968) in the restricted range of frequencies:

Q (f) = x.(l + c./f + c.f)

where cj' and cj" are constants. If we can estimate these

constants by physical reasoning, j-l is still linear in the

unknowns xj. Define, for fixed c.' and cj",

Pi.. = a..( + cj/f + c.f)

where fi is the frequency of the ith surface wave. Then

equation (1.4) can be written as

Px = b (1.5)
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The goal of the inverse problem is to determine a linear

estimator, L, that operates on b so as to provide a solution x

so that the error x -A is minimized in some sense:-true-

x = Lb

Therefore, equations (1.4) or (1.5) are N linear algebraic

equations with M unknowns, valid if xj2<<l. Hereafter, we will

discuss our problem in terms of N linear equations with M

unknowns.

Three alternative inversion schemes for treating such a

problem are briefly discussed in Chapter II: 1) the stochastic

inverse, 2) the weighted least-square inverse, and 3) the set

theoretical approach, which includes the square matrix inverse

and the linear programming method.

It is ideal for a discrete linear inverse problem with

inaccurate observations to be considered by a stochastic

process, as long as the statistical structure of the model

parameters and of the noise are known. If these statistical

properties are not well defined or cannot be reasonably

estimated, however, other inversion techniques must be sought.

The weighted least-square inverse applied to inaccurate

surface-wave attenuation data is the most straightforward

approach but often gives a physically implausible negative

solution for Q-1 (Knopoff 1964). The set theoretical approach
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does not share these disadvantages in that the model parameters

and the noise are constrained to be elements of prespecified

sets.

Since the attenuation data presently available for most

surface wave paths are determined by only a few observations

(sometimes two or three), the uncertainties are usually large

and the error co-variance matrix is not at all well known. In

general, geophysical properties are not perfectly resolvable

vertically even though the data are error free (Backus and

Gilbert, 1968). With large errors, the resolution obviously

degrades (Backus and Gilbert, 1970; Der, Masse, and Landisman,

1970). In modelling the attenuation of surface waves in the

crust and mantle, the resolution is not fine enough to allow

more than a few layers (three or four). In such a circumstance,

an important question, addressed in Chapter II, is the extent

of correlation and incompatibility among the data. Most likely

the observed values of attenuation are contaminated by effects

other than anelasticity and by imprecise measurements. Since

a small deviation in the value of an observation at a certain

frequency will cause a relatively larger error in the solution

space near that frequency than at very different frequencies,

a reasonable criterion for the correlation of the data must be

defined. Correlation and incompatability of the data may be

possible causes of the negative solutions that result from the

least-square sense inversion. Because of this possibility, we

also want to make rules for imcompatible solutions to be

excluded. Such conditions as positiveness of the solution and
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that the solution curve fit within error bounds can be a reasonable

filter for the weighted least square inverse to be successful.

These conditions are fulfilled in terms of the square

matrix inverse by requiring:

x. > 0

Ibi- bi < Ci  for all i

A

where x is a vector of solution parameter space, b is the

vector of observed values, b is the vector of values predicted

by the model x, and 9 is the vector of data standard deviations.

Moreover, the square matrix idea plays an important role in

choosing layer thicknesses for the model. In a discrete

linear inversion problem, with N equations and M unknowns,

each equation represents an M-1 dimensional hyperplane in M

dimensional solution space. By choosing appropriate

thicknesses, N hyperplanes can be focused to intersect within

a small volume in solution space.

Since the data now available have large uncertainties

and, as we shall see, often show a discrepancy between Love

wave and Rayleigh wave data, it is often better to seek an

envelope of possible attenuation models than to look for a

single 'best' model. To construct such an envelope of models

we use the linear programming method, which has been developed
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mathematically by Dantzig (1963), adapted for geophysical

problems by Johnson (1972) and discussed in theoretical

terms by Sabatier (1977a,b). We mention in passing that other

techniques for finding such an envelope, based on trial-and-

error searches of either a continuous or discrete model

parameter space, have been applied to the surface-wave

attenuation problem by Burton and Kennett (1972) and Burton

(1977).

In Chapter III, attenuation mechanisms in the Earth's

mantle are reviewed. A particular interest of this chapter

is to reexamine the linearity assumption of attenuation

mechanisms with the results of laboratory experiments and

seismic observations. Although the assumption of linearity

in attenuation is the most powerful computational tool for

non-harmonic waveforms, there have been objections to the

linearity assumption for two reasons. (1) Some laboratory

experiments on hysteresis loops for strain show that linear
-6

theories are valid only at strain amplitudes less than 10-6

This shows that seismic strain amplitude is marginal in this

regard. For example, a wave of displacement amplitude 1 cm

and wavelength 100 km gives its strain amplitude of 6 x 10 - 7

( = 2TA/). (2) Knopoff (1959) argued that most suggested

viscoelastic linear mechanisms of attenuation in the mantle

show a strong frequency dependence which is not observed in any

composite earth material in laboratory or in any seismic
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observations. However, Orowan (1967) and recently Liu et al.

(1976) showed that the frequency independence of Q is possible

by a superposition (distribution) of linear viscoelastic

mechanisms of relaxation using a box distribution function.

So far, many such distribution functions have been suggested

to explain various laboratory observations by metallurgists

and polymer scientists. On the occasion of this development,

we should look thoroughly into a linear theory.

In Chapter IV, the linear theory for attenuation is

discussed in phenomenological (mathematical) terms rather than

physical terms. The basic assumptions of linearity are the

superposition and causality principles. The superposition

principle allows us to treat Fourier components which can

be reconstructed into a waveform. The causality principle

amounts to no 'signal before stimulus'.

The fact has been repeatedly stressed (Lomnitz, 1957;

Futterman, 1962; Jeffreys, 1965, 1975; Carpenter and Davies,

1966; Randall, 1976; Liu et al., 1976), but not always heeded,

that linear dissipation in solids gives rise to phase velocity

dispersion of first order in Q-1 and that this intrinsic

dispersion is significant for the inversion of surface wave

phase velocities and of normal mode periods. The dispersion-
-i

attenuation relation over a frequency band in which Q-1 is

independent of frequency has been derived by somewhat

different routes by Kolsky (1956), Lomnitz (1957), and

Futterman (1962). Most physical mechanisms proposed to



24.

account for dissipation in the earth are of the form of a

thermally activated shear relaxation (Jackson and Anderson,

1970); the dispersion-attenuation relation for a relaxation

is given by Zener (1948). When a continuous distribution of

relaxations is superposed to produce a Q-1 independent of

frequency within a finite frequency band, the dispersion--i
attenuation relation agrees with the constant Q-1 models

(Liu et al., 1976). Because of a growing body of data

suggesting that Q increases with frequency above about 1 Hz

in the earth (see Solomon, 1972; Der and McElfresh, 1977),

it is also useful to consider dispersion attenuation relations

in which Q has a power-law dependence on frequency (Jeffreys,

1958, 1965, 1975; Lamb, 1962). In Chapter V, a formulation

for simultaneous inversion of surface wave phase velocity and

attenuation is developed. Such a simultaneous treatment is

preferable to the traditional separate treatment for

several reasons. The two problems are intrinsically coupled

because of a dependence of phase velocity on the anelastic

structure and a sensitivity of surface wave attenuation to

changes in elastic structure. Further, if linearity holds,

the body wave phase velocity and attenuation at each depth

in the earth are related by integral transforms and in

general are frequency dependent. Finally, the elucidation

of the physical mechanisms governing dissipation is made

easier by treating the intrinsic phase velocity and Q-1 in
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the earth as dependent in the analysis of resolution and

in the inversion process.

The forward and inverse problems of surface wave

dispersion (or normal mode periods) and attenuation for an

anelastic earth have been treated by several workers. Schwab

and Knopoff (1971, 1972, 1973) developed the formalism for

computation of dispersion and attenuation for surface waves

or free oscillations in a lossy earth and applied their

formalism to several earth models with frequency-independent

velocity and Q-1 . Earth models for frequency dependent shear

velocity and Q-1 based on an assumed set of relaxation

mechanisms and seismic data taken over a broad frequency

band were considered by Nur (1971) and Solomon (1972a).

Carpenter and Davies (1966), Randall (1976), and Liu et al.

(1976) have given an approximate correction to surface wave

phase velocities to account for the intrinsic dispersion

introduced by dissipation. Using the correction appropriate

to Q-1 independent of frequency in the seismic wave band,

Anderson et al. (1977), Anderson and Hart (1976) and Hart
-i

et al. (1976, 1977) used Q-1 model MM8 of Anderson et al.

(1965) to adjust observed eigenfrequencies, .and inverted the

corrected normal mode data sets to obtain earth models.

In Chapter V, we outline the formalism, based on a

generalization of Haskell's matrix treatment, for simultaneous

inversion of surface wave phase velocity and attenuation to
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obtain a complex, frequency dependent earth model. The

approach is mathematically more complete, and gives different

results, than the techniques mentioned above and allows

specification of the intrinsic disperion-attenuation

relation in the earth as an adjustable input. Resolution

analysis is extended for the above formalism using the two

variable treatment of Der and Landisman (1972).

In Chapter VI, resolving length analysis and extremal

inversion are applied to Love and Rayleigh wave data in

North America, and Rayleigh wave data in the eastern Pacific.

To compare the simultaneous inversion with the data-corrected,

separate inversion of Anderson and Hart (1976), weighted least-

square inversion is performed for Love wave data in western

North America. The results are sensitive to the dispersion-

attenuation relation in the low-Q zone and point toward future

experiments that might define the relation better.
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CHAPTER II

Set Theoretical Approach: Inversion Schemes

2.1 Resume

The geophysical inverse problem aims to find out

possible models of earth structure consistent with gross

earth data. Gross earth data consist of mass, moment of

inertia, body wave travel times and attenuation, surface

wave phase velocity, group velocity and attenuation, free

oscillation periods, etc. The earth models we are

interested in are density, S-wave velocity, P-wave velocity,

Q -1 and Q1 Most times, we are interested in an inverse

problem for a linear system, starting with a reasonable

guess about one or more structural parameters inside the

earth. The perturbation of a structural parameter is linearly

related to small changes in observables. The relationship

between observables and model can be specified by giving the

kernels Gi (r) for the initial model m(r) as

1

d G.(r) m(r) dr

0

where di(i = 1, ...N) is the difference between an observed

and predicted datum and r is the radial coordinate.

In practice, since the data available are finite, the

data are inaccurate, and our mathematical formulation is

approximate, the solution of the problem is non-unique.

This is the most serious problem in geophysical inverse
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theory. Therefore, an important task is to represent the

degree of non-uniqueness in a meaningful way. Backus and

Gilbert (1967, 1968, 1970) showed the optimal way of inferring

an earth model from a given data set. They introduced the

useful concepts of spatial resolution and trade-off between

resolution and error in the solution due to errors in the data.

For non-linear inverse problems, mainly searching and testing

have been used to represent solutions. The Monte Carlo search

(Keilis-Borok and Yanovskaya, 1967; Press, 1970) and Hedgehog

search (Keilis-Borok and Yanovskaya, 1967; Press, 1970)

are two

approaches in this category. Jackson (1973) presented the

Edgehog method to quasi-linear problems to estimate extreme

models. Besides the limitations of linearity, the assumption

of Gaussian statistics of errors may not be valid for a

geophysical data set. The least square criterion is based

on the Gaussian distribution of errors. If this assumption

is invalid, the minimization of the so-called L2 -norm is

meaningless. Claerbout and Muir (1973) explored the

application of the Ll-norm to geophysical data analyses. In

the L1 -norm criterion, the sum of absolute values is minimized,

instead of the sum of squares as in the L2-norm. A big

advantage of L -norm analysis is that, by taking the median,

the effect of a large error in a datum is effectively eliminated.

The linear programming approach adapted by Johnson (1972) to
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inversion of regionalized earth models is an L1 -norm analysis.

Lee and Solomon (1975) extended this idea as the set theoretical

approach, combining square matrix inversion and the linear

programming method.

2.2 Non-uniqueness, resolution and errors

All geophysical inverse problems involve some degree of

non-uniqueness. Often it is more serious than we believe.

The source of non-uniqueness is the finiteness of data in

number and extent, random errors in data, and some arbitrari-

ness of our physical assumptions. The resolving power approach

of Backus and Gilbert (1968, 1970) provides an excellent tool

for challenging this non-uniqueness. They showed that we can

determine only a smoothed version of the solution (loss in

resolution). By calculating the resolving length by Backus

and Gilbert theory, we could estimate how the details of a

model parameter could be pursued and how reliable they are.

Details smaller than the resolving length are invisible to

an observer with only M data. When we introduce random errors

in data, the situation becomes worse. Backus and Gilbert (1970)

and Der et al. (1970) dealt with the question of resolving

length with inaccurate data, in which the variance of solution

parameters and resolution (deltaness) are competing objectives.

More than one variable is invovled in an inversion process,

including the depth resolution of the desired variable, errors

in the solution, and the separation between the desired and

undesired variables. Backus (1970) and Der et al. (1972)

discussed the two variable case with some examples.
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One of the main objectives of the inverse problem is to

resolve some important features in the structure, for

example, a low velocity zone. Certainly such an objective

is a competing concept against uniqueness of the solution.

At the same time, we may lose the stability of the problem.

For this reason, for example in the generalized inverse, small

eigenvalues of the kernel matrix are avoided to get a smoother

solution.

2.3 L1 and L2 norm

In measure theory, the definition of the Lp norm is

given by (Reiz and Nagy, 1965)

II mll = (fI m(r)l P dr) 1/p

or ( m )1/p

p = 1, 2, ... , 0

which must be finite for valid members of L p. The reason for

introducing this norm is the intriguing property of the norm

that a certain statistical distribution of error and its

statistical average is related to a certain norm. We define

Ilml1 2 by the value of m which minimizes the sum of squared

differences between m and x (called the L2 norm):

N 2
I1mJ12 = m such that Z (m - x.) is minimum.

2 i=l 1
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Taking the derivative with respect to m and setting it equal

to zero, we find jlmi| 2 is given by the definition of the

arithmatic mean. Now let us define I1mll 1 by minimizing the

summed absolute values (called the L1 norm).

N
llmlI 1 = m such that m - xi is minimum.

i=1

Again setting the derivative with respect to m equal to zero:

N
0 = I sgn (m - xi )

i=l

Here the sign function is +1 when the argument is positive, -1

when the argument is negative. This defines limll 1 as a median.

One other norm which is of use with geophysical data, is L,

(Chebyshev norm) (Parker, 1972). The average defined by

Chebyshev norm as

Imll, = m such that lim ( (m - xi)p)1/p is min.
p-)00 i

The midpoint IjmljI bisects the distance between the extreme

data points, thus minimizing the maximum error. The

significance of the L1 norm in the above argument is that a

blunder in data is cast off. The basic assumption behind L2

norm is the Gaussian statistics of error. If this assumption

is broken as in some geophysical data, least square modelling

is not an effective one. When some event is unpredictable

and gives a big error, L1 norm modelling has an advantageous
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robust effect (Claerbout and Muir, 1973). In many problems

the L2 norm is the natural norm. Most physical quantities

are defined in Hilbert space which is also an L2-norm vector

space. On the other hand, it is often unnatural to square

variables which are already positive, like energy, temperature,

density, Q, etc. When such quantities occur as measurements,

the asymmetric L1 norm may be the natural norm. Asymmetry

comes from the positivity condition. In this case, we have

the usual linear programming technique. The least-square

type inversion methods are based on L2 norm statistics.

2.4 Classifications of Inversion Schemes

Inversion schemes which are in practice so far can be

classified in many different ways. If the system is completely

linear, or nearly linear (i.e., a linearized perturbation is

valid), most of the schemes belong to linear inversion. Non-

linear schemes include the searching techniques, such as Monte

Carlo search and Hedgehog search. The gradient method

(Marquart, 1963) is another scheme for non-linear systems.

Jackson (1973) showed a remedy for quasi-linearity by letting

the data residual and 'smoothness criterion' go to extremes

(Edgehog method). In general, extreme model approaches have

a much wider range of linearity.

The single 'best' model has been an ultimate objective in

many inverse problems. However, suppose the number of

measurements is so small that the resolution length exceeds
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the radius of the earth; then we must abandon the original

objective. Instead we only can pursue the possible range of

the model. If data have a large uncertainty, a single best

model may not be meaningful. Searching procedures, such as

Monte Carlo, do not have a single 'best' criterion, but rather

produce extreme models (envelopes).

2.4a Single 'best' Model and Extreme Model Approach

In an inversion process, we desire to recover a best

model from currently available geophysical data. The L1

norm approach may give an upper and lower bound to the

solution space (envelopes). The least-square approach would

force such a case to have unique answer. The linear programming

technique is a specific L1 norm approach. Extreme model

approaches such as Monte Carlo, Hedgehog, Edgehog and linear

programming give the advantages of exploring the possible

range of solutions and giving some indication of the degree of

uniqueness for a given data set. If there is a large

uncertainty in the data, such as Q-1 data, the best model may

not be meaningful.

2.4b Model and Data Statistics

In a discrete linear inverse problem, we have, in matrix

notation:

Ax = c
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where A is a N x M matrix, and x and c are column vectors with

M and N rows, respectively. In practice, we cannot measure

c exactly, but rather observe b = c + n, where n is some

random noise accounting for errors of measurement. Accordingly

the form of the problem is

Ax + n = b (2.1)

where A and b are knowns, but x and n are unknowns.

1) Stochastic inverse

Suppose we have a priori knowledge of the statistical

nature of x and n, where x, n and b are assumed to be random

variables related to signal, noise and data processes, so that:

E{x = m

E n} = 0

E txx = R
-- = xx

E =nn

where E{x} denotes the expected value of x, and xT denotes the

transpose of x. If the signal and noise processes are

independent, then E{xnTj = E nxT} = 0 and the linear estimator

L is (Jordan and Franklin, 1971)
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T T -(L = R AT ( AR A + R ) (2.2)
S xx -- xx- -nn

With L defined above, the relations

x = m + L( b - Am
... X - ,x

(2.3)

x = L b for m = 0
I- - -x

yield a minimum-error covariance matrix S:

S = E (x- (x - x)

(2.4)

E x) = m

From the above two equations, E{xJ = Ex , so x is unbiased.

Therefore, the estimator L provides a global minimum of S.

One other important fact is that the above discussion is valid

for a non-Gaussian error as well as Gaussian. This estimator

is the stochastic inverse which was introduced to geophysical

problem by Franklin (1970) and by Jordan and Franklin (1971).

The construction of correlation operators R and R was

discussed by Jordan and Franklin (1971) and Wiggins (1972).

For the noise correlation, Rnn, it is rather easy to form a

covariance matrix if the observational errors are uncorrelated.

In such a case, the covariance matrix has the following
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representation:

S o o ... o

2
0 C ... 0

R 

2

nn 0 0 2 (2.5)
003 .. 0

2
0 0 0 .. C

2
where the diagonal elementO-i is the variance of the i-th

noise component. The construction of the solution covariance

matrix is, however, rather subtle. In a sense, Rx acts as a

filtration operator which discards unreasonable solutions on

the basis of physical constraints defined by the resolving

power of the data. If equation (2.1) is written as a

perturbation equation, then Rxx converges to a scalar times

the identity matrix for perfect resolving power (Franklin,

1970). Wiggins (1972) introduced an N x N weighting matrix W

assumed to be a diagonal matrix with each element wii

proportional to the dimension of the i-th solution parameter.

2) Weighted least square inverse

Suppose we do not have a priori knowledge of the statistics

of the solution, but we do have a noise covariance matrix.

Then consider



E {nj

SI nn T

= 0

= R
=nn

2
Cr1 0 0

2
0 g02  0

23

0 0 03

Choose x that minimizes

-J(x) = (b - Ax) TR -(b - Ax)
- - =- nn -

Such a solution is given by

dJ(x)
ax

2ATR -1 (b - Ax)
= =nn

= 0

(2.6)
T -1 -1 T -1

x = (A R A) ATR b
Ann =nn -

providing that (ATRnn -1A) - l exists. For
--nfl

(AT R 1A)-1 to exist

it is necessary that the dimension of b is not smaller than

that of x. The weighted least square inverse L yields the

minimum error covariance matrix S where

37.

0

0

0

2
(TN
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L = ( AR A ) AR -
-nn nn

and
S = E (x-x)(x- x) = (ATRnI A )-

= =nn =

In the case of M > N, S does not exist. For this situation,

Lanczos's (1961) analysis and Gilbert's (1971) minimum solution

could be used to solve the underdetermined problem.

3) Set theoretical approach

Suppose, unlike the previous cases, the statistical

structure of neither x nor n is known, but rather x and n are

constrained to lie in specified sets:

x E

n En
- n

where x andQ are sets in M- and N-dimensional spaces,

respectively. In particular, these sets can be polyhedrons

for L1 norm modelling and ellipsoids for L2 norm modelling.

The latter case is the Edgehog method presented by Jackson

(1973). The former case is square matrix inverse and linear

programming technique (Lee and Solomon, 1975).

2.5 Set theoretical approach for attenuation

Let x and n be constrained to lie in specified sets:

x E x; x > 0, j1,2, .. ,M

(2.7)
n 1 = n; n.i < o, i=1,2, .. ,N- n t - 1 1
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where'Qx and 2 n are sets in M- and N-dimensional spaces,

respectively. These constraints amount to the condition that

the solution be positive and that the data lie within the error

bounds. The observations b specify N hyperplanes in M-

dimensional solution space. These hyperplanes provide a set

of solutions which is required to be constrained by n such

that

x E /b = x; b - Ax E S1 J (2.8)

Since the solution set must satisfy the positiveness condition,

x must lie in the intersection ofQ x andQx/b. Letssol denote

this intersection:

x S sol = x n f x/b (2.9)

Two alternative views of the constraints (2.8) lead to two

different but complementary set theoretical approaches. If we

use mean hyperplanes as constraints, the approach is via the

square matrix inverse. If we use extremal hyperplanes as

constraints. it is via the linear programming method.

2.5a Square matrix method. The linear problem expressed

in the following (1.3) equation may be regarded as one for

which there are N constraints, or equations, and M unknowns.
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M
a..x. = b. i = 1, 2, .. ,N

J

Each constraint represents an M-1 dimensional hyperplane. In

M-dimensional space, M constraints will provide a point which

is the intersection of M hyperplanes. There are NCM (M

combinations out of N) number of such points in M-dimensional

space. In matrix terms, from the N x M original matrix, we can

choose NCM square matrices which will provide NCM sets of

solutions, i.e.

Hk  = bk , k = 1,2, .. NCM (2.10)

where Hk and bk are an M x M matrix and M-dimensional column

vector, respectively. The solutions that satisfy equation

(2.10) and fit the data to within the error bars will form a

set2x/b. Therefore, the solution domain is defined as the

intersection between 2 X/b andSLx . By (2.10) the estimate of

the vector x is defined as a set, not as a single vector. We

need a specific way of determining which vector within the

solution domain, sol, is the proper estimate of x. Naturally,

a reasonable choice of such an estimate is to define x as a

center of sol , where the center can be defined in the way of

averaging the elements of the set. The set of solutions must

not be empty if our hypotheses on the system are correct.

Therefore, this technique can be used for hypothesis testing.

The term 'hypothesis' here includes the parameterizations and

the assumptions used to construct the model. The most sensitive

such hypotheses are the determination of layer thickness and
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an adequate assumption of frequency dependence of Q-1 .

2.5b Linear programming method. The linear programming

technique (Dantzig 1963) is similar in concept to the square

matrix inverse but differs in motivation. The philosophy is

to build an envelope of possible models rather than a best

model as in the other approaches discussed. To get maxima

and minima of the model parameters, constraints are obtained

from inaccurate observations such that the true value for

each data point is within some tolerance, e.g. the standard

deviation. From each of our original equations (1.3) we get

two constraints:

M
a..x. > b.- . , i = 1,2, .. ,N

j=l 
(2.11)

M
Sa. .x. < b. + F. , i = 1,2, .. ,N

j=l 13 j 1

where 07 is the standard deviation of ith observation. Each
L

inaccurate datum restricts possible solutions to the space

sandwiched between the hyperplanes defined by the equations:

M min
a..x. = b. - (T.

j=l 13 J 1 1

(2.12)

a..x m a x  = b. + O
S1 1 1

j=1
i = 1, 2, .. ,N



42.

The region of space containing points satisfying all 2N

constraints will be the intersection of all these sandwiched

regions and of x.. This intersection will be referred to as

the solution domainSsol. This set2sol is a convex set, in

that all points lying on a line connecting any two interior

points also must lie within the set. Further discussions of

this technique may be found in the original development of

Dantzig (1963) and in Johnson's (1972) adaptation of the method

to inversion of regionalized earth models.

2.5c Ellipsoids: Edgehog

Now assume thats2x andSI n are ellipsoids:

X = x; ( - m x)T (x - mx) <

n =  n; ( nTR n ) < 1

Then

b = x; (b - Ax) R1 (b - Ax) < 1 (2.13)
x/b - - --

2sol x n x/b
where

2
R = 1 0 0 .. O

2
0 C2 0 .. 0

2
0 0 0 2
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With a weighting matrix R, 2 sol is generally an ellipsoid.

If the principal axis system is used,2x/b is represented by

an ellipsoid because each axis direction is weighted by

eigenvalues.

2.6. 1 Data

The surface wave attenuation observations we shall use to

infer Q-1 structure come from two different regions in North

America. The first set of data, given in Table 2.1, and

referred to as data set 1 below comes from two-station

measurements of Love-wave and Rayleigh-wave attenuation between

WWSSN stations at Longmire, Washington and Tucson, Arizona

(Solomon 1971, 1972a). The reciprocal of the group velocity

U and the attenuation coefficient k*(= f/QU) are each the

average of independent determinations using southward and

northward travelling waves. Standard deviations are shown at

frequencies for which more than one measurement was possible in

each direction. Earthquake sources, all lying approximately on

the great circle through LON and TUC, are in Alaska (5), Asia

(2), Mexico (2) and Chile (1). The LON-TUC path samples

primarily the tectonically active Basin and Range physio-

graphic province (Fig. 2.1).

The second set of data, given in Table 2.2 is for east-

central United States and comes from two sources. The first

source consists of two-station measurements (Solomon 1971,

1972b) of QL- 1 and QR- 1 between Rapid City, South Dakota and

Atlanta, Georgia (one direction only) for earthquakes in the

Aleutians (5) and the Caroline Ids. (1).



Love wave

f
Hz

.0121(1) a

,0135

.0150(2)

.0164

.0178

.0192(3)

.0207

.0221

.0235

.0249(4)

.0264

.0278

.0292

.0307

J0321(5)

.0335

.0349

.0364

.0378(6)

TABLE 2.1

and Rayleigh wave attenuation, western

T UL
sec

82.52

73.84

66.80

60.99

56.12

51.96

48.38

45.26

42.51

40.08

37.92

35.97

34.22

32.62

31.18

29.85

28.63

27.51

26.47

km/sec

4.12

4.11

4.10

4.02±.04c

3.97±.02

3.94±.04

3.91±.05

3.87±.07

3.83±.09

3.79±.11

3.77±.08

3.69 ±.11

3.66±.12

3.65±.13

3 61±.18

3 53±.22

3.55±.23

3.51±.22

3.47±.21

k*
L 4 -1

10 km

2.31

2.57

2.65

2.58±.68 c

2.65±.65

2.90±.65

3.02±.70

3.02±.84

2.88±.84

2.65±.90

2.65±.68

2.38±.64

2.18±.67

2.04±.87

1.9±1. 2

1.1±2.0

0.9±2.4

0.7±2.7

0.5±2.9

100oo/q
L

2.50±(.96)b

2.48±(.88)

2.31±(.54)

2.01±.53c

1.88±.46

1.89±.42

1.81±.42

1.68±.41

1.49±.44

1.28±.44

1.21±.31

1.01±.27

.87±.27

.77±.33

.69±.43

.35±.68

.28±.76

.22±.81

.14-±.85

Q
L

40

40

43

50

53

53

55

59

67

78

83

99

115

129

144

283

360

450

700

United States (Solomon 1971)

UR  k*R
kmse 1-4 -1

km/sec 10 km

1.62

1.42t.

1.22+.

1.0±1.

1.6+1.

2.1±1.

2.3±1.

2.0±1.

1.54±.

0.84+.

0.3±1,

3.55

3.50±.03 c

3.44±.04

3.41±.06

3.40±.05

3.36±.04

3.32±. 06

3.29±.08

3.28±.09

3.22±.12

3.20± .11

100/Q
R

.78±(.30)

.63 .43c

.51±.38

.37±.49

.58±.47

.72±.48

.75±.42

.64±.31

.46±.19

.24±.23

.08± .32

96c

92

2

3

4

3

0

62

80

2

R

b 128

158

197

270

172

138

134

156

217

420

1200



.0392

.0406

.. 0421

.0435

.0449

.0463

.0478

.0492

.0506

.0520(7)

.0535

.0549

.0563

.0577

.0592

.0606(8)

.0620

.0634

.0649

25.51

24.61

23.78

23.00

22.27

21.58

20.94

20.33

19.76

19.22

18.70

18.22

17.76

17.32

16.90

16.50

16.12

15.76

15.42

3.36±.13

3.34±.15

3.34±.13

3.36±.12

3.39±.15

3.40±.16

3.40±.17

3.39±.17

3.39±. 15

3.39±.12

3.38

3.34

3.33

3.33

3.34

3.35

3.37

3.39

3.38

.0663(9) 15.08 3.35

TABLE

-1.6±0.4

-1.8±0.9

-1.9+1.6

-1.9±2.1

-1.8±2.3

-1.6±2.3

-1.2±2. 1

-0.7+2. 0

-0. 11. 9

0.3±1.7

0.15

0.27

0.36

0.44

0.52

0.66

0.80

0.88

0.98

1.16

2.1 CONTINUED

.06±.36

.03±(.33)

.05+(.30)

.07 (.27)

.08+(.24)

.09+(.23)

.12±(.19)

,14±(.12)

.15+(.30)

.16t(.30)

.19+(.30)

3.17+.11

3.13 .09

3.09 .07

3.06±.06

3.00+.06

2.93+.04

2.92±.07

2.92±.09

2.94+.10

1600 2.95±.11

3400 2.95±.12

1900 2.94±.12

1500 2.93±.12

1230 2.92±.10

1070 2.91±.09

870 2.88±.08

730 2.85±.09

670 2.88

615 2.91

540 2.92

a used in square matrix inverse treatment of layer parameterization and data correlation and incompatibility

b assumed uncertainty

c standard deviation

0.08_±1.4

0.01+1.4

0.2 ±1. 5

0.6 +1.6

0. 8 1. 8

0. 3 ±1.6

0. 9 ±1.6

1.4+1. 4

1. 61. 3

1. 7 ±1. 1

1.83±.94

1.83+,.71

1.78+.55

1.68+.42

1. 51±.25

1.64± .41

1.80±. 80

2.14

2.27

2.69

.02±.37

.00t.35

.05±.35

.13±.36

.16 .37

.07+.33

.17±.31

.26±.27

.30±.24

.31_.20

.32±.17

.31±. 12

.29±.09

.27±.07

.24_.04

.25 .06

.26+.12

.31+(.15)

.32+(.19)

.38±(.21)

5000

2000

790

600

1500

580

380

340

320

310

320

340

370

420

400

380

320

310

270
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From Solomon

TABLE 2.2

Love wave and Rayleigh wave attenuation, east-central

T UL k*L
sec km/sec 10 km0/L

(1971, 1972b)

United States

UR

km/sec

4.00±.02a  1.13±.10 a  .88 ±(.30)b

3.95±.01 .76±.01 .54±(.30)

3.92±.02 .55±.14 .36±(.30)

114

185

280 3.80±.03 a 1.6±1.2a

.0164

.0178

.0192

.0207

.0221

.0235

.0249

.0264

.0278

.0292

.0307

.0321

.0335

.0349

.0364

.0378

.0392

.0406 3.04±.01

k*

R
104 km- 1

10 km 100/QR

60.99

56.12

51.96

48.38

45.26

42.51

40.08

37.92

35.97

34.22

32.62

31.18

29.85

28.63

27.51

26.47

25.51

.10±.32a  1000 3.76±.07

3.68±.04

3.61±.04

.04±.58 2400 3.54±.05

.13±.66 780 3.47±.05

.22±.70 460 3.41±.04

.30±.74 330 3.37±.02

.39±.75 260 3.34±.01

.47±.74 210 3.28±.04

.51±.71 200 3.23±.07

.06±(.30) 1700 3.20±.10

3.11+.12

3.10±.06

3.07±.04

102

3.92 ±. 06

3.84±. 04

3.76 ±.02

3.71±.02

3.67 ±.02

3.63 ±.02

3.60±.02

3.57 ±.03

3.55 ±.03

3.54±.03

3.58

.16±. 53

.00±.8

-. 05±.9

.09±1.2

.3+1.5

.5±1.7

.8±1.9

1.1±2.0

1.3±2.1

1.5±2.1

.2

1.1±1.4

1.0±1.3

.8±1.3

.7±1.2

.5± .9

.4± .7

.4± .6

.3± .8

.2±1.2

.1±1.6

.1±1.8

.1±2.0

.1±2.8

.4±3.1

-1.1± .9

.63t.79

.53±.69

.40±.63

.31±.54

.23±.40

.]16±.28

.13±.22

.10±.28

.05±.40

.02±.48

.03±.53

.04±.57

.03±.73

.10±.77

160.

190

250

320

440

610

760

970

1900

4500

3900

2400

3400

960

24,61



TABLE 2.2 CONTINUED

.0421

.0435

.0449

.0463

.0478

.0492

.0506

From Mitchell

.0200

.0222

.0250

.0286

.0333

.0400

.0500

.0571

.0667

.0833

.1000

.1111

.1250

.1429

23.78

23.00

22.27

21.58

20.94

20.33

19.76

(1973a, b)

50.0

45.0

40.0

35.0

30.0

25.0

20.0

17.5

15.0

12.0

10.0

9.0

8.0

7.0

3.04+ ,02

3.05+.02

3.07±.01

3.08±+.01

3.08±. 01

3.06

3.05

( 3 .7 8 )c

(3.66)

(3.55)

(3.47)

(3.43)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3. 47)

(3.47)

1.5

1.1

1.5

1.4

1.4

1.2

2.7

2.6

3.8

5.7

9.8

11.9

(3.83) c

(3.77)

139 (3.67).72±(.3)
b

.45±(.3)

.51±(.3)

.39±(.3)

.31-(.3)

.23± (.3)

.44± (.3)

.36± (.3)

.42±(.3)

.57±(.3)

.87± (.3)

.92+(.3)

222

196

256

323

437

227

281

239

177

116

109

(3.53)

(3.32)

(3.09)

(2.98)

(2.99)

(3.03)

(3.08)

(3.13)

(3.15)

(3.16)

(3.18)

-. 7_±.9

-,3±,9

.1.9

.4±.8

.8+.6

1.5

1.7

1.84

1.36

1.31

0.50

0.55

0.60

0.26

0.43

1.1

1.6

1,9

3.7

4.2

6.0

.01±,19

.09±.17

.16±.13

.29±(.15)
b

.33±(.15)

1.12±(.3)b

.73±(.3)

.61±(.3)

.20±(.3)

.181(.3)

.15±(.3).

.05±(.3)

.07±(.3)

.16±(.3)

.20±(.3)

.19±(.3)

.33±(.3)

.34±(.3)

.43±(.3)

7600

1150

610

340

310

89

136

163

510

571

667

2041

1389

629

510

529

299

295

235



TABLE 2.2 CONTINUED

6.0

.5.0

4.0

(3.48)

(3.48)

(3.48)

11.2

13.4

17.6

standard deviation

assumed uncertainty

assumed, from McEvilly (1964)

.1667

.2000

.2500

.74±(.3)

.74±(.3)

.78±(.3)

134

135

128

(3.19)

(3.20)

(3.21)

6.8

9.0

10.4

.42±(.3)

.46±(.3)

.43± (.3)

240

218

235
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-i
Fig. 2.1.Paths used for two-station surface wave Q-1

measurements, shown superposed on the outlines of the

physiographic provinces of the United States. The

shaded region is approximately the area represented

by Mitchell's (1973a,b) measurements.
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Standard deviations are shown where repeated measurements were

made. The RCD-ATL path samples primarily the stable platform

region of the Great Plains and Central Lowland physiographic

provinces (Fig. 2.1). The second source of data is Mitchell's

(1973a,b) measurement of Rayleigh wave and Love wave

attenuation from the southeastern Missouri earthquake of 1965

October 21. The determinations of QL 1 and QR 1 were derived

from amplitude measurements at a number of seismograph stations

between the Rocky and Appalachian mountains and between the

Gulf coast and the Canadian shield, based on the assumption

that the properties of individual surface-wave paths are

approximately uniform over the area sampled (Fig. 2.1).

Uncertainties are assumed for Mitchell's reported values of k*,

and Q-1 was calculated using the surface wave group velocities

from McEvilly's (1964) model for central United States. The

measurements of Solomon (1971, 1972b) are referred to as data

set 2 below. A third data set is formed by combining Solomon's

observations with the shorter-period measurements

(f > 0.04 Hz for QL- 1, f > 0.0286 Hz for QR-l) of Mitchell

(1973a,b).

The phase velocity partial derivatives aij (equations 1.2

and 1.3) were calculated using computer programs written by

Harkrider (1964). For western United States, the plane-layered

velocity-density model used for these calculations were taken

from model 35CM2 of Alexander (1963) above 125 km and from



52.

models NTS N3 of Julian (1970) and US 26 of Anderson and

Julian (1969) below that depth. For east-central United

States, the (isotropic) velocity-density model of McEvilly

(1964) was adopted.

To apply the inversion techniques of the preceding section

to those observations of surface wave attenuation, resolving

power analysis is an essential step. We then have to

establish criteria to obtain independent information about

the model and to detect.incompatible observations. Finally we

may solve the inverse problem.

2.6. 2 Resolution

Study of the resolution and error of observational

measurements is useful in selecting the manner in which a

-l
continuous function of depth Q -l(z) can be approximated by a

function constant within a small number of layers, so that our

linear system is overdetermined. Such a study can also yield

criteria for estimating the reliability of the inversion

results. In the set theoretical approach, it is required that

solution vectors be independent. An excessive number of layers

can cause instability of the inversion and an interdependence

of solution vectors. Backus and Gilbert (1967, 1968) have

treated the general problem of vertical resolution from a finite

set of error-free observations. If we take the large observa-

tional errors into consideration, the resolution is considerably

worsened. The relationship between observational errors and
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resolution has been discussed by Der et al. (1970), Backus

and Gilbert (1970) and Wiggins (1972).

In the scheme of Der et al. (1970), the idea is to

minimize simultaneously both the variance of the linear

combination xk of observations that gives the best estimate of

some physical parameter of interest in a certain layer k and

the dependence of xk on the parameters for layers other than

the kth. This is accomplished by minimizing the function

M

E = var x + 1 w. e , j k (2.14)
k k j=l j jk

subject to

N
e = c aik = 1

kk i=l

where

N
ejk = cki ai j = k

and where w. is a layer thickness, aik is the partial

derivative of the ith observation with respect to the parameter

of interest in layer k, normalized with respect to the layer

thickness, ekk is delta-function-like and ejk is the deviation

from a delta function, and the cki are constants to be
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Fig. 2.2 Resolution of surface wave attenuation data at

selected depths for (a) data set 1 (western United

States), (b) data set 2 (east-central United States),

(c) data set 3 (east-central United States). The

letter v shows the center of the layer k for which

eauation (2.14) is evaluated.
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determined subsequently. The quantity g is an adjustable

parameter that determines which of the two minimizations is

to be more effective. If the desired value for var xk is

too small or too large, i.e. 1 is chosen to be too small

or too large for the two minimizations to balance, the result

will not be physically meaningful. When f is zero, the

problem corresponds to the case of error-free observations.

The resolution analysis of Der et al. (1970) applied to the

surface wave observations introduced above allows us to

assess the vertical resolving length of the data. The

functions ejk are plotted for selected layers k in Fig. 2.2a

for data set 1, Fig. 2.2b for data set 2, and Fig.2.2c for

data set 3. The parameter# in 2.14 is adjusted so that the

variance of xk is 0.5. From Fig. 2.2 it may be observed that

the resolving power of QL 1 data is generally poorer than for

QR- 1 data. We estimate from the suite of resolving lengths
-l

that the allowable number of layers in a model for Q 1 is

3 or 4 for Love and Rayleigh waves, respectively, in data sets

1 and 3, and 2 or 3 for Love and Rayleigh waves, respectively,

in data set 2.

Because the above analysis is valid only for independent

observations, we can get only a rough idea about the layer

thicknesses without knowing the co-variance matrix of error.

Since the number of layers is few, determination of the layer

thicknesses is very important. Therefore, it will be

interesting to consider the limitations on layer thicknesses
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imposed by the set theoretical constraints.

A simple example will serve to show the utility of a

geometrical picture of the constraints. In M-dimensional

space, these constraints are in general hyperplanes. For

ease of visualization, let us imagine a 2-dimensional solution

space, which is not all that unreasonable since there is only-i

one significant jump in the value of Q1 at the boundary

between lithosphere and asthenosphere. In that case the

constraints are straight lines in the solution plane. The

slope of a family of lines is determined by the matrix

elements and the axis-intersections are determined by the

observatiDns.

To illustrate this idea, we take the case of nine

representative Love wave attenuation data from Table 2.1. If

we choose the boundary between layers at 65 km or at 50 km

depth, the.respective 2-dimensional representation of

constraints in solution space are shown in Fig. 2.3, where the

solid lines correspond to the case of the 65 km depth boundary

and the dashed lines correspond to the case of the 50 km depth

boundary. As we can see, the family of solid lines (constraints)

provides a set of converging points in the domain of positive xl

and x2 (first quadrant) while the other family does not. This

exercise implies that a bad choice of the layer thickness will

make the hyperplanes nearly parallel and the solution domain

empty. In Fig. 2.3 we have a clear choice between two-layer

parameterizations. Graphic representation is impossible for
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Fig. 2.3, Constraints in two-dimensional solution space.
-I

A two-layer Q model is assumed. The boundary is at

65 km depth for the constraints shown as solid lines,

50 km depth for those shown as dashed lines. The number

beside each line indicates the selected datum from

Table 2.1 (QL-1, western United States). (Insert) An

amplified view of the dotted region. The shaded area

represents the solution domain. It may be seen that

constraints 1 and 2, and constraints 5, 7, 8 and 9 are

correlated; constraint 6 is incompatible.
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the M-dimensional case, but we can in analogous fashion

optimize the M layer thicknesses by use of the square matrix

inverse. That is, by choosing an appropriate set of layer

thicknesses, hyperplanes can be focused in solution space.

As a measure of focusing, we define a focusing index fo

pj/qj, where pj is the percentage of acceptable solutions from

the square matrix inverse and thus is related to how well

models with such layering can fit the data, and qj is the

volume of the solution domain in M-dimensional solution space.

The index j loops over all possible choices of the set of

layer thicknesses. Some examples of the dependence of fo on

the layering in the Q-1 model are given in Table 2.3; the

highest value of fo is the preferable layer parameterization.

2.6. 3 Correlation and Incompatibility

Generally, each observation does not contribute

independent information about the model. This is because of

the high correlation of the partial derivatives of surface

wave phase velocity at near frequencies. Correlation gets

even higher when the observational error is large. According

to the resolution analysis in the preceding section, the

number of layers allowed in the model is few (three or four).

Therefore, our problem is overdetermined, i.e. N is 20 or more

and M is three or four. Somehow, we need a criterion that

two data are independent or uncorrelated for a 'simple'

co-variance matrix to be constructed. The meaning of 'simple'
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TABLE 2.3 Use of the square matrix inverse to fix layer

-l
thicknesses for a 3-layered Q model: Love

wave data, western United States

Layer interface Focusing index f

depths, km

17, 64 235

15, 74 122

21, 69 202

21, 74 71

21, 64 418

25, 64 290
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matrix is a weighting matrix chosen by reasonable judgement

to utilize the weighted least square inverse. On the other

hand, if the observational value of Q-l(f) is contaminated

by effects other than the anelasticity of the Earth or by

rough measurements, some data will be incompatible. To be

more precise, we define 'correlated' and 'incompatible' data

in terms of square matrix resolution:

Two data are correlated if their corresponding hyperplanes

in solution space do not intersect inside the feasible solution

domain but do contribute to build the domain. A datum is

incompatible if its hyperplane does not contribute to build

the domain of feasible solutions. These definitions are

illustrated in Fig. 2.3.

We may pursue the geometric picture of each datum as a

constraint somewhat further. Equation 1.3 represents a set of

M-1 dimensional hyperplanes. A pertinent geometrical parameter

of a pair of hyperplanes is the angle between them. The angle

between hyperplanes is defined as

M

a ajk
cos 8 ik 2

MI a2 a a2
Saij ajk

j J
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This angle is the coefficient of correlation if observations

are error free. With observational errors in consideration,

we define the correlation length (in the same units as the xj)

as

1/2
a . i j Cos

D {. + + 2 ij
13= sin i.0 sin ij sin 86..sin 86

1J j i1j

where 6 ij is the angle between ith and jth hyperplane, and C-i

and ij are the standard deviations of ith and jth observations

(see Fig. 2.4). The same value of error in an observation will

cause a relatively different error in the solution space, in

proportion to the correlation length. This is the geometrical

meaning of our definition of correlation (refer to Table 2.4).

As an example, for the same selected QL- data in western

United States, square matrix resolution gives the following

results with a three-layer model (boundaries at 20 and 65 km;

see Table 2.3).

(1) Twenty-one feasible solutions exist among 84(= 9 C3 )

possible solutions.

(2) Data 1 and 2, and data 8 and 9 are correlated.

(3) Data 6 and 7 are incompatible with the remaining data.

The incompatible data lie in the range of surface-wave

periods where a 'minimum' in Q-1 has been noted (Trggvason

1965; Tsai and Aki 1969). Tsai and Aki (1969) explained this

minimum as due to frequency-dependent Q-1 in the lithosphere.
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Fig. 2.4. Correlation length D.. between ith and jth

constraints. Ti and (J. are the standard deviations

for the ith and jth observations, respectively.
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TABLE 2.4
-i

Correlation length Di. between selected QL1 data,

western United States.

5 6 7 9 i/ j

20.57 3.68

8.65

68.

3 4

1.12

1.64

6.36

0.58

0.74

1.79

7.67

1

1

2

7

56

.22

.46

.70

.37

.23

0.30

0.34

0.66

1.24

2.99

15.89

0.

0.

0.

0.

1i.

7.

29.

0

0

0

0

1

5

12

109

.27

.31

.54

.86

.55

.99

.92

.46
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However, the question is still open because no model can

explain nearly zero attenuation. One possible explanation

may be a constructive interference in the period range of

minimum Q-1 due to scattering. At any rate, the occurrence

of incompatible data in this period range (20-25s) is not

accidental. Therefore, we can assume that data 1, 3, 4, 5 and

9 are independent (uncorrelated) and we could apply the

weighted least square inverse using the co-variance matrix, R:

1  0 0 0 0
2

0 3  0 0 0

R 0 0 2 0 0

0 0 0 -5  0

0 0 0 0 2g

2.6. 4 Linear programming procedure

The essence of the linear programming problem is composed

of four parts: 1) a set of M independent variables; 2) a priori

bounds on those variables; 3) a set of constraints, cast in

terms of linear equations and inequalities; 4) a linear

function, called the object function, which is to be minimized

subject to those constraints. The independence of the

variables (solution parameters) as discussed above in terms

of resolution analysis indicates that
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1) By square matrix resolution with Love wave or Rayleigh

wave data, the optimum layer boundaries are at 20 km and 85 km

depth for western US (data set 1), 135 km depth for data set 2

(east-central US) and 25 km and 135 km depth for data set 3.

Hereafter we refer to these as major boundaries. Note these

depths are uncertain by several kilometers.

2) The resolution of Rayleigh wave and Love wave data

together is improved over that using either set of data

separately.

Therefore the number of degrees of freedom, or the number

of independent variables, are flexible to a certain extent

due to the relaxation of constraints using extremal hyperplanes

and the above result 2. We will increase the number of

boundaries carefully until the fit to the data is no longer

improved over that using only the major boundaries. The result

-1of this procedure is a 6 layer Q model in western US and 4

and 5 layer models in east-central US (data sets 2 and 3,

respectively). During the process of increasing the number of

layers, the original 2 or 3 layer model with major boundaries

is used as a guide to reduce large fluctuations in Q-1 between

successive layers. If the 3 layer model parameter xi is split

into two others, x i ' and xi", then

lo. < xi  < uPi

I II
lo. < a.x. + b.x. < up

1 1 1 1 1 ui
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where loi and upi are lower and upper bounds of the model

parameter xi, derived from the linear programming procedure

using only major boundaries, and ai and bi are the fractions

of the original layer allotted to the two new layers. The

a priori bounds used for the initial linear programming

inversion, are defined as 0 < xi < 100 (where xi = 100/Qi).

The object function is defined as

+
Z = - X.

1

where + is for the minimum and - is for the maximum of the

envelope. Data indicated to be incompatible by square matrix

resolution analysis are not included in the linear programming

inversion.

2.6.5 Result and discussion

-1
The envelopes of the attenuation models Q (z) resulting

from the final linear programming inversion and illustrated in

Fig. 2.5 are given in Table 2.5. The corresponding envelopes

QL-1(f) and QR-l(f) are shown in Fig. 2.6 together with all

data used in the inversion.

For Love wave attenuation in western United States, the

greatest disagreement between observed and predicted values

comes from the period range 15-25 s. For Rayleigh wave

attenuation in the same region, on the other hand, the

disagreement comes from the period range between 30 and 40 s.

These two mismatches mean that a frequency independent Q-1
These two mismatches mean that a frequency independent Qq
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Fig. 2.5. Envelopes of attenuation models for (a) data

set 1 (western United States), (b) data set 2 (east-

central United States), (c) data set 3 (east-central

United States).
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TABLE 2.5a Envelope of attenuation model, 100/Q , western

United States

min

0.43

Depth, km

0-21

22-45

46-84

85-104

105-160

161-350

0.0

0.0

3.50

4.95

2.60

max

0.54

0.05

0.03

4.87

5.73

2.69

TABLE 2.5b Envelope of attenuation model, 100/Q, east-central

United States (data set 2)

Depth, km

0-72

73-134

135-212

213-350

min

0.06

0.0

2.19

2.29

max

0.08

0.09

2.48

2.57

TABLE 2.5c Envelope of attenuation model, 100/Qa, east-central

United States (data set 3)

Depth, km

0-9

10-23

24-52

53-134

135-350

min

0.29

0.25

0.0

0.0

1.09

max.

0.86

0.84

0.15

0.17

2.51
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Fig. 2.6. Surface wave attenuation predicted by envelope

of models in Fig. 2.5 (solid lines). Triangles and

circles represent the observed values (Table 2.1 and

2.2).; open symbols are for incompatible data. Love

-1and Rayleigh wave Q are given in (a) and (b) for

data set 1, (c) and (d) for data set 2 and (e) and

(f) for data set 3.
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model can never simultaneously approach a perfect fit to both

sets of data. The same statement is true of plausible

-1
frequency-dependent Q models (Solomon 1972a), e.g. models

obtained by inverting equation 1.5. This difficulty is related

to the minimum in QL I and QR 1 versus period noted earlier

(Tryggvason 1965; Tsai and Aki 1969) and to other wiggles in

the attenuation curves. The wiggles in Q R, which are

especially pronounced, may possibly be a scattering effect.

The total travel length L is 2000 km and the wavelength X

is 60-150 km, so kL = 80-200, where k is the wave number. For

scattering from weak heterogeneities in elastic properties and

density to be negligible, ka must be less than 0.4, where a is

the correlation length or, roughly, the characteristic dimension

of the heterogeneities (Chernov 1960). Since ka < 0.4 would

require a < 4-10 km, scattering is not likely to be a negligible

effect.

For east-central United States, the frequency independent

model provides an acceptable fit to the data except for a

discrepancy between QL- 1 and QR-l in the period range 30-36s.

The high attenuation of Love waves in that period range may

either be due to higher mode interference, more likely for Love

waves than Rayleigh, or due to anisotropy of the attenuation

mechanism.

-1
Several results of the Q- models in Table 2.5 and Figure 2.5

are worthy of comment. It is clear that the lithosphere, iden-

tified with low Q-1 , and the asthenosphere, identified as a
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deeper zone of high Q-1 , both differ between western and

central or eastern North America. The lithosphere is thicker

-1
and Q in the asthenosphere is significantly less in east-

central than in western United States.

We obtain lithosphere thicknesses of 80+20 km and

130+30 km for western and east-central United States,

respectively. The range in thicknesses comes from separate

inversions of Love and Rayleigh wave attenuation and is

conservative in that inversion using both sets of data gives

a narrower range of thicknesses for both regions. These

values for lithosphere thickness are not out of line with

those inferred from the distribution of seismic velocity with

depth using either refraction results (Green and Hales 1968;

Julian 1970) or dispersion data (Biswas and Knopoff 1974).

The value for Q -1 in the asthenosphere differs by a

factor of about 2 between the two regions, in agreement with

the results of Solomon (1972a). Both this difference in

Q- and the different lithosphere thickness can be explained

by a modest temperature contrast in the upper mantle between

the two areas (Solomon 1972a).

Some fine structure is notable in the models. A decrease

-1
in Q with depth in the lithosphere is resolvable from data

sets 1 and 3, a result also obtained by Mitchell (1973b).

The interpretation of this conclusion depends on the seismic

loss mechanisms, but the models are consistent with a closing
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of fluid-filled cracks or a decrease of volatile content

with depth in the lithosphere. It also appears that a

decrease in Q - below about 160 km is resolvable in

western United States.

In summary, there are difficulties in modelling the

attenuation of surface waves that arise from an assortment of

reasons: 1) the loss mechanism at high pressure and

temperature in the Earth is imperfectly known; 2) the

measurement error is large and data are sparse; and 3)

attenuation by mechanisms other than anelasticity is not

negligible and not always separable. At this stage, under

the assumption that the interference to the true anelastic

attenuation is localized to some period range, our rules of

data correlation and incompatibility are a reasonable filter

to sort out which measurements are suitable for inversion.

The Q -1 models that result from the inversion offer several

insights into the nature of the lithosphere and asthenosphere.

In the next three chapters, we will formulate the

simultaneous inversion of not only surface wave attenuation

but also surface wave phase velocity. A major justification

for this approach is because the anelastic dispersion from

linearity seems to be important in the inversion process of

surface waves. The validity of linearity is first reviewed

in terms of the possible mechanisms for seismic-wave damping

in the earth's mantle.
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CHAPTER III

Attenuation Mechanisms in the Upper Mantle

3.1 Resume

The deviations from perfect elastic behavior of a sample

inaterial in the laboratory have yet to be understood. The

situation in the earth's mantle is expected to be at least

as complicated. A stress wave propagating through a non-

elastic medium experiences an attenuation of amplitude due

to various processes. These processes have not been well

understood in terms of atomic or ionic (microscopic)

properties of the material; rather they have been lumped under

the heading internal friction.

Standard models have been used to describe internal

friction in terms of various combinations of springs (perfect

elasticity) and dashpots (Newtonian fluid). The Maxwell

solid, the Kelvin-Voigt solid and the standard linear solid

are examples of such models. Surely, these standard models

do not explain reality most times. Orowan (1967) suggested

that in a composite material, such as the earth's mantle, it

is necessary to invoke the more general arrangement of springs

and dashpots for each molecular constituent; the standard

linear solid with an additional dashpot corresponding to the

viscous deformation. Such a general arrangement does not

explain the direct observations regarding the non-elastic

properties of the earth: the attenuation of seismic waves.
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However, it provides a diagrammatic convenience and a way

of thinking macroscopically. Although most laboratory

experiments are performed at conditions different from the

earth's mantle, they may provide sound bases for a 'thought

experiment'. The possible theoretical mechanisms of seismic

attenuation have been reviewed at length by Jackson and

Anderson (1970). Among the many suggested, the possible

mechanisms in the asthenosphere are of greatest interest

since most absorption occurs there. Solomon (1971, 1972)

thoroughly examined partial melting in terms of Walsh's

model (1968, 1969) and Jackson examined a grain boundary

relaxation model (1969, 1971). In this chapter, we are going

to review some aspects of the attenuation mechanism which will

be important in the following chapters.

3.2 Seismic and laboratory observations

One of the earliest and most important observations in

the laboratory was that Q is substantially independent of

frequency in a solid at low pressures and temperature. Since

Linsay (1914) first made this observation, many investigators

have verified the fact with different materials (composite

non-metals) over a broad range of frequencies, For earth

materials, the conclusion is the same. Knopoff and Porter

(1963) showed that in granite the attenuation of Rayleigh

waves over the frequency range 50-400 kHz appears to have a Q

nearly independent of frequency. At higher frequencies, a
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fourth power law of attenuation becomes dominant in their

observations, which suggests a Rayleigh scattering process.

Similar results have been observed in limestone by Peselnick

and Outerbridge (1961). Born (1941) studied sandstone which

had varying amounts of interstitial water injected into the

sample. The interesting result is that the dry rock has a

frequency-independent Q while the wet rock has a Q increasing

linearly with frequency. Another important observation is

that Q for rock, again, at low pressure and temperature, is an

order of magnitude lower than for single crystal materials.

Peselnick and Zietz (1959) indicate that Q for calcite is about

1900, a factor of 10 greater than in limestone, which is

polycrystalline calcite. This suggests that grain boundary

effects are likely important and show the same frequency

dependence of Q for single crystals and composite materials.

Few observations on the behavior of Q at near melting

temperatures have been performed. Mizutani and Kanamori

(1964) measured the elastic and anelastic properties of a

Pb-Bi-Sn-Cd alloy of melting point 720C from 10 to 1300 C at

near MHz frequencies. They observed that the elastic

velocity decreases with temperature. The decrease accelerates

near the melting point and is most pronounced for shear waves.

The quality factor, Q, for P-waves increases almost linearly

with frequency between 0.5 and 3.0 MHz. Kuroiwa (1964) and

Spetzler and Anderson (1968) studied attenuation in the

various forms of ice at temperatures near the melting point.
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They found that the introduction of NaCI into the ice

broadened the peaks, shifted them to lower temperatures and

increased the peak damping. The background damping,

attributed to grain boundary effects, increased with

increasing content of an impurity. Goetze (1969) discussed

the behavior of metals at near melting temperature.

The intrinsic attenuation of rocks as a function of

temperature and pressure is not known. Some laboratory

measurements of hysteresis loops for strains no less than

10-6 shows that the attenuation is dependent on the amplitude

of the strain (McKavanagh and Stacey, 1964). This suggests

that linear theories are valid only at strain amplitude less

than 10-6.

For seismic observations, the most common difficulty is

that the influence of scattering due to heterogeneity cannot

be removed. Earlier observations by Collins and Lee (1956) and

by McDonal et al. (1958) were measured at a small number of

stations in relatively homogeneous short range of less than 30 feet.

By no surprise, their observations in the field gave results

comparable to those obtained in the laboratory on homogeneous

rocks. Their main finding was that Q is nearly independent

of frequency over the frequency range 100 to 1000 Hz (50-550

Hz for McDonal et al.). Among many observations by other

investigators, Anderson and Kovach (1964) observed multiple

reflections from deep focus earthquake in Brazil recorded in
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Peru. They indicated that for the upper mantle Q in shear is

about 160 and for the lower mantle about 1450, and Q is

roughly independent of frequency over the range 11 to 25

seconds for the entire mantle.

Since that time, the observations of Love and Rayleigh

wave attenuation has been considered to be more reliable than

body wave observations, because the surface waves are less

subject to the effects of scattering by inhomogeneity.

However, the interpretation is more complicated due to strong

dispersion. Benioff et al. (1961) measured the attenuation of

Rayleigh waves from the Chilean earthquake and suimmarized that

there is significantly more attenuation in Love waves than in

Rayleigh waves. This may be an indication that the attenuation

due to pure compressive modulus is negligible. The presently

available surface wave attenuation data covers North America

(Solomon, 1971; Mitchell, 1973, 1975), Eurasia (Yacoub and

Mitchell, 1977; Burton, 1974), the Pacific Ocean (Mitchell

et al., 1976) the Atlantic Ocean (mostly) (Tsai and Aki, 1969).

Also there are many useful great-circle path data (e.g.,

Kanamori, 1970; Dziewonski and Landisman, 1970). These data

clearly show a regional variation over much of the common

period range. One cause is the varying lithospheric

thicknesses regionally. For example, the lithosphere

thickness in western U.S. (a tectonic region) is about 80 km
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while that in eastern U.S. (a stable shield region) is about

130 km (see Chapter II) and that of the average Pacific

ocean is 60 km (Mitchell et al., 1976). Recent body wave

observations (Solomon, 1972b; Der and McElfresh, 1977)

suggest that Q increases with frequency above 1 Hz.

3.3 Nonlinear or linear attenuation process?

Knopoff and McDonald (1958) argued that the observed

'constant Q' for seismic wave attenuation is incompatible

with linear theory. They developed a non-linear wave

equation in which dry friction is the attenuation mechanism.

McKavanagh and Stacey (1974) suggested that a cusp at the

end of stress-strain hysteresis loops at strain amplitudes

-6down to 106 may be evidence of non-linearity. The question

of linearity vs. non-linearity is very important because the

linear theory makes the general problem of attenuation of

non-sinusoidal waveforms mathematically tractable. In other

words, waves can be superposed by Fourier components without

modifying one another. Kogan (1966) criticized the non-linear

theory based on experimental evidence. Savage and Hasegawa

(1967) presented similar criticism. Lomnitz (1957, 1962)

suggested a linear theory which attributes the attenuation of

elastic waves in polycrystalline materials to logarithmic

creep. The theory predicts both the magnitude of Q and its

frequency independence. McDonal et al. (1958) and Knopoff

and Porter (1963) have investigated the attenuation of a
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seismic pulse rather than the usual harmonic waves. The

procedure employed in both experiments was to analyze the

pulse into its Fourier components and then determine Q as a

function of frequency from the attenuation of various

Fourier components. The magnitude of Q determined from the

Fourier components and insensitive frequency dependence

suggest that the superposition principle was applicable and

therefore, the mechanism of attenuation linear. Orowan

(1967) and Liu et al. (1976) suggested 'constant Q' observation

can be explainable in the linear theory assuming the presence

of a continuous distribution of linear visco-elastic elements.

Above all, non-linearity becomes apparent in waves of

extremely large amplitudes and so has little relevance to

seismic waves. For example, a wave of displacement amplitude

1 mm and wavelength 10 km gives its strain amplitude of

-7
6 x 10- 7 (= 27TA/X). One more possible argument for non-

linearity is the non-existence of body wave dispersion since

dispersion due to absorption is a characteristic of the linear

theory. Although this question will be addressed in the next

chapter, the frequency dependence of Q may provide the answer

to such an argument, a point also suggested by many others.

3.4 Solid friction and viscous damping

Perfectly dry rock is not expected to occur in the earth

because of the presence of ground water, of hydrothermal
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solution or, at greater depth, of partial melting. As Born's

experiment (1941) shows, the presence of a fluid phase in

rock causes substantially lower Q and a Q of increasing

linear dependence on frequency. Solid ('dry') friction was

described by Walsh (1966) as crack surfaces in contact slide

relative to one another. It is rather insensitive to

temperature but highly pressure dependent. Solid friction is

independent of velocity and therefore is intrinsically

frequency independent but depends on amplitude. It cannot be

described in terms of viscoelasticity but may be of the

static hysteresis type. The amplitude-insensitive crack

surface friction is not well explained on the basis of

Amonton's Law (according to which T = L.p where Tis the

frictional drag, _L the coefficient of friction, and p the

normal pressure between the rubbing surfaces). Solid friction

may be limited to describe the non-elastic behavior near the

surface of the earth where temperature is not a main factor.

A conspicuous feature of seismic velocity profiles for

certain parts of the upper mantle is the upper mantle low

velocity zone (LVZ). Is the LVZ in the upper mantle a strong

indication of the presence of fluid phase, probably partial

melting? Or can a composition change or a phase change be

hypothesized to explain the LVZ? Gordon and Davis (1968)

suggested that the LVZ is principally due to interface

inelasticity, which can persist to great depth due to the

presence of fluid phase. They claimed that this is a unique
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explanation of the simultaneous occurrence of the LVZ and

the low Q zone (LQZ) due to modulus defect. In such a case,

low Q results from interface friction rather than from the

fluid itself. However, according to Born (1941), a small

amount of water injected into the interstitial region in

sandstone increases substantially the internal friction.

Therefore, the presence of the fluid itself should be an

important factor in increasing the internal friction. Many

authors suggested that the low velocity zone may be due to

partial melting of mantle materials. Partial melting in the

earth's mantle is likely to have the character of an inter-

stitial fluid embedded in a host matrix, since shear waves

are transmitted through. A more pronounced minimum of shear

velocity than that of P-wave velocity in the low velocity

zone indicates the presence of melting. Various melt models

of damping have been suggested for the earth's mantle by

Mavko and Nur (1975) and O'Connell and Budiansky (1977).

Isolated penny-shaped cracks with melt (short time-scale

damping), interconnected cracks with short range melt flow

(intermediate time-scale damping), and large scale melt

diffusions (large time-scale damping) are considered by

Mavko and Nur (1975).

3.5 Hysteresis, resonance, scattering and relaxations

The mechanisms likely to be responsible for the

attenuation of seismic waves are classified in four categories.
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Quickly we may rule out hysteresis, resonance and scattering,

for the dissipation mechanism in the earth mantle. Although

scattering does not reflect the anelastic properties of

medium, it is quite important to recognize the scattering

effect when inhomogeneities are comparable in scale to the

wavelength of the seismic waves. Ultimately, it will be

very important to remove the scattering effect to improve

the quality of seismic amplitude data. However, we may avoid

this difficulty when we choose rather homogeneous structures

and use longer wavelength (longer period) data for a study of

the damping mechanism at greater depth (the mantle).

Granato and Lacke (1956) proposed that a pinned edge

dislocation may act as a violin string with a damping force

proportional to its velocity. This type of resonance internal

friction is strongly dependent on average loop length and

proportional to the dislocation density. The internal

friction will increase with temperature, as thermal unpinning

will increase loop length, even though the dislocation density

will decrease with temperature by annealing. However this

type of internal friction due to resonance appears only at

high frequencies and is irrelevant to.the seismic problem.

Solid friction across cracks was considered by Walsh

(1966) as mentioned in the previous section. This mechanism

adequately explains measurements at low pressure (Birch and

Bancroft, 1938) including the frequency independence of
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internal friction and its decrease with pressure. However,

most cracks in dry rocks would be closed under modest

pressure (less than about 10 kbar). In wet (partially

molten) rocks, fluid might persist to keep cracks open under

mantle pressures. However, at high pressure, the internal

friction due to solid friction likely will be minimized,' and

viscous stress relaxation may dominate internal friction. As

discussed in section 3.4, this type of mechanism due to

static hysteresis may depend on amplitude and belongs to the

class of non-linear theories, which are not favored by seismic

amplitudes, though not ruled out.

Most linear attenuation mechanisms are a form of

relaxation process. A relaxation process is a characteristic

of viscoelastic material (standard linear solid), in which

no irreversible deformation is undergone. In such a material,

internal friction has the form:

M - M
-1 u r T (3

- M 2u 1 + (W0)

where M is an unrelaxed elastic modulus, Mr is a smalleru

relaxed modulus, c is angular frequency, and Tis a

relaxation time. Notice that the peak internal friction

occurs at OWT= 1. Zener (1948) considered a relaxation in

a two component system where a viscous phase is embedded

in an elastic matrix. The remarkable feature of such a two
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component system is the large anelastic effects due to a

small amount of viscous material. Another feature is the

wide variety of types of relaxation spectra. If all the

localized viscous regions had the same size and shape, we

would expect a concentrated relaxation spectrum. Rather,

observed behavior indicates a distribution of the size and

shape of the viscous regions. Walsh (1969) made more specific

assumptions for two phase media. Solomon (1971) applied this

theory to partial melting for the upper mantle of western

United States.

The importance of grain boundary effects in seismic

attenuation was stressed by Peselnick and Zietz (1959),

Jackson (1969) and Jackson and Anderson (1970). Also

important is high temperature background relaxation (Jackson,

1969; Jackson and Anderson, 1970). Most physical mechanisms

proposed for seismic attenuation in the earth's mantle are of

the form of a thermally activated relaxation and all these

mechanisms are distributed with a largely unknown distribution

function.

3.6 Distribution function of relaxation times

The 'standard linear solid' gives a Debye peak (bell-

shaped) absorption spectrum with peak at the frequency

determined by WT= 1, where Tis a relaxation time. For most

materials, it is too simple to represent physically meaningful
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viscoelastic behavior. As Orowan (1967) explained, in the

case of soda glass, the elementary process of relaxation

(or viscoelastic creep) is the jump of a sodium ion from one

cell to another. This cannot be described by a dashpot. A

different ion may be activated with a different energy by

a different stress, Therefore, there may be various activation

energies and strain contributions which can be represented by

different viscoelastic schemes. To satisfy a frequency

independent Q, the activation energy spectrum, or the

relaxation time spectrum, should be distributed. Various

distribution functions have been proposed to explain

empirical curves by metallurgists and polymer scientists.

To understand the usefulness of these distribution functions,

the most simple and frequently used functions are given in

the following.

3.6a Box distribution

According to Becker (1925) if the distribution function

of activation energies is constant, then viscoelastic creep

is logarithmic and Q-1 is frequency insensitive over a wide

range of frequency (Becker theorem ). Orowan (1967)

interpreted Becker's theorem in terms of the 'standard linear

solid'. Recently, Liu et al. (1976) demonstrated that a

continuous distribution of relaxations could be superposed

to produce a frequency independent Q over seismic frequencies
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using a linear viscoelastic model. In all of the above cases,

a relaxation function 4f(f) is expressed as a superposition of

-st
the elementary relaxation functions e with distribution

density N(s),

ip(t) = N(s) e - s t ds (3.2)

N(s) = A / s for sl< s < s 2

0 otherwise

where A is a constant, s is the relaxation frequency (Becker

used the term 'relaxance' for s). Liu et al. (1976) chose

s I and s2 in such a way that the frequency range of seismic

interest is completely covered between sl and s 2 . Becker

was rather in the position of explaining empirical logarithmic

creep functions in terms of relaxations which have been shown

by numerous creep experiments. Becker mentioned sl as 'the

lower limit below which no observable relaxation is contributed

by the volume element within the duration of the experiment'

and s2 as 'the upper limit above which an element is

completely relaxed before measurements can begin'. The

above mentioned N(s) is generally known as a box distribution
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function (Gross, 1953). A so-called Becker material, or

the result of a band-limited superposition of elementary

relaxations, shows a creep curve (Orowan, 1967; Kanamori

and Anderson, 1977)

l(t) = In(s 2 t) - Ei(-s 1 t) + y (3.3)

where

x
uEi(x) e J du

is the 'exponential integral', and the constant"/( = 0.5772) is

the limit value of Ei(-x) - In x for x -- 0. At t = 0 the+

exponential integral dominates. However, after a small time

(when s2t exceeds 3), the creep becomes logarithmic. The

logarithmic creep leads to an approximately constant Q (Lomnitz,

1957). Most observations of logarithmic creep have been for

metals and long-chain polymers (viscoelastic material) at low

temperature. However, the effect of pressure is opposite that

of temperature so that the discrepancy between laboratory

temperatures and temperatures in the mantle may not be as

serious as we usually consider.

3.6b Log-normal distribution

The 'box distribution' which is constant and finite over

a limited range of InTand zero elsewhere has been discussed
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in the previous section. A different relaxation spectrum, a

log-normal distribution, has been studied at length (Norwick

and Berry, 1961) to explain broad regions of nearly cbnstant

Q in metals. A log-normal distribution of relaxation times is

a Gaussian distribution in the logarithm of the relaxation

times, in which the absorption can be specified by three

parameters. These are the mean relaxation time, Tm, the width

of the distribution, W,and the magnitude of relaxation, A.

For the 'box distribution', the clear advantage is its

possible evaluation of integral (3.2) in terms of known

functions; nevertheless, it has the distinctive disadvantage

that it is a physically arbitrary distribution, and for the

limits sl and s2 to fall just outside the seismic frequency

band is unreasonably convenient. The Gaussian distribution

more likely represents the physical situation in which a

distribution of relaxation times arises due to the distribution

of atomic environments about a mean value. The relaxation

process controlled by atomic movement is strongly temperature

dependent (Jackson and Anderson, 1970):

T = t e H/RT (3.4)

where H is an activation energy, T0 and R are constants, and

T is temperature. In equation (3.4), if the value of H is

distributed with a distribution parameter o according to
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Gaussian distribution, then the value of InfTis also

distributed with parameter in a Gaussian manner,

= co / RT

If we assume that o is independent of temperature, then

varies inversely as T. That means, if temperature is low,

the absorption spectrum becomes broader and goes to the

'box distribution' in the limit. On the other hand, as

temperature goes higher, the absorption peak becomes sharper

and shows frequency dependence. The apparent disadvantage

of the log-normal distribution is that the integral (3.2)

cannot be evaluated in terms of explicit functions.

3.7 Q frequency dependent or independent?

The frequency dependence in Q in the earth's mantle from

most seismic evidence is ambiguous at best. Solomon (1971)

reviewed elaborately the contradicting evidence. One of the

main sources of ambiguity is the large uncertainties in

seismic measurements. The main obstacles in seismic amplitude

measurements are geometrical effects, such as scattering,

multipathing and mode conversion. Jackson (1971) assumed a

frequency dependent model based on the mechanism of grain

boundary relaxation and showed a reasonable fit to the

intermediate range of Love wave and toroidal oscillation

data (40-200 sec). However, Jackson's model (57-31-010)

seems not to have good agreement with longer period data
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( >200s). Jackson (1971) indicated that the assumption of

~requency independent Q resulted in negative values of the

Q model in some depth. Solomon (1971, 1972a) suggested a

relaxation model due to partial melting in the upper mantle

of western United States. Solomon's (1971, 1972a) frequency

dependent model showed a good agreement with Love and Rayleigh

wave attenuation data in the period range 15 to 82 seconds.

However, the same data set is still in good agreement with

frequency independent models (Solomon, 1971; Lee and Solomon,

1975). Archambeau et al. (1969) doncluded that Q (P-wave

attenuation) in the upper mantle of western United States

increases with increasing frequency over the period range

0.75 to 1.5 Hz based on their observations of the attenuation

of P waves. However, a frequency independent Q has beenn

usually assumed. Recent observations of body wave attenuation

(Solomon, 1972b; Der and McElfresh, 1977) suggest that Q

increases with increasing frequency above 1 Hz. Russian

investigators, Fedotov and Boldyrev (1969), Khalturin and

Rautian (personal- communication with Aki) expressed the same
opinion.

From an observational standpoint, it is fair to say that no

conclusion can be made one way or the other for periods longer

than 1 sec and there seems to be growing evidence of Q

increasing with frequency for shorter periods (<1 sec). From

the theoretical point of view, individual relaxation

mechanisms may be thermally activated processes and are
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strongly frequency dependent. However, a certain distri-

bution function of these relaxation mechanisms could show

a frequency independent spectrum of Q over a limited

frequency band (Orowan, 1967; Liu et al., 1976). If

extensive melting is possible in the earth's mantle, Q will

become more frequency dependent because of the charactersitic

of liquid state for Q to increase with w (Knopoff, 1964).

Such an explanation may have something to do with the

frequency dependent observations (or related interpretations)

in western U.S. (Archambeau et al., 1969; Solomon, 1972a)

and the Atlantic Ocean (Tsai and Aki, 1969).

For partial melting, Walsh (1968, 1969) considered the

earth's mantle as a two-phase medium. If we think of a

two phase medium in terms of a matrix embedded with viscous

inclusions, relaxation due to either viscosity of the

inclusions or viscous fluid flow through connected cavities

may be responsible for damping. For distributed cavity sizes

and shapes such inclusions will lead to a distributed

absorption spectrum. We could not say anything more until

either we measure accurately attenuation of long period body

waves or we improve our knowledge on the attenuation mechanism

in the earth's mantle. Therefore, the box distribution of

relaxation mechanisms, which may possibly occur in the earth's

mantle and which leads to a logarithmic creep function, often

observed in the laboratory, may be a reasonable first guess.
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On the other hand, the gap between the laboratory and

the earth's mantle may be less serious than we usually

assume, since temperature and pressure effects may work

against each other. Finally, with the recent more widespread

appreciation of the importance of anelastic dispersion, the

more accurate phase information as well as inaccurate

amplitude information can be a strong constraint to discriminate

among some of the assumptions about frequency dependence of Q.
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CHAPTER IV

Anelastic Dispersion

4.1 Resume

In the previous chapter, we discussed attenuation

mechanisms and distribution functions to explain the gap

between individual mechanisms and observations. In this

chapter, we are going to take an alternative approach, in

which we postulate basic principles like superposition

and causality, and write the consequent mathematical

relations between physical parameters. Ultimately we want

to use these relations for inversion problems in the

following chapter. Kolsky (1956), Futterman (1962), Lamb

(1962), Strick (1967) and Azimi et al. (1968) used this

approach in one way or another. The principles of super-

position and causality provide relationships between the

real component and imaginary component of the complex

elastic modulus (phase velocity v and attenuation coefficient\)

, given the observed frequency dependence of Q. Some other

dispersion-attenuation relations also can be provided from a

finite or infinite superposition of relaxation mechanisms

using a certain distribution function. Solomon (1972a) and

Liu et al. (1976) showed examples of these. Others arise

from the empirical equations like Lomnitz's Law (1957) and

the Jeffreys-Lomnitz law (1958). All of these relations,

however, are indistinguishable mathematically for a given
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frequency dependence of Q. Therefore, they are classified

in two general categories, frequency independent Q and

frequency dependent Q.

4.2 Superposition and causality

We have discussed the validity of the linear theory of

seismic wave propagation in anelastic media in the previous

chapter. Linear theory provides Fourier analysis and the

superposition principle. Therefore, the attenuation problem

of non-sinusoidal waveforms is mathematically manageable. A

wave form may be decomposed into its Fourier components, each

component as a sinusoidal wavelet being attenuated and

recomposed into the damped form of the complex wave. The

causality principle, 'no signal before stimulus', is a must-

be-obeyed condition in any physical system. However, causality

often seems to be violated when we approximate a theory or an

equation for numerical calculation, or when we try to fit a

small piece of spectral data. The violation of causality

sometimes causes disastrous consequences. In seismology, we

have an example of causality violation. We used to make three

simultaneous but incompatible assumptions based on limited

pieces of observations. We used to assume: 'l) frequency

independent Q, which is approximately indicated by observation,

2) non-dispersiveness, which is indicated by body wave

observations (surface wave observation is complicated by its

own dispersion due to penetration depth), and 3) linearity.
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Therefore, among the three, one or more is necessarily wrong.

The causality violation due to these three assumptions can be

easily demonstrated in the following example of a delta

function pulse 6 (t-x/c). The Fourier transform of the pulse

6 (t-x/c) is

F( 0 ) - 6 (t - T) e ict dt = e iJT/2TT (4.1)
2-00

Allowing the pulse to travel for a time T in the medium of

constant Q, we obtain the attenuated spectrum

o W t iWT -T
F( )) iOt 2Q 2

) - 6 e dt = e e /2(4.2)

Transforming back to the time domain,

0o

f T(t) = FT( 0 )e-id = 2 T/2Q (4.3)ft d (T/2Q) 2+(T-t) 2

The result of equation (4.3) shows that the pulse peaks at

t=T and spreads symmetrically to both earlier and later times.

The fundamental unacceptable feature is that the disturbance

begins before t=T.
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A moderate frequency dependence of Q may be introduced

with an associated dispersion to cancel the Fourier component

which travels faster than its signal velocity. Assuming

certain types of frequency dependence of Q, the corresponding

dispersion relations are given by Kramers-KrBnig relations

(Hilbert transforms). A detailed discussion on causality and

Kramers-Krbnig relations is given in Appendix I.

4.3 Anelastic dispersion

In a linear theory of attenuation, dissipation must

accompany dispersion. Such dispersion due to anelasticity is

known as 'anelastic dispersion'. This notion is the by-

product of principles of superposition and causality.

Futterman (1962) derived a dispersion relation from the

Kramers-KrBnig causality relations. An important consequence

of anelastic dispersion is that it is of first order in Q-1

and the dispersion between two decades of frequency in the

earth's mantle is about 1%, which is nearly an order of

magnitude larger than uncertainties in the data. We will

discuss the significance of this statement. Although the

effect of anelastic dispersion has been discussed by a number

of authors for nearly two decades, the significance of this

effect has been either neglected or widely thought to be

minimal in the seismological community until quite recently.

For the point of historical interest, we will discuss the

reason for the neglect of anelastic dispersion.
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4.3a Importance of anelastic dispersion in seismic studies

Ever since long period surface wave velocities and free

oscillation periods were first interpreted to derive earth

structure, the result has not been compatible with the classical

models of Jeffreys and Gutenberg derived from body waves. The

so-called 'baseline discrepancy' is the travel time difference

of P and S waves from such a velocity model for long period

data with reference to Jeffreys-Bullen travel times, for example.

This baseline discrepancy is known to be more pronounced for S

wave than P waves. According to Sen-Gupta (1975), his observed

travel times of body waves from deep focus earthquakes, compared

with the travel times computed from the Bl model of Jordan and

Anderson (1974), an inversion model based on 80 percent free

oscillation data and 20 percent body wave data, are 0.3 seconds

early for P, 6.4 seconds early for S, and 5.7 seconds early for

ScS. Sipkin and Jordan (1975) suggested there may be a

continental bias in observed travel time of S waves while free

oscillation data represent the average earth mantle. However,

by any explanation, the S wave travel time difference of 6.4

seconds is too big. Carpenter and Davies (1966) and Davies

(1967) pointed out the importance of dispersion in surface wave

inversion and discussed the compatibility of body wave and

surface wave observations. Hart et al. (1976), Anderson et al.

(1977), and Kanamori and Anderson (1977) discussed the anelastic

effect in the inversion of surface waves and free oscillation

data. The significance of the anelastic dispersion effect is

that the baseline discrepancy can be removed. Non-dispersive



112.

earth models from surface wave and free oscillation predict

the phase velocities around 50 second period with about 1

percent error (Carpenter and Davies, 1966; Liu et al., 1976).

4.3b Reasons for neglect of anelastic dispersion

As explained in the previous section (4.2) and also by

Stacey et al. (1975), it has been a mistake to use three

incompatible assumptions which lead to causality violation,

namely, linearity., constant Q, and non-dispersiveness of the

medium. Knopoff (1956, 1959) discussed a linearized equation of

motion of the form,

Co +l + L IWQ t 3 x 2  t 2

where u is the particle displacerent and c o is the wave velocity

in the absence of attenuation (Q--)o). Here we can see the same

mistake of constant elastic modulus being assumed (non-

dispersiveness). Because of a similar error, Ricker (1953)

and Knopoff (1956) reported that the waveforms propagating

through media with solid friction are not changed but spread

out symmetrically.

Other reasons for the historical neglect of anelastic

dispersion are given by Kanamori and Anderson (1977). (1) For

a simple damped linear oscillator the inclusion of an infini-

tesimal attenuation E changes the natural frequency of the

system from W0 to W(1!-CE 2), where C is a constant. Since
Q-1

E v-' Q1, the effect can be ignored for Q greater than 100, a

typical value in the earth's mantle. 2) Knopoff and MacDonald
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(1958) showed that the inclusion of infinitesimal attenuation in

a linear system results in Q which is proportional to odd

powers of frequency; therefore a constant Q model is

inconsistent with a linear system. This led Knopoff and

MacDonald to introduce a non-linear model. 3) Futterman's

(1962) dispersion theory has been challenged by some investi-

gators (Stacey et al., 1975) because the propagation velocity

is increased by inclusion of anelasticity. (Futterman's theory

has been defended by Savage (1976) and Kanamori and Anderson

(1977) in that Futterman's mistake is not a real physical

implausibility but rather is a result of the arbitrary

assumption that phase velocity at zero frequency is the

elastic velocity). These arguments can be given for

historical interest. Some confusions due to arguments between

linear or non-linear theory, and between frequency dependent or

independent Q ,should not prevent us from seeing the significance

of anelastic dispersion.

4.4 Dispersion-attenuation relations

Dispersion-attenuation relations can be given in two

different ways. (1) In the frequency domain, for a given

frequency dependence of Q, Kramers-Krinig relations provide

a dispersion-attenuation relation. A frequency dependence

(either dependent or independent) of Q can be given by

superposition of a certain individual relaxation mechanism

or of viscoelastic elements, or by empirical observations.
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(2) In the time domain, Boltzmann's after-effect equation will

provide a complex modulus and a dispersion relation for a

given creep function or relaxation function. A creep (or

relaxation) function can be given in a similar way, by

superposing the relaxation (or creep) function of each

viscoelastic element using a distribution function or by

empirical observations. No matter which procedure we go

through, the same dispersion-attenuation relations are given

for the same frequency dependence of Q. Therefore, we will

discuss two categories of frequency dependent and independent Q.

4.4a Frequency independent Q

Various attempts have been made to explain the nearly

constant Q in the seismic frequency band (Futterman, 1962;

Lomnitz, 1957; Azimi et al., 1968; Liu et al., 1976).

Futterman (1962) and Azimi et al. (1968) derived dispersion

relations in the frequency domain.

)<() = C (Futterman)

(4.4)

X() = (Azimi et al.)
1 +X

1

whereX(() is attenuation coefficient and C,X oX 1

are constants. Relations (4.4) give the following dispersion

relations (Appendix II)
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( ) = v 1 W (Futterman)

v( ) = v2 X + 2 n 1
S(l1- X1 ) X 1W

(Azimi et al.)

(4.5)

where XI is chosen so that X(W)is almost linear in some finite

frequency range 0 )_ C CLLm (Azimi et al. used the value of

constantXl as -1 0- 7 sec).

For attenuation

-1l-
Q ( w) = Qo1

Q-1 0
Q (w) =

1+ X1W

(Futterman)

(Azimi et al.)

SinceX 1 is very small (10-7), the two above expressions are

vertually identical.

Lomnitz (1957) and Liu et al. (1976) instead derived

dispersion relations in the time domain. The creep function was

given as follows

q In (1 + at)

C (1 - et/)

(Lomni tz)

(4.6)

(Liu et al.)
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where q, a, C, are constants and T is a relaxation time

constant. These creep functions will give the following

dispersion relations (Appendix III)

v{l + 1 [y + ln --]}(Lomnitz)
Tr Q a

v(w) = (4.7)

v {1 o in } (Liu et al.)

where , a, s2 , are constants, v. is the velocity at infinite

frequency, and Q is approximately constant at the value Qo.

From (4.5) and (4.7), when Qo-1 is small,

1 in l (4.8)
v( w1 )/v( 2 ) = 1 + Qo

This is a good approximation for various attenuation laws of

constant Q.

4.4b Frequency dependent Q

Jeffreys (1958) modified Lomnitz's law (1957) to the

Jeffreys-Lomnitz law which also represents an empirical law

(Andrade, 1911). The creep function for the Jeffreys-Lomnitz

law is

= q) (1 + at) - 1 (4.9)V
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where q and a are constants and v is a number between 0 and 1.

As ygoes to zero, (4.9) tends toward the original Lomnitz law.

In the time domain, this creep function (4.9) gives the following

dispersion relations (Appendix III)

Q-( ) = q a (v -1)! W sin T

(4.10)
-1 cot 7TV -1

v( w ) = v + 2 cot2

(Jeffreys et al., 1960; Jeffreys, 1965, 1975). For v,a number

of suggestions have been made by Jeffreys ( 1 1 ) and Andrade

1 ). Lamb (1962), Strick (1967) and Azimi et al. (1968)

considered the following frequency dependence of the attenuation

coefficient X(w) r

1-V
X()= 1 - (4.11)

where Vis a number between 0 to 1.,

The frequency domain approach (Appendix II)will give the

following dispersion relations,

Q-( ) = C

(4.12)

v( W ) = vC 1 + X v V tan 2T -
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1
Lamb (1962) used V = 2 and Strick (1967) and Azimi et al.

(1968) rather try to explain nearly constant Q with

V= 0.078 (Strick) and V= 0.1 (Azimi et al.).

Equations (4.10) and (4.12) give

-1 -1 -i
Q ( )/Q ( = / 2)

v( Q)-1 -V (4.13)

V O2 2 2 L2

-1 -1
where Qo is Q at W0 : 2

Solomon (1972a)considered a frequency dependent Q model

for western United States with the assumption of partial

melting. Solomon (1972a)used a couple of relaxation times

for the asthenosphere. For such a superposition of a finite

number of relaxations, dispersion relations can be written as

(Solomon, 1972a)

-1 Li o ij
Q( ( ) =% 1/2 2

S (1 - A4i) 1 + ( W)Ti)
S(4.14)

v(W ) = Voo - • 2] 4.4
1 + (C T.)

1 1

where Ll and L are the strength and the characteristic time

of the i-th relaxation.
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CHAPTER V

Formulation of Simultaneous Inversion of

Surface Wave Phase Velocity and Attenuation

5.1 Resume

In this chapter, we describe a formalism for simultaneous

inversion of surface wave phase velocity and attenuation.

The forward problem of surface waves in an anelastic medium

and the subsequent inverse procedure are developed. Basically,

a complex formulation is developed first and treated

component-wise for computational purposes. Resolution

analysis is extended to the complex case using Der and

Landisman's (1972) two-variable concept. A comparison

between the simultaneous formulation and Anderson and Hart's

(1976) treatment is included.

5.2 Forward problem

The problem of surface wave propagation through perfectly

elastic multilayered media can be treated by Haskell's matrix

formulation. In each layer, with boundary conditions of the

free surface and of continuity of stress and displacement at

the interfaces, a set of equations hold:

2

X.+ 2 pj) V P

2 (5.1)

2 j
S t aj P a t 2



.V2
j Vt v

(5.lb)
a 2

3 t2

2 a + aV2  +
t + 2

U. x 3 z W. = xW z x

where x (propagation direction) and z are the horizontal and

vertical axes, respectively, Xj,.Lj and Pj are Lame parameters

and density in the j-th layer, , j are scalar and vector

potentials of the elastic field of the jth layer, and uj, vj,

wj are the displacements in the x-, y-, and z-directions. For

an anelastic (or viscoelastic) medium, the wave equation (5.1)

and the solution have the same form in the frequency domain as

for an elastic medium except that the elastic modulus is

replaced with a complex quantity according to the 'correspondence

principle' (Christensen, 1971). The Fourier transform of

equation (5.1) with complex modulus is

* 2 -
E(w) V F. = p

t 1

F.(x,z, w ) =
S#2 0

2j F.(x,z,w )

F.(x,z,t) eJ
i Wt

dt

where E*j (w) represents either \ + 2L jor a
jJ I j

120.

where

(5.2)

and F.3
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represents j,1*Jor v.. E3 (C)) depends on frequency in general.

The frequency dependence can be specifically defined by the

creep function (or relaxation function) of the medium. As an

example, the solution of F. = vj (for Love waves) of equation

(5.2) with the boundary conditions mentioned above is

-bz
V.(x,z,O) = F. (x,z,CO) = 2 7 A e e
J J

ikx

where A is a constant, 8 is a Dirac delta function, and where

k = C3/c

b = k / 1 - c2  2

2 *

2 = /L /p

and the phase velocity c is found from the solution to

equation (5.1). The inverse transform of vj is

-bz
v.(x,z,t) =A e e

I
ik (x-ct)o

where k = 0 / c



122.

b = k / 1- (c/ )
o 0 

Co= ( C + ic 2 )

8 0 1 + i 82 ) W

Therefore, Haskell's (1953) matrix formulation may be

extended to lossy media by implementing complex velocities

and a dispersion relation between the real and imaginary

parts of the intrinsic velocity. Similarly, for Rayleigh

waves, the above extension of Haskell's matrix formulation

can be achieved.

5.3 Inverse problem

The phase velocity and attenuation of surface waves on

a multilayered, anelastic earth are obtained from the roots of

the complex dispersion-attenuation functions (Schwab and

Knopoff, 1971) fL (Love) and fR (Rayleigh):

L c , / , , dj ) = 0fL ( T i t cL , pj j, dj 0

(5.3)

f ( Tit cR, /, jC, g, d.) = 0
Ri = i j

i = 1 2t . ,m; j = 1, 2, ... ,n
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L R
where Ti, c., and ci are ith period and Love and Rayleigh

wave phase velocities and CLj.P and dj are, respectively,

the P-and S-wave velocities, density and thickness for the

jth layer. The velocities c L,c R,CLand are complex quantities.

The inverse problem can be stated as the problem of

finding an anelastic (complex) earth model from given

observational data pairs, phase velocities and phase

attenuations. We start with an initial anelastic earth model

and a set of observed dispersion-attenuation data pairs. The

phase velocity and attenuation for the initial complex model

are then calculated theoretically by Haskell's (1953) method

at the period of each observed data pair. The generalized

Haskell formulation is for a flat earth, whereas the

observations are for a spherical earth. The flat-to-spherical

transformation of Biswas and Knopoff (1970), as amended by

Schwab and Knopoff (1971) to include anelasticity, is used for

sphericity corrections for Love waves. For Rayleigh waves, a

similar transform is given in Schwab and Knopoff (1971).

However, it is difficult to use in a computer code. In this

study, Bolt and Dorman's (1961) empirical correction has been

used for spericity and gravity corrections. Although North

and Dziewonski (1976) improved such a correction, a minimal

change is expected at periods less than 100 sec.
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From the dispersion-attenuation calculations we can also

obtain the partial derivatives of complex phase velocity c

with respect to each complex parameter p of the layered earth

model. Then the linear perturbation equation can be written

relating the desired parameter corrections to the differences

between the corresponding theoretical and observed phase

velocity values:

cL,R

AcL,R -i Ap. (5.4)
i pj j

where the repeated indices imply summation for n layers. A

similar equation for each period can be formed.

Because the physical significance of a complex quantity

is more easily understood by decomposition into real and

imaginary parts, we write equation (5.4) as two real equations,

rather than one complex equation.

L,R L,R

AcL,R c 1 CL p
1 p1  aP2

L,R L,R (5.5)

AcL,R 2 2  AP 2
2 l P 2

where c '"nd c2're the real and imaginary parts of cL' R and pl

and p2 are the real and imaginary parts of p.

It is assumed that all the dissipation is due to

imperfect elasticity. By requiring the density to be real

we ignore the possibility of losses due to imperfect inertia
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(Anderson and Archambeau, 1964). For Love waves we can write

equation (5.5) in more familiar terms:

AcL
1

AC L
2

L
ac1

Lac2
a 1

L3c1

2
L
2

2 ij

1

2
j

(5.6)

where ,1 and 2 are the real and imaginary parts of the shear

wave velocity in the jth layer. For Rayleigh waves, eq.(5.5)

can be written as,

R
3ca

1

R
c2

Rac
1

2

R
2

D L

R3 c
1

R

3c

R R

1  c 1

302 p

R R
c 2  3c 29ct 2 9)p

1

2
Aa

1
AU

2

AP

(5.7)

J

Since one or both ofA 1  andA/i 2 depend upon frequency (as do

ACL1 andAL2 for Rayleigh waves), the right hand sides of eq.

(5.6) and (5.7) should be standardized at a single reference

frequency for inversion (see below). Generalizing equation

(5.4) to m complex observations and using matrix notation gives:

L,R L,R
A x

L,R
= Y

R

2

(5.8)
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where y is an m x 1 matrix of differences between observed and

predicted phase velocities and attenuations, A is an mx n

matrix of partial derivatives, and x is an n x 1 matrix of

perturbations to the starting anelastic earth model. The

L L L
elements of y, A and x are real 2 x 1, 2 x 2 and 2 x 1 matrices,

R R R
respectively and the elements of y , A and x are real 2 x 1,

2 x 5 and 5 x 1 matrices, respectively.

The partial derivatives of phase velocity with respect to

shear velocity are obtained by implicit function theory

(Schwab and Knopoff, 1972):

3cL,R

3

_ fL,R

f R
= /
ac

a L,R
L,R

fR

ac

(5.9)

fL = (s, -i)an-lan

= T(o)F(1)F( 2 )

-2" al (i)

F(n-2)-(n-1) (n) even n

(n-2)F (n-)T(n) odd n

are the dispersion-attenuation functions for Love and Rayleigh

waves and where

cos Qj

i ijr, sin Q

-1 -1
iEjr sin Qj , j=,2, .. ,n-1

cos Q

where

R
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2 2
/1 - c / B n

o, ( -1) 2  2'~ 1'

0

-rn
n

rcnr

1

-rn
0n

0

-(n)
T

'n
1

r r
n n

r
0n

0

E

F M F M F M F M F (j) F (j)
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F1312 F1313 F1314 F1323 F1324 F1334
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where

rBj

aj

/ (cLR/ )2 - 1
j

LR 2
-i/ 1 - (cLR /8.)

i ( c/aj ) 1

-i/ 1 - ( cR/2j 2

= wr
J

= ~ r

:

if Re cL,R > Re Bj

L,R
if Re c ' < Re j

R
if Re c > Re a.

Rif Re c < Re aj

dj/ cL,R

dj/ cR
d.J

for continental paths

2
ipo c tan [Po/r ]

n-lE = (-1)

= 2 ( 8./

for oceanic paths

2 2/ 2 2
P C n rr r p a

1 n a n n nn )n

c )2

Qj

P.

q



130,

and where the square root operation is performed so as to

make Re r.j>O, Re r% >o for all j. The partial derivatives

required to evaluate equation (5.9) are given for Love waves, by

as[ c 0] a l an2  ...

+ [s, -i] C anlan 2[S'-i] a ia1n 2 n-2

1
a1 ( )

0

aa.

... ac

aa.
J

0] anlan2 ..
n

al(i

.1).. a
1 0

1 ()

For Rayleigh waves,

define

-(n-l) (1) F(2)-(3)

= (1) (2) (3)

(n-2)-(n-l)
F F

then

(o) -(n-l) (n)

T(o) (n-) Tn)T A T

for even n

for odd n

afL

ac

afL

aBj
n

I
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For even n,

a-R
ac

-[-(b) 0) (VI)+ i5. -ob)
A T + T aN T + - ( I (.0Rc A ac

where

n-I

.I F ('2V' -
J=I

aPj

T ( ) F()

T F (2

(-( T (h)

F
SP

'ap,

where p can be either CLor .

For odd n, similar formulae hold. From equation (5.11), only

two of the elements of the 2 x 2 real matrix in equation (5.6)

are independent for Love waves and only six of the elements of

the 2 x 5 real matrix in equation (5.7) are independent for

Rayleigh waves. Thus the matrices can be completely specified

from the real and imaginary parts of DcL' R// and C/ aCL.

FRP

-3 P

ap

Dc
R

aFj )  - T(n)
DeR

TOo) -(1 F 2)--
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Since cL= cL(V) and cR= cR(CL, 9) are analytic, single-

valued functions their first derivative are unique and

independent of the direction along which the derivative is

taken), the Cauchy-Riemann condition is satisfied for

C C ' + 02' ' 6 'f', J C Cc + t
(Morse and Feshbach, 1953, p. 357), and

L, L,R LR L,

R R R R
ac, ac <  ac, ac,

d CL, CLZ a C 2L ac i

5.4 Resolution

To assess a criterion for stability of the inversion

process, we should examine the averaging kernel or resolving

length at various depths. In Lee and Solomon (1975), we

determined the resolving length for surface wave attenuation

data with errors using the idea of Der et al. (1970) of

minimizing simultaneously both the variance of a physical

parameter of interest in a layer and the deviation from a

8 -function of the averaging kernel for the same layer. Der

et al. and others have shown that the resolution of layer

parameters can be improved by combining two independent

observations, such as Love and Rayleigh wave dispersion or
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fundamental mode and first higher mode Love waves. Der and

Landisman (1972) extended their theory to the case of two

variables, namely shear velocity and density in the crust and

mantle. In the extended theory, separation of the two

unknown variables, depth resolution, and accuracy of the

parameter estimates are three competing objectives. A similar

theoretical discussion was given by Backus (1970) in an abstract

form. Dziewonski (1970) noted that the strong correlation

between the partial derivatives of free oscillation periods

with respect to density and shear velocity makes the inversion

process highly non-unique. Derr (1969) showed that the addition

of free oscillation overtones of low radial order to the set

of fundamental mode observations does not greatly improve the

depth resolution of shear velocity but facilitates the

separation of shear velocity from density. Similar conclusions

were also given by Der and Landisman (1972).

The simultaneous inversion of phase velocity and

attenuation, however, differs in two important respects from

the above cases:

1) The relative errors associated with phase velocity

and attenuation data are generally very different, much larger
-l

for Q-1 observations than for phase velocity measurements.

2) The two variables and Q -1 are expected to be well

separated by the Der and Landisman (1972) treatment because
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the real and imaginary parts of the data are more closely

related to the two unknown variables (real and imaginary

parts, respectively, of an earth model) than is the case for

the two-variable problems mentioned above.

We follow the treatment of Der and Landisman (1972) for

parameter resolution for a two-parameter earth model. The linear

L,,Rcombination of data y used as the estimator of a desired

L, R.parameter xk in layer k is

L R L,R N M L,R L,RXk = r.y = E E rik S x (5.12)
k ik i j ik ij j

i j

where rik is a coefficient to be determined, N is the number

of data, M is the number of layers in the model, and where S.. =
L,R 13

ayi
, normalized by the layer thickness in km.

axL,R
jThe three quantities to be minimized are (Der and Landisman,

1972)

L,R
1) the variance of the desired variable xk

2) Sl, the resolution for xkLIR
L,R

3) S 2 , the dependence on the undesired variable xk for

the same layer.

If we assume that the observational errors are independent

L,R N 2 L,Rvar x = . rik var yi (5.13)

L,R 2 M L,R 2
S Z d. ( E )

1 j=k 3 kj

L,R 2 M LR 2
(s j= d. ( LR )

2 3 kj
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where d. is the layer thickness and
3

L,R N L,R
kj i ik ij

L,R (5.15)
L,R TIR L,R i

F = kjE rik T T13
Fkj ij x.

These three objectives can be accomplished by minimizing the

function

LR L,R L,R 2 L,R2
Sk" = sink var xk + cos~sinn(s 1  ) + cosccosn(s 2

+ 2 O(ELR -1) (5.16)
kk

where 0 is a Lagrange multiplier. The parameters and 7

(0< ,< are adjusted so as to balance the three desired

minimizations. As is increased, the approximation to the

delta function becomes worse, the variances of xkLIR become

smaller and separation between xk L ' R and Xk L ' R improves.

5.5 Inversion Procedure

For the dispersion-attenuation relations discussed in
-1 -1

section 4.4, Q , , Q and CL are related to i

2, CLI and a,2 such that

-1
Q = 2 82/ B1

(5.17a)
-1

Q = 2 "2/ al



2 2

2 2
a = (Cl + 2 )

/ Bl

/ C,1

For each of these relations,

depend on frequency

T2j

+ g (wi 2j

h(w i )

lj + g (wi)2j

h(1 i )

136,

(5.17b)

and

ij (wi)

82j (wi)

lj 1(wi)

a2j (i)

(5.18)

I CL1 or all 1 P 2' C1

2j
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where g and h are specified functions of frequency and

1lj' 2j' aj and C 2j are values of Alj,? 2 j,.jand CL2j
at a reference frequency respectively. In general, the

inverse problem to equation (5.8) is conducted at the

reference frequency, the partials in (5.4) are with respect to

A81 2 'C 1 and C 2 , and the earth structure at any other

frequency follows from (5.18) (see Appendix IV).
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CHAPTER VI

Applications

We now apply the formalism for the forward and inverse

dispersion-attenuation problem that we discussed in the

previous chapters to (1) Love waves in western North America,

(2) Love and Rayleigh waves in western North America, (3)

Love and Rayleigh waves in east-central North America, (4)

Rayleigh waves in the central Pacific. We tried to test

various dispersion-attenuation relations in each region.

In western North America (1), the dispersion-attenuation

relations for Q independent of frequency 0/=O), Q varying as

powers of 1/2, 1/3 and 1/5 of frequency (V= 1/2, 1/3, 1/5,

where Vis the power of Q-1 of frequency dependence) and Q

for a superposition of shear relaxations were assumed in

various inversion trials. In western North America (2), the

dispersion-attenuation relations for V= 0, 1/2 and 1/5

were tested. In east-central North America (3), 1/ = 0, 1/2

were tested. In the central Pacific (4), V = 0 was applied

in the inversion process.

6.1 Data

a. North America
-1

The data sets for QL,R of North America are described

and tabulated in Lee and Solomon (1975) and in Chapter II;

the accompanying phase velocity measurements are given in

Solomon (1971).
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Since this data set, derived from records of events

in the years 1964-1968, includes no Rayleigh wave data in

western North America at periods longer than 40 seconds,

we made an effort to search for events in the years 1969-

1975 for which energy at periods longer than 40 seconds

was visible on the vertical component. A requirement of

the search is that events must be nearly on the great

circle connecting the two stations LON and TUC. 'Nearly'

great circle path is taken to include a flexibility of 100

in azimuth from precise great circles.

We picked and digitized five events (Table 6.1) whose

magnitudes ranged between 5.8 and 6.5 and which are located

in China, Alaska and Indochina at distances between 40 and

130 degrees from the stations. After we went through the

standard procedure, described in Solomon (1971), we realized

that we could not obtain any new information, because of

several reasons: (1) Suitably long period (Rayleigh waves)

are poorly generated unless an earthquake has a magnitude of

near 6 or greater. (2) The path from an event to the stations

should not cross geologically complex regions. (3) If the

event is too large in magnitude or too close to one or both

stations, the records are usually complicated or unreadable.

(4) In our case, the great circles connecting each of the five

events to the stations LON and TUC pass through a part of

the Asian continent and Alaska, where the geology is not

simple. Further, three of the five events are too far



Table 6.1. Events examined for long period Rayleigh waves, LON to TUC

Events Depth mb Distance, A0 Date Origin time Lat. Long. Region
km LON TUC

A 7 6.0 24.1 42.9 3.3 29 Oct '68 22:16:15.6 65.40 N 152.80 W Alaska

B 59 6.5 100.1 116.9 0.9 29 Jul '70 10:16:19.3 26.02N 95.40 E Burma

C 33 5.8 50.2 66.9 0.6 18 May '71 22:44:43.8 63.950 N 146.110 E Eastern
Siberia

D 33 5.9 118.9 135.6 5.1 7 Apr '73 3:0:58.8 6.97N 91.38°E Nicobar
Islands

E 11 6.2 94.6 111.3 5.4 10 May '74 19:25:15.0 28.24oN 104.120 E China

Source of data: U,S, Geological Survey

A = distance in back azimuth at TUC between LON to TUC path and actual path
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away from the stations (more than 1000 away). As a

consequence, we were not able to add to our knowledge of

long period Rayleigh wave propagation in western North

America.

b. Central Pacific Ocean

-1
The data set for Q for the central Pacific ocean

has been measured by Mitchell et al. (1976). They

determined QR1 from the records of three earthquakes at

WWSSN stations distributed around the west coast of

America, the Far East and the Pacific. These measurements

represent a weighted average of the entire Pacific ocean

region. Such an average model does not strictly represent

the structure in any particular location because of the

lateral variation of oceanic structure according to the age

of the sea floor (Forsyth, 1975).

We particularly have chosen one event among the three

for which the data sample paths predominantly across the

relatively old (80-90 m.y. old average) central Pacific.

The location of this event (April 26, 1973, 2 0 h 2 6 m3 0 .8 s ,

latitude 19.9 0N, longitude 155.130 W, mb = 6.0), stations

and paths are shown in Figure 6.1. The corresponding phase

velocities, also a weighted average of 'pure path' velocities,

are calculated using the magnetic anomaly map (Pitman et al.

1974) of the Pacific and the results of Forsyth (1975, 1977)

on the variation of phase velocity with increasing age of

the sea floor. We divided the Pacific into eleven age
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Fig. 6.1. Pacific area map showing paths between the

April 26, 1973 earthquake and stations (ALQ, ANP, ARE,

BAG, BOG, CHG, COL, COR, DAV, HKC, JCT, LPB, NIL, RAR,

-1
RIV, SNG, TAU, TUC, WEL) used in the Q measurements

of Mitchell et al. (1976).
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age regions (0-5 m.y., 5-10 m.y., 10-20 m.y., 20-38 m.y.,

38-53 m.y., 53-65 m.y., 65-83 m.y., 83-100 m.y., 100-135

m.y., 135-190 m.y., greater than 190 m.y.) and continental

paths. Each great circle path from event to station is

plotted on the map of age zone boundaries, from which we

can calculate the total path length in each age group for

the sum of all the paths (see Table 6.2). Then we can

determine the weighted average of phase velocity and group

velocity at each period using the results of Forsyth

(1975, 1977) and the weights shown in the Table 6.2. The

resultant weighted phase velocity and group velocity

curves for the eastern Pacific are shown in Figures 6.2

and 6.3.

The magnetic anomaly map on the basis of which

seafloor ages were estimated does not include the marginal

basins of the western Pacific, across which pass many of

the surface wave paths used here. Additional age information

for these basins have been taken from Weissel (1977) for

the Lau Basin, from Weissel et al. (1977) for the Coral Sea

and New Hebrides Basin, from Watts and Weissel (1977) for

the south Fiji Basin and from Sclater et al. (1976) for the

Philippine Sea. Details of the adopted basin ages are

listed in Table 6.3.
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Table 6.2 Great circle paths in each age group
for the 26 April 1973 Pacific event

Path

0-5 m.y.

5-10 "

10-20 "

20-38 "

38-53 "

53-65 "

65-83 "

83-100 "

100-135 "

135-190 "

ocean

GT. 190

North American*
continent

South American
continent

Distance

19.987

33.963

98.864

26.058

205.869

137.222

22,999

303.729

179.768

150,167

(0) Percentage

1.535

2.608

7.593

2,001

15.812

10.539

1.766

23.327

13.807

11,533

0.45

8.273

0.755

5.859

32.569

9.827

1302.042 100

*Continental paths in southeast Asia are included in
this group.

Total
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Fig. 6.2. Envelopes of Rayleigh wave phase velocity predicted

by model S21P for the central Pacific. Circles are data

points, which are calculated as a weighted average of

'pure path' velocities (Forsyth, 1975, 1977) using the

magnetic anomaly map of Pitman et al. (1974).
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Fig. 6.3. Rayleigh wave group velocity for the central

Pacific. Data points are calculated as a weighted

average of 'pure path' group velocities (Forsyth,

1975, 1977) using the magnetic anomaly map of

Pitman et al. (1974).
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Table 6.3. Ages of Marginal Basins in the Pacific

Area

Central Basin Fault,
Philippine Seal

Southwest Philippine Basin1

Northeast Philippine Basin 1

Lau Basin 2

Coral Sea Basin 3

New Hebrides Basin 3

South Fiji Basin4

Age Range
m.y.

49-43

49-53

49-53

0-3.5

60-65

45-52

28-35

Magnetic Anomaly

17

21

21

1-2

24-26

18-21

7a

Sclater et al., 1976.

Weissel, 1977.

Weissel et al., 1977.

Watts and Weissel, 1977.
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6.2 Inversion: a. Love waves in western North America

The starting model for calculation of partial

derivatives is shown in Figure 6.4. The model was chosen

so that the real part (,9) satisfies the real (elastic)

inverse problem for the dispersion data in Figure 6.5 and

the imaginary part (Q-1) satisfies the imaginary (Q-1 only)

inverse problem for the attenuation data in Figure 6.6.

The velocity-density model shares features with models of

Alexander (1963), Anderson and Julian (1969), Kovach and

Robinson (1969) and Biswas and Knopoff (1974). The density

model in Figure 6.4 remains fixed and real in the inversion

process since phase velocity is generally more sensitive to

changes in than in P and since inertial losses are

neglected. The starting Q-1 model for the constant-Q

inversion is from Lee and Solomon (1975) and from Chapter

II. The starting Q-1 models for inversion using a power

law dependence of Q on frequency are given in Table 6.4.

The starting Q-1 model for inversion using relaxation

mechanisms, after Solomon (1972a), is also shown in Table

6.4.

For purposes of calculating partials, the equivalent

flat model to that in Figure 6.4 was divided into 28

homogeneous layers and an underlying half-space.

The diagonal elements (acl/al = cL/ a 2 ) in the

partial derivative matrix in equation (5.5) are comparable
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Fig. 6.4. The initial model of density, shear wave velocity

and shear attenuation for the inversion of Love wave

data in western North America.
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Starting Q-1 models for inversion
Starting Q models for inversion

Layer No. Deptn Tnicxness
km 100/Q: q a

a=1/5

0.003 0.0025 0.002 0.1

0.002 0.0015 0.001 0.01

0.002 0.0015 0.001 0.01

0.07 0.05 0.035 Rx(0.1,0.008) + Rx(0.1,20)

0.03 0.025 0.015 .Rx(0.1,2)

For model Sl, Q is constant
q a'~-w (v-I)! sin rrv/2.

over seismic frequencies;

Rx(Ai,T) indicates that attenuation is given by Q -1 =Rx(AI,) indicates that attenuation is given by Q

for S2, S3, and S4, Q-1 (w

1-1 A 1+(_r)

where Au is the dimensionless relaxation strength, T is the relaxation time in sec,
and w is the angular frequency in radians/sec [Solomon, 1972a].

TABLE 6.4

q ag
a=1/3

21.

45.

84.3

q a)
a=1/2

00/Q
100/Q

21.

24.

39.

76.

190.

0.50

0.10

0. 05

5.60

2.60

160.

350.

- ""
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Fig. 6.5. Love wave phase velocity, western North America.

Observations are shown by circles; vertical bars

represent standard deviations. The envelope (solid

lines) is that associated with the extremal earth

model bounds from inversion S4.
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Fig. 6.6. Love wave attenuation, western North America.

Circles are observations, vertical bars represent

standard deviations. The solid lines represent the

envelope associated with extremal earth models for

inversion Sl, the dashed lines for S4.
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to those determined by many workers for separate inversions

of phase velocity and Q-1; these partials are shown for

selected frequencies in Figure 6.7. The 'off-diagonal'

elements (cL // 2 = - ?~c/ 1) have a more complicated sign

structure, as shown in Figure 6.7. For Love waves with

periods between 25 and 80 sec, the sign of ac/ V 2 changes

at 60 to 80 km depth. Thus the phase lag due to anelasticity

above that depth would give a decreasing phase velocity for

increasing attenuation (ac1/ 2,<0) whereas below such a

depth the phase advances with increasing Q-l(~cl//d 2 > 0).

For shorter periods (T < 20 sec), there is an additional

zero crossing at about 20 km depth. These sign changes are

closely related to the phase structure of the displacement-

depth function as described by Schwab and Knopoff (1971).

An important consequence of the sign structure of

Dcl 2 in Figure 6.7 is that quite different 9 2 (Q-1) models

can produce comparable changes in the dispersion curve

because of trade-offs between the contributions from

different depth intervals.

Resolution analysis was conducted as described in

section 5.4. The optimal averaging kernels Ekj obtained by

minimization of 6 k in equation (5.16) are shown in Figure 6.8a

and 6.8b for five layers. The vertical depth resolution

can be defined as the width of the peak where the value of

the approximate delta function is close to unity (.0.8).
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Fig. 6.7a. Selected partial derivatives of the real part of

Love wave phase velocity with respect to the real part

of shear velocity (Dacl/d 1 , solid lines), and the

imaginary part (Dcl/A 2 , dashed lines) per unit layer

thickness for the initial model in Figure 6.4. The

partials shown are for frequency-independent Q-1 at

the frequency indicated; for frequency-dependent Q-1

relations the partial derivatives have a similar

structure. Discontinuities in the partials occur at

discontinuities in the initial model.



acl /8l02 x 103

-1.0 -0.5 0.0 0.5 1.0

ac I / I x 102

50

100

150

200

250



162.

Fig. 6.7b Selected partial derivatives of the real

part of Rayleigh wave phase velocity with respect

to the imaginary part of shear velocity

( cR/D? 2 , solid lines), and the imaginary part

of compressive wave velocity ( c/XI 2 , dashed

lines) per unit layer thickness for the initial

model in Table 6.9. The partials shown are for

frequency-independent Q-1 at the frequency

indicated; for frequency-dependent Q-l relations

the partial derivatives have a similar structure.

Discontinuities in the partials occur at

discontinuities in the initial model.
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For comparison, separate 'one variable' cases are drawn in

the same figure. The model standard deviation for the two

cases are given as 7~, O 3s (or O-o Cs), calculated for

a unit layer thickness, where the subscripts / and Q denote

shear velocity and Q-1 and the subscripts o and s denote

separate inversion and simultaneous inversion, respectively.

Based on the resolving lengths of the averaging kernels, a

five-layer earth was adopted for the inverse problem. The

mid-depths of each layer are approximately those shown in

Figure 6.8.

The inversion scheme follows the set theoretical

approach of Lee and Solomon (1975) and of Chapter II.

Envelopes in model space of shear velocity and shear

attenuation are determined from the data set and associated

error estimates by linear programming. The reference

frequency for all inversions is 1 Hz. The envelopes for

shear velocity A and attenuation Q -1 are given in Tables

6.5 to 6.8 for a dispersion model (Sl) with Q independent of

frequency, for models (S2 to S4) with Q varying as a power

of the frequency, and for a model (S5) based on a super-

position of shear relaxations. The relaxation times,

relative relaxation strengths, and depth intervals for

model S5 are as in Table 6.4 and remain fixed during

inversion. (The S class of models all result from

simultaneous inversion; an E class consists of models



TABLE 6.5 Envelopes of shear velocity and shear attenuation
at 0.01 Hz for selected simultaneous inversions.

Layer Depth minimum 8 ., km/sec maximum B , km/sec
no. (km) S1 S2 S3 S4 S1 S2 S3 S4

1 0-21 3.241 3.242 3.245 3.248 3.386 3.382 3.404 3.416.

2 21-45 3.715 3.689 3.696 3.697 4.310 4.346 4.350 4.358

3 45-84 4.220 4.169 4.123 4.103 4.822 4.842 4.828 4.826.

4. 84-160 3.796 3.762 3.710 3.701 4.327 4.370 4.510 4.561

5 160-350 4.811 4.783 4.740 4.699 5.144 5.402 5.430 5.545

Layer Depth minimum 100imum 100mum 100/Q
no. (km Sl S2 S3 S4 Sl . S2 S3 S4

1 0-21 0.0 0.0 0.0 0.0 0.667 0.882 1.063 1.192

2 21-45 0.0 0.0 0.0 0.490 0.268 0.396 0.500 0.538

3 45-84 0.0 0.0 0.020 0.390 0.207 0.303 0.400 0.413

4- 84-160 4.525 4.769 5.196 6.338 7.384 7.774 8.268 8.512

5 160-350 2.628 1.699 1.610 1.554 3.783 4.440 4.387 4.087



TABLE 6.6 Envelopes of shear velocity and shear attenuation
at 0.1 Hz for selected simultaneous inversions.

Sl

3.25

3.72

4.22

4.01

4.92

minimum 8
S2

51 3.253

!3 3.705

27 4.177

19 3.957

19 4.866.

km/sec
S3

3.255 3

3.716 3

4.133 4

3.863 3

4.786 4

S4

.256

.703

.109

.820

.729

Sl

3.39

4.31

4.82

4.56

5.29

maximum B
S2

)9 3.399

L7 4.362

)9 4.850

i2 4.598

)1 5.361

* km/sec
S3

3.416 3

4.364 4

4.837 4

4.653 4

5.465 5

minimum 100
S 1* S2

0.0 0

0.0 0

0.0 0

3.088 2

1.082 0

/Q
S3

.0

.0

.007

. 469

.753

S4

0.0

0.155

0.123

2.047

0.494

maximum 100/QB
Sl* S2 - S3

0.560 0.496

0.250 0.232

0.191 0.185

5.110 3.983

2.870 f 2.078

*S 1 limits are the same as those, listed in

Layer
no.

1

2

3

4

5

Depth
(km)

0-21

21-45

45-84

84-160

160-350

S4

.425

.364

.833

.678

.572

Layer
no.

1

3

4

5

Depth
(knm)

0-21

21-45

45-84

84-160

160-350

S4

0.378

0.171

0.131

2.770

1.310

Table 6.5



TABLE 6.7 Envelopes of shear velocity and shear attenuation
at 1 Hz for selected simultaneous inversions.

minimum B.
S2.

i3 3.264'

30 3.713

35 4.185

.3 4.122

8 4.940

, km/sec
S3

3.260 3

3.710 3

4.137 4

3.940 3

4.807 4

S4

.259

.705

.111

.861

.739

Sl

3.41

4.32

4.83

4.79

5.42

maximum
S2

.1 3.415

5 4.369

7 4.838

6 4.768

8 5.456

km/sec
S3

3.423 3

4.369 4

4.840 4

4.725 4

5.484 5

minimum 100/Qk
Sl* S2 S3

0.0 0.0

0.0 0.0

0.0 0.013

1.982 1.159

0.687 0.351

S4

0.0

0.050

0.039

0.652

0.156

maximum 100/Qg
S1* S2 S3

0.354 0.231

0.158 0.117'

0.121 0.090

3.314 1.882

1..840 0.974

*S 1 limits. are the same as those listed in Table 6.5.

Layer
no.

1

2

3

4

5

Depth
(km)

0-21

21-45

45-84

84-160

160-350

Sl

3.26

3.73

4.23

4.24

5.02

S4

.428

.367

.835

.717 -

.581

Layer'
no.

1

2

3

4

5

Depth
(kin)

0-21

21-45

45-84

84-160

160-350

S4

0.120

0.054

0.041

0.884

0.416

'"



168.

TABLE 6.8

Layer
f=0. 01Hz

1

2

3

4

5

f=0.1 Hz

2

3

4

5

f=l Hz

1

2

3

4

5

Envelopes of shear velocity and shear
attenuation for simultaneous inversion for
Solomon [1972a]-type relaxation model.

& , km/sec 100/Qg
min max min max

3.263 3.416 0.0 0.537

3.715 4.261 0.0 0.269

4.109 4.697 0.0 0.213

3.816 4.430 1.218 4.719

4.615 5.147 0.268 1.313

3.271

3.717

4.112

3.880

4.645

3.283

3. 720

4.115

3.889

4.664

3.428

4.264

4.701

4.449

5.177

3.441

4.267

4.704

4.450

5.196

0.0

0.0

0.0

0.210

1.054

0.0

0.0

0.0

0.145

0.171

0.537

0.269

0.213

0.814

5.170

0.537

0.269

0.213

0.562

0.839
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Fig. 6.8. Resolving kernels for shear wave (a) phase

velocity and (b) attenuation at selected depths (arrows)

at the reference frequency of 1 Hz, Model standard

deviations are shown at the right for both simultaneous

(S) and separate (0) inversion results, shown as solid

and dashed lines, respectively.
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resulting from separate inversions). The corresponding

envelopes in data space are illustrated for some of these

models in Figures 6.5 and 6.6. As with all extremal

inversions of this sort, the envelopes include all

acceptable models but not every model falling within the

envelopes is acceptable.

In general, both p and Q -1 (except for model Sl)

are functions of frequency. The intrinsic dispersion for

is very sensitive to the assumed frequency dependence of

V 1. The effect of the frequency dependence on the

envelopes for / and Q 1 are illustrated for two models in

Figures 6.9 and 6.10.

The result of weighted least-square inversion (Lee and

Solomon, 1975) on the same data set is shown in Figure 6.11.

The P and Q-I profiles (Sll) are 'best' models in the least

squares sense for the layering shown. The initial model for

the inversion was chosen from S1 by averaging two extreme

models which have no low velocity zone. Note that the

presence of a modest low velocity zone in model S11 does

not depend on a low velocity zone in the starting model.

b. Love and Rayleigh waves in western North America

The starting models for calculation of partial

derivatives in this case are listed in Table 6.9 for Q

independent of frequency. The models for / and Q -1 are

taken from the results of the previous section and are
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Fig. 6.9. Envelopes of shear wave velocity and attenuation,

models S1 and El. Envelopes of S1 are shown at three

different frequencies. Long-dashed lines represent

envelopes of El, solid lines are for Sl at 0.01 Hz,

short-dashed lines for S1 at 0.1 Hz and dot-dashed

lines for S1 at 1 Hz.



VS , km/sec IOO/Q S

3.0 4.0 5.0 0.0 2.0 4.0 6.0 8.0 10.0

I I
100-

- 200 -

"I II I

300- I i Isoo -sl



175.

Fig. 6.10, Envelopes of shear wave velocity and attenuation,

models S4 and El. Envelopes of S4 are shown at three

different frequencies. Long-dashed lines represent

envelopes of El, solid lines are for S4 at 0.01 Hz,

short-dashed lines for S4 at 0.1 Hz and dot-dashed

lines for S4 at 1 Hz.
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Fig. 6.11. 'Best' fitting earth models from weighted

least-square inversion. Model Sll is from simultaneous

inversion, model QCll is derived from the technique of

Anderson et al. (1977). The models are shown at the

reference frequency of 1 Hz.
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Table 6.9: Starting model for inversion of
and Rayleigh phase velocity and
western North America.

combined Love
attenuation in

Depth, km

0-2

2-13

13-21

21-45

45-64

64-84

84-94

94-128

128-160

160-180

180-220

220-260

260-300

300-350

oo

, km/sec

1.72

3.58

3.58

3.96

4.54

4.54

4.48

4.49

4.49

5.266

5.266

5.266

5.266

5.266

5.266

CL , km/sec

4.00

6.00

6.20

6.50

7.619

7.615

7.615

7.619

7.622

7.90

8.23

8.25

8.27

8.43

8.53

p, g/cm3

2.21

2.80

2.80

3.25

3.40

3.40

3.45

3.45

3.45

3.50

3.50

3.50

3.50

3.50

3.90

100/Q

.32

.32

.32

.13

.13

.13

5.926

5.926

5.926

2.96

2.96

2.96

2.96

2.96

2.96
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determined by averaging the extreme models of and Q -1

for each case of a given frequency dependence of Q . The

initial density model is taken as in Figure 6.4 and is

varied (but remains real) in the inversion process. The

P-wave velocity is chosen to have features similar to C11

model of Archambeau et al. (1969) and is held fixed since

phase velocity is least sensitive to changes in CL among

(CL,P~ ) and thus the resolution of the inverse problem is

poor forCL. Because of the large uncertainties in measured

Q-l, we will assume that losses under purely compressive

stress are negligible, i.e. Q = 4/3(/)2 -Q . Finally,

a 2 km sedimentary layer has been added to improve the fit

for Rayleigh wave phase velocity.

The 'off-diagonal' elements of the partial derivative

matrix for Rayleigh waves, acR/ 2 , are an order of

magnitude smaller than those for Love waves (Figure 6.7b).

In other words, the difference between simultaneous inversion

and the data corrected Anderson-Hart treatment is less

significant for Rayleigh waves than for Love waves. However,

the advantage of simultaneous inversion still remains because
-I

the changes in the Q model itself are sensitive to the

result of the velocity model inversion.

Resolution analysis was conducted as before. The

optimal averaging kernels Ekj for both Love and Rayleigh

waves are shown in Figures 6.12 for five layers. During
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Fig. 6.12a. Resolving kernels for shear velocity at

selected depths (arrows) at the reference frequency

1 Hz, using both Love and Rayleigh wave data in

western North America. Model standard deviations are

shown at the right.
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Fig. 6.12b. Resolving kernels for shear attenuation at

selected depths (arrows), using both Love and Rayleigh

wave data in western North America. Model standard

deviations are shown at the right.
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inversions, the velocities and density in the top

sedimentary layer and the half space have been fixed. As

in the previous section, the reference frequency for inversion

is chosen at 1 Hz and a 5-layer model is adopted. The

envelopes of shear velocity/, attenuation Q -1, and density

pare given in Tables 6.10 and Figure 6.13 for a dispersion

model (S31W) with Q independent of frequency, and for models

(S32W, S33W) with Q varying as a power of the frequency.

The corresponding envelopes in data space are illustrated

for these models in Figures 6.14, 6.15, 6.16 and 6.17.

c. Love and Rayleigh waves in east-central North America

The starging models of C, , and Q -1 are listed in

Table 6.11. The models of CL, 6 andp are adapted from the

-1
results of McEvilly (1964) and the Q1 model for the

constant-Q inversion is from Lee and Solomon (1975) or from

Chapter II. The initial model Q - for inversion using a

power law dependence of Q on frequency is chosen to be an

acceptable solution to the separate Q inversion. The

averaging kernels Ekj from resolution analysis for both

Love and Rayleigh waves are shown in Figures 6.18, for

five layers. The envelopes of shear velocity

attenuation Qyl and density P are given in Tables 6.12

and Figure 6.19 for a dispersion model (S31E) with Q

independent of frequency and for a model (S32E) with Q



186.

Fig. 6.13. Envelopes of shear velocity and shear attenuation,

at a frequency of 1 Hz, and density for models S31W,

S32W and S33W. Solid lines represent envelopes of

S31W (V= o), short-dashed lines are for S32W (V= 1/5)

and long-dashed lines are for S33W (V= 1/2).
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Fig. 6.14. Love wave phase velocity, western North America.

Observations are shown by Circles; vertical bars

represent standard deviations. The envelope (solid

lines) is associated with the extreme earth model

bounds from inversion S31W. Open circles are incompatible

data for this inversion.
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Fig. 6.15, Rayleigh wave phase velocity, western North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope

(solid lines) is associated with the extreme earth

model bounds from inversion S31W. Open circles are

incompatible data for this inversion.
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Fig. 6.16. Love wave attenuation, western North America.

Circles are observations; vertical bars represent

standard deviations. The solid lines represent the

envelope associated with extremal earth models for

inversion S31W. Open circles are incompatible data

for this inversion.
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Fig. 6.17. Rayleigh wave attenuation, western North America.

Circles are observations; vertical bars represent

standard deviations. The solid lines represent the

envelope associated with extremal earth models for

inversion S31W. Open circles are incompatible data for

this inversion.
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Fig. 6.18a. Resolving kernels for shear velocity at

selected depths (arrows) at the reference frequency

1 Hz, using both Love and Rayleigh wave phase velocity

and attenuation in east-central North America. Model

standard deviations are shown at the right.
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Fig. 6.18b, Resolving kernels of shear attenuation at

selected depth (arrows) at the reference frequency 1 Hz,

using both Love and Rayleigh wave data in east-central

North America. Model standard deviations are shown at

the right.
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Fig. 6.19. Envelopes of shear velocity and shear,

attenuation at a frequency of 1 Hz, and density for

models S31E and S32E. Solid lines represent envelopes

of S31E (V= o), and dashed lines are for S32E (V= 1/2).
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Table 6.10. Envelopes of shear velocity and shear
attenuation at 1 Hz and density; simultaneous
inversion results of Love and Rayleigh wave
phase velocity and attenuation in western
North America.

minimum /, km/sec
S31W S32W S33W

2 2-21 3.527 3.529 3.533

3 21-45 3.897 3.886 3.812

4 45-84 4.382 4.259 4.293

5 84-160 4.105 4.012 3.823

6 160-350 4.782 4.750 4.702

Layer Depth
no. (km)

2 2-21

3 21-45

4 45-84

minimum 100/Qg
S31W S32W $33W

0.274 0.148 0.051

0.059 0.0

0.0 0.0

0.0

0.0

5 84-160 4.200 2.000 0.453

6 160-350

Layer Depth
no. (km)

1.350 0.119 0.084

minimum p, g/cm3

S31W S32W S33W

Layer Depth
no. (km)

2 2-21 2.807 2.846 2.850

3 21-45 3.070 3.042 3.000

4 45-84 3.200 3.200 3.200

5 84-160 3.200 3.200 3.200

2.900 2.90

3.300 3.30

3.434 3.50

3.491 3.441 3.50

maximum /, km/sec
S31W S32W S33W

3.492 3.621 3.637

4.012 4.052 4.029

4.583 4.549 4.690

4.463 4.412 4.263

5.500 5.500 5.500

maximum 100/Qt
S31W S32W S33W

0.490 0.282 0.118

0.250 0.149 0.105

0.447 0.137 0.087

5.33 2.337 0.783

3.64 0.782 0.860

maximum p, g/cm3

S31W S32W S33W

2.90

3.30

3.50
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Table 6.11. Starting model for inversion of phase
velocity and attenuation in east-central
North America (case V/= o)

Depth, km i, km/sec

0-i.1

11-20

20-38

38-62

62-102

102-135

135-212

212-350

3.5

3.68

3.94

4.75

4.61

4.45

4.45

4.45

00 4.80

, km/sec p,

6.1

6.2

6.4

8.15

8.20

8.20

8.20

8.20

8.70

g/cm
3

100/Qg

2.9

2.9

2.9

3.3

3.3

3.4

3.4

3.4

3.6

0.1

0.1

0.1

0.1

0.1

0.1

2.3

2.3

2.3
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Table 6.12. Envelopes of shear velocity and shear
attenuation at 1 Hz, and density in east-
central North America

Layer Depth
no. (kin)

Minimum ,, km/sec
S31E S32E

Maximum g, km/sec
S31E S32E

1 0-38 3.684 3.659

2 38-82 4.557 4.478

3 82-134 5.092 4.719

4 134-350 5.200 5.147

3.692 3.666

4.594 4.513

5.321 4.890

5,500 5.500

Layer Depth
no. (km)

Minimum 100/Q
S31E S32E

Maximum 100/Q 2
S31E S32E

0-38 0.165 0.037

2 38-82 0.0 0.0

3 82-134 3.056 0.241

4 134-350 0.182 0.036

0.263 0.055

0.222 0.048

5.630 0.831

3.846 0.364

Layer Depth
no. (km)

Minimum P,g/cm3,
S31E S32E

Maximum P, g/cm 3

S31E S32E

0-38 2.896 2.895

38-82 3.200 3.000

82-134 3.200 3.200

4 134-350 3.600 3.600

2,900 2.900

3.241 3.010

3.327 3.220

3.800 3.800
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varying as a power of the frequency (v=1/2). The corresponding

envelopes in data space are illustrated for these models in

Figures 6,20, 6.21, 6.22 and 6.23.

d. Rayleigh waves in the central Pacific

The starting models of CL,? ,p and Q - 1 are listed in

Table 6.13. The starting model of the crust is modified

from the 'standard crustal section' of Forsyth (1975a), in

which 5 km of water layer, 0.2 km of sedimentary layer and

6.8 km of crustal layer are assumed. For the starting model

of the mantle, the density is 3.4 - 3.5 g km3 , the S-wave

velocity g is 4.35 km/sec in the LVZ (50-220 km) and 4.60

km/sec in the high velocity lid. P wave velocities are

basically from the assumption of a Poisson solid,CL -- 1.79

(<220 km depth) and CL -1.8Y (>220 km depth),. The starting

model for Q 1 is taken from Mitchell (1976).

No extensive test for the frequency dependence of Q has

been performed since the QR 1 data are relatively poor. The

averaging kernels Ekj for Rayleigh waves are shown in

Figure 6.24 for four layers. The envelopes of shear velocity

and shear attenuation Q - 1 are given in Table 6.14 and in

Figure 6.25 for a dispersion model (S21P) with Q independent

of frequency. The corresponding envelopes in data space are

illustrated for these models in Figures 6.2 and 6.26.

Dotted lines in Figures 6.25, 6.2 and 6.26 are the averaged

best model and its predicted data, respectively.
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Fig. 6.20. Love wave phase velocity, east-central North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope is

associated with the extreme earth model bounds from

inversion S31E. Open circles are incompatible data

for this inversion.
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Fig. 6.21. Rayleigh wave phase velocity, east-central North

America. Observations are shown by circles; vertical

bars represent standard deviations. The envelope is

associated with the extreme earth model bounds from

inversion S31E. Open circles are incompatible data for

this inversion,
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Fig. 6.22. Love wave attenuation, east-central North

America. Circles are observations; vertical bars

represent standard deviations. The solid lines

represent the envelope associated with extremal earth

models for inversion S31E. Open circles are

incompatible data for this inversion.
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Fig. 6.23. Rayleigh wave attenuation, east-central North

America. Circles are observations; vertical bars

represent standard deviations. The solid lines

represent the envelope associated with extremal earth

models for inversion S31E. Open circles are

incompatible data for this inversion.
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Fig. 6.24a, Resolving kernels for shear velocity at

selected depths (arrows), using Rayleigh wave data in

the central Pacific. Model standard deviations are

shown at the right.
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Fig. 6.24b. Resolving kernels for shear attenuation at

selected depths (arrows), using Rayleigh wave data

in the central Pacific. Model standard deviations

are shown at the right,
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Fig. 6.25. Envelopes of shear velocity (at 1 Hz) and

attenuation for the central Pacific, model S21P.

Solid lines represent envelopes of S21P.
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Eig. 6.26. Rayleigh wave attenuation, central Pacific circles

are observations; vertical bars represent standard

deviations, The solid lines represent the envelope

associated with extremal earth models for inversion

S21P. Open circles are incompatible data for this

inversion.
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Table 6.13.

Depth, km

Starting model for the central Pacific

g , km/sec

0-5

5-5.2

5.2-12

12-16

16-27

27-37

37-47

47-57

57-67

67-87

87-107

107-127

127-147

147-167

167-187

187-207

207-227

227-262

262-302

302-352

352-402

CL , km/sec

1.52

1.70

6.53

8.17

8.17

8.17

8.17

7.70

7.70

7.70

7.70

7.70

7.70

7.70

7.70

7.70

7.70

8.49

8.49

8.81

8.81

9.00

p, g/cm
3

222.

100/Q

0.80

0.80

0.60

0.60

0.60

0.60

0.60

0.50

0.50

1.00

1.00

1.20

1.20

1.00

1.00

1.00

1.00

0.60

0.60

0.40

0.40

0.40



Table 6.14. Envelopes of shear velocity and shear
attenuation at 1 Hz in the Pacific

Layer no.

4

5

6

7

Layer no,

4

5

6

Depth (kinm)

12-59

57-107

107-227

227-402

Depth (km)

12-57

57-107

107-227

Minimum / M

4.542

4.195

4.212

4.50

Minimum 100/Q

0.413

1.295

0.90

aximum

4.571

4.350

4.516

5.00

Maximum 100/Qg

0.44

1.742

1.695

7 227-402

223.

2.000.404
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6.3 Discussion: a. Love waves in western North America

An important result of the simultaneous inversion is

that the low velocity zone and the low Q zone coincide

beneath western North America, at least for the surface

wave frequency band (Figures 6.9 and 6.10). The mechanisms

that contribute to a decreased shear wave velocity must

also account for enhanced attenuation in shear.

A second immediate conclusion from these inversion

results is that the envelopes of earth models derived by

simultaneous inversion of phase velocity and attenuation

-1
are not identical to the envelopes of B and Q models

obtained from separate inversion of velocity and Q-1 data

(Figures 6.9 and 6.10); see Appendix V. While the envelopes

show a broad similarity for the two approaches, there are

significant differences, particularly within depth intervals
-i

over which Q-1 and the accompanying intrinsic dispersion are

relatively large. At short-period body wave frequencies,

the shear wave velocities below 80 km depth for both

individual earth models and envelopes of models are

substantially higher than those determined without regard

for anelasticity.

The simultaneous inversion results in two improvements

for the attenuation problem over inversion of Q-1 data alone.

-1One improvement is in the resolution in Q versus depth.

As shown in Table 6.15 for frequency independent Q models,



TABLE 6.15

Layer
no.

Envelopes of shear velocity (at 1 Hz) and shear
attenuation for frequency independent Q models by
various inversion procedures, for Love waves in western North America.

Depth
(km)

minimum 6 ,. km/sec

QCI Sl

maximum 6 , km/sec

El QCI Sl

0-21 3.238 3.236 3.263 3.403 3.407 3.411

21-45 3.725 3.711 3.730 4.329 4.398 4.325

45-84 4.196 4.144 4.235 4.825 4.873 4.837

84-160 4.000 4.117 4.243 4.561 4.935 4.796

5 160-350 4.666 4.953 5.028 5.151 5.742 5.438

minimum 100/Q 6
El S1

0.0

0-. 00,0

0.0

5.51

0.50

0.0

0.0

0.0

4.53

2.63

maximum 100/Qg
El Sl

0.65

0.25

0.25

9.41

3.50

0.67

0.27

0.21

7.38

3.78

.Layer
no.

1

2

3

4

5

Depth
(km)

0-21

21-45

45-84

84-160

160-350
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-1
the bounds on Q in the low Q zone are narrower by

roughly a factor of 2 in Q-1 for model Sl than for model El

obtained by inversion only of Love wave attenuation data.

The second improvement is in the fit of predicted and

-lobserved QL data, especially in the period range 20 to
-l

25 sec where observations of nearly zero QL occur in the

data set for western North America and commonly in other

areas as well (e.g. Tsai and Aki, 1969). In Lee and Solomon

(1975), the data in this period range were concluded to be

incompatible by set theoretical inversion. Such an apparent

incompatibility does not arise in the complete formulation

of complex earth model and observations.

It is of interest to compare the simultaneous

inversion of this paper with the approach recently used by

Anderson et al. (1977), Anderson and Hart (1976) and Hart

et al. (1976, 1977). The technique adopted by these workers

has been to correct the real part of their data for the

effect of anelasticity, using equation (4.8) and the

Anderson and Archambeau (1964) theory, and then to invert

their corrected (real) data to obtain an elastic (real)

earth model. The method of Anderson, Hart and others is

not mathematically equivalent to the complete anelastic

earth problem, equation (5.8); a comparison of the two

approaches is given in Appendix V. Because of the complicated

dependence of acl/B 2 on depth (Figure 6.7a), and because of
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the significant coupling of cl/"S2 with anelastic dispersion,

the two approaches do not yield identical results, particularly

when the observational frequencies are far from the reference

frequency or when the observational frequency band is wide

(see Appendix V). For some earth structures, the two sets of

results can differ substantially.

A comparison of the two inversion approaches for the

Love wave data set for western North America illustrates

some of the differences in their predictions. The bounds

-1
on 8 and Q in the earth for Sl are compared in Table 19

with those for model QC1 (for Q-corrected), obtained by

first correcting the observed phase velocities following

Liu et al. (1976) and Anderson et al. (1976) for the Q-!

model of Figure 6.4 and then performing an inversion of the

corrected real data. The 'best' model for the two different

approaches (Sll and QCll) characterize well the differences

between the two techniques (see Figure 6.11). The

Anderson-Hart approximation yields a monotonically increasing

velocity structure while the simultaneous inversion yields a

0 model with a slight low velocity zone.

All of the proposed dispersion-attenuation relations lead
-1

to earth models that can fit the phase velocity and Q-1 data,

but the various models have very different frequency

dependences. The intrinsic dispersion in B within the low

Q zone varies from about 10 percent for Sl to 1 percent for

S5 between frequencies of .01 and 1 Hz. For frequency
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independent Q, the need for a low velocity zone disappears

for frequencies near 1 Hz and above, though low velocity

zones for shear waves are required at that frequency for the

other dispersion-attenuation relations. The frequency
-I

dependence of Q-1 is also obviously different for the

various dispersion-attenuation relations, varying from

constant to a slowly decreasing function of frequency to a

complicated frequency dependence for relaxation models.

The inversion in this thesis for -relaxation model S5 is of

course not general because only a few isolated relaxation

peaks and only fixed relaxation times and relative relaxation

strengths were considered. The surface wave data alone do

not contain enough independent information to regard the

spectrum of relaxation times and relaxation strengths to

be free parameters that vary with depth.

Broad band observations of body wave velocities and

amplitudes offer the greatest promise for narrowing the

range of possible dispersion-attenuation relations.

Probably, a constant Q model can be discarded at present,

at least for frequencies near 1 Hz and above, because of

the prediction of such a model that a low velocity zone

in western North America may disappear at such frequencies,

clearly untrue (Archambeau et al., 1969), and because the

lateral variation in amplitudes predicted for short period

P and S waves from Q-1 models fit to long period surface
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wave and body wave data are much larger than observed

(Solomon et al., 1970; Der et al., 1975). To discriminate

-among the other proposed models or to test more complicated

relaxation models, phase and amplitude spectra of P and S

waves that have passed through the low Q, low velocity

zone shold ideally be obtained over a frequency band

spanning .001 to 10 Hz.

When such tests are conducted, it will be important to

explore fully the assumption that the measured amplitude

losses for surface waves are due only to anelasticity. If

a scattering mechanism is an important contributor to the

-1
losses, then both the inferred Q structure and the

associated dispersion in B may differ considerably from the

results reported here.

b. Love and Rayleigh waves in western North America

The most serious problem here may be SV/SH anisotropy

in western North America. Love and Rayleigh wave phase

velocities are incompatible for almost the entire common

frequency range. Also as indicated in Chapter II, Rayleigh

-i
wave attenuation QR in the period range 35-40 seconds

-1
shows disagreement with Love wave attenuation QL " This

is not a consequence of simultaneous inversion but appears

to be a consequence either of anisotropy or of some

interference effects in the waveforms analyzed. The
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measurements of Rayleigh wave phase velocity in Solomon

(1971) are comparatively lower than other reported

measurements in the western United States (Biswas and

Knopoff, 1974). However, if we look at the contour map of

Pn velocity in western United States (Archambeau et al., 1969)

the path between LON and TUC lies in a low Pn velocity 'valley'.

To fit the phase velocity curve for Rayleigh waves, a LVZ

seems to be necessary contrary to the result of separate

Love wave inversion in the previous section. This particular

path may be complicated by multiplying effects and/or mode

conversions.

c. Love and Rayleigh waves in east-central North America

The simultaneous inversion results for east-central

North America give a thick lithosphere and a monotonically

increasing velocity model at 1 Hz. A LVZ may not be required

at 1 Hz. However, a LQZ is probably present at depths

greater than 130 km.

A second result of simultaneous inversion is that the

S-wave velocities in other than the crust are increased

considerably and density is decreased compared to the

results of separate inversion of phase velocity. At the

-1
same time, for Q independent of frequency, Q 1 in the

asthenosphere seems to be greater than predicted by the

results of separate inversion.

The frequency dependent Q models are also
The frequency dependent QB models are also
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satisfactory for predicting observations. To discriminate

-1
among the possible dependences of Q , more precise

measurements of Q-1 must be made.

Similarly, as described in the previous section, the

data incompatibility in some period range which occurred in
-i

the separate inversion for Q-1 does not arise in the

simultaneous inversion. The incompatibilities which are

indicated in Figures 2.6c and d did not occur in the

simultaneous inversion.

d. Rayleigh waves in the central Pacific

The results of simultaneous inversion for and Q -1

in the central Pacific are sho;wn in figure G.25. The LVZ and

LQZ coincide and are extensive (60 and 225 km depth). The

lithospheric thickness is less than in western North

America (tectonic) and east-central North America (shield).

Compared to the Forsyth's models (Table 9, 1975a;

Figure 9, 10, and 11, 1977), the result of simultaneous

inversion, model S21P, shows a similar shear velocity

profile to 135 m.y. old ocean even though model S21P

represents 80-90 m.y. old ocean on the average. Forsyth

suggested 80-90 km as the starting depth of partial melting.

Model S21P suggests a shallower asthenosphere at 60 km depth,

which agrees with Mitchell's (1976) model. This is
-I

probably because Q-1 profile may give a different result

from that by velocity profile. Shear velocity at depths

greater than 220km may be much higher than any of Forsyth's
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models. Otherwise the LVZ will terminate at much shallower

depth.

Compared with Mitchell's Q model (1976), the noticeable

differences are that the LQZ may extend deeper than 220 km

and that the LQZ is more pronounced. The Q structure

deeper than 220 km is not resolved very well. At around

100 sec period, Mitchell's R-1 data were incompatible.
100 sec period, Mitchell's QR data were incompatible.
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CHAPTER VII

Conclusions

Determining the variation of anelastic properties

such as seismic attenuation within the earth's interior

both vertically and laterally can be a useful tool to

study the physical state of the earth's interior. This

is particularly true of the upper mantle, where seismic

energy absorption is highest. A precise determination of

such properties will help many seismic studies, including

those on seismic sources, path effects and seismic

discrimination. Also the anelastic properties provide

valuable hints on the tectonic history of the earth. For

example, zones of active continental-continental collision

may be characterized by unusually high attenuation such as

under Tibet (Bird, 1976). The thickness of the lithosphere,

or high-Q lid, is closely related to lithosphere age

and deeper lateral variations may reflect sub-lithospheric

convection flow patterns.

However, we have seen several negative aspects of the

seismic attenuation studies. First, the anelastic behavior

of materials under such high temperature and pressure

conditions as in the earth's mantle is poorly known,

because such conditions are very difficult to reproduce

in the laboratory. At present we must rely mostly on

seismic data. Secondly, much of the seismic data
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available now are determined by few samples with large

uncertainties. Moreover, the seismic amplitudes often

have been subject to geometrical complications, such as

scattering, mode conversion and multipathing effects.

Because of all these difficulties, many of the seismic

attenuation studies have produced either inconclusive

results or even physically implausible results.

One area where most such complications can be overcome

is the study of surface wave attenuation. Many advantages

of the surface wave attenuation method are reviewed by

Anderson et al. (1965). Surface wave amplitudes are often the

most prominent feature of the seismogram. The geometrical

spreading factor for surface waves can be easily corrected.

Surface waves have been less subject to scattering because

of their long periods, and, most importantly, surface waves

penetrate deep into the earth's upper mantle, where the LQZ

exists.

The relatively long period data of surface wave

attenuation are still not free of geometrical effects, as

are discussed in section 2.6.5. For example, when a

seismic wave with wavelength 100 km travels 2000 km

distance, an inhomogeneity larger than 10 km could cause

non-negligible scattering effects. These kind of

geometrical complications have been observed by Tryggvason

(1965), Tsai and Aki (1969) and Solomon (1971).
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The contamination of seismic surface wave attenuation

measurements by such effects causes problems in the

inversion of such data. For contaminated and uncertain data,

an L1 norm type of inversion has clear advantages compared

to L2 norm approaches (see details in section 2.3). L2

norm inversions (least-square type) have often produced

physically impossible negative Q-1 solutions. L1 norm

inversion, developed as the set theoretical approach,

which includes the square matrix inverse and the linear

programming technique, and applied to North America and

the Pacific in this thesis, gives a number of advantages.

The geometrical visualization of the square matrix inverse

can be useful to select the proper layering. By choosing

proper layer thicknesses, the solution domain can move into

the physically meaningful positive domain and be more

strongly focussed. A bad layering can either lead the

solution domain into the negative domain or widely spread

it out. Also we can sort out incompatible data, defined as

data which do not contribute to build the solution domain

in L1 norm inversions, a phenomenon noted for data from
1-

the minima in Q at 20-25 second period in Solomon's data

(1971). The linear programming technique can define the

lower and upper bounds of the solution domain. Because of

the poor statistics of attenuation data, it is often not

meaningful to pursue a single best model.

The question of whether linearity of seismic attenuation
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mechanisms is justifiable is important. In the past,

non-linearity was considered from several aspects. First,

Knopoff (1956, 1959) argued that the observations of Q

independent of frequency are incompatible with linear

mechanisms, which show a strong frequency dependence.

Second, laboratory experiments of stress-strain hysteresis

show a cusp in the hysteresis curve (non-linearity) for
-6

strain amplitudes greater than 10-6. Seismic strain

amplitudes are small but marginal in this regard, Another

aspect of the argument comes from the fact that body

waves do not show dispersion, which is a main characteristic

of linearity.

However, Orowan (1967) and Liu et al. (1976) showed

that a band-limited superposition of linear mechanisms can

explain the first argument. Also a slight frequency

dependence, which has not been fully tested with still

largely uncertain and limited observations, could explain

a limited dispersion at short body wave periods. Efforts

to search for the effects of such body wave dispersion

should be continued. Because the second argument against

linearity is marginal, we prefer to retain linearity for

the clear computational advantages arising from the super-

position principle.
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Linearity is controlled by the causality principle

as well as the superposition principle. The causality

principle, 'no signal before stimulus', requires accompanying

dispersion (anelastic dispersion) if there is absorption.

The causality principle has often been violated in seismic

studies. The assumptions of Q independent of frequency and

of perfect elasticity (no dispersion) under linearity are

incompatible.

The consequence of neglecting anelastic dispersion is

tremendous. The existing perfectly elastic earth models are

either misrepresented or cannot be compared fairly with each

other. Intrinsic dispersion of shear velocity is an

important consequence of anelasticity, particularly within

the low-Q zone beneath oceanic and tectonically active

regions. Beneath western North America, dispersion can be

as great as 10 percent over two decades in frequency,

depending on the frequency dependence of Q -1

One of the important consequences of anelastic dispersion

is that the 'baseline discrepancy' question is resolved

(Anderson et al., 1977). Sipkin and Jordan (1975) suggested

a 'continental bias' might be the cause of this 'base line

discrepancy'. If anelastic dispersion is consideredno

deep continent-ocean differences are necessary.

Simultaneous inversion is a proper approach to consider

the effect of anelastic dispersion which is a first order

correction to anelastic velocity models compared to a second
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order effect in perfectly elastic models. The simultaneous

inversion approach is formally different from the approximate

inversion scheme of Anderson and Hart (1976) and gives

different results. The differences can be amplified when

the observational frequency range is wide and/or the

reference frequency is far from the observational

frequencies. No matter how the observational frequency

band is spread, no matter where we choose a reference

frequency, a given dispersion-attenuation relationship

may be used to extrapolate models to any frequencies.

The difference between the simultaneous inversion

approach and the approximate approach of Anderson and

Hart (1976) is larger for Love waves than for Rayleigh

waves, simply because the partial derivatives of off-

diagonal terms for Rayleigh waves are much smaller than

for Love waves (see Appendix V). However, most of the

advantages are still retained for Rayleigh waves by use of

simultaneous inversion.

Other consequences of simultaneous inversion are that

the incompatibility in the attenuation data set decreases

inQ-1.substantially and the resolution in Q versus depth in

the earth is improved for a given dispersion-attenuation

relation over the separate inversion of Q-1 data alone.



239.

The most interesting results of the inversions are

the lateral variations of mantle structure. A distinctive

LQZ seems to exist everywhere we have data, including

western North America (tectonic), east-central North

America (stable platform) and the central Pacific (oceanic).

However, the thicknesses of the high-Q lid varies from

place to place: 60+20 km in the central Pacific, 80+20 km

in western North America and 130+30 km in east-central

North America. These results are related to the differing

tectonic history of each region. In east-central North

America, a thick lithosphere has grown over time, and the

asthenosphere shows relatively mild attenuation as well as

the possibility of no LVZ at a frequency of 1 Hz. In

western North America, a thinner lithosphere with

substantially higher attenuation in the asthenosphere is

characteristic. Many authors have suspected there is

substantial partial melting in the asthenosphere of this

region. The excess heat necessary to produce melting may

have been related to the recent subduction of oceanic

lithosphere along western North America.

The LVZ and LQZ coincide in western North America. The

inversion of Love wave data alone shows that the assumption

of Q independent of frequency over the entire seismic band

leads to the removal of the requirement for a LVZ for shear

waves at frequencies above 1 Hz. The LVZ persists at these
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frequencies, however, in the results of the combined

inversion of Love and Rayleigh wave data. However, a

possible anisotropy problem in western North America may

have contributed to an inability to discriminate among

various dispersion-attenuation relations. In the Pacific,

the LVZ and LQZ coincide as in western North America. The

Pacific shows a thinner lithosphere ( 60 km thick) but

-1
lower shear attenuation Qg in the asthenosphere than in

the tectonically active western North America.

Widening the period range of attenuation data, conducting

more accurate measurements of Q, and confirming or disproving

dispersion of body waves will be a good direction to pursue

answers to some of the.questions raised by this study.
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Appendix I. Kramers-Kr6nig Relations (Ref: Landau and
Lifschitz, 1960; Futterman, 1962; Papoulis,
1962)

A direct consequence of the causality principle,

Kramers-Krinig relations relate the real and imaginary

parts of the refractive index of the medium by integral

transforms in the frequency domain. The causality

principle states that no signal can travel faster than

the signal velocity:

r
u(r,t) = 0 for t < (A.I.)

where u(r,t) is a displacement pulse and v, is the

signal velocity at frequencies above a cut-off frequency

Wc , above which it is assumed that no absorption occurs

and thus the phase velocity is non-dispersive.

Representing the pulse by a Fourier transform,

u(rt) = f u(r, l) e dw 1  (A.I.2)
-a

Here the displacement u(r,t) associated with seismic

waves should be zero if t<(f , but the Fourier component

u(r,w) may not be zero at any time. Therefore, causality

requires that these Fourier components must be combined

in such a way that u(r,t) = 0 when t<I . A destructive

interference for t<( causes a frequency dependent phase

velocity in the medium (dispersion). Now we are going to
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find a way to integrate equation (A.I.2) to meet causality.

Equation (A.I.2) can be written as a superposition of

plane waves in a complex representation of the form

u(r,t) = j u(w 1 ) e ik(w)r-iwlt dw1  (A.I.3)

where K( 1 ) is the complex wave number. The index of

refraction n(01 ) of the medium is given as

n(w l ) = K(w )/ K o (Wl

1
Ko (W1) v

where Ko defines the nondispersive behavior of K at the

same frequency. Since we have assumed that no absorption

occurs above the cut-off frequency Wc, Im n(wc ) = 0

and Re n(w) = i.

The inversion of the integral (A.I,3) gives

;u( ) eik(i)r - 2 i u(r,t) ellt dt

Invoking the causality condition (AI.1)

u(wl) e ik(w)r 1- fu(r,t) e WIt dt (A.I.4)
2TrOO
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Define P =t - T

U(wl ) eik(wi)r 21 fu(r,p+T) eiWIPei i I T dp

Using K(wl) = n(wl)w l/ and T = r/v ,

u(wl) eiC(w)r 2= 5 u(r,p+T) e iWP dp (A. I.5)
0

where

(i) = W /V [n()-l]

Since ( o , we define a new function O() identical in

form with the left hand side of (A.I.5), where 31 is

replaced by a complex W, w = W1 + iW2 .

M(W) = M(W) ei(w)r 1 m u(r,p+T) elp dp (A.I.6)
2x 0

The analyicity of eii(w)r in the upper half plane of

frequency for Y o follows easily from (A.I.6), due to the

factor e- 2 p . Although we do not go into the rigorous

proof here, it is not difficult to show that the exponent

C(w) itself is analytic in the upper half plane u.h.p. from

the analyticity of e . Because of the analyticity

of (w(), we can apply Canchy's residue theorem. Now we

can write
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(w) w- An(w)
V

where An(w) = n(w) - 1

Now An(w) is analytic in the u.h.p. of frequency, so that

Canchy's residue theorem can be written as

1 An ()An(w) = p A de (A.I.7)

where P denotes the Canchy principal value, From

eq. (A.I.7.), the expressions for the real and imaginary

parts are

Re An( 1 p ImAn(0) d (A.I.8)
O 1

ImAn(Wl) = - ReAn( dw (A.I.9)
T -O 1

Since Im n(w c ) = 0, Equation (A.I.0) becomes

Re[n(w)-1] = f ImAn() de (A.I.10)
IT 00 W- W1

From equation (A.I.3), since the displacement is a real

function of position and time, the crossing symmetry

relationship holds, K(w) = K (-w)
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and subsequently, n(w) = n (-w)

Re n(w) = Re n(-w)
(A.I. 11)

Im n(w) = -Im n(-w)

Using (A.I.11), equation (A.I.10), can be written as

2 P Im n() du)
Re[n(w)] - 1 p J 2 - 2r % 2

(A.I.12)

with the result p f d ,
- 1

becomes,

equation (A.I.9)

1 P m Re n(w)
Im n(w l) = - (-W de

Similarly using crossing symmetry relations, equation

(A.I.13) can be written as

2w12) P f Re n(w)
Im n(wl ) = P f 2 Re d

0 1

(A.I.13)

(A.I.14)

Equations (A.I.10) and (A.I.13) or (A.I.12) and (A.I.14)

are known as Kramers-Krbnig relations.
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APPENDIX II. Dispersion Relations: Frequency Domain Approach

The complex wave number K(w) can be expressed in terms

of the phase coefficient k and the attenuation coefficientX:

(A.II.1)K(w) = k(w) + iX(w)

The index of refraction of the medium is

K(w) - k(w) + iX()n(o) = KQ w/v

where K , v are the non-dispersive limits of K and v,

tively, and v is the phase velocity.

(A.II.2)

respec-

Usually for the frequency-domain approach, the attenuation

coefficient X(w) is assumed to have a certain.frequency

dependence.

X(w) = C1 or C2W

X(Therefore Imn
Therefore Imn(w) -

where 0 <v< 1.

= C1 or C2 -v
=C 1 or ~L

From the Kramers-Krinig relations (Appendix I)

Re[n(wl) ] - 1
2 w Im n(w)
- P 2 ----

0 -W 1

(A. II.3)
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This integral can be evaluated for (A.II.3),

C
Re [n(l) - 1 =-it Inl,

= C2l cot 2- ,

V = 0

v 0

(A.II.4)

(Whittaker and Watson, 1962, p. 117).

The phase velocity and the reciprocal quality factor can be

written as

k(w) Re n(w)

(A.II.5)

2X( )v.
Q () = = 2 Im n(w)

Therefore, the dispersion relations are given substituting

(A.II.3) and (A.II.4) into (A.II.5). And we obtain,

v (W)/v =

1 n-1
(1 - n) , v = 0

1

1 + C2m-cot-

In this case n(o) = 1 because the reference non-dispersive

behavior is at infinite frequency.

Q-
Q (i)

j 2 C1 ,

2 C2
mW-v

v= 0

V C0

or
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-1 1 v 7"
where C =o , C2 qa (v-l)! sin 2-
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APPENDIX III. Dispersion Relations: Time Domain Approach

(Lomnitz, 1957; Liu et al., 1976)

For the time-domain approach, the creep function f(t)

is furnished to derive dispersion relations. Generally,

the one-dimensional stress-strain relation is given by

Boltzmann's after-effect equation,

t .
1

E(t) - {o(t) + f o(T) (t-T)dT}
u -0

(A. III. 1)

where M is an unrelaxed elastic modulus and a(t) is the given
u

loading stress. Since = 0 for t < 0, (A.III.1) can be

written as a convolution,

1
E(t) - {o(t) + o(t)*(t) }

u

(A.III. 2)

L(kx-wt)
For a plane wave, a = a e and from (A.III.1)

o

(t) (t) { + I (T)e dT}M 0
(A.III.3)

Therefore, a complex modulus M() is given as

(A. 111.4)
M(W) = M /[1 + If (T)e LTdT]

U

From the equation of motion, pu =
ax

p2 = K() 'M(w)

K(w) =w /p/M'(1)

(A.III.5)

(A.III.6)
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using (A.II.1), (A.III.4) and (A.III.6),

v(w) = vdRe { + f (t)e tdt} Y2
0

Q-1 2Im M()
Re(w)MReM(w)

2Im{ f t) e tdt

1 + Re{6 (t)eiWtdt}

where v = /M p.
CO u

For the case of the Jeffrey-Lomnitz law,

q
((t) = v [(l+at)V -1]

0(t) = qa(l+at)v-

Let

00
* iwt v-i iwt

I- (t)e dt = qaf (l+at) e dt
0 0

Putting (1+at) = p,

00 v- i!(p-l) dp
I = qa fp e a a

0

=qfpe CO I V for small (Jeffreys, 1975).a

Putting k = -i(-),a

qk-v v fv-1 e-kdp]

0

= qk-V(v), where r(v) is the Garmma function.
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I = qavV (-i) -V(v)

v -v 2
= qa V e F(v)

Therefore

v -v cosv(W)/v = 1/(1 + a (v-l)! cos 2

-V .TV
2qavw (v-l)!sin-

2
V -v TV1 + qa w (v-1) !cos 2

1/(1 + Co cot--)

2Cw for q small,

C = qa (v-l) !sin 2

-1Q (w)

where
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APPENDIX IV. Partial Derivatives at a Reference Frequency

Using equation (5.18), partial derivatives at a reference

frequency can be given as follows. For convenience, the

symbols 81, 2, al' and a2 are used for B1 , B2 , a', 2'

respectively, at the reference frequency.

acg+ 1
gi + ( - ij h2

ac

2 i3

ac2

2i + ( ij hi

g. + (-) h,

ac1

a 0 1i

.1

ij

ac

1

c2( 210) ij1
2

(-)

ac(- ijaa

2

3c2
o ) ij2

a2

ac
1

ac

1ta )ij

1

= (- )iJ

ac
1

1

(c2= ( ) ij1

= (l)iJ

1

ac2gi + (a--2) ij hi

ac + ac

a gij + (a l 3ij h

(A. IV.1)

ac
g. + (2)ij hi

2 i 1

ac I
= - ( )

922 1)

(A. IV. 2)

(A. IV. 3)

(A.IV.4)

(A.IV.5)

(A. IV.6)

(A. IV.7)

(A. IV. 8)
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The last steps of equation (A.IV.3), (A.IV.4), (A.IV.7),

and (A.IV.8) are the consequence of Cauchy-Riemann relations

(5.11). From dispersion relations (4.8) and (4.10)

- In (L/wo)

gi =

cot 1/2a(l-(w/1 ))

h.

-1
(W/W 0) -O

For the.case of constant Q, with the

for constant Q

for power law Q

for constant Q

for power law Q

inversion at a reference

frequency, the matrix equation (5.6) for Love waves becomes

ac
1+ h

7 2

ac 1
g2

2

A 
2

1 ,J
0

AcI

Ac
2

ac 2

a

3c 2

2
ij
1)

ac1
1

(A.IV.9)

ac
1

B2

ac 1

a I

0,j
0

A2

A82
2
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3ac 1  1 g + 6h A 1

1 -6 h - g6. A$2 /
ij 13 o'0 j

1ac ac1where 6 =-/ .

For Rayleigh waves, the matrix equation

Ac

Ac )

ac

1

ac2

a

:c

2

ac2

S0
2

ac2

1

1

ac

a 22

c 2

2

ac
1

ac2

p

(5.7) becomes

A1

2

1

Aa
2

Ap

AB 2

Ca 1 g+6h c 1 g+6h ap
tac1 a-1 i

1 -6 h-g6 I, 1 -6 h-g6 I, ac2

1where 6= a2 /
a

2

Ac 
1

Aco2

Ap

0

3c 1

aa
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APPENDIX V. Comparison Between Simultaneous Inversion and

the Correction Technique of Anderson and Hart

The procedure of Anderson and Hart differs in several

fundamental respects from a complete simultaneous inversion.

1) Their procedure adopts as given a Q model determined

by a separate inversion based on an elastic velocity model.

The adopted Q model is used to correct phase velocity (eigen-

period)data for intrinsic dispersion.

The simultaneous inversion takes both Q and velocity as

unknowns.

2) Their procedure neglects the contribution from 'off-

diagonal' terms in the partial derivative matrix (5.6), These

terms are usually coupled with gi, a measure of dispersion

(Appendix IV). Since gi can be large when observed frequencies

are far from the reference frequency, the contribution from

'off-diagonal' related terms may not be small.

We illustrate these differences with an example: the

problem of finding two-layer models of shear velocity and

attenuation from two observational pairs (phase velocity and

attenuation), under the assumption that Q is independent of

frequency. For the Anderson-Hart Q-correction procedure

A B (aA 2) o (Acl,Ac2)m (A

C D (A rAB (AcAc 22 q) 2 n)
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where (AOIA8 2 )j are the model pair's for the j-th layer and

(AlAc2) are the i-th observational pairs. A, B, C, D are

an abbreviated notation for partial derivatives; e.g. A

For the simultaneous inverse problem, from Appendix IV.

(Icll,cfl)

1 gm-6

6 1+gm6

S(1 g +6

-6 l-g 6

ac ac
where 6

2 A1

B(

D(

1 gm+6

-6 l-gm6

1 g -6

6 l+gn 6

/A 1
Aa2

AS2
q

Ac 2

Ac1

Ac2)i c2

Here 6 is used as a single value for

simplicity, although it may vary in different layers and

different frequencies. Thus

(A)1 p,S = (A 1) p,QC + g Fl((Ac 2
) i ) + g Ag6F 2 ((Ac 2 i)

+ g6F 3 ((Ac l ) i
) + Ag6F 4 ((Ac l ) i

) + 0(6)

(A.V. 2)

(A2 )p S = (Aa2)p,QC + 6AgGl((Ac 2 ) i ) + SG2 ((Acl) i ) + 0(62)

where

Ag = gn - gm

F l ((Ac 2 ) i
) = ((Ac 2 )mDgl)/(AD-BC)

F2((Ac2) i ) = 2 {(Ac 2) A - (Ac 2 ) C BD/(AD-BC)

F 3 ((Ac l ) i ) = ((Acl)mD - (Ac )nB)/(AD-BC)
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F4((Ac )) = ((Ac ) D - (Ac ) B)/(AD-BC)
1i ((1m In

Gl ((Ac2)i) = 2 {(Ac ) n A - (Ac 2 ) mC} BD/(AD-BC)

G2 ((Acli) = ((ACl)nB - (Ac)mD)

and where S stands for simultaneous inversion and QC stands

for the Anderson-Hart Q correction technique. Similarly

(A1,A 2 ) q can be computed. The correction terms on the

right-hand side of equation (A.V.2) are O(g), O(gAg6), O(g6),

O(Ag6), etc. The 6's are typically 0.05 (see Figure 6.7a) and

and g's are 2-3 in our problem. g can be larger when the

observational frequencies are even further from the reference

frequency, taken as 1 Hz in this work. Ag is 1.1 for the

Love wave data of western North America if Q is constant; it

can be larger when the observational frequency band is wider.


