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ABSTRACT

Seismic Wave Propagation in Two-Phase Media

and Its Applications to the Earth's Interior

by

Guy Thierry Kuster

Submitted to the Department of Earth and
Planetary Sciences on May 15, 1972

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Theoretical and experimental studies of the macroscopic

response of two-phase media to elastic waves are carried out.

Theoretical investigations include five separate models: 1.

The basic model consists of a solid matrix with spherical in-

clusions. Wavelengths are muchi larger than inclusion radii

and the inclusions are sufficiently far apart for interactions

to be negligible. 2. The inclusions are oblate spheroids.

In this case the macroscopic properties depend on the aspect

ratio as well as the concentration of the inclusions. 3.

Interactions are taken into account in a average sense. Only

the macroscopic shear behavior is affected. 4. The matrix

is a fluid. It is found that static models cannot be used

for wave propagation problems because of inertia effects.
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5. The dependence of the macroscopic properties on the wave-

length is investigaged for a suspension of solid spheres in

a fluid. The dispersive effects can be significant.

The velocity of ultrasonic waves is measured in suspen-

sions of solid spheres in a fluid matrix as a function of the

concentration of inclusions. In all cases the velocity data

are best matched by our theoretical model which takes into

account interactions and the dispersive effects resulting

from a finite wavelength to inclusion size ratio. The ob-

served attenuation compares satisfactorily to the theoretical

values computed by including geometrical scattering, viscous

absorption in the fluid matrix and anelasticity of the solid

inclusions.

The properties of the earth's core are investigated with

the formulations described above. The amplitude spectra of

short-period (0.2 to 2.0 Hz) core phases (PKP and PKKP) are

measured at LASA. The amplitude ratio technique is used to

determine the quality factor Q at the base of the mantle and

in the core. On the basis of our data the liquid outer core

has a large Q (=2500), whereas the inner core has a low Q

(=300). The Q in the transition zone is intermediate (=1200).

A highly attenuating layer (Q = 300) about 150 km thick is

required at the base of the mantle. The observed velocities

and the low Q values in the inner core and at the base of

the mantle can be attributed to small concentrations of melt
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(less than 5%). The low velocity gradients and intermediate

Q value of the transition zone can be interpreted in terms

of partial crystallization of the liquid core.

Thesis Supervisor: M. Nafi Toks6z

Title: Professor of Geophysics
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CHAPTER 1. INTRODUCTION

Heterogeneity is a fundamental characteristic of

all real media and it influences the propagation of seismic

waves. Heterogeneous media whose properties are known

functions of position has been studied extensively (Ewing

et al., 1957). When the heterogeneities are of a random

nature, one can distinguish two types of media: (i) those

where the parameters (velocities, elastic constants,density)

are continuous random functions of space and (ii) aggregates

resulting of the random juxtaposition of different materials.

Several treatments of the propagation of elastic

waves through media of the first type are available (Karal

and Keller, 1964; Chernov, 1967; Howe, 1971); in all

cases one is to solve the wave equation with random coeffi-

cients and it is in general assumed that the fluctuations

of the random values about their means are small so that a

perturbation method can be used. It is only recently that

media of this type have been considered in a seismological

context; Aki (1972) and Capon (personal communication)

used Chernov's theory to interpret amplitude and phase
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fluctuations of seismic signals recorded at the Large

Aperture Seismic Array (LASA).

Aggregates of randomly distributed phases have

received more attention from geophysicists since they seem

to be more representative of actual rocks. An important

type of aggregate is a two-phase medium where one phase is

an homogeneous and isotropic continuum, the matrix, in which

inclusions of the other phase, also homogeneous and isotropic,

are randomly embedded. In a two-phase medium the elastic

parameters are, therefore, piecewise constant with randomly

distributed discontinuities.

Examples of the seismic relevance of two-phase media

can be readily found. Seismic velocities and attenuation

factors of fluid saturated or partially saturated sedimentary

rocks are of utmost importance in seismic prospecting

(Born, 1941; Shumway, 1960; Schreiber, 1968). Porosity

and the nature of the fluid filling the pores is a major

factor affecting the velocities measured on rocks in the

laboratory at moderate pressures (Nur and Simmons, 1969).

There is increasing evidence for interpreting the zone of

low velocity and high attenuation in the upper mantle in

terms of partial melting (Anderson et al., 1965; Solomon,

1972). Unexpectedly low velocity gradients may indicate

partial crystallization of the fluid's outer core (Toksoz



et al., 1972) and the low inner core shear wave velocity

(Julian et al., 1972) suggests partial melting. The

puzzling difference between the elastic quality factor Q

of moon rocks measured on the earth and in situ may be

related to the different behavior of air and vacuum filled

pores (Todd et al., 1972).

Theoretical treatment of the propagation of elastic

waves in two-phase media (the dynamic problem) is scarce.

In two attempts on this subject (Ament, 1959; Mal and Knop-

off, 1967), the validity of the results is restricted to

the case where the matrix is solid, the inclusions are spheres

much smaller than the wavelengths and sufficiently far

apart from each other so that interactions are negligible.

The theoretical elastic behavior of two-phase media under

static loading has been studied in detail (see Hashin,

1964,1970, for a review). The results of these studies

have been applied to seismic problems under the assumption

that the conditions prevailing in the propagation of long

wavelength waves can be approximated by those under static

loading (Walsh, 1969; Solomon, 1972). However, the assump-

tions (constant strain at infinity) needed for the derivation

of static models are incompatible with the nature of the

dynamic problem. Furthermore, inertia effects are by

definition omitted in static models, whe:reas they are of



definite importance in wave propagation problems. Finally,

static models cannot be extended to cover cases where the

relative size of the inclusion and the wavelength is

important; they cannot even be used either to define the

wavelength at which the long wavelength approximation

becomes invalid or to determine the magnitude of the

approximation involved. Such questions are quite relevant

to laboratory measurements of the elastic properties of

rocks where high frequency signals are commonly used.

Theoretical studies aimed at a quantitative understanding

of both the long wavelength approximation and the interaction

effects are therefore necessary.

Measurements of the velocity and attenuation of elastic

waves in two-phase media can be found in the literature.

The vast majority of these is obtained in the laboratory

on porous solids, the pore space being usually filled with

air, water, a more viscous fluid or even ice (Wyllie et

al. 1956, 1958; Timur, 1968; and Nur and Simmons, 1969);

data are also available on media undergoing partial melting

(Spetzler and Anderson, 1968). But there are very few

data on the velocity and attenuation of elastic waves in

two-phase media where the matrix is fluid and the inclusions

solid, although such media are of interest in marine geo-

physics and seismic logging. The only data seem to be

those of Knudsen (1946) on the attenuation of acoustic

waves in fogs.



In this study we first examine the theoretical

response of two-phase media to elastic waves. We review

available models (Ament, 1959; Mal and Knopoff, 1967)

and extend Ament's approach to obtain additional models.

Assuming that the wavelengths are much longer than the

inclusion size and that interactions are negligible we

derive the effective behavior of (i) a suspension of-solid

spheres in a non-viscous fluid matrix and (ii) a solid-

solid two-phase medium where the inclusions are spheroidal.

Assuming that the inclusions are spherical and the wave-

lengths very long we derive a model where interactions

are taken into account by a self-consistent scheme. We

also calculate the dependence of the effective properties

on the wavelength to inclusion size ratio for a suspension

of solid spheres in a non-viscous fluid rmatrix. In the

second part we present our laboratory measurements of the

velocity and attenuation of ultrasonic waves in sus-

pensions of solid spheres in a fluid matrix. The experimental

results clearly illustrate the validity of our theoretical

models. In the final part, we present measurements of the

attenuation of short-period P waves having travelled through

the earth's core. Our data, combined with available

seismic velocity models, are interpreted in terms of partial

crystallization in the outer core and partial melting in the

inner core and at the base of the mantle.



CHAPTER 2. THEORETICAL ANALYSIS

It has been assumed that the effective elastic moduli

derived as solutions of the static problem can be used for

computing the effective wave velocities of a two-phase

medium when the wavelength is large compared to the in-

clusion size (Walsh, 1969; Kuster, 1970; Solomon, 1972).

Although this approach has led to useful results, it is

nevertheless not completely satisfactory. Static results

are derived with the assumption that strain or stress is

constant over time either at infinity (Eshelby, 1957; Wu,

1966) or on a given surface (Hashin, 1962). This assumption

is incompatible with the very nature of the dynamic problem.

Inertia effects are omitted in static models by definition,

whereas they are an intrinsic feature of wave phenomena.

Applying static results to the dynamic problem involves

an approximation, but in the same time it does not allow

any estimate of the magnitude of the error due to the

approximation. As a consequence, the direct treatment of

the propagation of elastic waves in two-phase media is

important.
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2.1 Statistical nature of a two-phase medium.

A two-phase medium is defined as a mixture of two

homogeneous isotropic media of different physical pro-

perties with well-defined interfaces. A further restriction

is that the matrix is a continuum in which inclusions of

the other phase are randomly embedded; it is, therefore, a

medium whose properties are random but piecewise constant

functions of space.

We assume that there exists a volume V., called the

representative volume element (RVE), such that wherever

we choose to extract the volume V out of the two-phase

medium, this volume will have the same average properties

as the two-phase medium itself. This assumption, called

the quasi-homogeneity assumption, implies that we can define

a homogeneous medium, called the effective medium, which

will have the same average properties as the two-phase

medium. Then the effective wave velocities and effective

elastic moduli are related by the usual equations for homo-

geneous media.

~ K* + 4 -*/3 * (2.1)

where a* and 8* are the effective compressional and shear

wave velocities, K* and -* are the effective bulk and shear



moduli and p* is the effective density. The effective

elastic moduli and the effective velocities can, therefore,

be used interchangeably. The RVE is larger than an in-

clusion and according to the quasi-homogeneity assumption'

any volume smaller than the RVE will not exhibit effective

properties. Since we want to find the effective behavior

of a wave propagating in a two-phase medium, we restrict

our study to waves whose wavelength is larger than the

RVE size.

Ideally one wishes to find the effective properties

from the properties of the constituent phases exactly;

but the effective properties obviously depend also on the

distribution of inclusions in -ne medium. An exact solution

thus requires a complete statistical description of the

distribution. However, what one usually knows about the

distribution of inclusions in a real two-phase medium is

the relative volume of the two phases. This is clearly

not sufficient information for an exact solution. Even if

we could obtain an exact solution it would be of no relevance

for comparison with data. Because of this practical constraint

the question we address ourselves to in the following analysis

is: what can we say about the effective properties of a

two-phase medium in terms only of the properties and the

volume fractions of each phase?



2.2 Mal and Knopoff's model.

Mal and Knopoff (1967) derived an effective wave

equation for a two-phase medium with the assumptions that

the inclusions are spherical and much smaller than the

wavelength of the incident wave. Since part of their

derivation is used in appendix C, we shall only outline it

here. It basically consists of three steps.

Considering an inclusion isolated in an infinite

matrix, and an incident field, they first express the dis-

placement at a point outside the inclusion in terms of

the displacement and strain inside. Then the make use of

the long wavelength approximation to estimate the displacement

and strain inside from the displacement and strain of the

incident field. The displacement inside is approximated

by the displacement that one would observe if the inclusion

was absent (Born's approximation). It is valid for any

density contrast between matrix and inclusion materials

as long as the wavelengths are large. For the strain, they

prove that the lowest-order approximation corresponds to

Eshelby's (1957) results under static conditions. Thus,

the scattered displacement at x due to a sphere located

at y can be written

3u0

Auk(x,) = c(y) [ 2 Apu ()Gki(x,) - ASij P ki (2.2)
pq ki] (2.2)q Yj



where u? is the incident displacement field, c(y) is the

volume of the sphere, AS. is a tensor depending on the
13pq

matrix and inclusion elastic constants, Gki (x,y) is the

ith component observed at x of the Green's function due to

a point force acting in the kth direction at y in an

infinite medium with matrix properties,w is the angular

frequency and Ap is the difference between inclusion and

matrix densities. The summation convention is used. The

last step which we shall discuss in more detail consists

of the application of (2.2) to a cloud of N inclusions

randomly distributed in the matrix. The displacement at

a point x in the middle of the cloud and in matrix material

can be written as

N
Uk (x) = u() + Auk(xs) (2.3)

where Au k(x, 5s ) is the field scattered by the sth inclusion

in presence of all others; it can be estimated by replacing

u (x) in (2.2) with the field which would exist at s

in the absence of the sth inclusion. Mal and Knopoff

make the assumption that this field is the average field which

one wants to determine eventually. It is then found that

the average field satisfies the wave equation in a homogeneous

elastic medium with density and elastic constants



p* = p(l-c) + p'c (2.4)

(K'-K)c
K* = K + (2.5)

3(K'-K)1 +
3K + 4

p, = ] + (2.6)

6(vi'-TIXK + 211)1 + (3K +

where p is density, K and p are the bulk and shear moduli

and c is the volume concentration of inclusions. Primed,

unprimed and starred variables refer respectively to in-

clusion, matrix and effective properties.

Note that the effective elastic moduli are the same

as those found by Eshelby (1957) in solving the static

case. His solution is valid only at low concentrations.

Although no such restriction is explicitly stated by Mal

and Knopoff, it is actually implicit to their derivation.

Equation (2.2) is valid only when the incident field

(uo) and the Green's function both satisfy the wave equation

in the same medium. In applying (2.2) to the cloud of

inclusions Mal and Knopoff replaced uo by the average field

which satisfies the effective wave equation whereas they

conserved Green's function for the matrix. This is valid

when the effective and matrix properties are similar.



This is the case when either the concentration of inclusions

or the contrast between inclusion and matrix properties is

small.

2.3 A method for deriving effective properties.

The method described in this section is due to

Ament (1959). It is very simple and powerful, but it has

not received much recognition in the literature, except for

a brief mention by Hashin (1962). It has not been used

to its full extent, not even by Ament himself, possibly

because of the rather cumbersome notation he adopted.

Consider a quasi-homogeneous and quasi-isotropic

two-phase medium. Let us assume that we can isolate a

representative volume element. Because of the quasi-

homogeneity assumption, this element will have the same

effective properties as the two-phase medium itself.

Let us further assume that we can surround this RVE with

matrix material extending to infinity, and that we weld

the boundaries to obtain the configuration of Figure 2.1(a).

A wave incident from infinity will be scattered by the

RVE which acts as an isolated obstacle with effective

properties embedded in an infinite matrix. The elastic

displacement at a point x in the matrix can be written as
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u(x) = u(x) + U (x, Ao,a, Vo,a*,r) (2.7)

where u. is the displacement at x due to the incident wave

and u (x, Ao, 0, Vo, a*, r) is the displacement at x
--

due to the scattered wave. The scattered wave depends

on the incident wave AO, the properties of the matrix (a),

the shape and volume of the RVE (Vo), the effective properties

of the RVE (a*), and the relative location r of the RVE

and the observation point.

Examine now the geometry of figure 2.1(a) on a finer

scale. The RVE actually contains a number of inclusions

distributed in matrix material. Thus, the detailed geometry

is that indicated on figure 2.1(b); then when a wave is

incident from infinity the displacement at x can also

be written as

N
u(x) = u.(x) + jl u (x, A., a, V., a', r.) (2.8)

-1 j=1-s j j -J

This equation simply expresses that the observed displacement

at x is the superposition of the displacement due to the

incident wave and of all displacements due to the waves

scattered by each inclusion, the total number of inclusions

in the RVE being N. The wave scattered by each inclusion

depends on the wave Aj which is incident on that particular

inclusion, the matrix properties (a), the volume and shape of
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the inclusion (V.), the properties of the inclusion material

(oa) and the relative location r. of the inclusion and the-3

observation point.

All what we have done here is to express the same

quantity, the displacement field at x in two different

ways. In equation (2.7) the RVE is treated as a global

entity with effective properties, whereas in equation

(2.8) it is treated as the sum of its parts. This is the

essence of the method. Equating (2.7) and (2.8), we

obtain

N
__ o, Ar).,a,_Vja', r (

u (x, Ao, V *, r) (x, A , , V , r.) (2.9)

If all other parameters are known, this equation will

yield the effective properties a*, provided the scattered

displacements can be properly evaluated. The remainder

of this chapter is only devoted to the estimation of both

sides of equation (2.9) under various conditions. Analy-

tical treatment is possible only when the shape of the

inclusions is simple, such as spheres or more generally

spheroids. The shape of the RVE will always be spherical

in the subsequent analysis and the RVE will thus be called

representative sphere. This choice is consistent with the

quasi-isotropic assumption made earlier. Finally we must



mention that the essential difficulty of an exact mathema-

tical treatment lies in the estimation of the wave which

is actually incident on an incluusion in the presence of

neighboring inclusions. Multiple scattering is clearly

to be considered but its net effect is difficult to eval-

uate exactly since the inclusions are randomly distributed.

2.4 Spherical inclusions.

2.4.1. Non-interaction model.

This model has been originally obtained by Ament

(1959). Although full credit is to be given to him, we

named the model "non-interaction" because it expresses

the basic assumption involved in the model.

Consider a quasi-homogeneous and quasi-isotropic

two-phase medium. Both phases are assumed to be solid

and elastic. Le the incident wave be a plane P wave

whose wavelength is much larger than the radius of the

representative sphere and a fortiori of the inclusions.

The inclusions need not be all of the same size.

We can use the analysis given in appendix A to express

the wave scattered by the representative sphere of radius

R centered at xo when illuminated by the plane P wave of

amplitude A. If the observation point x is at a large



distance the scattered radial and transverse displacements

are (equations A27 and A28)

BI 3 c e i(pr-wt)
u* -A[Bo - iB* cosO - cos 2 + 1)] epr

p2r

(2.10)

3* s s2 i(sr-wt)
v* = -A[iBt sinO + -2 sin 26] rS e

with B* = i(pR)' K-K*

B ((2.11)

3p

B* = i(pR)3 203 6*(K+2I) + 1(9K+8p)

where p and s are the wavenumbers of P and S waves in the

matrix; K,p and p stand for bulk and shear moduli and

density, * superscript indicates effective properties;

r and 8 are defined on Figure 2.1.

We are left with evaluating the right-hand side of

equation (2.9). We make the critical assumption that all

multiple scattering effects can be neglected so that the wave

incident on each inclusion is the undisturbed original

plane P wave A. This assumption implies that our model

is valid only for small concentrations of inclusions where

interactions are weak. Since the observation point is at a

large distance from the center of the representative sphere



xo , we may also assume that every inclusion of the re-

presentative sphere is approximately located at xo . The

wave scattered by every inclusion can then also be expressed

by equations (2.10) and (2.11), Where we simply replace

R by aj, the radius of the jth inclusion, and every quantity

with a star superscript by primed quantities which refer

to inclusion properties. Then equation (2.9) becomes a

set of three equations between the coefficients Bn

N
B* = B n=0, 1 or 2

n j=l n

Replacing Bn by their expressions we obtain

K-K* K-K'
3K* + 4p 3K' + 4 i

P-P* c (-P')
P P

(2.12)

(2.13)

(2.14)

c "P (2.15)6P' (K+21)+p (9K+81)

N
where c = Z1 a /R' is the volume concentration of inclusions.

Equations (2.13), (2.14) and (2.15) give the effec-

tive elastic moduli and density in terms of the properties

6p*(+2)+P(*- 9+8P)6 * (K+2-)T (1 9 K+8 )
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of the matrix and inclusions and the volume concentration

of inclusions. The symmetry of these effective laws clearly

show how straightforward it is to extend the results to

multiphase media. Written in a somewhat more convenient

way, the effective laws are

(K'-K)c

K* = K + (2.16)

3 (K'-KX1-c)1 + 3K + 4i

p* = p(l-c) + p'c (2.17)

* = v + (2.18)

+6 ('-pXK+2pXl-c)
51 (3K+4p)

Comparing our results with those of Mal and Knopoff (equa-

tions 2.4 - 2.6) we find that our effective elastic moduli

reduce to theirs if c is much smaller than 1. Furthermore,

it was implicitly assumed in their model that the matrix

and the effective medium are very similar. Because of these

two reasons we can conclude that Mal and Knopoff's model

is valid for lower concentrations than ours. This result

is illustrated in figures 2.3, 3.4, 3.5, and 3.6.

2.4.2. The case of a fluid matrix

In the preceding section the non-interaction
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model was derived for a medium consisting of two solid phases,

but it can be applied to non-viscous fluid inclusions

by letting p'=0 or to cavities by letting K', p' and

p' vanish. When the two-phase medium is a suspension of

solid spheres in a non-viscous fluid matrix, the effective

laws for the elastic moduli can also be used, and the effec-

tive shear modulus vanishes, except when c = 1, as one

would have expected. But, as is shown in appendix A, the

effective law relating densities is different from (2.17).

We have then

(K'-K)c

K* = K + (2.19)
(K'-K) (1-c)1i+ K

= c
p+2p* p+2pc (2.20)

* = 0

Equation (2.20) is not the density law one would

expect from the law of conservation of mass in a two-phase

medium (equation 2.1h. But it must be realized that the

effective law involving density is in fact a relation

between inertia terms. When the matrix is a fluid, continu-

ity of tangential displacement is not required so that there



can be relative motion between the matrix and inclusion.

The net effect of this relative motion can be interpreted

as an increase of the inertia of the solid inclusion

(Lamb, 1932) which results in a difference between its

inertial and gravitational densities. When the matrix

is solid this difference does not exist because relative

motion is precluded by the capability of the solid to sus-

tain shear. Because of the dynamic nature of a wave, the

density to be used in computing the effective velocity is

the effective inertial density; thus

* = K~ (2.21)
Pi

where K* and pi are given by equations (2.19) and (2.20).

As a consequence the effective bulk modulus of a suspension

of solid spheres in a fluid matrix is different if it is

calculated statically or dynamically; in the static case,

K* is given by the Reuss value (1929)

1 + 1-c (2.22)
K* K' K

which is in fact the same equation as (2.19). But in the

dynamic case K* must be calculated from
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K* = ,2 p* (2.23)
d g

where p* is the effective gravitational density given by
g

(2.17); combining (2.21), (2.22) and (2.23), we find

p*
K* = K* - (2.24)

7Pi

This result is a clear illustration of the error to which

the use of static models can lead when the problem is of

a dynamic nature.

2.4.3. Average effect of interactions on the effective

properties.

Multiple scattering (or equivalently interactions

among inclusions) is a characteristic feature of wave

propagation in a two-phase medium. Its effects must

be included in a model which is meant to be realistic,

especially at large concentrations. However, the exact

calculation of the contribution of all multiply scatter-

ed waves to the total wave at some point in the medium

requires complete knowledge of the inclusion distribution

function. This information is generally not available

and, consequently, we can only attempt to include the

multiple scattering effects in an average sense.



A method which has been used to include the inter-

actions among inclusions in static models is the so-called

"self-consistent scheme" (Budiansky, 1965; Wu, 1966),

in which it is assumed that, instead of being embedded

in matrix material, each inclusion is in fact surrounded

by the medium with effective properties. But this assumption

seems unsatisfactory because it modifies the boundary

conditions on each inclusion. Therefore, we shall slightly

modify it by introducing a shell of matrix material between

the inclusion and the surrounding effective material.

This geometry (figure 2.2) is more general since it contains

the particular case of the classical self-consistent

scheme, where b the radius of the matrix shell is equal

to the radius a of the inclusion. In this analysis, the

ratio d = a/b is treated as a free parameter.

In order to obtain the effective laws, we use equa-

tion (2.9) with the assumption that the wavelength is much

longer than the inclusion radius. On the left-hand side,

the wave scattered by the representative sphere is given

by the same expression as in the non-interaction model

(equations 2.10 and 2.11). On the right-hand side, the wave

scattered by an inclusion is to be evaluated. The derivation

is given in appendix B; it involves no difficulty, besides

algebraic manipulations. The effective density law is the

same as in the non-interaction model, for any d.



p* = p'c + p(l-c) (2.25)

The effective bulk modulus is given by

K*-K c(K'-K) (3K+4-p) (226)
3K*+4*= (3K'+4i) (3K+4 p*) - 12(K'-K)(*-)d 3  (2.26)

The analytic expression for the effective shear modulus

is extremely complicated; it is given in appendix B, but

since the effective moduli are to be determined numerically

in general, it seems more reliable to compute the

effective shear modulus from the initial determinants

(see appendix B).

The essential result here is that the effective moduli

depend on the assumed value of the matrix shell radius b.

Since this radius is unknown, it seems that the self-

consistent scheme is of little help to provide a model where

the interactions are taken properly into account. No value

of b is a priori better than another. However, by analogy

with Mackenzie (1949) and Hashin (1962) we shall favor a

model where d3= c, c being the concentration. With this

relationship the effective bulk modulus reduces to the

non-interaction model result, but the effective shear

modulus is still different. Such a result does not seem

too unrealistic from a qualitative point of view. We

expect the amplitudes of the multiply scattered waves to



be on the average much smaller than the incident wave.

We also know that in the series expansion of the incident

wave, the amplitude decreases as one goes from the first-

term (n=O), which is used in the bulk modulus calculation,

to the third term (n=2) which is used for the shear modulus

calculation. It seems, therefore, that the major influence

of the interactions should be upon the effective shear

modulus. Although the "evidence" given here is rather thin

we shall call this model the interaction model.

If we use the classical self-consistent scheme

(d=l), we obtain for the effective bulk and shear moduli

K*-K c(K'-K)
3K*+4* - -3K'+411*

(2.27)

_ *-__c_(__c -- c
5p* (3*+4*) - 6p' (K*+2p*)+p* (9K*+8 p*)

The closer d is to 1, the more an inclusion "feels" the

influence of the neighboring inclusions. Thus the latter

model (d=l) is the self-consistent model where the effect

of the interactions is maximized. As a consequence we may

use the classical self-consistent model (d=l) and the non-

interaction model as bounds within which any self-consistent

model should fall. As an illustration, we plotted the effec-

tive P wave velocity computed with our various models for



a typical rock containing spherical inclusions of ice

(figure 2.3). Mal and Knopoff's model diverges fairly

rapidly as concentration increases. The difference between

the two bounds constituted by the non-interaction and

classical self-consistent model is quite significant at

medium concentrations and it seems that our interaction model

can play the role of an average.

2.5 Spheroidal inclusions.

The vector Helmholtz equation is not separable in

spheroidal coordinates (Morse and Feshbach, p. 1765);

therefore, when the inclusion is spheroidal we cannot

expand the expressions for the amplitude of the scattered

waves in series whose coefficients can be found by solving

the boundary conditions as we did for spheres in appendix

A. If we are to use equation 2.9 for obtaining the effec-

tive properties, we must find an alternative way of ex-

pressing the scattered waves.

The derivation outlined below is given in detail

in appendix C. The displacement field due to the waves

scattered by an inclusion of arbitrary shape can be written

in terms of the displacement and strain .nside the in-



clusion (Mal and Knopoff, 1967). When the wavelength

is much larger than the inclusion size, the displacement

inside can be approximated by the displacemeht that we would

observe at the point where the inclusion is centered if

the inclusion was absent. Mal and Knopoff (1967) showed that

the approximation to the strain inside a spherical inclusion

in terms of the incident strain is given by the same ex-

pression as that found by Eshelby (1957) in solving the

static problem. By analogy we assume that we can use

Eshelby's expression for spheroidal inclusions. It is then

possible to express the scattered field in terms of the

incident field (equation C23 in the appendix); the result

depends on the orientation and shape of the spheroid.

We can now use equation !.9) and obtain the effective

properties. For the left-hand side we use Mal and Knop-

off's expression for the field scattered by a sphere

(equation C15) in the appendix). For evaluating the right-

hand side we neglect all interactions and, therefore, assume

that the field incident on each spheroid is the original

incident field; we also assume that the spheroids are

oblate and that their orientations are uniformly distributed

over all directions to ensure quasi-isotropy. We

finally obtain the effective laws

K*-K c (K'-K) (2.28)
3K*+4p 3 3K+4pi
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p* = p(l-c) + p'c (2.29)

Tiijj (')
*-__ c(i'-v) [Tij ( ] (2.30)

6 P* (K+2p) +1 (9K+8p) 251 (3K+41i) ijij 3

The scalars Tiij. () and T.jij (3) are functions of the

aspect ratio a of the inclusions; they are given in

appendix C.

The essential result here is that the effective

elastic moduli depend not only on the concentration but

also on the shape of the inclusions (i.e. aspect ratio

a). This conclusion is in agreement with experimental

data on porous rocks (Nur and Simmons, 1969). It is important

to note that our assumption of non-interaction among the

spheroids is violated when the ratio c/' is larger than

1 (Solomon, 1971) since the inclusions are then over-

lapping, at least partially; it is even probable that the

assumption is reasonable only when c/E is smaller than

about 1/4. We have given the results found for spheroids

having all the same aspect ratio; however, the results can

be easily extended to cover the case of a discrete spectrum

of aspect ratio . The concentration is then a function of

and the effective bulk modulus if given for instance by

K*-K K'-K M (ami T  (2.31)
3K*+4P 3K+41 m=1



Of course, the non-interaction assumption must still be

valid and it can be expressed as

M c( m)
- < 1 (2.32)

m=l am

We can compare our results (2.28) and (2.30) with

those obtained by Walsh (1969) for a two-phase medium

with non-interacting spheroidal inclusions. Walsh used the

formulas derived by Wu (1966) for the static problem

with the self-consistent scheme; for the effective bulk

modulus, Wu obtained

K* - K c T () (K'-K) (2.33)3 iijj

where T* now depends on inclusion and effective properties

whereas T in (2.28) depends on inclusion and matrix proper-

ties. Walsh removed the self-consistent scheme in (2.33)

by replacing T* with T so that he obtained

K* - K = T .() (K'-K) (2.34)3 iijj

which is different from our result (equation 2.28) although

in both cases the result is supposed to represent the

effective properties of the same two-phase medium. The

comparison becomes more fruitful if one takes the case



of spheres. Then

1 3K* + 4* (2.35)
3 iijj33 3K' + 4p*

T1 .. (1) 3K + 4p
T (313 3K' + 4 (2.36)

If we use Walsh's procedure, and substitute (2.36)

in (2.34) we obtain Mal and Knopoff's result. If we use

(2.36) in our equation (2.28) we obtain the bulk modulus

of the non-interaction model for spheres. Similar results

hold for the effective shear modulus. The conclusion is

that Walsh's results compare to ours (equations 2.28 and

2.30) in the same way Mal and Knopoff's model compares to

the non-interaction model for spheres. Walsh's results

are, therefore, valid only for lower concentrations of

inclusions than ours, which are themselves limited to

fairly low concentrations.

If we attempt now to take into account the inter-

actions by using the classical self-consistent scheme,

we obtain the following effective laws (the derivation is

given in appendix C)

K* - K c T ... (a) (K'-K) (2.37)T '1133

p* = p(l-c) + p'c (2.38)



C1 S , (T* (&) - T* (a)] (2.39)

(2.37) and (2.39) are the same as those obtained by Wu

(1966) in solving the corresponding static problem. They

are the counterpart of (2.27) valid for spheres. They may

also be considered as bounds for the effective moduli when

interactions are included with a self-consistent scheme.

We did not derive the analog of our interaction model

for spherical inclusions in the case of oblate spheroids.

2.6 Effective attenuation of elastic waves.

So far we have only discussed the effective response

of a two-phase medium to elastic waves when both phases

are perfectly elastic. However, any realistic medium

has some anelastic behavior, resulting in damping of the

waves. When a wave propagates through a two-phase medium,

the attenuation it experiences is essentially due to

three processes: (i) Internal friction phenomena which

constitute usually the dominant mechanism. (ii) Geometri-

cal scattering which represents the fraction of the in-

cident energy which is carried away by the scattered waves;

this mechanism is usually important only at high frequencies.

(iii) Losses due to compressibility and thermal conduction



which are usually very small and will be neglected here.

2.6.1. Geometrical scattering

The contribution of geometrical scattering to the

attenuation of a plane P wave propagating through a

two-phase medium with spherical inclusions has been computed

by Yamakawa (1962) for the long wavelength approximation.

The decay law for the amplitude is

A = Ao e-do

where Y = cp(pa) [2B + 3(l+2v )B~1 (2+3 2

K-K'
with Bo = 3K' (2.40)

3K'+4*1 (2.40)

BI = P-P
3p

20 v(W'-)
B2 = ~3 6P'(K+2P) + P(9K+8P)

c is the volume concentration of inclusions, p is the wave

number of P waves in the matrix, a is the radius of the

inclusions and v is the ratio of P to S wave velocity in

the matrix, d is the distance.

2.6.2. Viscoelastic attenuation

For a two-phase medium consisting o:nly of solid phases



the attenuation due to anelastic behavior can be evaluated

in a straightforward manner from the effective laws for

elastic media by using the correspondence principle. If

the viscoelastic behavior of each phase is represented

by complex moduli, the effective moduli will also be

complex and the effective velocities and attenuation

coefficients are given by (Bland ,1960)

1/a* = Real [p*/(K* + 4p*/3)] /2

1/ * = Real [p*/v*] 1/2  (2.41)

* = -wImag [p*/(K*+4p*/3)]1/2

y -wImag [p*/I*]1/ 2  (2.42)

However, the effective laws for the elastic moduli were

derived with the long wavelength approximation; they can

be used for the corresponding viscoelastic problem if and

only if both the wavelength and the characteristic atten-

uation length, i.e. l/y* (length over which the amplitude

is reduced by e) are much larger than the inclusion size

a. In particular when one of the phases is a viscous

liquid, the effective viscoelastic behavior can only be

obtained from the effective elastic behavior by letting the

shear modulus become purely imaginary (9+ ion) if the



shear waves in the fluid satisfy the conditions given above.

This may very often not be the case, especially for low

viscosity liquids.

2.6.3. Attenuation in a suspension with a viscous matrix.

Consider a suspension of elastic spheres in a fluid

matrix which is elastic in compression but Newtonian viscous

in shear. In such a suspension the attenuation due to

matrix viscosity cannot in general be calculated by using

long wavelength models and the correspondence principle,

since the attenuation mechanism is the absorption of the

scattered S waves in the very neighborhood of each inclusion.

Epstein (1941) has calculated the attenuation due to this

mechanism, in connection with his study of sound absorp-

tion in fogs. The decay law is

A = Aoe-ydo

where y cp(6-1)Real i + b - ib2+)b /3 /9
p - i6bo- (2+6)b'/9

with 6 = p/p' (2.43)

b = (1+i)a

where c is concentration of inclusion, p is the wavenumber



of a P wave in the matrix, a is the inclusion radius, f

is frequency, n is the matrix Newtonian viscosity, p and

p' are the densities of matrix and inclusion.

2.6.4. Attenuation in fluid saturated porous rocks.

Recently geophysicists have shown interest in the

anelastic behavior of solids containing a small volume

of inclusions filled with a viscous liquid (Spetzler and

Anderson, 1968; Walsh, 1969; Solomon, 1972); the inclu-

sions are commonly modeled as oblate spheroids with small

aspect ratios (E < 10-3). Experimental results on low

porosity rocks (Nur and Simmons, 1969) indicate that the

attenuation of elastic waves is very sensitive to the presence

of a small volume of fluid-fil ~ld cracks. The thickness

of such cracks may be less than a micron which is smaller

than the wavelength and damping length of all waves.

Even S waves in water at 1 MHz have characteristic lengths

of about 2p. Hence, the attenuation in such materials can

be calculated with our non-interaction model (equations

2.28-2.30) for oblate spheroids modified via the corres-

pondence principle (p'+in).

On figure 2.4 we show the shear wave attenuation

factor Q 1 calculated with our non-interaction model as

a function of the product fri (frequency xviscosity) for

different values of concentration and the aspect ratio.

Aspect ratios smaller than 10-6 are not considered because



their thickness would be of the order of a few angstroms.

Such narrow cracks can probably not be fluid-saturated

in a realistic rock. The matrix is assumed perfectly

elastic and its elastic moduli correspond to those of a

typical rock:

K = ' = 4 x 1011 dynes/cm 2

and the bulk modulus of the inclusion is 2.15 x 1010

dynes/cm . It is clear that the attenuation due to fluid-

filled cracks can be sizeable when the product fn is

larger than 10+4 , which corresponds to high frequency waves

(in the MHz range) when water (n=lcp) is the saturating

fluid. In these cases relaxation phenomena are then the

dominant sources of damping according to our model. With

an adequate distribution of inrLusion shapes, the Q may

even be frequency independent, lifferent frequencies being

then affected by different relaxation peaks. The atten-

uation is proportional to c/ t but it must be recalled

that the validity of the model is restricted to values of

c/a smaller than 1. When fn is small, i.e. low frequencies

for water-filled cracks, the relaxation phenomena due to

the presence of fluid inclusions produce very little attenua-

tion. It is known from seismic field experiments (f 100 =

Hz, Q=50) that the attenuation is not negligible (McDonal

et al., 1958). It may be due to anelastic behavior of

the matrix, which can roughly be modeled by letting the

elastic moduli of the matrix become complex (Anderson et al,



1965). It also seems that the presence of a liquid modifies

the surface properties at grain boundaries and cracks in

a way to enhance attenuation, even at low frequencies

(Tittman, 1972). These phenomena are at present little

understood and.cannot be explained with our model.

2.7 Dispersive properties of two-phase media.

All models presented in the preceding sections were

derived with the assumption that the wavelength X of the

waves is much larger than the radius of the representative

sphere and inclusion size. This assumption involves an

approximation which corresponds mathematically to the trunca-

tion of the series expansions of the waves after the leading

terms. Neither the magnitude nor the implications of this

approximation has been discussed in the previous section.

This question is important, not only for the sake of complete-

ness, but also for the application of laboratory data to

porous rocks in field measurements. In the laboratory

frequencies are typically of the order of 1 MHz and wave-

lengths are probably not always much larger than the pore

size. Here we examine this approximation more closely

and evaluate its effects on the determination of the effec-

tive properties.
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2.7.1. Magnitude of the approximation.

Consider for simplicity a solid elastic sphere iso-

lated in a non-viscous fluid matrix. When a plane P wave

of any wavelength is incident on it, we know from appen-

dix A that we can obtain an exact solution in the form

of an infinite series by satisfying the boundary condi-

tions for n = 0 to w where n is the summation index in

the series. The far field dilation due to the scattered

waves can be written as

i(pr-wt)
A (prt) (-i)n+ B Pn(Cos 6) (2.44)

E n
pr n=

where p is the wave number of a P wave in the matrix,

P (cos 6) is the Legendre polynomial of order n and

B' = x'3 [B + .0 B'. x j ]  n=0 or 1 (2.45)
n  n0 3=2 n3

B' = x2n-1 I  B'. x n > 2 (2.46)
n j-2 nj

with x = 2 ra/X (2.47)

The Bnj are coefficients depending only on the inclusion

and matrix properties and are obtained by solving the

boundary conditions; the first few (n and j small) are

given in appendix D.



In the long wavelength approximation, only the dom-

inant terms are kept, that is the terms of order x3.

Terms of order x5 are neglected so that the magnitude of

the approximation is of order x2 with respect to 1. From

equation (2.47) we find that this approximation implies

an error of the order of 1% when A/a = 60 and 10% when

A/a = 20.

2.7.2. Effective properties as a function of A/a.

Consider now a suspension of equal size solid spheres

in a non-viscous fluid matrix. Our method of deriving

effective properties involves the estimation of the waves

scattered on one hand by an individual inclusion and on

the other hand by the representative sphere (equation 2.9).

The radius R of the representative sphere is larger than

that of an inidividual inclusion; thus for a fixed wave-

length, the approximation involved in evaluating the

effective properties by keeping only the leading terms

depends essentially on the ratio A/R and not A/a. Hence

as a first simplification let us assume that A/a is suffic-

iently large so that we can use the long wavelength approx-

imation in expressing the waves scattered by each individual

inclusion. Assuming also that multiple scattering effects

can be neglected, the far field dilatation due to the waves
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scattered by each inclusion is

ie (pr-t)
A'= [ iBo + BI cos 6] (2.48)

pr

where Bd = iAx3 K-K' (2.49)3K

B = Ax 3 P-P (2.50)
p+ 2p'

The terms which are neglected are of order x5 . The far

field dilatation due to the waves scattered by the represen-

tative sphere is calculated by keeping the next higher order

terms of order y- where y,= 2nR/X . We have according to

appendix D.

ei(pr-wt)
* = e [iB* + B1 cose] (2.51)

pr

where B = iAy -* 1+ - + K (2.52)0 3K* 3K* 5 15K-K*)

p+2p* 5-[ + 5(p- ,
_ 30 P )P p+2p*

(2.53)

with y* = 2 TR/X*, X* being the wavelength of a P wave in

the effective material. The terms neglected are of order

y'. Using again equation 2.9 for deriving the effective laws

we obtain, if N is the number of inclusions in the represen-



tative sphere.

B = N B1

(2.54)

B0 = N B1

since all inclusions have the same radius. We can solve

this system of two equations for the two unknowns p*

and K* as a function of the free parameter yR. The analy-

tical solution is given in appendix E, but a numerical ex-

ample is a more fruitful basis of discussion. Since we

have data on a suspension of polystyrene spheres in water

(next chapter), we apply our analysis to this two-phase

medium. The two quantities to compare are the effective

P wave velocity a* calculated with the long wavelength
L

approximation (equation 2.29) and the effective velocity

obtained from the solution of system (2.54) by

* = (2.55)

The values of a* computed for different concentrations and

for different values of X/R are given in table 2.1; a*

is also given for comparison. It is seen that a* approaches

aL when X/R is large, as it should be. For smaller X/R

\'
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2* is smaller than the long wavelength limit and the differ-

ence can become significant. When X/R becomes small, say

about 5 or 10, the various simplifications introduced

for obtaining the result are not valid any more and the values

of a* are questionable. For such low values of X/R the

concept of effective properties becomes marginal because

of the quasi-homogeneity assumption (cf. section 2.2).

The decrease of the velocity as the wavelength becomes

smaller can be interpreted as destructive interference of

the scattered waves; each inclusion acts as a source and

as the wavelength decreases the sources within the re-

presentative sphere become more and more out of phase.

Karal and Keller (1964) and Howe (1971) obtained very similar

results for media whose properties are continuous random

functions of position, the fluctuations about the average

properties being small. They found that the actual velocity

was smaller than the average velocity. The decrease of the

velocity depended on both the magnitude of the fluctuations

and the length within which they were correlated.

2.7.3. The size of the representative sphere and its physical

meaning.

All along the analysis we treated X/R as a free parameter

because the radius of the representative sphere is essen-

tially unknown; we only know that it is at least larger

than an inclusion radius. But if we have velocity measure-
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ments in a suspension where the inclusion radius, the wave-

length and the concentration are known, we can determine

the relative size of the representative sphere and an in-

clusion; this can be done by combining our velocity data

of the water-polystyrene suspension (figure 3.4) and Table

2.1. At 50% and 68% concentration the measured velocity

is about 1% and 2% lower than the long wavelength limit;

thus we find that X/R is of the order of 20. Since X/a

is about 50, we conclude that -R is about 3 inclusion radii.

By analogy with the results of Karal and Keller (1964)

and Howe (1971) , R may be interpreted as a correlation

length or in other words as the length over which inter-

actions among inclusions are significant. It is therefore

not too surprising that R is fairly small, since one expects

only very near neighboring inclusions to interact signif-

icantly. This interpretation of the radius R of the re-

presentative sphere implies that it is a constant for a

given two-phase medium which is consistent with our estimate

of R from two different concentrations (table 2.1). It

follows then from analysis that the velocity is a function

of the frequency of the incident wave, or in other words that

a two-phase medium is dispersive. This was already known

qualitatively because the long-wavelength limit is different

from the short-wavelength limit in which the average velocity



is given by the average sum of the travel times in each

phase:

1 l-c + c (2.56)

However, instead of knowing only two limiting estimates,

we can now draw a tentative dispersion curve for our

suspension (figure 2.5). Since the velocity is larger

for X << a than for X >> a and since it starts de-

creasing as X/a decreases from infinity to about 50, the

velocity must pass through a minimum. This minimum cannot

be found precisely since our approach breaks down when the

wavelength becomes too small, but it may be about A=a.

For the sake of clarity in illustrating the method,

we treated only the case of a suspension and we did not

calculate higher order approximations. There is no addi-

tional difficulty in treating a solid-solid two-phase

medium or in including more terms, except for algebraic

manipulations.



Table 2.1

DEPENDENCE OF THE EFFECTIVE VELOCITY ON

= 50%

= 1.6373

a*

(km/s)

1.5373

1.5446

1.5643

1.5929

1.6066

1.6168

1.6297

1.6350

1.6361

1.6370

1.6373

THE WAVELENGTH

c = 68%

* = 1.7199
L

ao*/a*
(%)

6.3

5.5

4.6

2.7

1.9

1.25

0.46

0.14

0.08

0.02

0

X/R

7.52

9.47

10.43

15.04

18.95

23.87

40.82

75.18

104.26

208.5

>1500

a*

(km/s)

1.5989

1.6218

1.6324

1.6682

1.6847

1.6966

1.7114

1.7173

1.7185

1.7195

1.7199

c is concentration of includions; L is the effective velocity

calculated with the long wavelength approximation (Equation

2.21). a* is the effective velocity calculated for a given

ratio of the wavelength A to the representative sphere radius R.

AU* = a* a
L

c

a
L

6.79

7.47

9.41

13.57

17.10

21.54

36.84

67.86

94.10

188.2

>1500

At*/a*

(%)

7.2

5.9

5.2

3.0

2.0

1.35

0.5

0.15

0.08

0.02

0



FIGURE CAPTIONS

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5

Scattering of a plane wave by (a) the re-

presentative sphere (b) the individual

inclusions. Symbols are defined in the text.

Geometry used for the generalized self-

consistent models.

P wave velocity versus concentration in a

rock containing spherical inclusions of ice.

NON refers to the non-interaction model,

INT refers to the interaction model (d3=c),

SCS refers to the classical self-consistent

model (d=l) and MK to the model of Mal and

Knopoff.

Shear wave attenuation factor versus fre-

quency (or viscocity) in a rock with fluid-

filled penny-shaped cracks. Each relaxation

peak corresponds to a different aspect ratio

given at the maximum of the peak.

Velocity versus wavelength to inclusion

size ratio, water-polystyrene suspension.
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CHAPTER 3. EXPERIMENTAL RESULTS

Experimental data on the velocity and attenuation of

of elastic waves in two-phase media are widely available

in the literature. Most of the experimental results have

been obtained on partially or fully saturated porous

rocks (Born, 1941; Wyllie et al., 1956, 1958; Shumway,

1960; Nur and Simmons, 1969) or on media where partial

melting takes place (Spetzler and Anderson, 1968). These

data are relevant to a variety of seismic problems. An

important problem in seismic prospecting is to identify

fluid saturated sedimentary layers. Also, there is increas-

ing evidence for partial melting in the upper mantle

(Anderson et al., 1965; Solomon, 1972). On the contrary

experimental data on suspensions of solid inclusions

in a fluid matrix are scarce, except for sound attenuation

in fogs (Knudsen, 1946). In this chapter we present

measurements of the compressional wave velocity and elastic

quality factor in three suspensions of solid spheres in

viscous matrices; the data are also compared with the values



calculated by using the theoretical models derived in the

preceding chapter.

3.1. Characteristics of the suspensions.

The choice of suitable solid particles to be sus-

pended in a fluid matrix is limited by a number of con-

straints if one wants to make accurate and precise measure-

ments and compare them with theoretical results: (i)

the inclusions should preferably be of spherical shape

and of small size because the working frequencies are ty-

pically of the order of 200 KHZ; (ii) the properties

of the inclusion material should be either known or measur-

able. The latter condition implies that it be also avail-

able as a bulk material and not only as a powder; (iii)

the densities of the matrix and inclusions must be close

so that the inclusions remain in suspension for a sufficiently

long period; and (iv) both materials must be chemically

compatible. We used the three combinations for laboratory

measurement: polystyrene beads in water (WPS), polystyrene

beads in oil (OPS) and glass beads in a mixture of benzene

and acetylene tetrabromide (ATBG). The physical constants

of the constituents are given in Table 3.1.

The polystyrene spheres were provided by Sinclair-



Koppers Co. and soda-lime glass beads are commercially

available from Potters Brothers Inc. The densities of

both materials were measured in the laboratory. For soda-

lime glass we adopted the elastic velocities tabulated

by Press (1966). For polystyrene we measured the ve-

locities on a disc of polystyrene provided by the manu-

facturer. Given the uncertainty in attenuation measure-

ments, we simply adopted the Q values observed on Lucite

(Toksoz, personal communicationi) as representative of

polystyrene. The trade mark of the oil we used is Nujol.

Its density and viscosity were measured in the laboratory

at 200 C. We mixed benzene and acetylene tetrabromide

in order to obtain a mixture density slightly lower than

that of glass; they are perfectly miscible, but the rate

of evaporation of benzene is larger than that of acetylene

tetrabromide so that the density of the matrix was slowly

increasing along the experiment. For this reason, the

experiment was carried out in a few hours and no attenuation

measurements were performed since these require a long

time. The size distribution of the polystyrene spheres

(figure 3.1) was obtained by passing 680g of them through

a tower of 16 sieves ranging from 707 to 53 microns in

opening; it can be approximated by a normal probability

density function with mean 140 p and standard deviation

30 1. Since all glass beads were smaller than 50 p in



65

radius, the knowledge of their size distribution is not

crucial.

3.2. Experimental procedure.

The experimental set-up is illustrated in Figure

3.2. The suspension is contained in a ten gallon tank.

The transducers are PZT-5 compressed discs. The trans-

mitter and receiver are moveable along a rail fixed on the

top of the tank and are submerged in the suspension. They

are located so that all waves reflected and refracted by

the tank boundaries arrive at the receiver well after the

direct wave. The input signals shown on Figure 3.3 are

provided by a pulse generator for velocity determinations

and a tone-burst generator for amplitude measurements.

The output signals also shown on figure 3.3 are displayed

on an oscilloscope. A delay line incorporated in the

oscilloscope is used for travel time measurements and the

peak to peak amplitudes are read on the scale of the

oscilloscope screen. Two electric stirrers are used to

maintain the solid spheres in suspension and assure uni-

form concentration.
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3.3. Methods of measurement.

3.3.1. Velocity.

The distance separating both transducers is deter-

mined on the rail fixed on the top of the tank and the

corresponding travel time of te first peak of the received

signal is read on the delay l:e triggered by the input

signal. These measurements av repeated 20 times with

different separations of the i ansducers, all other para-

meters of the suspension being held constant. A straight

line is fitted to the measured values by linear regression

(figure 3.4); its slope gives the velocity of the wave.

The fit is usually quite good; a typical value for the

standard error of estimate of the slope is 2 out of 1500.

For the sake of clarity and consistency, we adopt the 90%

confidence limits on the fitted slope as the error bounds

on the measured velocity. They are given in tables 3.3,

3.4 and 3.5. It is necessary to correct measured values

for temperature variations, since a change of a few de-

grees Celsius modifies the velocity by a larger amount

than the error bounds. Therefore, all velocity measure-

ments are reduced to a common temperature of 200 C. We

use the tabulated values of the temperature dependence of

the velocity and density of both components of the sus-

pension and compute the dependence of the effective velocity



on temperature via our non-interaction model. The tem-

perature corrections we thus obtained are given in table

3.2. for the WPS and OPS suspensions. No correction is

needed for the ATBG suspension because all measurements

were made in a few hours under a hood.

The volume concentration of inclusions is determined

by the ratio of the volume of solid put into suspension

to the total volume. It is known with less than 1% re-

lative error, but it reflects the actual concentration of

inclusions between the transducers only if the concen-

tration is maintained uniform throughout the tank. There

was never any evidence during the experiments that this

condition was not fulfilled by our continuous stirring:

we never observed beads accumulating anywhere in the tank.

3.3.2. Attenuation.

The damping characteristics of our suspensions are

determined from the amplitude of sinusoidal wave packets

as a function of frequency. Absolute amplitudes are

difficult to use because they are strongly affected by

geometric effects and response of the recording system be-

sides anelasticity of the medium; these unwanted effects

can be eliminated by use of the amplitude ratio technique.

The amplitudes of an elastic wave propagating on one hand



in pure matrix material (subscript m) and on the other

hand in a suspension of concentration c (subscript s)

can be written as functions of frequency f

S-m (f)x i(2Trft--km x)
Am(f) = Gm(x) Tm (f)em(f) em

(3.1)

- s ( f ) x i(2T ft-ksx)
A s (f) = G s () T s (f)e ys(f)x ei(

where X is the distance between the transducers and k the

wave number, G is a factor depending only upon geometry,

T is the frequency response of the recording system and y(f)

is the attenuation factor. If the geometry and recording

system are kept the same for both measurements, we obtain

As ~ ~
in - x [y (f) - y (f)] (3.2)

For a wide variety of materials y is approximately a linear

function of frequency (knopoff, 1964). This is certainly

not the case for suspensions over a broad frequency range.

For geometrical scattering alone, y is proportional to

the fourth power of frequency (equation 2.40). However,

our data indicate that we can use the linear approximation

at least over some frequency range (200 to 450 KHz). Then

we have
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y(f) = yf + 6 (3.3)

cdo not
where Y and oAdepend on frequency; Y is called the atten-

uation coefficient and is related to the quality factor

Q by

Y (3.4)
Qv

where v is the wave velocity. Combining (3.2) and (3.3)

we obtain

n = (ym-ys)fx + (6m-s) (3.5)

If the geometry is known, the relative Q of a suspension

with respect to the Q of pure matrix can be determined

from the slope of a line fitted to the logarithm of the

amplitude ratio versus frequency. This is the procedure

we follow. The amplitudes that we use are those of the

second cycle in the sinusoidal wave packets (see arrows

on figure 3.3) for frequencies increasing from 100 to

480 KHz in steps of 20 KHz. They are also corrected for the

variation of the amplitude of the same cycle in the input

signal. No amplitude measurements were made on the ATBG

suspension because of the short amount of time we had
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because of the fast evaporation of benzene.

3.4. Experimental results.

3.4.1. Velocity

The velocities measured in our three suspensions at

various concentrations are given in Table 3.3, 3.4 and

3.5. The normalized effective velocity aN , that is the

ratio of the effective velocity at concentration c to the

velocity of the matrix, is plotted versus concentration

on figures 3.5, 3.6 and 3.7. On these plots we also in-

dicate the effective velocities calculated with Mal and

Knopoff's model where p = 0 (equations 2.1, 2.4 and 2.5)

and our model (equations 2.19, 2.20 and 2.21).

In all cases both models are in good agreement with our

data at low concentrations. It is clear, especially with

the ATBG suspension, that our interaction model comes

closest to the measured velocities at large concentrations.

Nevertheless the velocities computed with our model fall

consistently above the data; in the WPS suspension at

50% and 68% concentration the discrepancy is of the order

of 1% and 2% which is significantly larcger than the errors

of measurement. Because of its consistency it is unlikely

that the difference could be attributed to a misevaluation of



the actual concentration between the transducers. For the

ATBG suspension it may be due to a slight discrepancy

between the actual properties of the glass we used and the

tabulated values, but such a reason cannot be invoked for

the other two suspensions since we measured the polystyrene

velocities with great care in order to assure sufficient

accuracy and precision.

The difference between the observed and calculated

velocities can be explained in terms of the dispersive

effects due to a finite wavelength to inclusion size

ratio. The wavelength of the wave is of the order of 7mm,

or about fifty inclusion radii, in both the WPS and OPS

suspensions. It was shown in the previous chapter that

under such conditions significant bias can result from the

use of models based on the long wavelength approximation;

the model we used for comparison with the data contains this

approximation. Recalling the results of chapter two, we

know that for our suspensions the long wavelength velocity

is larger than the velocity of a wave which does not satis-

fy the long wavelength approximation. The sign of the pre-

dicted dispersive effect is the same as the observed

one. However, the magnitude of the dispersive effect cannot

be predicted because it depends on the unknown radius of

the representative sphere which is in fact the length over

which interactions are significant. Alternatively we can use



our data for estimating this effective interaction distance.

It was found in chapter two that it is of the order of three

inclusion radii, indicating, as could be expected, that

interaction is significant only between very near neigh-

bors. It is also consistent with the better agreement

between the long wavelength model and the data at low con-

centrations where the separation of the inclusions is larger

than the effective interaction distance. In summary our

velocity data clearly illustraLe the practical interest

of our theoretical formulation of the problem and the im-

provement it constitutes over previous models, all limited

to the long wavelength approximation.

3.4.2. Attenuation.

On figure 3.8 we show the amplitude ratios measured

on the OPS suspenson at 5%, 20%, 40%, 50% and 62% con-

centration, and on the WPS suspension at 68% concentration.

They illustrate that the assumption of a linear decay is not

valid over the full frequency range; in particular there

seems to be a systematic increase at low frequencies, most

obvious on the OPS suspension at 40%. No explanation could

be found for this behavior. But for the largest concen-

trations where the attenuation is most significant, and

thus the data most reliable, the plots exhibit the expected

variation fairly well. The second conclusion one can draw

from figure 3.8 is that the attenuation becomes signifi-

cantly different from that in pure matrix only for large



concentrations (c>40%). The values of Q obtained from the

fit of a linear law to the data over a limited frequency band

are given in Table 3.6 for c>40%. At smaller concentrations

the stability and precision of the fitted Q is very poor,
-i

because the slope which is proportional to Q is small.

Comparison of the data on both suspension at concentrations

around 65% shows that the viscosity of the matrix is not

a negligible parameter, even when the filling solid is a

highly attenuating medium.

The theoretical Q values of our suspensions are computed

by taking into account the three major sources of atten-

uation: the geometrical scattering, the viscosity of the

matrix and the anelasticity of polystyrene. The contri-

bution of the geometrical scattering is evaluated with

equation (2.40) where the inclusions are assumed perfectly

elastic and the matrix non-viscous. The contribution

of the matrix viscosity is obtained from equation (2.43)

and the attenuation due to polystyrene anelasticity is

calculated with equations (2.42) and (2.19) by letting

the inclusion bulk modulus be complex (Table 3.1). The

part of the total attenuation stemming from each mechanism

is given in Table 3.7 for various frequencies; it is clear

that the theoretical Q is slightly frequency dependent, but

for the sake of comparison with the observations we adopt an



average Q over the band of interest. It also illustrates

well the strong frequency dependence of the geometrical

scattering effects and the importance of the viscosity of

the matrix. The Q computed with Mal and Knopoff's model

is also given in table 3.7, but it only reflects the

attenuation due to polystyrene anelasticity.

The comparison of the computed with the observed

Q values is satisfactory (table 3.6), given the large

uncertainty of attenuation measurements. The reasonable

agreement indicates that we took into account the major

sources of attenuation in our calculation. If we had ne-

glected the contributions of geometrical scattering and

matrix viscosity, the calculated Q in the OPS suspension

at 62% would have been 153 instead of 87, and thus about

twice as large as the observed Q. It is to be noted that

the attenuation due to either matrix viscosity or geo-

metrical scattering cannot be evaluated with a long wave-

length model modified via the correspondance principle, since

the wavelengths of S waves in the fluid are smaller than the

inclusion radius. Our attenuation data constitute thus

another example of the errors which the use of static

models can lead to.



Table 3.1

PHYSICAL CONSTANTS OF THE MATERIALS USED
IN THE EXPERIMENTS

Water Oil ATB

0.9982 0.8794 2.365

1.4632 1.4554 1.025

Polystyrene

1.045

2.334

1.163

Q
K(10 0dynes/cm2 )

K' (101 0 dynes/cm2 )

p(1010dynes/cm2 )

'' (1010dynes/cm 2 )

rn (poise)

2.137 1.863 2.485

0.01 1.8

All values are valid at a temperature of 200 C. p is density,

a and 5 are P and S wave velocity, Qa and Q are P and S

wave attenuation factors; K and i are the real parts of the

bulk and shear moduli, whereas K' and p' are the imaginary

parts; n is Newtonian viscosity. ATB refers to the mixture

of acetylene tetrabromide and benzene.

p (g/cm3)

a (km/s)

8 (km/s)

Glass

2.405

6.790

3.265

3.808

0.056

1.413

0.035

76.71

25.64



Table 3.2

TEMPERATURE CORRECTION

Water

-p (g/cm3oC)
3T

(m/s *C)

1 K(C 1)
K 3T

Oil

-4.9 10-4(ii)
-4.9 i0 (ii)-2 10-4i)

-2 10 (i)

2.4 (i) -3.0

30 10-4(iv)30 10 (iv)
-47 10-4 (iv)-47 10 (iv)

Polystyrene

-4(iii)-2.65 10 (iii)

(ii)

0 (assumed)

(i)
(ii)

(iii)
(iv)

c(%)

10

20

30

40

50

60

70

Weast (1971)
measured in the laboratory
Rudd (1965)
calculated from ap/dT and @a/aT

WPS

(m/s

2.27

2.18

2.06

1.94

1.77

1.59

1.34

OPS
* (m/s

3T
0C) 0C)

-2.90

-2.78

-2.64

-2.44

-2.23

-1.95

-1.59

3T*/3T is the variation of the effective compressional velocity

with temperature at a concentration c. It is calculated with

equation (2.21) and the values of 3p/3T and 3a/3T.



Table 3.3

MEASURED VELOCITIES IN THE WATER-POLYSTYRENE SUSPENSION

c a* AA* aN  a
(%) (km/s) (m/s) (10-3

0 1.4632 0.5 1.0 0.4

0.66 1.4644 2.5 1.0008 2.0

1.4670 2.2 1.0026 1.8

1.75 1.4648 2.5 1.0011 2.0

1.4689 1.9 1.0039 1.6

1.4676 2.6 1.0030 2.1

1.4676 1.4 1.0030 1.3

2.78 1.4726 1.7 1.0064 1.5

1.4726 2.2 1.0064 1.8

3.65 1.4723 1.4 1.0062 1.3

1.4731 1.7 1.0068 1.5

1.4759 2.4 1.0087 1.9

1.4745 2.0 1.0077 1.7

5.07 1.4810 1.5 1.0122 1.3

1.4817 1.1 1.0126 1.1

5.13 1.4797 1.1 1.0113 1.1

1.4784 0.9 1.0104 0.9

6.16 1.4850 1.2 1.0149 1.1

1.4838 1.2 1.0141 1.1

6.76 1.4869 3.7 1.0162 2.8



c *N AN

(%) (km/s) (m/s) (10 )

6.76 1.4887 0.7 1.0174 0.8

7.91 1.4888 0.9 1.0175 0.9

1.4886 0.7 1.0174 0.8

8.76 1.4912 1.9 1.0191 1.6

1.4894 0.8 1.0179 0.9

9.64 1.4923 2.9 1.0199 2.3

1.4939 1.2 1.0210 1.1

1.4903 1.3 1.0185 1.2

10.1 1.4929 2.8 1.0203 2.2

1.4943 0.8 1.0213 0.9

1.4986 0.9 1.0242 0.9

11.7 1.4959 0.8 1.0223 0.9

13.1 1.5044 0.9 1.0282 0.9

14.6 1.5090 2.4 1.0313 1.9

1.5103 2.3 1.0322 1.9

15.7 1.5109 3.3 1.0326 2.5

1.5116 3.2 1.0331 2.5

17.6 1.5146 3.3 1.0351 2.5

1.5198 2.7 1.0387 2.1

1.5151 1.3 1.0355 1.2

1.5128 1.3 1.0339 1.2

19.5 1.5247 1.7 1.0420 1.5

1.5210 1.3 1.0395 1.2



c

(%)

21.7

23.5

25.1

26.6

28.0

a*

(km/s)

1.5254

1.5261

1.5283

1.5362

1.5377

1.5410

1.5429

1.5510

1.5457

1.5529

1.5519

1.5606

1.5573

1.5618

1.5653

1.5671

1.5699

1.5791

1.5786

1.5790

1.5816

1.5953

1.5934

(m/s)

1.3

3.3

2.1

4.7

3.3

1.7

2.4

4.7

1.3

3.9

2.7

2.4

1.9

2.5

2.4

5.2

2.8

1.6

1.7

1.7

1.1

3.9

1.3

a
N

1.0425

1.0430

1.0445

1.0499

1.0509

1.0532

1.0545

1.0600

1.0564

1.0613

1.0606

1.0666

1.0643

1.0674

1.0698

1.0710

1.0729

1.0792

1.0789

1.0792

1.0809

1.0903

1.0890

AaN

(10 3)

1.2

2.5

1.7

3.5

2.5

1.5

1.9

3.5

1.2

2.9

2.1

1.9

1.6

2.0

1.9

3.7

2.2

1.4

1.5

1.5

1.1

2.9

1.2

29.9

32.2

33.9

38.1

41.0



c a* AU* N AcYN
(%) (km/s) (m/s) (10-3)

45.0 1.6095 2.2 1.1000 1.8

1.6072 2.2 1.0984 1.8

48. 4 1.6157 1.3 1.1042 1.2

1.6164 1.5 1.1047 1.3

51.6 1.6303 1.6 1.1142 1.4

1.6293 1.3 1.1135 1.2

56.2 1.6540 3.5 1.1304 2.7

1.6452 3.2 1.1244 2.5

68.0 1.6912 1.2 1.1558 1.1

1.7038 1.7 1.1644 1.5

c is the volume concentration of inclusions

a* is the effective compressional wave velocity in the

suspension

Aa* is the 90% confidence limit on a*

aNis the normalized effective compressional wave

velocity

AAcis the 90% confidence limit on a

Note: the same notation is ised in tables 3.4 and 3.5



Table 3.

MEASURED VELOCITIES IN THE

c (%) * (km/s)

0

5.2

10.0

14.6

19.8

30.0

39.6

51.6

62.7

Note: symbols

1.4554

1.4646

1.4653

1.4683

1.4650

1.4708

1.4780

1.4774

1.4902

1.4898

1.4989

1.5012

1.5246

1.5259

1.5666

1.5664

1.5988

1.5995

1.6590

1.6579

are defined

4

OIL-POLYSTYRENE SUSPENSION

Aa*(m/s) aN (e1N -
(10 - 3)

0.5 1.0 0.4

2.7 1.0063 2.3

1.5 1.0068 1.4

0.8 1.0089 1.0

2.9 1.0066 2.4

1.7 1.0106 1.6

1.3 1.0155 1.3

1.3 1.0151 1.3

1.2 1.0239 1.2

1.7 1.0236 1.6

1.2 1.0299 1.2

1.5 1.0315 1.4

1.7 1.0475 1.6

1.6 1.0484 1.5

1.1 1.0764 1.2

1.5 1.0763 1.4

1.3 1.0985 1.3

1.6 1.0990 1.5

1.7 1.1399 1.6

1.3 1.1391 1.3

in table 3.:



Table 3.5

MEASURED VELOCITIES IN THE ATBG

Aot* (m/s)

1

1

2

2

2

2

1

2

3

2

2

1

SUSPENSION

----N-

1.0

1.047

1.048

1.075

1.113

1.113

1.160

1.162

1.204

1.208

1.283

1.286

AeN (10- )N

Note: symbols are defined in Table 3.3.

c(%)

0
10.2

14.9

21.6

28.6

35.0

43.0

a* (km/s)

1.025

1.073

1.974

1.092

1.141

1.141

1.189

1.191

1.234

1.238

1.315

1.318
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Table 3.6

OBSERVED AND CALCULATED Q IN WPS AND OPS SUSPENSIONS

Concentration(%) Qcalculated Qobserved Frequency Band
(kHz)

155

115

OPS 40

OPS 50

OPS 62

WPS 68

230

150

80

112 160

240-440

200-440

160-440

200-440



Table 3.7

CONTRIBUTION OF DIFFERENT MECHANISMS TO THE TOTAL ATTENUATION FACTOR y

Geometrical Matrix Polystyrene
Frequency Scattering Viscosity Anelasticity

(KHz) (10 s/cm) (10- 9 s/cm) (10- 9s/cm)

Total

(10 9s/cm)

84 280

92 280

93 280

87 280

80 280

124

121

116

106

224

224

224

224

96 224

c is concentration of inclusions

Q is related to the total attenuation factor y by Q = ir/vy, where v is the wave
velocity

QMK is the quality factor computed with the model of Mal and Knopoff.

QMK

OPS
c=62%

TATD

c-68%

100

200

300

400

480

100

200

300

400

480

I

4

14

34

59

0

3

11

26

100

78

66.

59

54

1

1

0

124

124

124

124

124

147

147

147

147

147

225

206

204

217

237

149

152

159

174

193



Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

FIGURE CAPTIONS

Distribution of the radius (in microns)

of the polystyrene beads.

Experimental set-up.

A. Input signal, pulse generator. B. Input

signal, tone-burst generator. C. Output

signal, pulse generator. D. Output signal,

tone-burst generator. Vertical scale is

arbitrary.

Distance between the transducers versus

travel time of the wave. Data and fitted line.

Normalized effective velocity versus concen-

tration, WPS suspension. INT refers to our

model for a fluid matrix (equation 2.21) and

MK refers to the model of Mal and Knopoff.

Normalized effective velocity versus concen-

tration, OPS suspension. INT and MK are de-

fine in figure 3.5.

Normalized effective velocity versus con-

centration, ATBG suspension. INT and MK are

defined in figure 3.5

Amplitude ratios versus frequency, WPS and

OPS suspensions. Data and fitted lines.
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CHAPTER 4. APPLICATION TO THE EARTH'S INTERIOR

A major feature of the earth's deep interior is

the existence of a central core. From the center of

the earth up, the core can be divided i-ito three regions

(Bullen, 1965): (i) the presumably solid inner core

extends from the center to a radius of about 1200 km;

(ii) the approximately 500 km thick transition zone sur-

rounding the inner core owes its name to the uncertainty

of its seismic velocities and (iii) the fluid outer

core extending up to the core-mantle boundary at a depth

of about 2900 km. The combination of shock wave data,

seismic observations and geochemical arguments seem to

indicate that the outer core is an iron melt containing a

lighter alloying element, probably sulfur or silicon (Ander-

son et al., 1971); the solid inner core may simply be the

high pressure solid phase of this system with probably

little S or Si and even some nickel (Press 1968). The oc-

curance of this phase change led Verhoogen (1961) to post-

ulate progressive crystallization of the core. He showed

that partial crystallization of the outer core with corres-



ponding growth of the inner core can provide enough heat

to maintain convection and thus the magnetic field.

Recent observations of PKJKP (Julian et al., 1972) and

the inversion of free oscillating data (Dziewonski and

Gilbert, 1972) are a confirmation of the solidity of the

inner core, but at the same time the low shear velocity

may indicate partial melting.

The theory of two-phase media combined to seismic

observations can provide a useful test of these hypo-

theses about the state of the earth's core. Seismic

velocity profiles of the core are readily available but

only crude estimates, if not guesses, of the elastic

quality factor Q have been made. Since the latter is of

vital importance for interpreting seismic data in terms

of two-phase media, we present in this chapter a model for

Q in the core and show the compatibility of the attenua-

tion and velocity data with the hypothesis of partial

melt and partial crystallization in the deep interior.

4.1. Method of analysis.

The spectrum of a seismic signal is affected by a number

of factors besides anelasticity of the earth. Such factors

are the near-source and near-receiver c:.ustal structures,



the geometrical spreading of the wave front, reflections

and refractions that the wave undergoes on its path to

the receiver, the instrument response and processing

method. In order to eliminate these unwanted contribu-

tions we use the amplitude ratio technique (Teng, 1966,

1968) for attenuation measurements. The observed am-

plitude spectrum of a P wave may be written as

A(f) = S(f,i,i') G (A) T (A) R(f,e) I(f)etf (4.1)

where S(f,i,i') is the source spectrum in general a func-

tion of the frequency f, azimuth i' and take-off angle i

of the body wave. G(A) is the geometrical spreading factor

independent of frequency. T(A) represents the effects

of reflections and refractions along the path and may be

taken as independent of frequency for short-period body

waves. R(f,e,e') is the near-receiver transfer function

dependent on frequency,azimuth e', and angle of emergence

e of the wave; I(f) is the instrument response. The

exponential term represents the attenuation of P waves

due to anelasticity with factor

t* = ds (4.2)
T a(s)Q (f,s)



where a is the P wave velocity and Q the quality factor,

the integration being taken along the ray path. The ratio

of the spectra of two P waves from the same event recorded

at the same station can now be written as

Al(f) S(f,iI)R(f,ei) - (t -t )f
A2(f) =S(f,i 2)R(f,e2)

where C12 is independent of frequency. For P waves origin-

ating from surface focus events and sampling the core the

rays are nearly vertical. Thus we may assume that the

effects of crustal structure and source radiation pattern

are the same for any pair of core phases. As a consequence

equation (4.3) may be written as

AI2 (f) (t*-t*)f + in C12 (4.4)
in A2(f) =

where C 12 is independent of frequency. If we make the

common assumption that Q is independent of frequency

(the validity of this assumption will be discussed later),

then by combining equations (4.2) and (4.4) we can obtain

the distribution of Q within the core from the slope of a

line fitted to a plot of the logarithm of the amplitude

ratio of two core phases vs. frequency, provided we know

the velocity distribution.



4.2. Data base.

The PKP and PKKP phases used in this study are from the

events listed in Table 4.1 as recorded at LASA. Origin

time, hypocenter location and magnitude are from the United

States Coast and Geodetic Survey Bulletin. The events

are chosen so that at least two core phases are observed

at LASA, thus allowing the use of equation (4.4). All

amplitude spectra are computed from the beam of the sub-

array sums with the Seismic Data Analysis Console program

(Fleck, 1968). When the onset of the signal is clear

enough, our own time picks are used to form the beam;

otherwise the beam is obtained by steering the array to

the expected azimuth and dt/dA of the wanted phase.

Typical processed signals are shown on Figure 4.1. The

length of the time window used for the spectral estimations

is typically four seconds, but it is variable from one

event to another depending on the noise level and signal

duration. However, the same window is used for all phases

from a same event so that the window length has no effect

on the spectral ratio, besides resolution. Because of the

nearly vertical incidence of all core phases the spectral

estimates are not corrected for the damping of the high

frequencies due to the use of subarray sums. This effect



would amount to an artificial damping of about 2 db of the

AB branch relative to the DF branch of PKP at 2 Hz; at

this frequency the noise level is already significant

and this correction is not felt to be crucial.

Typical spectra of two phases from the same event and

their spectral ratio are shown on Figure 4.2. The scatter

is due to a large extent to the occurrence of pronounced

but narrow peaks or troughs in one of the two spectra.

Such detailed features are not significant because of the

resolution of our estimates and since we are interested

in the overall trend of the spectral ratios, we smooth

them by taking the average over three adjacent frequencies;

the resulting smoothed spectral ratio is also shown on

Figure 4.2.

We have computed 28 spectral ratios which are to be

divided into four groups according to the pair of core

phases used (i) PKPAB/PKPDF (ii) PKPAB/PKPBC (iii)

PKPDF/PKKPAB and (iv) PKKPBC/PKKPAB. The subscripts

refer to the various branches of the travel time curve

(Figure 4.3) and they correspond to various depths of pene-

tration as indicated on the velocity model (Toksoz et al,

1972) that we used (Figure 4.4). Typical paths of the

core phases we used are shown on Figure 4.5. Several

amplitude ratios are given as examples on Figure 4.6.
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The least one can say is that the linear dependence on

frequency postulated in connection with equation (4.4)

is not obvious in all cases. However, on a global basis,

the general trend is indeed linear as is shown by the averages

of all spectral ratios within a group (Figure 4.7). It

seems then that there is no strong evidence to reject

our earlier assumption that Q is independent of frequency.

But it is clearly shown in Table 4.2 that the great scatter

between the estimate of the slop of the spectral ratio from

individual events allows use of the data only for the

determination of gross average features. As a consequence

we take the average of all spectral ratios within a same

group and fit straight lines to these four average spectral

ratios. The fitting is performed over two frequency bands:

0.5 to 1.5 Hz and 0.2 to 2.0 Hz. The corresponding

fitted slopes are given in table 4.2; they are called

"average 1" and "average 2" respectively. On one hand,

'average 1" is more reliable than "average 2" because it

is less contaminated by noise (signal to noise ratio

approaches 1 when f = 2.0 Hz). On the other hand "average

1" is less reliable because it is obtained from a narrower

frequency band than "average 2". Thus in the following

section we shall use the "average 1" and "average 2"

estimates separately in the interpretation. Comparing both

will give an indication of the stability of our results.
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4.3. Inversion of the data.

We assume that the Earth is a spherically symmetric

body and that it can be divided in concentric layers,

each layer having a constant Q. If a velocity model is

assumed, we can find the travel time of the P wave in each

layer and by using equations (4.2) and (4.4) we can write

N
x = 27.3 i 1  i (4.5)

Qi

where x12 is the slope (in db/Hz) of the amplitude ratio

of wave 1 to wave 2, At is the travel time difference

(wave 2 minus wave 1) in the ith layer in seconds, and Qi

is the quality factor in the ith layer. This is our working

equation to invert the amplitude ratio data for the Q

structure of the deep interior.

The travel times of P waves in each layer are computed

with the ray tracing program written by Julian; the velocity

model which is used is given in Table 4.3. A particular

choice of mantle P wave velocities is not crucial since

all published models are very similar at least down to a

depth of 2750 km. Thus for the mantle we choose the values

given by Buchbinder (1971) except for the 150 km thick low

velocity layer just above the core-mantle boundary

(CMB) where the velocities are those reported by Bolt
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(1972). The velocity model of the core is from Toksoz

et al. (1972).

We have four estimates of the differential attenuation

of core phases (the four average slopes). From the ve-

locity model of Toksoz et al. (1972) it seems reasonable

to divide the core in four layers: the inner core, the

transition zone, the lower outer core (depths between

3570 and 4670 km) and the upper outer core (depths between

2900 and 3570 km). In order to determine the Q within

these layers, we adopt a Q of about 200 for short-period

P waves in the upper mantle (from the surface to a depth of

700 km) and a Q of about 2000 for the rest of the mantle

(Archambeau et al., 1969). The choice of an upper mantle

Q is not critical because all core phases spend about the

same time in the upper mantle. Then using a set of four

equations of the type (4.5) we can calculate the Q values

in the four layers of the core. Whether we use the average

slopes estimated over the 0.5 to 1.5 Hz or the 0.2 to

2.0 Hz frequency band, the general features of the solution

are the same. We find a negative Q in the lower outer core

(about -2000)and a Q of the order of 700 in the upper outer

core. The fact that we find a negative but large Q does

not indicate that the solution is meaningless. We determine

in fact Q so that a small uncertainty on Q when Q is
in fact Q so that a small uncertainty on Q when Q is
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close to zero may lead to very large Q values either

positive or negative. The result essentially means that

Q in the lower outer core is very large. More important

is the relatively low Q (700) found for the upper outer core.

This result seems inconsistent with the observations of

short period multiply reflected core phases such as P4KP

and P7KP :Qamar and Eisenberg, 1972). With a Q of 700

in the upper outer core the amplitude ratio of P7KP to

-4
PKP would be of the order of 10 at 1 Hz since these

phases spend about 2100 seconds and 300 seconds respec-

tively in the upper outer core. This ratio is clearly

too small for allowing observations of P7KP even from

high magnitude events. Therefore we may conclude that

the observed attenuation cannot be solely attributed to

regions within the core.

An alternative is that part of the attenuation origin-

ates in the mantle. Since there is good evidence that Q

is high in most of the mantle and since most of the travel

time difference between two different core phases in the

mantle comes from very near the core-mantle boundary,

we introduce an additional layer at the base of the mantle.

The evidence given by Bolt (1972) for the existence of a

low velocity zone above the core-mantle boundary (CMB)

leads us to adopt 150 km as the thickness of this layer.

The six layers into which we divide the Earth are (i) the
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upper mantle (0 to 700 km) with a Q of 200, (ii) the

mantle (700 to 2750 km) with a Q of 2000, (iii) the layer

at the base of the mantle (2750 to 2900 km), (iv) the

outer c e ,(2900 to 4670), (v) the transition zone

(4670 to 5170 km) and (vi) the inner core (5170 to 6370

km). In table 4.4 we give the average travel time difference

in each of the six layers for each pair of core phases we

observed. Solving the resulting system of the type of

equation (4.5) we obtain the following Q values.

For the 0.5 to 1.5 Hz frequency

Q = 200 in the layer above

Q = 2200 in the outer core

Q = 800 in the transition

Q = 270 in the inner core

For the 0.2 to 2.0 Hz frequency

Q = 380 in the layer above

Q = 2900 in the outer core

Q = 1700 in the transition

Q = 400 in the inner core

band

the CMB

zone

band

the CMB

z one

The general features of both estimates are very simiiar.

The Q in both the inner core and the layer above the CMB

is low and comparable to the Q value of the upper mantle.

The Q is large in the outer core and somTewhat lower in thc

transition zone. On the basis of our data it does not see
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that Q can be as large as 6000 or 10000 as was suggested

by Bolt (.972) and Qamar and Eisenberg (1972). But it must

be emphasized that differences between large values of

Q are not very significant since one actually determines

-i
Q-1. The essential point is that the Q value which we

find for the outer core is not in contradiction with obser-

vations of multiply reflected core waves. Our most sig-

nificant results are the low Q values found in the inner

core and in the layer above the CMB. Since it is difficult

to estimate exactly which of our two sets of estimates is

the most reliable (is the bias due to noise contamination

more serious than the bias due to the use of a fairly

narrow frequency band?) and since they are similar,

we shall adopt the following average Q values for the

remaining discussion.:

Q 300 in the layer above the CMB

Q 2500 in the outer core

Q 1200 in the transition zone

Q 300 in the inner core

4.4. Interpretation.

4.4.1. Transition zone.

A large variety of velocity distria.utions have been

proposed for the "anomalous" zone between the outer core and
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the solid inner core (Adams and Randall, 1964; Buchbinder,

1971; Qamar, 1971; Toksoz et al.,1972). Nevertheless

there seems to be general agreement on two features,

(i) the transition zone is delimited at the bottom by the

inner core boundary (ICB) which constitutes a sharp P

wave velocity discontinuity as is evident from the ob-

servations,of PKiKP (Engdahl et al., 1970), (ii) the ve-

locity gradients are lower than in the outer core.

As a consequence of these uncertainties there has been

little speculation about the state of the transition zone.

Bolt (1971) and Buchbinder (1971) seem :o favor the hypo-

thesis of a solid transition zone possibly partially molten.

It conveniently explains the velocity discontinuities

apparently required by the observations of precursors to

PKP at short epicentral distances. But then, are the low

velocity gradients to be explained by an increase of partial

melt with depth or unduly large temperature gradients?

Would the ICB discontinuity represent a solid-solid phase

change and why would it be much larger than the shallower

discontinuity? Since the velocity discontinuity between

the outer core and the transition zone may be as small as

0.1% (Buchbinder, 1971) it seems more appropriate to base

any interpretation on the definitely low velocity gradients.

If the outer core velocities are linearly extrapolated
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to the ICB, the P wave velocity just outside the inner

core would be about 10.40 km/s whereas it is 10.15 km/s

in the model of Toksoz et al., (1972). This decrease in

velocity seems too large to be attributed to a temperature

effect. But it could be due to partial crystallization.

The effective P wave velocity in a suspension of solid

spheres in a fluid matrix can be smaller than the ve-

locity of the fluid, provided the density and bulk modulus

ratios of the solid to the liquid phase meet certain

conditions. Using formula (2.19), (2.20) and (2.21) we

find that the 2.4% decrease in velocity is compatible with

a suspension where the concentrations of solid is 60% with

a density ratio of 1.10 and a bulk modulus ratio of 1.01.

Smaller concentrations of solid larger density ratios and

vice-versa; in all cases, however, the bulk modulus

ratio must be nearly 1. These values are not incompatible

with the probable increase in density upon freezing of

liquid core material and the K - P hypothesis of Bullen

(1965) who suggested that at pressures in the megabar

range the bulk modulus of most materials in the earth

is a smoothly varying function of pressure. In shallower

parts of the transition zone the difference between the

observed velocity and the extrapolated velocity is smaller.

Following our hypothesis of partial crystallization, we

conclude that the concentration of solids in suspension in

the fluid increases with depth, indicating progressive
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settling and growth of the inner core.

Our interpretation requires a rather large density

ratio between the solid phase and the melt so that it

may be questionable whether the solidified particles

will remain in suspension or sink. The motion of

a sphere of solid material with respect to the surrounding

fluid can be found from Stokes' drag law. If

6 Tra~ = 4 ra 3 Ap (4.6)

the solid sphere of radius a with excess density' Ap-

will sink with a velocity V in the fluid of viscosity ;

g is the acceleration of gravity. Taking g = 600 cm/s-,

Ap = lg/cm3  we obtain in CGS units

a4 100 (4.7)

From here on, any argument becomes rather speculative

since neither n , v or a is known; but let us proceed,

essentially to show that the assumed density ratio does

not necessarily preclude the possibility of a stable

suspension in the transition zone.

If we assu.e that the inner core has been formed over

the past three billion years by solidification bf the outer

core at a constant rate, we find that its radius increases
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at present times by about 0.1 mm/year. If there is no

independent motion of the fluid, our hypothesis would then

require that the sinking velocity of a solid particle is

of the same order, that is about 10-10 cm/s. The vis-

cosity of the fluid can be estimated from the Q values

given in the preceding section. If we attribute all

attenuation of short period P waves to shear viscosity

we can use the approximate relation

1 1 (4.8)
Q K

where K is bulk modulus and w = 2frx frequency. Taking

K =-10 megabars in the outer core on the average and Q

2500 for P waves of frequency 1 Hz we obtain n 
= 5 x 108

poises. In the transition zone, with Q = 1200 and K

12 megabars we have n =10 9poises. Since there are probably

other mechanisms contributing to the total attenuation

it seems that we can take 108 poises as a rough estimate

for the fluid viscosity. Such a value seems more appro-

priate than the estimate of Sato and Espinosa (1967),

who found 1011 poises which by use of equation (4.8)

gives a Q of 10. Combining our viscosity estimate with the

required sinking velocity, we find that the radius of the

solid particles must not be larger than 0.1mm on the average.

Whether such a size is reasonable or not is an open
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question, but it probably cannot be proved impossible.

A larger size can be allowed for if there is fluid

motion which is probable if partial crystallization takes

place because the associated heat release can sustain

convection. If the velocity of the fluid in the convec-

tion cells is 10 km/year (Stacey, 1969), a particle with a

radius of Im would remain in suspension, provided the fluid

motion is vertical and upwards. This is of course not the

case in all parts of the convection cell. Thus if the

solid particles are large and if convection is existing

in the transition zone, it is likely that this region of

the Earth is laterally inhomogeneous. There are as yet

no data indicating such features.

In summary, the hypothesis of partial crystallization

in the transition zone is compatible with observed velocity

gradients. The resulting suspension of solid matter in

the fluid is denser as depth increases and is not necessar-

ily unstable.

4.4.2. Inner core.

The inner core boundary (ICB) is a sharp, well-

defined interface (Engdahl et al., 1970). It probably

corresponds to a liquid-solid phase change since there is

little evidence that the transition zone is solid as we

saw in the previous section whereas evidence for a solid
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inner core is accumulating (Dziewonski and Gilbert, 1972;

Julian et al., 1972). The rigidity of the inner core is

apparently very low, about 1/12 of its bulk modulus if

one adopts a 3.0 km/s for the shear wave velocity (Julian

et al., 1972). This result combined with the low Q of P

waves determined in this study may indicate partial

melting.

The concentration of melt may be estimated from

seismic data by using the non-interaction model for a

solid matrix containing spheroidal inclusions derived in

Chapter 2 (equations 2.28-2.30). The effective elastic

constants of the inner core can be determined from the seis-

mic velocities. Taking 12.8 g/cm 3 for the density and

11.0 and 3.0 km/s as the P and S velocities, we obtain

14.0 and 1.16 megabars for the effective bulk and shear

moduli. The Q of P waves is about 300. The major diffi-

culty in estimating the melt concentration arises from

the fact that we do not know the properties of the solid

matrix. As a first approximation we shall assume that

the bulk moduli of the liquid and solid phases are equal

as was suggested in the previous section. But for the

shear modulus of the matrix the best we can do is guessing.

Let us first take a value close to the effective value, say

p = 1.25 megabars. Then we can compute the effective

moduli and Q. for various values of the concentration of
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melt c and of the aspect ratio a of the melt pockets.

It is to be recalled that there is no unique distribution

of c and a for which the observed and calculated effec-

tive properties are matched. Taking our estimate of

108 poises as the viscosity of the melt and a frequency

of 1 Hz, the observed values can be obtained for instance

-4 -4 -5
with roughly c = 10 and E = 3 x 10 - 4 or c = 5 x 10 -

-4
and a = 10- 4  (Figure 4.8). The significant result

is that the velocity and attenuation data can be explained

with a very low volume of melt (about 0.1% or less)

concentrated in flat penny-shaped pockets. If on the

other hand the matrix is a Poisson solid (Poisson's

ratio equal 1/4), then a larger amount of melt is required

for matching the low effective shear modulus; about 5%

of melt occurringiin pockets with a- = 10-2 would be

needed. The actual matrix shear modulus is probably

between the two values we considered, but as a result it

seems that a small amount of melt in the inner core

would be sufficient to explain the low shear velocity

and Q value of P waves which one observes.

There is, however, one piece of data which seems

to be in conflict with this interpretation. In our cal-

culation we attributed all attenuation to shear dissi-

pation. Then a Q of 300 for P waves co:cresponds to a

Q of 30 for shear waves. In this case PKJKP would not

be observable since the wave remains a long time in the
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inner core as a shear wave. However Julian et al.

(1972) reported observations of PKJKP and they also gave

500 to 1000 as a rough estimate for the Q of shear

waves in the inner core. This value is probably excessive

since they did not account for the sizable attenuation

of PKKP which they used as a reference. A value for

Q of 100 to 200 seems more adequate but it would imply

that a large part of the P wave attenuation is due to

volume dissipation. Modifying our model by introducing

a bulk viscosity comparable to the shear viscosity and by

allowing for a slight difference between the bulk moduli

of the solid and melt does not produce sufficient damping.

If the mechanism for P wave attenuation is intrinsic

anelasticity of the solid phase, the only remaining ar-

gument supporting the partial melting hypothesis is the

anomalously low shear velocity.

4.4.3. The base of the mantle and the core-mantle boundary.

An interesting result of this study is that a highly

attenuating layer is required at the base of the mantle,

just above the core-mantle boundary (CMB). According

to Bolt (1971, 1972) this region is also a zone of low

P and S wave velocity and he proposed 150 km as its thick-

ness. We take 2750 km as the depth of the top of this

"anomalous" zone because it is the depth at which the
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velocities start departing from their normal behavior

(Johnson, 1969). The interpretation of the data is

based here on a procedure similar to that used in the

section on the transition zone.

At a depth of 2750 km we adopt the values given by

Johnson (1969) for the P velocity and by Press (1970)

for the shear velocity and density. We also used the

gradients of these parameters between 2500 and 2750 km

depths to extrapolate the velocities and density to

the CMB, which we located at a depth of 2900 km; these

extrapolated values will be called "matrix values at

the CMB". The actual or effective values of the seismic

velocities at the CMB in the mantle are those

reported by Bolt (1972). Finally we took the P wave

velocity and density in the core at the CMB from Toksoz

et al. (1972) and Press (1970). All parameters mention-

ed above are given in Table 4.5.

We now postulate that the anomalous zone is a two-

phase medium consisting of inclusions of liquid core

material embedded in a solid matrix of mantle material.

By analogy with work on the upper mantle (Solomon, 1972)

this hypothesis is qualitatively supported by the low

seismic velocities and the high attenuation. In the fol-

lowing we show the compatibility of the hypothesis with

the data on a quantitative basis and we estimate the

required concentration of liquid material. The analysis
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can be simplified a bit by realizing that the bulk moduli

of the matrix and inclusion materials are very similar,

about 6.4 and 6.5 megabars reppectively. The effective

bulk modilus will,therefore, be very close to the matrix

bulk modulus, in particular when the concentration of

inclusions is small. Thus, to a first approximation we

can write

2 A _ 4ap Ap
a 3K + 4p p

(4.9)

2 _ = A_ Ap
B P

where a, 8, K, p, p are P and S velocity, bulk and shear

modulus and density and where A refers to the difference

between the effective value and the matrix value at the

CMB. Using Table 4.5, we find Ai/p = 5.9% and Ap/p

4.5%. From the density change we find that the volume

concentration of liquid core material is about 5%. This

figure is to be taken only as a rough estimate of the volume

of liquid core material which can account for the avail-

able seismic velocities at the CMB; at shallower depths the

concentration of liquid would be smaller and would vanish

at a depth of 2750 km according to this model.

We can use the models derived in Chapter 2 to have an

estimate of the shape distribution of the liquid pockets.
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Taking 108 poises for the viscosity of the liquid, we can

calculate the effective elastic constants and the

attenuation of 1 Hz P waves for various aspects ratios

of the inclusions. If we attribute all attenuation to

shear viscosity, a Q of 130 for shear waves corres-

ponds to our observed Q of 300 for P waves. From Figure

4.9 it is found that all attenuation can be accounted for
-6

by a concentration of about 7.5 x 10-6 when the aspect

-4
ratio is 10 -4; if all attenuation is attributed to pockets

-2
with aspect ratio 10-2 , the needed concentration is about

2.5% , but this would also imply an effective shear modulus

of about 1.6 megabars, whereas the observed shear modulus

is between 2.60 and 2.85 megabars.

If the shear velocity near the CMB is somewhat lower

than that reported by Bolt (1972) , say 6.9 km/s, system

(4.9) yields AP _ 10% and .Ap ~ 2.7%, which corresponds
'P

to c ~ 3.2%. This set of values allows a fit with a

more satisfactory distribution of shapes and concentrations;

an example of a distribution which matches both the

attenuation and the velocities is given on Table 4.6.

In summary it seems that by using our models for two-

phase media we can satisfactorily explain the observed

velocities and P wave attenuation at the base of the

mantle. A small amount of liquid core material dis-

persed in the solid mantle material as penny-shaped pock-
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ets is sufficient to lower the Q of short period P waves

by an order of magnitude throughout the lowermost 150

km of the mantle. As one approaches the core-mantle

boundary, the liquid phase may be concentrated in thicker

pockets and amount to as much as 3 or 5% in relative

volume.



Table 4.1

EVENTS USED FOR DETERMINING Q IN THE CORE

Distance
Event Origin Time Latitude Longitude Depth Body-Wave To LASA Observed Phases

(h min s) (Degrees) (Degrees) (km) Magnitude (Degrees)

4 13 67 19 53 42 27.3N 128.7E 38 6.0 91.2 PKKP(A3,3C)

6 17 67 5 0 12 58.3S 26.6W 140 6.1 123.4 PKP(DF),PKKP(A3)
8 30 67 4 22 2 31.7N 100.3E 3 6.1 98.4 PKKP(Ad3,BC)
9 20 67 9 39 15 49.8S 163.4E 30 6.1 123.7 PKP(DF),PKKP(A83)

9 29 67 17 29 40 31.8S 57.3E 22 5.0 160.5 PKP(A3,DF)

10 9 67 17 21 34 25.OS 179.0W 619 6.7 97.0 PKKP(AB,BC)
10 18 67 16 23 26 25.1S 71.5E 33 5.7 158.4 PKP(AB,3C,DF)

10 25 67 0 59 22 24.5N 122.2E 65 6.0 96.7 PKKP(AB,33C)
11 14 67 5 28 37 5.4S 147.1E 201 5.8 105.3 PKKP(A3,3C)

5 20 68 7 13 3 30.9S 178.3W 22 6.0 100.9 PKKP(A3,BC)

8 3 68 4 54 33 25.6N 128.5E 19 6.4 92.7 PKKP(AB ,C)
9 12 68 22 44 7 21.6S 179.49 635 5.9 94.6 PKKP(A3 ,BC)
9 14 68 1 25 19 24.5S 80.4E 33 5.5 157.2 PKP(AB,i3C,DF)

9 14 68 13 48 31 28.4N 53.1E 33 5.8 103.0 PKKP(Ad B,BC)
9 16 E8 13 55 36 6.1S 148.7E 59 5.8 104.8 PKKP(A3 ,3C)
9 26 68 14 37 46 20.9S 177.0 250 5.8 92.6 PKKP(Ad ,BC)

10 8 68 7 43 23 39.9S 87.7E 33 6.0 167.8 PKP(AB,DF)

10 23 68 21 4 41 3.3S 143.3E 12 6.1 106.4 PKKP(A3 ,3C)

11 4 68 9 7 39 14.2S 172.0E 585 5.8 94.7 PKKP(A3 ,C)
1 24 69 2 33 3 21.9S 179.6q 595 5.9 94.9 PKKP(A3 ,3C)

2 11 69 22 16 14 6.7S 126.8E 450 6.0 119.7 PKP(DF),PKKP(AB)
3 10 69 6 54 18 5.6S 147.2E 206 5.8 105.4 PKKP(AB,3C)

3 20 69 20 46 56 27.5S 66.0E 33 5.5 159.9 PKP(AB,DF)

7 31 69 5 5 4 27.6S 66.2E 33 5.3 160.0 PKP(A ,DF)
11 7 69 18 34 00 27.9N 60.1E 35 6.1 104.7 PKKP(A3 ,BC)
12 14 69 18 37 10 8.2N 58.5E 33 6.0 123.7 PKP(DF),PKKP(A3) H

0o
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Table 4.2

SLOPES FITTED TO AMPLITUDE RATIOS

PKKP c/PKKPAB

3vent

4
9
8
9
11

1
10
10

8
5
9
9
11
11

3
10

13
26

3
12

4
24
25

9
30
20
14
16

7
14
10
23

67
68
68
68
68
69
67
67
67
68
68
68
69
67
69
68

A( 0)

91.2
92.6
92.7
94.6
94.7
94.9
96.7
97.0
98.4

100.9
103.0
104.8
104.7
105.3
105.4
106.4

"Average 1"
"Average 2 "

10 8 68
9 29 67
7 31 69
3 20 69

10 18 67
9 14 68

"Average 1"
"Average 2"

6 17 67
9 20 67
2 11 69

12 14 69

"Average 1"
Average 2

167.8
160.5
160.0
159.9
158.4
157.2

123.4
123.7
119.8
123.7

X1 2 (db/Hz)

11.9
18.2
7.1

15.7
19.8
8.1
7.6

13.9
25.9
14.0
19.4
4.3
0.1
7.9
3.3

15.2

12.2
7.4

PKPA3/PKPDF

2.8
-0.3
12.4
12.8
-2.8
13.9

7.1
3.8

PKPDF/PKKPA3

0.3
5.8

22.9
-6.9

5.5
6.0

Ax 1 i(db/Hz)

1.2
4.0
2.4
1.1
1.0
2.2
3.6
2.1
4.3
3.0
1.3
3.2
0.9
1.6
1.1
2.2

0.9
0.6

1.5
2.1
0.6
1.4
1.2
4.9

1.0
0.5

3.6
2.0
3.2
5.1

1.5
0.8

At( s)

2.0
6.0
7.5
3.0
3.7
4.0
4.1
5.0
3.8
5.0
2.5
3.0
6.5
2.0
4.0
7.3

5.1
20.1
10.0

4.5
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Table 4.2 (Continued)

SLOPES FITTED TO AMPLITUDE RATIOS

Event A(o) x1(db/Hz) Ax: 2 (db/Hz) At(s)

PKP /PKP c

10 18 67 158.4 -4.4 2.6 5.0
9 14 68 157.2 -0.8 1.5 4.0

Average 1 -2.6 1.2
Average 2 -3.2 1.1

At is the time window used for spectral estimation, x l2

is the slope fitted to the amplitude ratio and Ax12 is its

standard deviation. "Average 1" and"Average 2"are obtained

by fitting a line to the average spectral ratios over the

frequency band 0.5 to 1.5 Hz and 0.2 to 2.0 Hz, respectively.

They are not the average of all slopes within a group. For

individual events the frequency band used in the fit is

0.5 to 1.5 Hz.
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Table 4.3

VELOCITY MODEL FOR P WAVES

Radius Velocity
(km) (km/s)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1200

1300

1400

1500

1600

1700

1700

1800

1900

2000

11.26

11. 25

11.25

11.24

11.22

11.20

11.20

11.20

11.19

11.13

11.05

10.97

10.97

10.14

10.16

10.18

10.17

10.16

10.16

10.03

9.96

9.90

9.80

Radius Velocity
(km) (km/s)

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

3470

3470

3620

3670

3770

3870

3970

4070

4170

9.73

9.64

9.55

9.45

9.39

9.27

9.18

9.09

8.94

8.81

8.65

8.50

8.35

8.18

8.05

13.33

13.63

13.60

13.49

13.37

13.25

13.13

13.01

Radius Velocity
(km) (km/s)

4270

4370

4470

4570

4670

4770

4870

4970

5070

5170

5270

5370

5470

5570

5670

5770

5870

5970

6070

6170

6270

6330

6370

12.90

12.78

12.66

12.55

12.43

12.32

12.19

12.05

11.91

11.76

11.60

11.44

11.27

11.08

10.74

10.20

9.64

9.13

8.68

8.33

8.12

8.05

6.75
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Table 4.4

TRAVEL TIME DIFFERENCES FOR PAIRS OF CORE PHASES
IN A SIX-LAYER EARTH

Depth PKPAB-PKPBC PKPAB-PKPDF PKPDF-PKKPAB PKKPBC-PKKPAB

(km) (s) (s) (s) (s)

0- 700 + 7 + 10 -6.5 - 6

700-2750 +141 +160 - 92 -156

2750-2900 + 46 + 74 - 20 -106

2900-4670 + 60 +108 -654 + 80

4670-5170 -220 -110 +161 +154

5170-6370 -182 + 20



123

Table 4.5

SEISMIC PROPERTIES AT THE BASE OF THE MANTLE

A B C

Depth (km) 2750 2900 2900

a (km/s) 13.63 13.78 13.33

8 (km/s) 7.28 7.37 6.9-7.0

p (gkm') 5.28 5.36 5.5

- (s - ) 10 - 1z
D-(s' ) 4 10 - 4

Column A refers to the properties in the mantle,

assumed to be pure matrix material. Column B

refers to the properties of the matrix at the

CMB (extrapolated from Column A). Column C

refers to the actual effective properties at the

CMB.
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TABLE 4. 6

A possible distribution of the concentration and shape

of the melt pockets

concentration

2.5 x 10-2
-3

6.0 x 10-

1.0 x 10-3

7.5 x 106

at the base of the mantle.

aspect ratio

1

10 - 1

10-2

10-4



FIGURE CAPTIONS

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Typical waveforms of core phases recorded

at LASA. All are full-array beams. Time

scale is in seconds.

Power spectra of two core phases and the

calculated amplitude ratios versus frequency.

The smoothed amplitude ratio is obtained from

the unsmoothed amplitude ratio by averaging

three adjacent frequencies.

Travel time and ray parameter versus epi-

central distance for PKP and PKKP. (From

Toksoz et al., 1972)

P wave velocity in the core versus radius.

(From Toksoz et al., 1972)

Ray paths of PKP and PKKP in the earth,

corresponding to the travel time curves

in figure 4.3.

Examples of smoothed amplitude ratios of two

core phases from four events.

Average amplitude ratios for each group of

core phases and fitted lines.

Q of P waves versus frequency (or viscosity)

in a partially molten inner core with a matrix

shear modulus equal to 1.25 megabars. The

arrows indicate the observed value (Q=300).

The relaxation peaks A,B,D,E,F and G are

125
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Figure 4.9

calculated for inclusions with aspect ratios

10 -5  10 - 4 3 x 10- 4 10 - , 10- 2 and 10-5

respectively.

Q of P waves versus frequency (or viscosity)

at the core mantle boundary. The arrows

indicate the observed value (Q=300). The

relaxation peaks A, B, D, E, and F are cal-

culated for inclusions with aspect ratios

10- s , 10- 4, 10- , 10-2 and 10- s respectively.
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CHAPTER 5. CONCLUSIONS

In this study we examined several theoretical models for

the propagation of seismic waves in two-phase media. We have

tested these models against the velocity and attenuation of

ultrasonic waves measured in suspensions of solid spheres in

a viscous matrix. We have used our models to interpret the

observed velocity and attenuation of seismic core phases in

terms of partial melting in the inner core and at the base

of the mantle and partial crystallization in the transition

zone between the inner and outer core.

The results of the theoretical analysis are: (1) When

the wavelengths are much longer than the size of the inclu-

sions and when the matrix is solid, the effective elastic

moduli derived dynamically are the same as those obtained

by solving the corresponding static problem. In the non-

interaction model, the effective elastic moduli are the same

as the lower bounds of Hashin and Shtrikman (1963) and in

our classical self-consistent models they are the same as

those of Budiansky (1965) for spheres and Wu (1966) for

spheroids. (2) When the matrix is a fluid, the effective

dynamic and static bulk moduli are different, even when the

wavelength is very long compared to the size of an inclusion.
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This difference is due to the additional inertia effects

stemming from the relative motion of the inclusion and the

surrounding fluid.

(3) At intermediate wavelengths the effective properties

of a two-phase medium depend on the wavelength and on the

length within which interactions among neighboring inclusions

are significant. The formulas we derived are of little pre-

dictive value on a quantitative basis since this effective

interaction length is unknown. However, they indicate quali-

tatively that a two-phase medium is dispersive. (4) The

measured velocities of ultrasonic waves in three separate

suspensions of solid spheres in fluids with waves whose

wavelength was of the order of fifty inclusion radii, were

close to, but systematically below, the values calculated

with our model containing the long wavelength approximation.

The difference can be explained in terms of the above men-

tioned dispersive effects. The magnitude of the difference

as well as its tendency to increase at larger concentrations

indicate that interactions are significant, but only among

very near neighboring inclusions (the effective interaction

length is about 3 inclusion radii). Experimental data over

a broad range of frequencies are needed to provide a more

complete test of our theoretical analysis and lead to more

general conclusions about the interaction processes. (5) The

attenuation measurements with waves that penetrated the

earth's core provide a means of exploring the properties of
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the core. Attenuation is strong in the inner core and at the

base of the mantle, whereas it is small in the outer core

and intermediate in the transition zone between the outer

and inner core. Joint interpretation of our attenuation data

and available velocity models indicate that (a) in the inner

core and at the base of the mantle a small amount (less than

5% in volume) of inclusions filled with liquid core material

can explain the data; (b) the low velocity gradients in the

transition zone are compatible with the presence of solid

inclusions suspended in the viscous liquid core, the concen-

tration of inclusions increasing as one approaches the inner

core boundary. This interpretation implies that the inner

core is slowly growing. The Q values found for the outer

core and the transition zone indicate that the viscosity of

the liquid core is of the order of 108 poises, if all at-

tenuation is attributed to shear viscosity. If this assump-

tion is extended to the inner core, our interpretation of

the attenuation in terms of partial melting precludes the

observability of phases propagating through the inner core

as S waves.
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Appendix A

Scattering of a Plane P Wave by a Spherical Obstacle

Our method of deriving effective properties of a

two-phase medium requires the estimation of the waves

scattered by the representative sphere or a spherical

inclusion (equation 2.9). Here we present the expressions

of the scattered waves found by Yamakawa (1962),

Consider a plane P wave incident on a spherical

elastic inclusion embedded in an infinite elastic matrix

(figure 2.la). The displacement u at any point in the

space is the solution of the vector Helmholtz equation if

we assume an e time dependence for all waves.

(X +2p) grad div u - p curl curl u +W 2pu = 0 (Al)

where X,- and p are the Lame constants and density. Using

the Helmholtz theorem

u = grad ( + curl A (A2)

and assuming without loss of generality

A = (r 41, 0, 0) + curl (ri2, 0, 0) (A3)
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Equation (AL) reduces to three scalar Helmholtz equations

V2, + p2  = 0 (A4)

V2 i +s2 i = 0 i = 1 or 2

2 2P and S2 2p/
with = and s =

Because the incident wave is a P wave, and because of the

axial symmetry, we can set li= 0 and we need not consider

the 4 dependence of the solutions in spherical coordinates.

Then

CO -iwt
n= Knfn(pr) Pn(cos 0) e (A5)
n=o

where Kn are constant coefficients, P n(cos 0) is the

Legendre polynomial of order n, p is the wavenumber of a

P wave (for i the argument of fn would be sr where s

is the wavenumber of an S wave), and f n is a spherical

Bessel or Hankel function; if the solution is to be

finite at the origin f(x) will be j n(X) and h'1(x) represents

waves travelling outwards.

Let the dilatation due to the plane incident P wave

in the matrix be

Ao = Aei(pr cos6-wt)
Ao Ae

(A6)
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where A is amplitude and p the wavenumber; from here on

we omit the e-iwt time dependence and primed and unprimed

variables refer to inclusion and matrix respectively.

The presence of the sphere generates four additional waves;

using the series expansion of (A6) and the combination

of (A2), (A3) and (A5) we can formulate the problem in

spherical coordinates as follows:

Incident P wave:

uo =  -p2 f (2n+l)in dj (pr) P (cos 6)
p n-o dr n n

(A7)

S= A (2n+l)i n  j(pr) d (osSn (2n+l) r cO n

Scattered P wave:

1 d (A8)
p n=1 n r dO Pn(cos 0)

Scattered S wave:

1 m Al)(sr)
U-2= 2 n C n(n+l) -n P (cos 6)s n=l n r n

(A9)

v2 = - 12 Cn d (1) d
s2 n=1 (rh (sr) ) Pn(Cos 6)

r dr n d n
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Transmitted P wave:

us3 = - i d j (p'r)P (cos 6)
psn=o n dr n n

1 m D d
v3 = - n Jn('r) d- (cos 6)

Transmitted S wave:

1= -- E n(n+) j(s' (cos 6)
4  s 2n n r Pn( )

V = 1 L En  d (rj (s'r) ) P(cos )-72 n=1 r dr n dO n

(Al0)

(All)

where u and v stand respectively for radial and transverse

displacement. The boundary conditions at r=a (a is the radius

of the sphere) are continuity of displacement and normal

stresses.

uo + Ul + u2 = us3 + U 4

VO + V 1 + V2 = V3 + V4

(A12)

X(Lo+Ai) + 2 -- (uo+u 1 +u 2 ) = 'A3 + 2p' (U3+u)

e r

where

S r2sin 1 L(/3rXr 2 sin6uj) + (/36) (r sin6 v.)]
J 

r2sin
j = 0,1 or 3 (Al3)



1
- (VO+V1+v2)
r

1
S(V3+V4
r

+ (u3+u4)
r DO

Substituting (A7) to (All) in (Al2), we obtain the following

vector equation for each n > 1 :

-b B + c Cn-n n -n n + d D - e E-n n -n n (2n+l)in a A-n

bn[A,p,h n (y)]

' ',jn (z')]

y=pa

z=sa

= a [X-n ,1 'Pj (y)]

= a [X,],jn (Y)]

(1)

-c [X, l ,h (z)]

y'=p'a

z'=s'a

a [X,p,j (y)]-n n

[2p (n+1)

2,[yj
y n-I

1.

j (y)

y2

(y)- (n+2) j (y)]

(n+1)
y jn(Y)
yn

Te
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T =
T - (V3+V4)r r

1 a
+ 1 (UO+u+u2)r e

where

(A14)

d [x'-n

e [X'
-n

(Al5)

(n+2)/y2_( +2) jn (y)- (4/y) n- ( y )

(A16)

(vo+vl+v2)
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2n n+l [(n+2) i) (z) - Z A (z)]
z n n-i

z [2z ) (z) + (z2-
z n-1

c [, , P (z)] =-n n

2(n+2)n)A )(z)]n

When n = 0, (A14) becomes a two-row vector equation

-bABA + dADo = aoA

(A17)

(Al8)

where ao[X,p,j n (y ) =n

4 j
y1ji(y) - (X+2Y)jo(y)

y

and where b0 and do can be obtained from ao by using

(Al5).

We can solve system (A14) and (A18) by Cramer's rule

for the coefficients Bn, C , Dn, E for all n. It is there-

fore formally possible to obtain exact solutions for the

scattered waves in the form of infinite series; the solution

depends on the properties of the matrix and inclusion,

on the radius of the sphere and the frequency of the incident

wave.

(Al9)

- _n(n+l)L1)(z)
zz n

n )) n-1
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In general we shall use the far field expressions

of the scattered waves; using the asymptotic formula for large

argument (x >> 1)

ix
A) Wn+l e

S (x) = (-i)n (A20)

we obtain the following results:

For the scattered P waves

1 eipr
U 2=p r

3n, i B P (cos 8)n=o n n

For the scattered S wave

isrle
v 2s r

0 .3n dS1 Cn P (cos 0)n=l n awn

Of particular importance to us is the expression of the

scattered waves when the wavelengths are much larger than

the inclusion radius; if y, y', z, z' are all very small

we can use the expansions of the spherical functions for

small arguments (Yamakawa, 1962).

When x << 1

n 2 4
2 nn! n x x

Jn (x) (2n+1) 1 x [1 2(2n+3) 8(2n+3) (2n+5)

(A21)

(A22)



i + ix+ 1 +x 2

-i (2n) [ + x
n nn+l 2(2n-1)

2 nix

n > 1

Substituting

we solve the

(A23) in (A15), (Al6), (A17) and (A19),

systems (A14) and (A20) for each n, retaining

only the lowest order terms; the coefficients in the

expansions of the scattered P waves are

BO = Aiy3  K-K'
3K'+4-p

3 P-P'Bi = Ay (A24)

B2  20A i y3
3 ji(9K+8i) + 6 ' (K+2Ti)

where K =X +2p/3; and for n > 3,

n+ L 2 2n-1
-i n+A 2n(n-1X2n+1X2n-1)[2nn!/(2n)!]2 (I'-')y

(A25)n 2(n-lX3n+2)p' + 2(n+lXn-1)X'v'+(2n+l) hp+2(n+n+l)I

For the scattered S waves they are given by

(A26) Cn
n+3

= (z/y) (Bn/n) n > 1

All coefficients with n > 3 are negligible compared
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n) (x)n

(A23)
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to Bo, Bk B2 , C1 and C2 because the latter are of lower

order in y. Thus we obtain the following important result:

when all wavelengths are much longer than the radius of

the spherical obstacle, the series expansions giving the

scattered P and S waves in the far field can be approximated

by keeping only the first few terms. Then the scattered P

wave is

iA e ei(pr-wt)
u = (pa) [Beo-Beicos6 - e2(3cos 26+1)] (A27)

r

and the scattered S wave is

iA(sa)3 e i ( s r - wt )  3s
S= iA(sa) [Beisin6 + y Be 2 sin 26] (A28)

sp r P

K-K'
where Be =  3K' + 4P (A29)

Be P-P' (A30)
3p

B 20 _(_'- ) (A31)Be 2  - 6p' (K + 2p) + p(9K + 8)

The above results were derived for a solid sphere in

a solid matrix; they are applicable to the cases of a

fluid sphere (p'=0) or a spherical cavity (X'=i'=p'-0)

in a solid matrix by making the appropriate modifications in

the final results (A29), A(30) and (A31). However, when

the matrix is a fluid (l=0), this procedure cannot be used.
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Suppose for simplicity that the inclusion is also

fluid; then (A9) and (All) are to be omitted and the second

and fourth boundary conditions in (A12) are not required.

Making use of the long wavelength approximation (equations

A23), we obtain the following systems of equations. For n=O

yBo + X'D o = XA
y

(A32)

i Do
- Bo +-
y 3

which gives, since K=X for a fluid,

Bo = Aiy3K - K '

For n = 2

-i B 2  _ y12 D 2-3i Y X 15

-9i 2D2 2A
B2 + 3

which gives

S2iAy
5

B = 9

(A33)

y2 A
3

(A34)

(p-p')+ 2p
3p'+ 2p

B2 is of order y5 and therefore negligible in our

(A35)
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approximation. This result as well as (A33) could have

been obtained from (A24) by setting y=O. But for n=l

we have

i\ X'
2 B 1 + y' D, = iAXy

(A36)

2i Di _ iA
-- 4B1 + -Y y
y 3y y

which gives

B1 = Ay 3 P-P- (A37)
p+2p

This result is different from the one in (A24). This

difference can be interpreted as follows. In the long

wavelength approximation, the waves scattered by the sphere

are the same as the waves one would observe if the sphere

was replaced by a system of three sources. The simple

radial source whose strength is Bo represents the periodic

variations in the volume of the inclusion. B1 is the

strength of a single force source which expresses the change

in inertia due to the replacement of matrix material by

inclusion material. When the matrix is solid, the change

in inertia arises only from the density difference since

there is no relative motion between matrix and inclusion
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(all displacements are continuous across the boundary);

but when the matrix is a fluid, relative motion does

occur and the net effect of the fluid motion is to increase

the inertia of the sphere (Lamb, art. 92, 298 and 300).

(A37) was derived by taking a fluid inclusion for simplicity,

but one would obtain the same results if the inclusion is

solid, as long as the matrix is fluid.
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APPENDIX B: SELF-CONSISTENT MODELS

In this appendix we derive the effective properties when

a self-consistent scheme is used to take interactions into

account.

We recall that with our method of derivation, the ef-

fective laws will contain the effect of interactions if we

can compute the wave scattered by an individual inclusion

without neglecting multiple scattering from the neighbouring

inclusions. At the surface of an inclusion we can write the

boundary condition as

u + u = U (Bl)
- -s -T

where u, u , HT are six-row vectors whose elements are the

three displacements and the three normal stresses. u refers

to a wave travelling in the matrix towards the inclusion,

it is the superposition of the original incident wave and

all multiply scattered waves (including back-scattering);

u is the scattered wave which we want to estimate. u is
-sT

the wave inside the inclusion. Each one of u, us, T is com-

pletely determined by three potentials (See EquatiorsAl to

A4 in Appendix A). In general, the boundary condition (BI)
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is a system of six equations with nine unknowns. The solution

is possible only if either u or UT is known. When neglecting

interactions we assumed u was known and that it was the ori-

ginal incident wave. But when multiple scattering is included,

it seems very difficult to estimate u, even in an average

sense. Therefore, we attempt to estimate the wave inside the

inclusion without neglecting interactions.

We assume that in an average sense the effect of multiple

scattering on the wave inside an inclusion can be represented

with a self-consistent scheme. The wave inside is found by

solving the boundary conditions when a plane P wave is inci-

dent on the geometry shown on Figure 2.3. The radius b of

the matrix shell is treated as a free parameter, but it is

assumed that b3 is much smaller than R 3 , R being the radius

of the representative sphere with effective properties. Be-

cause of the axial symmetry we can again omit the O depen-

dence and since we want only the far field expression of the

scattered wave, the wavelength being of course much larger

than R, we need only the first three terms in the series

expression of the wave inside the inclusion. The solution

involves very long algebra for n = 1 and n = 2 (12 by 12

determinants), and we will only give the final result for

the density and shear modulus laws, but we give in detail

the calculation for n = 0, which yields the effective bulk

modulus.
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In general, the waves to be considered for solving the

problem, illustrated in Figure 2.2, are

(i) in the infinite matrix, the incident plane P

wave and the scattered P and S waves

(ii) in the shell of effective properties, ingoing

and outgoing P and S waves

(iii) in the shell of matrix material, ingoing and

outgoing P and S waves

(iv) in the inclusion, transmitted P and S waves.

All waves can be expanded in series (cf. Appendix A), and

at each boundary (r=R, r=b, r=a) the boundary conditions are

those written in Equation A12. Therefore, we obtain a system

of 12 equations with 12 unknowns for an arbitrary n. As seen

in Appendix A, the ingoing waves in the shells depend on the

Hankel function of the second kind.

The term n=0 is missing in the expansions of the S waves

and the transverse displacement of P waves. Thus the boundary

conditions for n=O reduce to a system of 6 equations with 6

unknowns.

Using the equality

(2) (1)h (x) + h (x) = 2j (x) (B2)
n n n

and the expansions for small argument (long wavelength ap-

proximation) given in Appendix A (Equation A23) and retaining

only the lowest-order terms, we can write the system of 6

equations as



i2 - o o o
3 3 y31

YR YR

4i2K* 4i* 0 0 0 Q0 -AK
3 y*3

R R

2 i 2 i 0 R0 (B3)

b b

0 2K* 4i* -2K 4i 0 SO  0
*3 3

Yb b

2 i 1 0

3 3 3 O
a

0 0 0 2K 4ip -K' U 0
3
a

where

yR = 2rrR/X

Yb = 27b/X

Ya = 27a/X (B4)

yR = 27R/X*

b = 2Trb/X*

R, b, a are the radii of the representative sphere, the matrix

shell and the inclusion respectively; A and X* are the wave-

lengths of P waves in matrix and effective materials; p and K

refer to shear and bulk modulus; A is the amplitude of the

incident wave; PO, Q0, Ro' SOl T0, U0 are the coefficients for
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n = 0 in the series expansions of respectively the wave

scattered in the infinite matrix, the ingoing and outgoing

wave in the shell of effective material, the ingoing and

outgoing wave in the matrix shell and the wave inside the

inclusion. The latter is what we want to find. Using Cramer's

rule and neglecting b3/R and a /R with respect to 1, we

have
(B5)

(3K*+4p*) (3K+4-p) 2 A

3 330 (3K+4-p*) (3K*+4p) (3K'+4i) + 12(K-K )(- (3K*+4 )d 3

where d3 = a 3/b3

Knowing the wave inside, we can find the wave scattered

by this inclusion when it is isolated in the matrix with an

unknown incident wave. ,The system to solve is

i 1i
3 3Y 3

4i -K' U -KI (B6)

Ya

We find

.3 K-K'B = y U 3K+4 (B7)

where B0 is the coefficient of the scattered P wave. Com-

bining (B5) and (B7) we have
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3 (K-K')(3K*+4p*) (3K+4p) (BS)
B0 = iyaA (3K*+4p)[(3K+4p*) (3K'+4 i) + 12(K-K') (P*-Ir )d3]

Since U0 contains the effect of interactions through the self-

consistent scheme, so will B0. Equating the wave scattered

by the representative sphere and the sum of all waves scat-

tered by the inclusions we obtain the effective bulk modulus

by using
N

BO = (B9)
j=1

where B 3 is given by (B8). The wave scattered by the repre-

sentative sphere is defined in terms of effective properties

of the composite medium:

S . 3 K-K* (B
B0 iyRA 3K*+4p (Bl1)

Thus

K* K + c(K'-K) (3K*+4*) (3K +4p) (BII)
(3K+4p*) (3K'+4-) + 12(K-K') (p*-)dl

In general, the effective bulk modulus depends on the

radius of the matrix shell. For d = 1, the result corresponds

to the classical self-consistent scheme:

K* = K + c(K'-K) (3K*+4p*) (B12)
3K'+4p*
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When d3 = c, which is the analog of Hashin's spherical com-

posite element assumption, we obtain the same result as when

interactions are neglected

c(K'-K)
K* = K + 1 + 3(K'-K)(1-c) (B13)

3K+4p

Solving the boundary conditions for n = 1, we obtain the

effective law on densities

p* = p(1-c) + p'c (B14)

It is independent of d which is not surprising since the term

for n = 1 in the expansion of the wave inside is the same as

that in the expansion of the incident wave under the long

wavelength approximation (See Appendix C, Equations C34 to

C36).

The algebra involved in obtaining the effective shear

modulus is extremely complicated. The final result is

7* -= 7c(X*+2p*) (X+2p) ' 

24p(p'--)f 2

were X =A + Bd s + Cd (B5)
D + Ed3 + Fd5 + Gd 7 + Hd io

with

f = 19~'p' + 16'p + 14p' 2 + 56pp'd = a/b
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A = fg/14

B = 84(x+p) (X'+p') (P-P*) (N- ')

C = -B + 4(p7*) [f(27+7) - 35p~(-+ 2 i) (2X'+7p')]

gk£
D 210 x 36p-p * ( i' - p)

252p1*E = -(X+2p) (3X*+8p*)g + k[(3X+8p-) (5X+7p) ( 8 p*-p)

- 21p(X+-) (3X+8p*)]/16p

F = 2k (

152

945p 2* (p'- ) G

945-*p2 H

= (p*-)k[(+X1) 63(p'-p) + (2X+7 i)£]

= 2( *-) (2X+7-) [p-(9X+14p) (3X*+8p*) -

- p*(3+8-) (9X*+14v*)]

f = 19X'p' + 16X'p + 14p '12 + 561pp'

g = 19x1 + 16Xy* + 14p2 + 56p11*

k'= 61X*p + 16p11* + 91X** + 141*2

£ = 6Xp1 ' + 16p1' + 9X1 + 1412

For an arbitrary value of d, p* and K* have to be found

numerically from (Bll) and (B15).
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APPENDIX C: SCATTERING BY SPHEROIDAL INCLUSIONS

In this appendix we derive the effective properties of

a two-phase medium containing spheroidal inclusions. The

method is discussed in Chapter 2 (Equation 2.9). It relies

on the estimation of the waves scattered by the representative

sphere on one hand and an individual inclusion on the other.

1. Isolated Inclusion of Arbitrary Shape.

Consider an elastic body of arbitrary shape imbedded in

iwt
an infinite elastic medium. Let the incident wave have an e

time dependence, which we shall suppress for brevity. The dis-

placement outside and inside the volume V occupied by the in-

clusion can be written as:

Outside the inclusion

u(x) = u (x) + Au(x) (Cl)

Inside the inclusion

v(x) = U (X) + Av(x) (C2)

where u0 = incident field. Au and Av are the scattered dis-

placement fields. u, u0 and Au satisfy the same wave equation
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2 u
cjpq u + pW2 u (X) = 0

qx jx.
(C3)

and v satisfies

a 2 v

c' p + p'W 2v.(x) = 0
ijpq ax 3x. i

q j

(C4)

where primed and unprimed variables refer to inclusion and

matrix material (both assumed homogeneous), p is density and

c..pq = i..p
13Pq 13 Pq

+ 1(6. 6 . + 6. 6. jp)

with X and p being Lam4's constants and 6.. the Kronecker delta.

The boundary conditions at the surface S of the inclusion are

Au(n) = Av(n)

Cijpq ]q

p n. = -Ac . n
qrl 3 13pq Thq 3

where n is a point on S, n is the outward unit normal at q

and Ac.. = cjpq - c.. . Then one can write the total
field outside V as follows (Mal and Knopoff, 1967)P

field outside V as follows (Mal and Knopoff, 1967)

u (x) = u0 W +{L2 APv (z) G (x, Z) +k k f i ki

V

Acp Gki dz
Ajpq 3z qx. I

q7P j

(C7)

(C5)

(C6)
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where Ap = p' - p and Gki(x,z) is the ith component of the

Green's function due to a point force acting in the kth direc-

tion at a point z in the infinite matrix. If the field in-

side is known, the scattered field is computable.

2. Spherical Inclusion--Long Wavelength Limit

Assume that the obstacle is a sphere and that its

radius is much smaller than the wavelength of the incident

wave. The displacement inside the sphere can be estimated

by Born's approximation

v(z) - u 0 ( g )  (C8)

where y is the center of the sphere. It is shown by Mal and

Knopoff (1967) that the lowest-order approximation to the

strain inside is given by

0e.
1 1 - 0

ekl = (P-Q) 6 kl + Qe (C9)
k1 3 k1 kl

where

1 m av ( )
kl 2 z+ z 1 z

0l 1 lim k u 1(CIl)
e + -C k1 2 zg Bz1
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- 3K + 4p ~ = 5 (3K + 4 )
P =3K' + 4  Q = 6p'I(K+2T) + j(9K+8p) (C12)

where K and p are the bulk and shear moduli. This approxi-

mation is valid for any contrast of the matrix and inclusion

moduli. The same result was obtained by Eshelby (1961) for

the static strain inside a sphere when a uniform strain is

applied at infinity. We shall make use of this relationship

later.

Because of the symmetries of the c..ijpq tensor (Equation13pq

C5) we have

v
Ac.. - = AXe 6.. + 2Ape.. (C13)

Cijpq 8Z pp j ij

and by use of (C9)

3v 2 0 0
Acijq 3v (PAK - QA)e 6.. + 2QAe 0  (14)

13pq z ij (C14)

Introducing (C8) and (C14) into (C7) we can write the lowest-

order approximation to the scattered field as

u(x,) ( -6 AK A- A e° ki
Au k (x , ) = V. mW2APu ()Gki(x) AK- 3 Pepp

(C15)

2 Q A -e o G k i- 2QAVej
j
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3. Spheroidal Inclusion--Long Wavelength Approximation

Equation (C7) is valid for any shape of the inclusion.

The displacement inside the spheroid can also be approximated

by (C8) if we assume that the wavelength is much larger than

the inclusion size. Eshelby (1957) has computed the strain

inside an oblate spheroid when a uniform strain is applied

at infinity. For an arbitrary orientation of the spheroid

with respect to the fixed coordinate system taken for the

matrix, the static field inside is given by

e.. = U e0  (C16)
S  ijkl kl (C1

where

U ijkl = 2ai S yk 61 Tay6 (C17)

The Z are direction cosines and T is a fourth-ordermn y6

tensor; the exact expression of eacn of its terms is not

needed for the time being, but its symmetries are important.

They are, for an oblate spheroid

1111 2222 1133 2233

1122 = T2211 T3322 3311

1212 1221 = T2121 2112 (C18)

T1313 1331 = T3113 = T3131

2323 = T2332 3223 3232
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We also have the relation

T - T
1111 1122

- 2T1212 = 0
1212

The scalars T.... and T.... are importa.t in the following11 33 1313

analysis; their expressions are

3F
T.. ..
1133 F2

(C20)

F4F +F6F -F8F1 2 1 4 5 6 F 6 8 9
T.... - -T - + F FF+

1313 3 iijj F 3 F4 F2 F4

F +R3 3 5 4 )F = 1 + Ai2(g+ ) - R(-g +

F2 1 + Al + -(g+) - (3g+50) + B(3-4R)

+ 2(A+3B) (3-4R) g + - R(g-p+22)1

AR (1 + 2 ) )F= 1 + [R(2-0) + g(R-13 f 2

(C19)
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F =1+ + g- R(g-)
4 4

F5 = A[R(g+ - 4)
53 - g] + B (3-4R)

F6 = 1 + A 1 +

F7 =2 + t. 9

F 8 = A 1

g - R(g+ )] + B(1-) (3-4R)

+ 3g - R(5q+3g) ]

2R + g(R-1)
2

+ -(5R-3)
2

+ Bc (3-4R)

+ B(1-) (3-4R)

- R]I + Bp(3-4R)F 9 = Ag (R-1)
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A ~1

1 (K' y'B = .( '- v)
3 K p

R 3p
3K + 4 y

a -1- a) = (i[cos a- a(1- )]

g = (30- 2)
1 -2

Now Mal and Knopoff showed that the lowest-order approxima-

tion to the strain inside a sphere in the dynamic case is

the same as Eshelby's exact result in the static case. By

analogy, we assume that this is also true when the inclusion

is an oblate spheroid. Using (C8), (C13) and (C16) in (C7)

we obtain

u k (xy) = W2u? (y) G (x,z)dz +

v (C21)

AXU e0 6. + 2AiU. . e x G (x,z)dz
pprs rs 1 Uijrs r-xj ki

The integrals in (C21 can be easily evaluated when r = [x-yl

is large:

fGki(x,z)dz = VGki(x,y) (C22)
V
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Then at a large distance from the inclusion, the lowest-

order approximation to the field scattered by an oblate

spheroid of arbitrary orientation can be written as

Au (x,) = V Apu()G (x,y) - AX6..jUpprs +
k 1W 1 ki 13 pprs

(C23)

+ 2 AU.. e G (x,y)ijrs rs yj Gki -

4. Effective Properties: Non-Interaction Model

Consider a quasi-homogeneous and quasi-isotropic two-

phase medium where the inclusions are oblate spheroids. For

an isotropic model, we can take a sphere as the representative

volume element. Then the scattered wave expressed in termns

of the effective properties is given by (C15)

Auk(x,y) = V W2 (p*-p)u (Z)G (xy) -(C24)

ki 2 ki - (C24)

Gj [6e (*(K*-K) - *( )) + 2( *)e i

where

, = 3K + 4 , = 5(3K + 4p)

3K* + 4p 6p*(K+2i) + p(9K+8p)



178

We assume that all interactions can be neglected so tlhat

0
the field incident on each spheroid is also u . Because the

medium is quasi-isotropic, the orientation of the spheroids

must be uniform over all directions. Then the sum of the

fields scattered by all inclusions in the representative

sphere is

AuT (x1 ') = w2 (p'-p)u?()Gki (x,Y)

(C25)

6..A (X'-X) + 2(i'-i)A. e a i L V
-1 pprs ijrs rsy n=l n

where V is the volume of the nth inclusion, N is the total

number of inclusions and

Aijkl sin d UI dP (C26)

0 0

In obtaining (C25) is is also assumed that each inclusion is

approximately located at the center of the representative

sphere since the observation point is at a large distance.

The effective laws are obtained by equating (C25) and (C24)

and setting
N

V nn=l

the volume concentration of inclusions.
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The first term yields the density law

p* - p = (p' - p)c (C27:

and the last term yields the effective elastic constants.

Let the incident field be purely dilational.

Oe.. = e 6.. (C28)

The effective law is then

(C29)

3 eP*(K*-K)Gkii c 2(u'-)Aijnn + 6ij ('-)A ppneGkikinn ppnn ki,j

From the symmetries of the tensor Ta y6 and the integration in

(C26) we find that

1A = T...
ppnn 3 113

(C30)

A. .i3nn
= 0 if i 3 j

Finally, by combining (C29) and (C30) we obtain

T .,

K* - K c K'-K T_]3
3K*+4 - c 3K+4i 3 (C31)
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The effective shear modulus Law is obtained in a very simi-

lar way by taking the incident field as

0 0 i = j
ei 0 (C32)

and making use of (C19). Then

* - _ c(1'-P) 1T (C33)
6p*(K+2 4p) + p(9K+p) 25p(3K+4 ) ijij iijj(C33)

5. Effective Properties Including Interactions

Whether interactions are neglected or not, the field

scattered by the representative sphere is given by (C24).

We also know that the field scattered by each inclusion is

given by (C7), where the matrix is the surrounding material.

If we can estimate the effect of the interactions on the

field inside an inclusion, then we can determine its effect

on the effective laws. We assume that the interactions can

be taken into account by a self-consistent scheme in an

average sense. We estimate the field inside an inclusion

which is surrounded by effective material up to a distance

R (the radius of the representative sphere) where matrix

material starts and extends to infinity.



1 81

The displacement inside the inclusion is approximated

by

v(y) - u*(y) (C34)

where u* is the displacement which would exist at the center

of the representative sphere if the inclusion was absent.

But u* is itself given by

u*(y) u 0 (y )  (C35)

so that

v(Y) u0 () (C36)

where u 0 is the incident field.

The strain inside the inclusion is given as in (C16) by

e. = U# e* (C37)e3  ijkl kl

where ekl* is the strain which would exist at y is the in-

clusion was abseht. U* is the analog of U in (C16). u*

depends on inclusion and effective properties, whereas U

depends on inclusion and matrix properties. Now e* is
kl

the strain inside the representative sphere and it is given

by

(*-Q*1 )e 6kl + (C38)
kl 3 pp kkl

The above relationship was used in (C24). Combining (C37)

and (C38) we obtain

e.- (P-Q*)U. eo + Q*U* eo (C39)13 3 P 3nn pp ijkl k1
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The derivation follows exactly the same steps as in the

preceding section. We use (C13), integrate over all orien-

tations, make use of the symmetries of the T tensor, and

we obtain the following results

p* - p = (p' - p)c (C40)

1*
K* - K = c(K' - K) -T (C41)

3 iijj

*- c(j'-p) (* - 1 (
5 ijij 3 iijj

Equations (C41) and (C42) were also obtained by Wu (1966) for

the corresponding static case.
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APPENDIX D: EFFECTIVE PROPERTIES FOR INTERMEDIATE WAVELENGTHS

In this appendix we treat the case where the wavelength

of the incident P wave is much longer than the radius of the

inclusions, but only slightly longer than the radius of the

representative sphere. When a plane P wave is incident on a

spherical inclusion, the dilation of the scattered P waves

can be written as an infinite series. As shown in Appendix

A, the far field expression is

i (pr-wt) .
e L (-i) n+B'P (cos 6) (Dl)

pr n n

The coefficients Bn are found from the boundary conditions

for each n. Let us assume for simplicity that the matrix

is a non-viscous fluid. Then for any wavelength the coef-

ficients are (See Appendix A, Equations A14 to A19)

xKjo(x) j 1 (x') + x'ji(x) + j- ji(x ) - (K'+ -- )jo(x')
B -A ,,

0 ( '' ( ) / 4u' ' I -
(x)ji(x ) + x hn j3i x ) - (K

(D2)



x2Kjn (x) A
B = -(2n+l) inA x2 Kjn (x) A
n x Kh (x)An

+[XJn-1

+[xh (x)n-1

j (x)]A2n_ _

-(n+l) h (n (x) I A2

(D3)

where

A1 = dn 3 en2 - dn2 en3

A2 = d e - eA2 d n2enl dnlen2

2p'(n+l)(n+2)
dnl= r2 (K'+4 )

3 j (x')n
4 ' jX' n- (x')

dn2 2p'dn2 x2
x' in-i (x' - (n+ 2 )jn (x'

3n-1 (x')
dn3 xt

(n+) (x')

= + 2p'n(n+l)
Z' 2

(n+ 2 )jn (Z') - Z'j n (z'
n-1

- 2z'j (Z')
Z'2 n-1

Sn(n+l)

Z'2 jn(z')

+ (z' 2 -2(n+2)n)j (z')

x' = 2rra/ '
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n 1

x = 21a/X

. LI

enl

z' = 27a/A'
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X is the wavelength of a P wave in the matrix; lX and X

are the wavelengths of P and S waves in the inclusion.

We restrict our analysis to values of x, x', z' smaller

than 1 because of the quasi-homogeneity assumption inherent

to our study of the effective properties. We can use the

expansions of the spherical Bessel and Hankel functions for

small arguments even if x is close to one, provided that the

truncation of the series takes place after a sufficient num-

ber of terms. For small n, the expansions are

2  4  6

(x) x x
0(x) 1 + - 120 x 42

3 5 7
x x x x

(x) 3 + 840 120x378

2 4 6
j2 (x) x x 121x

15 210 + 120xl008

(1) i ix x ix x4 x
h (x) + 1 + + +
0 x 2 6 24 120 720

(1) i i x ix 2  x 3  ix x

1 2 2 3 8 30 144 840x

2 3 4
(1) 3i i ix x ix x
2 (3 2x 8 15 48 210

x

We will simplify the problem to the case of a fluid represen-

tative sphere embedded in a fluid matrix. This covers our

experimental data, since the effective medium for a suspension
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of solid inclusions in a fluid matrix is essentially a fluid

(i.e., P* = 0). Using (D2) and (D3) and letting p* = 0, we

have

B -A
0

Kjo(YR)jY)YR - K*jo(yR)j(yR)y

(1) (1)
Kji (y)h o (Y R - K*jo(yR)hl (yR )yR R R R 1 R Ri

Using the expansions given in (D4) we obtain

3
Ay R K-K* ~2 -3

Bo A KK* 1 + (y - z)(1 - z + z - z ... )

B0*%-3--i-- K

(D5)

(D6)

where

K(y*2_y2)2 3 KR R
= -YR 5 3K* 15(K-K*)

15y4 +12yy, 2 -y *4  Ky R
15 12R R R K

120 30K*

3 (K-K*)
R

3iK*

(5yR+ R )

y*4(3K-7K*) + y4 (7K-3K*)840(KK*)R
840(K-K*)

(D7)



187

2 2 2 3 4 2 2 4
R y KYR YR(K-K*) yR -10RY R - 1 5y R

2 6 3K* 3iK* 1202

KyR 2 2
+ (y* + 5y R

30K* R

Writing B0 as

B = y3 [Boo + B 0 2 YR + B03YR + .. ] (D8)

we find

A(K-K*)
00 3iK*

K([y*2/y2]
A(K-K*) R R (9K* - 5K) (D9)

02 3iK* 15(K-K*) 15K*

2

A(K-K*)
2

B03 9K* 2

B00 is usually smaller than 1, since K and K* are generally

3
close. Since yR is smaller than 1, the term B03 R can be

neglected with respect to B00. For the water-polystyrene

3 -3
suspension at 50% concentration, B03YR/BOO is about 10

With a similar procedure, we find

3 2 3
B1 = y3[Bl0 + Bl 2 YR + Bl 3 YR + ... ] (DI0)
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with

B 3i p -p* A
10 p +2p* A

*2

3i Opp* - - 6(p 2_p*2

yR (Dll)
B A
1 2  10(p+2p*) 2

B - A(p-p*)2
B13  (p+2p*)2

Neglecting Bl3YR with respect to B10 introduces an error of
-4

the order of 10-4 for our suspension. We thus truncate the

2
series after Bl2Y R .  To the same order we obtain

2 = B22Y R  (D12)

where

2A p* - p
22 9- T 2p + 3p*

The effective laws are derived by equating the coef-

ficients Bn estimated for the representative sphere and for

the individual inclusions. B is the coefficient in theno

long wavelength limit. By including Bn2 we perturb the

solution. For n = 2, B20 vanishes and thus the effective

law for n = 2 is very sensitive to the higher order term.

We also know that the coefficient B2 yields the law for the

effective shear modulus, which vanishes for any wavelength
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when the matrix is a fluid. Thus, because our method is ex-

sentially a perturbation of the long wavelength effective

laws, we only consider the equations for the leading coef-

ficients B 0 and B 1. Assuming that the wavelength is suf-

ficiently larger than the inclusion size for neglecting the

higher-order terms, we can write the effective laws as

c P-P I _ p-p* 2 60pp*(pK*-p*K) - 6pK*(p2-p 2

p+2p p+2p* R 10(p + 2 p*)(p-p*)pK*

(D13)

K-K' _ K-K* + 2 p*K 2 + p(5K2 +9K* 2) - 15pKK* 1
15pK*(K-K*)

Denoting by KL and pL the value of K* and p* in the long

wavelength limit, this approximation gives

2 K l 3 2 KL

L  _R 3 K 5p 10 RK

P2 2 (p-2p )(p+2PL)

p* P p YR 12- (P 2 -4p ) +L (p-2p L)2 L 5 0 pL

(p+2p L ) (p-2pL)

20p

K 2

+ 10KL (p+2PL) 1 5(p-2pL)

+ (p+2pL) P)]

(D14)
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