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Abstract

I develop lattice-gas and lattice-Boltzmann models for the study of mixing in low
diffusivity systems. Previous work in this area has focused on lattice-gas models with
local interactions. I extend this to a lattice-gas model with non-local interactions.
I also introduce a two phase lattice-Boltzmann model with local interactions, based
on a linearised collision operator, and then combine these techniques to produce a
non-local lattice-Boltzmann model.

The non-local lattice-gas model is designed to preserve interfaces between multiple
phase systems. It is demonstrated to have a lower diffusivity than existing models.
Random fluctuations caused by the discrete nature of the algorithm produce non-
equilibrium behaviour which is likely to make the model inefficient for much numerical
work. However, it could have specialised applications in studying phase separation
and anomalous diffusion.

Theory is developed for a lattice-Boltzmann model for two-phase fluids with only
local interactions. Diffusivity is shown to depend on a particular eigenvalue of the
linearised collision matrix. Numerical studies confirm the analytical result. Diffusivity
can be achieved which is close, but not arbitrarily close, to zero. This method will
be applicable to studies of low diffusivity systems in which interfacial interactions are
unimportant.

A non-local lattice-Boltzmann model is outlined, using ideas from the two previous
models. This is used to lower the diffusivity achievable using the local model. Further
studies are necessary to determine this model's usefulness.

Thesis Supervisor: Daniel H. Rothman
Title: Associate Professor of Geophysics
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Chapter 1

Introduction

The scope of this thesis is to develop lattice-gas and lattice-Boltzmann techniques

for investigation of mixing in low diffusivity systems. I construct a new lattice-gas

algorithm to achieve integrity of interfaces over long time periods without interfacial

forces. I formulate established models in terms of a linearised lattice-Boltzmann

algorithm to investigate the stability of such methods at very low diffusivities, and

then I combine the two approaches to produce a model that is computationally clean

and may extend the lower bound on achievable diffusivities. Each of these models

exhibits features which are difficult to achieve using standard lattice methods.

Low diffusivity systems are of broad scientific, and in particular geophysical, inter-

est. Relevant problems exist in many diverse areas of study. Lattice-gas and lattice-

Boltzmann techniques have already been successfully applied to studies of flow in

porous media [1, 2], and multiphase systems [3, 4]. Study of dispersion in porous

media [5] may be possible, in particular anomalous diffusion, which is characterised

by an apparent effective diffusivity that grows with length scale. Many unresolved

problems in mantle dynamics depend on the mixing dynamics of physical and chem-

ical heterogeneities resulting from, or even causing, mantle convection [6]. Similar

problems are encountered in core dynamics, where the motion of such heterogeneities

may drive the geodynamo [7]. Analytical techniques are not powerful enough, and



laboratory experiments cannot achieve the parameter ranges required, to model such

systems.

LATTICE GASES

Lattice-gas dynamics is a fundamentally different computational tool for the study

of fluid dynamics and other systems governed by related partial differential equa-

tions. Lattice gas models are a form of cellular automata. Standard models have

particles of uniform mass moving on a periodic lattice, usually with uniform speed,

interacting at the lattice nodes. The algorithm is intrinsically discrete in space, time

and physical units. Interactions, usually described as collisions, typically depend only

on conditions (the state) at that site or at nearest neighbours. The models can be

deterministic (one to one) or probabilistic. They have received much attention due

to their computational advantages. As no discretisation is necessary implementa-

tion on computer is easy, and the local evolution lends itself to massively parallel

processing. While models have been developed to study a wide variety of physical

situations, particular success has come in two areas of fluid dynamics: flow through

porous media and multiple-phase flow. The former has proved fruitful as lattice gases

can simulate arbitrarily complex geometries with negligible computational cost, while

the latter enables easy tracking of interfaces, a process that can be troublesome with

traditional numerical methods such as finite-element techniques.

While earlier work exists in the literature, widespread study of lattice-gas models

began relatively recently. An early lattice-gas model was due to Hardy, de Pazzis

and Pomeau [8], since referred to as the HPP model. Particles move on a square,

two dimensional lattice and scatter with deterministic rules conserving total particle

number (mass) and linear momentum. Collision rules are chosen so as to define

transport coefficients, for example viscosity. The macroscopic behaviour is close to

the 2D Navier Stokes equations for fluid flow, but includes anisotropy which affects

the viscosity. This is avoided by turning instead to a class of models introduced by



Frisch, Hasslacher and Pomeau [9], now known as FHP lattice-gases. They are based

on a two dimensional hexagonal lattice, which has sufficient symmetry to achieve

isotropy in transport properties. This issue is discussed in reference [10].

2D work has focused on variants of two types of FHP model. FHP I type have six

allowed states per site, one for each direction of the lattice, while FHP II type add an

extra rest particle (zero velocity) as an allowed state. This allows a greater variety

of possible collisions, and so more control over transport properties. In all cases, no

more than one particle is allowed in each state. The background to these models,

and the derivation of the macroscopic behaviour, is discussed more fully in references

[10, 11].

No three dimensional lattice exists that correctly satisfies the symmetry require-

ments if restricted to unit mass particles. It is necessary to include a fourth dimension,

use a face centred hypercubic lattice, and then collapse the extra direction. Such lat-

tices have been named FCHC [12].

In all cases, the time evolution of the model can be divided into two parts: prop-

agation, when particles move from one lattice node to the next, and collision, when

they interact.

Study of two-phase models has been fruitful. The particles of an FHP model are

"coloured" to make them distinguishable, by convention "red" and "blue". They

can then represent two different fluids with distinct properties. Many systems can

be modeled in this way. For example, if the total colour is allowed to vary in a

particular way, the macroscopic behaviour can represent certain types of chemical

reaction [13]. More commonly, total particle colour is conserved so as to describe the

interaction of inert fluids. By choice of appropriate rules, different viscosities [14, 15]

and diffusivities [16] can be modeled, while applying non local rules has allowed the

simulation of interfacial forces [17] and the liquid gas transition [18].

While systems have been studied with more than two types of particle (for example

[19]), most work has focused on two-phase flow. Only such two component systems



will be considered here. Colouring means there are now two aspects to the collision:

the particles must still be arranged to conserve mass and momentum, and colour

must be redistributed. We can define two collision types: those in which the physical

outcome depends on the colour of the particles, and those in which the colour is

rearranged as a passive tracer, with the motion of the particles unchanged from

an uncoloured system. Collision rules and recolouring rules can be chosen so as to

allow considerable variation in transport properties. I shall restrict my attention to

considering ways to minimise the diffusivity.

Previous work in this area has focused on purely local collision rules, in which the

outcome of a collision depends only on the occupancy of that site. An example of

such a model is the so called "limited diffusion" model introduced by D'Humieres

and others [16]. However, work begun by Rothman and Keller [17] suggested an at-

tractive alternative. These workers used a non-local collision algorithm, where the

updating of a site depends on the states of other nodes, to determine the outcome of

a collision. Specifically, they reorganised the particle directions so that, given conser-

vation of colour and momentum, they maximised particle motion towards regions of

like colour. With this approach, they were able to simulate interfacial forces which

caused complete phase separation into homogeneous regions with stable interfaces.

The efficiency of the separation suggested that an algorithm based on a similar ap-

proach but without producing interfacial forces could result in a very low diffusivity

model. This is investigated in Chapter 2.

LATTICE-BOLTZMANN TECHNIQUES

Some of the advantages of lattice-gas methods have already been mentioned. There

are also certain significant problems. The discrete nature of the model leads to a high

level of statistical noise. For many purposes, this means that massive, computation-

ally expensive, spatial and temporal averaging is required to obtain clean results.

Recently, an attractive alternative has emerged. Instead of considering the evolution
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of a system of particles, we consider the evolution of mean population density, using

a Boltzmann approximation that the states are uncorrelated [20, 21]. This eliminates

much of the need for averaging as the results are implicitly the mean outcome. Two

approaches are possible - either to use a full representation of the collision operator

[20], or to linearise about a local equilibrium [21]. I will follow the latter approach.

In Chapter 3, I derive the linearised Boltzmann operator for a two colour system,

analogous to the established low-diffusivity algorithms, and demonstrate that the

diffusivity is determined by a particular eigenvalue of the operator. From this numer-

ical experiments are performed to investigate its minimisation. Chapter 4 is in some

sense an fusion of the results of the previous two chapters. It details the application

of a Boltzmann method to the algorithm developed in Chapter 2. Chapter 5 briefly

discusses possible future avenues of investigation.



Chapter 2

A Virtually-Immiscible Lattice

Gas

Low-diffusivity two phase lattice gases have previously been extensively studied (see,

for example, [16]). I present a new approach to achieving low diffusivity, closely

related to the ILG model of Rothman and Keller [17], which achieves two fluid im-

miscibility by simulating interfacial tension. In both the ILG and the new model,

local colour gradient is measured and a new state selected to be aligned with that

gradient. I aim to produce a model with a diffusivity sufficiently low that interfaces

are maintained for long time periods. Hence, separation of the two phases is to be

maintained without interfacial forces. I shall subsequently refer to this condition as

the fluids being virtually immiscible, as on the time scale of interest the two phases

are to remain unmixed.

MODEL

Our study was conducted using a variant of an FHP II lattice gas, described previ-

ously. To reiterate, this consists of a hexagonal lattice occupied by particles of equal

mass which either have speed of one lattice unit per time step or are stationary. An

exclusion principle applies such that each site has an allowed occupancy of 7 parti-



cles; one particle with each of the six possible velocities and one rest particle. As in

previous studies, a two phase system is defined by giving each particle an additional

property, described as "colour". I follow convention by referring to these as red and

blue. The colour of a given particle is unchanged during the lattice dynamics.

I shall use the following notation. The ith velocity vector is denoted by ci; co = 0

and cl through c6 are unit vectors connecting neighbouring sites on the triangular

lattice. The Boolean variables r2 (x) C {0, 1} and bi(x) E {0, 1} indicate the presence

or absence of a red or blue particle with velocity ci at lattice site x. The configuration

at a site is thus completely described by the two 7-bit variables r = {ri, i = 0,...,6}

and b = {b1, i = 0,...,6}. Colour is only a label attached to a particle: thus there

may be only one particle in any given state, and this particle may be either red or

blue.

The outcome of a collision, r - r", b -- b", is determined as a two stage process,

via an intermediate state (r', b'). Firstly, the configuration is chosen at random from

those satisfying the constraints of coloured mass conservation

Sr=Z r, b: = b, (2.1)

and colourblind momentum conservation

Sc(r + b ) = E c,(r, + b). (2.2)
i i

Then, given this new mass distribution, the colour is rearranged so as to align the

coloured velocities with the local colour gradient. This can be expressed mathemati-

cally as follows. I define the local colour flux to be the difference between the net red

momentum and net blue momentum at site x:

q[r(x), b(x)] - ci[ri(x) - bi(x)]. (2.3)

The local colour field f(x) is defined to be to be the vectorial sum of the differences

between the number of reds and the number of blues at neighbouring sites [i.e., the



microscopic gradient of the signed (red minus blue) colour density]:

f(x) - c -[rj(x + ci) - bj(x + c1 )]. (2.4)

We seek to maximise the projection of the colour flux in the direction of the colour

field,

f q(r", b"). (2.5)

The occupancy of a state is unchanged - this step merely swaps the colours of the

particles. This can be written, for each i,

ri' + b' = r' + b'. (2.6)

If there is more than one outcome for either stage of the collision process that satisfies

the requirements equally well, the result is decided by random selection from those

outcomes.

In the study of Rothman and Keller, the rearrangement of the colour is performed

simultaneously with the collision. The colour field affects the particle dynamics, gen-

erating the interfacial forces that the model was designed to simulate. My model was

designed to achieve virtually-immiscible fluids on the basis of low diffusion, rather

than surface tension. Eliminating the interfacial forces by splitting the collision into

a two stage process means that the particles at each site are rearranged less efficiently

than as part of a one step process, because the state occupancy is determined at ran-

dom rather than in order to align the particles most effectively. Thus the separation

will be less effective.

Once the collisions have been calculated, each particle moves one lattice unit in its

direction of motion. The effect of the collisions will be to cause this to be towards

regions containing particles predominantly of the same colour.

CHARACTERISATION OF MODEL DIFFUSIVITY

A number of different methods have been used by previous workers to characterise

diffusivity, including studies of random walk processes and relaxation of a colour



density step [16]. Influenced by the non-equilibrium properties described below, I

chose to use a scheme similar to that described by McNamara [22], measuring flow

of colour driven by a steady state linear colour gradient. A rectangular channel,

64x128 lattice units in size, was set up with a boundary at each of the short sides and

toroidal boundary conditions relating the long sides. Reflections from the boundary

were calculated using free slip boundary conditions, but also included a recolouring

step, such that all the particles hitting at one end had their colour changed to red,

while all those at the other end were changed to blue. This created a linear colour

gradient between the ends of the channel. The colour field of the system then evolves

according to the diffusion equation:

ato, + &,(avi) = 8;(D(d)8a) (2.7)

where d is the reduced mass density, defined as number of particles per state, D is the

diffusivity, and a = d,ed - dblue is the difference between the coloured mass densities.

If particle velocities and occupancies can be assumed to be uncorrelated, this reduces

to the standard linear diffusion equation:

Ota = D(d)V2 a (2.8)

Under such conditions, the macroscopic flux of colour can be expected to be directly

proportional to the colour density gradient. Here density is defined per unit area

rather than per lattice site. This can be expressed as Fick's law:

J, = -DV (2.9)

Here J is the flux of colour through a line per unit length, and q is the colour density.

Thus the ratio of colour flux to colour gradient yields the diffusion coefficient [23].

Simulations were performed over 100,000 time steps. The lattice was sampled

only after 50,000 steps to ensure that full equilibrium had been achieved. I sampled

every 250 steps subsequently, with averaging being performed over channel width and

time, within half of the lattice away from the boundary walls. This eliminated edge



FIG. 2-1. Schematic of line through which flux is measured. Arrow represents direction

of colour gradient.

effects. Colour gradient was calculated using a least squares fit, with an eyeball check

to confirm an equilibrium gradient, and flux in the channel determined by adding

vectorially the flow of the particles across lines between the lattice in this region

(shown in Figure 2-1) and averaging. This provides a good value for the average flux

per unit area crossing a line in the lattice at any given point.

Diffusivity was measured for three different collision algorithms - colourblind, lim-

ited diffusion and the new algorithm. The colourblind model is called self-diffusion

by D'Humieres - particles are rearranged without reference to colour, and then colour

is randomly assigned within the resulting configuration. The limited diffusion model

maximises the change in momentum for each coloured species. Hence, the reorienta-

tion depends only on the state of a particular site and not on its surrounding colour

field. This approach achieves a reduced diffusivity but with no integrity of interfaces.

A comparison of measured diffusivities is presented as Figure 2-2. The data for the

established algorithms show good agreement with previous work [16]. Unsurprisingly,

both models with optimised collisions exhibit lower diffusivity than the self-diffusion

model. At very low densities, the limited diffusion algorithm is superior to the new

model, but at density 0.2 and above, the new model is clearly better. This can be

explained by the difference in optimisation methods. Diffusivity has been defined

above as related to the ratio of flux to the global colour gradient. The two methods

sample this gradient imperfectly: limiting the measurement to one site only with

the limited diffusion model, and to the six nearest neighbours with the new model.

Clearly at high densities the latter will provide the better approximation. At lower

_Li L-Li--Y~~- ~V--L- -- I~-l~-^lll-- --l_-U II



o
CO
c;

C;D
o

LOc;
CO)

c;

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State Density

FIG. 2-2. Comparison of diffusion coefficients for different models

O New algorithm

o Limited Diffusion

Error bars are

at the lo level

A Colourblind



densities, sites where a valid collision can occur are rare, and the population around

them will be sparse. Thus it is likely that in such a case, the local colour field will

not be well defined, and be highly susceptible to random fluctuations. The new

algorithm will not operate effectively, whereas the efficiency of the limited diffusion

model is unchanged.

A comment is necessary on the reproducibility of measurements. Error bars are

shown for the la level of confidence, with a sample size of order 10. Errors are larger

at higher densities for the optimised rules, as clumping (non equilibrium behaviour)

occurs, introducing non-linearities into the colour profile. This is particularly severe

for the new algorithm.

NON-EQUILIBRIUM PROPERTIES

The algorithm was originally constructed as an attempt to limit mixing with no

interfacial forces. This is achieved. However, random fluctuations of the interface

allow "fingering", and when these fingers become sufficiently thin at the point of at-

tachment (again by random fluctuations) they can become detached. Two initially

homogeneous regions gradually disintegrate into many small bubbles. This is shown

in Figure 2-3. An initially random distribution of particles approaches the same equi-

librium. Thus the long term equilibrium state for the algorithm consists of a mixture

of bubbles of fluid, constantly decomposing, changing morphology and reconnecting.

The characteristic size of these particles is an increasing function of density, and for

example is about 5 lattice units at density 0.7. The bulk diffusion rate measured by

experiment is for the diffusion of these blobs, likely to be different from the diffusion

of individual particles. I postulate that this is some form of Brownian process.

The equilibrium time for these bubbles to form completely is long (of the order of

104 time steps), sufficient to allow simulation of various features previously achieved

with the ILG (for example Rayleigh-Taylor and Kelvin-Helmholtz instabilities).
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APPLICATIONS

This model has been shown to exhibit a reduced diffusivity, and to maintain the

integrity of interfaces on a short time scale. However, the non-equilibrium proper-

ties of the model described above seem to make it inappropriate for many forms of

numerical work. For most initial and boundary conditions, the lattice undergoes a

transition from the initial state in which the lattice dynamics is dominated by inter-

actions between single particles, to a state where the dynamics are controlled by the

interactions of bubbles. These clusters provide the characteristic microscale for large

times, thus multiplying the lattice dimensions necessary for simulations by a factor

of five or so. Computation times become too great for sensible studies (lattice areas

must be increased by well over an order of magnitude, and a considerable number of

time steps must be initially set aside for equilibrium to be achieved).

One possible area of application for the model is the study of anomalous diffusion,

mentioned in Chapter 1. The multiple microscales seem a possible approach to the

modeling of scale dependent diffusion.

Many of the problems can be eliminated by utilising the lattice-Boltzmann coun-

terpart of this model. This is discussed further in Chapter 4.



Chapter 3

Derivation of a Local Two Colour

Linearised Collision Operator

INTRODUCTION

This chapter has three sections. Firstly, the existence of a local two colour linearised

collision operator is motivated by examining the lattice-gas collision operator in the

limit of the Boltzmann approximation. Secondly, the operator is generalised as far

as possible and an eigenvalue associated with the diffusivity of the system is isolated.

Thirdly, numerical studies are detailed which confirm this theory.

MOTIVATION OF A TWO COLOUR LINEARISED COLLISION

OPERATOR

To simplify the mathematical development, I consider an FHP I type model, thus

excluding rest particles. The state at a lattice site is defined by a set of 12 Boolean

variables:

s= (ri, b , r2, b2, ... , T6, b6 ), (3.1)

where ri is 1 if there is a red particle present travelling in direction i and 0 otherwise.

Adopting the standard exclusion principle, no more than one particle per state is



allowed: ri and bi cannot simultaneously be 1. An output state is defined similarly:

' = (r, b, r b,..., r' ' ). (3.2)

The two states are linked by a collision - a rearrangement of the particles at the

site given certain conservation laws. The primed notation indicates a state following

collision and prior to propagation. We write the probability of state s becoming

state s' as A(s; s'). Clearly the sum of all the output probabilities for a given input

configuration must be 1, thus

y A(s; s') = 1. (3.3)

We assume that this relation is symmetric, so that

E A(s; s') = 1. (3.4)
8

This is called the principal of semi detailed balance. Further discussion of the conse-

quences of this and a proof for the FHP lattice can be found in [10].

I adopt standard conservation rules for collisions. For non zero collision probability

A, conservation of coloured mass yields

P' = Eijr = Pr = Eiri, pI = Ei b& = pb = i b, (3.5)

where p, and pb are the number of red and blue particles at the site. Momentum

conservation gives

Ei c1(r + b ) = E, c,(r, + bi). (3.6)

Following a simplified version of the scheme adopted by Rothman and Zaleski [24],

I assume use of a Boltzmann approximation is valid. This is based on a molecular

chaos postulate [25], that the states at each site are uncorrelated, and thus the n-

particle distribution functions which characterise the probability of a given state can

be written as the product of n one particle distribution functions. Previous work has

shown that this is generally a good approximation [25, 22]. Evolution of the model

then proceeds by the Boltzmann equation [26].



Thus, the occurrence probability of an input state s is given by

6

JR (x, t)B (x, t)[1 - Nj(x, t)]l - '
r

- bj, (3.7)
j=1

and the probabilities of having particles of each colour with a given velocity in the

output state is

R = ,,rA j R (x, t)B (x, t)[1 - Nj(x, t)]l-rj-bj
B ~I 1 .7=(3.8)

B = Z, ,,, b RA j=1 R (x, t)B b(x, t)[1 - Nj(x, t)]l-1r-b

The corresponding probabilities for the input state can be written

; (3.9)
S= E, b R(x, t)Bj (x, t)[1 - Nj(x, t)]1-rj-bi

which, using equation 3.3, can be written

Ri= ,,,, rA M R r(x, t)B b(x, t)[1 - Nj(x, t)]'1-r - b 0
.7 j i (3.10)

Bi = E biAHl=1 R7(x,t)Bj (x, t)[1 - Nj(x, t)]l-r;-bi

This leads to equations for the change in occupation probabilities due to collision:

R- R = E,,,,(r - ri)A 1= R -(x, t)B(x,t)[1 - N(x,t)] - r - bi

B' - B = E,,,,(b - b)A 1 R (x, t)B '(x,t)[1 - N(x, t)]-r-b. (3.11)

To address perturbations from an equilibrium distribution, I define a state density

d, such that it is the mean occupancy of a state at lattice position x. Thus

d,(x) = IE= Ri(x),

db(x) = i 1 Bi(x). (3.12)

Following the treatment of viscosity by H non [14], I consider a state close to isotropy:

R = d,(x) + u(x), (3.13)

Bi = db(X) +iX),

23



where the variations vi and pi are small. For an isotropic density distribution vi =

pi = 0 for all i. As a consequence of equation 3.12,

6 6

v(x) = , E pi(x) = 0. (3.14)
i=1 i=1

We substitute these equations into the equations for probability evolution 3.11,

and then linearise in the small quantities I and v. Suppressing the argument x, and

following the algebra for the case of the red particles,

I
1; - y

(1
= s,s,(rf

(1

= E, ((rf
(1

(1

(1

- r)A 1 (dr + vj)ri(db + , 1)b(1 - dr - db - Vj - Lj)l-rj-b

- r )AHI=j d:jdb'(1 dr - db)l-r - b

+ 'E)i(1
l + I)bi( ( j+Aj ))l-rj-bi

di. di,1-dr-4

- r )A 1 =l d db (1 - db) 1 - r - b
i

+r + b -( ::lb )(1 - rj- bj)) + O(y

- r)Addb(1 - dr - db) (1--bi)

d.=[ + a bd -(,4 )(1 - -bj+)])

- ri)AdPrd(b(1 - dr - db)( 6 - p r- b)

+ E j=t r + b - (1-d )(1 - rj - bj)]).

(3.15)

Using 3.3 and 3.4 we recognise that

(r - ri)A = E r' - E ri = 0. (3.16)

as the summations are over the same set of states, and so identical. Thus the first

term in the expression cancels. Rearranging and using 3.14, the second term reduces

to

vI - Vi = E(r - rj)Ad Pb-ld(1 - dr - db)(5-p, -p b)

8,81

6

[v3 (rdb(1 - db)+ bjddb)+ Lj(bjd(1 - d) + rJddb)]. (3.17)
j=1

The corresponding equation for the blue particles is almost identical:



- -= 1(b - bb)Ad-b-(1 - d, d db)( -
.-Pb)

6

Z[v(rdb(1 - db)+ bjd,db)+ [/j(bjd,(1 - d,) + rjddb)] (3.18)
j=1

From these equations we identify the linearised collision operator. Previous workers

have defined the updating of the lattice in terms of the action of the collision operator

on the non-equilibrium probability distribution (see for example [20] [21] [4]) by the

equation
6

Ni(x + ci, t + 1) = Ni(x, t) + E QjNjeg X, t) (3.19)
j=1

where N -eq is the non-equilibrium component of Nj. We identify a state vector v

analogous to Nn" e as

v = (Vj, 1I, ,V2, , V 6 ). (3.20)

As the equilibrium component is by definition constant with time, this defines a

collision equation
12

vi - = Z Qvj (3.21)
j=1

where the elements of the matrix Q are given from 3.17 and 3.18 as

2 2i-1,2j-1 = ,,,(r - r)Ad'-1db-(1 - dr - db)(5-pr-Pb)(rjdb(1 - db) + bjdrdb),

2i-1,2j - ,,(T - ri)Adr-ld'b-'(1 dr - db)(5-Pr-Pb)(bjd,(1 - d) + rjddb),

92i,2j-1 = 8,,,,(b - b,)Ad~-ldb-'(1 - dr - db)(5-pr-Pb)(rjdb(1 - db) + bjd,db),

2 2i,2j = ,,,,(b - b-)Ad-d--( - d, - db)(S-Pr-Pb)(bjd,(1 - d,) + rjddb).

(3.22)

DERIVATION OF THE DIFFUSION COEFFICIENT FOR A

GENERALISED COLLISION OPERATOR

Having motivated the discussion by demonstrating the existence of the linearised

collision operator for the two colour local system, we will now ignore all dependence

on a particular set of collision rules and consider a general collision operator Qj . This



has the advantage that we can consider a continuum of models, many of which are un-

achievable by defining collision rules, without reference to the particular microscopic

dynamics, but still macroscopically realising the Navier-Stokes equations.

Whereas in the preceding discussion, we considered a state vector

s = (r, b, 2, b2,.., r6, b6 ), (3.23)

we now consider evolution of non equilibrium fluctuations in the probability distribu-

tion

v = (v, 1u, v2, 2, ... , vs, V 6). (3.24)

We consider the matrix in 2x2 sub matrices wij as motivated by equations 3.22. Fol-

lowing [27], we note that the collision operator must be six fold rotationally invariant

and symmetric under exchange of directions in order for the collision to be isotropic.

For 1 < i,j 5 6, we may write wij = wli_j. We therefore denote the sub matrices

by wo, w6 o etc, where the superscript is the angle in degrees between the directions.

The full form of the operator is now

S o L6o W120 
o

W ioS o 6o

6o o0 W6 o0 O 12 18o W120

O 
1 20  W 6 o O 6

o W 120 W1
8 o

80 1 o o(3.25)
i8o 1280 6o 6o 120

6120 0
8 o 18oo0 

6 o o O 6o

W 6 Wo12
0 W- 8o W120  

O
6 o  W 0

This matrix can be seen to be block circulant. The relevant mathematics of these

structures is outlined in Appendix A.

We require that the operator satisfy certain necessary conservation rules; of each

colour of particle and of uncoloured momentum. The total change in red mass at a

site is given by
6 6

Z(V - V) = ijvj, (3.26)
i=l i,j=l



where v is an arbitrary state vector. From conservation of this is required to be zero

for all v. We can write this condition

6

i,j= 1

where w is defined

Thus w is a left eigenvector of 2 with eigenvalue zero. From the conservation of

blue mass, the same is also required of

(3.29)

This leads to four conservation equations as follows:

11 12 . 1 1S+ 2w6 + 2w 120 180 = 0

Wi 2  12 0 1 180

w 2 + 2w + W120 + 80 =
W21 + 2w1 +2 21 21=

W2 + 2w60 + , 120 + W180 = 0
22 2° 22 22 +

(3.30)

(3.31)

(3.32)

(3.33)

Conservation of momentum is similar. We require the total momentum vectors

C11, C11, . .. , C6 1, C61],

[C2, C12,..., ~62, 62],
(3.34)

to be left eigenvectors with eigenvalue 0. By referring to Figure 3-1 these are written

[1, 1, cos(7r/3), cos(7r/3), cos(27r/3), cos(27r/3),..., cos(57r/3), cos(57r/3)],

[0, 0, sin(7r/3), sin(7r/3), sin(27r/3), sin(27r/3),..., sin(57r/3), sin(57r/3)].

Choosing suitable linear combinations, these can be written

[1,1, e i / 3, eri / 3 , e. 27i / 3 , e. 7 i / 3 e , eri , e47ri / 3 , e47ri/3, e5 i/3, e5wi/3],

[1,1,e-3 , e-ri/3, e-2i/3, )e- ' i/ , e-ri, e-7 e- 4ri/3, -4 i/3 )- 5ri/3 , -- 5 /3]. (3.37)

wiaijvj = 0, (3.27)

(3.28)

(3.35)

(3.36)

~l~YI1~ -r-111~11^---~ il JC~ ~)

[1,0,1 ,0,...,1,0].

[0 11071)11170711.
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FIG. 3-1. Definition of lattice directions

Referring to equation A.12 these are seen to be legitimate left eigenvectors of the

collision operator. The rotational isotropy of the lattice means that conservation

of momentum in one direction implies conservation of momentum in all directions.

Hence only two more conservation equations are generated:

o + 120 _ + 180 + _1 = 6 0 (3.38)
11 +W 11 - 11 - 1 1 + W21 + W2 1  2 1  2 1

S 60 120 180 o 60 _ 120 o o = 0. (3.39)
W1 2  12 12 + 12 - - 1 2 + W2 2 + j 2 2 22 2- 2  -

We now analyse the macroscopic diffusive behaviour in terms of the eigenvalues

and eigenvectors of the operator. In analogy to the calculation by H6non [14] of the

dynamic viscosity of the lattice, we establish a linear colour gradient which produces

a uniform flux of colour at constant mass density. We define microscopic momentum

fields for each colour:

M' = Z Ricia, M, = Z Rjci,, (3.40)
i i

where a represents one of the two orthogonal directions 1 and 2, defined in Figure 3-1.

We define the colour gradient to be in the x 2 direction, magnitude Q. This leads to

M = M = 0,

M = -M = M, (3.41)



where M is a constant (dependent on Q) to be determined. We postulate spatial

variation for Ri and Bi of no higher order than linear, and so write

Ri = d,(x) + 2 + (3.42)

B = db(x) +riX2 + S.

d,(x) and db(x) are defined in equations 3.12. Due to the imposed colour gradient,

and the requirement for uniform density,

d,(x) = dro + 2, (
(3.43)

db(x) = dbo - 2*

Homogeneity of total mass distribution requires

i=1 hi + 7i = 0,

E C=l1i+ & = 0. (3.44)

From equations 3.41 we get

= ici = 0, ic = 0,

KiCi2 = 0 ric2 = 0,

E=1 ci= 0, =1 ci = 0, (3.45)

S=1 Cici2 = M, =1 8iCi 2 = -M.

We now compute the steady state velocity distribution which will produce a simple

colour gradient. The propagation equation from one time step to the next can be

written

Ri(x + ci, t + 1) = R'(x, t), (3.46)

with a similar equation for Bi. By assuming a steady state over time, this reduces to

Ri(x + ci) = R (x). (3.47)

Substituting from 3.13 for R and using 3.42 and 3.43, we obtain

vi(x) - vI(x) = -(i + Q/6)c 2 (3.48)



with a similar equation for t. Combining with the collision equation 3.21 leads to

the coupled equations

Ej[~2i-i, 2 j-i(jX 2 + ej) + 02i-1,2j(7ix2 + 6S)] - (ii + Q/6)Ci2 = 0, (349)(3.49)
Zj[%i,2-1(KjX2 + Ej) + 2i,2 j(7iX 2 + 86j)] - (ri - Q/6)Ci 2  = 0.

These equations must hold for all values of x 2. Solving for the coefficients of X 2, we

postulate a common functional form for ic and r7i:

Ki = Klc1i + K 2Ci 2  (3.50)

77i = Hlcni + H 2ci 2 .

Note that constant terms, as employed by H6non [14] in the equivalent section of

his development, could be absorbed into the external gradient, as they do not cause

anisotropy. These forms satisfy equations 3.44, and from equations 3.45, we find

K1 = K 2 = H1 = H2 = 0. Thus i = 77 = 0, so equations 3.49 can be written

Ej[Qzi-1,j-6j + f2i-1,2jSj] - cC2  = 0
(3.51)

Ej[Q2 i,2j-1 Ej + 02i,2j6j] + 'Ci2 = 0

Defining two vectors

y = (61E ,1.. ., 6 ,) 6 ), (3.52)

z = (c 1 2, - 12 , ... , 62 , -C 6 2 )T, (3.53)

we can write these equations in vector form:

fy = --z. (3.54)

By writing z as a linear combination of the right eigenvectors of Q the problem is

reduced to a eigen problem.

It remains to determine the values of Ei and 6i. We make an ansatz that y is a

scalar multiple of z. This is a valid solution only if the vector z is an eigenvector

of the operator Q with a non zero eigenvalue. If the operator is non-defective (the

eigenvectors span the twelve space on which they are defined), it is unique to within

a



an arbitrary linear combination of null eigenvectors. This satisfies equation 3.44,

and from equations 3.45 we derive the scaling to be M/6. Hence the equilibrium

distribution can be written:

Ri = dro + 2 + MC;2,6 6= (3.55)
Bi = dbo - 2 - MCi2

This gives a relation for the ratio of the anisotropy in the velocity distribution to the

applied colour gradient:
M 1- = 1 

(3.56)

where A is the eigenvalue of 0 corresponding to the eigenvector z.

Note that each sub matrix w has four elements, making a total of 16 variables.

There are 8 distinct eigenvalues, (4 eigenvectors have distinct eigenvalues and 4 eigen-

vector pairs are made degenerate by the symmetry of the operator), which define the

rate of damping of perturbations from equilibrium. The other degrees of freedom

are absorbed into the eigenvectors. Thus there are many possible operators which

give the same value for the transport properties. To achieve some simplification of

this degeneracy, we look at the subset of operators which map to collisions in which

the physical outcome of particle location is not affected by the colour. This makes

the operators directly comparable to the discrete particle models in Chapter 2. The

mathematics involved is discussed in Appendix B. This constraint leads automati-

cally to the conservation relations for colour and momentum, and also requires that

the vector z in equation 3.53 is indeed a right eigenvector for the operator. Thus

for such a subclass, the preceding analysis is valid. Note that this condition on the

dynamics is sufficient but not necessary - other sets of eigenvectors can also include

the diffusivity eigenvector and satisfy the conservation relations.

For a simple concentration gradient, we expect the flow of colour to obey Fick's

law [23]:
dcr

J = -D d' (3.57)
dx'



where J is the colour flux across a line per unit length, o is the colour area density and

D is the diffusion coefficient. The area of lattice corresponding to one lattice point is

2, so colour per unit area is 7 times colour per lattice point. Some care must be

taken with measuring the flux. Following McNamara [22] and others, I calculate the

flux crossing a line between two rows of lattice points, as shown previously in Figure 2-

1. I define the measurement to take place after propagation and before collision. Thus

to determine the flux resulting from a given colour gradient I measure the flux that has

crossed the measurement line during the previous time step. Referring to Figure 3-1

for the appropriate directions,

J = R2(x + c2)-B 2(x + C2)+R 3(x + C3)-B 3(x + c3)-R 5 (x)+B 5(x)-R 6(X)+B 6(x)

(3.58)

Using the steady state populations, the density gradient of (red - blue) in the x 2

direction is 4Q/v'3, and

J = 2M// V + Q/ v. (3.59)

Hence the diffusion coefficient is defined

M 1
D M (3.60)

2Q 4

Using equation 3.56, we can write this in terms of the relevant eigenvalue of the

collision operator:
1 1

D (3.61)
2A 4

A remark on the values of the numerical constants in this relation is in order.

Clearly, they do not depend on the form of the collision operator, as this dependence is

carried by the value of A. Thus they are solely parameters of the lattice type. It is also

worth noting the correspondence between here and the constant -Y used by Rothman

and Zaleski [24], which has been defined by Zaleski [personal communication] as "the

susceptibility of the gas to an imposed gradient". Different numerical constants are

caused by the addition of a rest particle.

~~l~~_lC ~~_



NUMERICAL EXPERIMENTS

From equation 3.12 I define a mean uncoloured state density

d(x) = d,(x) + db(x). (3.62)

I assume variations in this quantity are first order small, as a result of the assumption

of homogeneity of mass. I linearise about a local equilibrium which is derived by

Fermi-Dirac statistics and has been given by a number of workers (eg. [25]):

Ad
Ti" = dT(1 + o + 2ci,v, + G(do)Qia vav~) (3.63)

where do is the average population density on the lattice, Ad = d - do and

G(do) = 2 ((1-2do
i-do (3.64)

Qia a = CiaCi[3- iSao.

T represents either R or B. Note that this is the same equation as used by Gun-

stensen et al [4] without rest particles and with a prefactor for each colour. This is

the equilibrium derived from the Fermi-Dirac statistics of the lattice-gas formulation.

It has been widely recognised that this is not Galilean invariant. For the Boltzmann

formulation this can be overcome by setting G(do) to 1, but I chose to use the tradi-

tional equilibrium as it does not affect the measurement of diffusivity, and it allows

a closer correspondence to the particle models.

I have produced an operator based upon the eigenvalue equations. Of the eight

independent eigenvalues, three are defined zero by the conservation relations, and

one controls the diffusivity. The other four I set to -1, as this immediately damps out

non-equilibrium fluctuations in these eigenvector directions. I measure diffusivity as

described in Chapter 2.

The reproducibility of the calculations is to within 1 part in 1000. I have confirmed

that the diffusivity depends only on the relevant eigenvalue and not on its eigenvec-

tor. Figure 3-2 is a plot of diffusion coefficient against 1/A, and confirms the values
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FIG. 3-2. Numerical confirmation of diffusivity eigenvalue relation.

Plot is D against , and therefore should have both gradient and x intercept of -

This is as shown. Error bars are smaller than the symbols used to mark the data

points.
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calculated for the numerical constants in the diffusivity relation 3.61.

A naive treatment of the formula would suggest the development of negative diffu-

sivity below -2. However, the collision operator is only stable for eigenvalues between

0 and -2 - simple linear stability theory shows that outside this region non equilibrium

fluctuations tend to grow rather than be damped. This has been confirmed numeri-

cally. Figure 3-3 shows that the model obeys the theory well up to an eigenvalue of

about -1.95, which corresponds to a diffusivity of 7.27 x 10- lattice units squared per

time step. Below that the results deviate from prediction, suggesting computational

instability.

In conclusion, we have developed a two colour collision operator which is capable

of achieving low but bounded diffusivities with extremely good numerical confidence.

Below this the linear theory developed may no longer hold. Thus it is likely that

the linearised collision operator is no longer valid. To achieve very low diffusivity, we

must turn to a non local model. This is described in Chapter 4.
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FIG. 3-3. Divergence from linear relationship at low diffusivities.

Straight line is theoretical relationship. Error bars are at the lo level.



Chapter 4

Towards a Lower Diffusivity

Lattice-Boltzmann Model

In the previous chapters I have considered a low diffusivity lattice-gas model designed

to preserve interfaces, and a Boltzmann formulation for a low-diffusivity lattice gas

with local collision rules. I now combine these ideas to try to attain a lower diffusivity

than was possible using the theory outlined in Chapter 3. The basis for this follows

directly as a trivial special case of the lattice-Boltzmann model for immiscible fluids

developed by Gunstensen et al. [4].

Essentially, the procedure followed in this model is the same as used in Chapter 2.

We collide the particles ignoring colour using a one-phase linearised collision operator,

developed in previous studies [21, 27]. We then reassign the colour by the equivalent

rules based on local colour field, to align the colour at the site with the local colour

gradient. All the "redness" is assigned to those sites closest to the surrounding con-

centration of red fluid, while all the "blueness" is apportioned to those sites closest

to concentrations of blue fluid. As the colour and mass are fractional rather than

discrete quantities, phase separation is far more efficient than for the particle model.

Areas of fluid which are initially homogeneous remain so, with stable interfaces. A

stable state forms from an initially random distribution of colour, consisting of homo-



geneous bubbles a few lattice units across. This is analogous to the equilibrium state

of the particle model, but forms much more quickly, and is not subject to fluctuations.

Hence the characteristic diffusivity of the model is zero.

The aim of this study is to produce models with very low finite diffusivity. To this

end, I combine the zero diffusivity model with the local linearised operator described

in Chapter 3. I define a number p between 0 and 1, such that a fraction p of the

colour at each site is reassigned according to the zero-diffusivity model, and a fraction

1 -p according to the local model. Thus setting p = 0 gives the local model, and

p = 1 the zero diffusivity model.

Diffusivity was measured for values of p from 0 to 1. The local model is considered

at the limit of its applicability (diffusivity eigenvalue of -1.95) so as to minimise the

amount of the zero-diffusivity model required and therefore also pathological effects

it may cause. Figure 4-1 shows values obtained at low p. The negative values are

an artifact of short run times, and will eventually approach zero. At higher values

of p the zero diffusivity totally dominates the random rearrangement, and the net

diffusivity is zero. Thus the algorithm is only interesting for low diffusivity systems

for p < 0.001 , when the measured diffusivity is small and positive. In physical

terms, this is the regime when the influence of the non-local model is too weak for

phase separation. These preliminary results clearly indicate a significant reduction in

diffusivity. However, further studies are necessary to determine the stability of this

combination and to ascertain that the behaviour is Fickian.
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FIG. 4-1. Mixed model behaviour.
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Chapter 5

Conclusions

The approaches presented here each have advantages over previous work in the field

of low-diffusivity lattice gases. The non-local lattice gas developed in Chapter 2

was demonstrated to produce lower diffusivities than achieved before. The non-

equilibrium fluctuations of the model are such that it will not be useful for studying

simple low-diffusivity systems, but could have application to specialised flows.

The lattice-Boltzmann model developed in Chapter 3 is directly comparable to the

previous lattice-gas work (the particular collision operators can be calculated for a

given algorithm), shows much cleaner numerical behaviour and is much more easy

to manipulate to achieve new physics. Further characterisation of the operator is

necessary in order to define other transport coefficients in terms of the eigenvalue

set, and to determine what effect the choice of eigenvectors has on the macroscopic

physics. However, this model will be useful for the simulation of mixing mechanics

over a large range of possible diffusivities.

Chapter 4 shows that it may be possible to reduce the lower limit of the diffusivity of

the local operator by the addition of a very small amount of a non-local model. While

this must be further characterised to confirm that, for example, Fickian behaviour

is realised, this seems to offer hope of increasing even further the parameter range

which can be simulated by the technique.



Appendix A

Circulant Matrices

We define an n x n circulant matrix A as

ao

an-1

an-2

a1

al

a0

an-1

a2

... an-1

... an-2

. an-3

... ao

(A.1)

Each row is equal to the previous row right shifted by one element. Such a matrix

can be defined on a basis of simple shift operators Fi. i is written

0 1 0 0 ... o

0

... O0

.. O

(A.2)r, =



We define Fi = 1, so that, for example,

0010 ... 0

0001...

F 2 = 0 0 0 0 ... 0 (A.3)

0 1 0 0 ... 0

and

r! = I, (A.4)

where I is the n x n identity matrix. It follows that the eigenvalues Ak (k=0 to n-l)

of all the matrices Pi are given by the nth complex roots of unity. Thus

Ak = exp(2xik/n). (A.5)

From this it is easy to show that the right eigenvectors of all the matrices ri are given

by the set of vectors

vk = [1, k, A , A, ... , An-1T, (A.6)

and the left eigenvectors by the set

uk = [1) ,An-k, 2 3 n-] (A.7)

Writing
n-1

A = aoI + aiti (A.8)
i=1

it is clear that these are also the eigenvectors of the circulant matrix, independent of

the individual elements a;.

We now extend this analysis to block circulant matrices, that is matrices of the

form

Ao A1  A2 ... A_-1

An- 1  Ao A1 ... An-2

B= A,_ 2 An-1 Ao ... An-3 (A.9)

A1 A 2 A 3 ... Ao



where the Ai are square matrices of dimension m x m, making the overall matrix of

dimension mn x mn. The following can be generalised for non-square sub blocks (see,

for example, [28]), but this is not required here. Making use of the matrix Kronecker

product, we can write this in the form

n-1

B = I 0 Ao + ~ rZ 0 Aj. (A.10)
i=1

By analogy with the simple circulant matrices, and setting m equal to two, we seek

right eigenvectors of the form

Vk = ([1,k, A;,A,)...A, n
-

1
] k [p, q] )T, (A.11)

and left eigenvectors

Uk [1 An-k) n-k -k) ... ,Aj] [r, s]. (A.12)

[p, q] and [r, s] are respectively the right and left eigenvectors of n-i1 A1 exp(2wik/n),

and in general will not be eigenvectors of the individual matrices A unless all possess

a common eigenvector. Hence, the eigenvalue problem is reduced from a 2n x 2n

determinant to n 2 x 2 determinants of the form

n-1

SA exp(2ik/n) - All = 0. (A.13)
i=O

Further details on circulant matrices can be found in reference [29].



Appendix B

The Collision Operator for

Collisions Independent of Colour

Consider each submatrix of the linearised collision operator acting upon each two

unit section of the perturbation vector. If we ignore colour we can compress this to a

scalar multiplication. We require that this multiplication should not depend on the

relative quantities of red and blue perturbation, only on their sum.

Consider the element (vi, 1i) acted upon by the submatrix wij:

W11 (12 Vi W11 V + W121 (B.1)

W 2 1 W22 j i W 2 1 Vi + W22i I

Thus for the scalar representation to be colourblind, we require (wn + w21)vi + (w12 +

w22 ) i to be a multiple of vi + tti. This implies

W11 + W 2 1 = W12 + w 2 2  (B.2)

We can rewrite w in a more symmetric form:

S= r+t s+t (B.3)
s-t r-t

where r, s and t are arbitrary numbers. This matrix has eigenvalues

A r s (B.4)



with corresponding right eigenvectors

(s + t,s - t), (1, -1)T, (B.5)

and left eigenvectors

(1, 1), (t - s, t$ s). (B.6)

We now construct the full collision operator from matrices of this form. As all

the submatrices have the left eigenvector (1, 1) and the right eigenvector (1, -1)T in

common, these are solutions to the eigen problem formulated in equation A.13. Thus

the operator has a set of six right eigenvectors

vk = ([1,A2, , , Af- 1] [1, _1])T ,  (B.7)

and six left eigenvectors

Vk = [1, AN-k, AN AN , N-] 0 [1, 1]. (B.8)

corresponding to the other set of eigenvalues. The left set include the eigenvectors

required for the momentum conservation equations 3.35 and 3.36, while the right set

include the eigenvectors required to define the diffusivity 3.53. Thus an operator with

such sub blocks fulfills all the necessary conditions for the analysis in Chapter 3 to

hold.
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