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Abstract

Harmonic analysis has been performed on the dataset of the past decade to study the
semiannual, annual and interannual variations of free air temperature (measured by
satellites with microwave sounding units (MSU)) and sea surface temperature (SST).
The results show that in the tropical region the semiannual harmonics of MSU, SST
and sea surface solar radiative flux have the maximum contribution to the percentage
of total variance. The phase of the semiannual oceanic surface solar radiative flux
in the tropic reaches its maximum in March/September while semiannual MSU and
SST harmonics get the phase of maximum in May/November. It is proposed that the
heating at the sea surface could be the driving force for the semiannual variation of
free air temperature of the tropical strip. But currently the data quality of the sea
surface latent flux is not good enough to prove such a proposition. Annual harmonics
are dominant in the middle and high latitudes but show an asymmetric structure in
the tropics, which indicates the atmospheric interactions between the Northern and
Southern Hemisphere. The interannual harmonics of MSU and SST mainly reflect the
El Nifio and Southern Oscillation phenomena, in which MSU data shows the increase
of free air temperature in the whole tropical strip when SST rises in the equatorial
eastern Pacific.
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Title: Professor of Meteorology
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Chapter 1

Introduction

1.1 Motivation

Annual and semiannual cycles are the dominant fluctuations in the seasonal varia-

tions of the earth's climate system. The yearly variation of the atmosphere has been

well analyzed and better interpreted than the half-yearly one. As is well known, the

seasonal change in the distribution of the solar radiation at the top of the atmosphere

plays the leading role in the external forcing of the earth's climate, and is responsible

for the direct driving for the annual and semiannual cycles. But the direct forcing

from the solar radiation is always complicated by the internal processes of the climate

system - the feedback effects between the atmosphere, ocean and cryosphere. It's still

unclear and hard to estimate how the internal forcing, such as the interaction between

ocean and atmosphere, contributes to the periodic cycle of the climate system. Fur-

thermore, the interannual and non-periodic fluctuations also interact nonlinearly with

the seasonal periodic cycles. For example, many researchers pointed out that the El

Nifio and Southern Oscillation (ENSO) phenomena are actually phase-locked with

the annual cycles (Rasmusson and Carpenter 1982; Meehl 1987).

To study seasonal and long-term atmospheric variations, the oceanic influence

must be taken into account. The oceanic energy flux (latent and sensible heat flux)

plays an important role in balancing the atmospheric energy budget. The correlation

between the seasonal and nonseasonal variations of the atmospheric free air tempera-



ture, sea surface temperature (SST) and oceanic surface heat flux has been analyzed

through regular empirical orthogonal function (EOF) methods by Hu, Newell and

Wu (1994) (it is referenced as the mode paper in the present thesis). Their results

show that the annual and semiannual cycles are dominant in the seasonal EOF modes

while the ENSO phenomena are the largest signal in the nonseasonal modes of free air

temperature, SST and surface solar heat flux. The heat flux from the ocean surface

leads to the amplitude reduction and phase lag of the annual cycle of the free air tem-

perature over oceanic areas. In addition, the increase of latent heat flux due to the

positive SST anomalies in the equatorial oceanic Pacific is responsible for the warmth

of the atmospheric temperature in the whole tropical strip. But it is unclear how the

semiannual cycle of the free air and oceanic surface temperature are linked to each

other. In the eigenvector analysis, the data field is split into spatial and temporal

parts. Only the dominant patterns are considered in the EOF analysis. But EOF

methods may not distinguish completely the variabilities at certain periodic time

scales. For example, in the second EOF seasonal mode of free air temperature (Hu,

Newell and Wu, 1994), both nonseasonal El Nifio modes and semiannual cycles are

involved. In the present paper, harmonic analysis, which is good at getting the phase

and amplitude of the pure sinusoidal cycles, is applied to study the periodic variations

of the atmosphere. Some comparisons will be made between the two methods.

The feedback process from the atmosphere always complicates the variations of

oceanic and atmospheric temperature. Corresponding to the SST enhancement, the

distribution of clouds and water vapor content in the atmosphere, as well as the

atmospheric circulation, would change. The radiative change caused by clouds and

atmospheric water vapor content could lead to significant change on both oceanic and

free air temperature. But such effects are hard to estimate due to the difficulties in

the measurement of cloud and atmosphere water vapor, which are closely related to

atmospheric convection with an hour-long time scale. Currently, it is still unclear how

much the feedback effect would be on the air temperature following the forcing of the

surface oceanic boundary. Thus, analyzing the patterns of the periodical variations at

yearly and half-yearly time scales, in addition to the interannual oscillations, would



be helpful in understanding the mechanisms of the interaction between air and sea.

1.2 Background study

The study of climate fluctuations from time scales of months to decades has been

expanded in the past two decades with the fast growth of global data coverage and

development of general circulation models (GCMs). Both seasonal and nonseasonal

(interannual) variations have been studied. Since the large thermal capacity of the

ocean provides a long term memory of the climate change, the interaction between

ocean and atmosphere has become one of the important issues in the climate study.

1.2.1 Seasonal variations

Different from the symmetric solar forcing at the top of the atmosphere, the seasonal

varations in the atmosphere always show asymmetries with latitudes (Van Loon and

Jenne 1969; Van Loon and Jenne 1970; Hsu and Wallace 1976a and 1976b). Before the

availability of long-term global data, the observational studies of climate variability

of the atmosphere were mainly limited to the radiosonde data at stations which are

mostly over the land while large remote oceanic areas are not covered. The studies

on the annual and semiannual cycles indicated that large semiannual variations are

found in the tropical and high-latitude polar regions. They are associated with the

astronomical cycle of the direct solar radiation. After calculating the harmonics of

the atmospheric wind and temperature at 600E-120 0 E, Van Loon and Jenne (1970)

proposed that the north-south movement of the upward branches of Hadley cells

causes the half-yearly fluctuations of the tropical atmospheric temperature.

With the development of GCMs and growth of atmospheric data coverage, the

decade long global-coverage data became available, such as real time European Cen-

ter Medium-Range Weather Forecasts (ECMWF) and National Meteorological Center

(NMC) grid-point products. The improvement of data coverage gave impetus to the

climate study on seasonal and interannual fluctations. Weichman and Chervin (1988)

compared long term NMC wind data with the results simulated by atmospheric GCM.



Their results showed that the atmospheric GCM captured well the features of annual

cycles but there are large discrepencies in the semiannual cycles. They also suggested

that an east-west circulation could exist in the tropics associated with the semiannual

cycle of clouds. Following Weichman and Chervin's hypothesis, Chen and Wu (1992)

derived the wave number one patterns after calculating the semiannual cycle of the

velocity potential and out-going longwave radiation (OLR) in the tropics. The corre-

sponding phase of the maximum of the semiannual cycle is in April/October. They

pointed out that the differential heating between the Asian-Australian (AA) mon-

soon hemisphere (60°E-120oW, ocean dominant ) and extra-AA monsoon hemisphere

(120°W-60 0 E, land dominant) induces the east-west circulation in the tropics. It sug-

gests that apart from direct solar forcing, the thermal forcing from the underlying

surface also drives the semiannual cycle of atmospheric circulation.

The asymmetric structure of the annual and semiannual cycles are also shown in

the seasonal EOF analysis (Hu, Newell and Wu, 1994). The first, second and third

seasonal EOF patterns for SST and oceanic surface solar flux, which show annual and

semiannual cycles in the time series, all have zonally asymmetric structures in the

tropics. The correlation calculation indicates that the annual variation of the air tem-

perature over ocean is one month lagged on the one over land. Obviously, to interpret

the atmospheric asymmetries, different surface forcing needs to be considered.

1.2.2 Nonseasonal variations

ENSO is one of the phenomena of most concern in the climate study of past two

decades. Its process has been well described by Rasmusson and Carpenter (1982) and

Deser and Wallace (1990). In term of the ENSO physical mechanisms, Bjerknes (1969)

proposed that the evaporative anomalies caused by the increase of SST in the tropical

east Pacific are the driving force on the shift of Walker circulation in the tropics as well

as the global climate variations. Based on Bjerknes's hypothesis, the sources and sinks

of the energy in the model simulations are specified or parameterized as a function

of SST anomalies or SST itself (Webster 1972,1978; Gill 1980; Lau 1985). General

states of the El Nifio phenomena have been produced by the model successfully, but



detailed comparison between models and observations are not plentiful due to the

insufficient simulation and the complexity of climate system (Barnett, et. al. 1991).

Many researchers have already shown the good correlations between the atmo-

spheric temperature in the tropics and SST in the equatorial eastern Pacific (Pan

and Oort 1983; Newell and Wu 1992). The increase of surface evaporation in the

coastal region of tropical eastern Pacific was proposed to explain the enhancement of

air temperature in the whole tropical strip (Hu, Newell and Wu 1994). The downward

motions of Walker cell are responsible for the temperature increase of the tropical zone

(Wu 1994, personal communication).

1.2.3 Atmospheric feedback processes

Atmospheric feedback processes on the oceanic heating source always causes the com-

plexity of the climate fluctuations. Ramanathan and Collins (1989) studied the cloud

forcing from the Earth Radiation Budget Experiement and concluded that the size of

the observed cloud net cooling is about four times as large as the expected radiative

cooling from a doubling of C0 2. Thus, a small change in the cloud-radiative forcing

can play a significant role as a climate feedback mechanism. Then associated with

ENSO phenomena, Ramanathan and Collins (1992) suggested that the upper-level

cirrus cloud from deep convection prevents the increase of SST. However, Fu, Rossow

and Del Genio (1992) argues that oceanic surface latent heat flux plays the main role

in buffering the increase of SST. Wallace (1992) also questioned about Ramanathan

and Collins's hypothesis and emphasized the importance of large-scale circulations on

the control of SST upper limits. In the mode paper, both radiative and ocean surface

evaporative cooling effects are important on the feedback of SST heating.

1.3 Goal and organization of the thesis

In the current thesis, the method of harmonics analysis is applied to the grid-by-grid

dataset. The decadal free air temperature, SST and surface oceanic flux data are

analyzed at both seasonal and nonseasonal time scales. It is attempted to find out



the driving factors on the variations of free air temperature and estimate the oceanic

effects on the change of atmospheric temperature.

The structure of the thesis will be organized as follows. Motivation and back-

ground study have been addressed in current chapter. Data sources and analysis

procedures will be given in chapter two. The amplitudes and phases for semiannual,

annual and interannual variations are going to be presented in chapter three. The

discussion is concentrated in chapter four with a focus on semiannual cycle. Chapter

five is the summary and suggestions of future work.



Chapter 2

Data Sources and Analysis

Approaches

2.1 Data sources

The free air and sea surface temperature data , as well as oceanic surface energy flux,

which is the linkage between air and sea surface temperature fields, will be used in

this thesis for calculations.

The data set of the tropospheric free air temperature is from the TIROS-N satellite

series Microwave Sounding Unit (MSU), which is channel 2 brightness temperature

during 1979-1992, with monthly 2.50 by 2.5' gridpoints. MSU channel 2 measure-

ments are dominated by vertically weighted air temperature through a deep tropo-

spheric layer. Its weighting function has a broad vertical distribution from the surface

to above 30kPa(see Figure 2.1) with peak between 50-70 kPa(Spencer and Christy

1990). The intercomparisons between radiosonde data and simultaneously operat-

ing MSU measurements reveal agreement to 0.01°C for monthly globally averaged

anomalies (Spencer and Christy 1990). At the 2.5' gridpoint scale the precision of

the satellite measurement also indicates good agreement with radiosonde data on

the monthly anomalies, with correlation coefficients from 0.94 to 0.98. MSU dataset

shows the characteristics of an integrated structure of free air temperature.
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Figure 2-1: Temperature weighting function of MSU data at channel 2 (after Spencer,
Christy and Grody 1990).



The oceanic dataset is from Comprehensive Ocean Atmosphere Data Set (COADS)

with a resolution of 20 by 20 for global coverage from 1949-1987, including SST, sur-

face wind, air temperature and moisture from the merchant ship measurements. Since

the current paper is going to focus on the semiannual cycle in the tropics, only oceanic

surface latent heat and solar flux, which both are the large term in the variation of

tropical SST budget equation, are used for the analysis (Hsiung 1986). The oceanic

surface solar and latent heat flux can be calculated through the bulk formula (Hsiung

1986):

Qsol = QoTr(1 - A)(1 -- 0.62c + 0.0019a) (2.1)

Qlit = PaLCeV(qs(Ts) - qa(Ta)) (2.2)

Where Q 01o and Qlat represent individually the oceanic surface energy flux of solar

radiative and latent heat flux. The meaning of other symbols can be found in Table

2.1. The cloud coefficient is taken from Budyko's atlas (1963), and the transfer

coefficient (Ce) for latent heat in the bulk formula was taken from Large and Pond

(1982). Instead of using constant coefficients as Bunker(1976) did, Large and Pond

revised the coefficient, which increases with wind speed and increases inversely with

vertical stability, indicated by the surface air and sea temperature difference. The

calculation of oceanic energy flux was done by Mr. Wu Zhongxiang and used to apply

the analysis in this thesis.

Because of the uncertainties in the bulk formula and marine observations, the

latent heat flux show relatively large error bars. As noted by Weare, Strub and Sauel

(1981), Cayan (1992), the only satisfactory way to estimate the latent heat flux is to

average over several samples. The random errors would be diminished by averaging

over space and time. Thus the long-term mean over large areas of ocean should be

more reliable. The non-random data errors, caused by biases in the bulk formula

and the change of instruments can not be reduced from averaging the monthly data.

But the non-random error bar in the anomaly fields would be partially reduced by

removing the monthly mean values. The error bar given by Hsiung (1986) is about



Table 2.1: Definition of symbols in the bulk formula
a solar noon altitude in degrees
E emissivity of water taken as 0.97

Pa air density
a Stefan-Boltzman constant
A albedo at sea surface taken from Payne (1972)
b the cloud coefficient taken from Budyko's atlas (1963)

Ce transfer coefficient for latent heat of evaporation taken from Large and Pond (1982)
C, specific heat of air
c cloud amount in tenths
e water vapor pressure

Qa specific humidity of the air
Q, saturation of specific humidity at Ts
Ta temperature of the air
T5 temperature of sea surface
Tr atmospheric transmissivity
V wind speed

10% to 20% for the monthly mean latent heat fluxes.

In the tropical ocean, the observational analysis is always bothered by insufficient

sampling. To the south of 300 S, there is almost no data. Approximations to the

missing data points were obtained by interpolation from the adjacent areas with

better data coverage. The observational data has been much improved in the past

decade through a series of oceanic and atmospheric experiments in the tropical ocean.

The oceanic data were mainly used during period of 1978-1987 to compare with the

simultanenous MSU data. In the calculation of the correlation among MSU, SST and

sea surface heat flux, each data set was interpolated to 5' by 5' grid points.

2.2 Analysis approaches

The harmonic analysis is performed in the time series of data fields (see Jenkins &

Watts 1968). Amplitude and phase representation in the current thesis are defined

in this form

n-1

s(t) = Ro + 2 E Rmcos(27rmft - 0m) + Rncos(27rft) (2.3)
m=1



where

Rm = A2m m = arctan( m) (2.4)
Am

and

Am = Rmcos(bm), Bm = Rmsin(om) (2.5)

Here n is one half of total discrete time periods N for certain discrete time series

s(t). Rm is the amplitude and Om the phase of the m harmonic relative to an arbitrary

origin time. Rn is the amplitude of the harmonics at one half of total time periods

N. f = 1/(NJ), 6 is the minimum sampling period. In the current thesis, all the time

series are adjusted to start from January. For all data sets the minimum sampling

data is month.

The variance is defined as

n-1

2 = 2 E R + R2 (2.6)
m=1

The contribution of each harmonic to the total variance can be calculated by 2*R2/ 2

(for m less than n).

Different from EOF analysis, harmonic analysis provides information on the power

and phase of the individual spectrum while EOF methods may mix annual and semi-

annual variance resulting from relaxing the requirement for representing the observed

data with a pure sinusoid. But eigenvector analysis has the advantage of more pre-

cisely defining the dominant patterns with nonsinusoidal oscillation. The requirement

for spatial and temporal orthogonality in eigenvector analysis could also cause the

differences from the results of harmonic analysis. The comparisons between the two

approaches will be given in next chapter.



Chapter 3

Harmonic Analysis of SST, MSU

and Oceanic Surface Energy Flux

3.1 Introduction

In the current chapter, the results of harmonic analysis on MSU, SST, Qzat as well

as Q,,o will be presented at semiannual, annual and interannual time scales. The

variations of zonal average will be given at the beginning and then variance in the

tropical region will be emphasized. EOF analysis on the same components is presented

in Hu, Newell and Wu's (1994) paper, in which annual and semiannual fluctuations

are dominant in the seasonal modes and ENSO phenomena are the largest signals

in the nonseasonal modes. Restricted by the orthogonal analysis, EOF method is

good at choosing the first several dominant patterns instead of picking up particular

fluctuations. Different from the eigenvector method, harmonic analysis distinguishes

the amplitude and phase of the different harmonics without mixing them. In this

chapter, monthly dataset is used for the calculation of harmonic analysis. All time

series are set to start in January. And the phase zero is defined as January 16 in

the current paper. The results from free air temperature(MSU) and SST data are

compared and the oceanic surface energy flux Q,,o and Qlat are also investigated in an

attempt to find the correlation between the two temperature fields. The discussion

will be carried on in the next chapter.



3.2 Latitudinal distributions of annual, semian-

nual and interannual harmonics

Harmonic analysis was applied on the zonal mean MSU, SST, Q,,o and Qiat time

series. The total variances of annual, semiannual and interannual (greater than and

equal to two years) harmonics are plotted in Figure 3.1. The amplitude and the phase

of annual and semiannual harmonics are given in Figure 3.2 and 3.3. Figure 3.4 shows

the ratios of semiannual to annual oscillations.

For interannual harmonics, the percentage of total variance is relatively large for

SST and air temperature in the tropics (20N-20S). The maximum percentage is about

50% for MSU and 30% for SST. The percentage of total variances contributed by Qlat

and Qo,, interannual harmonics are quite small for all latitudes, less than 10%. In

the middle and high latitudes, the contributions from SST and MSU interannual

harmonics have only a few percent.

The zonal distributions of the amplitude of annual harmonics (left column of

Figure 3.2) are asymmetric with the hemisphere. The amplitudes of MSU, SST

and Qlat in the NH middle latitude are twice as large as the ones in the Southern

Hemisphere(SH), which could be associated with larger land masses in the NH. The

phase of annual harmonics for each component is also plotted in the right column of

Figure 3.2. The time axis is labeled as 1=January 1; 2=February 1. For MSU, SST

and Qso,,, the phases of maximum for both hemispheres are in summer time while

the maximum of annual harmonics in the tropics occurs in the NH spring/autumn

time. For Q,,o, the phase of the maximum appears in June for NH 20N-70N and

December for SH 5S-47.5S. For the free air temperature, the maximum appears in

August for NH 20N-90N and February for SH 20S-90S. The date for the maximum

SST is about one month lagged on MSU. It is September in NH 15N-70N and March

in SH 10S-50S. Qlat has its maximum in winter, which is December in NH 15N-70N

and June/July in SH 15S-47.5S.

The amplitude and phase of semiannual harmonics are given in Figure 3.3. In the

tropics, the phases of maximum of Q,,o, SST and MSU are in the transition seasons



(spring and autumn). But Qlt (30N - 25S) has its maximum in June/December.

The maximum of Q,,o semiannual harmonics (25N - 25S) appears in March/August;

for both MSU (20N - 15S) and SST (25N - 25S), the maximum are at the end of

April/September. Although the amplitude of semiannual harmonic may increase with

latitudes, the percentage of total variance becomes much smaller in the middle and

high latitudes. The phase for the first maximum of semiannual oscillation also varies

latitudinally for different components. The maximum is in January/July for MSU in

the NH 25N to polar region . But in the SH middle and high latitudes, the phase

of MSU semiannual harmonic really varies. From 20S to about 45S, MSU has the

maximum in February/August. And the phase gradually changes to January/June in

the polar region. For SST, the phase of the semiannual maximum is February/August.

For Q,,, the phase of the maximum in the middle latitude changes to summer/winter

season in the polar region. In the NH middle latitudes, the maximum for Qlat is

April/October. But in the SH middle latitude, the phase of the maximum varies

from June/December in 20S to January/July in 40S.

The ratios of semiannual to annual amplitudes are shown in Figure 3.4. Values

greater than 0.20 are concentrated between 20N and 20S. In the middle and high

latitudes, the ratio is so small that the annual oscillations are dominant. The ratios

are also equatorial asymmetries. The maximum of the ratios of Qso,, Qiat and SST

are to the north of the equator.

3.3 Harmonic analysis results in the tropics

From the above calculations, we can see that semiannual and interannual harmon-

ics all play important parts in shaping the percentage of total variance curve in the

tropics. But in the middle and higher latitudes the annual harmonics are dominant.

Although the amplitude of semiannual harmonics is relatively large in the high lati-

tudes in contrast to the values in the tropics, its contribution to the total variance is

small (such as MSU). In the next sections, the total variance, amplitude and phase

of the maximum from semiannual, annual and interannual oscillations are mapped



between 40N-40S. The structure in the tropical area is stressed.

3.3.1 Maps of semiannual harmonics (40N - 40S)

Figure 3.5 shows the percentage of total variance as well as the amplitude and phase of

the maximum from the MSU semiannual harmonic. The semiannual MSU oscillation

represents 15% of total variance in the tropical west Pacific, the tropical Atlantic and

the eastern part of South America (Figure 3.5a), but less than 5% in the tropical

central Pacific and subtropics. The amplitude of MSU semiannual harmonic (Figure

3.5b) is about 0.1C00 in the tropics, 20N-20S. In the subtropics the amplitude is larger

than that in the tropics but the percentage of total variance is smaller. The phase

of the maximum of MSU semiannual harmonics in the tropical central and eastern

Pacific (Figure 3.5c) seems to suggest the influence from North America . In the

tropics, the phase of MSU first maximum is May in most of the Indian and Pacific

Ocean and April in South America, Atlantic and Africa.

The percentage of total variance of SST semiannual oscillation is longitudinally

asymmetric. The percentage is 50% in the Northern Indian Ocean and 20% in the

tropical west Pacific (Figure 3.6a). In the other areas, the percentage contributed by

semiannual harmonics is less than 10%. The amplitude (Figure 3.6b) in the northern

Indian monsoon region has its maximum 0.7C. In tropical west Pacific and eastern

Atlantic the amplitudes are only 0.2 - 0.3C. The phase of the maximum of SST

semiannual harmonic is in May/June (November/December) in most tropical areas

(Figure 3.6c). But the phase of the maximum in the southern eastern Pacific varies

a lot, in which the oceanic upwelling is a dominant term in the SST heat budget.

The large contributions of Qso,, semiannual oscillations are mainly concentrated in

three areas: northern Indian Ocean, tropical west Pacific as well as tropical Atlantic

(Figure 3.7a). The total variance is more than 25% in those regions. In the tropical

central and eastern Pacific the semiannual harmonic only represents 5% of the total

variance . The amplitude of Qo,, semiannual harmonic (Figure 3.7b) is greater than

10 W/M2 in the western Pacific and Northern Indian Ocean. The phase of Q8 oi

(Figure 3.7c) has the maximum in March(September) in the tropical Indian Ocean,



central Pacific and Atlantic, and April (October) in the tropical west and east Pacific,

northern and southern Indian Ocean.

The percentage of total variance of semiannual Qlat harmoincs (Figure 3.8a) also

shows large zonal asymmetry in the tropics, with relatively large contribution in the

northern Indian Ocean, tropical monsoon region and tropical eastern Atlantic. The

largest amplitude of semiannual Qlat (Figure 3.8b) is in the northern Indian ocean

with the maximum phase in January/July, which is not in phase with SST semiannual

peaks in May/November. In the other tropical areas, the phase for the first maximum

of semiannual Qlat (Figure 3.8c) varies from March to June. Would the variations of

semiannual Qlt be caused by the oscillations of oceanic surface wind? The percentage

of total variance from semiannual harmonics of oceanic surface wind speed (Figure

3.9a) has the similar pattern as Qjat in the Indian monsoon and tropical west Pacific.

The large amplitudes of semiannual harmonics of surface wind speed also show in the

same region (Figure 3.9b). But the phase of the first maximum of semiannual surface

wind speed (Figure 3.9c) shows large discrepancies with the phase of the maximum

of semiannual Qit, even in the Indian monsoon and topical west Pacific.

3.3.2 Maps of annual harmonics (40N - 40S)

The percentage of the variance contributed from the MSU annual harmonic is more

zonally symmetric in the tropical and subtropical regions(Figure 3.10a). It varies from

10% to 30% in the equator. It is less than 10% in the tropical central Pacific and

eastern South America. It implies that there is less communication on the annual

oscillations between NH and SH in those areas. To the north of 20N, the annual

harmonic represents above 90% of total variance; and to the south of 20S, MSU

annual harmonic represents 40-80% of total variance. The large gradients of total

variance from annual harmonics are located in the subtropical region. Generally, the

amplitude of MSU annual harmonic is about 0.5C00 in the tropics (Figure 3.10b).

But the amplitude in the tropical west and central Pacific and tropical eastern South

America is very small(less than 0.1oC). In the NH, the amplitude of annual oscillation

and its gradients are larger than those in the SH. The phase of annual harmonic



(Figure 3.10c) has no symmetric zonal distribution in the tropics, ranging from March

to July. In the tropical central Pacific(180-140W) and South America(70W-40W),

where the amplitude of annual harmonic is very small, the phase of the maximum of

annual harmoinc has large longitudinual transition from March/April to June/July.

Over the tropical west Pacific, the phase of MSU annual harmonic has the maximum

in March while over the equatorial Indian Ocean and Atlantic, the annual oscillation

shows its maximum in April/May.

For SST, the percentage of total variance from annual harmonic (Figure 3.11a)

is relatively zonally symmetric in the tropical oceans. But in the equatorial central

Pacific the percentage of total variance reaches smallest value (less than 10%). The

amplitude of SST annual harmonic (Figure 3.11b) is about 0.5°C in the topics and

increases poleward. The phase of SST annual harmonic (Figure 3.11c) shows the

maximum SST occurs in September in NH middle latitudes and March in SH middle

latitudes. In the tropics the phase of the maximum transits from March in the

SH to September in the NH. The phase of SST annual maximum shows equatorial

asymmetric, which is close to the SST seasonal EOF #1 mode (Hu, Newell and Wu,

1994).

The percentage of total variance contributed by the Q,,o annual harmonic de-

creases equatorward (Figure 3.12a). Q,, annual harmonic only contributes 10-20%

of the total variance in the tropical Pacific and Atlantic. The amplitude of Qso

(Figure 3.12b) shows zonally symmetric distribution. But the phase of the annual

harmonic (Figure 3.12c) shows the longitudinally asymmetric structure. In the trop-

ical east Pacific and east Atlantic, the phase of the maximum is in March-May. In

the tropical west and central Pacific, the phase of maximum distributes more zonally,

varying from November in the SH to July in the NH. In the central Indian Ocean,

the dominant phase of the annual Q,,o maximum is in March.

The percentage of total variance and the amplitude of Qlat annual harmonic(Figure

3.13a & b) are similiar to the pattern of seasonal EOF #1 in the mode paper(Hu,

Newell and Wu, 1994), with large weightings in the west oceanic areas of the middle

latitudes. In the tropics, the amplitude is about 4-8 W/M 2 . The phase of the max-



imum (Figure 3.13c) is zonally asymmetric in the tropics, varying from February to

October. In the NH middle latitudes, the maximum phase in the west Pacific and

Atlantic is in December, which is consistent with EOF results. The percentage of

total variance and amplitude of the annual surface wind speed (Figure 3.14a,b) have

more complex structures than the Qlat patterns in the tropics. The amplitude of

the annual harmonics of oceanic surface wind speed has large values in the northern

Pacific and Atlantic, and the Indian monsoon regions. The phase of the maximum of

oceanic surface wind (Figure 3.14c) is not in phase with the Qiat annual oscillations.

3.3.3 Ratios of semiannual to annual variations (40N-40S)

Though the zonal mean semiannual harmonic of Qo,, exceeds the annual harmonic in

the tropics, the semiannual harmonics do not dominate everywhere in the equatorial

regions. The ratio of semiannual to annual amplitude for each component is plotted

in Figure 3.15. For SST, Qsoi,Qzat, and oceanic surface wind speed, the ratios greater

than one are mainly in the tropical west Pacific and northern Indian Ocean (Figure

3.15b,c,d,e). Semiannual MSU oscillations are mainly greater than the annual ones

in the three areas: tropical west Pacific, tropical central Pacific and eastern South

America (Figure 3.15a). As is shown in the last section, the MSU annual oscilla-

tions have very small contributions in the tropical central Pacific and eastern South

America.

3.3.4 Interannual harmonics (40n-40S)

The percentage of total variance of the interannual oscillations (greater than two

years) for each component is shown in Figure 3.16. The largest values are mainly

concentrated in the tropical Pacific. The MSU interannual harmonic (Figure 3.16a)

contributes more than 10% of total variance in the tropical belt, with the maximum

greater than 50% in the tropical middle and east Pacific. The interannual SST har-

monics (Figure 3.15b) contributes about 20% of total variance in the middle and east

Pacific. But there is about 10% in the tropical Indian and west Pacific ocean. The



interannual harmonics of Q,,o represents about 10% of total variance in the tropi-

cal west and central Pacific but less than 10% in the other tropical regions(Figure

3.16c). For Qiat (Figure 3.16d), the largest percentage of total variance from interan-

nual harmonics is 10% in the tropical east Pacific. The contribution from interannual

harmonics of oceanic surface wind speed is larger than 10% in the tropical middle

and east Pacific.

In the mode paper by Hu, Newell and Wu(1994) the results show that Qlat and

SST are well coupled with MSU varaitions in the tropical east Pacific but not in the

west Pacific. It seems that the evaporation in the small region of tropical east Pacific

causes the change of the air temperature in the entire tropical strip. There is no

direct surface latent heat linkage between free air temperature and SST in the other

areas.
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Figure 3-5: (a) The percentage of total variance for MSU semiannual harmonics (40N-
40S) during 1979-1992. (b) The amplitude of MSU semiannual harmonics (40N-40S)
(c)The phase of MSU semiannual harmonics (40N-40S) during 1979-1992. The phase
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Figure 3-6: (a) Same as Figure 3.5a but for SST during 1978-1990. (b) Same as
Figure 3.5b but for SST during 1978-1990. (c) Same as Figure 3.5c but for SST
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Figure 3-10: (a) The percentage of total variance for MSU annual harmonics (40N-
40S) during 1979-1992. (b) The amplitude of MSU annual harmonics (40N-40S).
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Figure 3-11: (a) Same as 3.10a but for SST during 1978-1990. (b) Same as 3.10b but
for SST during 1978-1990. (c) Same as 3.10c but for SST during 1978-1990.
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Figure 3-12: (a) Same as 3.10a but for Qso, during 1978-1990. (b) Same as 3.10b but
for Q,,s during 1978-1990. (c) Same as 3.10c but for Qso during 1978-1990.
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Figure 3-13: (a) Same as 3.10a but for Qiat during 1978-1990. (b) Same as 3.10b but
for Ql-t during 1978-1990. (c) Same as 3.10c but for Qiat during 1978-1990.
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Figure 3-15: (d) Ratio of semiannual to annual amplitudes for Qzat (40N-40S). (e)
Ratio of semiannual to annual amplitudes for oceanic surface wind speed (40N-40S).
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Chapter 4

Discussion of Harmonic Analysis

Results

The results of harmonic analysis at different time scales have been presented in the

last chapter. We may ask what causes the semiannual oscillations of free air tempera-

ture and SST. What are the oceanic effects on the variations of free air temperature?

What's the reason for the zonally asymmetric structures in the tropics? In this chap-

ter, the above questions will be discussed. The physical reasons for the semiannual

cycle will be stressed.

4.1 Semiannual harmonics

4.1.1 Semiannual harmonics in the tropics

Solar radiation provides the source energy for the climate system. The substantial

semiannual radiative forcing in the tropical area(Figure 3.1) (63% of the total vari-

ance) indicates the likelihood of a semiannual response in the tropics. From MSU

data, the phase of semiannual harmonics of free air temperature (Figure 3.5c) mainly

shows the tropical strip pattern with the maximum in May/November. There is an

exception in the central northern Pacific area where the phase of the maximum of

the semiannual oscillation is January-February (July-August), which stretches from



the North America. But the percentage of total variation of semiannual harmonic is

very small in the tropical central Pacific, less than 5%.

What causes the semiannual oscillation of free air temperature? The phase of the

maximum of Q,,o semiannual oscillation in the tropics (Figure 3.7c) is March/October,

which is coherent with the phase of the equinox of solar orbit. But the maximum

MSU semiannual cycles occurs in May/November, which is about one or two month

lag with the semiannual cycle of tropical solar radiation. It implies that the short-wave

and near-infrared heatings by the atmospheric water vapor and C02 do not cause the

coherent response of the semiannual cycles of free air temperature. How about the

indirect heating caused by the atmospheric circulation? Van Loon and Jenne (1970)

described the semiannual component for the tropospheric air temperature between

600 E and 120'E. They suggested that the half-yearly variation in the equator is linked

with the rising branch of the Hadley circulation which crosses the equator twice a year.

With the upward motions of the Hadley cell moving to the equator, the equatorial

tropospheric atmosphere is heated by the release of the latent heat. But their results

is only a regional feature. The tropical region between 60°E-120°E is an area with

intensive cumulus convection related to the Asian and Australian monsoons. In fact,

the tropical atmosphere sustains an asymmetric structure for the semiannual mode

of the divergence circulation (Chen and Wu, 1992; Weickmann and Chervin 1988),

which reveals that a differential response of the atmosphere to the solar heating

exists between the land and water dominated hemispheres. Chen and Wu suggested

that the land dominated hemisphere (120°W-60 0 E) has a quicker response to the

equatorial solar heating with the maximum semiannual phase in April/October for

outgoing longwave radiation (OLR) and velocity potential while the water dominated

hemisphere (60 0 E-120oW) shows the phase of the maximum of the semiannual cycle

for the two components in January/July. In their results, the phase of the maximum

of the semiannual modes in the whole tropics is April/October, which is consistent

with that in the land dominated hemisphere. But the whole strip of the free air

temperature varying at half-yearly cycle acts coherently and there is no difference

between the land and water dominated hemispheres. Obviously, it is hard to explain



the tropical symmetric strip structure of free air temperature from the asymmetric

divergence circulations in the tropics. In the Asian-Australian monsoon dominated

hemisphere(60oE-12 0 'W), the OLR negative anomalies (which shows the positive

latent heat release in the atmosphere) appear in January/July for the semiannual

cycle, while free air temperature in the same region doesn't show the positive peaks

at the same time.

What causes free air temperature varying coherently in the whole tropical zone

with the maximum phase in May/November? SST shows its maximum semiannual

phase in May/November everywhere (Figure 3.6c). In the mode paper, the authors

pointed out the similarity between semiannual Q,,o and SST patterns and suggested

that Q,,o could be the driving force on the semiannual variances of SST. SST is about

two months lagged on Q,,o in the tropics. The semiannual SST variation at the surface

could be the forcing for the semiannual cycles of free air temperature. But from the

Qlat data used in the current paper, the data shows some patchy structure. The first

maximum for semiannual Qlat varies from April to June in the tropics (Figure 3.8c).

There is no consistent phase patterns.

4.1.2 MSU semiannual harmonics in the middle and high

latitudes

The total variance of MSU semiannual harmonics represents a small part of total

variation in the middle and higher latitudes, where the annual oscillations are domi-

nant. The zonal averaged MSU value shows that the phase of semiannual harmonic

in the southern hemisphere changes gradually (30S-70S) from May/November in the

tropics to July/January in the higher latitudes (Figure 3.3). But in the NH, the phase

of the maximum changes more abruptly around 20N between the one in tropics(0-

20N) (May/November) and the one in the middle and high latitudes(30N-90N) (Jan-

uary/July). Van Loon and Jenne(1970) proposed the air temperature semiannual

cycle could be related to the jet stream, which is associated with the poleward arm of

the Hadley circulation. According to the thermal wind relationship, tropospheric up-



per level wind could be closely related to the free air temperature variations. Future

work needs to be done on the variations of the tropospheric upper level wind. Cur-

rently, it is hard to give reasonable physical answers on the phase difference between

NH and SH.

Compared with the zonally symmetric structure of MSU semiannual harmonics,

the patterns of the semiannual harmonics of SST and surface heat flux are rather

asymmetric. In the Indian monsoon region and tropical west Pacific, the percentage

of total variance contributed by the semiannual oscillations are relatively larger than

the ones in the other region. From the phase differences among Qlat, SST and oceanic

surface wind speed(Figure 3.6c, 3.8c and 3.9c), it seems that the variations of semi-

annual Qzat are not only dependent upon the change of SST or oceanic surface wind

speed. The combined effects from SST and oceanic surface wind effects, as well as

the variations of atmospheric humid fields at the ocean surface, should be considered

to estimate the Qlat change.

4.2 Annual and interannual harmonics

In the tropics, the percenatge of total variance of the annual harmonic reaches the

minimum. The phases of annual harmonics are in the transition seasons(spring or au-

tumn) for MSU and SST. The percentage of total variance and phase of the maximum

of annual MSU and SST are both longitudinally asymmetric. In the remote equato-

rial central Pacific the annual oscillations for both SST and MSU have the smallest

values. The phase distribution of SST annual maximum skews northeastward in the

equatorial central and eastern Pacific and equatorial Atlantic. The phase of Q,,o an-

nual maximum shows the phase difference in the eastern side of Pacific and Atlantic,

where it is least cloudy in May or March. In the current analysis, the patterns of total

contribution and amplitudes of annual harmonics between SST and Q,,o are close to

each other. In the analysis of EOF results (Hu, Newell and Wu 1994), the annual

patterns between SST and Q,,o are also similar. It was proposed that the asymmetric

pattern of SST may be mainly caused by the asymmetrics of Qso,. But the phase



distribution in the eastern Pacific and Atlantic seems to suggest the less correlation

between SST and Q,,o in these areas, where upwelling is a dominant factor on SST

in the eastern ocean.

Tropical strip pattern for MSU interannual harmonics is shown clearly in the maps

of its total variance (Figure 3.16a). It is mainly associated with the SST ENSO pat-

tern in the tropical central and eastern Pacific. Comparing with the total variance

of MSU and SST, the contributions from the interannual Qlat and Q,,o are relatively

small. For Qlat, the total variance greater than 10% is situated in the equatorial east-

ern Pacific (Figure 3.16d). But the evaporation released from this area is responsible

for the atmospheric heating in the entire tropical strip(Hu, Newell and Wu 1994). The

10% contour from the total variance of Q,,i interannual harmonic is mainly in the

western and central Pacific, which is not as clear as the nonseasonal Q,,o EOF results

which indicates the enhancement of convection in the equatorial central Pacific.



Chapter 5

Concluding Remarks and Future

Works

5.1 Concluding remarks

The main results from the the harmonic analysis and discussion are summarized in

the following:

* The zonal mean semiannual harmonics have a large percentage of the total vari-

ance in the tropics. The zonal mean Q,,o shows that the semiannual harmonic

represents 64% of total variance near the equator. SST semiannual harmonic

has about 20% of total variance. And the semiannual harmonic of MSU con-

tributes 12% of total variance in the tropics. For Qlat, the semiannual variance

has only 10% of total variance.

The phase of the semiannual harmonic for each component varies in the tropics.

The maximum phases for SST and MSU are mainly in May/November while Qo0
shows its maximum in March/September. The phase difference between Qso0

and MSU suggests no coherent response in the atmospheric free air temperature

caused by the direct solar radiation. The large heat capacity in the ocean could

be the explanation for the semiannual SST cycles being two months lagged on

the direct solar radiative forcing. It is proposed that SST forcing could be the



reason for the semiannual cycles of free air temperature in the whole tropical

strip.

The semiannual oscillation becomes less important in the total variance in the

middle and high latitudes where the annual cycles are dominant. The phase

of semiannual oscillations for free air temperature and SST changes to winter

and summer time, which causes the maximum temperature in the summer to

be sharper than the minimum in the winter (White and Wallace, 1978).

* Annual harmonics also show equatorial and longitudial asymmetries. In the

tropical western and central Pacific, and equatorial eastern Pacific, the MSU

annual variations has a small value (less than 10%). For SST, the total variance

of the annual harmonics can also reach less than 10% in the tropical central

Pacific.

* ENSO signals have a large effect on the tropical MSU. The total percentage

of MSU interannual variations in the tropics is about 30% in the tropical west

Pacific to 60% in the tropical central and east Pacific. For SST, Qlat and Qlat,

the large interannual variations mainly occur in the tropical central and east

Pacific, which are associated with ENSO phenomena.

5.2 Future works

Although the SST semiannual cycles at the surface boundary is proposed to be the

cause for MSU semiannual oscillations in the tropics, future studies need to be done

to show why it is hard to see the direct linkage with the oceanic surface latent flux.

The interaction between air and sea has been mainly discussed at the annual and

interannual time scales. The physical picture is still not clear at the semiannual

modes.

Zonally asymmetric structures are shown clearly in the harmonics results of the

tropical data though the solar radiation at the top of the atmosphere is totally zonal

symmetric. Even MSU data shows a tropical strip structure in the different kinds of



harmonics, but its amplitude still varies zonally. What causes the equatorial asym-

metries? Is it due to the difference between land and sea at the tropical surface or

even caused by the different eddies forcing between NH and SH?
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