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ABSTRACT

Flame Spread Through a Solid Fuel
by
Frank R. Steward

Submitted to the Department of Chemical Engineering on September 9, 1962
in partial fulfillment of the requirements for the degree of Doctor of
Science.

An investigation was made to increase the understanding of natural
fire spread through solid fuel. The investigation included three not
wholely connected parts, theoretical and experimental. I. The rate of
fire spread over a horizonal surface covered with each of two types of
fuel, shredded newspaper and computer punch outs, was measured for several
humidities with various rates of artificially controlled irradiation from
an external source. The results were interpreted by a mathematical model
suggested in the Woods Hole Summer Study Fire Report. II. The flux den-
sity of radiation was measured around line fires of methane and propane
on a perpendicular surface. The results compared favorably with intensity
profiles based on the simplified model of a uniform temperature gray gas
wedge of slope 0.25 calculated on the TO9 and TO90 computors at the
M. I. T. Computation Center. Additional calculations were made to obtain
the intensity profiles on a perpendicular surface around an infinitely
long uniform temperature gray gas rectangular parallelepiped over a wide
range of heights and widths. IIT. Some flame heights of the propane and
methane line fires were measured visually. They compared favorably with
circular buoyant flame heights reported in the literature.

Some consideration was given as to how the various mechanisms of
heat transfer can be estimated in a full scale fire so their relative impor-
tance can be evaluated by the suggested mathematical model.

Thesis Supervisors: Hoyt C. Hottel
Professor of Chemical Engineering

Glenn C. Williams
Professor of Chemical Engineering
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SUMMARY

An investigation was conducted to increase the understanding of
natural fire spread through solid fuel. The work consisted of both

experimentel results and theoretical analysis.

The Woods Hole Summer Study Model (32) of an infinitely long line
fire spreading through a uniform fuel bed discussed in Section 2-4 is
considered to offer the best analysis for steady state fire spread et
the present time. The form is general enough in order thaf any new ob-
servation can be included. It can also be used as a basis for deter-

mining future work to fill in missing information.

The three equations for the Woods Hole Summer Study Model are:

1. An energy balance on the unburned fuel,

| QV = Q/L)B + Q/L)R + Q/L}c - Q/L)L 2-23

the right hand elements of which represent different modes of heat flux
to bring the fuel to ignition, operating over the fuel bed and extending
from infinity to the flame front.

Q/L)_ is the radiation flux through the plame of ignition of the

B
fuel from the embers below the gas flame.

Q/L)R is the integrated radiation rate from the overhead flame
into the fuel.
Q/L)  is the integrated convective heat transfer rate from the

burning gases to the unburned fuel.
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Q/L)L‘ is the integrated rate of convection hest loss from the un-

burned fuel.

Q is the net energy required tc produce piloted ignition.

v is the rate of fire spread.

2. A burning law,
E : :
V\QCV = 6 [Q/L)R + Q/L)I 2-28
which says that the heat liberation rate by burning (1.n.s.) is propor-

tional to the heat input rate to the burning solid fﬁel bed.

1 4
Q/L)g is the integrated radiation rate to the burning fuel.

Q/L); is the integrated internmal heat generation rate in the
burniné fuel.

is the heat of combustion of the fuel.

O

is the loading density of the fuel.

is the fraction of fuel burned as the flame'passes.

T

is a constant of proportionality between the chemical energy
in the gases liberated during decomposition of the fuel and

the heat absorbed by the fuel.

3. A determination of the flame height,

is the flame height.
is the width of the flame base.

VQ/L is the integrated chemical energy liberation rate =

8(y/n)y + /) o
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The results of this study have determined the form and importance

of some of the terms in the above equationms.

The experimental work of this thesis can be divided into three
parts. The first part consisted of measuring the rate of spread of a
line fire over several fuels (Figure 3-1a). The rate of fire spread
over shredded newspaper was measured for different loading densities
(Figure 3-2), different rates of external radiation supplied by elec-
trically heated wires (Figure3-3), and several humidities (Figure3-6).
The data indicate that‘after the surface is fully covered (about four equi-
velent layers when randomly distributed) the rate of spread is independent
of the loading density. The importance of the effect of radiation can be
shown from equation 2-23. On the assumption that the energy per unit
area required for ignition, Q.i s 1s proportional to the time of heating to
the + power or is equal to Q, (Vb/V)% (discussed in Section 3-4), and that

radiation through the bed, Q/L)B, may be neglected, equation 2-23 becomes

wAh o 1 [Q/L)R - Q/L)L] + QL) 3L

% Vot % Yo N
A plot of fire spread velocity to the three-fourths power vs. the integrated
external radiation rate minus the integrated heat loss from the fuel should
give a straight line. Unfortunately the heat loss at the surface is not
well known or easy to obtain. Using the solution of the conduction equa.-
tion with external radiation on the surface of a solid as a function of

time (6), it is shown in Section 3-4 that a good estimate of this rate of

heat loss is
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4/3
Q/L), = K [ Q/L)g ] / 3-13
>3

A plot of the rate of fire spread through shredded newspaper to the

3/4 vs. the integrated radiation rate minus K(Q/L)R/v %)h/3 for dif-

ferent K's is shown in Figure 3-5. The proper K should give a straight
line.- Figure 3-5 indicates that a large amount of the impinging exter-
nal radiation is lost (about 4/5). The small change in curvature with
the increase in K makes thils only approximate. The slope and inter-
cept of the line in Figure 3-5 give the ignition energy and the inte~
grated convective heat transfer rate. The convective heat transfer
rate was found to be 9k.0 Btu/hr-ft (0.224 cal/cm-sec) which makes it
an important mechanism. The ignition energy was found to be a function

of hunidity as shown in Table 3-l.

Table 3-1
Humidity % Q Btu/rt2 Qucal/cm?
B Based on a
27 1.94 0.53 velocity V,
37-39 2.19 0.60 of 60 ft/hr
4T7-49 2.40 0.65

Additional runs were made with computer cards as fuel. The re-
sults for two different fuel sizes are shown in Figure 3-8. The energy

for ignition for this fuel was found to be 9.0 Btu/ft2 (2.4 cal/cma) for

the more finely divided fuel and T.5 Btu/fta (g,o cal/cme) for the fuel
cf larger particles. Some exploratory runs were made to find the effect

of wind on the rate of fire spread through the shredded newspaper with a



wind generator described in Section 3-7. The results shown in Figure 3-12
indicate that a 3.5 ft/sec wind velocity increases the rate of spread three

fold underlining the importance of wind in fire spread.

The second part of the experimental work consisted of measuring
the flux density of radiation around methane and propane flames (Figure
5-1). The original data are shown in Figures5-2 and 5-3. The data were
taken from flames only two feet long and’a correction was necessary to
estimate the radiation from infinitely long flames by using exchange
factors from gray gas wedges. The corrected data for infinitely long

flames are shown in Figures 5-5 and 5-6.

The distribution of radiation on a horizontal plape on either side

of an inverted gray gas wedge is shown in Section L-T to be given by

aE = _(1-e |1 (x/7) Y
L dx 2 V 1+ (x/2-a)°

In the above expression gs is the direct exchange area, which when multi-
plied by the difference in black emissive pdwers of the gas and surface
gives the net-flux. The bracketed term represents twice the exchange area
for the case of a black flame. Z is the flame height,vx is the horizontal
distance from the flame base to the surface element, and "a" is the slope
of the flame wedge. The burden of making the result fit the rigorous solu-
~ tion is put on the exponent B in the expression giving the "effective emis-
sivity, (1—e;BZ'). Z' is the product of the flame height Z and the absorp-
tion coefficient k' and B is the ratio of the mean beam length to the

flame height, given in Figure L4-12 for a=0.25.
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If the flame is well approximated by a gray gas wedge a plot of the
experimentally determined surface flux density due to flame radiation di-
vided by the flame emissivity, (1-emBZ“), vs. the distance from the flame
over the flame height should give a single curve. This plot is shown in
Figure 5-T7, based on use of all the data of Figures 5-5 and 5-6, together
with & mean absorption coefficient determined by total radiation measure-
ments on a laminar luminous flame with and without a mirror behind; k' was

1

2 and 10 £t~ for methane and propane respectively. The solid lines repre-

sent the distributions around gray gas wedges of 1260°F for propane. Near

its base the flame is not wedge shaped.

The third part of the experimental work consisted of measuring the
flame heights of the line methane and propane fires. Dimensional analy-
sis or modelling principles indicate that the ratio of the flame height,
H, to the base width,W, should depend on a group containing, (Q/L)z/ﬂvs,
where Q/L is the heat liberation rate per unit horizental flame length.
The date are shown in Figure 6-2 along with some data of Thomas, Webster
and Raftery (31) for fires of circular and cubical fuel beds. The data
compare favorably when the radius and width are used for circular and line
fires, respectively, as would be expected if they are to be compared at an
equal mean hydraulic radius. The data indicate the flame height of line

fires over a useful range where natural fires occur is given by

2 c
H =\, L 6‘“53
w Y[ a3 ] -

The exponent c is between 0.33 and 0.40 in the useful range.
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The distribution of radiation around gray gas rectanguiar parallele-
pipeds and wedges of infinite length was calculated on T09 and TO90 compu-
ters. The results are shown in Figure 4-8(a-h) and 4-11 respectively. The

in
methods of calculation are discussedAChgpter 4,

Returning to the Summer Study Model, it is now possible to discuss

the knowledge available for each term in equation 2-23, 2-28 and 2-29.

The heating of unburned fuel by radiation from the embers in the
fuel bed beneath the gas flame, Q/L)B, is readily amenable to theory.
It was shown in Section 2-4 to be

-]
Q/L)B = j a'b UTf lPe"a"xdx = o'Tfl'b 2-17

0
where a' is the reciprocal mean path length for radiation through the

randomly placed fuel and b is the height of the fuel bed.

Obtaining the radiation from the overhead flame Q/L)R, has been

one of the major endeavors of this work. When no wind is present the

radiation from the flame can be well approximated by

o0
o

428 | ax -2
L dx ) T

where d E8/L dx is the exchange factor given by either the gray gas wedge
or the rectanguvliar parallelepiped exchange factors from Figuresgimll and
4-8(a~h) respectively. Tf is the average gray gas temperature which accord-
ing to measured flux densities around propane and methane flames (Figure 5-7)

0

is about 1200°F.

The convective heat transfer at the flame front, Q/L)C’ is undoubtedly

the most elusive for quantitative treatment. In this work values of 94.0

Btu/hr-ft for shredded newépaper fuel and close to zero for the computer
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punch out fuel were found in the absence of wind. In an exploratory ex-
periment a wind velocity of 3.5 ft/sec caused nearly a three-=fold increase

in the rate of spread over calm conditions. This means a corresponding

increase in the convective heat transfer.

The heat loss from the umburned fuel as it preheats, Q/L)L, is also
a strong function of fuel type. However, it is believed that the treat-
ment of this term in Section 3-k4 by relating it to the other heat transfer
rates, is a promising start. Although fuel beds with significant air spaces

would complicate matters a workasble relation may still be found.

The energixrequired to produce ignition, Qi’ hes been determined in
this work for fuel beds of shredded newspaper and computer cut-outs. For
the newspaper it was found to decrease with humidity by approximately 10%
for a 10% decrease in humidity. This is about one third more than would
be expected if the change is based on the increase in the heat necessary
to reach a fixed ignition temperature. However, until other data over a
wider range of humidities becomes available it is recommended that the

following relation be used:

1
. i ; ) .
Q = K ( VVO) Q (op (Tf.'ra)+ MAH ) 7-3

where Q,0 is the ignition energy at V,, Ty is the ignition temperature,
M is the moisture content of the fuel, AH is the latent plus sensible heat
of water, and K" is a characteristic of fuel type to be determined by ex-

periment.

The radiation heat transfer to the burning fuel, Q/L)é , can be

handled in the same ménner as the flame radiation to the fresh fuel.
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The heat generation in the bed itself, Q/L)i , has not been studied in

this work.

The relation between the flame height‘and‘the burning base width

and the heat liberation recommended in Se:tion 6-k is

B S ;0 6-53
w 3

where ¢ is between 0.33 and 0.40 and ¥is a slight function of fuel type.

This relation seems well enough established to be used with confidence.

It is believed that the functions for equations 2-23, 2-28 and
2-29 are sufficiently well known to justify their numerical solution on
“a computer. There are still many problems to be studied, particularly
the evaluation of the shift in relative importance of the different
terms which appear in the equations of the model when full-scale fuel

beds (forests or cities) are of interest.
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I. INTRODUCTION

Everyone has experienced fire in both its controlled and uncontrolled
forms. Early man considered it one of the elements. Adopting fire for useful
applications was one of the earliest discoveries of man, even before the beast
of burden. Throughout early history fire with air supplied by natural convection
(or natural fire) was the only type in existence. During this time man
discovered such facts as: small fuel must be used to start a fire, wet fuel
must be dried before it will burn, an isolated log will soon cease to burn
while several logs will burn brightly, blowing on an ember will cause it to
burn more rapidly and even burst into flame, etc. Today these concepts seem
very elementary and qualitative, but sometimes they are forgotten, resulting
in wasted effort. It should also be remembered that none of the above processes

even today is treated in more than a semi-quantitative manner.

With the coming of the Industrial Revolution, fire was harnessed to
industrial needs, and with this came the more quantitative study of combustion.
However, since natural fire has been of very little industrial use it has
been a field in which the analysis remained semi=-quantitative. Today,
natural fire 1s seldom useful in industrial countries but it remains a potential
threat to properties and lives. The economic loss from fire in an industrial
country is huge. Direct fire damage in the United States alone is $105 billion
annually and the total economic loss is several times this figure, Fire
is responsible for 11,500 deaths a year. However, when one considers that more
than a billion cigarettes a day are lighted in the United States, each a pilot
for a potential fire, the above figures seen quite small. For over a guarter
of a century there has been no leveling of a city by fire in the United States.
This indeed indicates that the use of scientific methods to develop new fire
fighting equipment is Jjustified and necessary. With the possibility of a
nuclear war in which many large fires would undoubtedly be started it is a
necessity to develop methods to meet this eventuality for national survival.

Most previous research in the fire field has.been of a developmental
nature such as the‘invention and testing of a particular piece of equipment
to do a particular job. The last few years, however, have seen the growth
of an increasing interest in understanding unwanted fire phenomena. The work



2

in this thesis is in the latter category and aims only to increase the basic
understanding of the spread of fire. Some of the phenémena have been studied
in a quantitative manner to contribute to the development of a model which
would be useful in understanding the overall problem of fire spread.



II. THE DEVELOPMENT OF A MATHEMATICAL MODEL

2.1 Introduction

The spread of a fire through a forest, a home, or a city is a very
complex phenomenon. No two cities or forests are the same physically, and the
weather conditions vary so greatly that even if it were feasible to conduct
lqrge scale experimepts, their usefulness at this time would be of doubtful
value. It becomes nécessary therefore, to construct and study models to

obtain meaningful results.

The word model, as used by engineers or scientists, usually refers to a
physical or mathematical model. Physical models are small scale processes
in which some important properties to be studies are identical with the same
properties of the full scale prototype. These models are useful in studying
certain specific details or fundamentals of a process.

The mathematical model, on the other hand, attempts to describe the
system "as it actually is" only in mathematical terms, so that one can visualize
how the changing of important variables affects the process without actual
tests. In most instances it is impossible to describe the system mathematically
"as it actually is" and simplifying assumptions must be made.

In this thesis both physical and mathematical models have been used to
gain a better understanding of fire spread. Physical models have been used
to obtain a better comprehension of some of the fundamentals in fire spread
while a mathematical model developed by the Woods Hole Summer Study Group has
been the basis for extending‘these fundamentals to the general problem of
predicting the rate of fire spread.

- 2.2 Description of the Problem

The major object of this thesis has been to describe the propagation
of a steady state line fire through a uniform fuel bed. Note that initially
no attempt is made at describing the development of a fire in a single
dwelling. Although this is indeed important it is believed that a bhasic
understanding of the spread of a steady state fire is required before the
unsteady state development of a conflagration can be investigated on a
fundamental level.
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As a line fire spreads through a uniform fuel bed (a forest, a wheat
field, Levittown, Pennsylvania, etec.) as shown in Figure 2-1, it preheats
the fuel it is approaching by radiation, convection at the flame front, and
sometimes by fire brands. The fuel ignites and becomes part of the general
conflagration until the combustible part of the fuel is depleted and finally
is extinguished as the flame passes on. This description applies only to a
fully developed fire in which the length of the fire line and the height of
the flame are large compared to any irregularity in the fuel bed. A fundamental
understanding of this type of fire is not only an end in itself since this
is primarily the way a large forest fire spreads, but is also the first step
in the comprehension of the development of a fire and its suppression and

prevention.

2.3 Earlier Models

It is interesting to discuss some of the mathematical models suggested
by previous experimentors and point out their advantages and disadvantages. The
first mathematical model was probably that suggested by Fons (l) who studied
fire spread through light forest fuel. | He assumed the fire to proceed through
a uniform fuel by a succession of ignitions (as from one twig to the next).

With the distance between fuel particles T and the ignition time © 57 corresponding
to a temperature rise Tl to Ti (that is, twig n + 1 in front of the fire is
at a temperature Tl when twig n ignites). The rate of spread V is given by

v=I/e, 2-1

Fons then writes & heat balance on an individual twig as

—— ar
c et

L* L= ¥ Y 2-2

where

heat transfer to the fuel particle by convection, Btu/hr

o’Q
[

[}

heat transfer to the fuel by radiation, Btu/hr

density of moist fuel, lb/ft3

i}

] x| J°
[i]

heat capacity of moist fuel, Btu/1b-°F






3

<l
]

volume of a fuel particle, ft

3
]

temperature of the fuel particle, °F

Assuming the convection and radiation heat transfer to be given by

Q
1

hcAS(Tf - T) 2-3

i

hrAS(Tf - T) ol

Ir

where A.S is the area of\ggz fuel particle, hc and hr are the radiation and

convection heat transfer cgefficients respectively, and T, is the flame

f
temperature. Substituting Qnd rearranging gives

(h + hr) A

v

daT

_ ¢
Tf—T Y

de 2-5

°

D
Integrating and applying the boundary conditions T = Tl at @=0 and T = Ti

at © = © _ gives

i
A T, =T

gi=___ R lnH 2-6
@’(hc+hr)

where EF = AS/V, the surface to volume ratic, and the rate of apread is given
by
o (hc + hr) L

c In —L——l—
Y D Tp = T;

Fons points out that the rate of spread is influenced by

the convection heat transfer,

. the radiation heat tramnsfery

. the ignition temperature of the fuel,
. fuel spacing,

« surface to volume ratio,

. specific heat of the fuel,

density of the fuel and

fuel temperature.

O~ O\ W O

He savs such things as wind velocity, moisture of fuel, fuel density, fuel size,

fuel bed composition and slope are important in so far as they affect the

fundamental variables.
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Fons goes on to elaborate on some of the terms and how they are affected
by the above indirect variables, but some of the deficiencies of this model
are already apparent. The model is that of a fire which spreads by a series
of ignitions as opposed to a continuous burning process. The use of the tem-
perature of the twig next to the igniting twig T is a clumsy choice. Finally,
the size of the fire does not enter the analysis% Therefore, it is futile to
hope that constants obtained from the data on small fires could be extended
to large fires. Consequently we must conclude that although this model is
adequate to describe small fires it cannot be extended to large fires and

therefore loses its usefulness as a mathematical model.

Another model is that suggested by Hottel (;g) of a uniform flat fuel
bed burning at a constant rate V. The flame front is infinite in length.
The following assumptions have been made:
l. The density, the heat capacity, and the thermal conductivity
of the fuel are independent of temperature.
2. The convection heat transfer coefficient at the surface U
is independent of temperature.
3. The flame is approximated by a gray wall of constant emissivity
€ r and constant temperature Ty independent of height,and all
back radiation not absorbed by the wall passes through it.
k. The temperature of the fuel is independent of depth,and no.heat
escapes through the bottom of the bed.
An energy balance around a small element of fuel which allows for heat

transfer by radiation, convection and conduction, is given by

2
k1l a°T — = 4T o N L
-de +ch¥l T —U(T-..,a) -0e(T - T, W1 - éfF(x))

by 2.8

=- e c—;fr"(;s:)('nif‘L - T
where
is the thermal conductivity, Btu/hr-fte;°p/ft
is the thickness of the fuel, ft
is the ignition temperature of the fuel, °F
is the temperature of the fuel, °F
is the flame temperature, °F
is the ambient temperature, °F

Iﬂ}_g—ﬂ’iﬂi—’?“

velocity of the flame spread, ft/hr

.<m



¢_ heat capacity of the moist fuel, Btu/1b-°F

¥ density of the moist fuel, 1b/et3

U convection heat transfer coefficient from the fuel, Btu/hr-ftea@p
ef emissivity of the flame, dimensionless

€ emissivity of the fuel, dimensionless

0~ Stefan-Boltzmann constant, Btu/hrsft2=°R

F(x) view factor between dx and the flame, dimensionless

Use of the approximation,

b L
Ly L (Ti - Ty )
T -T& =(W (T-Ta) 2=9
a
which is equivalent to making the radiation from the fuel dependent on the

first power difference in temperature, with the coefficient correct only in
the limit as T reaches Ti’ gives with rearrangement

L L
dQT — o _ AT O‘é(Ti "‘Ta)
kl=—= +UC ¥ 1% . U+ ‘ , (T -T)
dx2 P dx (Ti - Tg) a
L L
= - 0" € & F(x) (T, - T, ) 2-10

the boundary conditions are

T=T at x =00

a
T = Ti at x =0 2-11
aT _
a—-}-{-_O at x =0

Atsllah (l) solved this equation but erred in the application of a
boundery condition. The corrected ‘solution is given in Apperdix A=l and is

I .
¢ = - 2 2-12

oofrlz
] e F(z) dz
(0]

where



A Va2 g -V a2 g

Z=x/B, 7 = 2 . 7 Tp< 3 g
Ve Y H UE° o—eHE(Tih -1
A::-—-E-—-——- 3 B:—_ -+ a
” ) K(T, - L)

L L
a-GFGEHE(Tf - T )

C= —
KL (T, - T

2-13

It is impossible to obtain an explicit solution for the velocity of fire

z
spread. If conduction is neglected and the true view factor (1/2)(1 SV iwara )

is approximated by e'z/a (whicﬁ is quite good, the area being the same under
both curves) the solution (given in Appendix A=-2) becomes

B! y H
V= (3 -A")3 2-1k
where
‘e L L
A' = 0'€(Ti - Ta ) . U
¢, Y (T, - 'l‘a) ey ¥
2-15

4 i
o-eéf(TI: - T )

°y Y (Ti - Ta)

B' =

The rate of spread is directly proportional to an effective radiation from the
flame minus an effective radiation plus convection from the fuel, directly
proportional to the height of the flame and inversely proportional to the
depth of the fuel.

The disadvantages of this model are quite obvious. A great many assumptions
are necessary to arrive at an answer which is then of doubtful value. A '
fuel bed which ﬁould possess a uniform temperature is so thin that some
effective thickness must be used when a deep fuel bed is considered. B’ and
A are given in defined variables but the simplifying assumytion'necessary to
obtain an explicit solution cam not be changed to provide for a more complex
situation. No relation is given to obtain the flame height H which is a
dependent variable. The undesirable characteristics of this model are the
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usual ones encountered when writing a differential equation which one hopes

to solve, because assumptions are necessary before the equation is written.

In this case such things as an ignition temperature, a flame temperature, a
distribgtion of heat in depth, & constant heat transfer coefficient were assumed
to be known before the equation was written. The integral equations used in
the Woods Hole Summer Study Model (2.%) do not suffer from this disadvantage.

Both of these models help to clarify one's thinking of fire spread but
suffer from the questionable aésumptions indicated.

2.4 The Woods. Hole Summer Study Model (32)

This model has been presented in detail in the reference above with
few changes, but it merits discussion here since the physical model developed
in the present work was inspired by this mathematical model.

The model represents again mathematically the line fire in Figure 2-1
propagating across a fuel bed whose non-uniformities are small compared to the
dimensions of the flame.

Consider first the preheating of the fuel. The fuel receives heat by
various mechanisms, radiation, convection, and possibly eveh solar radiation.
From whatever mechanism, the amount of energy reaching the fuel at a certain
time per unit horizontal area per unit time is gq. It is now necessary to define
a quantity Qi which corresponds to the amount of heat per unit area that is
necessary to produce combustion above the fuel when a pilot flame is present.
It is apparent that this is the net amount of heat received by the fuel at the
instant the flame reaches that part of the surface. Defining x as the distance
from the leading edge of the flame, negative on the unignited side,

Qi=fth=%—j:qu 2-16
where V is the rate of spread. q, energy per unit horizontal area per unit
time, is assumed to occur by four mechanisms of heat tramsfer, each independent
of all the others.

ql(x) is the radiation through the fuel bed complex from the hot embers at
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the base of the flame. Taking the embers as black radiators at a temperature Tf

P
a'x 2.17

ql(x) = a'b 0'”}:31,)’l e
where b is the height of the ember radiators, a' is the reciprocal mean free
rath or projected area per unit volume and ¢~ is the Stefan-Boltzmann constant.
The assumption of & black radiator requires the burning zone to be large compared
to 1/e’ and the height of the embers b must be large compared to 1/a’ if losses
through the top and bottom of the bed are to be neglected.

qe(x) represents the convection heat transfer due to bathing of the
unburned fuel in a part of the flame. This mechanism depends on an eddy transfer
at the flame front so that it will be a sensitive function of wind velocity, Vw,
and wind turbulence, the flame height (if it is assumed that the wind produced
by the fire is determined only by the flame height), the difference between the
flame temperature and the local temperature, and the distance x from the flame.

Therefore,
qg(x) = [fg(x, flame height, V_, wind strueture)](Tf - T) 2218

q3(x) is the radiation from the flame itself to the umburned fuel. It
will depend on the temperature and gas composition pastterns in the flame,
the distance x, and, since it will bend the flame, on the velocity of the wind.
There is evidence that for a fixed flame without wind the radiation is determined
uniguely by the flame height. Therefore,

a.{x) = [£,(8, ¥ X)]o—TM 2.19
3 T3V W r

qh(x) is the heat lost by the fuel bed due to convective and radiative

cooling of the unburned fuel. This heat loss will depend on the local velocit

of the air, and therefore on the flame height, the wind velocity, and the local
temperature difference. Thus,

Qh(x) = [fh(vw; BT - Ta) 2220
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Since these four heating rates were assumed independent it is possible
to write

0
Ve, = [ (ag(x) + qu(x) + q5(x) = gy(x)) ax 2-21

befine

(o]
Q/L)y = f q, (x) ax

a/L)g = (Caylx) ax

-80 2=22
Q/L)g = f ooq3(X) ax
Q/L)y, =j’°qu(>c) ax

-00

The above quantities are the integrated heating rates to the unburned fuel.
Equation (21) becomes

Ve, = Q/L)y + /L), + Q/L), - Y/L), 2-23

This equation states that the velocity is directly proportional to the
sum of the integrated heating rates and inversely proportional to the energy
pulse required to produce ignition. There is no doubkt of the validity of this
equation where effects such as those of firebrands are absent, but the forms of
the various quantities are not well known.

Consider now the burning zone where the combustible gases from the decom-
posing fuel feed the flame. It is assumed that the rate of chemical energy
liberated in the evolving gases at a local point in the burning fuel is directly
proportional to the amount of heat absorbed at that point. Withragﬁgﬁgnﬁég
of combustion or chemical energy of the gases liberated,

= 22k
9, = Ba
The heat input to the burning fuel q is assumed to consist of the radiation
from the flame q3(x), described before, and the heat generation in the fusl bed
itself qs(x)° The latter is caused by combustion when air reaches into the
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burning zone. This will be a function of the flame height, the wind velocity,
and the distance from the flame front x. Thus,

q, = B(q3(>c) + qS(X)) - 225

It is now assumed that the evolution of combustible gas continues until
a fraction\') of the total fresh fuel is burned. Therefore,
W
§¥)QC V= Blag(x) + q5(x)]ax 2-26
0

where

£ is the loading density of the fuel, lbs/ft°

‘W is the width of the burning zone and
Qc is the heat of combustion of the fuel.per unit mass.

Once again defining integrated energy transfer rates

, W
Q/L)g = j'o a5(x) ax
' 2-27
Q/L); = IWQS(X) ax
,. a
gives
Ene, v : e
— = Q/L)R + Q/L)I 2-28

Since there are three dependent variables, the velocity of spread, the
width of the flame base and the height of the flame another relation is required
which relates the flame height to the other varisbles. It was shown by Thomas (;1)
that the height-to-diameter ratio for a circular flame is a funection of the.
square of the heat liberation rate in the flame divided by the radius of the
flame source to the fifth power. Applying the same principles, the derivation

for the line fire gives
B, (/w2 2.29
w :

where

w
Q/L = f q, dx 2-30
o
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When the width of the flame becomes small compared to the flame height H

the relation reduces to
7 o< (q/1) 2/3 .31

This relation can be obtained by dimensional analysis or from the solution
of the equations given in Section 6-3. However, the author's experience leads
him to believe the simpler expression does not often occur in an actual forest
fire.

There are now three equations and three unknowns (V, H, and W). Assuming
the form of the Q/L functions and the function in equation 2-29 are known the
equations 2-23, 2-28, and 2-29 would yield an explicit solution if the temperature
distribution ahead of the flame did not appear in the heat loss term Q/L)L of
equation 2-23. However, by guessing a reasonable temperature distribution ahead
of the flame, to be checked after the original result, a solution can be obtained.

Notice the advantages this model has over previous models. First, equation
2=23 depends only on the assumption that the various heating rates are independent.
The equation is undoubtedly valid for any line fire no matter what the fuel
arrangement. It is not necessary to make assumptions until the forms of the
various Q/L)'s are discussed. At some future time wher better functions are
available they can be inserted readily. This is the advantage the integral
equation has over a differential equation. Secondly, this model advances on
to determine the flame height and the thickness. These are dependent variables
which the other models did not attempt to determine. Finally, although it is
not presently possible to formulate some of the functions included in the
analysis, the analysis shows where work should be done to fill in the missing

information.

The disadvantage of this model compared with the other two is that no

analytical solution‘is obtained.

On the basis of this model, the rate of spread is a function of the various
mechanisms of heat transfer, the heat of combustion, the heat required for ignition,
and the type and loading of fuel. The other variables such as wind velocity,
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humidity, flame temperature, ignition temperature, ete. are important insofar
as they affect these direct variables. This is a considerable reduction from
those listed by Fonms (7).
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ITI. DEVELOPMENT OF A PHYSICAL MODEL

3.1 Introduction

The mathematical model of a line fire just developed showed that
meny importent quantities are unknown. The developmen? of physical models to
obtain these quantities by experiment is necessary. Four earlier experimenters,
Fons (7) and Fons, Bruce, Pong, and Richards (8) built line fires and measured
the rate of fire prcpagation. Fons! (l) fires were built in a wind tunnel
using as fuel ponderosa pine twigs mounted in saw dust. The distance between
twigs and their diameters were varied in a series of experiments. Fons, Bruce,
Pong, end Richards burned fuel cribs consisting of 1/2% to 1 1/4" square wood
sticks on a moving conveyor belt. Some of Fons' data will be considered later.

Although the above experiments closely resemble actual forest fuel in many
respects, they suffer from an inability to separate the various forms of heat
transfer and do not offer much promise for extending an analysis to other fuel
beds with larger fires.

The physical model developed in the present study came from a consideration

of equation 2-23.
Qv = Q/L)B + Q/L)R + Q/L)C . Q/L)L 2-23

Since the various mechanisms of heat transfer are assumed to be independent
it was decided)to eliminate all forms but one in order to study each indivi-
dually. It is easy to eliminate Q/L)B, the radiative transfer from the coals
in the bed, by using a thin fuel bed which transmits a negligible amount of
heat through itself. Choice of a fuel bed which burned with a small flame
mekes Q/L)R, the radiative transfer from the overhead flame, of little importance.
The fire now propagates only under the influence of the convection heat transfer
at the flame front. If measured radiation from an external source is concentrated
immediately in fromt of the fire it is possible to observe the effect of radiation
on the rate of spread in a quantitative mamner. This has been the objective
of the following model.
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3.2 The Apparatus

The apparatus, shown in Figure 3-1, consisted of a fuel bed 10 1/2-
inches in width by 3 feet in length. The fuel rested on approximately 3 inches
of non-flammable glass wool insulation on an asbestos sheet. It was possible
to move the whole structure along the table when a fire was burning. Two fixed
arrangements of No. 20 nichrome wires were stretched above the fuel bed and held
in tension be weights over the side of the table. One set of wires consisted
of four wires with center-to-center separating distances of three wire diameters.
These wires were connected to an electric circuit capable of giving 15 amps
and 110 volts. The other circuit consisted of eight No. 20 nichrome wires with
center~-to-center separating distances of 6 wire diameters and capasble of conduce
ting 15 amps and 220 volts. The radiation from the wires was measured at several
points with a thermopile described by de Rochechouart (g&)o These measurements
readily give the total radiation received by the fuel surface before ignition.
The method is described in Appendix B. Several different kinds of fuels were
distributed on the glass wool insulation. To prevent air from entering at the
sides of the bed, glass wool strips were placed along the edges. The fuel beds
were lighted evenly at one end. As the fire advanced over the fuel, the fuel
bed structure was moved at such a rate as to keep the flame front directly
below the closest wire. The top surface of the fuel was 1 1/4" below the
wires. The fire was allowed to travel one foot to reach steady state. The
rate of spread was measured over the last two feet by means of a stop watch.
These fires were found to be quite reproducible. The original data are given

in Appendix F-l.

3.3 The Effect of Fuel loading Density

One of the fuels used in the experiments was small pieces of newspaper.
The shapes of the individual pieces of newspaper were not uniform. The size
was less that 1/2" in any dimension. The thickness was uniform, 0.003-inches.
The particles of newspaper were scattered over the bed in a random fashion.
Using this type of fuel, it was desired to find the effect of the fuel loading
density (the amount of fuel per unit area). The data are shown in Figure 3-2
where the velocity of spread in ft/hr is plotted vs. the loading density at a
single radiation rate of 290 Btu/hr-ft and a humidity of 37 - 4%0% . Also shown
is the equivalent number of layers if the fuel had been evenly distributed.



Figure 3-la Apparatus



Figure 3-1b Apparatus
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Inspection of Figure 3-2 shows that one equivalent layer will not burn, but
that four equivalent layers burn with the same rate as ten equivalent layers
and presumebly as any greater number of equivalent layers. If it is assumed
that the fuel is distributed on the surface at random the fraction of surface
uncovered is given by

F =e 3«1

where m is the equivalent number of layers, If m is unity, the fraction
uncovered is 0.368 and if m is 4 the fraction uncovered ig 0.0183. Therefore,
it can be concluded that if there is a continuous surface of fuel the amount

of fuel present does not change the rate of fire spread. This would be expected
if heat received by the fuel for preheat does not penetrate the fuel bed in
depth to a significant extent and if the intensity of the fire is small so that
the radiation from the flame itself is imsignificant. Both of these qualifi-
cations are satisfied in the shredded newspaper fires. All newspaper fires

studied subsequently contained six equivalent layers of fuel.

3.4 The Effect of Radiation

Fuel beds of shredded newspaper, identical with those described in
the previous section and a loading density of approximately 0.0625 1'bs/ft2
(six equivalent layers of fuel), were burned with various amounts of radiation
suypplied by the wires. One set of data at constant relative humidity is shown
in Figure 3-3 vhere the velocity of fire spread is plotted vs. the integrated
radiation rate reaching the fuel surface in frornt of the fire. The &bove
experiments show that irradiation at a rate of 600 Btu/hr-ft increases the rate
of fire spread by a factor of approximately two over that with no irradiation.

For interpretation of these data refer to equation 2-23. Neglecting Q/L)Bj
the radiation transfer through the bed itself, '

-= ' L] ma
Q¥ = Q/L)p - @/L) + Q/L), 3-2
The heat required to produce ignition Q,i is undoubtedly a weak function of

time. The heat impulse required to give a third degree skin burn, when exposed
to radiation of different rates, varies with approximately the 1/3 power of
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time. Hottel anékW%iiiams (13) report the energy necessary to char wood to a
prescribed depth depends on time raised to the 1/k to 1/8 power. Bruce and
Downs' (4) data show that the heat impulses required to produce spontaneous
ignition of newspaper varies by the 1/4 to 1/5 power of time from 0.27 seconds
to 3.18 seconds. Lawson and Simms (1) report piloted ignition of woods to
depend on time to the 1/3 to 1/4 power over a range of 2 to 500 seconds. It
is therefore reasonable to assume that in the range of heating rates provided
by natural fire the energy reqguired to produce ignition will vary with time
raised to a low power; 1/& is assumed. Therefore,

A 1/k
Q= (F)  q 3-3

where Qb is the pulse required at a reference velocity Vso Eéuation 3«2 becomes

L
3 ‘g’;&ﬂ"?’ [ o/L)g - QL)) + E-giﬂ)% 3-4
0 0 0 0

If the heat transfer by convection at the flame front is assumed not to
be & function of the heat added by radiatiom, a plot of the veloecity of spread
to the 3/# power vs. the heat added by radistion minus the heat lost from the
- surface as it preheats, will give & straight line. It is unfortunate that the
important quantity Q/L)R‘w Q/L)L, the net heat input to the fuel, can not be
measured directly. However, it is now apparent that the distance between the
wires and the fusl bed is not & variable of fundamental significance. The rate
of spread will decrease as the distance from the wires increases with the same
integrated radiation input,Q/L)R)because the heat is distributed over a wider
ares and a greater amount is lost by convection and back radiation. At any
distance from the wires the same Q/L)R - Q/L)L will give the same rate of fire
spread over identical fuel. The problem remains to find the integrated hest

loss, Q/L)L"

The solution for the temperature pattern of a zemi-infinite solid of
constant thermal properties, originally at & constant temperature Ta;f}adiated
at the surface at a rate varying with time, is given by Carslaw and Jaeger (g)

as
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t |
_Vig/x) g )e-(@/Malte)) o,

T=-T

3=5

where .
o is the thermal diffusivity, ft;g/hr
k is the thermal conductivity, Btu/hreft°-"F/ft
Q(A) is the radiation flux density at the surface, B“tu/hrmft2
d is the distance below the surface, ft ‘
t is the time of heating, hr
N is the dummy variable in time, hr

Notice that the above solution does not include a latent heat effect. How=
ever, let us assume that this equation gives the surface temperature of the
fuel bed as it is moved under the radiating wires. Replacing the time variable

by
=y/v and h=F/V 3-6

the surface temperature is given by

?op - Y(0/n) f Q(V/V) dy 3.7

Since it is more convenient to measure the distance of a point on the fuel bed

surface from the flame instead of from infinity, let

s

X = =2 +y and X = =z + ¥ 3-8

and let z —» . Then the temperature of the surface is given as a function
of the distance from the flame by ‘

' =T X + Z
T- a kv.].[gf (X - )172 3-9

If the net heat flux at the surface is assumed to be only the radiation from
the wires, the convection and back radiation being neglected, Q(x) is given by

ofr2)-q, E463)] 3-10

Vv L
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(see Appendix B) where Qw is the heat per unit length radiated from a single

wire and A (x)/L is the view factor between ail the wires and & point on the
flat fuel surface. Also shown in Appendix B, the radiation from a single wire
is directly proportional to the rate at Whlbh radiation is received by the fuel
/L) Therefore,

7.7 - K__QL Y X@
Ve (x - OYF

3=11

If the above equation holds, (T = Ta)Vl/E/ Q/L)R should only be a function of x.

The temperature of the top layer of fuel was measured With a 0.003=inch
copper-constantan thermal couple for five different heating rates at the same
humidity. The normalized measured temperatures are shown in Figure 3-U4 and show
fair agreement with the above analysis. The curve on Figure 3-l shows the shape
of the integral on the right hand side of equation 3=11.

The heat loss, while the fuel preheats, is assumed to be given by

Q/L), = ]Oh(T - 1) ax 3-12

- 00
where h is assumed constant. Therefore,

Q/Lig 1°
Q/L); = K geven 3-13

The heat loss is directly proportional to the rate of radiation divided
by the velocity of spread to the l/@ power, all raised to the p power. Eguation

3-4 becomes

b
: /L) Q/L)
/b1 . </ R c
(B o] O O

Let p be 4/3 as recommended for natural convection by McAdams (18).
V3/h is plotted vs. Q/L) - K Q/L)R/Vl 2y &3 for various K's in Figure 3-5.
The proper K gives a straight line and appears to be approximately 2.0. This
corresponds to a Q V /h equal to 6.7. If the reference velocity V is taken
as 60 ft/hr, Qy equals 2.4 Btu/ft (0.65 cal/cm Y. This corresponds to a
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convection heat transfer rate of 9.0 Btu/hr-ft (0.22hk cal/em-sec.). Unfortunately
the straightness of the line is not a very sensitive function of K.

A value of 0.65 cal/cm2 may seem rather low to produce piloted ignition.
However, Figure 3-5 indicates a comsiderable amount of the impinging radiation
is back radiated or convected away from the surface (slightly more then 4/5).
Broido and Martin (3) report values of from 5 to 1l cal/cm2 to produce transient
flaming and at least 11 cal/cm2 to give sustained flaming at the surface of
alphacellulose papers. The above values are for non piloted ignition. Bruce
and Downs (U4) report 5-8 cal/cm2 to ignite newspaper in a similar experiment.
Martin, Lincoln and Ramsted (16) report 4 to 20 cal/cm2 to ignite various types
of paper. Lawson and Simms (14) report values of k4 cal/cm2 for fiber board
and 7 cal/cm? for freijo to produce ignition in 5 seconds when a pilot flame
is held 1/2" from the surface. They also report 6.5 and 12 cal/cm2 for spon-
taneous ignition of the same materials, giving a ratio of about 1.7 for piloted
ignition to spontaneous ignition. If the value of § cal/cm2 reported by Bruce
and Downs for newspaper is divided by the 1.7 , a piloted ignition of 2.9 cal/cm2
is obtained from the present data. Figure 3-5 indicates that a large amount
of the total external radiation received at the fuel surface is lost by convection
md back radiation. If a line were drawn through the data of Figure 3-=5 with
no consideration for heat loss at the surface, (K = 0) a value for the ignition
energy of approximately 4.5 times that previously quoted would be obtained. With
this consideration the 0.65 cal/cm2 compares favorably with that reported by
Bruce and Downs. The uncertainty of the amount of heat loss at the surface is

indeed unfortunate.

It should be remembered, however, that in arriving at the relation
Q/L)L = K[ Q/L)ﬁ / Vl/alu/3 it was assumed that heat entering at the surface
of the fuel Q(E) came exclusively as radiation from the wires. Actually Figure 3-4
indicates a large amount of this heat leaves the surface by convection or back
radiation. Consequently 3-10 could be replaced by ‘
Qx) = Qw?%ﬁ -h ., J(7-1)P 3-15

A derivation given in Appendix C indicates the form of the expression for the

temperature distribution on the surface would be approximately
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Since the powers are not greatly different on the two terms it is unlikely

that this change could affect the slope of the line in Figure 3«5 to a large
extent.

. 3-16

Another possibility is that the heated wires change the convection across
the unburned fuel by a significant amount. In this case the heat transfer
coefficient h in equation 3-12 might be given by

]
h =h [ Q/L)] | 317

This would give a line on Figure 3-5 with a lower slope and consequently a
higher value of QO. At the present time any attempt to determine the influence
- of the heated wires on the convection heat tramsfer at the surface would be only
a guess . The given analysis is considered an adequate first approximation for

present purposes.
The convective heat transfer at the flame front may be assumed to be
= 0 - -
Q/L)C =h 1 (Tf Ti) 3-18

where

h is the convection coefficient, Btu/hr-ft2w°F

1' 1is the distance over which the transfer occurs, ft
T, is the flame temperature, °F

T, 4is the ignition temperature, °F

Assuming the temperature difference to be 1000°F and 1' as 1/k inch
(a visual estimate), h would be 4.7 Btu/hr-ft2a°F, a reasonable number. Since

this heat transfer occurs by an eddy process, Q/L)C can be written as ’

Vi)g = e BT, - 1) 319
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The corresponding values for the eddy diffusivity and the eddy velocity are
2.0 ft2/hr and 1.59 ft/min (96 ft/hr) . The eddy transfer occurs by the flame
slipping under the fuel immediately ahead of it, presumably because air is
drawn across the surface into the fire. Quantitative study of this process

is indeed difficult,

3.5 The Effect of Humidity

Humidity greatly affects the spread of fire since natural fuels
absorb and desorb moisture readily. Prolonged dry weather will cause
vegetation to die and become very dry. Although absorption and desorption of
moisture by living vegetation is a complex process, that of dead fuel is
reversible. The fuel used in these experiments is so thin, 0.003 inches, }hat
it is virtually in equilibrium with the humidity of the room at all times.
The moisture content of a sample of the fuel vs. humidity is given in Appendix E.
Figurei3«6 shows data for three humidity, 27%, 37-39% and 47-49%. A decrease
in humidity of approximately 20%, at the same rate of radiation, gives sbout a
20% increase in fleme spread. This corresponds to approximately 1.8% change in

moisture content of the fuel.

If the line K = 2.0 in Figure 3-5 were extended to negative values it
would intersect at the zero axis at - Q/L)C. Since it is believed that this
value is independent of humidity, the extended lines for the other two humidities
must pass‘also through this point. Figure 3-7 shows these lines. The values for
_K which best fit the data are K = 2.35 for 27% humidity and K = 2.14 for 37-
39% humidity. A different %ralue for K is required since ‘

el 3 B
'3 Q(X)d"l 5| ax 3-21
‘\(k ¥y c Vo) J(x- DY

-w
The density is a slight function of humidity and the heat capacity is a strong
one. If it is assumed that

/L),
h

— AH ‘
= M= . -
cp cp + AT 3=-22
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where

c_  1is the heat capacity of the dry fuel, Btu/1b-°F

M is the moisture content per 1b of dry fuel, 1b/lb

AH is 7he enthalpy required to heat up and evaporate the moisture,
Btu/1b

AT is the overall temperature rise in the fuel, °F

Substituting reasonable values into equation 3-24 gives the following

M
b = 0.2k + 1100 AT '\ 2=23

c

The change in heat capacity due to the 1.8% decrease in moisture content
would change K by approximately 9%, assuming an ignition temperature of SO00°F.
The change in K is about twice as great as would be expected from this consid-
eration alone. ”

For a standard velocity of Vb = 60 ft/hr the ignition energy for pilot
ignition for the three humidities is given below,

Table 3-1
2 - 2
Humidity Q Btu/ft cal/cm
27 1.9% 0.53 Based on a
37 - 39 2.19 0.60 veloeity of
b7 « kb9 2.ho 0.65 60 ft/hr

Approximately a 20% change in relative humidity (1.8% change in moisture
content) gives a 20% change in the heat required to produce ignition.

Bruce and Downs (U4) report that a 10% increase in moisture content increases
the heat required for spontaneous ignition by 10%. Since unpiloted ignition
occurs at 500°C rather than the 300°C of piloted ignition, it would be expected
that moisture would affect the latter to a greater extent. Also it is not
improbable that water vapor leaving the surface increases turbulence which
Simms (22) has shown, lowers the radiation required to produce spontaneous
ignition. It also should be remembered that the values derived from the fire
data are obtained by an indirect method and could be somewhat higher.
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3.6 The Effect of Fuel Type

Any attempt to determine the influence of the type of fuel on the
various integrated heat transfer rates and the energy pulse required to produce
ignition in a quantitative manner is a problem of immense magnitude. When one
considers the possible fuel beds, from pine needles on a forest floor to uni-
formly spaced houses in a city, there is much work to be done.

Two other fuels were used in this study, the punch outs of computer cards
(1/16 x 1/8 x 0.007-inches) and computer cards cut in squares approximately
1/2 x 1/2 x 0.007~inches. The effect of added external radiation on the rate
of fire spread for both fuels is shown in Figure 3-8. Neither of these fuels
burned without external radiation. This has been confirmed by the extinguishment
of developed fires when the external radiation was removed.

Figure 3-9 and 3-10 show the plot described in Section 3-6

X
v vs. te/n)y - K/L) VY2 &

It is demonstrated that a straight line through the origin can not be obtained
with a positive slope. However, if the point at the origin is neglected,

a K of 0.6 for the fine fuel and 0.7 for the 1/2" squares gives a straight line.
This may be explained by the following: when a fire supported by radiation is*
burning, there is a small but finite amount of convection heat transfer at the
flame front. When the radiation is removed, the heat loss is greater than this
convection heat transfer and the fire is extinguished.

The energy required for ignition based on the lines in Figure 3-9 and 3-10
at the standard velocity of 60 f£t/hr are 9.0 Btu/ft2 (2.4 cal/cmg) for the fine
fuel and 7.5 Btu/ft2 (2.0 cal/cmg) for the 1/2 " squares. It is apparent that
these values are quite crude. To determine a better value would require larger
amounts of external radiation than was avallable. The larger energy rates
required to produce ignition of the computer card fuel is undoubtedly due to
the4increase in the thermal conductivity of the fuel particles. The computer
fuel elements are rigid and the fuel bed is considerably more compact than that
of the newspaper fuel. Again looking at equation 3-23, the thermal conductivity
and the fuel density are the variables changing in this instance. A three-
fold change of K between the newspaper and the computer cards corresponds to
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about a six-fold increase in the thermal conductivity. The datea show that this
gives a three~fold increase in Qo° It should be emphasized that the values
of Qb for the computer fuel are rather uncertain.

3.7 The Effect of Wind

It tekes only a casual observation to see that the wind velocity is
of primary importance in the spread of a fire. With only a slightly less casual
observation one also sees that it will be a very long time before a mathematical
description of an external wind acting on a fire is obtained. However, any
study which hopes eventually to predict the rate of spread of natural fire
must sooner of later come to grips with this complex phenomenon.

Fons (1) has measured fire spread through ponderosa pine twigs at various
imposed wind velocities. Several twig sizes and spacings were used. The wind
velocity was varied between 4 and 8 miles Per hour. According to the data the
different spacings used, 1 to 1.75 inches, had no noticeable affect. The data
were difficult to interpret because the moisture content of the fuel varied

over such a wide range} However, if it is assumed that

Qi moist cp AT + M AH

Qi ary cp AT

3-34

the data can be roughly corrected for variation in moisture content. A plot
for the three twigs sizes of V Qmoist/ery (presumably tbe spread over dry
fuel) vs. wind velocity is given in Figure 3-11. An increase in wind velocity
from 6 m.p.h. to 8 m.p.h. gives an increase of about 60% in the rate of spread,
which is quite significant. However, the scatter of the data is very great.

In order to get a very rough idea of how wind influenced the newspaper
fires, a few exploratory experiments were conducted. A wind across the burning
fuel was produced by blowing air from a one-inch opening mounted behind: the
flame. The flow of air was measured by an upstream orifice. The wind velocity
was calculated on the basis of a flat velocity profile through the one=-inch
opening. The air was fed through small holes throughout the length of a one-
inch pipe at the back of a rectangular box. A fine mesh screen was placed
between the pipe and the outlet.
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The data are shown in Figure 3-12. A wind velocity of 1.3 ft/sec increases
the rate of spread by only 5% over that of calm conditions. However, a velocity
of 3.5 ft/sec increases the rate of fire spread by nearly three-fold.

There is a significant change in mechanism of the convection heat transfer
as the wind velocity increases. As was discussed before, in the absence of
wind, fire spread occurs by the flame slipping under new fuel as the fire
draws air across the top of the surface. At a wind velocity of 1.3 ft/sec the
above mechanism still seems to be the most important. At higher wind velocities
the flame leans far over the unburned fuel. At 3.5 ft/sec the flame is nearly
parallel to the surface. The fire now darts across the top of the surface
from one piece of fuel to the next..

A 3.5 ft/sec wind velocity is considersble for such a small fire. The
velocity in a turbulent convection column of a line heat source is shown by

Hottel (1l) from dimensional analysis to be

u=[9[14_5] v £ (R/z) 3-25

pc Ta

where

Q/L heat liberation at the source, Btu/hr-ft
g the acceleration due to gravity, ft/hr2
T, surrounding temperature, °F
o  gas density, lbs/ft3
c heat capacity of the gas, Btu/lb-°F

In order to model, the wind velocity V% must be proportional to the wvelocity
U in the convection column. Hottel also shows that

kH3/2 Q/L (Ta/g)l/2
oC

3-26
_m \3/2
pec (Tf Ta)
Substitution of 3-26 into 3=25 gives
(1, - 1) gr ] Y2 ,
u o 7 o< v, 3=27

a
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Let the two-inch flame height of the newspaper fire become a 20-foot
forest fire. A 3.5 ft/sec (2.38 mile/hr) wind velocity on the hewspaper fire
is equivalent to 38.4t ft/sec (26.2 mile/hr) in the forest fire. The small
two-inch newspaper fire is certainly not a well-developed turbulent fire, but
the above analysis shows that the 3.5 ft/sec wind velocity is a strong wind for
that size fire.

Recall equation 3-18
Q,/L)C =h 1" (Tf - 'I‘i) 3-18
and 3-2
VQ =Q/L), - /L) 3-2

with the radiation heat transfer neglected. Since there is no significant
radiation, all heat transferred to and away from the fuel is produced by convection
and occurs very near the flame front. If the Q/L)C is considered the net heat
input by convection at the flame front equation 3-2 becomes

Q V= Q/L)C 3-28

, the energy required for ignition in the above experiments, remained the

%

same. Therefore, Q/L)C increases by the same factor as the velocity of spread
when the wind is present. The distance over which the flame bathes the fuel,
1' appears to increase by approximately 4t - 8 fold for a 3.5 ft/sec wind,

(a visual estimate). The heat transfer coefficient between the flame gases and
the fuel, h, must increase significantly since the veloecity increases. The
flame temperature apparently is decreased by the cold wind blowing through

the flame.

The above suggests an interesting simple experiment to determine the
distance over which the convection hgat transfer occurs. A fuel bed could be
constructed with line spaces contaiﬁing no combustibles. The spaces would be
widely separated with uniformly distributed fuel. The sizes of the spaces would
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increase as their distance from the ignition end increased. The fire would jump
the spaces until the convection heat transfer could not heat the fuel across
the opening to ignition. ‘ i
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IV. TWO DIMENSIONAL INTERCHANGE FACTORS WITH AN ABSORBING GAS

4.1 Introduction

Systems in which one dimension is very much larger than the other
dimensions present an important class of problems in radiant heat transfer.
Many industrial furnaces fall into this catagory. A fire front moving through
a forest has effectively an infinite front. This chapter considers some of
the two-dimensional view factors with an sbsorbing gas in part of the
system and the remaining space filled by clear gas. It also presents some
of the modifications necessafy when the "infinite" dimension must‘be consi?ered ‘
finite. '

4.2 Interchange Factor Between a Volume Element of Gray Gas Infinite
in one Dimension and a Black Strip Separated by a Gray and Clear
Cas o

The first step in obtaining the intensity profile around an open
flame is the solution to the above problem. Consider the geometry in
Figure 4-1, where the boundary between the absorbing and clear gas is given
by the two dimensional surfaces £(z). The volume element 4V = dxdydz lies
a distance r==1/:x2 + y2 + z2 from the surface element dA whiech is inclined
at an angle o with the perpendicular to the xy plane. Radiétion leaving 4V
passes through the absorbing gas for a length s. The volume element emits

at a rate Uk'EQV with the fraction cos ¢l dA/lI-nr2 heading towards dA. The
=ks

amount sbsorbed in its traverse by Beer's law is e.” . The interchange area
W |
d gs is then given by
wle !
" k' cos ¢le k'S aa av
dgs = 5 b
nr
- where
cos § = (z/r) cos o + (x/r) sin & 4.2

dA = L dx 4.3
Substitution of 4-2 and 4-3 into b-1 gives

- ' N
dh Eg__k' k'8 (z cos @ + x sin @) 4z ax° dy
ﬂ(22_+ y2 R x2)3/§ | L




Figure 4-1 Interchange Between a Gray Gas Volume snd a Black Spot
Separated by Gray and Clear Gas

f(z)

dA=Ldx

Figure 4-? Fraction of Path in Gray Gas Between Gray Gas Volume and
Black Svot
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Since the fraction of the path over which absorption occurs is independent
of y the relationship can be obtained by comsidering the problem in two
dimensions as shown in Figure ko2, The radiation headed for the area dJdA
intersects the gray-clear gas interface at a height Z and a horizontal
distance £(Z). The ratio of the absorbing path to the total path is then
£(Z)/x and s is given by

s = f&él r L5

where Z can be found from the relation of similar triangles

Ty <) | h-6

Equation 4=k becomes

2 2 _2y1f2
(1!
d”EE _k'e (k' £(2)/x)(z" + 5~ + y°) (z cos @ + x sin @) dy
1ax° dz x (22 + 52 + x2)37é
b1
Substituting the dimensionless variables
z' =k'z, x'=k'x , and y' = k'y 4-8

and integrating over y from - 6o to ©0 , moting the symmetry about y = O gives

- oy (g2 & 12 4 129172
a3gs _ 2 e (k' £(2)/x")(2" + x*% + y*°) (z'cos @ + x'sina)dy'
[l [] = 2
L dx'dz'ax o 7 (2,2 + X,.E + y'2)3/2
B beg
Making the substitutions
-V12 = Zv2 + Xﬂg S' =,1,{_'__f:_(_z_l vl
X h-10

v' sinh © y‘2 + v'2 = v’ecosh2 *]

yi

. The interchange factor between a volume element infinite in length by (dx dz)
and the area element L dx becomes



[o72)
d3E§ __2(z'" cos a + x' sin q) e™s' cosh @ .o boil
— 2 <
Ldx'dz"dx T v cosh® ©

o

Now consider the same system but assume no radiation is absorbed as it
traverses from the volume element to the area L dx. The exchange factor
for "no gas absorption" is given by equation (9) with the exponential term
deleted. Therefore,

_— o0
a3zs 2(z' cos a + x' sin Q) dy’
1 L5 T
Ldx'dz 'dx No absorption n o (y'2 +x'2 4 z'2)§7§
‘ h-12
which upon integration gives
a3 &= : é(z' cos O + x' sin @)

= o —— ll'-l3

) t g
Lodx'da 'ax No Absorption nV'a

The transmissivity of a gas is defined as the ratio of the intensity
of radiation passing through the gas to the incident intensity of radiation.

k'l here 1 is the distance through the absorbing

Beer's Law gives = e
gas which the radiation passes. In the case of interest, the radiation
traverses an infinite number of different absorbing paths. Define a

-Bs* ' s
where s' is the shortest

transmissivity in this instance as A = e
dimensionless path between the radiating volume and receiving surface and
B is the ratio of the mean beam length (used many times by Hottel (10)
to the shortest absorbing distance. The mean beam leﬁgth is physically the
dimensionless distance a beam of radiation which properly weights all the beams
must travel fhrough an absorbing gas. The ratio of the true exchange
factor to the no-absorption factor , (4-11)/{4-13), is equal to the trans-
missivity giving

0

-s' cosh ©
oBs' _ 2___.~.?T_,_Jig h-15
cosh ©
and
(%}
-s' cosh ©
B=-X 1n e de 416

cosh20
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Thus, the mean beam length to shortest absorbing distance ratio is only a
function of the minimum absorbing path length s' and is showh as the top
curve in Figure 4-3. It approached n/a as s' goés to zero and unity as s’

goes to infinity. The above solution is general for any arbitrary boundary
between a gray and clear gas which extends to infinity.

4.3 Interchange Factor Between a Volume Element of Gray Gas and a
Black Spot Centrally located Between the Ends, Separated by Gray
and Clear Gas

The derivation for the system with all dimensions finite proceeds

in an identicalifashion as the case with one dimension infinite. waever,

the limits>for integration on y are finite. Taking the symmetrical case where

the element of area lies a dimensionless distance k'Y = Y' from both ends

of the absorbing gas volume, equation 49 becomes

Y'eu(kvf(z)/xa)(xg? + Z,a + y,2)l/2

d3§§ _ 2(z'cos o + x'sin Q) dy

Idx*dzvdx " (Z’Q + X'2 + y‘2)3/2
o
ho17
Using the substitutions from 4-10 gives
J— - wg !

a3z _2(z' cos o+ x' sin @) e™s ' cosh @ 4o 118
Lax‘az'ax ~ 2 2
: v o cosh @

where
-1 Y y' 2
@ = sinh™~ Y'/v! ©=In|>m +\ix +1 h-19

The omission of the exponential function gives the exchange factor for
"no-gbsorption". This is given by equation #-12 with a finite limit of

integration Y'. Therefore,

i
‘'

Y

1]
= 2(z' cos & + x sin Q) 5 dg 5372 k.20
No Absorption o4rr(y' + x'C 4+ 21%)

aSgs
Idx‘'dz'dx

which gives on integration
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d3§s— _ 2(z' cos a + x' sin a) Y ho21

: = .
Idx'dz‘ax ,n,v,Q (Y,Q + V'2)lf2

no absorption ‘
The mean beam length to shortest absorbing distance ratio is therefore

— ey

=g ¥
fee cosh © a6
0 coshae
Y/ L2
V(¥ /v)E 41

1
B-s--g-; in

B is given in Figure L-3 as a function of the shortest absorbing distance s'
with a family of curves for Y'/v'.

k.h Interchange Factor Between Two Infinite Parallel Stnps with a
Gray and Clear Gas Intervening

This problem has been previously solved in the report of the Sﬁmmer
Combustion Woods Hole Study Group (33) for the special case when only gray
gas is present. Consider the system in Figure Lek. The planes zy and xy
intersect at an angle @ and form the y axis. The two strips dx and dz
extend to infinity. The region of absorbing gas is bounded by the two
dimensional surface curve f(z) with clear gas to the right. ¢1 and ¢2
are the angles between the connecting line r and the perpendiculars to dAl
and. dA.2 respectively. Radiation leaving the area element dA2 = dydz and
headed for the area dA. = devis’absorbed over & length s. The interchange

1
factor between the two areas is given by

-k's
3 cos P. dA. cos @, dA, e
d’ss = C—- 5 2_2 h-23
nr

where

cos ¢l=%sina cos ¢2n~-sma
b2k

:c'2=x2+za-2xzc:os.(lz+y2

Substituting and integrating over y from -oo toco gives
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Figure 4-4 Interchange Between Two Black Srote Separated by a

Gray and Clear Gas

Figure 4-5 Fraction of Path in Gray Gas Between Two Black apots




35

>0

et
d2§§ - 2 zx sinaa e k's dy b-25
L dxdz :t(x2 + 22 4 y2 - 2 Xz cos a)2

o

The fraction of the path in which absorption occﬁrs can again be
considered in two dimensions and is obtained from Figure 4«5, where Z is
the height at which the connecting line intersects the boundary between gray

and clear gas. Therefore s is given by

£(2) = (z = 2) cos 2

X = Z cos O

(x2 + 5" + 2% - 2 xz cos a)1/2 426

Where Z can be obtained from

X zZ
fZ) z -2 h-27

Using the substitutions

x' = k'x v92 = 2'2 + x?2 - 2 x'z' cos O
y' =k'y y'a +v'2 = v1@ cosh®e h.28

g1 = k'f(Z) - (z' = Z) cos & .
N x' - 2 cos O v

z! = k'g

and integrating over y from zero to infinity gives

, 00
di“ss _ 2 z'x" sin’e g8 cosh @ 49 h29
Id}( ¥
dz xv'3 ' cosh39

0

Once again the mean beam length discussed in Section 42 can}be used.
The exchange factor between the black strips with no absbrbing gas can be -
found either: by excluding the exponentizl term in hQ29 and intégrating or
by the cross strings method described by Hottel (;Q). In eiﬁher case one

obtaines
dss _x'z' sinza 430
Ldxdz’ - 3
No Absorption 2v
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Then
w 1
JBs' " e~s' cosh © 0 b3l
T x 3 o
o cosh~ o
and
o0 1]
1 L -3' cosh © ao
== In oy Z —3 h32
cosh~@

0
The mean beam length to shortest absorbing distance ratio is again only
a function of the shortest absorbing distance s', and is given by the top
curve in Figure 4-6. B approaches 4/x as s' goes to zero and unity as s'
goes to infinity. ‘

k.5 Interchange Factor Between a Finite Black Strip and a Black Spot
Centrally Located with a Gray and Clear Gas Intervening

The derivation for obtaining the mean beam length between a finite
black strip and a black spot centrally located separated by gray and clear
gas proceeds in the same manner as the infinite one. in Section L4-lL. The
symmetrical case with the element of the area a distance Y' from both ends
of the strips is considered. The "no-absorption" exchenge factor is obtained
from equation 4=25 by dropping the exponential term and integrating over the
finite dimensionless distance Y'. The mean beam length to shortest absorbing
distance ratio is given by

& a1
2j'es cpshgde

1 o cosh30
B=- 'é_v- In Yv/;,r . -1 1 l""'33

5 + ‘tan —
(Y'/v')" +1

B is plotted vs. the shortest sbsorbing distance, s', with the Y'/v'
family of curves in Figure 4-6.

The above four derivations are important because they replace a numerical

s
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integration with a very simple graph. Although the two integrals could be
tabulated as well, the replacement of these integrals with the mean beam
length is believed to have the advantages of both physical meaning and
easier use.

4.6 Interchange Factors Béfween a Gray Gas Rectangular Parallelepiped

of Height Z, Width W, and Infinite Length and a Black Infinite
Parallel Strip dx Wide on a Surrounding Horizontal Surface

This problem has been solved in the report of the Combustion
Summer Study Group (Qg). Notice that it is a special case of Section k2.
Considering Figure U-7 the element of volume 4V = dw dz dy is located a
distance w from the front gray gas face, at a height z and displaced a
distance y from the xz plane. The area element L dx is a distance x from
the front gray gas face. Notice the integration over y' in Section 4-2
can be applied directly. Relating the above nomenclature with that in
Section L-2

o=0 f(z) =w
sina=20 ' s b3k
cos o= 1 vi= Va2 (x' + W')2
X =X+
Equation 4-11 and k-15 gives
2w 2 2
W= _ e ~(B0 /() (22« ()Y
b L J, n(z® + (x' +w)?)
k-35

Integration over W' gives the exchange factor between a volume of gray
gas of infinite length, W' dimensionless width, and dz' height and the
element 1dx' at a dimensionless distance x'. A second integration over Z'
gives the interchange factor between the rectangular parallelepiped and the
element Ldx' at a dimensionless distance x' from its base.

It is possible to solve the above integral analytically onl& in the
limit when the gas does not absorb. The double integration without the
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exponential term gives

dgs _2 “1 W'+ x! -1 x!
Zlax x| @ 7 = tan © oo

2 ‘ 2
Z' x' Z!
Ty I» l*(wv +x=) AN 1*(;;7) 4-36

The other limit of k = o© (or a black wall to s black strip) is obtained by
the cross strings method. ’ '

gee _l(y .¥Z ) h-37
Idax 2 m

In order' to obtain the exchange factors between the two limits the double
numerical integration of equation 4-35 must be comﬁleted. Since numerical
integration is a laborious process a semi-integration process with good
accuracy is used. Note that, except very near the front face of the gray
parallelepiped, s', the shortest absorption path, and therefore B, change
slowly with w'. Equation h-’jS‘ is well appréximated by

: 1 ]

o m I‘B‘ ¥yt W wew' L 2q1/2
o " 1 I}f,+ n n-1 ’

Wt

n H .

5 z'dw!? . | 438
A 7! +(X' +W”)
n=1

vhere m = W'/Aw' , the number of increments into which W' is divided.

. 1 L W
Integration over wn-l to Wn gives
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DWW )

3% 2 N B —— Bl ) W, 2
-y-——&-'- = - ; exp - . . ‘z' + (x' + __1'}___9___)
Idxdz x W+ W 2

| xt4 2__n-1
|* 2
o+ x! W', o+ x!
(t 1 n - - tan™+ n-l' )

k-39

Use of equation 4-39 reduces numerical work considerably. Values for
tan-l can be tabulated and used repeatedly while B is read directly from

Figure 4-3. As an example, take x' = 0.1, z' = 1.0 and W' = 1.0. Numerical

integration gives (dQEEYdedz*) = 0.16376. Equation 4-39 with m = 10 or
Aw' = 0.1 gives (daééydedz')=o.16os6 which is about 2% low. Most of the
error is in the first two intervals. Dividing these two intervals in half
again so that Aw' = 0.05 for w'< 0.2 and Aw' = 0.1 for w'> 0.2 gives
(a2§§ / Ldxdz')= 0.16409 which is 0.2% high. The numerical integration is
only good to about 0.5%. By using equation 4-39 the double integration of
equation 4-35 was carried out on the 709 and 7090 computers at the M.I.T.
Computation Center for a wide range of heights and widths. The results
are given in Figure 4-8 (a - h). (dgs/Z'Ldx) is plotted vs. x'/Z' with a
family of curves for different Z's. Values for an intermediate W'/Z'

can be obtained to within 5% by arithmetic averaging.

If an analytical expression is desired

& . ‘;’BZ' 1. X/ ko
Vi (x/Z)2

1/2

The bracketed term represents twice the exchange factor between an infinitely

long black surface of height Z' and a black strip on a horizontal plane.
A
The exponential term, (1 - e e ), is the effective emissivity of the gray

gas rectangular parallelepiped where B is given in Figures 4-9 and bears the

burden of making the simplified equation give the rigorous answer.
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Notice how the mean beam length varies in Figure L4-9a where Z' = O.
Consider the curve W'/Z' = 1.0 , for instance. B starts at a value greater
than Z' for x' = O, since the shortest possible path is Z'. As x'/Z’
increases the mean beam length decreases since the short distance through
the upper corner of the parallelepiped becomes important. Finally as
x'/Z'—ét}O the mean beam length must return to unity since the absorbing path

length becomes equal to W' for sll traces.

T Interchange Factors Between an Infinite Gray Gas Wedge and an
Infinite Black Strip on the Horizontal Surface Surrounding its
Base

The element of volume dV = dz dw dy in Figure 4-10 is located a
distance w from the axis of symmetry of the wedge, a height 2z above the
horizontal surface z and displaced & distance y from the xz plane. The area
element Idx is a distance x from the axis of symmetry. The base of the
wedge is of half width b and the boundary of the gray gas wedge is given by
W = az + b. Note that this is again a special case of Section 4.2 and therefore
the integration over y can be applied directly. Thus, equation 411 with

proper numerical substitution of B in the integral becomes

az'+b’

dgs =§f VALVA e bkl
(az'+‘b) [Zi + (xﬂ mwa)

vhere s', given by U4-5 and k-6 is

g? =(8.Z' + D' - W') Vz'e + (X’ - we)2 hwhe

az' + x' - w'

The approximate formula suggested in Section 4-6 applies giving

v+ W

d - n Blaz' + b' = ( ,E;é,_E:l)) r've
Idxdz = ji, wa + wa_l ‘
1 (ez' + x' = ( 5 ))
tan 1 x L - tan 1 n-1l

Z L-L3
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Figure 4-10 Interchange Between a Oray Gas Wedge and a Black Strip
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vhere 2

W'+ W
ave 2 )

r' = 232-}- (X' _w

and m = 2 az'/Aw'. The ssme Aw' is recommended as in Section 4-6. Tt is
possible to solve equation k=Ll only in the limit k = 0.0 by deleting the
exponential term. The solution is

- ? ¥ $ - - '
s 2 tan 1 [x' =+ a% + b - tan 1 x' (aZ' + 1)
7 A Zt

-

Lz b') 1n (1 + ae)Z’2 + 2a(x' +b')Z' + (x' + b')2
2Z2'(1 + a L \2

(x' +1b)
' ' 2 2]
o (xt -1 n (l+a)Z“ - 2a(x’ -,:;*)z' (x' =Db")
22.1(1 + a°) | (x' = b')?

a

_(x'+b")a tan~t (1 + aa)Z' + a(x! +b') )

Z'(l+a2) (X' + B!

9“ 1 - LI w B! .
a(x' - 1b') tan l((a +1)qu_aé}5) 'b))+tanla

Z'(1 +a")

The solution for k =00 by cross strings is

s _ 1], (x/2) - a kb5

'\/l-l»(—;{.--asu)2

Some values for other absorption coefficients have been obtained on the
TO9 and 7090 computers for & base b' = 0 and a wedge slope of a = 0.25,
and’aré given in Figure 4-11. The slope 0.25 corresponds approximately to
the slope of a buoyant line flame given by the analysis in Chapter 6. The
equation recommended for amnalytical use is




’
0 1 Xx]Z 2 3
Figure 4-11- Interchange Factors for an Infinite Gray Cas Wedge

of Height 2' and Slope 0.25 and the Surrounding

Surface as & Function of the Distance froshthecnter
Center Line to Height Ratio
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d -
Tax 5 1- ((x/2) - a) L.L6
’V/Vl + (% - a)2

where the bracketed term represents twice the exchange between an infinitely

long black plane of height Z inclined at a slope "a" and a black strip on a

- i
horixontal plane. The exponential term, (1 - w B2 ), represents the effective
emissivity of the gray gas wedge. B is given in Figure 4-12 and supplies

the correct values to make the simplified equation give the rigorous answer.

The method for correcting the data of Chapter V was based on the above
infinite wedge exchange factors, along with the required finite ones calculated
manually. The radiation from a line fire can be given, to a first approx-
imation, by the assumption of a uniform temperature wedge for a very narrow-
base fire, or a uniform temperature rectangular parallelepiped for a wide=-
‘base fire. The data in Chapter V suggest that a uniform temperature of
approximately 1200°F be used.

4.8 Total Interchange Areas

In many engineering problems involving radiative transfer, it is
advantageous to divide the system into finite zones. Once the interchange
between each zone and all the other zones is known it is not difficult to
obtain the heat tramsfer to and from various parts of the system. The zoning
technique used before has usuvally been for small regularly shaped areas.
However, it is'possible to apply the same technique to the system which is

infinite in one dimension.

It is apparent that the interchange between a rectangular volume of
gray gas and a finite surrounding surface in a system of infinite length

is given by the integration of equation 4-35.

X

gs a @s

E-[ 18 - i
Xy

where d gs/L dx can be obtained from Figure 4-8 as a function of x.
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Consider the simple system in Figure 4-13 where it is desired to obtain
the interchange between the gas volumes and the various surfaces. GL - S1
can be obtained directly from L4-4T and is the same as‘Gl - 88,'G2 - 82, ete.
GF - 51, is found by | '

Gh - S1 =G +G1 - 81 - G1l - 81 kL8

where GI + GL - 51 is obtained from 4-47 In like manner

G2 -81 = GBF6l-8L - GiI-&8 kb9
G3-81L = 3+ -81 - & -%51 4-50

Therefore, it is necessary to obtain only four interchange factors by

numerical integration to find all the gas-to-surface exchange factors.

In order to obtain the surface-to-surface interchange factors it would
be necessary to perform two more integrations of equation 4-29. It appears
that it may be desirable to pursue this system to completion, and it is
recommended that evaluation of these interchange factors be made a part of
fature studies.



s-7|  G-4 - G-3 S-4
s-8| G G-2 S-3
S-1 S-2

Figure 4-13 Total Gas-to-Surface Interchange Factors




Ly
V. RADIATION FROM A LINE FIRE

5.1 Introduction

The two-dimensional exchange factors in Chapter 4 give the
‘intensity profiles around a uniform temperature gray gas wedge and rec-
tangular parallelepiped. It seemed desirable to establish how well these
profiles approximate the distribution of the flux density of radiation on
8 surface surrounding an actual fire. Some measurements of radiation flux
density around a line fire were made by de Rodhechouért (g&) using methane

flames. The present suthor used propane flames.

5.2 Apparatus

The apparatus is discussed in more detail by de Rochechouart (g&).
It consisted of a 2" by 24" slot surrounded by a flat surface of 3 feet
on both sides. Fuel was fed at a measuréd rate through a one inch pipe with
numerous small holes throughout its length, into the bottom of a metal
chimney to obtain a uniform velocity profile. The flow rate of the fuel
issuing from the slot was so low that the fuel momentum was negligible
compared to the buoyancy produced by the flame. The resulting fire is
shown in Figure 5-1. The radiation flux density was measured at several
distances from the flame with & thermopile consisting of a flat chromel-
constantan strip soldered at the ends to 2-inch copper cubes. The thermo-
pile is described fully by de Rochechouart (2L). For each measurement
the e m £ was recorded continuously fqr several miﬁutes on a Sanborn 150
Recorder. The recorded data oscillated rather randomly by about 5%. The
radiation flux densities were evaluated by drawing the best straight'line

through the recorded data.



Figure 5-1 Line Fires (Methane)
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5.3 Data on Line Fire Radiation

The data of de Rochechouart (2L4) of radiation flux densities
around methane flames is given in Figure 5-2 and tabulated in Appendix F.
The heat liberation.rates reported originally were Wrong, due to an error
for which this author is partially responsible. The values given are
based on the low heating value of the fuels. The datae for radiation
around propane flames is given in Figure 5-3 and isvtabulated in Ap-
pendi;e§-2 and F-3. The data cover a range of heat liberation rates
from 72,000 to 231,000 Btu/hr»ft. The measurements were made at distances

of 0.2 to 1.2 feet from the center of the slot.

Inspection of Figure 5-1 shows that the fires were nearly laminar at
the base and developed largé scale turbulence at the top of the flame.
This was also observed by Blinov and Kludihov (2) in large pan fires. The
photographs and visual ubservation indicate that this turbulence is quite
spectacular with whole sections of luminous gas separating itself from the
rest of the flame. This is believed to be responsible for the oscillations
in the messured radiation flux dénsity. It was also observed that propane
flames tended to wander out over the surface. This is undoﬁbtedly because
propane has a higher density than air and will be discussed more fully in.

section 6.4.

5.4 Correction of Data to an Infinitely Long Flame

The fires in thesenexperiments were only two feet long because
it was unfeasible to liberateyé large amount of heat in the small test cell.
Some of the larger fires raised the temperature of the air near the ceiling
to lSOoF in less than 10 minutes. The experimenters were forcéd to make one

measurement over several minutes, stop the fire, and resume after the room had
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Figure 5-2 Flux Density of Radiation on a Horizonal Surface Surrounding
a Line Methene Flame for Different Heat Liberation Rates
(data by Te Rochechouar'ﬁ-(2 4))
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cooled. Propane flames also provided a problem because the air in the
cell rapidly filled with soot. Therefore, the physical inconvenience of
a long fire led to the theoretical inconvenience of a short one, since a
two-foot line fire is considerably shorter than an infinite one. To over-
come these circumstances the iollowing method was used to predict the in-

tensity patterns from an infinitely long line fire.

t

It is apparent that equation 4-21 multiplied by e_BS with B given
by equation 4-22 or Figure L-3 is the solution for the exchange factors
between a finite gray gas wedge and a black element of area L dx located
a dimensionless distance x' from the base of the wedge and half way be-
tween the ends. By obtaining the proper substitution of varisbles from

Figure 4-10 one obtains the following equation 5.1

) 2! aZ' + D! -Bs!
dgs = 2 z! Y' e aw!
L ax ™ Jo (a2t +10) (2124 (xt-w')?) (20Pe(x'-wt) Py ®)3
where s' is given by equation L4-L42

R A Y A S

(azt + x'-w')

The double integration of equation 5-1 was performed graphically for three

1 ana k' = 1.6 £t7L.

2'/Y' at several x'/Z' for k' = O £t~ The solution for
k! =00 can be obtained analytically and is given in Appendix D. The exchange
factors for wedges of infinite length are given in Figure 4-11. The ratio of
the exchange factor at‘infinity to the exchange factor at Y' is given as the
ratio of the distance from the wedge to the wedge height for three length-to-

height ratio's and three absorption coefficients in Figure 5-k4.

Unfortunately the absorption coefficient for the actual fires is not

known. In general the absorption coefficient will be a function of the
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position in the flame since it is s function of carbon and gas concen-
tration and temperature. Attempts to measure this absorption coefficient
in the actual flame would be made difficult by the great turbulence in
the flage. However, single-and double~path messurements were made on
small laminar line flames of methane and propane. The absorption coef-

1 for methane and

ficients obtained were approximately k' = 2.0 ft~
k' = 10.0 f£t=L for propane. With the flame heights given in Figure 6-2,
it is now possible to correct the data to an infinite flame using Figure

5-. The corrected data are shown in Figure 5-5 and 5-6.

A reconsiderati¢n of the analysis of Section 4-T is helpful. The

exchange factors around a gray gas wedge are given by equation 4-L46

iE - (1) | 1. |z ® 4-b6
2 R =

+ 7 l
where B is obtained from Figure L4-12. Therefore a plot of the flux den-

sity divided by (l—e-BZ‘) vs. the distance from the center of the flame
base by the flame height, should give a single curve. This plot is
shown in Figure 5-T.

Note that if the data for a particular fuel do not fall on a single
curve in Figuré 5-T either £he megsured absorption coefficient is in error
or the approximation of the flame by a uniform temperature gray gas wedge
is not a good one. The correlation of the data in Figure 5-7 seems to

support both the measured absorption coefficients and the assumption.

The solid curves in Figure 5-T are those of gray wedges with tempera-
tures of 1260°F and 1120°F. These values do not seem unreasonable since
they are based on the entire luminous flame region. Although propane has

a higher heating value and a slightly higher adiabatic flame temperature
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for a stoichiometric mixture, the propane flame is considerably blacker

and radiates more of its heat.

The date indicate that a gray gas wedge of slope 0.25 with a uni-
form temperature and constant absorption coefficient is a good approxi-
mation for flames of a narrow base. A rectangularkparallelepiped of uni-
form temperature and uniform absorption coefficient is recommended for

calcﬁlating the radistion flux density around a wide-base fire.
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VI. THE FLAME AND RESULTING CONVECTTON COLUMN

6.1 Introduction

An understanding of the fluid dynamics of a buoyant plume is
important in the analysis of fire spread. The flame supplies radiation to
the unburned and burning fuel, and the buoyant plume above the fire influences
combustion to an unknown extent. The data on the distribution of radiation
around buoyant flames in Chapter V indicates that the approximation of the
flame by a gray gas wedge of uniform temperature is a rather good one.
However, it may be possible to improve the analysis by allowing for temperature
and concentration variations in the flame.

Although it is apparent that disturbances in the convection columns
above small fires do not greatly influence the fire itself, it is possible
that once a fire attains a magnitude where it can compete with normal
meteorological forces, conditions in the ‘convection column may greatly affect
the fire below. This is where the almost completely undetermined influence
of weather plays its parts. Schaefer (26) reports that "wild fires" nearly
alvays occur in a very unstable atmosphere (super adiabatic) with a jet
stream in the upper atmosphere. However, there is no quantitative knowledge
of the effecﬁ of weather on large fires.

6.2 Buoyant Plumes

Buoyant plumes can be defined as currents of rising fluid produced
by a difference in density of the plume and the surrounding fluid. Although
this density differente can be a low density source, such as a low density
liquid (water) issuing into higher demsity liquid (salt solution), the most
importent applications involve a density difference produced by a-heat
source establishing an upward flow in the atmosphere. This heat source may
be a chimney, sand heated by the sun, a lake on a cool:summer night, or a
a fire. Our primary interest is in the latter.

The problem was first considered analytically by Schmidt (28). Schmidt
made the following assumptions which are general to all other investigators:

1. Turbulent flow fully developed and molecular processes neglected.
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2. Transverse forces small compared with those in the vertical direction.
3. Mixing in the vertical direction neglected.
4, No horizontal pressure variation.

Schmidt used Prandtl's mixing length theory and similarity but not
equality of eddy viscosity and eddy conduction.

Rate of lateral momentum transfer oc dbe (%%)2

Rate of lateral heat transfer o< cpbz(%§)(%§)

where
p = density
b = distance of transfer
u = velocity perperndicular to transfer
¢ = heat capacity
0 =

temperature

Using the above assumptions Schmidt writes the equations of continuity,
vertical motion (force‘balance), and an energy balance. With the additional
assumptions of ‘uniform density at infinity and density variations small
compared to absolute demsity he obtains a solution which (1) predicts the
form of the temperature and velocity distributions and in addition‘calls for
(2) the normalized distributions of temperature and upward velocity to be
self preserving at all heights (although the distributions of temperature
and of velocity are different). By making measurements above an electrically
heated coil he found (2) well verified and (1) approximately so.

Rouse, Yih, and Humphreys (25) wrote the same equations as Sc?midt
independently, but assumed his second conclusion of similar profiles imstead
of Prandtl's mixing length. Their solution gives the variation of éenter
line properties with height but leaves the profiles to be determined experi-
mentally. The profiles above both point and line sources were obtained by
measuring physical.praperties over small gas burners.

Tater work by Priestley and Ball (33) and Morton, Tayler, and Turmer (22)
extend the analysis to an atmosphere in which density changes with height
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above the source, but maeke slightly different assumptions regarding boundary

conditions.

Priestley and Ball assume effectively that the plume is straight-
sided which is strictly true only if the ambient density does not vary with
height. They apply boundary conditions at a finite source. Morton applies
all boundary conditicns at a virtual source of zero radius and momentum flux
and assumes a weight deficiency (or heating rate) is known. The significant
difference occurs when the density decreases with height. In this case the
plume has a finite height, and will spread horizontally as it stops.
Priestley and Bell's assumption of linear spread is certainly not good in
this instance and although Morton's does not include entrainment from the
top of the plume it seems to be more realistic.

Morton (;2) extends his previous paper to include the effect of a moist
atmosphere and,predicts when. condensation will occur and its effect on fhe
fiow. He assumes a simple linear decrease in humidity wifh height and no
effects on physical properties due to water vapor.

Morton (gg) adapts his previous treatment to finite sources with finite
flow by relating them to the virtual point source in his previous paper.

Schmidt (2]) reviews the findings of Priestley and Ball (33) and suggests
a new axial velocity distribution to replace the standard Gaussian function.
However, the new distribution does mot seem justified and predicts a reverse

flow region the existance of which seems rather dubious.

Murgai and Emmons (g;) give a very useful method of calculating a
plume for any arbitrary lapse rate by makimg the calculation over several
heights of constant lapse rate. No assumption of virtual source is made and
the previous final ¢onditions become the initial conditions of the next step,
i.e., all boundary conditions are applied at a finite source.

Iee and Emmons (;2) give the treatment of a finite line source issuing
into a constant density atmosphere. ' No virtual source is assumed and the
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boundary conditions are spplied at a finite source.

Morton (g;) extends his previous Papers on buoyant jets to include wakes.
He also introduces a very simple momentum-mass flux diagram which is very
- helpful in clarifying the meaning of the solutions for various cases.

Homsy (2) has obtained the solution for a plume originating at a finite
circular source without the assumption of small density variations. The
boundary conditions are applied at the finite source and the assumptions of
a constant density atmosphere and reproducing profiles are made. This method
of solution can easily be applied to a finite lime source.

The above solutions are now at a state where the convection colum
above a fire can be described with confidence since the results have been

well supported by data.

6.3 A Model of a Burning Jet

The solutions for buoyant Jjets reported in the previous section,
except for Homsy (2), assume the density difference between the jet and the
gurrounding fluid to be small compared to the absolute density of the fluid.
This will be ﬁfue in the upper section of the convection column of a fire.
Homsy ‘s solution does not require the assumption of small density variations
and can, therefore, be used with confidence near the fire. However, Homsy (9)
f.also finds & solution for a circular buoyant or forced Jet in which combustion

oceurs. It is easy to extend this to a 1ine source.

In addition to the assumptions made by Schmidt and listed in Section
6-2, the following assumptions are made. '

5. Normalized demsity and velocity profiles are imdependent of height.

6. The rate of entrainment is proportional to.the local velocity of the
Jjet.

T. The inspired air mixes with the fuel and burns to stoichiometric
completion instantaneously.

8. The ambient fluid is of uniform density.

9. The heat capacity is independent of temperature and the molecular
weight of the jet is uniform.

10. Rediation from the flame is neglected.
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The assumptions 1 through 4 have been discussed by previous workers
and are well justified by experiment.

Although assumption 5 of self-preserving profiles is well established
when the density variations are small it is undoubtedly césual for a flame.
The fuel at the edge of the flame mixes with air more rapidly than the fuel
at the center of the jet. Therefore, the more rapid combustion at the edge
of the flame causes the temperature to rise more quickly. The veloeity and
densify profiles must take on the appearance of a camel's humps, which diminish
higher in the jet. It is thus doubtful that this humped pattern is maintained
for a gre&t distance in a turbulent flame.

Once again assumption 6 is reasonably well established when the density
differences are small. Inadequate data are available to give firm support
to this assumption for buoyant flames.

The instantaneous mixing of fuel and air to burn to stoichiometric
completion does not occur in buoyant jets with large scale turbulence. If
this were true the camel hump velocity’profile described above would be quite
pronounced. However, any sttempt to describe the burning patiern in the
flame introduces at least one additional parameter.

An ambient density variation could be included in the same manner employed
by Murgei and Emmons (g;), but most flames occur in a substantially constant
density medium.

A mean heat capacity and molecular weight is considered sufficient in
view of other approximations.

The inclusion of radiation mskes an analytical solution impossible
since the energy balance would depend on a fourth power temperature relation.

The anaiysis is not affected by the assumption of the type of velocity
and density profiles. For simplicity a rectangular or top hat profile will
be assumed. ’
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In Figure 6-1 fuel at a density P is released at a velocity ug through
a slot of half-width yo. The flame entrains air at g density Pa which is
mixéd with fuel producing combustion. At a height x the density is p, the
velocity u, and the half-width Yy

The characteristics of the buoyant flame are given by a force balance,
an energy balance, continuity, the equation of state, and the postulated
burning law. It is apparent that the change in momentum across the element
is equal to the byoyant force acting on the volume aykdx. The force balance

is given by

2
d(puy,)
dx

= (pa - p)gyx Force Balance 6-1

By assumptions 7 and 8 the change in sensible energy across the element dx
is equal to the energy released by the combustion produced by the inspired air.

c d(puy,T) k"Q,

dx rf

up, Energy Balance 6-2
where k" is the entrainment coefficient, dimensionless, ¢ is the heat capacity
of the gas, Btu/lb-°F, Q, is the heat of combustion per pound of fuel, Btu/
1b-fuel, Ta is the lbs of air per 1b of fuel for stoichiometric combustion,
1b/lb, Combining the energy balance with the equation of state for a perfect

gas,
P _ gga Fquation of State 6-3
pa a
gives
"
dw,) K 6-4
ax rf c 'I‘a

The mass flux in the flame at a height x is equal to the mass entering the
base of the flame plus the mass entrained up to height x.
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pV, =poV, *+oV Mass Balance 6-5
vhere 3
V. is the volumetric flow per unit length at height x, ft3/hr—ft
Vo is the volumetric flow per unit leng;htat the origin, ft /hr-ft
per unit tim
Va is the volume per unit lengthﬂlnspired up to height x, ft3/hr-ft
Defining
Va
W = s 6-6
Y% = Y
gives
puy, =puy, +We,(u, -uy) 617

Since it was assumed that the burning goes to stoichiometric completion
an energy balance on the fluid passing up to height x can Be written by
equating the energy at height x, ‘to the energy input. from incoming fuel ‘and
air. Neglecting radiation and taking Ta as the base ‘lemperature

QcMéna
nMe (T-T)=nMc(T -7 )+ e 6-8
a O o (o] a rf'
where
n is the molal flow rate at height x

is the molal flow rate of fuel at x = O
is the molal flow rate into the flame up to height x

Since the heat capacity and molecular weight are assumed to be constant

equation 6-8 can be rearranged to

nT - noTB n = no Qc
“nT " " n T F T 6-9
na a a f "a

The right hand side being equivalent to (Vk - VO)/VA. Therefore
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where

k"Q
=u? d K' = =2l 6-16
F=u, &, an - rcha

Solving for p' in 6-15 and introducing it into 6-13 gives

1 ’+ 1 Iyt o ] [}
Au'eg * wu'luly, - V)] _lx 1. 9 -w (12| 617
ax" F u'y}'{ u'y;c
et
v}'{ = u'y}’c 6-18
and equations 6-1k and 6-17 become
dv;c
rrolE R 6-19
and
' ' t o
alu (p0 + W(Vx 1))] 1

= =fr (w-pl) +vi(1-w)]l 6-21
respectively. Dividing 6=17 by 6-20 gives

afu'(e} +W(V}'c - 1))]

1
; = [(wep') +v'(1 -w)] 6-22
dvx K'F‘u'2 ° X
Let
t' = u(w (v}'c - 1) + p(')) 6-23

Equation 6-22 becomes
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at’ 1 : 2 ' '
- [(wvy =1) +p))((w=pl) +vi(1=-w))]
or
¢ W
j[ t'2 at' = i [(wW(v! - 1)+ p')a((uJ- p') + vi(1 -w))lav!
6” K'F ; b'< o) o] b'4 b'd
)

6=2k

Solution of the integral on the right hand side is given by Burington (2).
Therefore t' is given by

1

th= | —3 [ (wvy + o} - w)3Bw (@ - w)v) + (w= p)(Buw+ 1))

LK'Fw

1/3

- 023 (w (- 30) - p;)] + p!3
6-25

u' is obtained from t' by equation 6-22 and yi is given by 6-18. It is
necessary to obtain x" from a numerical integration of equation 6-19 or

’

W
av!
x" = K-;'E)-;c-'- 626
1

Notice that for a buoyance-controlled line fire 983 is small compared to the
other term in equation 6-25 at a very small v, - Thus
= ' ' .
t 25;52:5— (£,(vy, W, 0! ) 27
Since
t
u' = % 6-28

[w(v}'( -1) + pc')]

Therefore

1/3
. (K'F w?)
K\‘

£, (v w, p(;) 6-29
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If a single fuel is considered

r B 1 1271/3
Q
1/3 2 .
(K'F w2) _ Y% rfCTa 6-30
X' - gy Q "3
(o] C
rf c Ta
| — - _]

Since Qc/rfc is equal to the adiabatic flame temperature minus the ambient

temperature Tf - Ta’

2 2]11/3
2,1
(X'F . ) /3 - Ba.g_ " 6-31
K &y, (Tf - Té) Tf
Since the energy flux at the origin is given by
.Q/L) =2Q, puy, 6-32
Equation 6-31 becomes
2 2 1/3
2,1 T 2
(K'FwT) /3 - a (9/1) 6-33
K’ (Tf - Ta)Tf (q o )2 3
cPo’ 8
and the flame height E is given by 6-29 and 6-33.
o 2 2/3
: & _SQLI:)7_. 63k
H =34
(Tf - Ta)Tf 2Qcpog1 2

2
The flame height is proportional to (Q/L)‘/3 for a single type of fuel.
This result was deduced by Hottel (;l) from dimensional analysis.
Hottel points out that his solution does not depend on the assumption of

similar temperature and velocity profiles.

6.4 Flame Heights

One reason for developing a theoretical model for burning jets is
to predict flame heights. The fire spread model in Chapter II requires
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knowledge of the relastion between the flame height and other variables. This
section reviews the analyses of other authors and gives some new data.

Thomas, Webster, and Paftery (;}) considered the flame heights of
circular burning fires and obtained

2
F
H _ v f
D N3 6-35

where

H is the flame height, ft.
D 1s the diameter of the base, ft.
F_ is the volumetric flow rate from the base, ft3/hr

This equation was obtained from the following argument where the line
source will be used as the example.

In a flow system containing viscous, inertial and buoyant forces the
ratio of the velocity anywhere in the system to a reference velocity (e.g.,
the velocity at the base) is a function of the Grashof and Reynolds Numbers
and the distance above the source. Thus

1 3pm 2 u W p
2( gB?;/ATp O , X) 6-36

., o
u ? u

o) i

where

u_ is the velocity of the fuel at the base, ft/hr
B' the coefficient of thermal expansion, ot
AT the excess temperature in the flame, °F
p the density of the gas, 1bs/ft3
B the viscosity of the gas, 1lbs/ft-hr

W the width of the base, ft

By definition the volumetric flow rate is given by

F
il o< uo'h/ 6-37
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It is assumed possible to neglect the viscous forces. Therefore equation
6-36 can be replaced by

gB'?V'AT X
=f , 6-
5 3[ o 2 Wl ®

e}

S[ﬁ

The surface area per unit length of a line flame is readily seem to be given
by

S =W fh[—,%—] 6-39

The rate of air entrainment per unit area is assumed to be directly
proportional to the local stream velocity. This is a common assumption for
non=burning jets. The total air entrainment through out the flame is then
proportional to the .product of an average value of the entrainment velocity
and the surface area of the jet. The average entrainment velocity is given
by equation 6-38 with x replaced by H. This product is also proportional
to the volumetric fuel flow rate at the base. Eliminating u from equations
6-37, 6-38, and 6-39, gives

P
v H gB'AT W H
;—-ocuo”h/ o< fu(;;) u fs ( —% ' 37 ) 6-40
[e]
Therefore
2
® o, |
W 6 |garw? 6-h

Most buoyancy controlled flames of interest are large compared to
their source width and can be considered a line source. Therefore, the flow
conditions at the base have little influence in the flame and the entrainment
velocity would become independent of the base width as well as the base
velocity. Equation 6-40 would then give

Ve 2 , 6-42



where Ve is the entrainment velocity.

The surface area per unit length given by equation 6-39 will be directly
proportional to the flame height H when the flame is a large wedge and
directly proportional to W when the flame is small and just covers the surface.
Therefore,

H n
S °<’W(“;,y7 ) 6-43

where n goes from zero to unity as H/% increases. If the mean entrainment
velocity is teken proportional to Hl/2 (equation 6-42), then from equations
6=40 and 6-43
1/(2n + 1)
2
i I-(F‘V/L)
-~ 6=k
w | w3
The above equation calls for H/gy to increase with (F;/L)z/qn/3, but with

a decresasing power since n goes from O to 1.

Hottel (;;) obtained the relation for a line source

(/)2
: = X 645
(T -1P e (w)

from dimensional analysis. However, if the width of the line source becomes

finite it is apparent that

(a/1)%
(pc)3(r - 7 )3 g3

= 1 -’-‘-,%) 646

Replacing the H3 on the left hand side byﬂh/3 and defining the flame height
as the height at which a temperdture Tf is reached

2
0 S (Q/L) Ta 6l
W wa“(pc)a(mf -1.)3 ¢ !

or for a single fuel
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2
I SN [ (740 .
w - f 3 6-48

The analysis of Thomas, Webster and Raftery gives the same result if the
volumetric flow rate per unit length is replaced by the heat liberation per
unit length. Notice that the treatment by Hottel is for heat liberated at
the 6rigin but does not include combustion. The derivation in the preceeding
section includes combustion of a special type (combustion occurs on mixing
and goes to stoichiometric completion; (assumption 8)). The relation for

the flame height can be derived from equation 6-29 and is

5 2
2 T =
H (Q/1) a
—-— =1 w, p /o
3 2 ; g > TolTa
w w> (a0 )% (T, - T,)T,
6-49
is equal to Ta/Tf and nearly constant for all fuels. Therefore,
2
: (q/1)
A e &%

The effect of the parameter (po/pa) is quite significant near the base
of the flame. If the fuel gas issuing forth is heavier than air the small
amount of momentum will soon be dissipated. The gas will then flow in a
horizontal direction, or possibly in a reverse direction. When enough
combustion has occurred to make the fluid lighter than the surrounding air,
the flow continues upward. This caused the experimental propane flames to

wander across the surface.

Some flame heights for line fires of methane and propasne, measured
visually, are given in Figure 6.2 vs. the square of the heat liberation
rate divided by the cube of the source width. The lines recommended by
Thomas, Webster, and Raftery for their data on approximately circular fires
are shown based on a heating value of wood of 6000 Btu/lb. The radius is
used as the characteristic circular dimension to give a comparison with the

line fires at an equivalent mean hydraulic radius.
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The slope of the curves for the line propane and methane fires are
approximately O. 4 with methane having a slightly higher flame height than
propane for the same (Q/L) ﬁ7y13 The data nearly coincide with the lines
recommended by Thomas, Webster, and Fartery (;;) for wood crib fires of
nearly circular dimension when the coordinates H/R and QE/R5 are used. It
is believed that the heat liberation is a more significant quantity than the
volumetric velocity at the origin when different types of fuels are considered
since the heat liberation rate is a better indication of the available
buoyancy. The close correspondence of the data for line methane and propane
fires and circular wood crib fires indieate this to be true. One would
expect & lower slope for the circular fire data than for the line fire data
since in the circular case as R goes to zero the slope approaches 1/5 and
in the line case as %/ approaches zero, the slope approacher 1/3. Although
the slope is slightly less for circular fires in Figure 6-2 (0.3 opposed
to 0.4 for line fires) the scatter of the data is to great for firm conclusions.

The base flow rate for the larger flames was approximately 1/3 ft/sec.
The bases of the flames were definitély laminar, particularly for methane
(see Figure 5-1). The flame broke into turbulence at a height of about three
or four slot widths, the larger flames being trubulent nearer the base. If
the base were made 1/10 as wide the flow rate would be 3.33 ft/sec. and
presumably Hﬁh/ approximately 10 times larger or 150. This base velocity of
3.33 ft/sec is large enough for one to expect it to influence the flame
height. When the base velocity becomes great enough H/Wv’ becémes a constant
and equal to approximately 600 for propare (assuming H/R for circular flames
corresponds to H%qv'for lines flames). It appears that all the data in
Figure' 6-2 are nearly three orders of magnitude in (Q/L)2/0~/3 or Q,g/RS
from any influence of entering momentum. The data of Thomas , Webster and
Raftery (31) indicate that this is an important range for natural fires.

It appears that a good approximation for line flame heights, to be used
in the model in Chapter II, would be

(Q/L)2
653

where ¢ is 0.33 to 0.4 in the range of interest.
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VII. DISCUSSION OF RESULTS

T.1 Introduction
It is apparent that this work has been concerned with
numerous aspects of the fire problem over a wide area not entirely re-
lated. In order to take full advantage of this.work in planning future
studies it is necessary to take cognizance of the results as it applies

to the general problem of fire spread in a real situation.

7.2 Results of This Thesis Work Applied to Actual Fire Spread

It is believed that the Woods Hole Summer Study Model dis-
cussed in Section 2-4 offers the best analysis for fire spread at the
present time. The form is general enoqgh that any new observations can
be included. It can also be used as a basis for determining future ﬁork
to supply the missing information for a more thorough understanding of

fire phenomenas.

The three final equations for the Woods Hole Sumer Study
Model are:

1. An energy balance on the unburned fuel,

ve 1 [ Q/L), + Q/L)g + /L), - Q/L)L] 2-23
Qi

which states that the velocity of fire spread is directly proportional
to the various mechanisms of integrated heat transfer rates to the un-
burned fuel and inversely proportional to the energy required to produce

piloted ignition.

2. A burning law

fve, v- 8 [Q/L )+ Q/L)i] 2-28
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which says that the heat liberation rate by combustion (L. h. s.) is

proportional to the heat input rate to the burning solid fuel bed.

3. A determination of the flame height

H o= g [(em)? 2-29
w W
The heating of unburned fuel by radiation from the embers in the

is readily amenable to theory.

J

fuel bed beneath the gas flame Q/L)B

It was shown in Section 2-4 to be

© e I -atx L
- - 4 - -
Q/L)B = j 9 (x) ax = f a bchf e dx = ba-‘I.‘f T-1
- CO o
Obtaining the radiation from the overhead flame, Q/L)R’ has been

one of the major endeavors of this thesis. When no wind is present to
bend the flame the data of Chapter 5 indicate the flame_radiation can be

well gpproximated by

oo
Wi)g= | ort|aks| ax 7-2
L dx
_____ o
where _d gs is the exchange factor given by either the gray gas wedge

L ax
or parellelepiped exchange factors discussed in Sections 4-T and 4-6

respectively. Tf is the average gray gas temperature which propane and
methane flame data of Chapter 5 indicate to be approximately 1200°F. It
would not be difficult to calculate exchange factors for bent wedges using
a similar method to the ones used for straight wedges in Section 4-7. How-
ever, a wind will not only bend the flame but can also pass through it.

How this affects the combustion pattern, and therefore, the temperature
pattern is unknown but certainly significant. Exchange factors for gray
gas bent wedges 1s certainly the first step in analyzing the effect of

wind on the overhead radiation.

The convection heat transfer at the flame front, Q/L)C is un-
doubtedly the most elusive for quantitative treatment. In this work
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velues of 94.0 Btu/hr-ft for shredded newspaper fuel and close to zero
for the computer punch out fuel were found in the absence of wind. In
an exploratory experiment a wind velocity of 3.5 ft/sec caused nearly a
three fold increase in this number. An experiment is recommended in
Section 3-T which could determine the distance over which this heat trans-
fer may occur for different wind velocities. However, the effect of fuel
type on this method of heat transfer presents a difficult préblem. In a
natural fire it is believed that this heat transfer is of primary impor-
tance.

The heat loss from the fresh fuel as it preheats, Q/L)L, is also
a strong function of fuel type. However, it is believed that the treat-
ment of this term in Section 3-4, by relating it to the other heat trans-
fers, is a promising start. Although fuel beds with significant air

spaces would complicate matters a workable relation may still be obtained.

The energy required to produce ignition, @i, has been determined in
this work for fuel beds of newspaper and computer cutouts. For the news-
paper it was found to decrease with humidity be approximately 10% for a
10% decrease in humidity. This is about one third more than would be ex-
pected if the change is based on the increase in heat necessary to reach
a fixed ignition temperature. However, until other data over a wider range

of humidities become available it is recommended that the following rela-
tion be used:
s
_ Vo \* o _
Qi-K'(_;__) Q oy @2, )+ M B 7-3
where Q, is the ignition emergy at Vo, Btu/ft2

T, is the ignition temperature, °F

M 1is the moisture content of the fuel, 1b/lb
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A¥ is the latent plus sensible heat of water, Btu/lb

Kﬂis a characteristic of fuel type to be determined by experiment

Finding how K" varies with fuel type, other than its variation
with thermal properties for flat surfaces, is another difficult problem.
An independent experiment under more controlled conditions than is pos-
sible when measuring fire spread, may be advisable. However, there is
merit in obtaining the ignition énergy from measurement of fire spread

rates even though the method is not as accurate.

The radiative heat transfer to burning fuel, Q/L)é, can be handled
in the same manner as the flame radiation to fresh fuel. The heat

generation in the bed itself, Q/L)i, has not been studied in this work.

The relation between the flame height and the burning base width
and the heat liberation recommended in Section 6-4 is
2 c
w w3
where ¢ is between 0.33 and 0.4 and ¥is a slight function of fuel type.

Thies relation :seems well enough established to be used with confidence.

It is believed that the functions for equations 2-23, 2-28 and
2-29 are sufficiently well-known to Jjustify their numerical solution

on g computer.

There are still many problems to be studied, particularly the
evaluations of the shift in relative importance of the different terms
which appear in the equations of the model when full-scale fuel beds

(forests or cities) are of interest.
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T.3 Conclusions

1) The energy required to produce piloted ignition in shredded
newspeper at a humidity of 48% and a burning rate 60 f£t/hr was found to be
2.40 Btu/f‘c2 (0.65 ca.l/cme).

2) The energy required to produce piloted ignition in compu-
ter card cutouts ( 1/16" x 1/8"x 0.007") at a humidity of 4% and a
burning rate of 60 ft/hr was found to be 9.0 Btu/ft2 (2.4 cal/cm?). The
required energy to produce piloted ignition for similar fuel cut in approxi-
mately 3" squares at a humidity of 4% was found to be 7.5 Btu/ft.°
(2.0 cal/cme).

3) A ten per cent decrease in humidity produced approximately
a ten pef cen decrease in the ignition energy of ahredded newspaper.

4) A wind velocity of 3.5 ft/sec produced nearly a three-
fold increase in the rate Qf fire spread over that for no %Eﬁé, for
shredded newspaper.

5) The intensity pattern around a constant temperature gray
gas wedge is a good first approximstion for the radiation flux density dis-
tribution around line flamés of pfopane and methane..

6) The flame heights for line fires of propane'and methane

is best fitted by the equation

oh
I S Y, 1 6-53
‘ W W3

where ¥'is a slight function of the fuel type.

7.4 Recommendations

1) A detailed study of the convection heat transfer at the

flame front as a function of the wind velocity shbuld be made.
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2) An independent experiment should be designed to determine
a more exact value for the net piloted ignition energy of the fuels used.
3) The Summer Study Model should be programmed and solved

numerically in the light of the new information available.
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T2

A  SOLUTION OF DIFFERENTIAL EQUATIONS

A-1 The Solution of -the Differential Equation of Atallah's Model €Y

The heat balance for the modle suggested by Atallah on a small element

of fuel dx ahead of the flame was given in Section 2,3 as

4 .4
2 _ oe(r - T
k1 9__;_‘ + Vc_ %1 g;:T_ - (U + -2 (T «T)
dx P (T, = T) =
1 a
= - o-€eF(x) (T - 1 2410
f f a

with the boundary condotions

T=Ta at X = ®
'1‘=='I.‘i at x =0

- = 0 at x=0 2=11

The temperature of the fuel is the dependent variable and x the independent
variable, All other variables are constant for a particular fire, Making

a change of variables

T = Ta
e = z = x/H Al
T. « T
1 a
gives
—-— — 2
2oV, FH 4 e (1] -TH 2
+ — g > L RS o
0z° Kk dz KL (T, = T,) Kl

2 4 4
ceéH (T, -T)
= . f f a A2
k1l (Ti - Ta)
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Let
- 2 .4 .4
Ve ¥H cen 1t - 1hH uH’
A = B B = i 2 +
K kL (T, - T.) k1
1 a

4. .4
O'ééfHZ af - TH

C =
kl (T. « T)
i a
which gives
dze de
—— 4+ A —= . BO® = « C F(2)
2 z
dz

with the boundary conditions

de =
dz

Awd

The general solution for this equation is given by Martin and

Reissner (17) as

8 = Cl(Z) exp(rlz) + C,(2) exp(r,z)

where

z -C F(z) exp(rzz) dz

Cl(z) 2 -

o

W(exp(rlz), exp(rzz))

A6



Th

z. C F(z) exp(rlz) dz
€2 = * G
W(exp(rlz), exp(rzz))

expirlz) exp(r,z)
W(exp(r lz), exp(rzz)) =

rlexP(rIZ) rzexp(rzz)

~A+VA2+4B -Au-\/A2+4B
2 2

rl = rz = A7

Substitution into . equation A-6 gives
c 2
e = C1 + (rz - t1) exp(-rlz) F(z) dz exp(rlz)
o
c Z
+ CZ - -(-;;-:-;;—)- exp(-tZZ) F(z) dz exp(rzz) A=8
(@]

The boundary condition & = 1 at z = 0 gives

c. + C, = 1 A-9

To apply the boundary condition ® = 0 at z = o is a little more subtle.
Since r, is negative exp(tzz) goes to zero as z goes to infinity, Since r,
is positive exp(rlz) goes to infinity as z goes to infinity, Therefore, if

@ is to equal zero at z = oo the section of equation A=8 multiplying exp(rlz)

must equal zero at z equal to infinity and

QD
exp(urlz) F(z) dz A-10
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Therefore,
0
. c .
C2 = 1 + ) exp(-rlz) F(z) dz A-11
2 1
0
and
-
c .
o = [1 + -E}—z——-:—r-—s- exp(prlz) F(z) dz
. o

4
- -(_r;—c:?;f / eXp(-rzz) F(z) dz exp(rzz)
(@

c co
+ - -—-——---—-(rz = r1) / exp(-'rlz) F(z) dz
(o]

Z
C

(1:2 - rl)

+

exp(m‘rlz) F(z) dz exp(rlz) A-l2

o

Differentiating the above one finds

00
g—g = r, exp(rzz) 1 » (rz C tl) exp(-rlz) F(z) dz
_ ’ (o]
C z C
- -G—z--:--;l—j- exp(=r,z) F(2) dz - -G;—-—f;)- F(z)
o]
(V%)
- ( c
r, exp rlz) .G._z__:__;__). exp(_rlz) F(z) dz
X
o
- ¢ z exp(=r.z) F(z) dz PO - S F(z) A=-13
(rz - T 1 (r2 - rl) '
o

and applying the boundary condition g =0 at z = 0 gives
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o0
r, 1 + ?;;~:-;:3 eXP(-rlz) F(z) dz
(o]
r1C eo
o — exp(-r . z) F(z)dz = 0 A-14
(r2 - rl) 1
o
Simplifying the solution becomes

-r

c = 2 A-15

V)
‘/r exp(-rlz) F(z) dz
0

where.
z
F(z) = 1/2 l = A-16
1l + z2
An explicit solution for the velocity of fire spread can not be
obtained,

A2 The Solution of the Differential Equation of Atallah's Model (1) Neglecting
Conduction and Assuming the Exponential View Factor

An important special case of the previous model is one in which
conduction along the bed is negligable, It is doubtful that this conduction
ever contributes a significant amount of heat transfer in an actual fire,

Neglecting this conduction equation 2-10 becomes

- - 4T O‘G(jg - T:)
Ve 71 & - |u o+ (T = T)
p dx a

4 .4
= =  EgF() (T -T)) A-17
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with the boundary conditions

T = T. at x = 0 A-18

Making the same change of variables as in Section A=l

T = Ta
e = ———— A = X/H Al
T, - T
i a
gives
4 .4
dz - - - -
c:p Y c‘p X (‘I‘i - Ta) Vi
Cee. (Th -1 HE@)
= — A=19
cp Y (Ti - Ta) LA
Let
4 4
U T. - T
At . o €( i a)
cp b4 cp b4 (Ti. - Ta)
oree€ (Tg -Th
B® =: — A20
cp X (Ti -T)
giving
t *
@ _ AH o o _ BH 0 A-21

dz 1 1
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with the boundary conditions

€ = 0 at 2z = o

€ =1 at z = 0 Aw22
The general solution for equation A-21 is given by Martin and Reissner (_J;Z_) as

fexp(f?(z) dz) Q(z)dz + C
e = A-23

exp( jP(z) dz)

where
. Al . . BHE v
P(z) = = 1 Q(z) = - VI F(z) A=24

Substitution gives

- ¢
-/ exp(= %—-;-!- z) %—}% F(z) dz

]
exp (= %—% z)

Applying the boundary condition ©® = 1 at z = 0 gives

and

B*'H A'H
- 71 / exp(=- Vi z) F(z)dz + 1
e = A=27

1§
exp(- %—-}1-! z)

Let it be assumed that

F(z) = 12 ™2 A28
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The above assumption gives a curve with the same area as the true view factor
172 (1 - z/V1 + z2 ). It also follows the true curve closely,
Equation A<27 becomes

_ At t -
8 [oefto e o

)

$
exp(e= '%—:}-l-l z

which gives upon solution of the integral and applying the boundary condition

@=0at z=om

V = (B'/2 « A') H/1 A=30
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B MEASUREMENT OF THE RADIATION FROM THE WIRES

B-1 The Flux Density of Radiation Arround a Single Wire

The wires used in the flame spread experiments of Chapter III were
so small compared to the dimensions of the system that the wires can be assumed

to be a line source

A line Source of heat with an energy rate per unit length Qw is
shown in Figure B-l located a distance x from the line perpendicular to
the surface which passes through the line source., A line drawn between the
element of area and the line source is of length r and makes an angle OC with
the surface, The flux density of radiation on dx is given by the strength

of the source times the solid angle or

: O\v sin OC dx
dE = B-1
2m™r
From Figure B-1
. 2 2
sin ©C = L/r r = X 4L B2

and equation B-1 becomes

e o\v i} ; 0‘, X (x) %

290 (1 + X212 L

which gives the distribution of radiation around a single line source of

infinite extent,



Figure B-1 Line Heat Source
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B-2 The Flux Density of Radiation Around Several Wires

The distribution of radiation around several line sources is
obtained from adding the contributions from the individual distributions,
In order to do this by a simple addition of fluxes it is necessary to assume
that the radiation from a single wire is not intercepted by another wire
and the amount received from other wires does not raise significantly its

emitting power,

The wire arrangements used in the experiments were 1, four wires
with a ratio of center-to-center distance to wire diameter of three and

2, eight wires with a ratio of center-to-center distance to wire diameter of 6.

The view factor between two infinitely long wires seperated by a

distance large compared to their diameter is given approximately by

ss = > e B-4

With C/d = 3,0, ss = 0,053, and C/d = 6,0, ss = 0,0265. Most of the runs

were made with the eight wire system with a C/d = 6,0 to reduce interaction,

The flux density distribution around the four wire and the eight
wire systems, dB/dx/Qw, given in Figures B-2 and B-3, were calculated assuming
no interaction or interference,

B-3 The Solution for the Integrated Radiation Flux, Q/L)R, Around Several Wires

Equation B-3 gives the flux density of radiation around a single
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FPigure B-? Distribution of Radiation on a Surface 1.25" Below Four Wires

(Center to Center Distance to Diameter Ratio Fqu=1l to 3.0)



o 1 2 x| L 3

Figure B-3 Nigtribution of Radiation on a Surface 1.25" Below Eight Wires
(Center to Center Distance to Diameter Ratio Equal to 6.0)
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wire as

g .

B=3
dx L 2 Q +x§l-z),

The total integrated radiation flux between a distance -x, and infinity

1

is given by

e dx
B = &- 5 B-5
L 217 (1 + x?%)
- X,
or
E = —S!- (1’172 + tan™t (xl/L)> B-6
2 1m™

The integrated radiation flux from any number of wires to a parti-
cular xl/L is given by the proper summation of the values obtained from B-6,

For the two systems in question

Q/I.)R = 2,5744 Qw eight wires

Q/L)R = 11,0725 Qw four wires B=7

The strength of radiation from a single wire is obtained by measure-
ing the radiation flux density at several distances around the wires with a
thermopile, This flux”density is divided by the exchange faictor from either
| Figure Bw2 of,Figugé B-Bi'depenéiﬁnghﬁthe‘yiretarrahgement;; The average

value is used in Equation B-7 to give the integrated radiatien flux, Q/L),.
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C' DERIVATION OF HEAT LOSS FROM FUEL SURFACE CONSIDERATING CONVECTION LOSSES

In Section 3-4 the integrated heat loss, Q/L)L’ was found to be

QL) 2

A/

when only incedent radiation to a semi-infinite solid of constant thermal
properties is considered, Since some heat is lost from the surface by back
radiation and convection it is instructive to see how this could affect the
relation 3-13, The surface temperature for a semi-infinite solid of constant

thermal properties heated at the surface is given by equation 3-9 6)

’\/ /.ﬂ- / Q(x) dx

T - Ta = -1 3.0
When heat loss at the surface is considered
- Q, F G a
Qx) = w»w h(T =T 3=15
L a

and equation 3-9 becomes

X
<l Q, F&) ax

T T = —
a k Vl: L x - 9t?
- o0
X h(T - T)* dx |
(x - x)
'~ 0o

Fquation C~1 is an integral equation with T - Ta as the dependent variable
and must be solved numerically. However, if it is assumed that T = Ta under

the integral can be given by the former solution which did not consider



convection losses

T-T = i
2 vi/2 . L x - §)1/2
Equation C~l becomes
X
-V555¢r Qw EFYX) dx
T-T, = 1/3 ' 73
kV L (x = x)
X ;"°°;.. -
N[/ Q, Frx) dx
- h “‘“'75""‘:?‘72?"‘ - =
v x - D2 L & - 2
- oC - oo
Therefore, T - T  takes the form
a.
a v v v
and
L), K, Ly | *
QL) = h Ky 7v1 - v172' 172

8k

3-11

C.3

3-18
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D THE VIEW FACTOR BETWEEN A BIACK SURFACE INCLINED AT AN ANGLE OC AND A

BIACK SPOT MIDWAY BETWEEN THE ENDS

The finite exchange factors discusse@ in Section 5-4 are required
to find the radigtion distribution around infinite flames from the data taken
on finite flames, As was pointed out in Section 5-4, it is impossible to
perform the integration except when the absorption coeff;cient k' goes to

infinity and the wedge can be treated as a black surface, This derivation

fOllows .

The YZ plane in Figure D-1 intersects the yx plane at an angle o¢
forming the y axis, Consider the radigjﬁvgﬂexphgnge’bgtween an element of
area located on the YZ plane at the coordinates y, z and an element of area
Ldx loca§ed a distance x from the y axis and midway between the ends of the
YZ plane, The line drawn between the two elements is of length r, and with
the perpendiculars to the areas determines ?he angles ”1 gnd Py The fraction
of black body radiation leaving the element dydz and ‘intencepted by the element
Ldx, is equal to the apparentﬁarea.bf,thé element, '€os vzldy dz , ,times the

solid angle subtended by Ldx, cos L ldx/tz, divided by Tr , Therefore,

i . e e .. D=1
Fmn coSs ¢1 cos ’2 dy dz Ldx
d“ss = JE,
™r
where
cos = =2 sin oC cos = —’Lsin oc
°1 r ’2 r

2 . .
r = vy + 2251n2<x: + (X -2 COSCI:)Z D.2



Ldx

Figure D=1 Interchange Between a Finite Black Plane and =~ Black Spo?
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Substituting D=2 into D~1 and integrating from =Y to Y and O to Z noting

the symmetry over Y, gives

. N
dss 2x sinzoc. / b dy dz

= - = D-3
Lax ™ (y + 22 + x° - 2xz cosc:C)2

¢

The integration over Y yields

. 2
dss ) X sin o< Yz dz
Ldx ~ (z2 - 2XZ cos OC+ xz)(z2 + 2XZ COS o+ x2 + Yz)
z 0
A -1 Y
+ tan D-4
(z2 - 2Xz cosOC + ::2)3/2 (rz'2 - 2Xz CcoS ok + xz)l/2
0

In order to integrate the second integral by parts, let

z dz
dv = B
(z2 -~ 2XZ cos o¢ + x2)372-
1 Y
u = tan ) D-5
(22 - 2X2 COS og+ xz)l/2
then
- - (X = Z Coso®)’ )
g = (
' x sinzoc (zz - 2XZ cos &G + x?")1 v
-~ Y(z -~ x cosoe) dz
du = D-6

(z2 - 2XZ C0S OC + xz ’:t- 3{2)(22 -2Xz cos ok + xz)l/?'

and equaticn D-4 becomes with rearrangement
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. 2

0= x sin‘oe¢ - (x =z cos @)
Lax ™ x sinfoc (z2 = 2xz cosOc + x2) /2

1 ¥ z

+ tan" 3 5
(z° «2xz cos &g+ x )
0
/Z Y cosex dz
+[ 4 - - D7
0 x sinzx (z2 - 2XZ COSO& + x2 + Yz)

The solution of the above integral is standard and

a5s (Z cosoe -~ x) -1 Y
= - Y 7 315 ten 3 317
(Z° - 2xZ cosoc + X ) (2”7 -« 2XZ coso¢+ X )
1 , Y cos o 1 Z = X CcOS O
+ tan"~ Y/x + tan~
(xzsinzoc + Yz):li5 (Y‘2 + x sm ol )1/2
-1 X COS o<
+ tan D-8

(Y2 + x 51n “)1/2
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E MOISTURE CONTENT OF THE FUEL

The moisture content of the fgel was obtained by weighing a sample
of known volume at different humidities, The value for zero’humidity was
obtained by drying a sample in a desiccator for several days, and weighing
it on successive days uﬁtil the weight bgcame ;Qnstagt. The results for the

newspaper and computer fuels are shown in Figure El,
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B  ORIGINAL DATA

F-l Data on Fire Spread Through Shredded Newspaper and Computer Cards:
Table: F-1

The Effect of Loading Density on the Rate of Fire Spread for Shredded

Newspaper (0,003" thick)

Run No, Loading Tgmp. Relative External* Velocity Residge % Burned

Densify F Humidity Radiation ft/hr 1b/ft

ib/ft % Btu/hr-ft -
1 0.0720 .75 40 296 79.8 - -
2 0,1175 75 40 296 81.6 0.0284: 76
3 0.0547 74 39,5 282 79.3 0,0066 88
4 0,063k 75 37 289 79.3 0.,0093 85.2
5 0.02120 75 37 296 67.8 0.0014 93,4
6 0.0127 75 37 296 0 - -
7 0,0375 75 46 296 63,6 0,0107 71,5

*Radiation from four wires



Table F-2
The Effect of Radiation on the Rate of Fire Spread for Shredded Newspaper

Run No, Loading Tgmp. Relative External* Velocity Residge & Burned
Densiﬁy F Humidity Radiation ft/hr 1b/ft

1b/ft % Btu/hr-ft
50 0,0625 75 49 554 94.8 0,0052 91,7
51 0,0625 73 48 450 89,5 10,0026 95.8
52 0,0625 73 48 348 75.0 0.0024 96,2
53 0,0625 73 48 250 70.2 0,0046 92,6
54 0,0625 75 49 140 57.6 00,0047 92,5
55 0.0625 73 48 0 33,6 0,0044 93.0
56 0.0625 73 48 206** 60,0 0,0047 92,5
57 0,0625 73 48 0 34,2 - -
58 0.0625 73 48 554 95.5 - -
59 0,0625 72 47 554 95.5 - -

* Radiation from eight wires
** Radiation from four wires



Table Fe3

The Effect of Humidity on the Rate of Fire Spread for Shredded Newspaper

Run No, Loading Igmp. Relative External* Velocity Residse % Burned

Densiﬁy F Humidity Radiation ft/hr 1b/ft

1b/ft % Btu/hr-ft
4 0.0631 75 37 289%* 79.3 0,0093 85.2
10 0.0627 75 37 173%% 66,0 00,0062 90,1
11 0,0630 77 39 554. 104,5 0,0145 77.0
12 0.0620 75 37 0 38,0 0,0134 78,5
13 0.0624 75 37 554 109.2 0,0137 78,1
14 0,0625 77 39 450 %.0 0,0155 75.2
15 0.0625 75 43 399 85.9 10,0150 76.0
16 0.0624 75 31 0 37.5 0,0145 76.8
17 0,0630 77 33 554 112,0 0,0139 78,0
60 0.0625 74 27 0 45,5 00,0012 98.1
61 0,0625 74 27 605 116,5 0,0013 97.9
62 0.0625 74 27 398 100,1 0,001F 97.9
63 0,0635 74 27 207 76.8 0,0013 97.9

* Radiation from eight wires
** radiation from four wires



Table F-4.

The Effect of Radiation on the Rate of Fire Spread for Computer Punch

Run No, Loading

21
22
23
24
25
26
27
28

Densiiy
1b/ft

0,0625
0,0625
0,1275
0.1275
0.1275
0.,1275
0.1275
0,1275

Op

77

77
77
75
77
77
77
77

Outs (1/8"x%/16"x0,007")

Humidity Radiation

%

39
39
44
43
44
44
44
44

* Radiation from eight wires

Btu/hr-ft

0.
566
554
348
207

0
106
554

ft/hr

1b/ft

0,0065

0.0084

0.0071
0.0075

0.0071

Temp, Relative External* Velocity Residge % Burned

92



Table Fw5
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The Effect of Radiation on the Rate of Fire Spread for Computer Cards

Run No,

30
31
k-2
33

Loading
Densiiy
1b/ft

0.1275
0.1275
0,1275
0.1275

Temp,

Op

77
77
77
77

(1/2"x1/2"x0,007")

Relative External* Velocity Resid
Humidity Radiation ft/hr
Btu/hr-ft

%

47
47
47
44

* Radiation from eight wires

554
0
348
168

20,50
0

13,70
8,70

1b/ft

0,0056

0.,0145
0,0059

ge. % Burned

95,5

88,6
95.3



Table F=6

The Effect of Wind Velocity on the Rate of Fire Spread for Shredded

Newspaper Fuel

Run No, Loading Tgmp. Relative External Wind Velocity
Dens i§y B Humidity Radiation Velocity ft/hr
1b/ft % Btu/hr-ft ft/sec

71 0.0625 84 72 0 0 29,3
72 0,0625 86 73 0 3,48 107.5
73 0,0625 86 73 0 2.42. 59,0
74 0,0625 86 73 0 2,89 82,8
75 0,0625 75 77 0 1,30 31,5
76 0,0625 75 77 0 (] 28,3



F.2 Data of Radiation Flux Densities Around Methane Flames (by de

Rochéchouart (24))
Table F«7
Reproducibility of Data (Methane)

Q/L = 176,300 Btu/hr-ft

) . - Run No, 6-4.3

Distance from the Reading Flux Density
Center of the Slot nv Btu/hr-f t2
ft
0.217 0,71 5,580
0,296 0,64 5,000
0,361 0,59 4,600
0,427 0,58 4,520
0,493 0.5% 4,020
0.624 0,47 3,620
0,755 0,42 3,280
0,886 0.35 2,700
1,018 0.30 2,320
Run No, 6-4-=4
0,217 0.74 5,820
0.263 0.665 5,210
0,329 0,64 5,000
0.394 0,60 4,680
0,525 0.52 4,000
0.657 0.46 3,540
0.788 0.40 3,080
0,919 0.35 2,700
1.050 0,30 2,320
Run No, 6-4-5
0,217 0,73 5,740
0,247 0,675 5,300
0.312 0,68 5,320
0,378 0,60 4,670
0,443 0.57 4,440
0,575 0,48 3,680
0,706 0,42 3,240
0,837 0,35 2,700
0,968 0.31 2,400



Table F-7 (continued)

Run No, 6-4-6

Distance from the Reading Flux Densi
Center of the Slot nv Btu/hr-ft
ft

0.217 0,73 5,740
0.279 0.66 5,160
0,345 0,61 4,760
0.411 0,56 4,360
0,476 0,52 4,020
0,607 0.47 3,620
0,739 0,41 3,160
0,870 0.34 2,620
1,001 0,29 2,240



Table F-8

Radiation Flux Densities for Different Heat Liberation Rates (Methane)

Run No, 6-00

Q/L = 63,700 Btu/hr-ft

Distance from the Reading Flux Density
Center of the Slot* nv Btu/hr-f t
ft
0,217 0.51 3,920
0.296 0.39 3,000
0,361 0.36 2,780
0,427 0.31 2,400
0.493 0,29 2,240

0,624 0.25 1,940

Run No, 6=0

-

-

Q/L = 78,600 Btu/hr-ft

Distance from the Reading PluX'Densiiy
Center of the Slot¥* mv Btu/hr-ft
ft
0.217 0.54 4,190
0,296 0,435 3,300
0,361 0,39 3,000
0,427 0,35 2,700
- 0,493 0,32 2,480
0,624 0.28 2,100
Run No, 6-1

Q/L = 90,000 Btu/hr-ft

Distance from the Reading Flux Densi
Center of the Slot* nv Btu/hr-ft
ft

0.217 0,56 4,360
0,296 0,44 3,400
0,361 0,41 3,160
0,427 0.37 2,860
0,493 0,34 2,620
0,624 0.28 2,160
0,755 0,22 1,700



Table F-8 (Continued)
Run No, 6-2

Q/L = 120,000 Btu/hr-ft

Distance from the Reading Flux Densiﬁy
Center of the Slotx mv Btu/hr-ft
ft
0.217 0.59 4,600
0,296 0.48 3,700
0.361 0.45 3,470
0,427 0,43 3,320
0,493 0,41 3,160
0.624 0.34 2,620
0.755 0.28 2,160
Run No, 6-8
Q/L = 130,600 Btu/hr-ft
Distance from the Reading Flux Density
Center of the Slot* nv Btu/hr-ft
ft
0,217 0.65 5,000
0.296 0.54 4,190
0.361 0.50 3,850
0.427 0,51 3,920
0.493 0.46 3,540
0.624 0,37 2,860
0.755 0.32 2,470
0.886 0.26 2,010
1.018 0,20 1,550
Run No, 6-3
Q/L = 143,800 Btu/hr-ft
Distance from the Reading Flux Densiéy
Center of the Slot* mv Btu/hr-ft
ft
0.217 0.69 5,420
0.296 0.60 4,680
0.361 0.56 4,360
0,427 0.54 4,190
0,493 0.48 3,770
0.624 0.43 3,280
0.755 0.35 2,700
0.886 0.30 2,320
1,018 0.25 1,920



Table F=8 (Continued)
Run No, 6-9

Q/L = 165,000 Btu/hr-ft

Distance from the Reading Flux Densiiy
Center of the Slot* nv Btu/hr-ft
ft
0.217 - 0.70 5,500
0.296 0,61 4,760
0.361 0.57 4,440
0,427 0.55 4,270
0.493 0.52 4,020
0,624 0,44 3,420
0.755 0.37 2,860
10,886 0.31 2,400
1,018 0.27 2,090
Run No, 6=4

Q/L = 176,300 Btu/hr-ft

Distance from the Reading Flux Densiﬁy
Center of the Slot* mv Btu/hr-ft
ft

0,217 0.71 5,580
0.296 0,64 5,000
0.361 0.59 4,600
0.427 0.58 4,520
0,493 0.53 4,020
0.624 0,47 3,620
0.755 0.42 3,280
0.886 0.35 2,700

1,018 0.30 2,320
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Table F~8 (Continued)
Run No, 6=5

Q/L = 197,200 Btu/hr-ft

Distance from the Reading Flux Densiﬁy
Center of the Slotx nv Btu/hr-ft
ft
0.217 0,73 5,740
0,296 0,66 5,170
0.361 0,61 4,760
0,427 0.59 4,600
0.493 0.57 4,440
0.624 0.48 3,680
0,755 0.43 3,320
0.886 0.36 2,780
1.018 0.31 2,400
Run No. 6=7
Q/L = 235,600 Btu/hr-ft
Distance from the Reading Flux Density
Center of the Slot* mv Btu/hr-ft
ft
0.217 0.75 5,900
0.296 0,67 5,270
0,361 0.64 5,000
0.427 0.60 4,680
- 0,493 0,58 4,510
0,624 0,49 3,770
0.755 0.46 3,540
0,886 0,40 3,090
1,018 0.34 2,620

*Slot Width = 2,0 inches
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Table F=9

Radiation Flux Density for a Different Slot Width and Two Different

Heat Liberation Rates (Methane)

Run No, 9-2

Q/L = 176,300 Btu/hr-ft

Distance from the Reading Flux Densiiy
Center of the Slot* nv Btu/hr-ft
ft
0,176 0.75 5,900
0.255 0.66 5,160
0,320 0,63 4,920
0.386 0,585 4,560
0,452 0.50 3,840
0,583 0.47 3,620
0.714 0,395 3,040
0,845 0.36 2,780
0,977 0.31 2,400
Run No, 9-3

Q/L = 120,000 Btu/hr-ft

Distance from the Reading Flux Density
Center of the Slot* nv Btu/hr-ft
ft

0,176 0,63 4,920
0,255 0.53 4,100
0,320 0.50 3,840
0,386 0.46 3,540
0,452 0.41 3,160
0,583 0.37 2,860
0,714 0.29 2,240
0.845 0.25 1,940

*Slot Width = 1,0 inch
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F=3 Data of Radiation Flux Densities Around Propane Flames

Table F-10

Radiation Flux Densities for Different Heat Liberation Rates (Propane)

Run No, 7-1

Q/L = 153,000 Btu/hr-ft

Distance from the Reading Flux Density
Center of the Slot* nv Btu/hr-f t
ft
0.220 0,75 5,840
0,296 0,69 5,380
0.361 0.62 4,830
0.427 0,58 4,500
0,558 0.48 3,740
0.689 0.39 3,040
0.821 0.33 2,570
0,952 0,30 2,340
Run No, 7-2
Q/L = 193,000 Btu/hr-ft
Distance from the Reading Flux Densiﬁy
Center of the Slot* mv Btu/hr=ft
ft
0.296 0.73 5,690
0.361 0,67 5,220
0,427 0.60 4,670
0.493 0,59 4,600
- 0,558 0.545 4,250
0,689 0,48 3,740
0.821 0,415 3,230

0.952 0.39 3,040
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Table F-10 (Continued)
Run No, 7-3

Q/L = 108,000 Btu/hr-ft

Distance from the Reading Flux Densiiy
Center of the Slot* mv Btu/hr-ft
ft
0,230 0.695 5,410
0.296 0,63 4,910
0.361 0,57 4,440
0,427 0,51 3,970
0,493 0.46 3,580
0.624 0,385 3,000
0.755 0,325 2,530
0.886 0,27 2,100
1.018 0.215 1,670
Run No, 7-4

Q/L = 83,600 Btu/hr-ft

Distanve from the Reading Flux- Density
Center of the Slot* nv Btu/hr-ft
ft

0,230 0.68 5,300
0,296 0.59 4,600
0.361 0.54 4,210
0,427 0.46 3,580
0,493 0,41 3,190
0,558 0.41 3,190
0.689 0,325 2,530
0,821 0.26 2,030
0.952 0,195 1,520

*S1ot Width = 2,0 inches
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F-4: Data on Flame Heights of Methane and Propane

Table F-11

Methane Flame Heights Propane Flame Heights
( by de Rochechouart (24))

lleat Liberation Rate Flame Height Heat Liberation Rate Flame Height
Btu/hr-ft ft Btu/hr-ft ft
77,100 1,16 96,500 1,15
139,000 1,645 128,500 1,38
189,000 2,025 166,800 1,71
213,000 2,33 187,000 1,93
230,000 2.58 212,000 2.12
239,000 2,63 229,000 2,38
121, 500 1,44 146,000 1,56
154,000 1,81
214,500 2,17

Slot Width = 2,0 inches
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NOMENCLATURE

slope of a gray gas wedge, dimensionless

reciprocal mefn free path for radiation in the
fuel bed, ft~

surface area of a fuel particle, ft2
half width of a gray gas wedge, ft

dimensionless half width of the base of a
gray gas wedge, k'b

mean beam length, dimensionless

coefficient of expansion, (°F)"l

heat capacity of a gas, Btu/l1b-°F

heat capacity of dry fuel, Btu/1b-°F

heat capacity of moist fuel, Btu/1b-°F

distance below fuel surface, ft

diameter of a circular source, ft

eddy diffusivity at the flame front, ftZ/hr
uZ/y.g modified Froude Number, dimensionless
volumetric flow rate at a circular source, ft3/hr
volumetric flow rate at a line source, ft3/hr-ft

interchange factor between a gray wall and an
element of fuel, dimensionless

% (x)/L interchange factor between the wires and an

element of fuel dx, dimensionless
acceleration due to gravity, ft/hr?
convection heat transfer coefficient, Btu/hr-ft2_°F

convection heat transfer coefficient, Btu/hr-ft2.°F
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radiation heat transfer coefficient based
on a first power temperature difference,
Btu/hr-ft3_°F
flame height, ft

total enthalpy of moisture (sensible plus
latent heat), Btu/lb

flux density of radiation, Btu/ftZ.hr
thermal conductivity of the fuel, Btu/hr-ft2_°F/ft
absorption coefficient of a gray gas, fﬂl:"l

entrainment coefficient of a jet, dimensionless

constant determining importance ,0f heat lost
from fuel surface, ft/(Btu-hr)?’3

k"Qc/rcha, dimensionless
thickness of the fuel, ft

distance over which convection heat transfer at
the flame front occurs, ft

distance from the wires to the fuel, ft
distance between fuel particles, ft

number of equivalent layers of fuel if evenly
distributed, dimensionless

moisture content of the fuel, lbs water/lb dry fuel
molecular weight of air, lbs/mole

molal flow rate of products at height x, lb-moles/hr
molal flow rate of fuel at source, lb-moles/hr

molal flow rate of entrained air up to
height x, lb-moles/hr

pressure of gas, lbs/ft2

total rate of heat transfer to an element
of fuel, Btu/hr-ft?2



rate of heat transfer by radiation from embers
under the fire to an element of unburned fuel per
unit of horizontal area, Btu/hr-ft2

rate of heat transfer by convection at the flame
front to an element of unburned fuel per unit
of horizontal area, Btu/hr-ft?2

rate of heat transfer by radiation from the over-
head flame to an element of fuel per unit of
horizontal area, Btu/hr-ft?

rate of heat transfer from an element of unburned
fuel by convection and radiation per unit of
horizontal area, Btu/hr-ft?

rate of heat liberation by combustion within an
element of fuel per unit of horizontal area,
Btu/hr-ft?

rate of chemical energy liberation from an
element of fuel during decompostion, Btu/hr-ftZ

rate of heat transfer to unburned fuel by
convection, Btu/hr

rate of heat transfer to unburned fuel by
radiation, Btu/hr

heat of combustion of the fuel, Btu/lb

energy required to produce piloted ignition
per unit of horizontal area, Btu/ft?

energy required to produce piloted ignition
per unit of horizontal area at a standard
velocity of fire spread, Btu/ft?

heat liberation rate from a single wire per
unit length, Btu/hr-ft

heat input rate per unit surface area as a
function of time, Btu/hr-ft?2

rate of heat liberation by the flame per foot
length, Btu/hr-ft

107
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Q/'L)B integrated heat transfer rate by radiation from
embers under the gas flame, Btu/hr-ft
Q/L) , integrated heat transfer rate by convection at

C the flame front to unburned fuel, Btu/hr-ft

Q/L)L integrated rate of heat loss from the unburned
fuel, Btu/hr-ft

Q/L)R integrated rate of heat transfer by radiation
from the overhead flame to unburned fuel,
Btu/hr-ft

Q/L)i integrated rate of heat generation within
the burning fuel by combustion, Btu/hr-ft

Q/L)é integrated rate of heat transfer by radiation
from the overhead flame to the burning
fuel, Btu/hr-ft

r distance between elements exchanging radiation, ft
r' dimensionless distance, k'r
rf air required for stoichiometric combustion,

1lbs air/l1b fuel
R universal constan£ for an ideal gas, 1lbs/1lb mole °F
] distance of paths through gray gas between

elements exchanging radiation, ft

s' dimensionless distance, k's

S surface area of a jet, ft?

t time, hr

T temperature, °F

Ta ambient temperature, °F

Tf flame temperature, °F

Ti ignition temperature of the fuel, °F

T temperature of a jet at its source, °F
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temperature of the fuel particle when the
particle next to it ignites, °F

vertical velocity of a jet at height x, ft/hr
eddy velocity at the flame front, ft/hr
velocity of a jet at the source, ft/hr
dimensionless jet velocity, u/uo

overall convection heat transfer coefficient,
Btu/hr-ft3_°F

rate of fire spread, ft/hr
entrainment velocity, ft/hr
wind velocity, ft/hr

shortest dimensionless distance between an
infinite element and a spot exchanging radiation

volumetric flow at height x per unit length,
ft? /mr-ft

volumetric rate of entrainment up to height
x per unit length, ft>/hr-ft

volumetric flow at source, per unit length,
ft>/hr-ft

dimensionless volumetric flow rate at height x
volume of a fuel particle, £t3

distance variable, ft

k'w, dimensionless

width of a parallelepiped of gray gas, ft

dimensionless width of a parallelepiped of
gray gas, k'W

width of the base of the line fire, ft
distance variable, ft

k'x, dimensionless



Yl

Z'

Z'

Greek

n mn =21

T vy I
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dimensionless distance from the source of a
jet, X/yo

distance variable, ft

k'y, dimensionless

half width of a jet at height x, ft
half width of a jet at the source, ft

dimensionless half width of a jet at height
X, Y./Y

half the length of a gray gas parallelepiped, ft
kY, dimensionless

distance variable, ft

k'z, dimensionless

height of a rectangular parallelepiped or wedge
of gray gas, ft

kZ, dimensionless

Letters

thermal diffusivity, ft%/hr

constant of proportionality between chemical
energy of gases liberated during fuel de-
composition and the heat absorbed by the
fuel, dimensionless

density of moist fuel, lbs/ft>

emissivity of the fuel, dimensionless
emissivity of the flame, dimensionless

fuel loading density, lbs/ft2

fraction of the fuel burned by the passing
fire, dimensionless

dummy variable in time, hr

Stefan-Boltzmann constant, Btu/hr-ft2_°Rr*
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S
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surface of volume ratio, ftZ/ft’

density of a gas, lbs/ft>

density of air, 1lbs/ft>

density of fuel at source, lbs/ft’
dimensionless density of gas, p/pa
dimensionless density of fuel at source, po/pa

time of heating from ignition of the previous
ignited fuel particle, hr

time of ignition from the ignition of the
previous fuel particle, hr

viscosity of a gas, lbs/ft-hr

inverse volumetric expansion of gas due to
combustion, dimensionless



112

IX REFERENCES

1, Atallah, S, I,, "Model Studies on the Propagation of Fire", Eng, Thesis,
Chem. Eng, Dept., M.I.T.,Jan, 1960

2, Blinev, V, I,, and Khudiakov, G,N,, Reviewed by Hottel, H.,C., "Certain
Laws Governing Diffusive Burning of Liquids", Fire Research Abstracts
and Reviews, Vol., 1, No, 2, Jan, 1959

3, Broido, A,, and Martin, S, B., "Effects of Potassium Bicarbonate on the
Ignition of Cellulose by Thermal Radiation", U, S, Naval Radiological
Defence Laboratory, USNRDL-TR-536, DASA-1255, Oct, 1961

4, Bruce, H, D,, and Downs, L, E,, "Ignition of Newspaper by Radiation with
Variation in Moisture Content and Pulse Time", U, S, Dept, of Agriculture,
Forest Service, Technical Report AFSWP=1099

5. Burington, R, S., "Handbook of Mathamatical Tables and Formulas", page 61

6, Carslaw, H, S,, and Jaeger, J. C,, "Conduction of Heat in Solids", Second
Edition, Oxford at Clarendon Press, page 76 .

7. Fons, W, L,, "Amlysis of Fire Spread in Light Forest Fuels", Journal
of Agriculturil Research, 72, 93, 1946

8, Foms, W, L., Bruce, H, D,, Pong, W, Y,, and Richards, S, S., "Project
Fire Model", Summary Progress Report, U. S, Dept, Agriculture, Forest
Service, May 1960

9, Homsy, C, A,, "Similitude in Turbulent Free-Jet Diffusion Flames", ScD
Thesis, Chem, Eng, Dept., M,I.T., 1959

10, Hottel, H, C,, "Heat Transmission", Third Edition, Chapter 4, (Mc Adams),
Mc Graw-Hill Book Co,, New York, 1959, pages 55139

11, Hottel, H. C,, "Fire Modeling", "The Use of Models in Fire Research”,
National Academy of Science, Publication 786, 1961

12, Hottel, H. C,, Personal Commuunication, 1961
13, Hottel, H, C., and Williams, C. C,, "Transient Heat Flow in Organic
Materials Expossed to High Intensity Radiation", Industrial and Engineering

Chemistry, 47, 1136-1143, (1955)

14, Lawson, D, I., and Simms, D, L,, "The Ignition of Wood by Radiation",
Britisn Journal of Applied Physics, 3, 288-292, (1952)

15, Lee and Emmons, H, W,, 1961, to be published
16, Martin, S., Lincoln, K, A,, and Ramstad, R, W,, "Thermal Radiation Damage

to Cellulose Materials", Part IV, U, S, Radiological Defence Laboratory,
USNRDL-TR=-295, Dec, 1958



17,

18,

19,
20,
21,

22,

23,

24,

25,

26,

27,
28.

29,

30,

31,

32,

33,

113

Martin, W, T., and Reissner, E,, "Elementary Differential Equations",
Addison-Wesley Publishing Co,, Cambridge, Mass,, pages 42, 94-95

Mc Adams, W, H,, "Heat Transmission?, Third Edition, Mc Graw-Hill Boo¢k Co,,
New York, 1954, page 177

Morton, B, R., Journal of Fluid Mechanics, 2, 127, (1957)
Morton, B. R., Journal of Fluid Mechanics, 5, 156, (1959)
Morton, B, R., Journal of Fluid Mechanics, 10, 101, (1961)

Morton, B. R,, Taylor, G, I., and Turner, J. S., "Proceedings of the
Royal Society A, 236, 1, (1956)

Murgai, M, P,, and Emmons, H. W,, Journal of Fluid Mechanics, 8, 611, (1960)

de Rochechouart, C, L,, "Radiation from a Line Fire", M, S, Thesis,
Chem. Eng, Dept., M,I.T,, May 1961

Rouse, H., Yih, C, S,, and Humpreys, H, W., Tellus, 4, 201, (1952)

Schaefer, V., J., "The Relationship of Jet Dtreams to Forest Wildfires",
Journal of Forestry, 55, 419, (1957)

Schmidt, F, H,, "On the Diffusion of Heated Jets", Tellus, 9, 378, (1959)
Schmidt, W., angew Math, Mech,, 21, 265,351, (1941)

Simms, D, L., "The Influence of External Air Movements on the Ignition
of Materials by Radiation", Dept. of Scientific and Industrial Research
and Fire Offices, Committee Jount Fire Research Organization, F, R,

Note 305

Stout, H, P., "Ignition of Wood by Radiation", British Journal of Applied
Physics, 3, 394, (1952)

Thomas, P. H., Webster, C, T,, and Raftery, M, M,, "Some Experiments on
Buoyant Diffusion Flames", Combustion and Flame, 5, No. 4, (1961)

"A Study of Fire Problems', National Academy of Sciences, National Research
Council, Publication 949

Priestly and Ball, "Continuous Convection from an Isolated Source of
leat", Quarterly Journal of the Royal Meteorological Society, 81, (1955)



AUTOBIOGRAPHICAL NOTE

The autho; was born on May 16,1937 in Woodbury, New Jersey, the
third son of Owen F, Steward and his wife, the former Mary Waddington, He
attended the local elementary and high school from which he was graduated
in June, 1955 and entered M.I,T, the following September. He received his.
Bachelor of Science in'Chemicﬁl Enginerring in June, 1959 and his Master
of Science in Chemical Engineering in February of 1960 after‘spending the fall
term at the Bayway-Bound Brook P;actice School in New Jersey, At this time
he commenced the present project, Thé author ma;ried the former Jacqueline
Bourcier of Alexandria, Ontario on June 24, 1961, They now have a son,

Richard Michel, born April 18, 1962,

The author was a Teaching Assistant from February to June, 1960
and a Research Assistant for the remainder of this work, He has accepted

a position as Assistant Lecturer at the University of Edinburgh,



