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Abstract

Nearly all listening environments-indoors and outdoors alike-are full of boundary surfaces
(e.g., walls, trees, and rocks) that produce acoustic reflections. These reflections interfere with
the direct sound arriving at a listener's ears, distorting the binaural cues for sound localization.
Yet, human listeners have little difficulty localizing sounds in most settings. This thesis
addresses fundamental questions regarding the neural basis of sound localization in everyday
reverberant environments.

In the first set of experiments, we investigate the effects of reverberation on the
directional sensitivity of low-frequency auditory neurons sensitive to interaural time differences
(ITD), the principal cue for localizing sound containing low frequency energy. Because
reverberant energy builds up over time, the source location is represented relatively faithfully
during the early portion of a sound, but this representation becomes increasingly degraded later in
the stimulus. We show that the directional sensitivity of ITD-sensitive neurons in the auditory
midbrain of anesthetized cats and awake rabbits follows a similar time course. However, the
tendency of neurons to fire preferentially at the onset of a stimulus results in more robust
directional sensitivity than expected, suggesting a simple mechanism for improving directional
sensitivity in reverberation. To probe the role of temporal response dynamics, we use a
conditioning paradigm to systematically alter temporal response patterns of single neurons.
Results suggest that making temporal response patterns less onset-dominated typically leads to
poorer directional sensitivity in reverberation. In parallel behavioral experiments, we show that
human lateralization judgments are consistent with predictions from a population rate model for
decoding the observed midbrain responses, suggesting a subcortical origin for robust sound
localization in reverberant environments.

In the second part of the thesis we examine the effects of reverberation on directional
sensitivity of neurons across the tonotopic axis in the awake rabbit auditory midbrain. We find
that reverberation degrades the directional sensitivity of single neurons, although the amount of
degradation depends on the characteristic frequency and the type of binaural cues available.
When ITD is the only available directional cue, low frequency neurons sensitive to ITD in the
fine-time structure maintain better directional sensitivity in reverberation than high frequency
neurons sensitive to ITD in the envelope. On the other hand, when both ITD and interaural level
differences (ILD) cues are available, directional sensitivity is comparable throughout the
tonotopic axis, suggesting that, at high frequencies, ILDs provide better directional information
than envelope ITDs in reverberation. These findings can account for results from human
psychophysical studies of spatial hearing in reverberant environments.

This thesis marks fundamental progress towards elucidating the neural basis for spatial
hearing in everyday settings. Overall, our results suggest that the information contained in the



rate responses of neurons in the auditory midbrain is sufficient to account for human sound
localization in reverberant environments.

Thesis Supervisor: Bertrand Delgutte, Ph.D.
Title: Associate Professor of Otology and Laryngology and Health Sciences and Technology
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CHAPTER 1

General Introduction

Sound localization can be paramount for survival. For example, the ability to localize

sound enables a predator to determine the whereabouts of prey in a visually dense

environment. Moreover, sound localization can facilitate the identification of relevant

sounds amidst the background of noise that is typical of our everyday listening conditions

(Darwin, 2008; Kidd et al., 2005a; Shinn-Cunningham, 2008). But nearly all

environments, indoors and outdoors alike, are full of boundary surfaces (e.g., walls, trees,

rocks) that generate acoustic reflections. These reflections, perceived not as discrete

echoes but as a unified acoustic entity termed reverberation, pose a challenge to accurate

sound localization.

To localize sounds in the horizontal plane, listeners rely principally on two

binaural, acoustic cues that result from the separation of the ears on the head (Kuhn,

1977; Shaw, 1974). The differential path-length from a sound source to the two ears

gives rise to interaural time differences (ITD), whereas interaural level differences (ILD)

are caused by interference of the head with the diffraction of sound waves. Accurate

sound localization requires the binaural cues at a listener's ears to faithfully represent the

sound source location, although listeners typically weight ITD more heavily than ILD

when the sound contains low-frequency energy (Macpherson and Middlebrooks, 2002;

Wightman and Kistler, 1992).

In reverberant environments, acoustic reflections interfere with the direct sound

arriving at a listener's ears, distorting the binaural cues for sound localization (Hartmann



et al., 2005; Shinn-Cunningham et al., 2005a). Specifically, reverberation leads to

temporal fluctuation in both ITD and ILD, dissimilarity of the signals at the two ears, and

an overall reduction in the magnitude of ILDs (Ihlefeld and Shinn-Cunningham, 2004;

Shinn-Cunningham and Kawakyu, 2003; Shinn-Cunningham et al., 2005a). In general,

these effects become more severe with increasing distance between the sound source and

the listener, as the ratio of direct to reflected sound energies (D/R) decreases.

In one of the pioneering investigations of sound localization in rooms, Hartmann

(1983) demonstrated that localization accuracy for sources near the midline was largely

unaffected by reverberation for impulsive sounds (i.e., 50-ms rectangularly gated tone

pips), despite the degradation in ongoing binaural cues. However, with increasing

reverberation i.e., decreasing D/R, localization accuracy degraded for sounds lacking

onset transients, although localization accuracy was better for broadband noise sources

than pure tones. In a later study, Rakerd and Hartmann (2005) demonstrated that

masking the early portion of a broadband noise source in reverberation significantly

reduces localization accuracy, with effects becoming more severe with decreasing D/R.

Shinn-Cunningham et al. (2005b) demonstrated that listeners can accurately localize

broadband sources near the midline in moderate reverberation, but that localization

accuracy at lateral azimuths degrades with decreasing D/R. In general, behavioral studies

concur that listeners have little difficulty localizing broadband sounds in moderate

reverberation, although giving listeners access to the early portion of an acoustic

stimulus, before the buildup of reverberation, seems to be crucial for accurate sound

localization in reverberation.



Accurate sound localization in reverberant environments is often ascribed to the

precedence effect or "law of the first wavefront" (Litovsky et al., 1999; Wallach et al.,

1949). The precedence effect refers to the perceptual phenomenon in which a listener

perceives two successive acoustic sources from disparate locations as a single fused

source near the location of the leading sound. Such "localization dominance" typically

breaks down at 5-10ms for impulsive acoustic sources (i.e., clicks) that do not overlap in

time but can last up to 50ms for ongoing stimuli such as speech [reviewed in (Litovsky et

al., 1999)].

Neural correlates of the precedence effect have been reported at virtually all

stages in the auditory pathway, from the auditory nerve to the auditory cortex (Fitzpatrick

et al., 1999; Litovsky and Delgutte, 2002; Litovsky and Yin, 1998; Pecka et al., 2007;

Spitzer et al., 2004; Tollin et al., 2004; Yin, 1994). Typically, the time course of neural

echo suppression is characterized by comparing the rate response to the lagging source to

a baseline rate response obtained for an identical sound source presented in isolation.

In all of these studies, the stimuli consisted of a direct sound followed by a single

reflection, which is an extreme over-simplification of everyday reverberation. For

realistic ongoing sound sources in a reverberant environment, thousands of echoes

contribute to the energy reaching a listener's ears over hundreds of milliseconds with

considerable temporal overlap between the direct sound and the reflections. To date, no

one has studied the directional sensitivity of auditory neurons using stimuli with realistic

reverberation. Thus, the degree to which auditory neurons maintain robust directional

sensitivity in reverberant environments is unknown.



This thesis addresses fundamental questions regarding the ability of auditory

neurons to encode sound source location in reverberant environments. Using standard

single-unit electrophysiological recording techniques, we characterize the effects of

reverberation on directional sensitivity of binaural neurons in the auditory midbrain of

both awake and anesthetized mammals, focusing on cells that are sensitive to ITD.

Overall, we find that the information contained in the rate responses of ITD-sensitive IC

neurons is sufficient to account for human sound localization in reverberation.

ITDs are initially coded in the auditory pathway as differences in phase-locked

spike timing between auditory nerve fibers on the left and right sides of the head

(Johnson, 1980; Joris, 2003; Kiang, 1965). These timing differences are transformed to a

rate code by two distinct circuits in the superior olivary complex (SOC), the initial site of

binaural interaction in the ascending auditory pathway (Caird and Klinke, 1983;

Goldberg and Brown, 1969; Joris and Yin, 1995; Yin and Chan, 1990).

Principle cells in the medial superior olive (MSO) detect coincidences in

predominately low-frequency convergent excitatory inputs from the cochlear nuclei on

either side of the head (Cant and Casseday, 1986; Goldberg and Brown, 1969; Yin and

Chan, 1990). The firing rate of MSO neurons, which is theoretically equivalent to a

cross-correlation on the input spike trains (Colburn, 1973), is typically greatest when the

binaural inputs arrive in phase (Batra et al., 1997a; Yin and Chan, 1990).

Neurons in the lateral superior olive (LSO) receive predominately high-frequency

convergent excitatory input from the ipsilateral cochlear nucleus (Cant and Casseday,

1986) and inhibitory input from the contralateral cochlear nucleus via the medial nucleus

of the trapezoid body. Although these subtractive circuits in the LSO are classically



associated with generating neural sensitivity to ILD (Boudreau and Tsuchitani, 1968;

Tollin and Yin, 2002), a substantial fraction of LSO neurons are also sensitive to ITD

(Batra et al., 1997a; Joris and Yin, 1995; Tollin and Yin, 2005). Owing to the excitatory-

inhibitory interaction, the firing rate of LSO neurons is typically smallest when the

binaural inputs arrive in phase (Joris and Yin, 1995; Tollin and Yin, 2005).

Most neurophysiological studies of binaural hearing have targeted the inferior

colliculus (IC), the primary nucleus comprising the auditory midbrain (Aitkin et al.,

1984; Hancock and Delgutte, 2004; Joris, 2003; Kuwada et al., 1987; Kuwada and Yin,

1983; McAlpine et al., 2001; Rose et al., 1966; Yin et al., 1986). The IC is an essentially

obligatory synaptic station for ascending inputs to the thalamus and auditory cortex

(Adams, 1979) and, as such, it receives direct and indirect inputs from both the MSO and

LSO (Aitkin and Schuck, 1985; Oliver et al., 1995). While ITD tuning in the IC often

mirrors its brainstem inputs (Yin and Kuwada, 1983), a substantial fraction of neurons

exhibit an intermediate form of tuning that may result from convergent brainstem inputs

(Agapiou and McAlpine, 2008; Batra et al., 1993; Fitzpatrick et al., 2002; McAlpine et

al., 1998; Yin and Kuwada, 1983), although this form of tuning may also be partly

inherited from the brainstem (Batra et al., 1997a; Batra et al., 1997b).

Neural sensitive to ITD spans the tonotopic axis in the IC (Batra, 1989; Griffin et

al., 2005; Joris, 2003; Kuwada et al., 1987; Kuwada and Yin, 1983; McAlpine et al.,

2001; Rose et al., 1966; Yin et al., 1986; Yin et al., 1984). Low characteristic frequency

(CF) IC neurons are typically sensitive to ITD in the stimulus fine structure, while high

frequency neurons are sensitive to ITD in the envelope (Joris, 2003). Most high-CF IC

neurons are also sensitive to ILDs (Aitkin et al., 1972; Aitkin and Martin, 1987; Semple



and Kitzes, 1987; Stillman, 1972). Moreover, for stimuli containing naturally co-

occurring binaural cues, ILD may be a more potent cue than envelope ITD (Delgutte et

al., 1995).

The importance of the IC in sound localization is evident from lesion studies.

Following unilateral ablation of the IC, animals show a deficit in orientating to sound

sources, particularly in the hemifield contralateral to the lesion (Jenkins and Masterton,

1982; Masterton et al., 1968; Thompson and Masterton, 1978). Bilateral ablation of the

IC results in a complete deficit of left-right sound source discrimination, despite the fact

that hearing is still present (Masterton et al., 1968). Moreover, a case study of a single

human patient with a lesion that included the right IC indicated impaired localization in

the contralateral hemifield (Litovsky et al., 2002), suggesting a pivotal role of the IC in

sound localization.

In this thesis, we investigate the effects of reverberation on directional sensitivity

of ITD-sensitive neurons in the IC of small mammals. The initial set of experiments

(Chapter 2) was done using an anesthetized cat animal model, which has been the

standard in our laboratory for over 20 years. To avoid possible confounds due to the

effects of anesthesia on neural processing in the IC (Kuwada et al., 1989; Ter-Mikaelian

et al., 2007; Tollin et al., 2004; Torterolo et al., 2002), we developed a chronic,

unanesthetized rabbit preparation. A great deal of knowledge is already available on the

responses of auditory midbrain neurons in both preparations, providing a substantial

knowledge base on which we build.

In Chapters 2 and 3 we characterize the effects of reverberation on the directional

sensitivity of low-frequency ITD-sensitive neurons in the IC of anesthetized cats and



awake rabbits, respectively. Results show that reverberation similarly degrades the

directional sensitivity of single neurons in the IC of anesthetized cats and awake rabbits,

although directional sensitivity is generally better than predictions from a traditional

cross-correlation model of binaural processing. We demonstrate that such neural

robustness to reverberation may be mediated by onset dominance in temporal response

patterns, the tendency for neurons to fire more spikes near the stimulus onset. In Chapter

4, we directly examine the role of onset dominance by using a conditioning paradigm to

alter temporal response patterns in single neurons in the awake rabbit IC. In Chapter 5

we investigate the effects of reverberation on directional sensitivity of ITD-sensitive

neurons in the awake rabbit IC across the tonotopic axis. Our results suggest that

reverberation degrades the directional sensitivity of single neurons, although the amount

of degradation depends on CF and the types of binaural cues available. In general, our

findings are consistent with recent human psychophysical studies of spatial hearing in

reverberation, indicating that the directional information contained in the rate responses

of ITD-sensitive IC neurons is sufficient to account for human sound localization in

reverberation.



CHAPTER 2

Effects of reverberation on directional sensitivity of low-
frequency ITD-sensitive neurons in the inferior colliculus of
anesthestized cat

This chapter has been published in Neuron and is included here with permission:

Devore, S., A. Ihlefeld, K.E. Hancock, B.G. Shinn-Cunningham, and B. Delgutte (2009).
Accurate sound localization in reverberation is mediated by robust encoding of spatial
cues in the auditory midbrain. Neuron, 62(1), pp 123-34.

Abstract

In reverberant environments, acoustic reflections interfere with the direct sound arriving
at a listener's ears, distorting the spatial cues for sound localization. Yet, human listeners
have little difficulty localizing sounds in most settings. Because reverberant energy builds
up over time, the source location is represented relatively faithfully during the early
portion of a sound, but this representation becomes increasingly degraded later in the
stimulus. We show that the directional sensitivity of single neurons in the auditory
midbrain of anesthetized cats follows a similar time course, although onset dominance in
temporal response patterns results in more robust directional sensitivity than expected,
suggesting a simple mechanism for improving directional sensitivity in reverberation. In
parallel behavioral experiments, we demonstrate that human lateralization judgments are
consistent with predictions from a population rate model decoding the observed midbrain
responses, suggesting a subcortical origin for robust sound localization in reverberant
environments.



Introduction

The ability to localize sound sources can be important for survival and facilitates the

identification of target sounds in multi-source environments (Darwin, 2008; Kidd et al.,

2005a; Shinn-Cunningham, 2008). The auditory scenes that we perceive unfold in

environments full of surfaces like walls, trees, and rocks (Huisman and Attenborough,

1991; Sakai et al., 1998). When an acoustic wave emanating from a sound source strikes

a boundary surface, a fraction of the energy is reflected. The reflected waves themselves

generate second order reflections, with the process repeating ad infinitum. The myriad of

temporally overlapping reflections, perceived not as discrete echoes but as a single

acoustic entity, is referred to as reverberation.

Reverberation poses a challenge to accurate sound localization. To estimate the

location of a sound source with low frequency energy, such as speech, human listeners

rely principally on tiny interaural time differences (ITDs) that result from the separation

of the ears on the head (Macpherson and Middlebrooks, 2002; Wightman and Kistler,

1992). In a reverberant environment, reflected acoustic waves reach the listener from all

directions, interfering with the direct sound. Under such conditions, the ear-input signals

become decorrelated (Beranek, 2004) and the instantaneous ITD fluctuates (Shinn-

Cunningham and Kawakyu, 2003). Because reverberant energy builds up over time, the

directional information contained in the ear-input signals has a characteristic time course,

in that ITD cues represent the true source location relatively faithfully during the early

portion of a sound, but become increasingly degraded later in the stimulus.

In principle, listeners could accurately localize sounds in reverberation by basing

their judgments on the directional information in the uncorrupted onset of the signals

19



reaching the ears. Although human listeners can robustly localize sound sources in

moderate reverberation (Hartmann, 1983; Rakerd and Hartmann, 2005), localization

accuracy degrades in stronger reverberation (Giguere and Abel, 1993; Rakerd and

Hartmann, 2005; Shinn-Cunningham et al., 2005b), suggesting that listeners are not

immune to the ongoing, corrupted directional cues. To date, no one has studied the

directional sensitivity of auditory neurons using stimuli with realistic reverberation. Thus,

the degree to which auditory neurons maintain robust directional sensitivity in

reverberation is unknown.

ITDs are initially coded in the auditory pathway as differences in relative spike

timing between auditory nerve fibers on the left and right sides of the head. These timing

differences are transformed to a rate code in the medial superior olive (MSO), where

morphologically and physiologically specialized neurons (Grothe and Sanes, 1994; Scott

et al., 2005; Smith, 1995; Svirskis et al., 2004) perform coincidence detection on

convergent input from both sides of the head (Goldberg and Brown, 1969; Yin and Chan,

1990). Theoretically, the average firing rate of these coincidence detectors is equivalent

to a cross-correlation of the input spike trains (Colburn, 1973).

The majority of neurophysiological studies of spatial processing have targeted the

inferior colliculus (IC), the primary nucleus comprising the auditory midbrain (Aitkin et

al., 1984; Delgutte et al., 1999; Joris, 2003; Kuwada et al., 1987; Kuwada and Yin, 1983;

McAlpine et al., 2001; Rose et al., 1966; Stillman, 1971a; Yin et al., 1986). Multiple,

parallel sound-processing pathways in the auditory brainstem converge in the IC (Adams,

1979; Oliver et al., 1995), making it a site of complex synaptic integration. Despite this

complexity, the rate responses of low-frequency, ITD-sensitive IC neurons to broadband



signals with a static interaural delay resemble the responses of ITD-sensitive neurons in

the MSO (Yin et al., 1986) and are well-modeled as a cross-correlation of the acoustic

ear-input signals, after accounting for cochlear frequency filtering (Hancock and

Delgutte, 2004; Yin et al., 1987).

Here, we investigate the effects of reverberation on the directional sensitivity of

low-frequency ITD-sensitive IC neurons. Consistent with the buildup of reverberation in

the acoustic inputs, we show that directional sensitivity is better near the onset of a

reverberant stimulus and degrades over time, although directional sensitivity is more

robust than predictions from a traditional cross-correlation model of binaural processing

that is insensitive to temporal dynamics in the reverberant sound stimuli. We further

show that human lateralization judgments in reverberation are consistent with predictions

from a population rate model for decoding the observed midbrain responses, suggesting

that robust encoding of spatial cues in the auditory midbrain can account for human

sound localization in reverberant environments.



Methods

Surgical Preparation

Healthy, adult cats were anesthetized with dial-in-urethane (75 mg/kg, i.p.) and prepared

for acute single-unit recording from the auditory midbrain using surgical procedures

described in Hancock and Delgutte (2004). All surgical and experimental procedures

were approved by the Institute Animal Use and Care Committees at both the

Massachusetts Eye and Ear Infirmary and the Massachusetts Institute of Technology.

Virtual Space Stimuli

Binaural room impulse responses (BRIRs) were simulated using the room-image method

(Allen and Berkley, 1979; Shinn-Cunningham et al., 2001) for a pair of receivers

separated by 12 cm slightly displaced from the center of a virtual room measuring

11x l13x3 meters (Fig. 2.1A). The inter-receiver distance was chosen so that the range of

ITDs in the direct sound spanned the range typically experienced by cats (±360 ps, Fig.

2.1D). Because we did not include a model of the cat head in the simulations, the

resulting BRIRs contained ITD but essentially no interaural level difference (ILD) cues.

BRIRs were calculated for azimuths spanning the frontal hemifield (-90o to +90') at

distances of 1 and 3 m with respect to the midpoint of the receivers. Anechoic impulse

responses were created by time-windowing the direct sound from the Im reverberant

BRIRs. Virtual auditory space stimuli were created by convolving the BRIRs with a 400-

ms burst of exactly reproducible Gaussian broadband noise gated with 4-ms sin 2 ramps

(Fig. 2.1B).



Single Unit Recordings

Experimental procedures for recording activity from single units in the auditory midbrain

were as described in Hancock and Delgutte (2004). When a single unit was isolated, we

estimated its characteristic frequency (CF) using an automatic tracking procedure (Kiang

and Moxon, 1974) and then determined the intensity threshold for diotic broadband noise.

ITD-sensitivity for 200-ms broadband noise bursts (2/sec x 10 repeats) was characterized

at -15 dB above threshold. Typically, ITD was varied between ±2000tps in 200[ts steps.

Only ITD-sensitive units with low CFs (<2.5 kHz) were further studied with the virtual

space stimuli, with responses for each of the three room conditions obtained in

pseudorandom order (1/sec x 16 repeats at each azimuth).

Data Analysis

A rate-azimuth curve for each room condition was computed by averaging the number of

spikes that occurred in a fixed temporal window, defined relative to stimulus onset,

across all trials for each azimuth. Rate-azimuth curves were smoothed using a three point

triangular smoothing filter having weights [1/6 2/3 1/6]. We computed average

cumulative peristimulus time histograms (cPSTH) for each unit to obtain a metric of

onset dominance in the response. Each 1 ms bin in the cPSTH represents the cumulative

number of spikes up to the bin time in the anechoic PSTH. The cPSTH was computed

over a 400 ms duration, with time zero corresponding to the first bin in the anechoic

PSTH having an across-trial spike count distribution significantly different from that of

spontaneous activity. Only azimuths that evoked mean firing rates >90% of the maximum

rate across all azimuths were included in the average cPSTH in order to avoid including

onset responses that often occur at unfavorable azimuths.



Single-Neuron Cross-Correlation Model

We used a cross-correlation model to predict reverberant rate-azimuth curves of IC units.

For each unit, we fit the rate-ITD curve with a modified version of the Hancock and

Delgutte (2004) cross-correlation model (Fig. 2.4A). The original model used a parabolic

function to transform IACC into firing rate. We modified this transformation to be a

power function of the form:

l+pR(p)=a ( )" +b,
2

where a, b ,and p are free parameters (Coffey et al., 2006; Shackleton et al., 2005). This

modification improved the model fits (as evaluated using R2).

To predict neural responses in reverberation, we first fit the six-parameter model

to each unit's rate-ITD curve using the Isqnonlin function in Matlab (The Mathworks,

Natick, MA). We then refit the scaling parameters (a and b) to the anechoic rate-azimuth

function (to compensate for differences in the duty cycle with which the measurements

were made). Finally, we generated predictions of reverberant rate-azimuth curves by

running the model with the appropriate virtual space stimuli as inputs. We only included

units for which the goodness-of-fit (R2 ) for both rate-ITD and anechoic rate-azimuth data

was at least 0.75 (8/36 units excluded).

Psychophysics

Four paid human subjects with normal hearing participated in the behavioral experiment.

One of the four subjects failed the preliminary training procedure and was dismissed

from the experiment. Experimental procedures were approved by the Boston University

Charles River Campus Institutional Review Board.



Stimuli. BRIRs were created using the same methods and room characteristics as in the

physiology experiments, except that the receivers were separated by 23 cm to achieve

ITDs spanning the range typically encountered by a human (±690 jts). Virtual space

stimuli were created by convolving the BRIRs with random 400-ms Gaussian lowpass

noise bursts (4th order Butterworth filter with 2500-Hz cutoff) with 4-ms sin 2 ramps.

Task. We used an acoustic pointing task to obtain a quantitative measure of stimulus

laterality using the method of Best et al. (2007). Briefly, subjects adjusted the ILD of an

acoustic pointer (200-Hz band noise centered at 3.0 kHz) until its perceived laterality

matched that of a virtual space target. On each trial, the initial pointer ILD was randomly

chosen from ±20 dB. The target and pointer were then played in alternation (500-ms

interstimulus interval) until the subject indicated a match with a button press.

Data Analysis. We computed the mean ILD-match at each azimuth, for each condition,

after rejecting outlying trials (defined as estimates more than ±3 standard deviations from

the mean). We then fit sigmoid functions (using lsqnonlin in Matlab) to the individual

subject responses and computed statistics using the fitted functions.



Results

Effects of reverberation on neural azimuth sensitivity

We used virtual auditory space simulation techniques (Fig. 2.1, Methods) to study the

directional response properties of 36 low-frequency, ITD-sensitive neurons in the IC of

anesthetized cats. The virtual space stimuli simulated the acoustics of a medium-size

room (e.g. a classroom), and were designed to contain only ITD cues, without any

interaural level differences or spectral cues. Stimuli were synthesized for two distances

between the sound source and the virtual ears (1 m and 3m) in order to vary the amount of

reverberation ("moderate" and "strong"). The ratio of direct to reverberant energy (D/R)

decreased with increasing distance and was largely independent of azimuth for each

distance simulated (Fig. 2.1C). Reverberation did not systematically alter the broadband

ITD, estimated as the time delay yielding the maximum normalized interaural correlation

coefficient (IACC) between the left and right ear-input signals (Fig. 2.1D). However,

increasing reverberation did cause a systematic reduction in the peak IACC (Fig. 2.1D,

inset), indicating increasing dissimilarity in the ear-input waveforms.
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Figure 2.1 Properties of virtual auditory space stimuli.
A, Geometry of the virtual auditory environment. Reverberant binaural room impulse responses (BRIR)
were simulated at two distances between source and receiver (lm and 3m). Anechoic (i.e., "no reverb")
BRIR were created by time-windowing the direct wavefront from the I m reverberant BRIR. B, To simulate
a sound source at a given azimuth, a reproducible 400-ms broadband noise burst is convolved with the left
and right BRIR and presented to the experimental subject over headphones. C, Direct to reverberant
energy ratio (D/R) vs. azimuth for reverberant BRIRs. D, Broadband ITD vs. azimuth for each room
condition, estimated as the time delay corresponding to the peak normalized interaural correlation
coefficient (IACC). Inset, Peak IACC for each room condition. Error bars represent ±1 std across azimuths.

Figure 2.2A-C illustrates anechoic (i.e., "no reverb") and reverberant rate-azimuth

curves for three IC units. For anechoic stimuli (Fig. 2.2A-C, black curves), the shape of

the rate-azimuth curve was determined by the unit's sensitivity to ITD within the

naturally occurring range (Supp. Fig. S2.1A-B), which corresponds to + 360 ps for our

virtual space simulations for cats. In many neurons, the discharge rate increased

monotonically with azimuth (Fig. 2.2A-B), particularly in the sound field contralateral to

the recording site, which corresponds to positive azimuths. Units with a non-monotonic

dependence of firing rate on azimuth (Fig. 2.2C) generally peaked within the contralateral

hemifield, consistent with the contralateral bias in the representation of ITD in the

mammalian midbrain (Hancock and Delgutte, 2004; McAlpine et al., 2001; Yin et al.,

1986).



In reverberation, there was an overall tendency for the range of firing rates across

azimuths to decrease with increasing reverberation, although the exact dependence varied

across units. Typically, the effect of reverberation was graded (Fig. 2.2A,C); however,

there were units for which moderate reverberation had essentially no effect on the rate

response (Fig. 2.2B). Generally, the reduction in response range primarily resulted from a

decrease in the peak firing rate; increases in minimum firing rates were less pronounced.
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We quantified the overall compression of the rate-azimuth curves in reverberation

using the relative range, which expresses the range of firing rates for a reverberant rate-

azimuth curve as a fraction of the range of firing rates for that unit's anechoic rate-

azimuth curve. In reverberation, the relative range is generally less than 1 (Fig. 2.2D) and

is significantly lower for the strong reverb than for the moderate reverb condition (paired

t-test, p=0.001, n=24). An information theoretic measure of directional sensitivity, which

is sensitive to the variability in spike counts as well as the mean firing rates, showed a

similar dependence on reverberation strength (Supp. Fig. S2.2).



Reverberation could also alter the sharpness of azimuth tuning and - for units

having a best ITD within the naturally occurring range - shift the best azimuth (Supp.

Fig. S2.3). However, changes in these tuning parameters occurred in either direction and

were not consistently observed in all units. The most consistent effect of reverberation

across our neural population was the compression of the response range.

Directional sensitivity is better near stimulus onset in reverberation

Reverberant sounds have a characteristic temporal structure that is ignored when firing

rates are averaged over the entire stimulus duration as in Figure 2.2. At the onset of a

sound in a reverberant environment, the energy reaching a listener's ears contains only

the direct sound. Thus, the directional cues near the stimulus onset are similar for

anechoic and reverberant virtual space stimuli (Fig. 2.3A-B). As reverberation builds up

over time, reflections increasingly interfere with the direct sound energy at a listener's

ears and the directional cues for the reverberant stimuli become more corrupted.

Accordingly, we expected neural directional sensitivity to be better during the early as

opposed to the ongoing portion of a sound stimulus in reverberation. Figure 2.3C-D

shows rate-azimuth curves for two IC neurons computed from the early (0-50 ms),

ongoing (51-400 ms), and full (0-400 ms) neural response. The rate-azimuth curves have

been normalized to the maximum rate within each time period to facilitate comparison.

Consistent with the build-up of reverberation, the rate-azimuth curves computed from the

early response are similar across room conditions (Fig. 2.3C-D, left), whereas substantial

rate compression occurs for reverberant stimuli in the ongoing response (Fig. 2.3C-D,

middle). This trend holds across our sample of low-frequency ITD-sensitive neurons

(Fig. 2.3E). Directional sensitivity in both moderate and strong reverberation is



significantly higher during the early as compared to the ongoing neural response epoch

(paired t-test, moderate reverb: p=0.007, n=24; strong reverb: p<0.001, n=25).

Previous studies of ITD-sensitivity in the mammalian IC have reported that neural

onset responses show poorer ITD-tuning than ongoing neural responses (Geisler et al.,

1969). Here, we have defined the 'early' response epoch as the first 50 ms of the neural

response, which is substantially longer than what is generally considered the 'onset'

response of a cell. Nonetheless, to prevent non-directional early responses from biasing

our results, we removed units that showed no significant change in early discharge rate

across azimuth (Kruskal-Wallis test, p>0.05); 6/36 units were removed from the

statistical analysis and are not included in Figure 2.3E.

Role of temporal response dynamics

The relative contribution of the early and ongoing responses to the directional sensitivity

measured over the entire stimulus duration (Fig. 2.3C-D, right) is determined by the

distribution of spiking activity over the course of the stimulus. Many low-frequency ITD-

sensitive IC neurons exhibit spike rate adaptation in response to a sustained acoustic

stimulus, such that firing rates are higher during the earlier portion of the stimulus and

decrease over time (Ingham and McAlpine, 2004; Nuding et al., 1999; Rees et al., 1997;

Stillman, 1971c). Such "onset dominance" in neural processing reduces the contribution

of less-reliable ongoing reverberant stimulus energy to temporally-integrated measures of

directional sensitivity.
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Figure 2.3 Temporal dynamics of directional sensitivity in reverberation.
A, Short-term IACC across time for the 450 anechoic virtual space stimulus; hot colors indicate high
correlation. Ear-input signals were simulated as in Fig. IB and subsequently bandpass filtered (4th-order
Gammatone filter centered at 1000 Hz) to simulate peripheral auditory processing. Short-term IACC was
computed using a sliding 4-ms window. B, Short-term IACC for the 45' strong reverb virtual space
stimulus. C-D, Rate-azimuth curves for two IC neurons computed using the early (0-50 msec), ongoing
(51-400 msec), and full (0-400 msec) neural responses. To facilitate comparison across time periods, firing
rates have been normalized to the maximum firing rate in the anechoic condition, separately for each time
period. Unit CFs are C, 747 Hz and D, 817 Hz. E, Ongoing vs. early relative range for IC neuron
population. Solid line indicates identity i.e., y=x. F, Average cumulative peristimulus time histograms
(cPSTHs) for the two neurons in panels C (solid line) and D (dashed line).



Figure 2.3F shows anechoic cumulative peristimulus time histograms (cPSTHs,

see Methods) for the same two units as in Fig. 2.3C-D. A unit with strong onset

dominance (Fig. 2.3F solid line) has a cPSTH that rises rapidly shortly after stimulus

onset. Accordingly, the full response for this unit is determined primarily by the early

response (Fig. 2.3C). In contrast, a unit that fires in a sustained manner throughout the

stimulus has a more linear cPSTH (Fig. 2.3F, dashed line); in this case, the full response

exhibits a stronger resemblance to the ongoing neural response (Fig. 2.3D).

To quantify onset dominance in single units, we computed T50 -- the time post

stimulus onset at which the cPSTH reaches 50% of its final value (Fig. 2.3F). A strongly

onset-dominated unit has a small T50 (Fig. 2.3F, solid line) while a sustained unit has a

T50 near the stimulus midpoint (Fig. 2.3F, dashed line). Across the neural population, the

median T50 is significantly less than 0.5 (Wilcoxon signed-rank test, p<0.001, n=36),

with the interquartile range spanning [0.31, 0.47]. This suggests that early directional

responses typically contribute more to the overall directional sensitivity than the more-

degraded ongoing directional responses.

If the response to a reverberant stimulus were governed primarily by neural

response dynamics, we would expect onset-dominated units to show better directional

sensitivity in reverberation than units with a sustained response. That is, we should

observe a negative correlation between T50 and relative range. However, the correlation

was not significant for either condition (moderate reverb: p=0.624; strong reverb:

p=0.517), suggesting that other neural properties in addition to onset dominance

influence directional sensitivity in reverberation.



Comparison to a Cross-Correlation Model

Previous investigations of low-frequency ITD-sensitive IC neurons have established that

the rate response to interaurally delayed broadband noise is well-described by a cross-

correlation of the left and right ear-input signals, after accounting for peripheral

frequency filtering and the nonlinear relationship between interaural correlation and

firing rate (Hancock and Delgutte, 2004). Cross-correlation models essentially reduce all

binaural processing (including interaural delays) to a change in the effective IACC

computed over the entire duration of the stimulus. In general, firing rate changes

monotonically with IACC in low-frequency IC neurons, although there is substantial

variability in the degree of nonlinearity in the relationship (Albeck and Konishi, 1995;

Coffey et al., 2006; Shackleton et al., 2005).

In a reverberant environment, reflections interfere with the direct sound wave,

resulting in decorrelation of the ear-input signals [Fig. 2.1D, inset; see also (Hartmann et

al., 2005; Shinn-Cunningham et al., 2005a)]. According to the cross-correlation model,

this would qualitatively result in a compression of neural rate-azimuth curves, as

observed in our neural data. We investigated whether a traditional cross-correlation

model could quantitatively account for the degradation of directional sensitivity in

reverberation.

We used a modified version of the Hancock and Delgutte (2004) cross-correlation

model of ITD-sensitive IC neurons to generate predictions of reverberant rate-azimuth

curves (see Methods). The model is a cascade of linear peripheral frequency filtering and

binaural cross-correlation followed by a nonlinear transformation of IACC to firing rate

(Fig. 2.4A). The model parameters were fit for each individual unit using the rate-ITD



and anechoic rate-azimuth data (Fig. 2.4B), and then fixed to predict responses to

reverberant stimuli.
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Figure 2.4 Average effective IACC poorly predicts directional sensitivity in reverberation.
A, Block diagram of the cross-correlation model, after Hancock and Delgutte (2004). Left and right ear-
input signals are bandpass filtered to simulate cochlear processing. Right-ear signal is internally delayed
through a combination of pure time delay (CD) and phase shift (CP), and the resulting IACC is converted
to firing rate using a power-law nonlinearity. B, Example model fits to the rate-ITD (left) and anechoic
rate-azimuth (right) data for one IC unit (CF= 1312 Hz). The shaded region in the left panel delineates the
range of ITDs corresponding to ±90' in the right panel. C-E, Model predictions of rate-azimuth curves for
three IC neurons (same units as in Fig. 2A-C). For each neuron, model parameters were adjusted to
minimize least-squared error between observed and predicted rate-ITD and anechoic rate-azimuth curves
and subsequently fixed to generate predictions of reverberant rate-azimuth curves. F, Observed vs.
predicted relative range across the IC neuron population. Solid line indicates identity i.e., y=x. Error bars
represent bootstrap estimates of ± 1 std. of relative range for observed responses.

Figure 2.4C-E shows model predictions of reverberant rate-azimuth curves for the

same three IC units as in Figure 2.2A-C. As expected, the model rate-azimuth curves are

qualitatively similar to the measured reverberant rate-azimuth curves in that increasing

reverberation causes more compression of the response. We quantified overall

differences between observed and predicted directional sensitivity using the relative

range (Fig. 2.4F). Across the population, the model predicts substantial variability in the

relative range, which originates from variations in both frequency tuning and the

nonlinear dependence of firing rate on IACC. Accurate model predictions for individual



units would yield data points close to the identity line y=x in Figure 2.4F; however, there

is a great deal of spread in the data with no significant correlation between observed and

predicted relative range for either reverberation condition (moderate reverb: p=0.174,

strong reverb: p=0.532). Moreover, a majority of the data points fall above the identity

line, indicating that observed directional sensitivity is generally more robust (i.e., better)

than model predictions. For both reverberation conditions, predicted directional

sensitivity is significantly worse than observed directional sensitivity (one-tailed paired t-

test, moderate reverb: p=0.02, n=24, strong reverb: p=0.005, n=24).

The cross-correlation model is not sensitive to the exact time course of short-term

IACC; rather, its output depends only on the IACC averaged over the entire stimulus. In

contrast, we have shown that onset dominance in neural responses emphasizes the earlier

segments of the stimulus which, in reverberation, contain less-degraded directional

information. Such neural processing would effectively attenuate the contribution of

ongoing reverberant stimulus energy to the IACC measured at the output of the integrator

in Figure 2.4A. Thus, we hypothesized that neural onset dominance could account for the

inability of the model to predict directional sensitivity in reverberation.

To test the hypothesis, we examined the relationship between T50 and cross-

correlation model error (defined as the difference between observed and predicted

relative ranges, ARR). Positive values of ARR indicate robustness to reverberation (i.e.,

the cross-correlation model predicts more compression than was actually observed).

Figure 2.5B shows a scatter plot of ARR versus T50; the filled symbols correspond to the

cPSTHs plotted in Figure 2.5A. There is a significant negative correlation between the

two metrics for both reverberation conditions (moderate reverb: r=-0.534, p=0.007;



strong reverb: r=-0.612, p=0.003). Namely, units with smaller T50 (i.e., the most onset-

dominated units) tend to be more robust to reverberation relative to model predictions

than units with longer T50.

Despite the correlation, the substantial spread in the data suggests that onset-

dominance cannot completely account for the inability of the cross-correlation model to

predict directional sensitivity in reverberation. The cross-correlation model may be a poor

predictor of directional sensitivity for stimuli with dynamic interaural time differences, in

general (see Discussion). Nevertheless, these results suggest that onset dominance can

improve directional sensitivity in reverberation.
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Figure 2.5 Onset dominance is related to robust directional sensitivity in reverberation.
A, cPSTHs for three IC neurons with CFs of 150 Hz (black), 741 Hz (dark gray), and 1551 Hz (light gray).
T50 is defined as the time at which the cPSTH reaches 50% of its final value (intersection of cPSTH with
dashed line). B, Model prediction error (ARR) vs. T50 across the IC neuron population, where positive
ARR indicate robustness to reverberation. The two metrics are inversely correlated (moderate reverb:
p=0.007; strong reverb: p=0.003). Shaded symbols correspond to the units shown in panel A.



Comparison to Human Psychophysics

We measured human behavioral lateralization' of virtual space stimuli nearly identical to

those used in the neurophysiology experiments. Listeners adjusted the ILD of high-

frequency narrowband noise until its perceived laterality subjectively matched that of

each virtual space stimulus. Because the absolute range of pointer ILDs for azimuths

spanning +900 varied from subject to subject, we normalized the subjective lateral

positions to their maximum for each subject. Figure 2.6A shows the normalized

subjective lateral position as a function of stimulus azimuth. For all conditions, mean

lateralization judgments vary nearly monotonically with virtual source azimuth. Listener

judgments of source laterality are similar for the anechoic and moderate reverberation

conditions. However, in strong reverberation, the range of lateralization judgments is

noticeably compressed. This compression of perceived laterality resembles the reduction

in relative range measured in single IC neurons.

1 Because they contain only a single binaural cue, the virtual space targets (and the ILD pointer) are
generally perceived on an internal interaural axis and are not externalized outside the head. Hence, they are
said to be lateralized instead of localized.
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Figure 2.6 Hemispheric decoding of IC neural responses accounts for human lateralization behavior.

A, Human lateralization judgments. Across-subject (n=3) mean (± 1 std) estimate of lateral position (i.e.,

normalized ILD-match) vs. stimulus azimuth. B, Upper panel: Schematic of the population decoding

model (see text for description). Lower panel: Hemispheric difference signal vs. azimuth. Error bars

indicate bootstrap estimates of ±1 std. C, Comparison of decoder and perceptual compression. Relative

range of hemispheric difference signal (open circles) vs. the time interval over which firing rate is

integrated in the hemispheric decoding model; solid lines indicate fits by decaying exponential. Error bars

represent bootstrap estimates of ± 1 std. Relative range of human behavioral responses is plotted at the right

edge of the panel (different symbols represent individual subjects).

In order to directly compare neural responses to the behavioral results, we

implemented a hemispheric-difference decoding model (Hancock, 2007; McAlpine et al.,

2001; van Bergeijk, 1962) using the empirically measured rate-azimuth curves from our

neurophysiology experiments. The model (Fig. 2.6B, inset) estimates the lateral position

of a sound source from the difference in the total activation between the two ICs. The

choice of such a code [as opposed to a labeled line code, e.g. Jeffress (1948)] was

motivated by the prevalence of monotonic rate-azimuth curves in our neural population,

where a neuron's best ITD lies outside of the naturally occurring range of ITDs (Supp.

Fig. 2.1C,D).



The total population activity is computed for the ipsilateral IC by summing weighted

rate-azimuth curves2 for all units in our sample of ITD-sensitive neurons. Assuming

symmetry with respect to the sagittal plane in the neural activation patterns produced by

sound sources located on opposite sides of the midline, the total population activity in the

contralateral IC is derived by reflecting the ipsilateral population rate signal about the

midline. The model output (hemispheric difference signal) is computed as the difference

in population activity between the two ICs.

The main panel in Figure 2.6B shows the hemispheric difference signal for the

anechoic and reverberant conditions. In all conditions, the hemispheric difference signal

varies monotonically with stimulus azimuth. With increasing reverberation, the

hemispheric difference signal becomes more compressed, as expected from the rate

compression observed in individual units, and consistent with the main trend in the

behavioral responses. However, for both anechoic and reverberant conditions, the

hemispheric difference signal saturates more quickly for lateral source positions than the

human laterality judgments (see Discussion).

We quantified compression of the hemispheric difference signal using the relative

range. Figure 2.6C shows the relative range of the hemispheric difference signal (open

circles) plotted as a function of the decoder integration time i.e., the time interval from

stimulus onset over which we averaged the individual neuron's firing rates to compute

2 The weighting factors were used to adjust for slight differences between our empirical CF distribution and
that found in a larger sample of low-frequency ITD-sensitive IC neurons (Hancock and Delgutte 2004). The weighting

P, (CF)
function was w(CF) = , where P,, (CF) is the lognormal distribution of CFs (with t=6.5 and =-0.31) fit

Pr (CF)

to the Hancock and Delgutte (2004) data, and P,, (CF) is the empirical CF distribution in our population. Our

population contained proportionally fewer neurons around 500 Hz than the Hancock and Delgutte (2004) distribution.



the hemispheric difference signal. The data are well fit by a single decaying exponential

(solid curves). Because directional sensitivity is better during the earlier segment of a

reverberant stimulus (Fig. 2.3E), the relative range is initially close to 1 and decreases

over time, consistent with the buildup of reverberant energy in the stimulus.

The symbols at the right of Fig. 2.6C show the relative range of the lateralization

estimates for individual human subjects. Both perceptual and decoder compressions show

a similar dependence on reverberation strength. Quantitatively, the behavioral estimates

show less compression than the hemispheric difference signal computed from the full

neural response (0-400 ms), but more compression than that computed from only the

early response (0-50 ms), suggesting that listener's lateralization judgments are

influenced by late-arriving stimulus energy. To the extent that listeners integrate

information over early and ongoing response segments, onset dominance may reduce the

effective contribution of the ongoing population response.



Discussion

Our neurophysiological results show that the directional sensitivity of ITD-sensitive

auditory midbrain neurons degrades over the duration of a reverberant stimulus,

consistent with the buildup of reflected sound energy at a listener's ears. We further find

that onset dominance in temporal response patterns emphasizes the more reliable

directional information in the early response, suggesting a role for this general feature of

neural processing in improving directional sensitivity in reverberant environments. By

comparing neural responses with human lateralization judgments, we find that the

temporally integrated population rate response forms a possible neural substrate for

robust sound localization in reverberation.

Dynamics of Directional Sensitivity in Reverberation

In a reverberant environment, reflections interfere with the direct sound arriving at a

listener's ears, causing the ear-input signals to become decorrelated. Thus, it is not

surprising that we observed a more severe degradation in directional sensitivity with

increasing reverberation for both single neurons in the auditory midbrain (Fig. 2.2D) and

the cross correlation model (Fig. 2.4). However, the directional information in

reverberation has a characteristic time course: it is relatively uncorrupted near the sound

onset, before the arrival of reflections at a listener's ears, and becomes more degraded as

reverberation builds up over time (Fig. 2.3A-B). Our results show that neural directional

sensitivity parallels this temporal pattern of cues in reverberation: Sensitivity is better

during the early response than during the ongoing neural response (Fig. 2.3E).



The overall directional sensitivity computed from the average rate response will

depend on the distribution of spiking activity over time. Since directional information is

better near the stimulus onset, a beneficial processing strategy would be to give

proportionally more weight to the response near the onset of a stimulus. This could be

achieved by any mechanism that reduces responsiveness in the later portions of the

stimulus. A majority of neurons in our population exhibited onset dominance in their

temporal response patterns, where firing rates are initially high and decay over time.

When directional sensitivity is computed by integrating spike activity over time, onset

dominance is a basic mechanism for emphasizing the earliest activity periods, when

directional information is most reliable.

The sound stimulus used in the present experiments was a sustained noise, hence

had a single onset. Many natural sounds, including human speech and animal

vocalizations are characterized by prominent amplitude modulations in the 3-7 Hz range

(Houtgast and Steeneken, 1973; Singh and Theunissen, 2003), which functionally create

multiple "onsets" over the duration of the stimulus. Indeed, the responses of IC neurons

to sinusoidally amplitude modulated (SAM) sound stimuli typically show adaptation on

every modulation cycle at low modulation frequencies (Krishna and Semple, 2000;

Nelson and Carney, 2007; Rees and Moller, 1983). While onsets in natural sounds are

thought to be crucial for speech reception in reverberant rooms (Longworth-Reed et al.,

2009), they may also provide a listener with multiple "onset-dominated" epochs over

which to integrate directional information and make localization judgments (so long as

the reverberation time does not exceed the period of dominant amplitude modulations in

the stimulus).



Physiologically, onset-dominance in the IC could be realized through any of

several neural mechanisms, including synaptic depression (Wu et al., 2002), intrinsic

dynamics of active membrane channels (Sivaramakrishnan and Oliver, 2001), delayed,

long-lasting inhibition (Kuwada et al., 1989; McAlpine and Palmer, 2002; Nelson and

Erulkar, 1963; Pecka et al., 2007; Tan and Borst, 2007) or adaptation already present in

the inputs to the IC (Smith and Zwislocki, 1975). The present physiological data do not

allow us to discriminate among these possible mechanisms.

Relationship between Onset Dominance and Echo Suppression

The ability of a listener to localize sounds accurately in reverberant environments is often

attributed to the precedence effect, a phenomenon in which the perceived source location

is dominated by the initial portion of a stimulus (Litovsky et al., 1999). Numerous studies

have reported neurophysiological correlates of classic precedence phenomena in the IC

(Fitzpatrick et al., 1999; Litovsky and Yin, 1998; Pecka et al., 2007; Spitzer et al., 2004;

Tollin et al., 2004; Yin, 1994). The stimuli used in these studies consisted of a leading

source (representing the direct sound) followed by a lagging source (representing a single

acoustic reflection). Because most of these studies used very brief stimuli, the leading

and lagging sounds did not overlap in time. Such conditions are an extreme over-

simplification of realistic reverberation, in which thousands of reflections contribute to

the energy at a listener's ears over hundreds of milliseconds.

Typically, neurophysiological studies of the precedence effect report that

responses to the lagging sound are suppressed over a range of delays between the leading

and lagging sounds, consistent with the dominance of the leading sound in the perceived

location. The present result suggest that onset dominance in neural responses helps



provide a robust representation of the location of sound sources in reverberation when the

neural response is averaged over much longer times than the separation between

individual reflections. While there is a superficial similarity between onset dominance

and echo suppression, the two sets of results are not comparable because we cannot

isolate the response to individual reflections as done in studies of the precedence effect.

A possible dissociation between neural echo suppression and onset dominance is

suggested by the effects of anesthesia. The time course of recovery from neural echo

suppression is faster in unanesthetized compared to anesthetized animals (c.f. Tollin et al.

2004; Litovsky and Yin, 1998). In contrast, ongoing experiments in our laboratory

suggest that the effects of reverberation on azimuth sensitivity are comparable in the IC

of awake rabbit and anesthetized cat (Devore and Delgutte, 2008). Moreover, the

dynamics of spike-rate adaptation, a possible mechanism underlying onset dominance

appear not to be strongly affected by anesthesia in the IC (Ter-Mikaelian et al., 2007).

While robust encoding of ITD in reverberation and neural suppression of discrete

echoes each embody the seminal notion of the "law of the first wavefront" (Wallach et

al., 1949), they operate on different time scales. In fact, onset dominance and neural echo

suppression may contribute independently to robust encoding of azimuth in reverberant

environments. The neural mechanisms underlying echo suppression in transient stimuli

undoubtedly affect the neural response in the early portion of reverberant stimuli.

However, there is likely an additional process, operating over longer time scales, that

integrates directional information over time, emphasizing the early, reliable spatial cues

over ongoing cues that are more degraded by reverberation.



Other Factors Influencing Directional Sensitivity in Reverberation

Qualitatively, the effect of reverberation on neural responses is consistent with a cross-

correlation model of binaural processing (Hancock and Delgutte, 2004; Yin et al., 1987),

which predicts the average firing rate of IC neurons as a function of the effective IACC

of the input signals (Fig. 2.3A). However, a quantitative comparison reveals that the

predicted reduction in directional sensitivity is not correlated with the observed reduction,

indicating that the model does a poor job at predicting directional sensitivity in

reverberation. Moreover, the observed reduction in directional sensitivity was generally

less than the predicted reduction (Fig. 2.4F), suggesting that additional mechanisms not

included in the model provide neural robustness to reverberation. The difference between

observed and predicted directional sensitivity was systematically related to onset

dominance in neural temporal responses (Fig. 2.5B); however, the relation between onset

dominance and model misprediction showed a lot of scatter, suggesting that additional

factors beyond neural response dynamics play a role in the model's shortcoming.

The cross-correlation model functionally reduces all processing of ear-input

signals, including internal delay and reverberation, to changes in the effective interaural

correlation. However, there is growing evidence that ITD-sensitive IC neurons receive

convergent inputs from multiple brainstem coincidence detectors exhibiting different

frequency and delay tuning (Fitzpatrick et al., 2000; McAlpine et al., 1998). Moreover,

in addition to corrupting directional cues, reverberation also distorts the temporal

envelopes of each ear-input signal. Temporal processing of stimulus envelope in the IC

interacts with binaural processing in that manipulation of the stimulus envelope can cause

changes in the firing rate of ITD-sensitive IC neurons even when IACC is unchanged

(D'Angelo et al., 2003; Lane and Delgutte, 2005). Differences between model predictions
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and observed responses might be explained by differences between a single effective

interaural correlation computation (as assumed in the model) and the actual computation

performed by the IC cell on multiple inputs with different spectral, binaural, and temporal

tuning characteristics.

Comparison to Psychophysics

The present results suggest that reverberation produces similar effects on the

lateralization judgments of human listeners and on the directional sensitivity of IC

neurons. A direct comparison of neural responses with human behavior requires explicit

assumptions about how azimuth information is decoded from the rate responses of the

neural population. Two basic classes of decoding models for sound lateralization have

been analyzed: labeled-line models and hemispheric channel models. In labeled-line

models (Fitzpatrick et al., 1997; Jeffress, 1948; Shackleton et al., 1992), the lateral

position of a sound is determined by reading out the ITD corresponding to the centroid of

activity in an array of neurons tuned to different ITDs. Such models require each tuned

channel to transmit a label (i.e., the best ITD) to the decoder. In contrast, a hemispheric

channel model determines the lateral position of a sound source by computing the

difference of activity in two broadly tuned spatial channels, each representing

subpopulations of neurons that preferentially respond to sound sources in one hemifield

(Hancock, 2007; McAlpine et al., 2001; Stecker et al., 2005; van Bergeijk, 1962).

Consistent with previous studies (Brand et al., 2002; Hancock and Delgutte, 2004;

McAlpine et al., 2001), the majority of units in our population had monotonic rate-

azimuth functions (Supp. Fig. S2.1C), with best delays outside the naturally-occurring



range and almost exclusively in the contralateral hemifield (Supp. Fig. S2.1D),

motivating our decision to implement a hemispheric channel decoder.

The model hemispheric difference signal was computed directly from the rate-

azimuth curves measured in our sample of IC neurons. The range of the hemispheric

difference signal decreased with increasing reverberation, mirroring the compression of

human lateralization judgments (Fig. 2.6C). Ideally, human listeners would use only the

information at the onset of the stimulus to make the lateralization judgment and would

therefore be minimally affected by reverberation. The fact that lateralization judgments

do show compression suggests that there may be an obligatory window of integration

over which the lateral position is estimated. This possibility is intriguing, in that it

suggests listeners may behave "suboptimally" given the available acoustic information.

However, such behavior may be appropriate, considering that onset information can be

unreliable due to masking by other sounds or internal noise. Thus, in everyday

environments, optimal behavior may be to emphasize onsets, when detectable, but to also

make use of ongoing information in case no onset information is available. Moreover,

previous behavioral experiments have shown that human listeners are relatively

insensitive to fast fluctuations in interaural correlation and appear to integrate binaural

information over tens to hundreds of milliseconds when judging source direction

(Grantham and Wightman, 1978). Psychophysical estimates of the length of the so-called

"binaural temporal window" generally fall in the vicinity of 100 ms (Boehnke et al.,

2002; Kollmeier and Gilkey, 1990). When we compared the human lateralization

judgments to the hemispheric difference signal computed with different integration times

(Fig. 2.6C), we found that decoder compression best matches perceptual compression for



an integration window of 100-200 ms. To the extent that lateralization judgments result

from the integration of population rate responses over time, onset dominance will

emphasize the early stimulus segments during this integration, as was shown for

individual units (Fig. 2.3C).

The azimuth dependence of the hemispheric difference signal was shallower at

lateral azimuths than that of the human lateralization judgments (c.f. Fig. 2.6A-B).

However, this result is very sensitive to model assumptions including the exact

distribution of CFs and best ITDs, as well as the mapping between azimuth and ITD.

Moreover, species differences may also play a role since we are comparing human

psychophysical data with model predictions based on cat neural data.

Hemispheric channel models have been criticized due to the lack of anatomical

and physiological evidence for this type of operation, with simpler, single hemisphere

rate codes offered as an alternative (Joris and Yin, 2007). With the present data, we

found that the inter-channel comparison was necessary to avoid non-monotonic responses

at the most lateral source positions in the population rate response of each IC.

Theoretically, Jeffress-type models become more computationally powerful for

animals with larger head sizes, including humans, while hemispheric decoding models

work best for smaller animals such as cats (Harper and McAlpine, 2004). Because our

neural data were not amenable to a straightforward implementation of a Jeffress-type

decoding model for sound localization, we cannot say whether labeled-line models can

explain lateralization performance in reverberation. However, our results show that

hemispheric decoding models can indeed account for human lateralization in reverberant

environments.



Supplementary Methods

Information Theoretic Analysis

To quantify neural azimuth sensitivity, we estimated the mutual information (MI)

between the stimulus azimuth and neural rate response (Cover and Thomas, 1991),

assuming a uniform distribution of stimulus azimuths. We used a bootstrap resampling

method (Chase and Young, 2005) to correct for biases in our estimates of MI due to small

sample sizes. Relative information transfer (rIT) was defined as the debiased MI

expressed as a fraction of the entropy of the stimulus distribution.

Characterization of Azimuth Tuning

We quantitatively characterized azimuth tuning of IC neurons by fitting each rate-

azimuth curve with analytical functions, following the procedures of Smith and Delgutte

(2007). Briefly, monotonic rate-azimuth curves were fit by a sigmoid function of the

A
form R(x) = 2(x-As) B, where AzMs is the azimuth of maximum slope, HR is the

1+3 HR

half-rise, and A and B are scaling parameters. Nonmonotonic rate-azimuth curves were

(x-AZBEST ) 2

HW

fit by (1) a Gaussian function of the form R(x) = Ae 2 + B, where AZBEST is the

best azimuth and HW is the half-width and (2) a difference of Gaussians of the form

(x-AZBEST -HR)
2  

(x-ABEsT -HR)
2

HR HR

R(x)= A[e 2 - 2 ] + B, where AzMs, HR, A, and B are as defined for

the sigmoid. For nonmonotonic units, we ultimately chose the function that accounted for

the largest proportion of variance in the data (as quantified by R2). Tuning parameters



were only calculated for reverberant rate-azimuth curves that had a modulation depth

greater than 50% to avoid anomalous parameter values (moderate reverb: 5/30 excluded,

strong reverb: 8/30 excluded).



Supplementary Results
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Figure S2.1 Characteristics of ITD tuning in IC neuron population.

A-B, Rate-ITD curves for broadband noise (thin gray lines) typically resemble damped
sinusoids with a period approximately equal to the inverse of the neuron's characteristic
frequency (CF). The anechoic rate-azimuth curves (thick black lines) parallel the noise-
delay function within the range of ITDs corresponding to source azimuths in the frontal
hemifield (±360 is), consistent with the fact that ITD is the only directional cue present
in the virtual space stimuli. The small differences between the two curves can be
attributed to the differences in the duty cycles with which they were measured. Unit CFs
are A, 569 Hz and B, 1312 Hz. C, Left, Nonmonotonicity index (NMI) versus CF for

abs[r(900) - r(-900)]population of IC neurons, where NMI =1- abs[r(0. NMI is equal to 0 for
S-r~rmax - rmin

a rate-azimuth curve that is strictly increasing or decreasing (e.g. panel A) and increases
towards 1 as a rate-azimuth curve becomes more nonmonotonic (panel B). NMI is
positively correlated with CF (r2=0.602, p<0.001) such that units with CFs below 500 Hz
tend to be monotonic while units with higher CFs tend to be nonmonotonic. Right,
Histogram of NMI across IC neuron population. D, Best delay (BD) versus CF across IC
neuron population. The BD of over half the units (25/40) lies outside the naturally
occurring range of ITD (gray shaded region). BD is defined as the ITD corresponding to
the peak of the rate-ITD curve, indicated by the stars in panels A and B.
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Figure S2.2 Reverberation decreases relative information transfer (rlT) between
stimulus azimuth and spike count.

Scatter plot of rIT for reverberant conditions against rIT for anechoic condition across IC
neuron population. Increasing reverberation leads to significant reduction in rIT
(ANOVA, F(2,69)=7.33, p=0.001). Post-hoc comparisons (with Bonferroni corrections)
confirm that the decrease in rlT is significant (p<0.01) for all pairwise comparisons
between room conditions. The decrease in rlT in reverberation is significantly correlated
with relative range (moderate reverb: r2=0.504, p<0.001; strong reverb: r2=0.497,
p<O.001).
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Figure S2.3 Effect of reverberation on azimuth tuning.

A, Rate azimuth curves for each unit were fit with one of three functions: Al, sigmoid,
A2, difference of Gaussian, and A3, Gaussian. The fitted curves were used to obtain
parameters characterizing azimuth tuning. B, Azimuth at maximum slope (AzMs) for
reverberant condition against anechoic AZMS for IC neurons best fit by sigmoid (n=21)
and difference of Gaussian (n= 13) functions. AzMS was relatively stable in reverberation
and was significantly correlated with anechoic AzMs in the strong reverb condition
(r2=0.427, p<0.005, n= 16). The presence of two outliers resulted in a non-significant
correlation for the moderate reverb condition (p=0.09, n=23). C, Reverberant versus
anechoic half-rise for units with sigmoid and difference of Gaussian fits. Reverberation
can cause both increases as well as decreases in half-rise. D, Reverberant versus anechoic
best azimuth (AZBEST) for nonmonotonic units with Gaussian fit (n=5). Increasing
reverberation tended to shift AZBEST away from the midline. E, Reverberant versus
anechoic half-width for units with Gaussian fit (n=5). Increasing reverberation tended to
increase the half-width of azimuth tuning.
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CHAPTER 3

Effects of reverberation on directional sensitivity of low-
frequency ITD-sensitive neurons in inferior colliculus of awake
rabbit

Abstract

In Chapter 2 we demonstrated that directional sensitivity of auditory midbrain neurons in
anesthetized cat degrades dynamically for reverberant stimuli. Directional sensitivity
was better near the onset of a reverberant stimulus but degraded over time, paralleling the
build up of reverberation over time. Anesthesia is known to alter neural response
dynamics and has been shown to have profound effects on the neural processing of
discrete echoes. To rule out the possibility that the results from our previous experiments
were contaminated by anesthesia, we developed an awake rabbit preparation for studying
single IC neurons and repeated the experiments of Chapter 2. Results demonstrate that
reverberation similarly affects the directional sensitivity of single neurons in the awake
rabbit and anesthetized cat IC, suggesting that, on the average, neither anesthesia nor
species differences affect the neural processing of reverberation.



Introduction

Nearly all listening environments-indoors and outdoors alike-are reverberant. In

reverberant environments, echoes interfere with the direct sound wave arriving at a

listener's ears, distorting the spatial cues for sound localization. Because reverberation

builds up over time, the source location is represented relatively faithfully during the

initial portion of a sound but this representation becomes more degraded later in the

stimulus. In Chapter 2 we demonstrated that the directional sensitivity of single neurons

in the auditory midbrain of anesthetized cats follows a similar time course, in that

sensitivity is better during the early response period and becomes degraded over time.

Furthermore, we showed that onset dominance in neural response patterns can emphasize

the earlier response periods, resulting in more robust directional sensitivity than expected

given the average acoustic degradation in the signals.

Physiological data obtained from anesthetized preparations have come under

scrutiny, owing to a growing set of investigations demonstrating profound impacts of

anesthesia on neural processing at multiple levels in the auditory pathway (Kuwada et al.,

1989; Tollin et al., 2004; Wang et al., 2005; Young and Brownell, 1976). Of particular

importance to the topic of this thesis are investigations concerning the effects of

anesthesia on the neural suppression of discrete reflections. When a pair of short-

duration sounds (e.g., acoustic clicks) is presented in close succession, with the lead

representing the direct sound and the lag a single echo, the neural response to the lagging

sound is typically suppressed over a range of delays. Generally, the time course of

suppression is quantified by the half-maximal delay-the interstimulus delay required for

the neural response to the lag to reach 50% of the response to a single source. Single
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neurons in the anesthetized cat auditory midbrain have an average half-maximal delay of

-35ms, although values vary from I to greater than 60ms in individual units (Litovsky

and Yin, 1998). In contrast, neurons in the IC of unanesthetized animals typically exhibit

half-maximal delays of -10ms, with individual neurons exhibiting half-maximal delays

between 1-40ms (Fitzpatrick et al., 1999; Tollin et al., 2004)(Fitzpatrick et al., 1999;

Tollin et al., 2004). Although it is difficult to generalize results obtained using a single,

discrete reflection to those using more complex stimuli like reverberation, these studies

nevertheless suggest that the effects of reverberation on directional sensitivity of single

neurons might be markedly different in the awake and anesthetized auditory midbrain.

On the other hand, not all neural response properties are altered by anesthesia. In

particular, anesthesia does not have significant effects on adaptation time constants

measured from the auditory midbrain of gerbils (Ter-Mikaelian et al., 2007). In Chapter

2, spike rate adaptation was implicated as one of the possible mechanisms underlying

robust encoding of ITD in reverberation. Thus, it may function similarly in an

unanesthetized preparation.

Because one of the central goals of our research is to elucidate the neural correlates

of behavior, it is paramount to rule out the possibility that the results of our previous

study were contaminated by anesthesia. To address this issue, we developed an awake

(passively-listening) Dutch-belted rabbit (Oryctolagus cuniculus) preparation and

repeated the experiments that previously done in anesthetized cat (Chapter 2).

In contrast to the aforementioned studies of echo suppression, our results suggest

that directional sensitivity in reverberation is remarkably similar in neurons from awake

and anesthetized IC. In particular, we demonstrate that single neurons in the awake



rabbit IC follow a similar time course of degradation as units in the anesthetized cat IC.

However, we find that the proportion of neurons with non-monotonic directional

responses is much higher in awake rabbit IC than anesthetized cat IC, indicating that the

two species might use different neural codes for sound localization.



Methods

Surgical Preparation

Methods for recording from single neurons in the inferior colliculus (IC) of

unanesthetized Dutch-Belted rabbits, (Oryctolagus cuniculus) were developed based on

the techniques of Kuwada et al. (1987) and Nelson and Carney (2006). We performed

two asceptic surgeries to prepare the rabbits (n=4) for chronic recording sessions. In both

surgeries, animals were anesthetized with an intramuscular injection of acepromazine (1

mg/kg), ketamine (44 mg/kg), and xylazine (6 mg/kg). Supplemental doses of ketamine

and xylazine were administered as necessary, as assessed by the onset of the pedal

withdrawal and corneal reflexes. Body temperature was maintained at 37.8 throughout

all surgical procedures.

In the first surgery, the skull was exposed by a midline incision and cleared free of

connective tissue. A stainless steel cylinder and brass head bar were affixed to the skull

using stainless steel screws and dental acrylic. The cylinder and head bar were centered

on the midline with the anterior edge of the cylinder at bregma and the head bar forming

a fixed angle with the tooth-orbit line. At the end of the procedure, custom ear molds

were made using vinyl polysiloxane impression material (Reprosil@). Buprenorphine

(Buprenex@, 0.015 mg/kg, s.c.) was administered as an analgesic for 36-48 hours post-

surgery.

Animals were given at least two weeks to recover from the initial surgery before

they were habituated to the experimental setup. Animals were restrained in a spandex

sleeve and secured in a padded cradle. Sound stimuli were introduced by connecting

acoustic drivers to the custom-fitted ear molds. The duration of daily training sessions



was gradually increased until the rabbits could sit for 2-3 hours with no signs of

discomfort, typically over a period of 1-2 weeks.

Subsequently, the animals underwent a second asceptic surgical procedure in which

a small (-2-3 mm diameter) craniotomy was made in the skull, centered approximately

10mm caudal and 3mm lateral to bregma. The exposed dura was treated with a topical

antibiotic (Bacitracin) and the stainless steel chamber filled with sterile elastopolymer

(Sammons-Preston). Additional asceptic surgeries were periodically performed to

enlarge the craniotomy and to clear excessive tissue growth.

All procedures were approved by the animal care and use committees of both the

Massachusetts Eye and Ear Infirmary the Massachusetts Institute of Technology.

Recording Procedures

All recording sessions took place in a double-walled electrically-shielded sound

attenuating chamber. At the start of each session, the elastopolymer cap was removed

and the stainless steel chamber flushed with sterile saline. A topical anesthetic

(Marcaine) was applied to the craniotomy for -5 minutes to diminish sensation upon

dural penetration. Using fine forceps, we removed the dural scar tissue that had accrued

since the previous recording session. A sterile 25x-gauge guide tube that protected the

electrode tip was inserted 2mm below the surface of the dura using a manual

manipulator.

Sound stimuli were generated by a 24-bit D/A converter (National Instruments

NIDAC 4461) at a sampling rate of 50kHz and digitally filtered to compensate for the

transfer function of the acoustic assemblies. The acoustic assemblies consisted of a pair

of Beyer-Dynamic (DT-48) speakers attached to narrow plastic tubes that passed through



the custom-fitted ear molds. A probe-tube microphone (Etymotic ER-7C), sealed inside

the sound delivery tube, measured acoustic pressure at the end of the tube. At the start of

each recording session, we determined the system transfer functions using a chirp-

stimulus and generated digital compensation filters.

Single units were isolated using epoxy-insulated tungsten electrodes (AM Systems)

inserted through the guidetube and advanced using a remote-controlled hydraulic

micropositioner (Kopf 650). The neural signal was amplified, bandpass filtered between

0.3-3kHz, and fed to a software spike detector triggering on level crossings. Spike times

were saved to hard disk for subsequent analysis.

Animals were monitored on a closed-circuit video system throughout recording

sessions, which typically lasted 2-3 hours but were terminated immediately if animals

showed any signs of discomfort. At the end of the session, the stainless steel chamber

was flushed with sterile saline, treated with topical antibiotic and resealed with sterile

elastopolymer.

We typically recorded 6 days per week for up to 6 months in each IC. During the

final recording session, a series of recording sites were marked by electrolytic lesions

(10gA of current for 30-45 seconds) for subsequent histological verification. Because

numerous penetrations were made over months, it was not possible to accurately

reconstruct the position of each recording site within the IC. We instead relied on

physiological criteria to define recording sites as "central nucleus-like": (1) the site fit

into an orderly tonotopic progression along the dorsal-ventral axis of penetration and (2)

the response was non-habituating. Units that did not meet both criteria were excluded

from data analysis.



Virtual Space Stimuli

Binaural room impulse responses (BRIR) were simulated for a reverberant environment

at three source-to-listener distances (0.5m, Im and 3m) using the techniques described in

Chapter 2. The parameters of the simulation, including the geometry of the virtual

receivers and sources was identical to those used previously. The range of interaural time

differences (ITD) corresponding to ±90 is ±360ps, covering the naturally occurring

range of ITD for a Dutch-belted rabbit (Bishop et al., 2009). The BRIR did not contain

azimuth-dependent interaural levels differences, because we did not include a head in the

virtual simulations. Each set of ITD-only BRIR was characterized by the ratio of direct

to reverberant energies (D/R), averaged across azimuths (0.5m: +10 dB, Im: 0 dB, 3m: -9

dB). We henceforth refer to each of the three conditions as mild, moderate, and strong

reverb.

Virtual space stimuli were created by convolving the normalized BRIRs with

reproducible 400-ms broadband noise bursts. Stimulus intensity was computed using the

filtered noise tokens.

Experimental Procedures

The search stimulus consisted of 40-Hz sinusoidally amplitude-modulated broadband

noise bursts presented binaurally at a nominal level of 65 dB SPL. When a single unit

was well isolated, its characteristic frequency (CF) was determined using an automatic

tracking procedure (Kiang and Moxon, 1974). In earlier experiments, we determined CF

by presenting a series of randomly ordered tone pips. Acoustic threshold was determined

using 200-ms diotic (and occasionally contralateral) broadband noise (2/sec x 4-10



repeats). Spontaneous rate was computed from a 100-ms silent period preceding each

stimulus presentation.

Noise delay functions were measured using 200-ms broadband diotic noise bursts

typically presented at delays of ±2000gs in 200ts steps (2/sec x 10 trials). A unit was

considered ITD-sensitive if an analysis of variance for the distributions of firing rates

across ITD showed a significant effect of ITD (at the level c=0.05).

Only ITD-sensitive units were studied using the virtual space stimuli. Directional

responses were obtained for the anechoic and moderate reverb conditions in

pseudorandom order. We typically used 13 azimuths (150 spacing) or, occasionally, 7

azimuths (30' spacing), randomized on a trial by trial basis (1/sec x 8-15 repeats).

Stimuli were presented at a level 15-20 dB above broadband noise threshold. Time

permitting, we measured responses to the mild and strong reverb BRIRs.

Data Analysis

A directional response function (DRF) for each room condition was computed by

averaging the number of spikes that occurred in a fixed time window across all trials for

each azimuth. We defined the early response as [0,50ms], the ongoing response as

[51,400ms] and the full response as [0,400ms]. DRFs were smoothed using a three point

triangular smoothing filter having weights [1/6,2/3,1/6].

We computed the relative range, which is the range of firing rates for a

reverberant DRF expressed as a fraction of the range of that unit's anechoic DRF. The

relative range is equal to 1, by definition, for an anechoic DRF.



We computed a non-monotonicity index (NMI) for each DRF as,

NMI =1 abs[r(90°)- r(-90°)]NMI = - - (), where r represents the vector of firing rates across
max(r) - min(r)

azimuths. The NMI is 0 for a monotonic function and increases towards 1 for non-

monotonic functions.

We quantitatively characterized azimuth tuning of IC neurons by fitting each rate-

azimuth curve with analytical functions, following similar procedures to Smith and

Delgutte (2007). Briefly, monotonic rate-azimuth curves were fit by a sigmoid function

A
of the form R(x) = -2(x-Azs) + B, where AzMs is the azimuth of maximum slope, HR

1+3 HR

is the half-rise, and A and B are scaling parameters. Nonmonotonic rate-azimuth curves

(x-AZBEST )2

HW

were fit by a Gaussian function of the form R(x) = Ae 2 + B, where AZBEST is the

best azimuth and HW is the half-width. To be included in the analysis, we required the

goodness of fit (R2) for both anechoic and reverberant DRF to be above 0.75. Eight units

(out of 94) were excluded because we couldn't obtain fits to the anechoic DRF. Of the

remaining units, the following were excluded because we failed to obtain fits to

reverberant DRF: mild reverb: 2/21, moderate reverb: 3/71, strong reverb: 2/15.

Average cumulative peristimulus time histograms (cPSTH) were computed as

described in Chapter 2. Briefly, each 1 ms bin in the cPSTH represents the cumulative

number of spikes up to the bin time in the anechoic PSTH. The cPSTH was computed

over a 400 ms duration, with time zero corresponding to the first bin in the anechoic

PSTH having an across-trial spike count distribution significantly different from that of

spontaneous activity. Only azimuths that evoked mean firing rates >90% of the maximum



rate across all azimuths were included in the average cPSTH in order to avoid including

onset responses that often occur at unfavorable azimuths.



Results

Effect of reverberation on directional sensitivity in awake rabbit IC

We obtained directional response functions (DRF) from 94 low-frequency ITD-sensitive

neurons from the IC of 4 awake rabbits. The neural rate response for anechoic virtual

space stimuli (Fig. 3.1, thick lines) is essentially equivalent to the rate response obtained

using interaurally delayed broadband noise (Fig. 3.1, thin lines) within the naturally

occurring range of ITD, confirming that ITD is the main directional cue for these stimuli.

Maximum firing rates are typically elicited from sources in the hemifield contralateral to

the recording site (positive azimuths), although the shape of individual DRFs ranges on a

continuum from completely monotonic (Fig. 3.1A) to nonmonotonic (Fig. 3.1C).
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Figure 3.1 Directional sensitivity in awake rabbit IC
Noise delay functions (thin lines) and anechoic directional response functions (DRFs, thick lines) from
three neurons in the awake rabbit IC. Spontaneous firing rate is indicated by the 's' symbol at the left of
each panel. To facilitate comparison, virtual stimulus azimuth (top axis) has been converted to ITD
(bottom axis). Unit CFs are A, 490 Hz; B, 325 Hz; and C, 962 Hz.

We quantified the shape of DRFs using a nonmonotonicity index (NMI, see

Methods). The NMI is equal to 0 for DRF that are strictly increasing or decreasing (Fig.

3.1A) and increases towards 1 as the DRF becomes more nonmonotonic (Fig. 3.1C).



Figure 3.2 shows a scatter plot of NMI versus characteristic frequency (CF) for the awake

rabbit neuron population (filled symbols). The data from anesthetized cat are

superimposed (open symbols), for comparison. Despite the fact that the very low-

frequency region (CF < 350 Hz) is under sampled in the rabbit preparation, there appears

to be a consistent trend of increasing NMI with increasing CF. However, in the

frequency range of -400-800 Hz, there are proportionally more units with non-monotonic

DRF (i.e., NMI > 0.2) in the awake rabbit neuron population (55%, 22/40) than the

anesthetized cat neuron population (21.4%, 3/14). Non-monotonic DRF occur when a

neuron's best delay falls within the naturally occurring range of ITD, indicating that there

may be differences in the distribution of best delays across CF between the two

preparations (see Discussion).
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We obtained reverberant DRFs in 78 (out of 94) ITD-sensitive awake rabbit IC

neurons using virtual space stimuli with moderate reverb, typical of a medium-sized



classroom. In a smaller subset of units, we obtained DRF using virtual space stimuli with

mild and strong reverb, as well. Figure 3.3 shows reverberant and anechoic DRF for the

same three neurons illustrated in Figure 3.1. The general effects of reverberation on DRF

obtained from awake rabbit IC neurons are similar to our observations from anesthetized

cat (Chapter 2). Namely, reverberation causes a compression of the range of firing rates

across azimuths, both by reducing peak firing rates and increasing minimum firing rates,

with increasing reverberation having more severe effects.
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Figure 3.3 Anechoic and reverberant directional response functions
Anechoic and reverberant DRF for three awake rabbit IC neurons (same
firing rate indicated by the 's' symbol at the left of each panel.

units as in Fig. 1). Spontaneous

To quantify compression for individual DRF, we computed the relative range, the

range of firing rates in a reverberant DRF expressed as a fraction of the range of firing

rates in that unit's anechoic DRF. Figure 3.4 shows the distribution of relative range

across the awake rabbit IC neuron population for each of the reverberation conditions.

Both pairwise comparisons between successive reverberation levels show a significant

decrease in relative range with increasing reverberation (mild/moderate: n=22, p<0.001,

moderate/strong: n=17, p<0.001).
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To quantify the effects of reverberation on DRF shape, we computed the NMI for

each reverberation condition. Figure 3.5 shows scatter plots of reverberant NMI versus

anechoic NMI for each of the three reverberation levels. The solid lines indicate identity

i.e., y=x. At each reverberation level, the two metrics are positively correlated (mild and

moderate: p<0.001, strong: p=0.0 36 ), although with increasing reverberation NMI tend

to become smaller in reverberation. Statistically, the slope of the best-fitting regression

line decreases with increasing reverberation (mild: r=0.991, moderate: r=0.754, strong:

r=0.341).

1 Mild Reverb o 1 Moderate Reverb 1 Strong Reverb

S0.75 0.75 * * * 0.75
Z 00 0

. +

W 
0  + 0

S 0.5 0 0.5 , 0.5

0.250 0.25 0.25
0" 0 .to

.+ + + +

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Anechoic NMI Anechoic NMI Anechoic NMI

Figure 3.5 Effect of reverberation on shape of directional response functions
Reverberant NMI versus anechoic NMI across IC neuron population. Left panel, mild reverb (n=22);
Middle panel, moderate reverb (n=78), Right panel, strong reverb (n=17).
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We next quantitatively characterized the effects of reverberation on specific

tuning properties of each DRF (see Methods). For non-monotonic neurons best fit by

Gaussian functions, reverberation tends to cause lateral shifts in the best azimuth (Fig.

3.6A, AZbest) as well as an increase in the half-width of tuning (Fig. 3.6C). Both changes

reduce the non-monotonicity of DRF and therefore underlie the decrease in NMI with

increasing reverberation. For monotonic neurons, i.e., those best fit by sigmoid

functions, reverberation has no systematic effect on the azimuth at maximum slope (Fig.

3.6B, Azmax); but generally causes an increase in the half-rise (Fig. 3.6D) across all

reverberation levels. Both the increase in half-rise for monotonic units and the increase

in half-width for non-monotonic units indicate a decrease in the sharpness of ITD tuning.
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Figure 3.6 Effect of reverberation on azimuth tuning
Top, Illustration of the parameters extracted from left, Gaussian and right, sigmoid fits to anechoic and
reverberant DRF. A, Reverberant versus anechoic best azimuth (AZbest) for neurons best fit by Gaussian
function (mild reverb: n=10, moderate reverb: n=30, strong reverb: n=8). B, Reverberant versus anechoic
azimuth at maximum slope for neurons best fit by sigmoid function (mild reverb: n=9, moderate reverb:
n=38, strong reverb: n=5). C, Reverberant versus anechoic half-width for neurons best fit by Gaussian
function. D, Reverberant versus anechoic half-rise for neurons best fit by sigmoid function.

Time course of directional sensitivity in reverberation

In Chapter 2, we demonstrated that the degradation in the neural representation of source

location in reverberation is not instantaneous-the representation is better during the

early portion of the stimulus which contains the uncorrupted onset. Figure 3.7 shows a
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scatter plot of early (0-50ms) versus ongoing (51-400ms) relative range for each unit in

the awake rabbit IC neuron population. The solid line indicates identity i.e., y=x. As

observed in anesthetized cat IC, directional sensitivity is better during the early response

period, as compared to the more-degraded ongoing response period. This trend holds

across the rabbit IC neuron population for each of the reverberation levels3 (one-sided

paired t-test, mild reverb: n=21, p=0.021; moderate reverb: n=78, p<0.001; strong

reverb: n=16, p=0.009).
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The relative contribution of early and ongoing response to the overall directional

sensitivity is determined the distribution of spiking activity across time. In Chapter 2, we

showed that the majority of units in the anesthetized cat IC are onset dominated, i.e.,

firing rates are initially high and decay over time. To the extent that the computation of

sound source location involves temporal integration of IC neural responses, such onset

dominance emphasizes the earlier (less-degraded) neural representations. To determine

3 As in Chapter 2, to prevent non-directional early responses from biasing our results, we excluded units
that failed to show a significant modulation of firing rate across azimuths during the early response epoch
(Kruskal-Wallis analysis of variance, p>0.05, 8/94 units excluded).



whether onset-dominance is also a feasible mechanism for improving directional

sensitivity in awake rabbit, we computed the population distribution of anechoic T50-

the time at which the cumulative peristimulus time histogram (cPSTH, see Methods)

reaches 50% of its value at the end of the 400-ms stimulus. Figure 3.8 shows the

cumulative distributions of T50 across the awake rabbit (solid line) and anesthetized cat

(dashed line) IC neuron populations. Median T50 does not depend on preparation

(Mann-Whitney U-test, p=0. 136), nor are their significant differences between the overall

distributions (Kolmogorov-Smirnov test, p=O. 17), suggesting that onset dominance could

play a similar role in IC of awake rabbit.
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Comparison to Anesthetized Cat

In general, the effects of reverberation on directional sensitivity in the awake rabbit IC

are qualitatively consistent with our observations from anesthetized cat (Chapter 2). To

directly compare, Figure 3.9 shows the population average (±+ std) relative range in the

early, ongoing, and full neural response for both preparations at each of the common

reverberation levels tested (moderate and strong). We ran separate two-way analyses of
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variance on the early, ongoing, and full relative ranges using only neurons in which we

obtained responses to both moderate and strong reverb (awake rabbit: n=17 neurons;

anesthetized cat: n=24 neurons). For the early relative range, neither preparation nor

reverberation level are significant main factors, suggesting that the response to the early

segment of reverberant signals is similar across reverberation levels and between species.

For both the full and ongoing relative range, reverberation level is a significant main

effect but preparation is not, although there are significant interactions between the two

factors (full: p=0.033; ongoing: p<0.001). In both cases, the interaction results from the

fact that increasing reverberation causes a significantly larger decrease in relative range

for awake rabbit IC neurons than it does in anesthetized cat (t-test, full: n = 40, p=0.033;

ongoing: n=35, p<0.001), despite the fact that the distribution of relative ranges at each

reverberation level are not significantly different (t-tests, P>0.11).

4+
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0 00 Anesthetized Cat

Moderate Reverb

Figure 3.9 Comparison of directional sensitivity in
reverberation in awake rabbit and anesthetized cat
Population average (± 1 std) relative range for each
stimulus epoch (early, ongoing, full), reverberation
level (moderate, strong) and preparation (awake rabbit,
anesthetized cat).
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sensitivity with increasing reverberation. The average increase in relative range for these

5 neurons was very small (0.05+0.04) compared to the average decrease observed in the

remaining 19 neurons (0.21+0.16). These results suggest that responses obtained from

the anesthetized cat IC show somewhat more variability than those from the awake rabbit

preparation. Nevertheless, our results suggest that, on the average, reverberation has

similar effects directional sensitivity of neurons from anesthetized cat and awake rabbit

IC.



Discussion

Directional sensitivity is similar in awake rabbit and anesthetized cat IC

Overall, our findings suggest that the effects of reverberation on directional sensitivity of

low-frequency ITD-sensitive IC neurons are similar in awake rabbit and anesthetized cat.

In general, directional sensitivity is better near the onset of a stimulus but degrades as

reverberant energy builds up over time. Moreover, we find that the distributions of

T50-a quantitative measure of onset dominance in temporal response patterns-are

similar in the two preparations, indicating that it could serve similar functional roles in

emphasizing the less-degraded earlier responses. These results corroborate the findings

of Ter-Mikaelian et al. (2007), who demonstrated that adaptation time constants of

auditory midbrain neurons are similar in the awake and anesthetized gerbils.

Relationship to Discrete Echo Suppression

Our findings appear to contradict studies demonstrating profound differences in the

neural processing of discrete echoes between awake and anesthetized animal preparations

(Fitzpatrick et al., 1999; Litovsky and Yin, 1998; Tollin et al., 2004). In particular, in the

present study, we found that directional sensitivity during the early stimulus epoch, where

discrete echo suppression may have the most substantial impact, was not significantly

different for the awake and anesthetized IC neuron populations. On the other hand, our

study analyzes directional responses that are simultaneously affected by direct sound and

echoes, while studies of discrete echo suppression typically analyze the response to a

single, temporally isolated echo.



To resolve the differences between these types of stimuli, future investigations of

discrete echo suppression should be aimed at analyzing changes in the neural response

using long-duration stimuli with echoes that overlap in time with the direct sound.

Indeed, a recent neurophysiological investigation of echo suppression in barn owl IC that

used overlapping direct sound and echo demonstrated that the number of spikes evoked

during the period of temporal overlap is independent of echo delay (Nelson and

Takahashi, 2008), suggesting that the suppressive mechanisms acting on temporally

isolated stimuli do not influence the neural response to simultaneous direct sound and

echoes (e.g., in reverberation).

In general, the issue of whether or to what extent discrete echo suppression

influences directional sensitivity in reverberation remains unresolved.

Increased Prevalence of Nonmonotonic DRF in Awake Rabbit IC: Implications for
Models Sound Localization

A tangential finding of the current study was that proportionally more neurons in the

awake rabbit IC have non-monotonic DRFs as compared to the anesthetized cat IC,

particularly in the mid-frequency region -400-800 Hz. Additionally, there was a paucity

of units with CFs below 400 Hz in the awake rabbit IC (3.6%, 3/83 units), whereas in the

anesthetized cat IC 25% (10/40) of the units had CFs below 400 Hz and the DRF are

overwhelmingly monotonic (Fig. 3.2).

The increased prevalence of non-monotonic units in the awake rabbit IC could have

implications for decoding models of sound localization. In Chapter 2, we demonstrated

that a population rate code for sound localization based on the comparison of activity in

two broadly tuned spatial channels, each representing the total activity in one IC, could

account for the tendency of sound localization estimates in reverberation to shift towards

76



the midline (Fig. 2.6). Such hemispheric-difference decoding worked well using the

anesthetized cat IC data due to the prevalence of monotonic DRFs.

Using the same algorithm described in Chapter 2 we computed hemispheric

difference signals for each of the room conditions using the rabbit IC data. Figure 3.10

shows the hemispheric difference signal versus stimulus azimuth for each of the

conditions; error bars represent bootstrapped estimates of +1 std across the population.

The compression in the hemispheric difference signal increases with increasing

reverberation, mirroring the compression observed in individual units (Fig. 3.4).

However, due to the increased prevalence of non-monotonic DRF in the awake rabbit IC,

the hemispheric difference signals tend to saturate quickly at lateral azimuths, and

actually exhibit modest non-monotonicies in some conditions. Consistent with the fact

that reverberation causes individual DRF to become somewhat more monotonic (Fig.

3.5), the signals tend to saturate somewhat less rapidly at lateral azimuths in the moderate

and strong reverb conditions. Nevertheless, even in the anechoic condition, for all

azimuths greater than -45', the hemispheric difference signal yields approximately the

same response, posing a challenge for the localization of stimuli at these lateral azimuths.

If our sample of rabbit IC neurons is biased towards high CFs, then we would

expect the hemispheric difference signal for an unbiased sample to be more monotonic

than the present data suggest, as it would be influenced by proportionally more low-CF

neurons which tend to have monotonic DRF. On the other hand, if our sample is

representative of the true underlying distribution, then the present results suggest that

simple hemispheric difference decoding models might not work for this species.
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The main alternative to hemispheric decoding is the Jeffress model i.e., labeled-

lines codes (Jeffress, 1948). In a labeled-line model, sound location is computed from

the population activity by reading out the label (e.g., ITD) of the unit that is maximally

activated or by computing the ITD of the centroid across the population. The

possibilities for the population readout as well as the assumptions concerning precisely

what labels are transmitted are numerous; therefore, we have avoided implementing a

labeled-line decoding model. However, the current neurophysiological results suggest

that the Jeffress model might also be able to account for human sound localization in

reverberation. Recall, the human lateralization study in Chapter 2 demonstrated that,

with increasing reverberation, listener's estimate of sound location shifted towards the

midline (Fig. 2.6A). If we assume that (1) neurons are labeled by their best delays and

(2) sound location is computed by reading out the label of the maximally active unit, then

in order for behavioral estimates of source location to shift towards the midline, neurons

must respond more vigorously to sources away from the midline-a classic inverse



coding problem. The prevalence of non-monotonic DRF in the awake rabbit IC neuron

population enabled us to analyze the shifts in best azimuth for a substantial number of

neurons (Fig. 3.6A). The results indicated that reverberation tends to increase the best

azimuth, so that neurons respond more vigorously to sources further from the midline.

Such lateral shifts in best azimuth are qualitatively consistent with the behavioral results

of Chapter 2, suggesting that Jeffress-type models might also be able to account for

sound localization in reverberation. Of course, Jeffress models become less attractive

when the proportion of monotonic DRF increases, as in the anesthetized cat IC.

Resolving the issue of which decoding model works best for a particular species requires

knowledge of the exact distribution of best delays and the natural range of ITDs, in

addition to knowledge of sound localization behavior in that species. Lacking knowledge

of the former in humans, our results suggest that both hemispheric decoding models and

labeled-line models may be able to account for human lateralization behavior in

reverberation, although we can not conclusively state which model works better.

Possible Explanation for the Paucity of Units with Very Low CFs in Awake Rabbit IC

An important question nevertheless remains: Why the paucity of units with very low CFs

(< 350 Hz) in awake rabbit? It could be that the blind dorsal-ventral approach to the IC

in the awake rabbit preparation biases us away from very low-CF neurons, whereas in the

anesthetized cat preparation we visually targeted the low-CF region of the IC using a

posterior approach. On the other hand, behavioral investigations of hearing in mammals

have shown that the low-frequency limit for hearing in rabbits is somewhat higher than in

guinea pigs or cat (Heffner and Masterton, 1980; Heffner and Heffner, 1985), suggesting

that the lack of units with very low CFs in our population might partially result from a



general absence of units tuned to very low CFs. Alternatively, due to the elevated

hearing thresholds at very low CFs in rabbit, there may be low CF units that simply

weren't activated by the 60 dB SPL search stimulus, although such an argument can only

account for the lack of extremely low-CF units (< 125 Hz). Future studies might partially

resolve these issues by comparing evoked-potential neural audiograms for anesthetized

cat and awake rabbit.



CHAPTER 4

Effects of conditioning on directional sensitivity of ITD-
sensitive IC neurons: Probing the role of onset dominance

Abstract

Directional sensitivity of IC neurons in reverberation follows a characteristic time course,
in that it is better near the onset of a stimulus and becomes more degraded over time, as
reverberation builds up. Moreover, onset dominance in temporal response patterns
emphasizes the earlier, less-degraded stimulus segments, resulting in more robust
directional sensitivity than expected given the average acoustic degradation in the ear-
input signals. Here, we use a conditioning paradigm to systematically alter temporal
response patterns during the presentation of virtual space stimuli, enabling us to explicitly
study the relationship between onset dominance and directional sensitivity in
reverberation. Results suggest that making temporal response patterns less onset
dominated typically leads to poorer directional sensitivity in reverberation, particularly
during the response epochs immediately following the conditioning stimulus.



Introduction

The concept of rate codes has largely dominated the manner in which stimulus-response

properties are studied in nervous system. But rate representations are inherently

complicated by underlying temporal response dynamics. As first documented in the

pioneering experiments of Lord Adrian in the 1920s, most sensory neurons adapt during

sustained stimulation. That is, in response to a stationary, sustained stimulus, neurons

typically fire an initial, high-frequency train of action potentials, followed by a gradual

decline in the firing rate to a (smaller) steady state. Such temporal response dynamics

poses a challenge for the coding of time-varying stimuli. The local (i.e., short-term) rate

response to a stimulus feature depends on the "context" in which that feature occurs.

Indeed, numerous studies have demonstrated that rate responses of neurons in the

auditory midbrain to dynamic stimuli are context sensitive i.e., the rate response to a

particular stimulus value (e.g., intensity) depends on the stimulus history. Examples of

context sensitivity include neural echo suppression, in which the response to a simulated

echo is altered by changes the properties of the leading sound source (Finlayson, 1999;

Fitzpatrick et al., 1999; Litovsky and Delgutte, 2002; Litovsky and Yin, 1998; Spitzer et

al., 2004; Tollin et al., 2004); dynamic range adaptation, in which the rate versus

intensity curve for individual neurons can be manipulated by changing the input stimulus

statistics (Dean et al., 2005); and motion sensitivity, in which the rate response to a

particular binaural cue value that occurs during a dynamic motion stimulus can be

profoundly altered by changing the range of simulated motion (McAlpine et al., 2000;

Spitzer and Semple, 1991; Spitzer and Semple, 1993; Spitzer and Semple, 1998). The

neural mechanisms underlying context sensitivity in the auditory midbrain are numerous
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and include changes in the dynamics of excitation i.e., adaptation (Finlayson and Adam,

1997; McAlpine and Palmer, 2002) as well as inhibition (Finlayson and Adam, 1997;

Kuwada et al., 1989; Sanes et al., 1998).

The inferior colliculus (IC), the primary nucleus comprising the auditory midbrain

receives inputs from nearly all nuclei in the auditory brainstem (Adams, 1979; Aitkin and

Schuck, 1985; Oliver et al., 1995; Osen, 1972). Interactions between converging

excitatory and inhibitory inputs onto single IC neurons (Bock et al., 1972; Le Beau et al.,

1996; Rose et al., 1963), in addition to intrinsic membrane dynamics [e.g.,

(Sivaramakrishnan and Oliver, 2001)], constitute some of the numerous mechanisms

sculpting temporal response dynamics in the IC. Moreover, many IC units show

evidence of sustained inhibition that can not be revealed by traditional extracellular

recordings (Xie et al., 2007). The temporal response patterns observed across IC neurons

are diverse and while many units exhibit some form of spike rate adaptation (Finlayson

and Adam, 1997; Ingham and McAlpine, 2004; Nuding et al., 1999; Stillman, 1971b),

other units show "sustained" or "buildup" response patterns (Nuding et al., 1999; Rees et

al., 1997).

In previous work, we demonstrated that there may be an important role for

temporal response dynamics in improving directional sensitivity of auditory midbrain

neurons in reverberant environments. In reverberant environments, echoes interfere with

the direct sound wave arriving at a listener's ears, distorting the spatial cues for sound

localization. Because reverberation builds up over time, the source location is

represented relatively faithfully during the initial portion of a sound but this

representation becomes more degraded later in the stimulus. In Chapter 2-3, we showed



that the time course of directional sensitivity in reverberation for ITD-sensitive IC

neurons qualitatively parallels the dynamics of the ear-input signals. Furthermore, we

suggested that, to the extent that neural responses are onset-dominated (i.e., adapting), the

earlier (less-degraded) response will be emphasized, thus serving as a simple mechanism

for improving directional sensitivity in reverberation.

Here, we directly investigate the role of temporal response dynamics in sculpting

directional sensitivity of individual neurons in reverberation. Namely, we use a

conditioning paradigm to investigate the consequences of altering the acoustic context-

and hence the local temporal response dynamics-in which a reverberant stimulus

occurs. We tested the hypothesis that making a neuron less-onset dominated (i.e., by

reducing the change in firing rate over the duration of the stimulus) would degrade

directional sensitivity in reverberation. Consistent with our hypothesis, we find that

conditioning systematically alters directional sensitivity during the early response

segment (i.e., the response immediately following the conditioner). On the other hand,

our results suggest that there is not a simple relationship between temporal response

dynamics and directional sensitivity in reverberation measured over the entire stimulus

duration. These findings highlight the complexity of neural processing that takes place at

or below the level of the IC and underscore the difficulty in trying to develop simple

stimulus/rate response relations.



Methods

Surgical Preparation and Recording Procedures

Methods for recording from single neurons in the inferior colliculus (IC) of

unanesthetized Dutch-Belted rabbits, (Oryctolagus cuniculus) were as described in

Chapter 3.

Acoustic Stimuli

Anechoic and reverberant stimuli were synthesized using the anechoic and moderate

reverb digital filters described in Chapter 3. Virtual space stimuli were created by

convolving the digital filters with reproducible 400-ms broadband noise bursts.

We used two stimulus conditions to study directional sensitivity of single neurons

using the virtual space stimuli (Fig. 4.1). In the CONTROL condition, virtual space

stimuli were presented in a standard stimulus-silent interval paradigm, with 600-ms of

silence separating presentations of virtual space stimuli. In the CONTEXT condition, we

replaced the last 200-ms of silence preceding each virtual space stimulus by a

reproducible burst of dichotic broadband noises that were completely uncorrelated at the

two ears. The pair of uncorrelated noise bursts (presented to the left and right ears) were

created using a Gramm-Schmidt orthogonalization procedure (Culling et al., 2001). In a

subset of neurons tested, the virtual space probes in the CONTEXT condition were 200-

ms in duration (followed by 600 ms of silence).
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Figure 4.1 Conditioning stimulus
paradigm
In the CONTROL condition (top), the
virtual space stimulus is preceded by
silence, whereas in the CONTEXT
condition (bottom) the silent period is
replaced by a 200-ms burst of
broadband noise that is uncorrelated at
the two ears. In a subset of
experiments, the virtual space stimulus
in the CONTEXT condition was 200-
ms in duration, followed by 600-ms of
silence.

Experimental Procedures

The search stimulus consisted of 40-Hz sinusoidally amplitude-modulated broadband

noise bursts presented at a nominal level of 65 dB SPL. When a single unit was well

isolated, its characteristic frequency (CF) was determined using an automatic tracking

procedure (Kiang and Moxon, 1974). Acoustic threshold was determined using 200-ms

diotic broadband noise (2/sec x 4-10 repeats). Spontaneous rate was computed from the

spiking activity in a 100-ms silent period preceding each broadband noise presentation.

ITD-sensitivity was assessed using 200-ms broadband

presented at delays of ±2000ps in 200gs steps (2/sec x 10 trials).

ITD-sensitive if an analysis of variance for the distributions of

showed a significant main effect of ITD (at the level a=0.05).

Only ITD-sensitive units were studied using the virtual

responses were obtained for the four conditions

CONTROL/CONTEXT) in pseudorandom order. We typically

spacing) or, occasionally, 7 azimuths (300 spacing), randomized

noise bursts typically

A unit was considered

firing rates across 1TD

space stimuli. Neural

(anechoic/reverb and

used 13 azimuths (15'

on a trial by trial basis

(1/sec x 8-12 repeats). Stimuli were presented at 15-20 dB above threshold.



Data Analysis

Neural responses were discretized into 1-ms bins. We defined the neural response

latency for each neuron as the first time bin in the across-azimuth peristimulus time

histogram (PSTH) showing a deflection of greater than ±2 standard deviation from

spontaneous rate. A directional response function (DRF) for each room condition was

computed by averaging the number of spikes that occurred during a fixed window. A full

DRF was computed using a window starting at neural response latency, with length equal

to the duration of the virtual space stimulus4; an early DRF was computed using a

window starting at neural response latency, with length equal to 50-ms; and an ongoing

DRF was computed using a window that started 50-ms after neural response latency and

extended to the end of the virtual space stimulus. When analyzing response obtained in

the CONTEXT condition, the analysis window was shifted forward by 200-ms to avoid

including spikes elicited by the conditioner. DRFs were smoothed using a three point

triangular smoothing filter having weights [1/6, 2/3, 1/6].

Quantitative analysis of DRF was done using the same metrics described in

Chapter 2. Briefly, we computed a non-monotonicity index (NMI) to describe the shape

of each DRF. To quantify directional sensitivity in reverberation, we computed the

relative range for each DRF. To assess the differences in firing rate between CONTROL

and CONTEXT conditions, we computed a conditioned rate index as fONTEX- fCONROL

fCONTEXT + fCONTROL

where f denotes the across-azimuth average firing rate for a given stimulus condition.

4 In most experiments, the virtual space stimulus was 400-ms in duration; however, in earlier experiments
the duration of the virtual space stimulus was only 200-ms.



To assess changes in temporal response pattern during the virtual space stimulus

we computed the ratio of early to ongoing firing rates (E/O), defined as the ratio of

across-azimuth average firing rate obtained from the early (time 0-50 ms) and ongoing

(time 51-end) neural response epochs. Note that the E/O is computed only from activity

elicited by the virtual space stimulus in each condition, after adjusting for neural response

latency.



Results

In Chapter 2 we demonstrated that onset dominance in IC neural processing emphasizes

the earliest response periods to a reverberant stimulus, resulting in more robust

directional sensitivity than expected given the average acoustic degradation in the ear-

input signals. While the results of this study suggested a role for temporal response

dynamics in sculpting reverberant directional sensitivity, the hypothesis was not directly

tested. Here, we used a conditioning paradigm to investigate the effects of altering

temporal response dynamics on directional sensitivity in 24 neurons from the IC of 2

awake rabbits. These neurons are a subset of the larger population studied in Chapter 3.

Effect of stimulus context on anechoic directional rate responses

The stimulus conditions, along with dot rasters illustrating the anechoic data for three

neurons, are shown in Figure 4.2. In the CONTROL condition (Fig. 4.2, top row), neural

responses were obtained using a standard stimulus paradigm in which trials consist of a

virtual space stimulus preceded and followed by silence. In the CONTEXT condition

(Fig. 4.2, middle row), the 200ms of silence preceding each virtual space stimulus was

replaced by a conditioning stimulus consisting of uncorrelated broadband noise. Because

the instantaneous interaural phase of uncorrelated noise varies randomly across both time

and frequency, it is a spatially non-specific stimulus that can be likened to the

background noise resulting from multiple, simultaneous sources of sound.



r . .

c -. sr " . .

200 ,00 600 80 100

]200 400 600 800 1000

Peristimulus Time (ms)

CONTROL
C ... CONTEXT

f.

' r; ,.q(.:/.. ". ,.,;
. a ... . .. . 7.:r "

-'. :.. :L. .-.'.:,,..

200 400 600 800 1000

Peristimulus Time (ms)

:'::.' l?, "" .' '"

;.m~J ~i I " " "  "'::

Se - et

200 400 600 800 1000

F 71~: r:r;FWL ~P ~:'?...:
:' ! ~. ... ..:: :/..

..' ": :.. . .

,"SI ..

200 400 600 800 1000

Peristimulus Time (ms)

* f
ft

ft f
ft -ft

0 5 251 0 
-90 -45 0 45 90 -90 45 4 90 -90 -45 0 45 90

Azimuth (0) Azimuth (0)
Figure 4.2 Directional responses in CONTROL and CONTEXT conditions
Representative data collected from 3 ITD-sensitive IC neurons; each column represents one neuron. Top
row, Dot rasters illustrating activity measured anechoic CONTROL stimulus. Middle row, Dot rasters
illustrating activity measured using the anechoic CONTEXT stimulus. Bottom row, Directional response
functions (DRF) computed from the activity during the full virtual space stimulus (top and middle rows,
black bars) in both CONTROL (solid lines) and CONTEXT (dashed lines) conditions.

To demonstrate that the uncorrelated noise conditioner systematically alters

temporal response patterns (and hence the distribution of spiking activity over the

duration of the stimulus), we computed the ratio of early to ongoing firing rates (E/O, see

Methods). An E/O of one indicates that the firing rate is similar throughout the duration

of the stimulus and an E/O greater than one indicates the firing rate is higher near the

onset of the stimulus. Figure 4.3A shows a scatter plot of E/O obtained in the

90



CONTEXT condition versus the CONTROL E/O. The different symbols denote the

duration of the virtual space probe in the CONTEXT condition, which determined the

duration of the ongoing analysis window (see Methods). Because the effects of noise

conditioning were similar for data sets analyzed using a 200-ms and 400-ms analysis

window, we combined all of the data for the sake of statistical analysis. However, in all

of the figures, we distinguish between the two data sets using different symbols (200-ms:

filled symbols; 400-ms: open symbols).

In a majority of cells (17 out of 24), the CONTROL E/O is greater than one,

indicating temporal response patterns are typically somewhat onset dominated, whereas

in the CONTEXT condition E/Os are clustered around one, indicating sustained temporal

response patterns. The change in E/O (AE/O) is highly correlated with the CONTROL

E/O (Fig. 4.3B; r=-0.982, p<le-4), consistent with the fact that noise conditioning tends

to drive all E/Os toward one. Inspecting the dot rasters in the top and middle rows of

Figure 4.2, it is apparent that the conditioner has the biggest influence on the neural

response during early segment (e.g., first 50 ms) of the virtual space stimulus, whereas

the response pattern during the ongoing segment is similar in CONTROL and CONTEXT

conditions. These results suggest that the general effect of noise conditioning is to

"adapt" the neural response into a steady state and therefore alter the temporal response

pattern during the virtual space stimulus.
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Figure 4.3 Conditioning systematically alters temporal response patterns.
A, Ratio of early to ongoing firing rates (E/O) obtained in CONTEXT condition versus CONTROL E/O.
The different symbols denote the duration of the virtual space probe in the CONTEXT condition (filled
symbols, 200ms; open symbols, 400 ms). B, AE/O-difference in E/O between CONTEXT and
CONTROL conditions versus CONTROL E/O. The two measures are inversely correlated (r=-0.982,
p<0 .0 0 1).

To assess the effects of noise conditioning on directional sensitivity, we computed

directional response functions (DRF) for each condition by counting the number of spikes

that occurred during the virtual space stimulus, after adjusting for latency (see Methods).

The bottom row of Figure 4.2 illustrates anechoic DRF obtained under CONTROL (solid

line) and CONTEXT (dashed line) stimulus conditions. The firing rate elicited by the

conditioner is depicted by the small 'c' at the left of each panel; spontaneous firing rate is

denoted by the 's'. The conditioner reliably elicits activity from every neuron in our

sample. On average, the firing rate for the noise conditioner is 62.4% (±38.1%) of the

maximum firing rate observed in the CONTOL DRF.

In general, the overall shape of the DRFs was similar for both conditions (Fig.

4.2, bottom row). We quantified the shape of each DRF by computing a non-

monotonicity index (NMI). The NMIs in CONTROL and CONTEXT conditions are

highly correlated (data not shown, r=0.918, p<le-4) and the difference is not significantly



different from zero (paired t-test, p=0.24), indicating that the noise conditioner does not

significantly alter long-term directional tuning, per se.

The principle differences between the CONTROL and CONTEXT DRFs consist

of stretching/shrinking in addition to absolute shifts along the ordinate. We hypothesized

that the effect of noise conditioning on DRF firing rates would be related to the degree of

onset dominance in CONTROL temporal response patterns. That is, we reasoned that

onset dominated units would exhibit decreases in firing rate after noise conditioning,

whereas conditioning should have little effect on the firing rate in units with more

sustained response patterns.

The data in Figure 4.2-4.3 illustrate how changes in E/O are related to changes in

the DRF firing rates. The unit in the leftmost column of Figure 4.2 has an adapting

temporal response pattern in the CONTROL condition (Fig. 4.2, top row), and hence a

large E/O. Noise conditioning adapts the response to a steady state (Fig. 4.2, middle

row), so that the E/O is close to one in the CONTEXT condition. As a result of the rate

adaptation, the firing rate decreases at all azimuths (Fig. 2, bottom row).

The unit in second column of Figure 4.2 has a more sustained temporal response

pattern in the CONTROL condition (Fig. 4.2, top row) and therefore an E/O close to one

in both CONTROL and CONTEXT conditions. The conditioner causes little rate

adaptation and hence the firing rates are similar in CONTROL and CONTEXT

conditions (Fig. 4.2, bottom row).

The unit in third column in Figure 4.2 illustrates one of the few neurons with an

E/O less than one in the CONTROL condition. This unit has a pause/buildup type

response pattern in the CONTROL condition, consisting of an onset spike followed by a



gradual buildup in activity after a brief pause. In the CONTEXT condition, the firing rate

builds up during the noise conditioner so that response during the virtual space stimulus

is sustained. Hence, the E/O is closer to one and the overall firing rates are higher (Fig.

4.2, bottom row).

To explicitly examine the relationship between temporal response pattern and

changes in DRF firing rate across the population, we defined a conditioned rate index

(see Methods), which varies between ±1, where negative numbers indicate that the

average firing rate is smaller in the CONTEXT condition as compared to the CONTROL

condition. Figure 4.4 shows the conditioned rate index computed from both the early

(panel A) and the ongoing (panel B) response segments, plotted as a function of the

CONTROL E/O. As expected, the conditioned rate index for the early response is

inversely correlated with CONTROL E/O (r=-0.83, p<le-4 such that it is positive for

units with buildup-type response patterns (E/O < 1) and negative for units with onset-

dominated response patterns (E/O > 1). The conditioned rate index exhibits a weaker

inverse correlation with the ongoing conditioned rate index (r=-0.573, p=0.003).

Moreover, the magnitude of the conditioned rate index is smaller for the ongoing

response as compared to the early response segment, indicating that the effects of

conditioning decay with increasing separation between the conditioning stimulus and the

analysis window.
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Figure 4.4 Effect of conditioning on
average firing rate.
A, Conditioned rate index computed
from the early response segment
versus CONTROL E/O across IC
neuron population. The two metrics
are inversely correlated (r=-0.83,
p<le-4). The different symbols are as
in Figures 4.3. B, Conditioned rate
index computed from the ongoing
response segment versus CONTROL
E/O across the IC neuron population.
The two metrics are inversely
correlated (r=-0.573, p=0.003).

To examine the time course of conditioning, we computed the conditioned rate

index in 50-ms windows, starting at the onset of the virtual space stimulus. Figure 4.5

shows line plots of the conditioned rate index as a function of analysis time interval for

each of the neurons in our population. The biggest effects of conditioning are seen in the

50-ms response interval immediately following the conditioner, although the fact that the

conditioned rate index does not always approach zero suggestions that conditioning can

have long-term effects.
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Effects of noise conditioning on directional sensitivity in reverberation

Having established that noise conditioning causes systematic changes in neural rate

responses, we next examined the effect of noise conditioning on directional sensitivity in

reverberation.

Figure 4.6 shows anechoic (black lines) and reverberant DRF (gray lines)

obtained from two IC neurons (same neurons as in left and middle columns Fig. 4.2) in

both CONTROL (solid lines) and CONTEXT (gray lines) conditions. The top panels

show DRF computed from the early response epoch (time 0-50 ms) whereas the bottom

panels show DRF computed from the full response. The overall effects of noise

conditioning on reverberant DRF are largely consistent with the changes observed for

anechoic DRF. In the more onset-dominated unit (Fig. 4.6A), noise conditioning leads to

decreased firing rates across azimuths (Fig. 4.6A), whereas in the sustained unit (Fig.

4.6B) noise conditioning has only minimal effects on the overall firing rate (compare

dashed and solid lines).
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Figure 4.6 Anechoic and reverberant directional responses in CONTROL and CONTEXT conditions
Anechoic (black lines) and reverberant (gray lines) DRF obtained under CONTROL (solid lines) and
CONTEXT (dashed lines) conditions for two IC neurons. The top row shows DRF computed from the
early response epoch, whereas the bottom row shows DRF computed from the full neural response during
the virtual space stimulus.

As demonstrated in previous Chapters and illustrated by the data in Figure 4.5),

reverberation causes compression of DRF, although directional sensitivity is generally

better during the early stimulus epoch and degrades as reverberation builds up over time.

We quantified directional sensitivity in reverberation by computing the relative range of

firing rates for reverberant DRF (see Methods) 5. Consistent with the buildup of

reverberation in the acoustic inputs, the relative range computed from the early response

epoch is significantly larger than the relative range computed from the ongoing stimulus

epoch in both the CONTROL (paired t-test, p=0.011) and CONTEXT (paired t-test,

5 The relative range is an attractive measure for quantifying directional sensitivity after conditioning,
because it is insensitive to both multiplicative and additive changes in the neural response rate that occur
after conditioning [see e.g., Litovsky and Delgutte (2002)].



p=0.009) conditions6 . Moreover, in the CONTROL condition, directional sensitivity

during the early response segment is correlated with E/O (data not shown, r=0.44,

p=0.031), suggesting that neurons that fire more vigorously near the onset of a stimulus

(i.e., onset-dominated units) are better able to signal source directional near the

uncorrupted onset. Directional sensitivity during the ongoing response segment is not

systematically related to E/O (p=0.33).

We hypothesized that by altering temporal response patterns with the conditioner,

we would observe systematic changes in directional sensitivity in reverberation. Namely,

we predicted that neurons that are highly onset dominated in the CONTROL condition

would show worse directional sensitivity in the CONTEXT condition whereas units with

buildup-type temporal response patterns would show improved directional sensitivity in

reverberation after conditioning. Owing to the fact that conditioning has the most

prominent effects on neural activity during the early response segment, we expected to

observe stronger effects of conditioning during the early neural response segment.

We quantified the differences in overall directional sensitivity in reverberation by

computing the difference in relative range (ARR) between CONTEXT and CONTROL

conditions for both early and full response segments. Figure 4.7A shows ARR computed

from the early response segment versus CONTROL E/O, where negative values along the

ordinate indicate that directional sensitivity in reverberation is worse in the CONTEXT

condition than in the CONTROL condition. Consistent with our hypothesis, ARR is

inversely correlated with CONTROL E/O (r=-0.679, p<0.001), such that units with more

onset dominated response patterns exhibit worse directional sensitivity after conditioning

6 As in previous Chapters, this analysis excluded units that exhibited non-directional early responses
(CONTROL, I unit excluded; CONTEXT, I unit excluded).



whereas units with buildup-type response patterns show better directional sensitivity in

reverberation after conditioning.
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Figure 4.7 Effects of conditioning on directional sensitivity in reverberation
ARR-difference in relative range between CONTEXT and CONTROL conditions-versus CONTROL
E/O across the IC neuron population for A, early response epoch, B, ongoing response epoch, and C, full
response epoch. The different symbols are as in Figure 4.3.

On the other hand, there is not a systematic relationship between ARR and

directional sensitivity measured during the ongoing neural response epoch (Fig. 4.7B,

p=0.89). This result is not unexpected, considering that conditioning has milder effects

on the ongoing neural response (e.g., Fig. 4.4-4.5), although the fact that ARR is not zero

suggests that the conditioner has some influence on the neuronal response to the ongoing

reverberant stimulus.

As a result of these essentially random effects of conditioning on ongoing

directional sensitivity in reverberation (with respect to CONTROL E/O), when averaged

over the full duration of the stimulus, the relationship between E/O and ARR just misses

significance (Fig. 4.7C, r=0.369, p=0.076). Together, these results suggest that, contrary

to our hypothesis, simply accounting for changes in neural response dynamics over the



full duration of the stimulus is not sufficient to predict changes in directional sensitivity

in reverberation.
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Discussion

Effect of conditioning on directional rate responses

We used a noise conditioning paradigm to study the role of temporal response dynamics

in sculpting directional sensitivity in reverberation. By preceding virtual space stimuli

with a broadband noise conditioner (Fig. 4.1), we were able to systematically manipulate

temporal response patterns and rate responses during the virtual space stimuli (Fig. 4.3-

4.4).

Consistent with previous studies of context sensitivity in the auditory midbrain,

our results indicate that conditioning alters neural rate responses to virtual space stimuli

(Fitzpatrick et al., 1999; Litovsky and Delgutte, 2002; Litovsky and Yin, 1998; Pecka et

al., 2007; Spitzer et al., 2004; Tollin et al., 2004). In general, the changes in average

firing rate after noise conditioning can largely be predicted from a neurons initial

temporal response pattern (Fig. 4.4). Namely, neurons that were onset-dominated in the

CONTROL condition exhibited decreased firing rates after conditioning, whereas

neurons with more sustained response patterns exhibited only minor changes in firing rate

after conditioning. The effects of conditioning were stronger when the analysis window

was restricted to the early response segment (Fig. 4.4), indicating that the effects of

conditioning are somewhat localized in time (Fig. 4.5). The reduced effect of

conditioning on ongoing neural responses is not surprising, considering that the ongoing

response is essentially in steady-state even in the CONTROL condition. However,

despite the fact that the magnitude of the effect was reduced, the conditioner did cause

long-term changes in firing rate for a substantial number neurons (Fig. 4.4B).
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Role of response dynamics in mediating directional sensitivity in reverberation

By using the conditioning stimulus to systematically alter temporal response dynamics,

we directly tested the hypothesis that onset dominance in temporal response patterns

improves directional sensitivity in reverberation. Our results demonstrate that this simple

relationship holds only during the early response segment (Fig. 4.6A), where

conditioning has the strongest effects, but not when directional responses are averaged

over the entire stimulus duration (Fig. 4.6B). These results suggest that accounting for

changes in temporal response patterns alone is not sufficient to predict changes in

directional sensitivity in reverberation.

The systematic effect of conditioning on early directional sensitivity in

reverberation is intuitively related to spiking dynamics associated with onset-dominated

versus buildup-type units. Onset-dominated cells fire vigorously near the onset of a

stimulus; thus the uncorrupted onset of a reverberant stimulus evokes a strong response

from onset-dominated cells whereas it evokes a much weaker response, if any, from

buildup-type cells. On the other hand, after conditioning, both onset-dominated and

buildup-type cells have been driven into a steady-state regime where they are capable of

responding throughout the duration of the reverberant stimulus. Lacking the vigorous

onset response after conditioning, we therefore expected directional sensitivity in

reverberation to become worse in onset-dominated units. The opposite logic applies to

buildup-type cells.

As explained in Chapter 2, directional sensitivity measured over the full duration

of stimulus is determined by the relative contribution of the early and ongoing neural
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responses. The present results showed that the conditioner causes systematic changes in

the early directional sensitivity (Fig. 4.7A) but essentially random changes in ongoing

directional sensitivity. In light of this finding, it is not surprising that we find such a

weak relationship between overall directional sensitivity in reverberation and temporal

response dynamics (Fig. 4.7C).

Nevertheless, despite the fact that the results suggest overall changes in directional

sensitivity are not significantly correlated with temporal response dynamics (Fig. 4.7C), a

majority of the onset dominated neurons (i.e., E/O>>I) did indeed show worse

directional sensitivity after noise conditioning, as predicted. In support of this finding,

Schwartz et al. (2009) recently demonstrated that spike rate adaptation-one of the

possible mechanisms underlying onset dominance in the IC-can improve directional

information extracted from auditory nerve spike trains across time.

Long-term changes in neural response rate after conditioning

While the present results suggest that conditioning causes systematic changes in the early

response to a reverberant stimulus (Fig. 4.7A), we also found that conditioning causes

changes in the ongoing directional sensitivity that are not immediately related to changes

in temporal response dynamics. In general, the neural mechanisms underlying "context

sensitive" changes in auditory midbrain rate responses are numerous, and include

changes in the dynamics of excitation as well as inhibition (Finlayson and Adam, 1997;

Kuwada et al., 1989; Litovsky and Delgutte, 2002; McAlpine and Palmer, 2002; Pecka et

al., 2007; Sanes et al., 1998). The uncorrelated conditioning stimulus used in the present

study might differentially activate and adapt each of the various sources of synaptic input

to ITD-sensitive IC neurons, which may affect the long-term balance of excitation and
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inhibition sculpting neural responses (D'Angelo et al., 2005; Ingham and McAlpine,

2005; Kuwada et al., 1989; Le Beau et al., 1996; McAlpine and Palmer, 2002; Pecka et

al., 2007; Tan and Borst, 2007; Xie et al., 2007). Because reverberant stimuli are

dynamic, i.e., the binaural cues are rapidly varying over time (Ihlefeld and Shinn-

Cunningham, 2004; Shinn-Cunningham and Kawakyu, 2003), there is an additional level

of interaction between short-term binaural cues and changes in the underlying spiking

dynamics. In general, the present findings highlight the notion that the processing of

ongoing dynamic stimuli (such as reverberation) in the auditory midbrain is complex and

likely involves multiple sources of synaptic input. Nevertheless, our findings confirm

that onset-dominance in temporal response patterns can improve directional sensitivity in

reverberation, particularly during the early portion of the reverberant stimulus.
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CHAPTER 5

Effects of reverberation on directional sensitivity across the
tonotopic axis in the awake rabbit IC

Portions of this chapter will appear in the proceedings of the 15 th International
Symposium on Hearing:

Devore, S., A. Schwartz, and B. Delgutte (2009). Effects of reverberation on directional
sensitivity of auditory neurons: peripheral and central factors. Proc. of the International
Symposium on Hearing, Salamanca, Spain, 1-5 June.

Abstract

In reverberant environments, acoustic reflections interfere with the direct sound arriving
at a listener's ears, distorting the binaural cues for sound localization. We investigated
the effects of reverberation on the directional rate responses of single units in the inferior
colliculus (IC) of unanesthetized rabbits, focusing on neurons exhibiting sensitivity to
interaural time differences (ITD). Our results demonstrate that reverberation degrades
the directional sensitivity of single neurons, although the amount of degradation depends
on the characteristic frequency (CF) and the type of binaural cues available. When ITD
is the only available directional cue, low-CF cells sensitive to ITD in fine-time structure
maintain better directional sensitivity in reverberation than high-CF cells sensitive to ITD
in the cochlea-induced envelope. Using recordings from primary auditory neurons, we
show that this result can be attributed to the fact that reverberation degrades the
directional information in interaural envelopes more so than in the fine time structure.
On the other hand, when both ITD and interaural level difference (ILD) cues are
available, directional sensitivity is comparable throughout the tonotopic axis, suggesting
that, at high frequencies, ILDs provide better directional information than envelope ITDs
in reverberation. These results are consistent with human psychophysical studies of
sound localization in reverberant environments.
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Introduction

Indoors and in nature alike, the auditory scenes that we perceive unfold in reverberant

environments. In a reverberant sound field, reflected acoustic waves reach the listener

from all directions, interfering with the direct sound at a listener's ears and distorting the

binaural cues for sound localization such as interaural time and level differences

(ITD/ILD). In previous work (Chapter 2-3), we demonstrated that reverberation degrades

the directional sensitivity of low-frequency ITD-sensitive neurons in the auditory

midbrain. Here, we extend that work by characterizing directional sensitivity in neurons

across a much wider range of the tonotopic axis, maintaining our focus on neurons that

are sensitive to ITD.

Neural sensitivity to ITD emerges in two distinct circuits in the superior olivary

complex (SOC), the primary site of binaural interaction in the auditory brainstem (Caird

and Klinke, 1983; Goldberg and Brown, 1969; Joris and Yin, 1995; Yin and Chan, 1990).

Principle cells in the medial superior olive (MSO) detect coincidences in convergent

excitatory inputs from the cochlear nucleus on both sides of the head (Goldberg and

Brown, 1969; Yin and Chan, 1990). MSO neurons typically show "peak-type" tuning to

ITD i.e., the firing rate versus ITD functions at different tonal stimulation frequencies

tend to align at their peaks (Batra et al., 1997a; Yin and Chan, 1990). Neurons in the

lateral superior olive (LSO) receive convergent excitatory input from the ipsilateral

cochlear nucleus and inhibitory input from the contralateral cochlear nucleus via the

medial nucleus of the trapezoid body. A considerable fraction of neurons in the lateral

superior olive (LSO) are sensitive to ITD (Batra et al., 1997a; Joris and Yin, 1995; Tollin

and Yin, 2005), although the subtractive circuits in the LSO are classically associated
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with generating neural sensitivity to ILD (Boudreau and Tsuchitani, 1968). Typically,

rate versus ITD functions for LSO neurons at different frequencies align at a common

minima, so that LSO neurons are classified as "trough type". In practice, ITD-tuning

types are not completely segregated in the brainstem. Batra et al. (Batra et al., 1997a)

reported peak-type neurons in the vicinity of the LSO and trough-type neurons in the

vicinity of the MSO, although such occurrences were uncommon.

The inferior colliculus (IC), the primary nucleus comprising the auditory

midbrain, is an obligatory synaptic station for ascending inputs to the thalamus and

auditory cortex (Adams, 1979) and, as such, it receives excitatory and inhibitory

projections from nearly all nuclei in the auditory brainstem (Aitkin and Schuck, 1985;

Oliver et al., 1995; Osen, 1972). Many neurons in the IC are sensitive to ITD, consistent

with direct inputs from the MSO and LSO (Kuwada et al., 1987; Kuwada and Yin, 1983;

Rose et al., 1966; Yin et al., 1986), although the binary classification of IC neurons as

showing "peak" and "trough" type ITD-tuning is overly simplistic. IC neurons exhibit

ITD-tuning along a continuum from "peak" to "trough", with many neurons showing

alignment of rate versus ITD functions for different stimulation frequencies at an

intermediate point between the peak and trough (Fitzpatrick et al., 2000; Fitzpatrick et al.,

2002). Although "intermediate type" neurons have been located in the brainstem (Batra

et al., 1997a), an alternative proposition is that "intermediate type" neurons are created

locally by convergent inputs from MSO and LSO neurons onto the same IC cell (Agapiou

and McAlpine, 2008; Fitzpatrick et al., 2002; McAlpine et al., 1998). Moreover,

convergent brainstem inputs can also account for the fact that a fair number of IC neurons
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do not exhibit an orderly alignment of rate ITD curves across frequency (McAlpine et al.,

1998).

At low CFs, IC neurons are typically sensitive to ITD in stimulus fine structure

while at high CFs, IC neurons are sensitive to ITD in envelopes (Batra et al., 1993;

Griffin et al., 2005; Joris, 2003; Yin et al., 1984). At all characteristic frequencies (CFs),

the rate response of ITD-sensitive IC neurons can altered by imposing ILDs (Batra et al.,

1993; Caird and Klinke, 1987; Palmer et al., 2007), although for stimuli with naturally

co-occurring binaural cues, ILD may be a more potent directional cue than envelope

ITDs in high frequency neurons (Delgutte et al., 1995).

Few studies have systematically investigated ITD sensitivity across a wide range of

frequencies (Caird and Klinke, 1987; Fitzpatrick et al., 2002; Joris, 2003) and, to the best

of our knowledge, none of these has explicitly examined the influence of ILD that covary

with ITD. Here, we use virtual auditory space (VAS) simulation techniques to

characterize the effects of reverberation on the directional sensitivity of ITD-sensitive

neurons in the IC of unanesthetized rabbits. We find that reverberation degrades the

directional sensitivity of single neurons, although the amount of degradation depends on

the characteristic frequency (CF), ITD tuning type, and the types of binaural cues

available. To elucidate the role of peripheral auditory processing, we compare results

from IC neurons with measures of directional information extracted from coincidence

analysis of spike trains recorded from auditory nerve (AN) fibers in anesthetized cats.
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Methods

Surgical Preparation and Recording Procedures

Methods for recording from single neurons in the inferior colliculus (IC) of

unanesthetized Dutch-Belted rabbits, (Oryctolagus cuniculus) were as described in

Chapter 3. All procedures were approved by the animal care and use committees of both

the Massachusetts Eye and Ear Infirmary the Massachusetts Institute of Technology.

Virtual Space Stimuli

Two sets of binaural room impulse responses (BRIRs) were simulated using the room-

image method (Allen and Berkley, 1979; Shinn-Cunningham et al., 2001) for a pair of

receivers separated by 12 cm in the center of a virtual room measuring 11 x13x3 meters.

The inter-receiver distance was chosen to ensure that the range of interaural time

differences measured for the BRIRs covered the naturally occurring range of ITD

typically encountered by rabbits [+/-360 pts; (Bishop et al., 2009)]. BRIRs were

calculated for azimuths spanning the frontal hemifield (-90 to 900) at a distance of 1

meter with respect to the midpoint of the receivers. Anechoic impulse responses were

created by time-windowing the direct wavefront from the reverberant BRIRs. In one set

of BRIRs (ITD-only), we did not include a model of the head in the simulations, so that

the resulting BRIRs contained ITD but essentially no ILD cues. In the second set of

BRIRs (ITD+ILD), we modeled the head as a rigid sphere with a radius of 6 cm, so that

the BRIRs contained both ITD and ILD cues. Figures 5.1-5.2 shows 3-D surface plots of

ITD and ILD as a function of frequency and stimulus azimuth for anechoic and

reverberant BRIR in both ITD-only and ITD+ILD conditions. For the anechoic ITD-only
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stimuli (Fig. 5.1, upper left), ITD is identical across frequency channels. An undesirable,

albeit minor, consequence of introducing the spherical head is that ITDs become

moderately larger in the ITD+ILD stimuli (Figure 5.1, upper right), particularly in the

lower frequency channels. In general, reverberation does not profoundly affect ITD (Fig.

5.1, bottom row), although the magnitude of ITD is somewhat smaller in the lowest

frequency channels. For ITD+ILD stimuli, the magnitude of ILD increases both with

increasing CF and lateral position of the sound source (Fig. 5.2, upper right). In general,

reverberation reduces the overall magnitude of ILD (Fig. 5.3 lower right), although the

overall pattern of ILD across frequency and azimuths is similar the anechoic condition.

An additional consequence of introducing the spherical head to the simulations

was that there were intensity differences between ITD-only and ITD+ILD. We wanted to

preserve the intensity differences that resulted from ILD, but remove the mean level

difference, so that the two sets of BRIR had equal intensity for a source at 0O. Separately

for the left and right ears, we determined the scaling factor that resulted in equal-intensity

anechoic ITD-only and ITD+ILD at 0O. We defined an overall scaling factor as the

average across the two ears, although in practice the scaling factors for the two ears were

essentially identical. Each left/right and anechoic/reverberant ITD+ILD BRIR was

multiplied by this scaling factor, removing the mean level difference at 0' but preserving

ILDs.

Additional sets of ITD-only BRIR were created at different distances (0.5 and 3

meters) between source and receiver. Altering the distance between source and receiver

scales the intensity of the direct wavefront. We scaled each set of BRIRs so that they had

the same direct-wavefront intensity (averaged across azimuths) as the I m BRIRs. Each
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ITD-only BRIR was characterized by the ratio of direct to reverberant energies (D/R)

averaged across azimuths. Because ITD-only stimuli do not contain ILD, the D/R is

similar across azimuths. Thus, we defined an overall D/R for each set of ITD-only BRIR

by averaging across azimuths (average D/R = 0.5m: +10 dB, Im: 0 dB, 3m: -9 dB).

Virtual space stimuli were created by convolving the normalized BRIRs with

reproducible 400-ms broadband noise bursts.
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Figure 5.1 Analysis of binaural cues for virtual space stimuli: ITD
ITD as a function of frequency and virtual source azimuth for the four sets of virtual space stimuli used in
the present experiments. ITD is estimated as the delay corresponding to the peak of narrowband (1/3-
octave) interaural cross-correlation functions. Positive ITDs indicate that the signal at the contralateral ear
is leading.
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Figure 5.2 Analysis of binaural cues in virtual space stimuli: ILD
ILD computed in 1/3-octave bands as a function of filter center frequency and virtual source azimuth for
the four sets of virtual space stimuli used in the present experiments. Positive ILDs indicate that the
stimulus is more intense at the contralateral ear.

Experimental Procedures

Sound stimuli were generated by a 24-bit D/A converter (National Instruments NIDAC

4461) at a sampling rate of 50kHz and digitally filtered to compensate for the transfer

function of the acoustic assemblies. The acoustic assemblies consisted of a pair of

Beyer-Dynamic (DT-48) speakers attached to sound tubes running through the custom-

fitted ear molds. A probe-tube microphone (Etymotic ER-7C), sealed inside the sound

delivery tube, measured acoustic pressure at the end of the sound tube. At the start of
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each recording session, we determined the system transfer functions using a chirp

stimulus and generated digital compensation filters.

The search stimulus consisted of 40-Hz sinusoidally amplitude-modulated

broadband noise bursts presented at a nominal level of 65 dB SPL. When a single unit

was well isolated, its characteristic frequency (CF) was determined using an automatic

tracking procedure (Kiang and Moxon, 1974). In earlier experiments, we determined CF

by presenting a series of tone pips of different frequencies near threshold. Acoustic

threshold was determined using diotic (and sometimes contralateral) broadband noise.

Characterization of ITD and ILD Sensitivity

Homophasic noise delay functions (NDFs) were measured using 200-ms broadband

diotic noise bursts presented at delays of ±2000ts in 200ps steps. A unit was considered

ITD-sensitive if an analysis of variance computed for the distribution of firing rates

across ITD showed a significant effect of ITD (at the level a=0.05). In many neurons, we

also obtained antiphasic NDFs using a similar procedure, but with the noise waveform

inverted at one ear. Best ITD was defined as the ITD corresponding to the maximum

response in the homophasic NDF. In a subset of neurons, we determined rate responses

at best ITD as a function of the interaural cross-correlation (IACC) coefficient. We used

a Gramm-Schmidt orthogonalization procedure (Culling et al., 2001) to create a pairs of

400-ms noise bursts with prescribed IACC coefficients between ±1. In all measurements,

the independent variable (ITD, IACC coefficient) was randomly varied from trial to trial

and we obtained at least 5 (but typically 8) repeats for each value of ITD/IACC

coefficient.
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ILD sensitivity was assessed using 200-ms broadband noise bursts with the same

waveform at the two ears by simultaneously increasing the intensity at the contralateral

ear by +ILD/2 and decreasing the intensity at the ipsilateral ear by -ILD/2, keeping the

average binaural level constant. In a subset of neurons, we also characterized ILD

sensitivity using 200-ms statistically uncorrelated (dichotic) noise bursts.

Characterization of Directional Sensitivity

In general, only ITD-sensitive units were studied using the virtual space stimuli, although

we also characterized directional sensitivity in a small number of cells sensitive to ILD

but not ITD (n= 15).

Directional responses were obtained for each virtual room condition (anechoic,

reverberant) and BRIR type (ITD-only, ITD+ILD) in pseudorandom order, although in

earlier recording sessions we exclusively studied responses using BRIRitd. We typically

used 13 azimuths (15' spacing) or, occasionally, 7 azimuths (30' spacing), randomized on

a trial by trial basis. We obtained at least 8 presentations of the stimulus at each azimuth.

Stimuli were presented at 15-20 dB above broadband noise threshold. Time permitting,

we characterized directional sensitivity using BRIRitd with different D/Rs.

Data Analysis

Units were classified as peak, trough, or intermediate according to the shape of the

homophasic NDF. To do so, we determined the three local extrema nearest 0 ts (Fig.

5.5, numbered labels). Units were first classified as either peak or trough depending on

whether the middle critical point (Fig. 5.5, '2') was a local maxima (peak) or minima

abs(R - R,)(trough). Next, we computed an asymmetry ratio, abs(R , where
abs(R2 1) + abs(R 2 - R, )
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R1, R2, and R3 are the firing rates at the three critical points. If the asymmetry index

exceeded 0.5, the unit was relabeled as intermediate, otherwise it remained in the peak or

trough shape class. Example NDFs from each of the three ITD tuning shape classes can

be seen in Figure 5.5.

A directional response function (DRF) for each room condition was computed by

averaging the number of spikes that occurred in a 400-ms window after stimulus onset

across all trials for each azimuth. DRFs were smoothed across azimuths using a three

point triangular smoothing filter having weights [1/6,2/3,1/6]. The absolute range of a

DRF was computed as max(r)-min(r), where r is the vector of firing rates across

azimuths. We also computed the relative range, which is the range of firing rates for a

DRF expressed as a fraction of the range of that unit's anechoic DRF. The relative range

is one (by definition) for an anechoic DRF.

For conditions in which we obtained a large number of trials (>10), we quantified

neural sensitivity to azimuth by estimating the mutual information (MI) between the

stimulus azimuth s and neural response rate r (or, equivalently, spike count) as

MI = p(s, r) log( p(s, r) ), where p(s) is the probability distribution of source
seS reR p(s)p(r)

azimuths (assumed to be uniform), p(r) is the distribution of spike counts combined

across azimuths, and p(s, r) is the joint distribution of stimulus azimuth and spike count

(Cover and Thomas, 1991). We used a bootstrap resampling method (Chase and Young,

2005) to correct for biases in our estimates of MI due to small sample sizes. Information

transfer was defined as the debiased MI expressed as a percentage of the entropy of the

stimulus distribution.

115



Results

We studied the effects of reverberation on the directional rate responses of single units in

the IC of awake rabbits, focusing on neurons sensitive to ITD in broadband noise. Our

aim was two-fold: first, to characterize the effects of reverberation on neural sensitivity to

ITD across the tonotopic axis and second, to elucidate the influence of ILD on

reverberant directional sensitivity. The results are presented in three sections: (1)

characterization of basic ITD-sensitivity, (2) effects of reverberation on ITD sensitivity,

and (3) effects of reverberation on directional sensitivity.

Basic ITD Sensitivity

We measured broadband noise-delay curves in 791 neurons in the inferior colliculi (n=6)

of awake rabbits (n=4). A large fraction (60%) of the neurons we encountered were

sensitive to ITD (475/791 neurons). However, this number may not be representative of

the entire nucleus, as we approached the IC dorsally, resulting in a bias towards units

with lower CFs. We obtained sufficient data to quantify directional sensitivity in 222 of

the 475 ITD-sensitive IC neurons. The characteristic frequencies (CF) for this sample of

ITD-sensitive neurons spanned 255-9600 Hz, with 52% (115/222) having CFs below 2

kHz.

Sensitivity to ITD in fine time structure versus envelope
Similar to results from anesthetized cat (Joris, 2003), we find that low-CF neurons are

primarily sensitive to ITD in the fine time structure of the noise (ITDf), while high-CF

neurons are sensitive to ITD in the envelope induced by cochlear filtering (ITDenv).

ITDfs- and ITDenv-sensitivity were distinguished by comparing noise delay functions
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obtained with homophasic and antiphasic noise (Fig. 5.3A-C). Inverting the stimulus at

one ear causes a 1800 phase shift in fine time structure but does not alter the envelope.

Thus in ITDf&-sensitive cells (Fig. 5.3A), noise delay functions for A/A- stimuli show

peaks and valleys that interleave with those of noise delay functions obtained with A/A

stimuli, while the two noise delay functions are similar in ITDenv-sensitive cells (Fig.

5.3C). Both noise polarity-inverting and polarity-tolerant components can be seen in the

noise delay functions of neurons with intermediate CFs, which are sensitive to a mixture

of ITDfs and ITD,,n (Fig. 5.3B). Figure 4A shows the correlation coefficient between

noise delay functions obtained with homophasic and antiphasic noise as a function of CF,

demonstrating the transition from ITDfs to ITDenv over a range of CFs -0.8-2 kHz,

consistent with Joris' (2003) results in anesthetized cat.

ITDf,- and ITDenv-sensitivity can alternatively be distinguished by examining the

asymmetry in rate response as a function of interaural correlation (IACC) for interaurally

decorrelated noise pairs at the best delay (ITD corresponding to maximum firing rate in

homophasic noise delay function). ITDfs-sensitive cells (Fig. 5.3D) generally have

asymmetric, monotonic rate-IACC curves that decrease as the interaural correlation

coefficient is lowered from +1 (perfectly correlated) to -1 (anticorrelated), while in

ITD,,,nv-sensitive cells (Fig. 5.3F) the rate-IACC curve is non-monotonic and symmetric

about an IACC of 0 (uncorrelated). Neurons with intermediate CFs that show a mixture

of ITDf,- and ITDenv have nonmonotonic but asymmetric rate-IACC curves (Fig. 5.3E).
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Figure 5.3 Noise delay functions across the tonotopic axis
A-C, Homophasic (black line) and antiphasic (gray line) noise delay functions for three IC neurons with CFs
of A, 642 Hz, B, 1250 Hz , and C, 3427 Hz. D-F, Firing rate as a function of stimulus interaural correlation
for the same three neurons in panels A-C. In all panels, spontaneous rate is indicated by the symbol at the
left of each panel.

We quantified the shape of the rate-interaural correlation curves by computing a

abs[r(-1) - r(1)]
symmetry index, , where r is the vector of firing rates across interaural

max(r)- min(r)

correlation coefficients. The symmetry index is 0 for asymmetric, monotonic curves

(Fig. 5.3D) and reaches a maximum of 1 for symmetric, nonmonotonic curves (Fig.

5.3F). Figure 5.4B shows the symmetry index versus CF, demonstrating the transition

from ITDfs- to ITDenv-sensitivity over a range of 0.8-2.0 kHz, in corroboration with our

other measurement (Fig. 5.4A).
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Figure 5.4 Quantifying fine-structure versus envelope ITD sensitivity
A, Correlation coefficient for homophasic and antiphasic noise delay functions versus CF for the IC neuron
population. B, Symmetry index of rate-interaural correlation functions for IC neuron population.

We could not obtain all the necessary data to quantitatively distinguish ITDfs-

from ITDenv-sensitivity in every neuron in our population. Therefore, subsequent

analyses are made on the basis of CF. We optimized the CF boundary using the data in

Figure 5.4 by assuming that correlation coefficients <=0 or symmetry indices <=0.5

indicate ITDfs and correlation coefficients >0 or symmetry indices>0.5 indicate ITDenv.

A CF boundary of 2000 Hz minimized the number of classification errors; thus, we

assume that neurons with CFs < 2000 Hz are primarily sensitive to ITDfs and neurons

with CFs > 2000 Hz primarily sensitive to ITDenv.

Classification based on the shape of the noise-delay function

Traditionally, ITD-sensitive neurons are classified into peak, intermediate, and trough

phase groups by assessing the interaural phase of tonal interaural delay curves across a

wide range of frequencies (Yin and Kuwada, 1983). The average of the tonal delays

curves (called the composite delay curve) is similar in shape to the noise-delay function

(Yin et al., 1986) and generally exhibits a prominent, symmetric peak in "peak-type"

neurons, a prominent symmetric trough in "trough-type" neurons, and an asymmetric,
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biphasic shape in "intermediate-type" neurons (Fitzpatrick et al., 2002). Using this

feature, we developed a technique for classifying neurons into peak, intermediate, and

trough ITD tuning shape groups based on the shape of the noise delay function (see

Methods). Figure 5.5 shows noise delay functions from each tuning shape group across a

wide range of CFs (top row: peak, middle row: intermediate, bottom row: trough). A

breakdown of the units by tuning shape group is listed in Table T1, with units further

separated on the basis of CF into low (< 2000 Hz) and high (> 2000 Hz) CF groups. The

distribution of tuning shape class depends on CF group (X2 test of independence,

X2=26.31, p<0.001). Namely, trough-type tuning is more common in high-CF, ITDen,v-

sensitive neurons whereas the majority of low-CF, ITDf,-sensitive neurons belong to the

peak-type tuning shape group. This asymmetry likely stems from the biases in CF

distributions at the primary sites of binaural interaction in the MSO and LSO (Guinan et

al., 1972) and is consistent with previous findings in awake rabbit obtained using

interaurally delayed tones (Fitzpatrick et al., 2002).
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shape groups (peak: top row, intermediate: middle row, trough: bottom row). The numbered symbols
correspond to the three local extrema used to used to determine the tuning type (see Methods). Unit CFs
are A, 944; B, 6621; C, 1174; D, 6875; E, 564; and F, 3366 Hz.

Table I. ITD-sensitive neurons broken down by CF
Peak Intermediate

CF < 2000 Hz 75 (69%) 18 (17%)
CF > 2000 Hz 56 (49%) 20 (18%)
Total 131 (59%) 38 (17%)

and unit type
Trough
15 (14%)
38 (33%)
53 (24%)
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Characterization of Directional Sensitivity using ITD-only Virtual Space Stimuli

We measured rate responses as a function of virtual azimuth using ITD-only stimuli in

178 ITD-sensitive neurons. Although we use the term 'directional' to describe the

responses as a function of stimulus azimuth, we are essentially characterizing ITD-

sensitivity within the naturally occurring range of ITD.

Basic Properties of Anechoic Directional Response Functions
Because our ITD-only stimuli contain no ILD cues, anechoic directional response

functions (DRF) are essentially equivalent to noise delay functions sampled with high

resolution within the naturally occurring range of ITD (Fig. 5.6, solid lines), DRF are

generally strongly modulated as a function of stimulus azimuth [mean modulation depth

(+ 1 std) = 0.683 + 0.196]. In general, neurons tended to respond more vigorously to

sources in the hemifield contralateral to the recording site (positive azimuths), although

some neurons had nonmonotonic DRF (Fig. 5.6D,E). We quantified the shape of DRF by

computing a non-monotonicity index (NMI, see Methods). Figure 5.7 shows the NMI

versus CF across the IC neuron population. Aside from the tendency for units with very

low CFs (< 350 Hz) to have monotonic DRF, NMI does not show a systematic

dependence on CF.
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In those units where we obtained a sufficient number of trials (>10) at each

azimuth, we quantified directional sensitivity by computing the information transfer

between stimulus azimuth and spike count (see Methods). Information transfer measures

the extent to which stimulus azimuth is unambiguously encoded by spike count and is
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sensitive to both mean rate as well as trial-to-trial variability. Information transfer

reaches a maximum of 100% when the distributions of spike counts at each azimuth are

completely non-overlapping. Figure 5.8A shows information transfer as a function of CF

for the sample of neurons in which we obtained an estimate of information transfer (46

out of 178 units). Information transfer does not depend systematically on CF, suggesting

that neurons across a wide range of the tonotopic axis exhibit comparable sensitivity to

virtual source azimuth. Consistent with results obtained in the IC of anesthetized cat

(Chapter 2), we find that information transfer is highly correlated with the absolute range

of firing rates across azimuths (Fig. 5.8B, r2=0.83, n=46, p<0.001). Because we did not

obtain enough trials to reliably estimate information transfer in all of the units in our

sample, we quantify directional sensitivity across the entire population using the absolute

range.
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Figure 5.8 Information transfer related to absolute range of firing rates
A, Information transfer versus CF across the subset of neurons in which we obtained enough trials to
reliably estimate information transfer (n=46). B, Driven range versus information transfer for the same
population of neurons.
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Figure 5.9A shows a scatter plot of absolute range versus CF for our sample of

ITD-sensitive IC neurons. The solid line represents the mean absolute range within each

of 6 frequency bins containing approximately equal numbers of data points. Units in the

lower three CF bins are primarily sensitive to ITDfs while units in the upper three bins are

primarily sensitive to ITDenv (see Fig. 5.4). Absolute range is highly variable within each

bin and there is no significant dependence of the mean absolute range on CF (ANOVA,

F(5,186)=0.36, p=0.875). This finding corroborates the result obtained using information

transfer and suggests that, for anechoic stimuli, comparable directional information is

available in the rate responses of ITDf,- and ITDenv-sensitive neurons.
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Figure 5.9 Comparable rate-based directional information across the tonotopic axis for anechoic

inputs
A, Absolute range versus CF across the IC neuron population. Solid line shows mean absolute range in each

of six frequency bins [edge frequencies=(250,700,950,2000,3500,5 0 0 0 ,10000 Hz)] containing

approximately equal numbers of data points. B, Same data as in A but with different symbols correspond to

each ITD tuning shape class (peak, solid squares, n=131; intermediate, pluses, n=38, trough, open squares,

n=53). The large symbols to the right of the panel illustrate the mean absolute range in each tuning shape

class.

Figure 5.9B shows the same data as in Figure 5.9A, but with different symbols

corresponding to each ITD tuning shape; the large symbols at the right edge of the panel

represent the mean absolute range in each tuning shape group (across all CFs). Mean

125



absolute range depends significantly on tuning shape group (ANOVA, F(2,219)=24.09,

p<0.001). Specifically, the absolute range is largest in peak-type neurons and smallest in

trough-type neurons, with intermediate-type neurons falling in between (Fig. 5.9B, large

symbols), although there is substantial overlap between the classes. All post hoc pairwise

comparisons using Bonferroni comparisons were significant (p<0.004). The differences

in absolute range across tuning shape groups probably results from the fact that trough-

type neurons tend to be more broadly tuned to ITD than peak-type neurons (Batra et al.,

1993), and supports the view that there may be fundamental differences in the

mechanisms generating ITD-sensitivity in these types of units. Indeed, trough-type

sensitivity is generally, although not exclusively, associated with excitatory-inhibitory

coincidence detection in the LSO (Joris and Yin, 1995; Tollin and Yin, 2005), while

peak-type sensitivity is associated with excitatory-excitatory coincidence detection in the

MSO (Batra et al., 1997a; Yin and Chan, 1990).

Effect of Reverberation on Directional Sensitivity
Thus far, our results indicate that neurons across a wide range of the tonotopic axis are

equally capable of encoding the naturally occurring range of ITD via their spike rates.

However, differences between ITDfs- and ITDenv-sensitive neurons emerge when we

evaluate directional sensitivity in reverberation. We obtained DRF in 178 (out of 222)

neurons using moderately reverberant ITD-only virtual space stimuli that had a direct-to-

reverberant energy ratio (D/R) of 0 dB, typical of sources at a moderate distance from a

listener in a classroom. In general, reverberation caused a compression of the range of

firing rates (Fig. 5.6, dashed lines), such that peak firing rates were reduced and

minimum firing rates increased. The compression was more pronounced in high-CF,
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ITDenv-sensitive neurons (Fig. 5.6, bottom row), than in low-CF ITDfs-sensitive neurons

(Fig. 5.6, top row).

To quantify the effects of reverberation on directional sensitivity in individual

neurons, we computed the relative range, the ratio of the range of firing rates across

azimuths in reverberation to the range of firing rates in the anechoic condition. Figure

5.10A shows relative range versus CF for our neuron population; the solid line depicts

the mean relative range in each of the 6 frequency bins, defined above. Although relative

range is somewhat variable within each frequency bin, there is significant dependence of

relative range on CF (ANOVA: F(6,145)=14.54, p<0.001). Post hoc multiple

comparisons with Bonferroni corrections reveals that the relative range is significantly

smaller in each of the three higher CF bins than in each of the three lower bins (p<0.002,

all pairwise comparisons). However, the differences between bins within the lower three

and upper three CF bins are not significant, suggesting that the decrease in relative range

with increasing CF may reflect the transition from ITDfs- to ITDenv-sensitivity.
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A, Relative range versus CF across the IC neuron population. Solid line shows mean relative range in each
of 6 frequency bins, as defined in Fig. 5. B, Same data as in A with different symbols corresponding to
each ITD tuning shape class (peak: n=118, intermediate: n=37, trough: n=50). Dashed box encloses fouroutliers, discussed in text.

At both low and high CFs, there are units with relative ranges close to one,

indicating that these units are robust to reverberation. At low frequencies, a relative

range close to one faithfully reflects robust directional sensitivity in reverberation, that is,

the anechoic and reverberant DRF are nearly identical (e.g., Fig. 5.6B). In contrast, at

high CFs, reverberation can sometimes cause unexpected changes in the firing rate,
resulting in a large relative range that erroneously implies robust directional sensitivity in

reverberation. Figure 11 shows an example of a high-CF neuron that is unmistakably not
robust to reverberation, but nevertheless has a relative range close to one. For anechoic

inputs, this unit, which belongs to the trough-type tuning shape group, is broadly tuned to

virtual azimuth (i.e., ITD) and has a small absolute range. In reverberation the response

increases across all azimuths, maintaining the same absolute range so that the relative

range is large. This unit is typical of the four high-CF neurons having anomalously large

relative ranges (indicated by the dashed box in Figure 5. 10A).
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To explicitly examine how directional sensitivity in reverberation depends on ITD

tuning shape class, Figure 5.10B shows the relative range versus CF, with different

symbols representing each ITD tuning shape class. Both peak- (solid squares) and

intermediate-type (pluses) units conform to the population trend in that the effect of

reverberation is significantly higher at high CFs (> 2000 Hz) than at low CFs (< 2000

Hz) [peak, t-test, n=l 11, p<0.001; intermediate, n=35, p<0.001)]. On the other hand, the

effect of reverberation is more variable in high-CF trough-type units (open squares). The

fact that the absolute ranges of anechoic DRF are typically small in trough-type units

renders them more susceptible to the spurious modulations in firing rate that sometimes

occur in reverberation (see Fig. 5.11). Nevertheless, excluding the four outliers

(indicated by the dashed box in Figure 5.10B), the relative range at higher CFs (> 2000

Hz) is significantly smaller than at lower CFs (< 2000 Hz) for trough-type units (t-test,

n=42, p=0.002) as it is for the other two ITD tuning shape groups.
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Effect of Lowering D/R
In some units, we measured DRF using ITD-only virtual space stimuli with different

amounts of reverberation, quantified by the D/R (see Methods). Lowering D/R (i.e.,

increasing reverberation) typically compressed the DRF, as illustrated for the two units in

Figure 5.12. Averaged across CFs, the decrease in relative range at successive D/Rs was

significant (paired t-test, 10 dB/O dB: n=48, p=0.0128; 0 dB/-10 dB: n=24, p<0.001),

although the exact dependence of relative range on D/R varies across units. In some

units, mild reverberation had essentially no effect on the rate response (e.g., Fig. 5.6B,

Fig. 5.12A); in other units (Fig. 5.6D-F, Fig. 12B), directional sensitivity was degraded

by even the mildest reverberation condition tested. In particular, for a given D/R,

directional sensitivity is significantly worse in high CF (> 2000 Hz) ITDenv-sensitive

neurons than in low CF (< 2000 Hz) ITDfs-sensitive neurons (t-test, +10 dB: n=48,

p=0.013; 0 dB: n=157, p<0.001; -10 dB: n=24, p<0.001).
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Figure 5.12 Directional sensitivity degrades with increasing reverberation
DRF obtained from A, low CF (707 Hz) and B, high CF (5593 Hz) IC neurons using virtual space stimuli
with different amounts of reverberation, quantified by the direct-to-reverberant energy ratio (D/R).
Spontaneous rate indicate by 's' symbol at the left of each panel.
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Peripheral Factors determining ITD sensitivity in reverberation7

In Chapter 2, we showed that, at low CFs, compression of DRF in reverberation can be

qualitatively attributed to decorrelation of the ear input signals after taking into account

peripheral filtering. Here we use recordings from the AN to examine whether the

disparity in the effect of reverberation for low-CF (ITDfs-sensitive) and high-CF (ITDenv-

sensitive) neurons can be explained by a similar, common type of binaural processing

across all frequencies.

We recorded spike trains from auditory nerve fibers in response to both the left-

and right-ear ITD-only virtual space stimuli (see Methods). Using the shuffled

correlation technique (Louage et al., 2004), we implemented processing by a bank of

ideal coincidence detectors receiving delayed inputs consisting of an AN fiber's

responses to the left- and right-eared virtual space stimuli. Figure 5.13A,B shows

shuffled cross-correlograms (SXC) for two AN fibers computed from responses to

anechoic (black lines) and the 0 dB D/R (gray lines) ITD-only stimuli at 0' azimuth. The

shaded region represents the range of the ITD corresponding to ±90 in the ITD-only

stimuli. The SXC are normalized so that I corresponds to the expected normalized

coincidence count for uncorrelated random spike trains. As shown by Joris (2003), SXC

resemble noise delay functions from IC neurons, and reflect the phase locking of AN

spikes to the quasi-periodic fine-time structure at low CFs (Fig. 5.13A) and phase locking

to the aperiodic cochlear-induced envelope at high CFs (Fig. 5.13B). We quantified

anechoic "directional sensitivity" by the peak height of the normalized SXC. Figure 5.9C

shows anechoic SXC peak height versus CF for the AN population. The dashed line

7 The auditory nerve data presented in this section was collected by Andrew Schwartz.
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represents the least-squares regression line; the solid line from Figure 5.9A is

superimposed to facilitate comparison with the IC (axis labels at right edge). In contrast

to absolute range in the IC, the peak height of AN SXC decreases with increasing CF

(Fig. 5.13C), indicating that there is additional envelope processing between the AN and

IC [as suggested by Joris (2003)].
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Figure 5.13 Peripheral factors determining directional sensitivity in reverberation
A, Anechoic (black line) and reverberant (gray line) shuffled cross-correlograms (SXC) computed from
spike trains obtained from A, low CF (588 Hz) and B, high CF (10.7 kHz) AN fibers in anesthetized cat.
Gray region represents range of ITD corresponding to ±90 in the anechoic ITD-only virtual space stimuli.
C, Peak height of anechoic SXC versus CF across AN fiber population. Solid black line depicts best-fitting
linear regression. Absolute range versus CF across IC population (gray line) reproduced from Figure 9A,
for comparison (axis labeled at right). D, Relative peak height versus CF across AN fiber population.
Solid black line depicts best-fitting linear regression. Relative range versus CF across IC neuron
population (gray line) reproduced from Figure 10A, for comparison (axis labeled at right).

Similar to our observations in the IC, reverberation causes a compression of SXC

that is more severe at high CFs (Fig. 5.13B) than at low CFs (Fig. 5.13A). To quantify

the effects of reverberation on the SXC, we computed the relative peak height i.e., the

ratio of the SXC peak height in the reverberant condition to that in the anechoic

condition. We subtracted 1 from the peak height in each condition before computing the

ratio, in order to remove the baseline coincidence count representing random firings.

Figure 5.13D shows the relative peak height versus CF. The dashed line represents the

least-squares regression line of the relative peak height versus CF data; the solid line

from Figure 5.10A is superimposed to facilitate comparison (axis labeled at right edge of
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panel). As with the relative range in IC neurons, the relative peak height decreases with

increasing CF, although it appears that the main drop may occur at somewhat higher CFs

in the AN than in the IC (Fig. 5.13D, compare solid and dashed lines). These results

suggest a partial peripheral origin for the frequency-dependent effect of reverberation on

ITD sensitivity in the IC.

Characterization of Directional Sensitivity using ITD+ILD

To examine the effects of reverberation in more realistic conditions, we characterized

directional sensitivity in 44 ITD-sensitive IC neurons using the ITD+ILD virtual space

stimuli that had an azimuth-dependent ILD in additional to ITD.

Influence of ILD on Anechoic Directional Response Functions
Figure 5.14 shows anechoic (black) and reverberant (gray) DRFs from 6 IC units

obtained using ITD+ILD stimuli (dashed lines) along with responses to ITD-only stimuli

(solid lines). For high-CF, ITDenv-sensitive neurons (Fig. 5.14, bottom row), there is a

systematic, azimuth-dependent difference between anechoic DRF for ITD-only and

ITD+ILD stimuli. Namely, firing rates for ITD+ILD stimuli tend to be lower than ITD-

only firing rates at ipsilateral azimuths and higher at contralateral azimuths, often

resulting in a larger absolute range. In other words, negative ILDs - which occur for

ipsilateral sources - reduce the discharge rate, while positive ILDs - which occur for

contralateral sources - enhance discharge rate over that observed in the ITD-only

condition. The differences between directional responses to ITD-only and ITD+ILD

stimuli were less systematic and less prominent in low-CF, ITDfs-neurons (Fig. 5.14, top

row).
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Figure 5.14 Directional response functions for ITD-only and ITD+ILD conditions
Anechoic (black lines) and reverberant (gray lines) DRF obtained from six ITD-sensitive IC neurons using
ITD-only (solid lines) and ITD+ILD (dashed lines) virtual space stimuli. Unit CFs are A, 597; B, 1500; C,
1900; D, 3000; E, 5215; F, 7200 Hz. Spontaneous rate indicated by 's' symbol at the left of each panel.

To quantify the effects of ILD on the absolute range of the anechoic DRF, we

defined an ILD influence index as,

AbsRange(DRFTD+ ILD) - AbsRange(DRFrrD)

AbsRange(DRFff,,jL) + AbsRange(DRF o )

The ILD influence index takes on values between ±1 and is equal to 0 when the absolute

ranges of firing rates are the same for both sets of virtual space stimuli. Figure 5.15A

shows the ILD influence index versus CF, with different symbols corresponding to ITD

tuning shape groups. We split the population into low (< 2000 Hz) and high (> 2000 Hz)

CF groups, essentially dividing the population on the basis of ITDfs- and ITDenv-

sensitivity (see Fig. 5.4). The ILD influence index is generally positive and significantly

larger in the high-CF group (one-sided t-test, n=44, p<0.001), indicating that ILDs that
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are consistent with ITDs improve directional sensitivity at high CFs more so than at low

CFs. The ILD influence index parallels the magnitude of ILD in the ITD+ILD virtual

space stimuli (Fig. 5.15A, dashed line), suggesting at least a partial acoustic origin for the

increasing influence of ILD with CF in the ITD+ILD condition.

The influence of ILD can also result in changes in the shape of DRF (e.g., Fig.

5.14F), in addition to changes in the absolute range of firing rates. We quantified the

shape of DRF using the NMI. Figure 5.15B shows ANMI-the difference in NMI

between ITD-only and ITD+ILD conditions-as a function of CF. Negative differences

indicate that the DRF shape becomes more monotonic in the ITD+ILD condition.

Consistent with the ILD influence index, we see the biggest effects of ILD on DRF shape

at higher CFs (> 2000 Hz). In general, the NMI becomes smaller i.e., DRF become more

monotonic in the ITD+ILD condition.
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Figure 5.15 ILD increases with increasing CF
A, ILD influence index versus CF across the IC neuron population in which we obtained DRF using both
ITD-only and ITD+ILD virtual space stimuli. Different symbols correspond to the ITD tuning shape
classes. Thick gray line illustrates average ILD influence index in low (< 2000 Hz) and high CF (> 2000
Hz) groups. Dashed line illustrates ILD computed in 1/3-octave bands from the 90 ITD+ILD virtual space
stimulus. B, ANMI, where negative differences indicate DRF becomes more monotonic in ITD+ILD
condition, across IC neuron population.
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Statistical analysis of ILD influence index by tuning shape class requires caution,

because both the ILD influence index and the distribution of ITD tuning shape groups

vary with CF. First, to avoid confounds between frequency and ITD tuning shape group,

we only ran statistics on the high CF data. Moreover, we confirmed that there is no

dependence of ITD-tuning shape on CF at high frequencies (Kruskal-Wallis test,

X2=2.11, p=0.348). At high CFs, the ILD influence index shows a main effect of ITD

tuning shape class (Kruskal Wallis test, X2=7.84, p=0.019). In particular, the ILD

influence index is bigger in trough-type units than in peak-type units (Mann-Whitney U

test: peak/trough, n=24, p=0.005), indicating that ILDs have a stronger influence on

directional rate responses in units belong to the trough type shape groups. The difference

between intermediate- and peak-type units just missed statistical significance (p=0.06),

and the difference between intermediate- and trough-type units was not significant

(p=0.86).

Consistent with the results obtained in the larger ITD-sensitive neuron population,

we found that the absolute range of firing rates in the anechoic ITD-only DRFs depends

significantly on ITD tuning shape group (Kruskal Wallis test, X2=8.41, p=0.014). On the

contrary, anechoic directional sensitivity in the ITD+ILD condition does not differ

significantly across ITD tuning shape groups (Kruskal Wallis test, X2=3.52, p=0.172),

because the influence of ILD is strongest in trough-type units, which show the worst

directional sensitivity in the ITD-only condition.

Effect of ILD on Directional Sensitivity in Reverberation
Reverberant DRFs are depicted as gray lines in Figure 5.14; solid lines represent DRF

obtained using ITD-only stimuli and dashed lines represent DRF obtained using
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ITD+ILD stimuli. Consistent with the results for ITD-only stimuli, reverberation

generally causes a compression of DRF for ITD+ILD stimuli. In low-CF, ITDfs-sensitive

neurons, reverberation tends to similarly compress DRFs for both stimuli (Fig. 5.14, top

row). In contrast, in high-CF neurons (Fig. 5.14, bottom row), DRF can show much less

compression for ITD+ILD stimuli than for ITD-only stimuli (Fig. 5.14D,F), although in

some units directional sensitivity is impoverished in both conditions (Fig. 5.14E).

Figure 5.16A,B shows the relative range plotted against CF for ITD-only and

ITD+ILD stimuli, respectively, for the 44 neurons in which responses to both stimuli

were measured. The gray line depicts the average relative range for CF bins above and

below 2000 Hz. There is a significant interaction (p=0.011) between CF (low vs. high

CF) and virtual space condition in a two-way ANOVA, resulting from the fact that there

is a substantial improvement in directional sensitivity at high CFs, but not low CFs, when

the virtual space stimuli contain both binaural cues. Consequently, directional sensitivity

in reverberation is stable across the tonotopic axis for the more realistic ITD+ILD stimuli,

whereas in the ITD-only condition there is significantly less information available from

high-CF neurons. These results suggest that ILDs may provide more reliable directional

information than ITDenv in reverberation.
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Figure 5.16 Reverberation improves directional sensitivity at high CFs in ITD+ILD condition
A, Relative range of DRF obtained using ITD-only stimuli versus CF across IC neuron population. Gray

line depicts mean relative range in low (< 2000 Hz) and high-CF (> 2000 Hz) frequency groups.

B, Relative range of DRF obtained using ITD+ILD stimuli versus CF across IC neuron population. Gray

line depicts mean relative range in low (< 2000 Hz) and high-CF (> 2000 Hz) frequency groups.

As with the ILD influence index, the improvement in directional sensitivity at

high CFs (between ITD-only and ITD+ILD conditions) appears to be larger for units in

the trough and intermediate-type tuning shape groups. To examine this trend more

closely, Figure 5.17 shows a scatter plot of ARR-the difference in relative range

between ITD+ILD and ITD-only conditions-for each ITD tuning shape class, with units

further broken down on the basis of CF. Positive values on the ordinate indicate that

directional sensitivity in reverberation improves in the ITD+ILD condition. Statistical

analysis of the low-CF data (Figure 5.17, solid symbols) is not possible due to the small

samples sizes in each tuning shape group. On the other hand, in high-CF neurons (Figure

5.17, open symbols), the most substantial improvements are observed in neurons

belonging to the trough- and intermediate-type tuning shape groups. This trend is

exemplified by the three neurons in the bottom row of Figure 5.14, which belong to the

intermediate-, peak-, and trough-type shape classes, respectively. In all three units,

reverberation severely compresses DRF in the ITD-only condition; however, in the
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ITD+ILD condition, directional rate responses are relatively robust to reverberation in the

intermediate- (Fig. 5.14D) and trough-type unit (Fig. 5.14F), whereas directional

sensitivity remains impoverished in the peak-type unit (Fig. 5.14E). An analysis of

variance on the high CF data in Figure 5.17 confirms a significant effect of tuning shape

class (Kruskal Wallis test, X2=13.78, p=0.001); post hoc multiple comparisons with

Bonferroni corrections indicates significant differences between peak/trough (p=0.002)

and peak/intermediate (p=0.005) tuning shape groups, but not trough/intermediate groups

(p=0.859).
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Directional Sensitivity in Reverberation for exclusively ILD-sensitive units
Our results suggest that ILDs may be more reliable than envelope ITDs in reverberation.

As a control, we obtained DRFs using the ITD+ILD stimuli in a small population of

high-CF (> 2000 Hz) cells (n= 15) that were sensitive to ILD but not sensitive to ITD.

Figure 5.18A-C shows DRFs obtained from three ILD-sensitive neurons, with CFs
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increasing from left to right. Anechoic DRFs (black lines) typically increase

monotonically with stimulus azimuth, with all 15 units preferentially responding to

sources contralateral to the recording site. The panels below each set of DRFs (Fig.

5.18D-F) show noise ILD curves for each unit, obtained by adjusting the intensity in the

ipsilateral ear by -ILD/2 and the contralateral ear by +ILD/2, roughly mimicking the

changes that occur when a sound sources moves around the head. The vertical lines in

Figure 5.18D-F delineate the range of ILD in ITD+ILD stimuli between ±900, computed

in a 1/3-octave band centered on the unit's CF. The shape of the DRF largely parallels

the rate-ILD curve within this range; differences between the two curves may be caused

by differences in the frequency-dependence of ILD between the virtual space stimuli and

broadband noise.
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Figure 5.18 Directional response functions for neurons sensitive only to ILD
A-C, Anechoic (solid) and reverberant (dashed) DRF obtained using the ITD+ILD stimuli in three IC
neurons that were sensitive to ILD but not ITD. Unit CFs are A, 3250; B, 5292; and C, 11500 Hz. D-E,
Firing rate versus ILD obtained using broadband noise for the same three IC neurons in panels A-C. The
gray shaded region indicates the naturally occurring range of ILD in the anechoic ITD+ILD VAS stimuli,
computed in a 1/3-octave band centered at the unit's CF. G, Relative range versus CF for the exclusively
ILD-sensitive neuron population (solid symbols) and high-CF ITD-sensitive neuron population (open
symbols).
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Similar to our observations for the ITD-sensitive neuron population, reverberation

typically compresses the range of firing rates in ILD-sensitive neurons. The compression

of firing rates in the reverberant DRF probably results from the reduced magnitude of

ILD in reverberation (Fig. 5.2). Figure 5.18G shows the relative range versus CF across

the ILD-sensitive neuron population (solid symbols), with the relative range data from

the high-CF ITD-sensitive neuron population overlaid as small, open symbols. On the

average, directional sensitivity in reverberation does not differ between the two

populations of neurons (t-test, n=44, p=0.874), supporting the notion that, at high CFs,

ILDs provide reliable directional information in reverberation.

Gradient of ILD Sensitivity Across Tuning Shape Groups
In general, our results suggest that neurons in the intermediate- and trough-type ITD

tuning shape groups show a stronger influence of ILD than neurons in the peak-type

tuning shape group. An alternative way to reveal the gradient of ILD-influence across

tuning shape groups is illustrated in Figure 5.19, which shows anechoic DRFs from 4

high-CF IC neurons obtained using correlated (solid lines) and uncorrelated (dashed

lines) noise stimuli. The first three panels in Figure 5.19 show DRFs for ITD-only (black)

and ITD+ILD (gray) stimuli from ITD-sensitive neurons belonging to the peak,

intermediate, and trough-type tuning shape groups, respectively. The rightmost panel

shows DRFs obtained using ITD+ILD stimuli from a high-CF neuron that was sensitive

to ILD but not sensitive to ITD. We did not obtain DRFs using ITD-only stimuli in this

unit, as it was not sensitive to ITD. In each of the three ITD-sensitive neurons,

uncorrelating the ITD-only input signals leads to a complete compression of the DRF, as

expected (Fig. 5.19A-C, dashed black lines); that is, it abolishes directional sensitivity.
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The same holds true for uncorrelated ITD+ILD stimuli in the peak-type neuron (Fig

5.19A), indicating that ITD is key determinant of directional sensitivity in this unit. On

the other hand, uncorrelating the ITD+ILD input signals causes less compression of the

DRF in the intermediate-type unit (Fig. 5.19B) and essentially no compression of the

DRF in the trough-type unit (Fig. 5.19C). The effects (or lack thereof) of uncorrelating

the ITD+ILD input signals are similar in the trough-type unit and exclusively ILD-

sensitive unit (Fig. 5.19D), suggesting that intensity differences, rather than timing

differences, at least partially mediate directional sensitivity in the intermediate- and

trough-type units. The gradient in the influence of ILD across ITD tuning shape class is

generally consistent with presumed differences in the brainstem circuitry generating ITD-

sensitivity for the different tuning shape groups (see Discussion).

A Peak B Intermediate C Trough D ILD-Sensitive
15

100 150 60

CL100
/ 40

Q 50 -- f.,, ITD-only (CORR
i. 500 5 .2 --- ITD-only(UNCORR)CC 5 20 - ITD+ILD (CORR)

1-- - ITD+:LD (UNCORR)
1 0 0 0 0
i. -90 -45 0 45 90 -90 -45 0 45 90 -90 -45 0 45 90 0-90 -45 0 45 90

Azimuth (0)
Figure 5.19 Influence of ILD depends on ITD tuning shape group
DRF obtained using correlated (solid lines) and uncorrelated broadband noise (dashed lines) for ITD-only
(black lines) and ITD+ILD (gray lines) conditions. Units belonged to the following ITD tuning shape
groups: A, peak; B, intermediate; C, trough; and D, not sensitive to ITD but sensitive to ILD.
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Discussion

In a reverberant environment, echoes and reflections interfere with the direct sound

arriving a listener's ears, distorting the binaural cues for sound localization. Consistent

with previous observations in anesthetized cat (Chapter 2), reverberation degrades directional

sensitivity in ITD-sensitive IC neurons by compressing the range of firing rates across

azimuths, although the amount of degradation depends on the CF and the types of binaural

cues available. When the virtual space stimuli contain only ITD cues, directional sensitivity

in reverberation is significantly worse in high-CF ITDenv-sensitive neurons than in their low-

CF ITDfs-sensitive counterparts. However, directional sensitivity at high CFs can be

significantly improved when the virtual space stimuli contain both ITD and ILD cues,

suggesting that, at high CFs, ILDs prominently contribute to directional sensitivity in

reverberation. Here, we discuss the two sets of results, focusing on the mechanisms

underlying directional sensitivity for each type of binaural cue. We conclude by

discussing how these neurophysiological results can account for observations from recent

human psychophysical investigations of spatial hearing in reverberation.

Reverberation degrades ITDenv more than ITDfs

Similar to the results obtained by Joris (2003) in anesthetized cat, we showed that low-CF IC

neurons in the awake rabbit IC are primarily sensitive to ITDs, while high-CF neurons are

primarily sensitive to the envelope ITDs. For anechoic stimuli, we found that the directional

sensitivity of high-CF ITDenv-sensitive neurons is comparable to that of low-CF ITDfs-

sensitive neurons. However, directional sensitivity in reverberation is significantly worse in

the high-CF ITDenv-sensitive neurons. Moreover, these trends held true for neurons in all of
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the ITD tuning shape groups, suggesting that reverberation has similar effects on excitatory-

excitatory and excitatory-inhibitory coincidence detection.

To examine the contribution of peripheral processing to these IC results, we used

ideal coincidence detectors to extract ITD-based directional information from spike trains

recorded from cat AN fibers with the ITD-only stimuli. Unlike what we observed in the IC,

we found that, for anechoic stimuli, directional information decreased with increasing CF in

the auditory nerve. This phenomenon has been observed previously, both in physiological

investigations (Joris, 2003) as well as in an analysis using an auditory nerve model

(Macpherson and Middlebrooks, 2002) and suggests that there must be additional processing

of envelopes (or selective degradation of fine-structure information) between the AN and the

IC (Joris, 2003).

On the other hand, similar to the trend observed in the IC, we found that

reverberation caused an increasing reduction in the relative peak height of the shuffled cross-

correlation with increasing CF, suggesting a partial peripheral origin for the IC results.

Consistent with Joris' (2003) observation that the transition from ITDf, sensitivity to ITDenv

sensitivity occurs at higher CFs in the AN than in the IC, we found that the degradation in

directional sensitivity produced by reverberation seemed to occur at higher CFs in the AN

than in the IC, although more AN data are needed to reach a definitive conclusion (compare

dashed and solid lines in Fig. 5.13D). The fact that the effect of reverberation covaries with

the transition from ITDf, to ITDenv in both structures is evidence that it is not an effect of

frequency, per se; rather, it suggests that reverberation degrades directional coding more so

for envelopes than fine-time structure. The difference in transition frequency between the

AN and the IC may be accounted for by additional degradation in fine structure coding
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between the AN and the binaural processor in the auditory brainstem (Joris, 2003) or in

emergence of ITDenv-sensitivity at lower CFs (Agapiou and McAlpine, 2008).

Although differences in species (cat versus rabbit) and state (anesthetized versus

awake) need to be considered when interpreting the two sets of results, the similarity of AN

fiber tuning properties in cat and rabbit (Borg et al., 1988) helps validate the cross-species

comparison. Moreover, our observations are consistent with Sayles and Winter's (2008)

finding that reverberation degrades neural sensitivity to envelope pitch cues more severely

than fine structure cues in the anesthetized guinea pig cochlear nucleus.

Influence of ILD on directional sensitivity

Our second set of IC results demonstrates that, at high CFs, directional sensitivity in

reverberation can be significantly improved when VAS stimuli contain ILD as well as ITD

cues (c.f. Fig. 5.16A,B), suggesting that ILDs may be more reliable than envelope ITDs in

reverberation. Given that the ILD influence index parallels the magnitude of ILD in the

virtual space stimuli (Fig. 5.15A, dashed line), we would expect ILD to be of even greater

importance in more realistic head-related transfer functions, which can exhibit ILDs up to

+30 dB in species with directional pinnae (Bishop et al., 2009; Musicant et al., 1990).

At low CFs, the influence of ILD on directional sensitivity was not systematic and less

prominent than at high CFs (Fig. 5.14A-C), probably due to the fact that the magnitude of the

ILD is small at low frequencies (Fig. 5.2). The fact that the ITD and ITD+ILD stimuli give

rise to similar directional sensitivity at low CFs suggests that the differences in the range

of ITD for the two sets of stimuli (Fig. 5.1) were of minor consequence and can be

ignored.

In general, the results suggest that directional sensitivity at low CFs is primarily

governed by ITD while at high CFs, ILDs play an essential role. Neural sensitivity to ITD
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and ILD appear to be governed by different stimulus properties. ITD sensitivity is

completely dependent on the correlation of the waveforms at the two ears (Fig. 5.19, compare

black solid and dashed lines); on the other hand, ILD sensitivity is very robust to

manipulations of interaural correlation (Fig. 5.19, right panel). Nevertheless, ILD-sensitivity

also degrades in reverberation (Fig. 5.18); we can attribute this degradation to the overall

decrease in the magnitude of ILD in reverberation (Fig. 5.2, right column). Directional

sensitivity in the exclusively ILD-sensitive neuron population is similar to what we observed

in our high-CF ITD-sensitive neuron population (Fig. 5.18G), supporting the claim that the

improvement in directional sensitivity at high CFs is due to the greater reliability of ILDs as

compared to envelope ITDs in reverberation.

A shortcoming of the current study is that we obtained ITD+ILD DRF at only one

D/R; thus, we do not know whether the current findings generalize to conditions with more

(or less) extreme reverberation. Future studies might aim to extend the present findings by

characterizing the influence of ITD and ILD on directional sensitivity in a variety of

reverberant environments.

Mechanisms mediating influence of ILDs at high CFs

The influence of ILD on directional responses at high CFs was not uniformly distributed

across the neuron population: The magnitude of both the ILD influence index and the

improvement in directional sensitivity in reverberation (ARR) depended significantly on ITD

tuning shape group. In particular, the improvement was largest for neurons in the trough-

and intermediate-type tuning shape groups and smallest for neurons in the peak-type group

(Fig. 5.17). The gradient in influence of ILD across ITD tuning shape groups provides clues

as to the underlying mechanism.
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For anechoic stimuli, trough-type neurons showed the poorest directional

sensitivity in the ITD-only condition (Fig. 5.10B, open squares), but the strongest

influence of ILD (Fig. 5.15A), resulting in more robust directional sensitivity in

reverberation for ITD+ILD as opposed to ITD-only stimuli. Neurons in the trough-type

tuning shape group are thought to receive input from the LSO (Batra et al., 1993).

Subtractive excitatory-inhibitory (EI) binaural interactions in the LSO are classically

associated with computation of ILDs (Boudreau and Tsuchitani, 1968), although many

LSO neurons are also sensitive to ITD (Batra et al., 1997a; Joris and Yin, 1995; Tollin

and Yin, 2005). The likely origin of ILD sensitivity in trough-type neurons, and hence

the mechanism improving directional sensitivity in the ITD+ILD condition, is the El

interaction that occurs already in the auditory brainstem. However, we can not rule out

the possibility that ILD-sensitivity is also created de novo within the IC (Li and Kelly,

1992).

Peak-type neurons exhibited superior directional sensitivity in the ITD-only

condition (Fig. 5.10B, solid squares), but were only mildly influenced by ILD [Fig.

5.15A; see also (Caird and Klinke, 1987)]. Thus, high-CF peak-type neurons were

typically poorly tuned to source azimuth in reverberation in both VAS stimulus

conditions (Fig. 5.16A,B). Peak-type ITD-sensitivity is generally, although not

exclusively, associated with excitatory-excitatory (EE) coincidence detection in the MSO

(Batra et al., 1997a; Yin and Chan, 1990).

In principle, El interactions in the brainstem can produce tuning to ITD that is as

precise as tuning produced by EE interactions (Breebaart et al., 2001; Tollin and Yin,

2005). However, in practice we find that neurons associated with the El interaction
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(trough-type) are typically more poorly tuned to ITD than neurons associated with the EE

interaction (peak-type) [see also (Batra et al., 1993)], while the opposite is true with

respect to ILD (Caird and Klinke, 1987). More provocatively, it may be the case that

ITD-sensitivity in trough-type neurons is simply an epiphenomenon of the El interaction,

given that it is overwhelmed by naturally co-occurring ILD [present results, see also

(Delgutte et al., 1995; Joris and Yin, 1995)].

Intermediate-type neurons exhibit features associated with both peak- and trough-

type neurons. For anechoic stimuli, intermediate-type neurons can be as directionally

sensitive as peak-type neurons in the ITD-only condition (Figure 5.9B); however, they

are also strongly influenced by ILD and therefore show improved directional sensitivity

in reverberation in the ITD+ILD condition (Figure 5.16A,B). These observations suggest

that the intermediate-type neurons may receive convergent input from both ITD- and

ILD-sensitive neurons in the brainstem. Indeed, it has been shown that intermediate-type

neurons can be created through the convergence of MSO and LSO inputs onto single IC

cells (Agapiou and McAlpine, 2008; Fitzpatrick et al., 2002; Shackleton et al., 2000).

Moreover, there is physiological evidence that ITD-sensitive IC neurons receive

convergent input from multiple brainstem coincidence detectors (Batra et al., 1993;

McAlpine et al., 1998) as well as anatomical evidence that inputs from the MSO and

LSO overlap within tonotopic bands in the IC(Loftus et al., 2004; Oliver et al., 1995). Of

course, we cannot exclude the possibility that intermediate-type neurons are created

through dual EE/El interactions in single neurons in the auditory brainstem (Batra et al.,

1997b) nor the possibility that the ILD sensitivity is created de novo in the IC (Li and

Kelly, 1992). The most general interpretation of our results is that intermediate-type
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ITD-tuning is created through dual, although not necessarily segregated, EE and El

binaural interactions, that produce sharp sensitivity to ITD and that spares directional

sensitivity in reverberation.

Caution must be taken in interpreting the results using the ITD tuning shape

groups. First, it is entirely plausible that peak-type neurons in the IC actually receive

input from trough-type neurons in the brainstem that have been inverted through

inhibitory synapses in e.g., the DNLL and vice versa. However, the fact that we found

highly significant differences between these two classes of neurons suggests that we are

justified in distinguishing between them on the basis of ITD tuning shape. Second, the

classification of neurons into the intermediate category is based on a parameter that

varies continuously (asymmetry ratio, see Methods). We chose a relatively strict

criterion value for the asymmetry index. In particular, this meant that some neurons

assigned to the peak-type class had small but non-zero asymmetry indices. If we assume

that asymmetry in noise delay functions results from convergent inputs onto single IC

cells (Agapiou and McAlpine, 2008), then we might expect some neurons in our peak-

type category to show an influence of ILD. Indeed, as shown in Figure 5.17, there is a

modest population of peak-type cells that show improved directional sensitivity in the

ITD+ILD condition.

In general, our data suggest that, at high CFs, ILDs convey more reliable

directional information than envelope ITDs in reverberation. Thus, it would be

advantageous for high-CF ITDenv-sensitive neurons to be tuned to ILD as well as ITD.

An important functional consequence of interaction of convergent ITD- and ILD-

sensitive inputs in the IC or, more loosely, dual EE/El interactions, is the significant
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improvement of directional sensitivity in reverberation. An important future step will be

to establish the origin of the ILD-sensitive directional response components onto IC cells

in awake rabbit.

Comparison with Human Psychophysics

The present neurophysiological results parallel those of human psychophysical studies of

spatial hearing in reverberant environments. Rakerd and Hartman (2006) found that ITD

discrimination thresholds for 1/3-octave noise bands degrade more rapidly with increasing

reverberation at high frequencies (2850 Hz) than at low frequencies (715 Hz), consistent with

our observation that reverberation causes more severe compression of DRF in high-CF,

ITDenv-sensitive IC neurons than in low-CF ITD&-sensitive neurons. Rakerd and Hartmann

further found that, for reverberant noise bands, ITD-discrimination degraded when they

introduced a small ILD in opposition to the ITD, suggesting that ILD has an important

influence on localization in reverberation. Rakerd and Hartmann observed effects of ILD at

both low and high frequencies, while the influence of ILD on neural responses was most

prominent in high-CF, ITDenv-sensitive neurons. The two sets of results may be reconciled if,

as suggested by Fig. 15A, the influence of ILD on neural responses is determined by the

magnitude of the ILD. Since Rakerd and Hartmann used the same ILDs at low and high

frequencies, similar effects are expected for the two frequency bands in their experiment. In

contrast, the ILD in our experiments were determined by a rigid sphere model for the head;

therefore, the magnitude of the ILD increased with frequency. Nevertheless single-unit

experiments using stimuli with opposing ITD and ILD are needed to better understand the

relationships between our results and those of Rakerd and Hartmann.

In a different study, Kiggins et al. (2005) demonstrated that sound localization

accuracy in a reverberant room was similar for low-pass (0.5-1.0 kHz) and high-pass (4-8
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kHz) pink noise, although accuracy tended to be slightly worse in the high-pass

conditions at lateral azimuths. Likewise, we find comparable directional sensitivity

across the tonotopic axis using the ITD+ILD stimuli (Fig. 5.16B). The parallel between

the two studies suggests that our observation that ILD-sensitivity at high-CFs is

comparable to ITDf&-sensitivity at low-CFs is not an artifact of our particular simulated

reverberant room or the VAS simulation techniques employed. Unlike our study, which

used simulated reverberation and a simplified spherical head model, the Kiggin's study

used head-related transfer functions obtained using an acoustic mannequin in a real room.

Of course, despite these simple parallels, it is not possible to relate the firing rate of

single neurons to the perceived azimuth from behavioral studies without making explicit

assumptions about the neural code for sound localization. An important future avenue for

research is to test whether models that incorporate the observed effects of reverberation

on directional sensitivity of single neurons are able to successfully account for

psychophysical performance.

The duplex theory of sound localization (Rayleigh, 1907) stipulates that listeners use

ITD at low frequencies and ILD at high frequencies. The present results, which represent one

of the few investigations of ITD sensitivity across a wide range of CFs using a common set

of stimuli, suggest that, in the anechoic condition, ITDenv-sensitivity at high CFs can rival

that based on fine-time structure at low CFs. However, the low perceptual weight given to

high-frequency ITDenv cues in sound localization by most human listeners (Macpherson and

Middlebrooks, 2002) may result from the fact that ITDenv cues are less reliable than ILD cues

in reverberant listening conditions.
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CHAPTER 6

General Conclusions and Discussion

The central focus of this thesis was to investigate connections between the effects of

everyday room reverberation on the neural representation of sound localization cues in

the mammalian auditory midbrain and the localization behavior of human listeners.

Overall, we found that reverberation degrades the directional sensitivity of single

neurons, although onset dominance in temporal response patterns serves as a simple

mechanism for improving directional coding near stimulus onsets, when the directional

information is most reliable. Moreover, the striking parallels between our

neurophysiological findings and the localization performance of human listeners suggests

that the information contained in neural rate responses at the level of the auditory

midbrain is sufficient to account for human spatial hearing in reverberation.

Time course of directional sensitivity in reverberation

In Chapters 2 and 3, we demonstrated that the time course of neural directional sensitivity

in reverberation qualitatively parallels the buildup of reverberation in the acoustic inputs,

such that it is better near the stimulus onset and becomes more degraded over time. Thus,

as neural responses are integrated over longer time periods, ongoing reverberation

increasingly contaminates the neural response, resulting in worse directional sensitivity.

To assess the extent to which perceptual judgments of sound location are corrupted by

ongoing reverberation, we implemented a hemispheric difference decoding model to
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predict localization estimates using the data obtained from the neurophysiological

experiments. We found that human judgments of sound source location-obtained in

parallel behavioral experiments-matched the output of the decoder using an integration

window of approximately 150 msec. While these findings demonstrate the sufficiency of

a temporally integrated hemispheric decoding mechanism, it is plausible that other

readouts, such as a labeled line code (Jeffress, 1948; Takahashi et al., 2003), might also

account for the behavioral results.

The present results suggest several key areas for future research in

neurophysiology as well as psychophysics. First, perhaps fortuitously, our findings

corroborate previous studies using very different behavioral tasks that derived similar

windows for temporal integration in the binaural system (Boehnke et al., 2002; Kolarik

and Culling, 2009; Kollmeier and Gilkey, 1990). To establish the validity of our

findings, future research efforts should be made to develop behavioral localization

experiments that directly test the temporal integration hypothesis. For example, one

could generate a set of reverberant binaural room impulse responses in which the delay

between the direct sound and first echo is digitally manipulated, so as to provide the

listener with shorter and longer uncorrupted onsets. By analyzing the compression of

localization judgments as a function of the length of the uncorrupted onset, one could

derive a model-free estimate of the integration window.

Furthermore, in the present study, human behavior was exclusively compared to

neural rate responses obtained from the auditory midbrain. Although our findings

suggest that rate information contained at this level of the auditory pathway is sufficient

to account for human behavior, we have not demonstrated a necessary role for processing
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at the level of the midbrain. That is, given that the midbrain receives direct,

monosynaptic projections from the primary sites of binaural interaction in the brainstem

(Adams, 1979; Aitkin and Schuck, 1985; Glendenning and Masterton, 1983; Loftus et al.,

2004; Oliver et al., 2003; Oliver et al., 1995), it may be the case that behavioral

judgments can be decoded on a similar timescale from rate responses obtained in these

lower auditory stations. In order to establish the significance of midbrain processing and

understand the transformations that take place beyond the initial site of binaural

interaction, future efforts should be aimed at characterizing the effects of reverberation in

auditory stations below the midbrain.

Along similar lines, the neural circuits that implement the decoding algorithms

presumably lie downstream of the auditory midbrain (Stecker et al., 2005). The neural

signals upon which these circuits operate have therefore undergone both thalamic and

cortical processing beyond what was currently observed at the level of the auditory

midbrain. Thus, another important area for future research will be to characterize the

effects of reverberation on directional sensitivity in higher auditory centers. Decoding

models can then be implemented using neural responses obtained from these higher

auditory centers, giving further insight into the relevant timescale of temporal integration

for sound localization in reverberation.

In the present study, we uncovered evidence for temporal integration in sound

localization by using a modeling approach to directly compare neural responses to human

behavior. In general, our study demonstrates that key insights into the mechanisms

mediating basic auditory behavior (such as e.g., sound localization) can be made when

complimentary approaches are combined. Future efforts at furthering our understanding
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of the effects of reverberation on directional sensitivity should be guided by a similar,

complimentary approach.

Understanding the computations performed by ITD-sensitive IC neurons

In Chapter 2, we demonstrated that a standard cross-correlation model of binaural

processing typically predicted worse directional sensitivity in reverberation than observed

in individual IC neurons. Moreover, we showed that such robustness to reverberation

was systematically related to onset dominance in temporal response patterns, suggesting a

simple mechanism for improving directional sensitivity in reverberation. An obvious

area for future research would be to extend the cross-correlation model so that it is

sensitive to temporal dynamics, in addition to the binaural properties of the input

stimulus. The membrane-dynamics-based models of Cai et al. (1998a; 1998b) might

provide a good starting point, although an inherent complication in using such multi-

parameter models is the risk of overfitting individual responses. Of course, these

problems can be avoided given a solid understanding of the anatomy and physiology;

thus, modeling efforts should necessarily be physiologically constrained [e.g., (Hancock

and Delgutte, 2004; Nelson and Carney, 2004)].

In Chapter 4, we developed a direct test of the onset dominance hypothesis by

using a conditioning paradigm to alter temporal response patterns in individual neurons.

Consistent with our hypothesized role for onset dominance in the neural processing of

reverberation, results showed that making temporal response patterns less onset-

dominated resulted in worse directional sensitivity in reverberation, particularly during

the response epoch immediately following the conditioner. An intriguing direction for
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future research is to explore the role of onset dominance in robust directional coding in

reverberation using acoustic stimuli with multiple acoustic onsets, such as e.g., natural

speech and other amplitude modulated sounds.

Alternatively, one can take a step back and reexamine the notion of robust coding

of ITD in reverberation. In this thesis, we explored the possibility that temporal

dynamics of spiking responses may partly underlie robust directional sensitivity in

reverberation. However, robust encoding of ITD in reverberation could be achieved not

only by mechanisms that emphasize onsets in neurons tuned near the source location but

also by mechanisms that reduce the ongoing "noise" seen by neurons tuned away from

the source location. Such noise reduction would prevent a neuron from firing to echoes

that originate from favorable directions when the direct sound is coming from an

unfavorable source location. Rucci and Wray (1999) proposed a model for noise

reduction in the barn owl auditory pathway that results from convergent and lateral

inhibitory connections onto single neurons in the barn owl's auditory space map. Future

research efforts aimed at developing more accurate computational models of IC neuron

responses in reverberation might make use of similar features.

Integration of multiple binaural cues

In Chapter 5 we extended our investigations of directional sensitivity in reverberation to

include ITD-sensitive neurons across the tonotopic axis. We demonstrated that

reverberation degrades envelope ITD cues more than fine structure ITD cues. However,

for realistic stimuli containing both ITD and ILD, directional sensitivity is comparable

across the tonopic axis, suggesting ILDs are more reliable than envelope ITDs in
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reverberation. Moreover, we demonstrate that the influence of ILDs on directional

sensitivity in reverberation depends on the shape of the noise delay function. Namely,

neurons with trough-shaped noise delay functions, which indicate excitatory-inhibitory

binaural interactions, show the biggest influence of ILDs while neurons with peak-shaped

noise delay functions, which indicate excitatory-excitatory binaural interactions, show the

least influence of ILDs. Neurons with asymmetric noise delay functions, which may

indicate a combination of both types of binaural interactions, also exhibit prominent

influences of ILD. In general, these results emphasize the importance of excitatory-

inhibitory binaural interactions, and hence the ILD-processing pathway, for spatial

hearing in reverberation.

Similar to the issues raised by the experiments of Chapters 2 and 3, an important

question raised by this study is whether these results can be explained by processing prior

to the auditory midbrain, or if they emerge only at the level of the auditory midbrain.

Two key areas for future research are (1) to establish the effects of reverberation on

directional rate responses at the primary site of binaural interaction in the brainstem and

(2) to develop neurophysiological methods for teasing apart the various sources of input

to individual IC neurons. The former experiments are relatively straightforward, and

would involve only basic changes to the current experimental setup. Experiments in the

latter category are more difficult and have classically been approached using both

pharmacological manipulation as well as lesion techniques (Davis, 2002; Davis et al.,

1999; Kelly and Kidd, 2000; Kelly and Li, 1997; Kidd and Kelly, 1996; Li and Kelly,

1992; Pollak et al., 2003; Pollak et al., 2002; Sally and Kelly, 1992; van Adel et al.,

1999). Future efforts might combine these standard methods with recently developed
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techniques for in vivo optogenetic control of neural circuits (Han and Boyden, 2007; Han

et al., 2009; Huber et al., 2008; Liewald et al., 2008; Tsai et al., 2009; Zhang et al., 2008)

to bring a modern approach to functional studies of integration at the level of the auditory

midbrain. Moreover, such studies will also be important for constraining computational

models that seek to describe the interactions taking place in the auditory midbrain.

Sound localization in realistic listening conditions

This thesis addressed fundamental questions regarding the effects of everyday room

reverberation on the ability of individual neurons and human listeners to signal the

location of a single, isolated sound source in everyday reverberant settings. Yet, in the

real world, it is rare that a listener actually performs such a simple task. The real task

faced by the auditory system in parsing the unfolding acoustic scene is to localize and

identify the information-content of relevant sound sources, amidst the background hum of

the multiple, simultaneous sources typical of our everyday listening environments. The

most remarkable feat of the auditory system is not that we can localize and identify single

sound sources in reverberation, but that we can localize and selectively attend to single

sound sources in reverberation amidst the interference of the complex acoustic

background (Kidd et al., 2005b). A first step towards elucidating the neural basis of such

real world auditory behavior will be to extend the current experimental paradigms to

study how reverberation affects the encoding of multiple, simultaneous sources of sound.

Using the complimentary approaches already developed in this thesis, decoding models

can be further refined to perform more appropriate auditory behaviors. While, ultimately,

complex auditory perception most likely arises from cortical processing, the auditory
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midbrain is nevertheless an obligatory station in the ascending pathway to cortex

(Adams, 1979). Thus, to fully understand the computations performed at higher levels

we must continue to study the transformations that take place along the way.
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