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Abstract

Binary systems composed of compact objects (neutron stars and black holes) radi-

ate gravitational waves (GWs). The prospect of detecting these GWs using ground

and space based experiments has made it imperative to understand the dynamics of

such compact binaries. This work describes several advances in our ability to model

compact binaries and extract the rich science they encode.

A major part of this dissertation focuses on the subset of binaries composed of a

massive, central black hole (105 - 10SM®) and a much smaller compact object (1 -

100M®). The emission of gravitational energy from such extreme mass ratio inspirals

(EMRIs) forces the separation between the two components to shrink, leading to

their merger. We treat the smaller object as a point-like particle on the stationary

space-time of the larger black hole. The EMRI problem can be broken down into two

related parts: (i) A determination of the inspiral trajectory followed by the smaller

object, and (ii) A characterization of the gravitational waveforms that result from

such an inspiral.

The initial part of this work discusses the development of a numerical algorithm

that solves for the GWs that result from the perturbations generated by the smaller

object. It accepts any reasonable inspiral trajectory as an input and produces the

resulting waveforms with an accuracy greater than 99%.

Next, we present a technique to model the part of the inspiral trajectory that

immediately precedes the final plunge of smaller object into the massive black hole.

Along with earlier research, this enables us to compute the smaller object's complete

inspiral trajectory. We now have a versatile toolkit that can model GWs from EMRIs.

Finally, we present another application of this work. GWs carry linear momen-

tum away from a binary. Integrating the lost momentum leaves an asymmetric binary

with a non-zero recoil velocity after merger. We compute the recoils from EMRIs and

extrapolate them to comparable mass binaries. We find that extrapolating pertur-

bation theory gives results that agree well with those from numerical relativity, but

require far less computation time.
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Chapter 1

Introduction and overview

This chapter provides motivation for the work in subsequent chapters by placing it in

the context of current research in the field.

The dynamics of two astrophysical objects under their mutual gravitational at-

tractive force (the "two-body problem") has been a subject of research for several

centuries. Pillars of modern science like Newton, Kepler, Galileo, and Einstein have

devoted significant portions of their work in trying to understand gravitational two

body interactions. A detailed study of these interactions has improved our under-

standing of phenomena ranging from the Earth-Moon system to binaries composed

of supermassive black holes (BHs). The richness of these two-body interactions make

them interesting to scientists even today.

1.1 Gravitational waves, the two-body problem,

and general relativity

The two body problem in Newtonian gravity has a particularly clean analytic solution

[49]. A wide variety of astrophysical binaries can be described by Newtonian gravity.

However, general relativistic effects begin to enter when the objects are large, dense

and separated by short distances. Close binaries composed of compact objects (neu-

tron stars or black holes) exhibit relativistic effects, making them ideal candidates to



explore deviations from Newtonian gravity. Relativistic effects significantly alter the

dynamics of compact binaries. The situation becomes even more complicated when

one (or both) of the members of the binary is a black hole. We need to account for

a host of additional complications such as spacetimes, horizons, coordinate systems,

and observers. The equations that describe the two body problem become rich and

complex, and necessitate a combination of numerical and analytical techniques.

Contrary to Newtonian binaries, relativistic binaries radiate energy and angular

momentum in the form of gravitational waves (GWs) [26]. GWs travel at the speed

of light in vacuum and transport energy from the source. Loss of energy and angular

momentum through GWs forces the orbit to shrink and the binary to ultimately

coalesce. The Hulse-Taylor pulsar, PSR 1913+16 [55] is the most famous example of

such a relativistic binary. Over 30 years of observational data show that the evolution

of the binary's orbit is in excellent accord with general relativistic predictions [105].

The significance of gravitational waves to general relativity is vital. In most cases,

relativistic effects are corrections to the dominant Newtonian effect. For example,

the relativistic precession of the perihelion of Mercury is only a few arc seconds every

century - a tiny correction to its Keplerian motion. On the other hand GWs are

a testable prediction of general relativity that do not appear in Newtonian gravity.

Moreover, GWs encode information about the spacetime of the source. A detailed

map of the spacetime in the vicinity of a massive and dense astrophysical system may

be the most stringent test of general relativity ever.

Formally, we need a description of the curved spacetime that embeds the binary.

One needs to solve the non-linear Einstein field equations for the metric. For black

hole binaries, each black hole's horizon presents an additional complication. In ad-

dition to orbital motion, members of the binary may spin around their own axes.

The equations that describe these complex effects are highly coupled and non-linear.

Unlike the Newtonian case, a generic solution to the two body problem that includes

all effects does not exist. However, there are several successful approaches that are

tailored to address the problem in certain interesting limits:

e Post Newtonian (PN) theory [17]: The PN expansion is obtained by iterating



Einstein's field equations from the Newtonian limit to higher order in GM/rc2 .

Ref. [17] is an excellent review of PN methods applicable to the binary prob-

lem. The symbol M represents the characteristic mass of the system and r

represents the characteristic separation between its members. It is designed to

describe the binary's dynamics and GWs that it emits. The advantage of this

approach is that it provides closed-form analytical solutions that are applicable

to a wide variety of binaries. The disadvantage is that they are an accurate

description only when the separation is greater than a few Schwarzchild radii,

2GM/c2 . Nevertheless, PN theory has greatly improved our understanding of

several potential sources of GWs. It is widely used in data-analysis routines in

gravitational wave detectors.

* Numerical relativity [85]: It has now become possible to apply numerical meth-

ods to solve Einstein's equations on large computer clusters. Great progress in

numerical relativity has been achieved over the last few years. The non-linear

field equations can now be cast into a form amenable to numerical methods.

The main advantage here is that no approximation scheme is used; only errors

due to the numerical scheme arise. Numerical relativity has furnished us with

templates for GWs from the final stages of black hole mergers. It works very

well when the masses of the binary's constituents are comparable. The major

disadvantage here is that it is very computationally intensive. This makes long

evolutions (for large initial separations) cumbersome. Moreover, a different sim-

ulation needs to be performed for each set of parameters (eg. mass, spin, initial

separation) that characterizes the binary.

* Black hole perturbation theory [98, 53, 36, 97]: BH perturbation theory has

been successfully used to describe binaries involving a massive central black

hole (of mass M) and a much less massive companion (of mass p). We treat the

smaller companion as a perturbation on the stationary spacetime of the larger

BH. The advantages here are: (a) the equations from perturbation theory are

much simpler than the full Einstein field equations, and (b) It is valid even



when the separation between the binary's constituents is small. The major

disadvantage is that it does not include terms of O(p /M)2 and higher. Black

hole perturbation theory is the subject of most of this dissertation. A more

detailed description is given in Sec. 1.5.

It is important to point out that we get consistent results from all approaches to

general relativity. Results from numerical relativity in weak fields match those from

post-Newtonian theory. Perturbation theory at high mass ratios is in concordance

with numerical relativity.

1.2 Gravitational waves, the two-body problem,

and Astronomy

Observations of electromagnetic radiation from astrophysical sources have increased

our understanding of the universe immensely. For example, studying the sun at

various wavelengths allows us to infer the processes that take place within it. Obser-

vations of highly regular pulses from a point source in the sky led to the discovery of

pulsars. Today, we observe the cosmic microwave background (CMB), which is relic

radiation from an epoch approximately 400 million years after the big bang. These

are just a few examples from an endless list.

Gravitational waves equip us with a different, complementary tool kit to observe

the universe with. Just as electromagnetic waves, GWs carry information pertaining

to the properties of their respective sources. In particular, GWs contain direct infor-

mation about bulk properties (such as mass and spin) of relativistic systems that are

very difficult to obtain otherwise. The weakness of the interaction between GWs and

intervening matter (eg. dust) means that it does not get attenuated akin to electro-

magnetic waves. For the same reason, detecting gravitational waves requires extreme

sensitivity - detectors are made of the same matter that GWs barely interact with.

There are several postulated sources of GWs [30]. We list a few of the most

interesting and potentially observable ones:



* Stellar mass compact binaries: Stellar mass black holes and neutron stars (1 -

100Me) are dense objects formed as a result of the death of massive main

sequence stars. The orbits of binaries composed of black holes and neutron

stars shrink as a result of GW emission. The members of the binary may

even emit electromagnetic radiation (eg. they could be pulsars, X-ray binaries).

During the last stages, we expect the frequency of these GWs to be - 10 - 100

Hz. Such systems are potential sources of GWs for ground-based detectors like

LIGO, GEO and VIRGO [66, 104, 46].

* Short hard gamma ray bursts: A number of studies (eg. Ref. [45]) conclude

that neutron star - neutron star/black hole mergers may be responsible for the

emission of short (5 2 sec) bursts of hard gamma rays. A key feature of this

mechanism is the tidal disruption of the neutron star. A coincident observation

of the electromagnetic signal and GWs from such an event will allow us to probe

the internal structure of the neutron star during its disruption.

* Core collapse supernovae: The death of massive stars (M > 25M®) is accompa-

nied by an explosion that expunges its outer envelopes of gas. The Crab nebula

[106] is an example of the remnant of one such supernova. A small fraction

of the energy released during the explosion is emitted in GWs. Ground-based

detectors may see GWs during these events.

* Stochastic GW background: Much like the CMB, we expect a stochastic dis-

tribution of background GWs. Matter dynamics prior to galaxy formation is

believed to produce a large portion of this GW background. Ground based

detectors have already placed impressive upper limits on the energy density

contained in the GW background [1]. The power spectrum of primordial GWs

can help us explain events in the very early universe that shaped cosmological

evolution.

* Extreme mass ratio inspirals (EMRIs): The centers of most galaxies are believed

to host supermassive black holes (M - 106 -10 8M®). The black hole associated



with Sgr A*, the bright radio source at the center of the Milky Way has a mass

of about 4 x 106M0 . The inspiral of stellar mass compact objects into these

supermassive black holes lead to EMRIs. GWs from the last year of an EMRI

should be detectable by the proposed space based detector, LISA [67] up to

redshifts of z - 2. EMRIs will be discussed in more detail in chapters 2, 3, and

4.

* Supermassive black hole binaries: Galaxy mergers are thought to be common

at high redshifts (z > 3). These mergers contribute to hierarchical structure

growth and are responsible for the formation of supermassive black hole bina-

ries. These binaries radiate GWs in LISA's sensitive bandwidth. The galaxy

merger may also ignite quasar activity. This is a particularly interesting sce-

nario because it allows for independent measurements of redshift and distance.

The redshift can be inferred from the electromagnetic signature whereas the

GWs furnish the distance to the source [65]. Such measurements can effectively

constrain cosmological models.

* White dwarf binaries: Low mass main sequence stars (M < 5 - 10M) even-

tually evolve to white dwarfs (WDs). GWs from galactic WD binaries should

be visible to LISA. In fact, it is likely that there are so many of them that it

creates a low frequency "confusion" noise.

Our ability to theoretically understand GW signatures from these sources is vital

in order to fully extract the potential science from GWs. This has motivated many

theorists over the last few decades to model GW sources from first principles. Of the

several sources mentioned above, systems composed of compact binaries have been

identified as the cleanest and simplest to model. This is largely because gravitational

interaction between the two bodies is the only overwhelmingly dominant force. (Core

collapse supernovae are examples of sources where internal processes like chemical

reactions, convection, shocks etc. pose serious complications to theorists trying to

model them.) We now have a vibrant community of researchers working on various

approaches to the two-body problem mentioned in the previous section.



1.3 The simplest relativistic binary

This section reviews the lowest order relativistic effects that a simple binary com-

posed of two point masses exhibits. We also sketch some important results pertaining

to gravitational waves; detailed derivations are available in any general relativity

textbook (eg. Ref. [26]). We set G = c = 1 everywhere.

The metric of a spacetime that is slightly perturbed from its flat Minkowski back-

ground is given by,

gt = ±+ hA , , (1.1)

where i,, = (-1, 1, 1, 1) and h << q. Gauge freedom in general relativity loosely

means that we can choose a coordinate system wisely. In this case, we choose the

"Lorenz" gauge where,

"h,,v = 0, (1.2)

1
h1,, = h,, - 27,,h, , (1.3)

h =- r vh,, is the trace of h,,. With this clever choice of coordinates, we compute

the curvature and Ricci tensors upto O(h). Substituting this into Einstein's field

equations give,

LOh,V(x,t) = -16rT,v(x,t) (1.4)

where ol = /i and T,, is the stress energy tensor. For example, T,, = 0 for vacuum;

T,, = (p + p)u,u, + pg,, for a perfect fluid, u" is the 4-velocity of a fluid element, p

and p are the rest frame energy density and isotropic pressure respectively. Eq. (1.4)

shows that the metric perturbations satisfy the wave equation in vacuum and hence

are gravitational waves. This wave equation can be solved using a radiative Green's



function (eg. Ref. [57]) to yield,

h,(x, t) = 4 d3xT,, (x ' , t - x - x')| x - X1
(1.5)

Here, x' is the position of the source (regions where T,, 0) and x is the location of

the field.

Eq. (1.5) suggests that every component of h,V is radiative. However, this is

only an artifact of our gauge choice. It turns out that only the spatial, transverse,

and traceless parts of h,, are gauge invariant and radiative degrees of freedom [40].

To obtain them, we "project out" the transverse and traceless part (hW) using the

projection tensor Pij,

i3 =  hkl (PkiPly - 2PklPij) where,

Pi = 61, - nin and

(1.6)

(1.7)

ni is the unit normal along the wave's propagation. Note that 6,hTT = 0 (traceless),

nihT T = 0 (transverse) and hT T = h T . If we choose Cartesian coordinates (x, y, z)

and the direction of propagation along 2, hT reduces to,

(1.8)

hx

-h+

0

In essence, there are only two independent degrees of

as GW polarizations), h+ and hx.

freedom (which are identified

When lx' - xl ~ R is large enough, we can massage Eq. (1.5) to obtain the

h =
\1



quadrupole formula for gravitational radiation,

h (x,t) R d(t - R) PkiPl - PklPij , where (1.9)
1 dt2  2

ij = I3 - ij*kk and (1.10)

i(t) d3x'x'ix'Tt(x', t) (1.11)

is the mass quadrupole moment of the source.

We can ascribe a stress-energy tensor to describe the energy and momentum con-

tained within hA. It can be shown that [56],

T3GW v ( Vh, h) . (1.12)

Here, V denotes covariant differentiation. Note that this expression is valid even

when the background is not flat, although h,, is still defined in the transverse-

traceless gauge. The angular brackets denote spatial and temporal averaging over

an appropriate scale. Specializing this expression for energy flux (GW luminosity) in

the transverse, traceless gauge gives,

dEt dA Ttk nk , (1.13)

] 1 
3 2 UthjTTakhf TT) (1.14)

5 dt3  dt3  (1.15)

As the notation suggests, dA is an area element and the integral is performed over a

sphere bounding the source.

As an illustration, we apply the quadrupole formula, Eq. (1.9) and Eq. (1.15) to a

binary composed of two equal masses M, separated by a distance 2a, and in a circular

orbit about their common center of mass [79]. Let the orbit of the binary lie in the



x - y plane. The Keplerian energy of the orbit is,

and the orbital frequency is,

Eorb = M
4a

=M
8a

3 •

If the binary is at a distance r, we find that,

- cos

h TT(t, x) M 2 2 - sin

0

dEGW

dt

22tr

2Qtr

- sin 2Qt,

cos 2Mtr

0

32
- M2(2a)4Q6
5

where t, = t -

orbital energy.

Ix' - x - t - r. The energy carried away by GWs

Imposing conservation of energy,

reduces the binary's

Etot

dEorb

dt
dEorb da

4 -- -
da dt

da

dt

= Eorb + EGw = const,

dEGW

dt '

S 32 M2(2a)466
5
128M 3

5a3

(1.20)

(1.21)

(1.22)

(1.23)

This simple calculation contains several aspects of what is to follow in chapters 2,

3, 4, and 5. Indeed, any solution to the two-body problem in general relativity should

reduce to these results in the appropriate limit.

1.4 Gravitational wave detection

The direct detection of GWs is at the forefront of modern research in Physics. The

term "direct" here refers to the interaction between GWs and multiple test masses.

(1.16)

(1.17)

(1.18)

(1.19)

and



Although we do not have a direct detection yet, we expect ground-based instruments

like LIGO, VIRGO, GEO and TAMA to make the breakthrough within the next

decade or so. The LIGO Scientific Collaboration has already completed five science

runs. These ground-based detectors are most sensitive at - 100 Hz. The proposed

space based GW observatory, LISA is expected to measure GW signals at frequencies

centered around - 0.01 Hz.

GW detection is not the subject of this dissertation, and thus this section is

necessarily brief. However, we illustrate the phenomenon that experimentalists strive

to measure. In essence, GWs are metric perturbations which stretch and squeeze the

background spacetime. As an example, consider GWs propagating along the z axis.

According to Eq. (1.1) and Eq. (1.8),

gAV = ,,V + h,,, (1.24)

1 + h+(t - r) hx (t - r) 0

I g = hx(t- r) 1 - h+(t - r) 0 . (1.25)

0 0 1

Now consider two point masses along the x-axis, separated by a distance L. At any

given instant in time, the proper distance between them is,

s = gididxi , (1.26)

- dY 2  dz-± (1.27)L dx (1 + h+) + 2hxdy + (1 - h ) 2 + , (1.27)
Lh+

+ + (1.28)

Thus, the effect is to stretch and squeeze the proper distance between the two masses

by a fractional amount AL/L = (s - L)/L f h+/2. Experiments are designed to

measure precisely this.

Let us now estimate the strain AL/L for radiation from the binary considered in



Sec. 1.3. From Eq. (1.18),
R2

AL/L ~ " (1.29)
ar

where R8 = 2M is the Schwarzchild radius of each mass. For a 10M® black hole

binary in the Coma cluster (r - 100Mpc) separated by a - 10R,, the strain is only

AL/L = 10-21. To put this in the context of atomic physics, two test masses have

to be separated by a distance of ' 106 m to experience a change in separation of - 1

Fermi (typical size of a nucleus).

Several sources of noise contaminate a GW detector's output. It has been shown

that the noise can be subtracted most efficiently using a technique called matched

filtering. This involves matching a detector's output to theoretical templates of an-

ticipated signals in order to detect the GWs and measure the parameters that char-

acterize the source [81, 5]. This has been the major motivation for several theoretical

GW research programs. Indeed, one of the goals of this dissertation is to construct

templates for GW signals from extreme mass ratio inspirals.

1.5 Black hole perturbation theory

An important subset of binaries are those in which a stellar mass compact object

(p -1 - 00M) radiates gravitational energy and inspirals into its massive black

hole (M _ 106 - 10s8 M) companion. Such extreme mass ratio inspirals (EMRIs)

can be ideally fit within the framework of black hole perturbation theory. We assume

that the background spacetime is that of a static massive black hole and treat the

smaller object as a spacetime perturbation of O(p/M). (Note that the background

in Sec. 1.3 was flat.)

The most "natural" way to solve for these perturbations is to expand the metric

about the stationary BH background (gBH) as,

Next, this expansion can be substituted into + h( (1.30)

Next, this expansion can be substituted into Einstein's equations and linearized.



When the background spacetime is spherically symmetric (Shwarzschild), h,, can be

expanded in a basis of spherical harmonics. This simplifies the problem dramatically,

leading to tractable differential equations for h,,.

Unfortunately, astronomical black holes are not spherically symmetric. They ro-

tate, making them cylindrically symmetric about their axis of spin. Such a spacetime

is described by the Kerr metric ,

(ds 2
)Kerr (=  - 2Mr 2  4aMr sin 2 dtdq + dr2

( 2Mra2 Sin20
+p2d2 a2 2 (r2+2 d+ 2  ) . (1.31)

Here, (r, 0, ¢, t) are the BL coordinates, which reduce to spherical coordinates in flat

space. The symbol M is the black hole's mass, a parametrizes its spin (-M < a <

M), A = T2 - 2Mr + a2 and p2 = r2 + a2 cos 2 0. The absence of spherical symmetry

leads to extremely complicated equations for the metric h,,. Teukolsky [99] resolved

this by considering curvature perturbations of the form,

Rap- = Ra + 6 Rcy3 BH (1.32)

instead. A brief outline of his approach follows: Rearranging the Bianchi identity

yields,

VXRapOt = - V Ry-v - VaRRpy,, . (1.33)

Taking another covariant derivative gives,

ORRap, = - V VPRI3av - V Va R,,y, . (1.34)

Here, O = gBH V/ v = V7,V is the covariant wave operator. Substituting Eq.

(1.32) in Eq. (1.34) results in a wave equation for 6Rap,,. To extract the radiative

degrees of freedom for metric perturbations far away from the source, we project out



the Weyl curvature scalar /)4,

'4 = -C ,. ,n fn On mn5  (1.35)

where C, ,3 is the Weyl tensor, n" and mrh are legs of the Newman-Penrose null

tetrad. The Newman-Penrose formalism defines a complete basis at each point in

spacetime. Within this formalism, the metric becomes,

9gI = I"n' + n'l" - mhm" - mr~ n , (1.36)

where

l" = + 1) 0, (1.37)

n = ( 2 + a 2, -A, 0, a) /(2p 2) , and (1.38)

S = iasin 0, 0, 1, /  (r + icos) . (1.39)

The quantities 1" and n" lie along the ingoing and outgoing null directions; mn" and

m" span the angular directions.

Remember, the Weyl tensor is the traceless component of the Riemann curvature

tensor. Loosely,

"Riemann = Weyl + Ricci" . (1.40)

Far away from an EMRI, Ricci= 0 and the background is static,

=> 04 = -6R, Osnf Yn 5 . (1.41)

The upshot of this exercise is the Teukolsky equation for the Weyl scalars, Eq.

(2.5) of chapter 2. Almost magically, the Teukolsky equation is variable separable.

However, we will see in chapters 2 and 3 that separating the variables is not the most

optimum method to solve the Teukolsky equation for all applications. Far from the



source, the metric perturbations are very simply related to 04,

1= 02 h+- i 2 h (1.42)

Thus, the metric perturbations are the final outcome of this procedure, rather than

something with which we begin our analysis.

1.6 This dissertation

As mentioned earlier, the aim of this dissertation is to exploit BH perturbation theory

to understand certain crucial aspects of the two body problem. The treatment of

EMRIs using BH perturbation theory has been the subject of much recent research

(eg: Ref. [98, 53, 36, 97] and references therein). To a large extent, the need to model

EMRIs accurately has been motivated by the prospect of LISA, the proposed space

based GW detector. Signals from a number of GW sources are likely to be present

in LISA's science data. Researchers are currently working on developing the tools

and investigating the capability of LISA data analysis routines to extract the rich

science encoded in these signals. Accurate theoretical models of GWs are a critical

input to the development of a robust mock data bank, and to the development of

accurate LISA measurement techniques. This is the major motivation for most of

this dissertation (chapters 2, 3, and 4). In the process however, we have developed a

versatile semi-analytical/semi-numerical toolkit that can be used for a wide variety of

applications involving perturbation theory, not just LISA science. For example, this

toolkit could be used in a comparison of results between perturbation theory and full

numerical relativity. Chapter 5 explores this to some extent.

The EMRI problem can be broken down into two related parts: (i) A determina-

tion of the inspiral trajectory followed by the smaller object, and (ii) A characteriza-

tion of the gravitational waveforms that result from such an inspiral. Chapters 2 and

3 develop techniques to generate theoretical inspiral waveforms. Chapter 4 general-

izes an earlier approach to model a crucial part of the inspiral trajectory. Chapter 5



uses the tools developed in chapters 2, 3, and 4 along with earlier work to estimate

the residual linear momentum after black hole mergers by extrapolating results from

perturbation theory to higher mass ratios. The rest of this section highlights the goals

and important results from each chapter.

1.6.1 Building gravitational waveforms

The Teukolsky perturbation equation, Eq. 2.5 describes the gravitational waveforms,

h+(t) and hx (t) that result from a given perturbation. It is a second order, linear and

inhomogeneous partial differential equation that describes perturbations due to scalar,

vector and tensor fields in the vicinity of Kerr black holes. The goal of chapters 2

and 3 is to build a versatile numerical code to study EMRIs by solving the Teukolsky

equation. This code accepts any reasonable world-line of the smaller object as an

input and computes the resulting GWs.

The source term of the Teukolsky equation contains Dirac delta functions (and

its derivatives) due to the point-like nature of the perturbing mass. Chapter 2 de-

velops an inherently discrete model of the singular source term and uses it to build

a (2+1)D finite-difference numerical code to solve the Teukolsky equation. [The az-

imuthal dependence is factored out, resulting in an equation in two space and one

time dimensions, (r, 0, t).] Chapter 2 shows that the code can calculate gravitational

waveforms when the smaller object is confined to a simple bound, circular orbit on the

equatorial plane of the central black hole. Tables 2.1 - 2.6 show that the agreement

in the fluxes of the radiated energy with previous calculations is greater than 99%.

Additionally, this improved model of the source term leads to an order of magnitude

gain in accuracy and performance (computational speed) over similar efforts in the

past. Further, Fig. 2-1 shows that the code reproduces the well known quasi-normal

ringing of the black hole in response to a perturbation in the absence of the smaller

object. In summary, the code developed in chapter 2 greatly improves the speed and

accuracy with which we can solve the Teukolsky equation, despite the singular source

term.

The goal of chapter 3 is to extend the code to accommodate more physically



interesting world lines of the smaller object. Models of the source term used in

chapter 2 lead to spurious high-frequency numerical instabilities if the world line of the

smaller object is non-equatorial and eccentric. Chapter 3 generalizes the formalism

in chapter 2 such that these instabilities can be suppressed. One of the key steps in

this extension is to incorporate a Gaussian filter within the source term. When the

smaller object is confined to a bound geodesic, Refs. [53, 36] have developed a code

to solve the Teukolsky equation using a formalism based on the decomposition of the

Teukolsky equation into Fourier frequency modes. In cases where it was possible,

chapter 3 validates waveforms with extensive comparisons to this frequency-domain

based formalism. Tables 3.1 - 3.6 show that the correlation between waveforms from

these two completely different procedures is greater than 99% for a large fraction of

parameter space. Fig. 3-2 shows a typical result of such a comparison. The code is

now in a position to calculate the waveforms corresponding to any reasonable world

line of the smaller object. Fig. 3-4 shows GWs generated during the early inspiral

portion of a typical EMRI. The evolution of the amplitude and frequency of the

radiation during the inspiral is clearly visible.

1.6.2 Generating inspiral trajectories

The trajectory of the smaller object in an EMRI can be broken down into three

regimes: (a) An early adiabatic inspiral phase, where the inspiral time-scale is much

larger than the orbital period. In this stage, the trajectory can be approximated as a

sequence of bound geodesics; (b) A late-time radial infall, which can be approximated

as a single unstable, plunging geodesic; and (c) A regime where the body transitions

from inspiral to plunge [20, 74]. In [74], Ori and Thorne introduced a method to

model the trajectory during the transition when the smaller object starts from an

approximately circular, equatorial trajectory. Chapter 4 generalizes this procedure to

include non-equatorial and eccentric trajectories. I describe the relevance and some

details of this generalization here.

Up to initial conditions, a set of three constants, the energy (E), the component

of angular momentum along the spin axis (Li), and the Carter constant (Q) define a



geodesic around a rotating black hole. The procedure in chapter 4 to predict the tra-

jectory of the smaller object during the transition consists of expanding the geodesic

equations about the last stable (geodesic) orbit and subjecting them to evolving "con-

stants", [E(t), Lz(t), Q(t)]. Tables 4.1 and 4.2 show that the procedure in chapter 4

reproduces the results in [74] for the special case of an approximately circular, equa-

torial trajectory. Further, Figs. 4-1 and 4-3 show that that the trajectory exhibits the

generally expected qualitative behavior arising from effects of both radiation reaction

and unstable geodesics.

This prescription is meant to serve as a stopgap for many other open and important

problems. Although it neglects the conservative part of the self-force, it can be

combined with earlier work to make a reasonable prediction of the entire world line

of the compact object from inspiral to plunge. This world line can be fed to the

code developed in chapters 2 and 3 to produce the resulting gravitational waveforms

from an EMRI. A number of researchers are working towards solving the radiation

reaction problem exactly. Although approximate, the results in [74] may serve as

an independent check for these solutions. This work will also be a good point of

comparison for inspirals predicted by full (3+1)D numerical relativity at small mass

ratios.

1.6.3 Recoil velocities from black hole mergers

Comparable mass black hole binaries radiate gravitational energy as they spiral into

each other and merge. An integration of the momentum carried away by gravitational

waves from asymmetric binaries results in a non-zero recoil velocity of the merged

object. Earlier calculations have shown that perturbation theory extrapolated to mass

ratios (p/M) of 0(0.1) yields reliable estimates for the recoil velocity. In chapter 5

we use the numerical toolkit developed in chapters 2, 3, and 4 to improve earlier

estimates for the recoil velocities from black hole mergers. We compare these results

with (3+1) dimensional numerical relativity. Such a comparison is both a calibration

of the reliability of our code and a consistency check for numerical relativity.

The most important results in this chapter are the recoil velocities shown in tables



5.1-5.5 and Fig. 5-5. The tables show recoil velocities for binaries over a range of mass

ratios and black hole spins. These estimates are in excellent agreement with earlier

calculations from numerical relativity, perturbation theory and PN theory. This is

significant because: (a) Exploration of parameter space is computationally easier in

BH perturbation theory than in numerical relativity, and (b) BH perturbation theory

is more accurate for small mass ratios and in strong fields than PN theory.
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Chapter 2

Towards adiabatic waveforms for

inspiral into Kerr black holes: I. A

new model of the source for the

time domain perturbation equation

This chapter is based on Physical Review D 71, 084008 (2007), which was written in

collaboration with Gaurav Khanna and Scott A. Hughes.

2.1 Introduction

2.1.1 Background

The extreme mass ratio limit of binary systems - binaries with one mass far smaller

than the other - has been a special focus of research in gravitation in recent years.

This is in part because this problem is, at least formally, particularly clean and

beautiful: the mass ratio allows us to treat the binary as an exact black hole solution

plus a perturbation due to the secondary mass. Perturbative techniques can be used

to analyze the system, making it (in principle at least) much more tractable than the

general two-body problem in general relativity.



This limit is also of great astrophysical interest, as it perfectly describes capture

binaries: binary systems created by the capture of stellar mass compact objects

onto relativistic orbits of massive black holes in galaxy cores. Post formation, the

evolution of such binaries is driven by gravitational-wave (GW) emission - the GW

backreaction circularizes and shrinks the binaries, eventually driving the smaller body

to plunge and merge with its larger companion. Such events are now believed to be

relatively abundant (see Ref. [52] for up-to-date discussion and review of the relevant

literature). Since the last year or so of the inspiral is likely to generate GWs that lie

in the low-frequency band of space-based GW antennae such as LISA [67], extreme

mass ratio inspirals (or EMRIs) are key targets for future GW observations.

This chapter builds on earlier work in perturbation theory to lay the foundation

for the development of adiabatic EMRI waveforms. "Adiabatic" refers to the fact

that they are computed using an approximation to the true equations of motion

that takes advantage of the nearly periodic nature of the smaller body's motion on

"short" timescales. This approximation fails to capture certain important aspects of

the binary's evolution. In particular, adiabatic waveforms only incorporate dissipative

effects of the small body's perturbation - effects which cause radiation of energy

and angular momentum to distant observers and down the hole, driving the orbit to

decay. Conservative effects - effects which conserve energy and angular momentum,

but push the orbit away from the geodesic trajectory of the background spacetime

- are missed in this approach. It has been convincingly demonstrated [83] that

conservative effects change orbital phasing in a way that could be observationally

significant. The dissipative-only adiabatic approach to EMRI waveform generation is

thus, by construction, somewhat deficient.

In our view, this deficiency is outweighed by the fact that it will produce wave-

forms that capture the spectral features of true waveforms - a complicated shape

"colored" by the three fundamental orbital frequencies and their harmonics. Also,

the adiabatic approach is likely to produce these waveforms on a relatively short

timescale. Though not perfectly accurate, adiabatic waveforms will be an invaluable

tool in the short term for workers developing a data analysis architecture for measur-



ing EMRI events. In the long term, these waveforms may even be accurate enough

to serve as "detection templates" for EMRI events. Measuring the characteristics of

EMRI sources will require matching data with as accurate a model as can be made,

and over as long a timespan as possible - perhaps a year or more. By contrast,

detecting EMRI events does not require matching a signal with a template for such a

long time [42]. For the short integration times needed for detection, work in progress

indicates that conservative effects do not shift the phase so badly that the signal fails

to match a template. What shift does accumulate due to conservative effects can

be accommodated by systematic errors in source parameters, allowing detection to

occur. (This is discussed in Appendix A of Ref. [34].)

2.1.2 Our approach to adiabatic inspiral

The approach which we advocate for building adiabatic waveforms uses a hybrid of

frequency-domain and time-domain perturbation theory techniques. These two tech-

niques have complementary strengths and weaknesses; by combining the best features

of both toolsets, we hope to make waveforms that are as accurate as possible. Though

a diversion from the main topic of this paper, this approach is a key motivation for

our work. We thus ask the reader to indulge us as we briefly describe our rationale.

In the adiabatic limit and neglecting conservative effects, the separation of timescales

means that orbits are, to high accuracy, simply geodesic trajectories of the spacetime

on short timescales. The orbital decay that is driven by backreaction amounts to the

system evolving from one geodesic orbit to another. Computing the effect of radiation

reaction thus amounts to computing the sequence of orbits through which the system

passes en route to the final plunge of the smaller body into the large black hole [54].

A geodesic orbit is characterized (up to initial conditions) by three constants:

energy E; axial angular momentum Lz; and "Carter constant" Q (see, e.g., [72],

Chap. 33). The Carter constant can be approximately interpreted as the square of the

component of angular momentum perpendicular to the spin axis. It is a consequence

of the presence of a Killing tensor in Kerr geometry. Computing this sequence of

orbits is equivalent to computing the rate at which these constants change due to



radiative backreaction. In this picture, it is useful to regard each orbit (E, Lz, Q)
as a point in an orbital phase space, and to regard the rates at which they evolve,

(E, LZ, Q), as defining a tangent vector to the trajectory an evolving system traces

through this phase space. Adiabatic radiation reaction thus amounts to calculating

this tangent at all orbits.

In the extreme mass ratio limit, the smaller body moves very slowly through orbit

space - it spends many orbits in the vicinity of each (E, Lz, Q). This slow evolution

means that the tangent vector is most accurately represented by the average rate at

which these constants evolve: ((E), (Lz), (Q)), where the angle brackets denote an

appropriate averaging with respect to the orbits. Such an averaging is defined in Ref.

[34].

Once adiabatic radiation reaction data has been found for all orbits, it is straight-

forward to choose initial conditions and compute the worldline z(t) which an in-

spiralling body follows. In this framework, it is just a geodesic worldline with the

constants slowly evolving:

z(t) = Zgeod[E(t), Lz(t), Q(t)] . (2.1)

This worldline can then be used to build the source term for the wave equation,

allowing us to compute the gravitational waves generated as the small body spirals

in. We note here that this approach is conceptually identical to the "kludge" presented

in Ref. [8]. Indeed, the almost unreasonable success of kludge waveforms served as

an inspiration for this formulation of inspiral1 .

In the hybrid approach, a frequency-domain code would be used for the adiabatic

radiation reaction, and a time-domain code used to generate the waves from a small

body following the worldline that radiation reaction defines. Since any function built

from bound Kerr black hole orbits has a spectrum that is fully described by three

easily computed frequencies and their harmonics [90, 35], the averaging needed in

1The major difference between the hybrid inspiral described here and the kludge is that the
hybrid inspiral aims to correctly solve a wave equation at all points along the orbit. The kludge
instead uses a physically motivated approximate wave formula based on variation of the source's
multipole moments, defined in a particular coordinate system.



this prescription is extremely fast and easy to compute in the frequency domain.

Many harmonics may be needed, but each harmonic is independent of all others.

Frequency-domain codes are thus easily parallelized and the calculation can be done

very rapidly. In the time domain, averaging is much more cumbersome - a geodesic

orbit and the radiation it generates must be followed over many orbits to insure that

all beatings between different harmonics have been sampled. Convergence to the true

average for quantities like (E) will be slow for generic (inclined and eccentric) Kerr

black hole orbits (the most interesting case, astrophysically).

By contrast, building the associated gravitational waveform with a frequency-

domain code is rather cumbersome. One must build the Fourier expansion of the

waves from many coefficients, and accurately sum them to produce the wave at any

moment of time. The benefit of each harmonic being independent of all others is

lost. In the time domain, building the waveform is automatic - modulo two time

derivatives, the waveform is the observable that the code produces. Given a worldline,

it is straightforward to build a source for the time-domain wave equation; one then

cannot help but compute the waveform that source generates.

We are thus confident that by using both frequency and time-domain perturbation

techniques, we can get the best of both worlds - letting each technique's comple-

mentary strengths shine to build EMRI waveforms that are as accurate as possible,

in the context of the adiabatic approximation.

2.1.3 This chapter

Key to the success of the hybrid approach is the development of fast, accurate codes for

both frequency and time-domain approaches to black hole perturbation theory. First

results from a frequency-domain code which can handle generic orbits have recently

been presented [36], and the last major formal step (understanding the adiabatic

evolution of Carter's constant Q due to GW emission) is essentially in hand [34, 89,

88]. The frequency-domain side of this program is thus in a good state. Our goal now

is to develop time-domain tools sufficiently robust and generic to handle the case of

interest.



The major difficulty in building a time-domain perturbation code is the source

term, representing the smaller member of the binary which perturbs the large black

hole's spacetime. In the frequency domain, the small body is usually approximated

as having zero spatial extent, and can be represented using delta functions (and their

derivatives). One then constructs a Green's function from solutions of the source-free

perturbation equation and integrates over the source. Thanks to the delta nature of

the source in this representation, this integral can be done analytically. This trick

cannot be done in the time domain - one must choose a functional form of the

source which can be represented on a finite difference grid. The challenge is to pick a

representation that accurately captures the very narrow spatial extent of the source,

but is sufficiently smooth that the source does not seed excessive amounts of numerical

error. This is particularly difficult for sources representing highly dynamic, generic

Kerr black hole orbits in which the source rapidly moves across the grid.

Much recent success in this approach has come from representing the source as a

truncated, narrow Gaussian [68]. Khanna [59] and Burko and Khanna [23] have so far

examined some orbit classes (equatorial orbits, both circular and eccentric) and found

that they can quickly and robustly generate waveforms from orbits around Kerr black

holes. As a diagnostic of this technique, they compute the flux of energy carried by

this radiation and find agreement with pre-existing frequency-domain calculations at

the few percent level.

An interesting recent development is the use of finite element techniques to repre-

sent time-domain sources. Such methods are tailor made for resolving problems with

multiple lengthscales, and as such may be ideal for the EMRI problem. Sopuerta

and Laguna [94] have found that a finite element code makes it possible to represent

the source with amazing accuracy - agreement with frequency-domain calculations

at the few hundredths of a percent level seems common. To date, they have only

examined binaries in which the larger black hole is non-rotating, but they argue con-

vincingly [93] that the difficulties required to model Kerr perturbations should not be

terribly difficult to surmount. These techniques are an extremely promising direction

that is sure to develop extensively in the next several years.



Our goal in this paper is to develop another representation of the source term that

is simpler (and concomitantly less accurate) than finite element methods, but that

is developed somewhat more systematically than the truncated Gaussian. The key

ingredient of this approach is an extension of a finite impulse representation of the

Dirac delta function [37, 102]. In essence, one writes the discrete delta as a series of

spikes on the finite difference grid, with the largest spike centered at the argument of

the delta, and with the spikes rapidly falling off away from this center. One chooses

the magnitude of the spikes such that the delta function's integral properties are

preserved, particularly the rule that

I dx f(x)6(x - xo) = f(xo) . (2.2)

The discrete delta described in Ref. [37] allows one to make a tradeoff between local-

ization and smoothness - one can smear the delta over k points, choosing k to be

small if source sharpness is the key property needed, or allowing k to expand if too

much sharpness causes numerical problems. This representation introduces a kind of

optimization parameter which one can engineer as needed to find the best compromise

between smoothness and localization.

We extend the finite impulse representation of the delta described in [37, 102] in

two important ways. First, the source term of the Teukolsky equation requires not

just the delta, but also the delta's first and second derivatives. We therefore generalize

this procedure to develop discrete delta derivatives. If the delta is represented by k

points, then both derivatives will require k + 2 points. The guiding principle of this

extension is again the notion that the integral properties of these functions must be

preserved:

dx f(x)6'(x - x 0 ) = -f'(xo) ,

dx f(x)6"(x - xo) = f"(xo) . (2.3)

(Here, prime means d/dx.)



If the discrete delta function does not lie precisely on a grid point, then one must

use interpolation to appropriately weight impulse functions from the neighboring grid

points. Our second extension of Ref. [37] is to introduce higher order interpolation

(cubic) which offers another way to trade smoothness for localization. This is partic-

ularly valuable when (as in our application) the source is coupled to a wave equation.

We test this representation by developing a new time-domain Teukolsky equation

solver which uses this form of the delta for its source (the "6-code") and comparing to

a well-established code (see, e.g., [68, 59, 23]) which uses a truncated Gaussian (the

"G-code"). The G-code has been described in detail in a previous publication [68];

for the purpose of this paper, the most salient feature of this code is how it represents

the source term. The G-code begins with the following approximation to the Dirac

delta function:

6[x - x(t)] - exp - t)2 (2.4)

[Cf. Ref. [68], Eq. (19).] The width a is chosen to be small enough that this delta

only spreads across a few grid zones. The Teukolsky equation source is then built

from this Gaussian representation and its derivatives.

The 6-code by contrast uses the representation described in detail in the following

sections of this paper - a representation that is discrete by design, rather than a

discretization of a continuous delta approximation. The principle advantage of this

form seems to be that it makes it possible to rigorously enforce integral identities

involving the delta plus its derivatives.

There are a few other minor differences between these two codes, which are arti-

facts of the codes' independent developments. Chief among these differences are the

use of slightly different axial coordinates (the G-code uses the usual Boyer-Lindquist

coordinate 0; the 6-code follows Ref. [64] and uses a coordinate q defined in Sec.

2.2.1), and the use of slightly different fundamental "fields" (i.e., slightly different

representations of the Weyl curvature scalar '04 which the Teukolsky equation gov-

erns). There are also some differences in the way the two codes implement boundary

conditions. We present a detailed comparison of the results from the two codes in Sec.



2.4. It's worth pointing out that that we also have taken the G-code and replaced its

source term with that used by the 6-code. This exercise confirmed all of the results we

obtained with the 6-code, demonstrating that these minor differences had no impact

on our results.

As a proof-of-principle check of this idea's validity, we restrict our present anal-

ysis to circular, equatorial orbits. The results from both codes are then compared

against frequency-domain results. Flux of energy carried by gravitational waves is a

very useful benchmark with which to diagnose a perturbation theory code's accuracy

(especially for very simple orbits when averaging is easy both in time and frequency

domains). In all cases, we find (after some experimentation to optimize our discrete

delta) that this new source form is more accurate (typically by factors of 2 - 5) and

faster (often by factors of about 10) than the truncated Gaussian. For our purpose,

it appears that this form of source function will be very well-suited to serve as the

core of the time-domain portion of our hybrid approach to EMRI waveforms.

Chapters 3 and 5 will then apply this technique to flesh out the hybrid approach.

Chapter. 3 will examine how well this source works for highly dynamical trajectories

- generic (inclined and eccentric) geodesic orbits and non-geodesic trajectories that

evolve due to radiation reaction. Chapter. 5 will use this toolkit to compute recoil

velocities from black hole mergers. We find that the discrete delta source term handles

such orbits very robustly, validating earlier results for generic orbits. We are now in a

position to develop hybrid EMRI waveforms in earnest, using frequency-domain tools

to compute the effects of radiation reaction, building an inspiral worldline from those

effects, and finally computing the waveform with our time-domain code.

2.1.4 Organization of this chapter

The remainder of this chapter is organized as follows: Section 2.2 reviews how one

solves the Teukolsky equation in the time domain, introducing the equation itself,

specializing to the form that we use for our calculations, and showing how to extract

waveforms and fluxes from its solutions. We first review in Sec. 2.2.1 how one solves

for the homogeneous (source-free) form of the Teukolsky equation, an important first



step to developing a robust solver for the sourced case. We follow very closely the

procedure laid out in Ref. [64]; this section is thus largely a review and summary of

that paper (with a few minor corrections noted). Section 2.2.2 then describes in detail

the form of the source term that applies when perturbations arise from an orbiting

body.

The need to model this source using a delta function motivates Sec. 2.3, our model

for a discrete delta and its derivatives. This section presents the key new idea of this

paper. After describing the basic idea behind our discrete delta, we first present in

some detail (Sec. 2.3.1) an extremely simple two-point discrete delta function. This

illustrates the concepts and principles of this approach. We then generalize this idea

to a multiple point delta in Sec. 2.3.2, and then show how to smooth things with higher

order interpolation in Sec. 2.3.3. Some preliminary issues related to the convergence

of quantities computed using the discrete delta are introduced in Sec. 2.3.4.

We test this delta representation in Sec. 2.4, examining how the various meth-

ods we develop work at describing the Teukolsky source function. Section 2.4.1 first

compares the different discrete delta functions with each other, demonstrating how

the different approaches change the quality and accuracy of our results. Based on

this analysis, we choose to use the high order (cubic) delta described in Sec. 2.3.3 in

the remainder of our work. We then examine the convergence of our code, demon-

strating second-order convergence in Sec. 2.4.2. Finally, in Sec. 2.4.3 we compare the

discrete delta with the Gaussian source function, demonstrating explicitly how this

new representation improves both the code's speed and accuracy.

Our benchmark for evaluating our results is to compare the energy flux carried by

the system's emitted gravitational waves to results obtained using a frequency-domain

code [53, 36]. This operation requires us to extract these waves at a particular finite

radius. Section 2.5 examines the dependence of these fluxes as a function of extraction

radius, and finds that they are very well fit by a simple power law. Using this law,

we can easily extrapolate our results to very large radius; doing so greatly improves

agreement with frequency-domain results, typically indicating that our errors are

significantly smaller than 1% for a large fraction of parameter space.



Concluding discussion in given in Sec. 2.6. Besides summarizing the major findings

of this analysis, we discuss areas where this new computational technology can be

applied.

2.2 Numerical implementation of the Teukolsky

equation in the time domain

Here we describe the evolution algorithm used in the 6-Code, built using a two step

Lax-Wendroff algorithm. Our notation and approach closely follow that used in [64];

some of this section therefore can be considered a summary of that paper. All details

related to the G-Code were described in [68].

Teukolsky derived a master equation that describes perturbations due to scalar,

vector and tensor fields in the vicinity of Kerr black holes in [100, 99]. In Boyer-

Lindquist coordinates, this equation reads

[(r 2 +2) 2 . 4Mar
- [-A asin I tt,-A

-2s[r M(r2 -a 2)+ iacoso] at

+ A-8 r (As+'lr ) + so00 (sin 00oT) +

sin2 a2

2s [a(r - M) +i cos0in2 8 (.

- (s2 COt 2 0 - s) I = -47r (r2 + a2 cos 2 0) T, (2.5)

where M is the mass of the black hole, a its angular momentum per unit mass,

A = r2 - 2Mr + a2 = (r - r+)(r - r_), r± = M ± M 2 - a2 and s is the "spin

weight" of the field. The s = ±2 versions of these equations describe perturbations to

the Weyl curvature tensor, in particular the radiative degrees of freedom 00o and )4.

That is, IF = Vo for s = +2, and ' = p-4 04 for s = -2, with p = -1/(r - ia cos 8).

The T in the RHS of this equation depends on the details of the perturbing source.



It is here that the Dirac delta function and its derivatives enter. A discussion of T is

postponed to the latter half of this section, after we discuss the numerical evolution

of the homogeneous Teukolsky equation.

Gravitational waves, h+ and h, as well as the energy flux dE/dt [60, 24], can be

obtained far away from the system by using s = -2 in Eq. (2.5) and then identifying

1 (0 2 h+ 2h x
04 = -~ 2t2 ) , (2.6)

dE [1 S t

dE = lim sin dO d dt (t, r, 8, 0) 21

1f t
lim - sin 0 dO dI((, r, 0) . (2.7)
r-oo 2 i -oo

The 0 and ¢ directions are taken with respect to the black hole's spin axis; the function

I)(t, r, 0) is a reweighting of the field T which we define precisely in Eq. (2.12) below.

2.2.1 Homogeneous Teukolsky equation

Reference [64] demonstrated stable numerical evolution of (2.5) for s = -2. The

5-code has been built using the algorithm presented in [64], after accounting for some

typographical errors, which are also discussed in [77]. The contents of this section are

largely review of the results presented in [64]; as such, our discussion is particularly

brief here.

Our code uses the tortoise coordinate r* in the radial direction, and azimuthal

coordinate $; these coordinates are related to the usual Boyer Lindquist quantities

by

r 2 + a2

dr* = dr (2.8)

2Mr+ r - r+=r* = r+ In-
r+ - r 2M

2Mr_ r - r_2Mr n - (2.9)
r+ - r_ 2M

52



and

a
d = do + dr

a r - r+- = ¢+ In
r+-r_ r-r_

Following [64], we factor out the azimuthal dependence and use the ansatz,

J(t, r*, 0, ) = eim r3 ((t, r*, ).

II Ot + b Or* ,

r2 + a2
b -

and

E2  - (r 2+ a 2)2 -a 2 Asin 2 0

allows the Teukolsky equation to be rewritten as

tu + MO,ru + Lu + Au = T,

u { N, (r, II, III} (2.17)

is the solution vector. The subscripts R and I refer to the real and imaginary parts re-

spectively. (Note that the Teukolsky function I is a complex quantity.) The matrices

M, A and L are

b

0

m31

-Mn32

0

b

m32

m31

0

0

0

-b

(2.18)

(2.10)

(2.11)

Defining

(2.12)

(2.13)

(2.14)

(2.15)

where

(2.16)



0 0 -1 0

0 0 0 -1
A , (2.19)

a 31  a 32  a 3 3  a 3 4

-a 32 a 31 -a 3 4 a 3 3

and

0 0 00

L , (2.20)
0 0 00

0 131 0 0

where

m31 = -bcl + b b + c2 , (2.21)

m32 = bc3 + 2am(r 2 + a2)/ 2 , (2.22)

m 2 + 2 cos Osm + cos 2 0S 2 - sin2 Os
a31 A

E2 sin 2 0

6 A 2 + r (r (s + 2) - M (s + 3))
-6a (2.23)

r2E2

4M(r - 1)smaM + (6amA)/r
a32 -a32 =2 (2.24)

a 3 3 = C1 , (2.25)

a 34 = -C 3 , (2.26)
A a2 A

131- cot -- (2.27)
E2 a02 E2 o '

c = 2s(-3Mr2 + Ma 2 + r 3 + ra 2 )/E 2 , (2.28)

rA (1 + s) - (a 2 _ r2)Ms 6Ab
c2 = -2 (2.29)

c3 = 2a(2rMm + AscosO)/E 2 . (2.30)

The equations above have been written such that the typographical errors in [64]'s

a 31, a32 , a34 and c2 are obvious. It turns out that the coefficients listed in [64] are

correct when the ansatz T(t, r*, 0, ¢) = eim 4(t, r*, 0) is used. T is a quantity con-

structed from the source term and is discussed in the latter half of this section.



Rewriting Eq. (2.16) as

Otu + DO*u = S, (2.31)

where

b 0 0 0

D b 0 0 (2.32)
0 0 -b 0

0 0 0 -b

S = T - (M - D)O,.u - Lu - Au, (2.33)

and subjecting it to Lax-Wendroff iterations produces stable time-evolutions. Each

Lax-Wendroff iteration consists of two steps. In the first step, the solution vector

between grid points is obtained from

un+1/2/2 21 n+l + u) - (2.34)t+1/2 1

6t - U) - Sn+1/2]

This is used to compute the solution vector at the next time step,

n+l1  n- Dn+1/2 (n+1/2 n+1/2 - Sn+1/2 . (2.35)
i 6 Di i+1/ 2- -/2

The angular subscripts are dropped here for clarity. All angular derivatives were

computed using second order centered finite difference expressions. Notice that the

matrices D, A and M are time independent. In addition, the time stepping must

satisfy the Courant-Friedrichs-Lewy condition [64], 6t < max{ 6r*, 5M 60 }, where St

is the time step2 .

Following [64], we set D and II to zero on the inner and outer radial boundaries.

2Conducting a von Neumann local stability analysis on all the points of our numerical grid yields

that this condition is sufficient for stable evolutions. See reference [64] for more details.



While the asymptotic behavior

lim 09I oc A- *  (2.36)

makes this condition reasonably accurate at the inner boundary, it is clearly unphys-

ical at the outer boundary. By placing our outer boundary sufficiently far, error due

to our outer boundary condition can be made unimportant; reflections from the outer

boundary have no important impact on our results. Symmetry of the spheroidal har-

monics is used to determine the angular boundary conditions. For even Iml modes,

we have 00I = 0 at 0 = 0, 7. On the other hand, ( = 0 at 0 = 0, 7r for modes of odd

Iml.

As a test of our evolution equation, we have examined source-free field evolution

(setting T = 0) for a variety of initial data, in particular comparing extensively

with the results of [64]. As an example of one of our tests, we take initial data

corresponding to an ingoing, narrow Gaussian pulse. This data perturbs the black

hole, causing it to ring down according to its characteristic quasi-normal frequencies.

We find extremely good agreement in mode amplitude and evolution (typically - 1%

error) with results from [64]. Figure 2-1 shows the result of such a test, illustrating

the quasi-normal ringing and power law tail for the 1 = 2, m = 0 mode of a black

hole with spin parameter a = 0.9.

2.2.2 The source term

We now consider the source term, T, of Eq. (2.1). It is given by

T = 2p-T 4 , (2.37)

T4 = ( + 3- + 4p + )( + 27- 21 + p)Tfm

-(A + 37y - + 4p + F)(6 - 27 + 2a)Tm

+(S- + 3 + 3a + 47r)(S - 7 + 20 + 2a)Tnn

- (S - F + + 47)(A + 27 + 2p) )T . (2.38)
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Figure 2-1: Illustrations of quasi-normal ringing for a black hole with a/M = 0.9;

the 1 = 2, m = 0 mode is shown here. Top panel: Evolution of the magnitude

of the Teukolsky function, extracted at r = 20M, 0 = 7r/2. We plot the time

evolution of In I I at this position. Overplotted on this curve (dashed line) is a

function oc exp(-0.078193t/M), demonstrating that we recover the expected decay

law with a damping time T = 12.789M. Bottom panel: Magnitude of the Fourier

transform of oP(t). Notice that it peaks at w = 0.41417/M. These results for w and 7

are in excellent agreement with the expected values of (wM, M/T) = (0.41, -0.078)

from Ref. [61] for quasi-normal ringing of the 1 = 2, m = 0 mode for a = 0.9.

Reference [100] provides definitions for the various quantities which appear in

Eqs. (2.38) and (2.38). Of particular importance are the quantities T"", Tj, and

Tam, given by contracting the stress energy tensor for the orbiting body with the

Newman-Penrose null-tetrad legs nA and rhi:

n P2 (r 2 + a2) AP2 0, ap2) , (2.39)
2 2 2
1

v2(r - ia cos 9)
(-ia sin 0,0, 1, -i csc 0) , (2.40)



where A = r 2 - 2Mr + a2 and p - 2 = r 2 + a2 cos 2 .

Also of great importance here are the Newman-Penrose operators A and 6:

Sd

dx"

p2 (r 2 + a2) d p2 A d aimp2

2 dt 2 dr 2

At + A + A ;
d

dx
ia sin Op2 (r + ia cos 0) d

V2_ dt

(r + ia cos O)p2 d
+

dO
- +so+s,.

mp2 (r + ia cos )
v- sin 0

(The operator A is normally written without the tilde; we have added it here to avoid

confusion with A = r 2 - 2Mr + a2 .)

To proceed, we next must analyze the stress energy tensor describing the small

body. A point body of mass p disturbing the Kerr spacetime is given by

T ,- sin 6[r - R(t)]6[0 - E(t)]6[o - 1(t)] (2.43)

where u" = dx"/dT, and where [R(t), O(t), I(t)] describe the Boyer-Lindquist coordi-

nate worldline of the small body. Due to axial symmetry of the Kerr spacetime, the

only 0 dependence in the stress-energy tensor comes from 6[o - 1(t)]. Writing

(2.44)

and using the fact that

16[- (t)] =I (2.45)S eim[/-(t)]
m

(2.41)

(2.42)

T4v = ETm
v e imo



we find

T = pu~lup 2 6[r - R(t)]6[0 - O(t)]e -imP(t ) (2.46)
27rut sin 0

Using this expansion for T,,, it is a simple matter to construct Tnn = n l nT,

Tn = nfnmivT,,, and Tmm -= mf- vT,V . We then insert these terms into Eqs. (2.38).

Using the chain rule repeatedly leaves us with a (rather complicated) expression

involving radial and 0 derivatives of Dirac delta functions. We thus face the task

of representing the delta function and its derivatives accurately on a numerical grid.

This is the major innovation of this paper, and is discussed in detail in the following

section.

It should be noted at this point that, since the Teukolsky equation is most nat-

urally written in terms of the tortoise coordinate r*, we must describe the radial

behavior of the source term in r* as well. To this end, we replace the radial delta

function and all radial derivatives as follows:

6[r - R(t)] [r*- R*(t)] (2.47)
Idr/dr*I

d r 2 +a 2 d

dr A dr* (2.48)

Finally, in our numerical implementation, we define the vector T appearing in Eq.

(2.7) as

T [O0, 0, Re(T),Im(T)] , (2.49)

where

4irA (r2 ± a2cos29)
T 4x (2.50)

r3 [(r2 + a2) 2 _ a2Asin 2 ]( a r+) +
exp -im- In [2p-T4

( rMT+ - r _ r - r_

The exponential factor in this expression corrects for the fact that the evolution code

uses the azimuthal variable , but the source term is expanded in 4.



2.3 The discrete delta function and its derivatives

As pointed out in the previous section, the Dirac delta function enters the Teukolsky

equation because we approximate the perturbing mass by a point particle. By its

definition as an integrable singularity, the delta function is very difficult to represent

on a finite difference grid. The best we can hope to do is to develop a model function

that captures its most important features, particularly localization to a very small

spatial region, as well as integrability and derivative properties. The following three

subsections describe the model for the delta function we have developed. We first

describe a very basic model that demonstrates how to satisfy our criteria in Sec.

2.3.1. In Sec. 2.3.2 and 2.3.3, we then refine this basic model. These refinements have

been found to improve the overall accuracy of the code.

The discrete delta function approach we use is inspired by the work presented

in Ref. [37]. Our technique can be considered an extension of that used in [37]; in

particular, they do not develop delta function derivatives, nor do they implement

all the refinements discussed in 2.3.2 and 2.3.3. Nonetheless, Ref. [37] played an

extremely important role in developing the foundations of our work.

Before turning to a detailed discussion of our techniques for modeling the delta

function on a numerical grid, we first mention some general considerations pertaining

to delta functions on a finite difference grid. For concreteness, consider a function

and delta combination, f(x)6(x - a). The function f(x) is taken to be known, and

can be calculated for any x. For the sake of argument, let the delta be modeled by

two coefficients Sk and 6k+l on grid points Xk and Xk+1 respectively; the delta is taken

to be zero everywhere else. (This in fact pertains to the form of the delta discussed

in Sec. 2.3.1.)

Now imagine integrating f(x)6(x - a) over all x. Analytically, we know that this

should give us f(a). Numerically integrating this on our grid gives us



h f(xi)6(xi - ) = h[f (k)

+f (k+l)k+l]. (2.51)

This equation suggests that the numerical integral approximates f(a) by interpo-

lating between grid points Xk and Xk+1. If f(x) is rapidly varying, this interpolation

may not be accurate enough; this is sure to be a source of error as we integrate our

PDE forward in time.

Great improvement can be achieved by enforcing the well-known identity

f(x)6(x - a) = f(a)6(x - a). (2.52)

The numerical integral now becomes

h f(a) 6(xi - a) = h [f((a)6k + f(a)6k+1

= f(a)h (6k + k+1)

(2.53)

and the identity is preserved exactly. In the last step, we use the discrete analog of

the property

dx 6(x - a) = 1 .

Similar identities can be used on the delta function derivatives:

f(x)6'(x - a)

f(x)5"(x - a)

= f(a)6'(x- a)

-f'(a)6(x - a),

= f(a)6"(x - a) - 2f'(a)6'(x - a)

+f"(a)6(x - a) .

(2.54)

(2.55)

(2.56)

= f (a) ,



We recommend using these identities as much as possible when numerically im-

plementing the algorithms sketched in the following three subsections.

2.3.1 A simple numerical delta function

Consider the function 6(x - a), where xk < a _< k+1; i.e, a lies between two discrete

grid points. Let h = Xk+1 - Xk = Xk - Xk-1 be the grid resolution. We use the

following integral to define the delta function:

dx f(x) 6(x - a) = f(a), (2.57)

where E > 0 and f (x) is any well behaved function. This means that 6(x - a) is

zero everywhere, except at x = a, where it is singular. Translating this integral to a

summation, we have:

Sdx f(x) 6(x - a)

Sf (a)

(2.58)

(2.59)

h f (xi) 6,

h x, ,

where 6i is the discrete delta defined on the grid. Since a does not necessarily lie on

a gridpoint, we can linearly interpolate to find:

f(OZ) - f(Xk+1) - f(xk) (a- Xk) + f(xk)
h

+O(h 2 ) . (2.60)



Substituting this back into our earlier expression and comparing coefficients, we have

a - Xk fori=k+
6i = h2 for i = k + 1

Z k+1- a= Xk+ -a for i = k

= 0 everywhere else . (2.61)

Notice that if a = Xk, then 6i = 1/h for i = k, but is zero everywhere else; a similar

result holds if a = Xk+1. This reproduces our intuitive notion that the delta function

is zero everywhere except at a single point, and that it integrates to unity. We take

the viewpoint that the integrability of the delta function is its key defining property,

using this rule to derive the results presented below. This is the approach that was

used in Ref. [37].

Another approach to defining a numerical delta function, suggested in [59], is to

first define a step function on the grid, and then use finite differencing to obtain the

delta and its derivatives. The approach described above matches this proposal when

a lies exactly on a grid point.

We can proceed in a similar fashion to find formulae for the derivatives. Let us

define
Xk+l- a 1 -- Xk (2.62)

h h

Again, we start from the defining integrals,

dx f(x) 6'(x - a) = -f'(a), (2.63)

dx f (x) 6"(x - a) = f"(a) . (2.64)

Note that a prime denotes d/dx. Our goal is to derive a form which enforces these



integrals in summation form:

h>Z f(xi) 6, " -f'(a)

S-h f'(x,) ,

= -yf'(Xk)

-(1 - 7)f'(Xk+1) + O(h2 ); (2.65)

hE f(x,) 6 /' f"(a)

i

= 7f"(xk)+

(1 - 7Y)f"(xk+1) + O (h2). (2.66)

The derivatives of f(Zk) are given by the finite difference formulae,

f' (Xk) f (k+) - f (k-1 + 0(h 2 ), (2.67)
2h

S(X) = f (Xk+1) - 2f (Xk) + f (Xk-1)
h2

+O(h 2). (2.68)

Substitution of these approximations in (2.65) and (2.66) and a comparison of coef-

ficients yields for the derivative:

6' - fori=k-1,
2h 2

1-7
1 for i = k,
2h 2

- - fori= k+1,
2h 2

7- 1

2h 2 for i = k+2,

0= everywhere else . (2.69)



For the second derivative:

6 h - fo r i = k - 1 ,

1 - for i = k ,

37 - 2
= for i = k+1,

1 -for i= k+2,

0 everywhere else . (2.70)

Notice that we need four points to represent the derivatives of the delta function in

this scheme.

2.3.2 A multiple point delta function

The procedure described in Sec. 2.3.1 can be extended to represent the delta function

over a larger number of points. On the one hand, this spreads out the delta, moving

us away from our ideal of a function that is non-zero in as small a region as possible; on

the other hand, it allows us to represent it more smoothly on our grid. The number

of points (2n + 2) that we use can thus be considered an optimization parameter,

allowing us to trade localization for smoothness. As we shall see, there is typically a

value of n that represents a very good compromise.

We start off with the 'linear hat' delta function defined in [37] and [102]

S= / h  for xi - a < E = nh (2.71)
S0 otherwise

where

1 ( - 1 x -2 (2.72)Yi (2.72)=

and n is an integer. Note that when n = 1, yi reduces to the y that was defined in

Sec. 2.3.1. Note also that iy is non-zero only for i E [k, ..., k + 2n - 1](so that there



are a total of 2n points), and that a lies between the grid points Xk+n-1 and Xk+n. In

this labeling scheme, xk is the smallest gridpoint where 6i is nonzero.

Substituting this form of the delta function into our defining integral relation,

h f (xi) f((a) , (2.73)
i

we find

Z f(') - f(a) , (2.74)

The quantity y is thus a weighting factor whose weight depends on the distance of

xi from a. Setting f(x) = 1, we find the property

E i = 1. (2.75)

Now consider the derivative of the delta function. Our goal is again to enforce

the rule

(2.76)

Inserting the finite difference formulae for the derivatives of f, Eqs.

into this relation, we find

k+
2

n-1

f'(a) - (z+) f (x,- )

i=k

(2.67) and (2.68),

Zn J

+ [Yk+2n-2f(Xk+2n-1)]

1
+- [k+2n-1f(Xk+2n)]

2h

1
2h

1
+-- [-"7kf(xk-1) - 7k+lf(Xk)] •2hi (2.77)

h 1 6'f(x) ,-- -f'(a) - -h Y6 f '(xi) .

I r /k+2n-2

2h z=k+

k+2n-2
z=k+1



Comparing coefficients, we read off

= Yk (2.78)
2h 2

' ~k+l (2.79)
2h 2 '

+ -- 7k+j-1 - 'k+j+l
k+j 2h 2

for j E [1, 2n - 2] , (2.80)

6 +2n-1 +2n-2 (2.81)
+2n-1 2h 2

,7k+2n-1 (2.82)6 k+2n = 2h 2

The formulas for the delta derivative coefficients can be understood intuitively.

The n-point generalization approximates the delta function as an isosceles triangle

centered at a and sampled at 2n points. The derivative is simply the slope of this

isosceles triangle at all points, except at the center and the edges, where the derivative

is discontinuous. The discontinuity is replaced by coefficients that ensure the integral

properties of the derivative. The delta derivative takes a particularly simple formula

in the "bulk":

' 7k+j-12h 2
- 7k+j+l for j E [1, 2n - 2]

6k+j 2h 2

- 2nh2 [ -nh - nh

1 for Xk+j+1 < - (2.83)

1 2n
2  for Xk+j+ 1 > a + h

Notice that the delta derivative coefficients are non-zero for i E [k - 1, k + 2n] - one

point wider in each direction than the span of the delta on the grid.



A similar analysis can be done for the second derivatives. We start off with

k+2n-1

f"(a) " if"(x) , (2.84)
i=k

k+2n-1

h E 6j'f(x,) = [f (xi,) h2 )+ f (XZh2

i L I
(2.85)

Reading off the coefficients leaves us with

-1 = (2.86)

N, +1- 2N6" k+1 - (2.87)

6 - 7k+ 3 +1 - 2k+3 7+ k+3-1 0

for j [1, 2n - 2] , (2.88)
3
k+2n-1 = 'k+2n-2 - 2

^'k+2n-1
h3  (2.89)

IcfN +2n-1
6
k+2n h3 (2.90)

Notice that the second derivative is zero in the "bulk" - it corresponds to the

second derivative of a line, with constant slope. Like the first derivative, these co-

efficients are non-zero for i E [k - 1, k + 2n] - two points broader than the delta

itself.

We have found that a very sharp delta function, like the two-point model described

in the previous section, leads to instabilities for orbits with varying r or 0 (e.g., for

eccentric orbits). Using a smoother n-point representation suppresses these instabil-

ities; this will be discussed in greater detail in chapter 3. Since r and 0 are constant

for circular, equatorial orbits, these instabilities do not arise for the cases examined

in detail here. Thus for the case at hand, our numerical errors originating from the

finite representation of the delta are smallest when n = 1. This is demonstrated in

detail in Sec. 2.4.



2.3.3 Higher order interpolation for smoothness

Finally, we present a representation of the delta which uses a higher order interpo-

lation scheme. This again spreads the "stencil" of the delta function over a wider

patch of the grid, but improves our ability to reproduce the integral formulation of

the delta identities.

Using cubic interpolation (which requires a total of four points), we find the rule

h f(xi)Si

- h f (X4i)b

The location a lies between

off the coefficients

= f(a)

(a - xk+l)(e - xk+2)(a - Xk+3)f()

6h3

(a - Zk)(a - xk+2)(a - Zk+3)f( )
- 2h3

(a - Zk)(a - Zk+1)(a - Xk+3)f( )

2h 3

(a - Xk)( k - k+l)(a - Xk+2)
6h3 ) .

(2.91)

(2.92)

grid points Xk+1 and Xk+2. From this expression, we read

(a - xk+l)(a - xk+2)(a - Xk+3) at Xk6i = z6h ,4

(aC - Zk)(a - Xk+2)(a - Xk+3) at Xk+1
2h 4

(a - xk)(a - Xk+1)(a - Xk+3)
at Xk+ 2 ,2h4

(a - ZXk)( - Xk+l)(a - ZXk+2)
= I at Zk+3 .

6h4
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(2.93)

(2.94)

(2.95)

(2.96)



A similar analysis for the first derivatives yields

' (Xk+ -- a+)(a- Xk+2)(& - Xk+3) at Xkl (2.97)
12h 5

(a - Xk)(a - Xk+2)(a - Xk+3)
4h6 at Zk , (2.98)4h5

(a - XZkl)( 2 a - 3 Xk + xk+2)(C - Zk+3)
12h5 at Zk+l , (2.99)12h5

(a - Xk)(a - Zk+2)( 2 a + Xk+1 - 3Xk+3)
12h5 at Zk+2 , (2.100)12h5

(a - xk)(a - Zk+l)(a - Xk+3)
4h 5  at Xk+3 , (2.101)4h5

(a - Xk)(a - Zk+l)(a - Xk+2)
= 12h5 at xk+4 . (2.102)12h5

Note, we have used the second order finite difference formula, Eq. (2.67), to derive

this result. In principle, higher order formulas for the derivative could have been

used. We kept to the second order formula in order to keep the derivative stencil

narrow, and also for consistency with our time-stepping algorithm.

Finally, for the second derivatives we find

, (Xk+1 - a)(a - Zk+2)(a - Xk+3)

6h 6

at Xk-1 , (2.103)
(5a - 3Xk - 2xk+1)(a - xk+2)(a - Xk+3)

6h 6

at Xk , (2.104)
(10a 2 - (9Xk + 4 Xk+1 + 7 Xk+2) + Xk+lXk+2 + 3Xk(Xk+l + 2 Xk+2)) (a - Xk+3)

6h 6

at Xk+1 , (2.105)
(a - Xk) (10a 2 - (7Xk+1 + 4Xk+2 + 9 Xk+3)a + 3 Xk+2Xk+3 + Xk+l(Xk+2 + 6Xk+3))

6h 6

at Xk+2, (2.106)

(a - Zk)(a - Zk+1)(5a -
2

Xk+2 - 3
Xk+3)

6h 6

at xk+3 , (2.107)

(a - Xk)(O - Zk+l)(a - Xk+2)

6h 6

at xk+4 - (2.108)



As discussed in more detail in the following section, our analysis suggests that

this cubic interpolation method works best.

We emphasize at this point that, although we are motivated by Teukolsky equation

applications, our discussion here was not specialized to the Teukolsky equation in any

way. The delta models sketched here can be used in any finite-difference numerical

algorithm. We also note that one does not need to stop at cubic-order interpolation;

the basic idea of that scheme could easily be extended to higher order if the application

warranted it. As the order is increased, the "stencil" of the delta is likewise increased,

pushing us away from the intuitive notion of a structureless impulse. This leads us

to believe that there may be a certain interpolation order beyond which the model

ceases to work well.

2.3.4 Convergence with the discrete delta function

The non-smooth nature of the discrete delta function makes understanding the con-

vergence properties of a code based on this function somewhat subtle. Here we briefly

summarize some key issues related to convergence with the discrete delta. This sum-

mary is based on detailed discussion of discretization errors given in Ref. [102]. The

punchline of this discussion is that the discrete delta function is typically at least

second-order convergent, and thus we expect our code to likewise be second-order

convergent.

Let bi be the discretized version of 6(x - a) defined on a discrete grid xi, let

h = z,+l - xi be the grid spacing, and let 6, be non-zero at Xk, Xk+l, ... , k+2n-1.

The continuous variable a lies between Xk+n-1 and Xk+n. This allows us to define a

parameter Tr such that

a = Xk+n-1 + 7 h. (2.109)

This quantity is a measure of how close a is to a grid point; clearly, 0 < i7 1.

We now define the moments of the discrete delta by

k+2n-1

Mr(6 , a, h) = h E 6i(xi - a) r , (2.110)

i=k

71



where r is an integer. In the continuum limit, this definition becomes

Mr --+ 6(x - a) (x - a)r dx ,

= 1 r=0

0 r > 0. (2.111)

A discrete representation will clearly have the correct zeroth moment; however, it will

only have Mr>0 = 0 up to some maximum r. Reference [102] proves that, if q is the

lowest integer such that Mq / 0, then

f(a) - h E Z if (x) <Ch , (2.112)

where C is approximately3 a constant. This delta representation is then qth-order

convergent.

For the multiple point discrete delta discussed in Sec. 2.3.2, we find M0o = 1,

M, = 0, M2 4 0. When we use this discrete delta, we therefore expect our code to be

second-order convergent. We demonstrate this behavior in Sec. 2.4.2. For the cubic

delta function, we find M0o = 1, M 1,2,3 = 0, M4 $ 0. In this case, errors due to the

delta representation are expected to be fourth order. However, since our stepping

algorithm is itself second-order, we expect second-order convergence overall.

2.4 Numerical Implementation and Evaluation of

the Discrete Delta Function

We now implement the Teukolsky equation's source term using the techniques dis-

cussed in Sec. 2.3 for the simple case of a point particle in a circular, equatorial orbit

around a massive black hole. Our goal is to compare the different forms of the discrete

delta discussed in the previous section and to evaluate which is likely to work best

for practical modeling of radiation from astrophysical systems. We also compare our

3In our application, C varies slightly depending on how close the delta peak is to a grid point.



discrete delta model to the Gaussian approximation that has been used in previous

work, illustrating the power of this new model.

We obviously require some "standard" to compare our results against. Frequency-

domain codes provide extremely accurate results for circular, equatorial orbits, largely

since their emitted radiation is concentrated in a small number of multipoles; as such,

they make an excellent standard against which to compare our results. We use the

code described in [53] as our standard.

Tables 2.1 and 2.2 shows energy fluxes obtained from our code for the most dom-

inant azimuthal modes, |ml = 2 and 3 respectively. We compare these figures with

those obtained from the code used in [53]4.

There are two major reasons that the fluxes we compute depart from those com-

puted by frequency-domain codes. First, the time-domain code must extract fluxes

at some finite radius. The FD approach produces, by construction, the waveforms

and fluxes that would be measured infinitely far from the generating binary; this

simply cannot be done on a finite radial grid. A detailed discussion of the impact of

finite extraction radius is given in Sec. 2.5. In brief, we find by varying the extraction

radius that fluxes can be fit to a very simple power law. This power law then allows

us to infer the flux that would be measured by distant observers. The second source

of error is simply numerical - finite difference errors plus the approximate nature of

our discrete delta. Roughly speaking, accounting for finite extraction radius reduces

our errors by about a factor of 2 - 5; the residual error is thus most likely simply

numerical error. This is described in much greater detail in Sec. 2.5.

Figures 2-2 and 2-3 illustrate a typical example of the structure for the Teukol-

sky function T that we find. We show the m = 2 mode of an orbit with radius

ro = 7.9456M around a Schwarzschild black hole; this orbit was selected in order to

compare with results published in [94]. Note that the orbital period at this radius

is T = 27rv/ /M 140M. The data is read out at radius R _- rextract = 250M,

0 = 7r/2; our numerical grid runs from -100M < r* < 500M, with a resolution

4Symmetry in the azimuthal direction results in equal fluxes for +m and -m modes. Thus, |ml
refers to the sum of the fluxes from the +m and -m modes which is equal to twice the flux from
either the +m or the -m mode.
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Figure 2-2: The real part of the m = 2 mode of the Teukolsky function I as a
function of time for a point particle of mass p/M = 0.01 in a circular orbit of radius
ro/M = 7.9456. These data were extracted in the equatorial plane (0 = 7/2) at
radius R = 250M. At this location the Teukolsky function is zero by construction
until t _ 250M, at which point a spurious burst reaches the extraction radius. This
burst is due to our unphysical initial conditions; it quickly propagates off the grid,
leaving a reasonable physical solution for all time afterwords.

Gr* = 0.0625M, and from 0 < 0 < I7 with 60 = 7/40.

Figure 2-2 shows the real part of T over a broad span of time, from the beginning

of our simulation to t ~ 800M. At t - 250M, a very high amplitude, unphysical

burst of radiation reaches the extraction radius. This spurious burst is due to our

initial conditions: We initially set I = 0 and OtT = 0, which is not consistent with

our source function. The time at which this burst reaches the extraction radius is

perfectly consistent with radiation propagating at the speed of light (c = 1 in our

units) across our numerical grid. The burst quickly propagates off the grid, and the

solution for T settles down to a simple oscillation. This is shown in Fig. 2-3, which

zooms in on the behavior of I for t > 350M. Notice that XR has an oscillation period

of about 70M, precisely what we expect for the m = 2 mode of a source whose orbital

frequency is 140M. The energy flux we find from this mode is E/p2 = 1.708 x 10- 4 ,

in excellent agreement with results published in Ref. [94] (compare Table II of [94],

noting that our results require summing over all 1 for fixed m).

Teukolsky function, T at r =250 and 0 =1 5708. x 105
1



Teukolsky function,7 at r =250 and e =1 5708.
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Figure 2-3: The same as Fig. 2-2, but zooming in on the data for t > 350M. Solid

and dashed lines are the real and imaginary parts of I respectively. The Teukolsky
function oscillates with a period of about 70M; since the source has a period of about
140M, this is exactly what we expect for the m = 2 mode. We measure the total
flux of energy carried by this mode to be E/p2 = 1.708 x 10- 4 , in agreement with
previous results (see, e.g., Ref. [94]).

Figure 2-4 illustrates the spatial behavior of the real part of X at a particular

moment in time (t = 312M). This plot illustrates the behavior of Re T as a function
r* and 0 over a wide span of our grid. Clearly visible are the m = 2 mode of the

radiation propagating to large radius as well as the nearly singular delta function

source itself.

2.4.1 Comparison of different discrete delta functions

In this section, we compare results from the various models for the delta function

presented in Sec. 2.3. The variable point approximation for the linear delta function,

presented in Sec. 2.3 provides us with a nice handle to study the convergence of our

results. As we increase n, the half-width of the delta function, the singularity spreads

out and its sharpness decreases. Notice that the physical spread of the source term is
2(n+1)r*(due to the spread of te same as Fig. 2-2, delta derivatives). Thus, decreasing the resolution

has the same effect on the physical width as decreasing n.
has the same effect on the physical width as decreasing n.
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Figure 2-4: The same as Fig. 2-2, but now showing the data for a given moment in
time (t = 312.5M) for a wide range of r* and 0. Along with the outward propagating
radiation packet visible at large radius, the nearly singular delta function source is
clearly visible at the particle's position.

In Tables 2.3 and 2.4, we present results describing two equatorial circular orbits,

one in the extremely strong field (ro/M = 2.32, a/M = 0.9), and another at weaker

field (ro/M = 12, a/M = 0). We show the variation in flux with n, the half-width of

the radial delta function. The angular delta function is represented using two points

(i.e., nng = 1), the minimum number of non-trivial points. The resolutions (6r*, 60)

are held fixed at (0.0625M, ir/40)

The third and fourth columns of Tables 2.3 and 2.4 compare the flux in energy

carried by GWs as computed using the 6-code to flux computed using our frequency-

domain standard. The third column gives a "raw" comparison - we extract the

time-domain fluxes at radius R = 250M and compare to the frequency-domain result.

In the fourth column, we extrapolate the time-domain data, R -+ o, using the

algorithm described in Sec. 2.5. The fourth column thus contains the most relevant

data for assessing which delta representation is "best". We include the third column
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to demonstrate that the difference before extrapolating is not terribly large, but that it

is large enough that the gain due to this extrapolation is significant. It also illustrates

that not performing the extrapolation can mislead regarding which form of the delta

is most accurate.

Data from Table 2.4 indicate that, among the n-point representations, n = 1 gives

the best results for circular, equatorial orbits. The cubic representation, however, is

even better - the smoothness of this technique apparently reduces error even more.

We choose the cubic delta for the remainder of our analysis because it is both smooth

and accurate.

By contrast, the most accurate flux in Table 2.3 occurs when n = 7 (total of 8

points to represent the source), rather than n = 1. The reason is due to a competition

between errors from finite differencing and errors from our delta representation. In

particular, we have noticed experimentally that finite difference errors tend, on aver-

age, to spuriously decrease our measured flux; errors from spreading the delta over

the grid tend to augment the flux. (We emphasize that this is merely a rule-of-thumb

tendency we have noted; we also emphasize that we do not as of yet have a good

explanation for these effects.)

As we approach the horizon, finite difference errors tend to become more impor-

tant. This can be compensated by increasing the width of our delta representations.

At n = 7, the spread of our source is just enough to accurately compensate for finite

difference errors. At larger radius (e.g., the ro = 12M orbit shown in Table 2.4), finite

difference errors are so small that we do best using the minimum number of points

possible in our model.

2.4.2 Convergence of our code

As discussed in Sec. 2.3.4, we generally expect a code built using the discrete delta on

grid with spacing h to exhibit O(h2 ) convergence. In particular, we expect the Weyl

scalar V4 to show second-order convergence. We check this expectation by examining

the flux of energy carried by gravitational waves. Since we expect 04 4= rue + O(h2),



we likewise expect k to exhibit second-order convergence:

E N 412 , IVrue 2 + O(h 2 ) . (2.113)

To demonstrate this convergence, we show the energy flux measured at R = 250M

for two different strong-field5 orbits: ro = 5M, a = 0.8M and ro = 4.64M, a = 0.9M.

The radial and angular grids are set to

6r* = 0.0625 x 2- b/ 4 , (2.114)

60 = 7r/30 x 2- b/4 (2.115)

Actually, 60 was modified slightly from this to insure that 0 = ir/2 lies exactly on

a grid point. This reduced variations about the main h2 trend owing to the slight

dependence of the proportionality "constant" on the delta's peak (cf. discussion in

Sec. 2.3.4). Figure 2-5 shows the results our runs for b E [-1, ... , 4]. Convergence is

shown by examining the fractional error with respect to our densest grid,

SEb - E41
error = E E4  (2.116)

where Eb is the flux inferred at grid parameter b. We normalize to b = 4 since it is

the densest grid available to us. Modulo some slight oscillations, the overall trend of

our data is in very good agreement with second-order convergence.

2.4.3 Comparison of discrete and Gaussian approximations

for the numerical delta

The work in [68, 59, 23] approximates the delta-function by a narrow Gaussian such

that it integrates to unity over the numerical grid. The Gaussian smears out the

5It's worth noting that we found it to be rather difficult to demonstrate convergence using weak-
field orbits. For such orbits, the differences in our computed fluxes were quite small as we varied
our grid density. We need strong-field orbits in order for the errors to be large enough that the
convergence trend is apparent.
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Figure 2-5: An illustration of our code's convergence behavior. We show the fractional

deviation in energy flux in the ml = 2 mode, measured at R = 250M as a function

of grid spacing. The grid is controlled by the integer b using r* = 0.0625 x 2b/4

60 = r/30 x 2 -b/4, with b E [-1,...,4]. The upper data set is for fluxes measured

from an orbit with a = 0.8M, ro 5M; the lower set is for a = 0.9M, ro 4.64M.

For each data set, the dotted line represents what we would expect for perfect second-

order convergence (fit arbitrarily to the data for b = 0); the large dots represent our

actual convergence data.

singularity and thus the source term is non zero at a large number of points on the

numerical grid. In contrast, the models presented in Sec. 2.3 use only a few points

to depict the delta-function and thus do not share this disadvantage. A comparison

on the same hardware and software platform showed that the techniques used here

(the 6-code) are about twelve times faster than the ones that use a smeared Gaussian

(the G-code). The last two columns in Tables 2.1 and 2.2 show the fluxes from the

Gaussian-approximated delta function. Note that the errors in these fluxes are about

2 - 3%, quite a bit higher than errors from the 6-code. Both codes were run with

identical parameters and grid resolutions. The accuracy of both codes improves with

higher resolution, and improvement in both is seen by moving the extraction radius

farther out. However, when these parameters are fixed, we find that the 6-code is



faster and demonstrates higher accuracy.

2.5 Accounting for finite extraction radius

When one discusses the gravitational-wave fluxes which a system generates, one is

normally interested in their asymptotic value infinitely far away. It is of course not

possible for a finite coordinate grid to reach all the way into this distant zone, so it

is of great importance to understand how our fluxes vary with respect to our finite

extraction radius R.

In flat spacetime, the extraction radius is not very important; it just needs to be

sufficiently far away that the field it measures is purely radiative (i.e, not contam-

inated by near-field effects). Conservation laws guarantee that fluxes follow a 1/r 2

law in this region, and so the integrated flux is independent of extraction radius.

Things are not so simple in a curved spacetime - radiation is effectively scattered

off of spacetime curvature, modifying its propagation characteristics compared to flat

spacetime intuition. This is responsible for the late time "tails" that are seen when a

radiation packet propagates away from a black hole (cf. the late time behavior seen in

Fig. 2-1). These tails can be regarded, heuristically, as radiation whose propagation to

large radius was delayed by scattering off the spacetime. It also causes the integrated

flux to depend on and vary with the radius at which it is measured.

We now examine how our fluxes vary with respect to extraction radius. Tables

2.5 and 2.6 present the fluxes measured for four representative strong-field orbits.

In each case, we measure E for the Iml = 2 and Iml = 3 modes at extraction radii

R/M = 100, 200, 300, 400, 500, and 600. These data are then fit to the ansatz

k = E, [1 - q (mQorbR) - p ] . (2.117)

The parameters q, p, and E, are determined by the fit. Notice that E represents

the flux that (according to this ansatz) would be measured infinitely far away. Note

that this form was suggested to us by L. M. Burko [21], and replaces a previous



version which used (rorb/R)P rather than (mQorbR)- p. The two forms can be easily

related to one another; however, the form involving mQorb emphasizes that it is the

asymptotic behavior of the mode, rather than a property of the orbit, that sets E.

This form should also be more readily extendable to non-circular orbits.

Figure 5 shows an example of how well this fit works for one of the cases given in

Table 2.5 (ro/M = 10, a/M = 0.99, m = 2). Pragmatically, this ansatz appears to

fit the data quite well; the quality shown in Fig. 2-6 is typical for the data that we

examined. Interestingly, we find in all cases that the exponent p - 2, independent of

black hole spin, orbit radius, or mode number. Detailed calculations which we will

present elsewhere [22] shows that this corresponds to the dominant correction to the

asymptotic behavior of 04. Such behavior was also demonstrated by Newman and

Unti [73].

x 10
-  Energy flux Vs Extraction radius
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Figure 2-6: A power law fit to our numerically extracted energy fluxes for the case

ro/M = 10, a/M = 0.99, m = +2. Numerical data is indicated by the dots; the curve

is the best fit we obtain for the ansatz given by Eq. (2.117). For this case, the best

fit parameters are q = 7.45, p = 2.06, ,, = 2.197 x 10- 5 .

We now use the fit (2.117) to compare the extrapolated measured flux E~ to

frequency-domain results EFD. This is shown in the last column of Table 2.6. In all

cases, the error we find is less than 1%, sometimes substantially less. A similar fit can



be performed on the angular momentum flux, with similar results. We conclude that

the fit (2.117) accounts for finite extraction radius, providing an accurate estimate

for the fluxes that a particle radiates to infinity. Residual errors are thus much more

likely to be true measures of numerical error in our calculation, and not an artifact

of the extraction.

2.6 Summary and Future work

We have presented a simple, new technique for modeling the Dirac delta function and

its derivatives on a finite difference grid. This technique requires that the source be

modeled only on a handful of points on the grid. Our particular goal in this analy-

sis is to model a pointlike source function for the time-domain Teukolsky equation,

appropriate to describe the smaller member of an extreme mass ratio binary. We

emphasize that our models for the discrete delta and its derivatives are more broadly

applicable than just the Teukolsky equation - these techniques can be used in any

context that requires modeling a sharp, delta-like function on a finite difference grid.

We test this approach by solving the Teukolsky equation for a test body in a

circular, equatorial orbit of a Kerr black hole. Comparing with a well tested time-

domain code that treats the orbiting body using a truncated Gaussian, we find that

this new approach is extremely fast (often by a factor of - 10) and accurate. Using

a frequency-domain code as a benchmark to compare the flux of energy carried by

gravitational waves, we find that the code which uses the discrete delta function is

typically a factor of 2 - 5 more accurate than the Gaussian treatment most commonly

used previously. This accuracy can be improved still further (at least for fluxes) by

using a simple fit that accounts for the variation of the flux with the extraction radius.

Combining our new source function with this fitting law, we find that our code agrees

with the frequency-domain benchmark with errors smaller than 1% for a large fraction

of parameter space, sometimes significantly smaller.

Since the goal of this analysis is to contribute to the modeling of EMRI gravitational-

wave sources, the restriction to circular and equatorial orbits, though a useful, illustra-



tive test, is not astrophysically realistic. Since such binaries form through scattering

processes, they are expected to have substantial eccentricity [42], and the secondary's

orbit should have no special alignment with the spin axis of the large black hole.

Chapter 3 will study how well this new technique handles such orbits. This realistic

case is substantially more difficult to treat than circular, equatorial orbits, since the

orbiting body (and our discrete delta model) very rapidly crosses back and forth over

grid points in both the radial and latitudinal directions. The tables and figures in

chapter 3 show that we get very good results even when we move our discrete delta

model rapidly in a dynamical orbit. Chapters 3 and 5 also examine wave emission

from inspiral (non-geodesic) sequences, including the merger and ringdown phases.

The final goal of this work will be to compute adiabatic inspiral waveforms using

a hybrid of frequency-domain and time-domain, as described in the introduction.

With a robust time-domain code for computing waves from nearly arbitrary physical

worldlines and with a robust frequency-domain code capable of "mass producing"

radiation reaction data for generic Kerr black hole orbits this problem should boil

down to simple a matter of available CPU resources. Once we are in this state,

we hope to produce waveforms efficiently enough that they can be used by workers

looking at problems in LISA data analysis and waveform measurement (e.g., the

"Mock LISA Data Challenge" [4, 3, 29, 2]). These waveforms are likely to be useful

for other astrophysical problems, such as computing radiation recoil from both the

slow inspiral and the dynamic plunge. Computing this effect in the extreme mass

ratio limit may serve as a precision check on recent work looking at this problem in

full numerical relativity [10, 50, 51, 63, 25].
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Table 2.1: Energy flux extracted at R rextrat - 250M for circular, equatorial orbits

for the m = 121 mode of a particle with mass p/M = 1. a/M is the BH spin, ro/M

is the orbital radius. The labels "6" and "G" refer to the results from 6-code and

G-code respectively. Values listed under "FD" are the corresponding fluxes from the

frequency-domain code used in [53].

a/M ro/M P6 EFD -EFD EG G-EFD

0 6 7.385 x 10- 4  7.368 x 10- 4  0.0023 7.246 x 10- 4  -0.017

0 8 1.650 x 10- 4  1.651 x 10- 4 -0.0055 1.623 x 10- 4  -0.016

0 10 5.344 x 10- 5 5.374 x 10- 5  -0.0004 5.290 x 10- 5  -0.016

0.5 6 5.551 x 10- 4  5.539 x 10- 4  0.0022 5.437 x 10- 4  -0.018

0.5 8 1.399 x 10- 4  1.401 x 10- 4  -0.0015 1.375 x 10- 4  -0.019

0.5 10 4.781 x 10- 5 4.812 x 10- 5  -0.0065 4.691 x 10-5 -0.025

0.9 4 2.654 x 10 - 3 2.662 x 10 - 3  -0.0030 2.611 x 10 - 3  -0.019

0.9 6 4.614 x 10- 4 4.621 x 10- 4  -0.0016 4.531 x 10- 4  -0.020

0.9 8 1.249 x 10- 4  1.254 x 10- 4  -0.0039 1.230 x 10- 4  -0.019

0.9 10 4.419 x 10- 5 4.456 x 10- 5  -0.0084 4.339 x 10- 5  -0.026

0.99 4 2.469 x 10- 3 2.484 x 10- 3  -0.0059 2.434 x 10- 3  -0.020

0.99 6 4.450 x 10- 4 4.461 x 10- 4  -0.0024 4.372 x 10- 4  -0.020

0.99 8 1.221 x 10- 4  1.226 x 10- 4  -0.0041 1.201 x 10- 4  -0.020

0.99 10 4.346 x 10- 5 4.386 x 10- 5 -0.0090 4.270 x 10- 5 -0.026

Table 2.2: Energy flux extracted at 250M for circular, equatorial orbits for the m = 131

mode of a particle with mass p/M = 1. All symbols and notation are as in Table 2.1.

a/M ro/M E JEFD b-FD EG Ec--E

0 6 1.465 x 10- 4  1.460 x 10- 4  0.0035 1.431 x 10- 4  -0.020

0 8 2.445 x 10- 5  2.449 x 10- 5  -0.0017 2.399 x 10- 5  -0.020

0 10 6.383 x 10-6 6.435 x 10 - 6 -0.0080 6.291 x 10 - 6 -0.022

0.5 6 1.015 x 10- 4  1.014 x 10- 4  0.0011 0.992 x 10- 4  -0.021

0.5 8 1.993 x 10- 5  1.980 x 10- 5  0.0066 1.935 x 10- 5  -0.023

0.5 10 5.521 x 10-6 5.572 x 10-6 -0.0090 5.410 x 10-6 -0.029

0.9 4 6.485 x 10- 4  6.467 x 10- 4  0.0028 6.336 x 10- 4  -0.020

0.9 6 8.031 x 10- 5  8.043 x 10- 5  -0.0015 7.865 x 10- 5  -0.022

0.9 8 1.710 x 10- 5  1.717 x 10- 5  -0.0043 1.677 x 10- 5  -0.023

0.9 10 4.992 x 10-6 5.044 x 10-6 -0.0103 4.893 x 10-6 -0.030

0.99 4 5.932 x 10- 4  5.924 x 10- 4  0.0014 5.805 x 10- 4  -0.021

0.99 6 7.688 x 10- 5  7.688 x 10- 5 -4.8 x 10- 5 7.528 x 10- 5  -0.022

0.99 8 1.6542 x 10- 5 1.669 x 10- 5  -0.0086 1.628 x 10- 5  -0.025

0.99 10 4.879 x 10-6 4.942 x 10-6 -0.0127 4.792 x 10-6 -0.030



Table 2.3: Comparison of several implementations of the discrete delta function. We
show results for the linear hat delta described in Sec. 2.3.2, as well as the cubic delta
function described in Sec. 2.3.3. All fluxes are measured at R = 250M for the Iml = 2
mode. For the linear hat delta, the total number of points in the function is 2(n + 1).
The cubic delta uses 6 points in all. These results are for orbits of radius ro = 2.32M
about a black hole with a = 0.9M. The total flux in Iml = 2 modes according to
our frequency-domain standard is EFD /p 2 = 2.061 x 10- 2 .

Total points,
2(n + 1) E 250  (E 250 - EFD)/EFD Eoo (Eoo - EFD)/EFD

64 2.889 x 10- 2 4.0 x 10 - 1 2.890 x 10 - 2 4.0 x 10- 1

32 2.194 x 10- 2 6.5 x 10- 2 2.195 x 10- 2 6.5 x 10- 2

16 2.055 x 10- 2 -2.8 x 10- 3  2.056 x 10- 2 -2.4 x 10- 3

8 2.027 x 10- 2 -1.6 x 10- 2 2.028 x 10- 2 -1.6 x 10- 2

4 2.023 x 10- 2  -1.9 x 10- 2 2.024 x 10- 2  -1.8 x 10- 2

cubic 2.024 x 10- 2 -1.8 x 10- 2 2.024 x 10- 2 -1.8 x 10- 2

Table 2.4: Same as Table 2.3, but now for an orbit with ro = 12M about a black
hole with a 0. The frequency-domain flux for Iml = 2 modes in this case is
EFD /p 2 = 2.172 x 10- 5 .

Total points,
2(n + 1) E 250  (E 250 - EFD)/EFD Eoo (too - EFD)/EFD

64 2.342 x 10-  7.8 x 10-  2.376 x 10- 5  9.4 x 10-1
32 2.191 x 10- 5  8.7 x 10- 3  2.224 x 10- 5  2.4 x 10- 1

16 2.156 x 10- 5  -7.5 x 10- 3  2.187 x 10- 5  7.1 x 10- 3

8 2.148 x 10- 5  -1.1 x 10- 2 2.179 x 10 - 5  3.3 x 10 - 3

4 2.146 x 10- 5  -1.2 x 10-2 2.177 x 10- 5  2.5 x 10- 3

cubic 2.145 x 10- 5  -1.2 x 10- 2 2.177 x 10- 5  2.3 x 10- 3

Table 2.5: Fluxes extracted at a sequence of radii on the numerical grid. a/M is the
BH spin, ro/M is the orbital radius and Iml is the azimuthal mode. ER is the flux
measured at radius RM.

|ml a/M ro/M Eloo E 2 0 0  E 3 0 0  E 4 0 0  E 5 0 0
2 0.99 4 2.4567 x 10-  2.4681 x 10-  2.4702 x 10 2.4709 x 10-  2.4712 x 10-

2 0.99 10 4.1032 x 10- 5  4.3209 x 10- 5 4.3598 x 10- 5 4.3767 x 10- 5 4.3828 x 10- 5

2 0.90 10 4.1729 x 10- 5 4.3930 x 10 - 5 4.4322 x 10 - 5 4.4456 x 10 - 5 4.4517 x 10 - 5

2 0.00 12 1.9584 x 10- 5  2.1256 x 10- 5 2.1554 x 10- 5 2.1654 x 10- 5  2.1699 x 10- 5

3 0.99 4 5.8962 x 10 -  5.9278 x 10 - 4  5.9334 x 10 - 4  5.9353 x 10-  5.9361 x 10 -

3 0.99 10 4.5778 x 10-6 4.8558 x 10-6 4.9051 x 10-6 4.9220 x 10 - 6 4.9297 x 10-6
3 0.90 10 4.6791 x 10-6 4.9588 x 10-6 5.0085 x 10-6 5.0255 x 10-6 5.0333 x 10-6
3 0.00 12 1.9528 x 10-6 2.1326 x 10-6 2.1650 x 10-6 2.1761 x 10- 6 2.1812 x 10-6



Table 2.6: Best fit parameters, E, p, q [appearing in Eq. (2.117)] for data presented

in Table 2.5.

Iml a/M ro/M E60 o Eoo p q EFD EooEFD

2 0.99 4 2.4714 x 10 - 3 2.4718 x 10 - 3 2.04 3.40 2.4836 x 10 - 3  -0.0048

2 0.99 10 4.3861 x 10 - 5 4.3953 x 10 - 5 1.96 2.31 4.3948 x 10 - 5  0.0001

2 0.90 10 4.4550 x 10 - 5  4.462 x 10- 5  2.05 2.70 4.4560 x 10 - 5  0.0014

2 0.00 12 2.1723 x 10 - 5 2.1779 x 10 - 5 2.07 2.59 2.1722 x 10 - 5  0.0026

3 0.99 4 5.9364 x 10 - 4 5.9375 x 10 - 4 2.09 10.74 5.9239 x 10 -  0.0023

3 0.99 10 4.9339 x 10-6 4.9428 x 10-6 2.06 7.27 4.9417 x 10-6 0.0002

3 0.90 10 5.0375 x 10-6 5.0466 x 10-6 2.06 7.16 5.0440 x 10-6 0.0005

3 0.00 12 2.1839 x 10-6 2.1900 x 10-6 2.05 6.20 2.1890 x 10-6 0.0004
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Chapter 3

Towards adiabatic waveforms for

inspiral into Kerr black holes: II.

Dynamical sources and generic

orbits

This chapter is based on Physical Review D 78, 024022 (2008), which was written in

collaboration with Gaurav Khanna, Scott A. Hughes and Steve Drasco.

3.1 Introduction

3.1.1 Background

The extreme mass ratio limit of general relativity's two-body problem has been a

major focus of work in recent years. This limit corresponds to a stellar mass compact

object that orbits and perturbs a massive black hole. The system generates gravita-

tional waves (GWs) which drive the small body to inspiral into the large black hole.

Measuring such "extreme mass ratio inspiral," or EMRI, events is a major goal for

space-based GW antennae, particularly the LISA mission1 . EMRIs should be mea-

lhttp://lisa.nasa.gov, http://sci.esa.int/lisa



surable to a redshift z - 0.5 - 1. The event rate at this range is estimated to be high

enough that a multiyear LISA mission should measure dozens to hundreds of EMRI

events [42]. Because the smaller body only slightly perturbs the larger black hole's

spacetime, EMRI GWs are expected to provide an exceptionally clean probe of black

hole properties. We expect to use EMRIs to measure black hole masses and spins

with extremely good accuracy [11], and even to test how well the spacetime meets the

rather stringent constraints that the "no-hair" theorems of general relativity impose

on black holes [28, 48, 12, 44].

Understanding EMRI sources will require us to compare measured waves with

theoretical models that are as accurate as possible. This goal motivates much re-

cent EMRI work. The waves are sufficiently complicated that simply detecting them

in LISA's datastream will be a challenge. Techniques for finding these events are

currently being developed and tested through the "Mock LISA Data Challenges",

or MLDCs (see Refs. [6, 7] for overviews of recent MLDCs). An important input

to these challenges (and to the development of EMRI measurement techniques more

generally) are waveform models that capture the true complexity of EMRI events (see

[7] for discussion of recent work to include EMRI waves in the MLDCs).

This chapter presents a further step in our program to construct accurate EMRI

wave models. As discussed in the introduction to chapter 2, our goal is to make

"adiabatic" waveforms - waveforms built by separately treating the long-time dis-

sipative evolution and the short-time conservative motion. In our present analysis,

we take the short-time motion to be a geodesic orbit of the background spacetime;

our approach thus amounts to approximating the inspiral trajectory as a sequence of

geodesic orbits. As discussed by Pound and Poisson [82], this limit is more properly

a "radiative" or "dissipative" approximation, since we do not include conservative

self-interactions. It may be possible to augment this analysis with at least some

conservative effects [41], so we believe the program we are developing is capable of

building truly adiabatic inspiral waveforms as described in [82]. We will describe our

goal as "adiabatic" waveforms, but the reader should bear in mind that the approxi-

mation we are currently developing is more restricted than this.



Geodesic orbits are described (up to initial conditions) by three conserved con-

stants: energy E, axial angular momentum Lz, and "Carter constant" Q. Using black

hole perturbation theory, we compute the rate at which these three constants evolve;

fast and accurate frequency-domain codes make it possible to compute these rates

of change fairly easily [36, 88, 34]. We then build the parameter-space trajectory

[E(t), Lz(t), Q(t)] followed by the small body; choosing initial conditions, it is simple

to build the coordinate-space worldline [r(t), 0(t), 0(t)] of a particular inspiral. From

this worldline, we build the source to a time-domain code. The output of this code

is, at last, our model EMRI wave.

3.1.2 Time-domain black hole perturbation theory

Since the frequency-domain portion of this program is already well in hand, our

current focus is on the time-domain code. In essence, our goal is to build a code

which takes as input any physically reasonable worldline, and provides as output the

waveform produced by a small body on this worldline. In chapter 2 , we demonstrated

an accurate (2+1)D numerical code to solve, in the time domain, the wave equation

for curvature perturbations to a black hole - the Teukolsky equation [100]. Our

code evolves the Weyl curvature scalar X4, constructed by projecting the vacuum

curvature onto appropriate components of a null tetrad; see chapter 2 for details.

The azimuthal dependence of 'I4 is separated out (due to the 0 symmetry of black

holes); the dependence on the Boyer-Lindquist coordinates r, 0, and t is found by

evolving '4 on a numerical r-0 grid.

As is common in black hole perturbation theory, we treat the smaller body as a

Dirac-delta point particle, leading to a singular source for the Teukolsky equation.

In the frequency domain, the delta can be dealt with analytically, and presents no

great challenge. By contrast, accurately computing the effect of a sharp source on

the time-domain code's numerical grid can be extremely challenging. In chapter 2 ,

we presented a new technique for treating the singular source term. Our innovation

was to model the delta as a series of finite impulses, with the largest impulse located

close to the delta's argument, falling off rapidly as we move away from this "central"



spike. Importantly, this approach allows us to accurately model the derivatives of

the delta function. Since the Teukolsky equation source depends on first and second

derivatives of the delta (as well as the delta itself), this appears to give us an accuracy

boost relative to other finite-difference delta representations (such as a truncated

Gaussian), which may accurately capture the delta's behavior, but not do so well

with the derivatives.

3.1.3 This chapter

Chapter 2 focused on the properties of this new source representation. To clarify

this focus, we studied very simple orbits: We only considered the (astrophysically

unlikely) case of circular, equatorial black hole orbits. We now extend this to include

inclined, eccentric and generic orbits, as well as non-geodesic inspiral sequences.

A particle in a circular, equatorial orbit has constant radial and angular coor-

dinate, confining it to a fixed location on the r-O grid. Eccentricity means that

the orbit oscillates radially, crossing radial grid zones. Similarly, orbital inclination

results in angular grid crossing. We quickly discovered that these new motions in-

troduce high frequency numerical noise. This noise can be controlled by combining

a low pass filter with a higher order discretization of the delta function; details are

given in Sec. 3.2. Aside from this mild extension of the basic formalism presented

in chapter 2 , it was not terribly difficult to use our new source term to handle a

broad class of astrophysically interesting orbits. To validate our results, we present in

Sec. 3.3 extensive comparisons with waveform snapshots computed in the frequency

domain [36], demonstrating graphically and quantitatively (with appropriate overlap

integrals) excellent agreement between the two techniques.

As extensively discussed in the introduction to chapter 2 and here, our goal is to

compute the waves from inspiral of a small body through a sequence of orbits. As

a proof-of-concept demonstration of the feasibility of this idea, we present a simple

example of inspiral in Sec. 3.4. In this example, we evolve through our geodesic

sequence using a "kludged" approximation to the rates of change of orbital constants,

using the code described in Refs. [43, 8]. These waveforms are not reliable EMRI



models, but they illustrate the ease with which we can handle the effect of radiation

emission on the motion of the source. Computing waves from an inspiral is no more

of a computational challenge than computing waves from a bound geodesic.

The next step will be to combine accurate radiative backreaction with our time-

domain solver to compute "adiabatic" EMRI waveforms (albeit ones that still neglect

conservative self interactions). Plans for this next step are described in our final

summary, Sec. 3.5.

3.2 Dynamically varying discrete delta functions

In chapter 2 , we presented a method for representing a Dirac delta function and its

derivatives on a discrete numerical grid. In that chapter, we only considered a delta

with fixed radial and angular position. Naive application of the discrete delta models

presented in chapter 2 leads to instabilities when the particle moves in the numerical

grid. The following argument outlines the root cause of these instabilities. Consider

the function 6[x-a(t)], where Xk < a(t) < xk+1; i.e., the delta's peak varies with time

and lies between two discrete grid points. Let ax represent any discrete point on our

grid, and let h = Xk+1 - Xk = Xk - Xk-1 be the grid resolution. Naive application of

the results from chapter 2 might lead us to model the delta function with the impulse

weights

6i (tn) (t for i = k + 1 (3.1)

= Xk+1 - a(tn) for i k (3.2)
h
2

0 everywhere else . (3.3)

(This "two impulse" delta is in fact just the simplest representation we developed in

chapter 2 , but is useful for the following discussion.) Each t, defines a time slice of

our r-8 grid. As a varies from one time slice to another, so do the coefficients at Xk

and Xk+1. The frequency spectrum of 6k(tn) and 6 k+l(tn) will reflect the amount of

variation in a. A large variation in a will produce a high frequency component in the



Fourier transform of the time series of each weight. These variations couple to the

time derivatives in the homogeneous part of the Teukolsky equation. Consequently,

the solution contains spurious high frequency features of numerical origin.

Consider the extreme limit of this effect: a changes so rapidly that the delta's

peak moves across a grid zone in a single time slice:

a(ti) = a(to) - h, (3.4)

so that

Xk < a(to) < k+ (3.5)

but

Xk-1 _ aO(tl) Xk . (3.6)

The weight of the delta function very suddenly becomes zero at Xk+1 as we step from

t = to to t = tI; likewise, the weight at Xk-1 very suddenly jumps from non-zero to

zero in this step. The coupling of this sudden change to numerical time derivatives

drives instabilities in our code, in a manner reminiscent of the initial burst of radiation

that occurs due to the sudden appearance of the particle at the start of our evolution;

see Fig. 2 of chapter 2 .

This problem is substantially mitigated by using a delta representation with a

wider stencil; examples of this are described in chapter 2 . Wide stencils reduce the

amount by which each weight changes from step to step, thereby reducing numer-

ical noise. Another useful tool is to increase the order of the delta representation,

thereby increasing the smoothness of the delta and its derivatives. This is particu-

larly important since the Teukolsky equation is a second-order differential equation;

some smoothness in the derivatives is necessary to prevent the differential operator

from seeding excessive noise. Finally, residual high frequency noise can be removed

by convolving the source with a low pass filter 2 . These three techniques are each

2An obvious brute force workaround left off this list is to simply make the grid extremely fine and
use tiny time steps. This does not address the root cause of instabilities seeded by particle motion,
though it is certainly something used in practice (to the extent that computational limits allow).



described in the following subsections.

Each of these techniques smear out the delta function, pushing us away from

the idealization of a zero width singularity. Choosing between stability (which tends

to push us to a wider delta) and faithful representation of the singularity (which

pushes us to a narrow delta) leads us to an optimization problem; we tune our delta

representation in a way that (hopefully) minimizes numerical noise and maximizes

accuracy. Note also that, in addition to high-frequency noise generated by abrupt

movement of the delta across the grid, spurious excitations of the quasinormal modes

of the black hole also appear due this motion. This source of "noise" appears to

be controlled by grid resolution - wider grids lead to less pointlike deltas, which

spuriously excite these modes. This spurious contribution to the EMRI waves can be

mitigated with a form of Richardson extrapolation [84]. We discuss this further in

Sec. 3.3 and the Appendix.

3.2.1 Higher order delta functions

Discrete delta representations based on linear and cubic interpolation were derived in

chapter 2 . We now extend this process to arbitrary polynomial order, equipping us

with an entire family of discrete delta functions.

As in chapter 2 , we start from the defining integral,

dx ()+ d f(x) 5[x - a(t)] = f[a(t)] . (3.7)

Let Xk+n-1 < a < zk+n; the reason for our somewhat idiosyncratic choice of subscripts

will become clear as we proceed. For clarity, we will not explicitly write out the time

dependence of a; the reader should bear in mind that a = a(t) in all that follows.

Rewriting Eq. (3.7) as a sum over a finite step size, we have

dx f(x)S (x -a) h f (xi) 6i

f (c) h f (xi) 6i. (3.8)



The function f(a) can be approximated by the Lagrange interpolating polynomial,

f(a)

k+2n-1

E H(a)

(a - Xrz(nl f X"

where 2n is the order of interpolation and

k+2n-1 2n-1

II(a) = J (a - Xz) = ( - k+z)
z=k Z=0

II'(x,)
[dlI] k+2n-1

da j (2, - k)

Inserting this in Eq. (3.8) leaves us with

k+2n-1 (a)

( (a) f(X?)
i=k (a - x,)II'(xi)

comparing coefficients of f(x,) allows us to read off 6 i,

n(a)
h(a - x)II'(x,) (3.13)

We thus see that 6, is non-zero for i E [k, k + 2n - 1].

The weights for derivatives of the delta function can be obtained similarly. Writing

the identities

J dx f(x) 6'(x - a)

Sdx f(x) 6"(x - a)

= -f'(a)

= f"(a)

(3.14)

(3.15)

(3.9)

(3.10)

(3.11)

(3.12)= h f (xi) ,;
s



as sums gives us

h f(xi) 6,'

(i

i f (i) 6i"
i

-f'(a)

k+2n-1 i(a)f'( x

h(a - x)zH'(xi)

= h5 f"(xi)6

k+2n-1 H(a)f"(xi)

= h(a - x)II'(xj)i=k

We now insert centered finite difference formulae for the derivatives of f(x,) to obtain

k+2n-1 I(a)

f(x') =- h(a - xi)rI'(xi)
i=k[f (xi+1) - f (x?,_)

2h

k+2n-1 11(a)f f(xi) 6' = x
E h(a - xi)H'(xi)X

f(i i=k

[f (xi+l) - 2f (xi) + f (xi-1).
h2

I

(3.18)

(3.19)

Expressions (3.18) and (3.19) are in a form that makes it simple to read off 6i and

6i'. For example, 6' can be calculated by setting f (x) = 1 and f(xl) = 0, 1 4 j. It is

straightforward to verify that setting n = 1 and n = 2 reproduces the weights given by

the two-point linear hat and the cubic formulae (described in chapter 2 ) respectively.

We also note that the delta derivative coefficients are non-zero for i E [k - 1, k + 2n].

(3.16)

(3.17)

h f(x,) 6j' _ f"(a)



3.2.2 Wider stencils at a given interpolation order

In chapter 2 , we generalized the two-point linear hat delta function such that it can

be represented over a larger number of points. Similarly, we develop a procedure

to widen the stencil of the generalized model obtained from Eqs. (3.13), (3.18), and

(3.19).

Consider a model for 6, obtained from Eq. (3.13) for some n = m. Then, 6, L 0 for

i E [k,..., k + 2m - 1]. Our goal is to widen this representation by some integer factor

w such that the coefficients are non-zero for a wider range of grid points. Let us label

the weights of this wider representation by 6,", with 6' - 0 for i E [k, ..., k + 2wm - 1].

It should be emphasized that this is different from simply using Eq. (3.13) with

n = wm; we have not changed the polynomial order, it remains fixed at 2m.

For concreteness, let us choose w = 2, doubling the number of points in the delta

representation. We infer the coefficients 62 at gridpoints i = k, k + 2, k + 4, .

k + 4m - 2, by widening the grid by a factor of two: We evaluate 6, with h -* 2h,

Xk+-? Xk+2 3 to get

6 k+2j Jk+J h-*2h,xk+3 -*Xk+ 23

II(a)
(3.20)2h(a - xk+2j)Il'(Xk+23)

where
2m-1

II(a) = f (a - Xk+2) . (3.21)
z=0

Finally, we need 6i at the intermediate points i = k + 1, k + 3, ... , k + 4m - 1. We do

this by exploiting the translational symmetry of the problem. Momentarily reinsert

the time dependence of the 6's and a. Now consider the hypothetical situation where

a(to) = ao ,

a(ti) = ao - h; (3.22)



i.e, a(t) changes by a grid spacing from to to tl. We must have

+k2+2(t) 1 +2j+l(tO)

#6, +2  ( t)-*ao-h +2j+1 (tO)Ja(t)ao. (3.23)

We can turn this equation the other way around to read off the coefficient 6 +2j+1 at

to: Simply replace a(t) with a(t) - h in the formula for 6k+2 (to) to obtain 6k+2j+ (to).

Since there was nothing special about our time slice, to, we find

6k+2j+l (tn )  
6 k2+2 (tn) a(t)-a(t)-h (3.24)

for any moment tn.

Though we chose w = 2 for concreteness, the above argument can be generalized

to any integer w. Since our result holds for all time slices, we again suppress the time

dependence to obtain expressions for any integer w:

2m-1

H(a) 1= ( - k+i) , (3.25)
i=O

6W+wj = (k+jJh-_wh,xk+3 -*xk+w3  (3.26)

(a) (3.27)
wh(a - Xk+Wj)1'(Xk+wj)

k+wj+l k+wjJ (t)- a(t)-lh

for 1 E [1, 2,..., w- 1]. (3.28)

These techniques carry over to the derivatives as well:

6w3 = 6+jJh,--2 k+-Xk+w (3.29)

k+wj+l= k+wjJa(t)--a(t)-lh

for 1E [1, 2,..., w- 1]; (3.30)



and

"k+wj - 6 k+ jh-wh,Xk+3 -k+w 3  (3.31)

k+wj+l - k+wjia(t)-*(t)-lh

for I E [1, 2,...,w- 1]. (3.32)

These should be used with Eqs. (3.13), (3.18) and (3.19) to widen the Teukolsky

source term by any factor w.

3.2.3 Smoothing the source with a Gaussian filter

Further control of numerical noise can be achieved by filtering high frequency compo-

nents in the source term. This requires a convolution of the source with a discrete low

pass filter. We use a Gaussian filter because it maximizes the uncertainty principle

- it can be localized in both position and frequency with greatest efficiency.

Consider a source of the form

s(x) = fi(x)6(x - a) + f 2 (x)3'(x - a) + f 3 (x)6"(x - a) . (3.33)

Delta function identities allow us to rewrite this as

s(x) = gi(a)6(x - a) + g 2 (a)6(X - a) g3 (a)6(X - a) , (3.34)

where

91(c) = fl (a) - f'(a) + f "(a),

g2(a) = f2(a) - 2f(a),

93(a) = f(a). (3.35)

On a discrete grid, this becomes

s(Xi) = Si = gl(a)6i + g2 (a) + g3(a)6 ' . (3.36)
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If the delta function and its derivatives span 2n + 2 grid points, with Xk+n-1 <_ a <

Xk+n, then si = 0 for i E [k - 1,..., k + 2n]. The source si is zero everywhere else on

the grid.

The Gaussian filter is given by

exp[- (kh/b)2 /2] (3.37
C = P exp[- (ih/b)2 /2]

where k E [-p, -p + 1,..., p] and b is the width of the filter. The quantities p and b

are adjustable parameters. Typically, we use p = 30 and b = 1.5h. Notice that

p

E ci = 1; (3.38)
i=-p

this normalization guarantees that the integrated value of any function convolved

with the filter is unchanged.

We now convolve the source with the filter to obtain

P

Sgk = CSk+i (3.39)
i=-p

where sgk is the smoothed source term. This indicates that sgk : 0 for k E [k -

p,..., k + 2n + p - 1].

A wide filter spreads the source over a large domain on the numerical grid and

thus increases errors, although it eliminates spurious harmonics. We have found that

using a wide stencil followed by a narrow Gaussian smoother works very well to reduce

numerical noise and minimize errors from an insufficiently pointlike source.

3.2.4 Order of convergence of the filtered delta

Chapter 2 discussed in detail the convergence of a code that uses a discrete delta.

Crucial background is given by Ref. [102] and summarized in chapter 2 . The key
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point is that the moment

k+2n-1

Mr = h E 6,(X, -n) (3.40)

controls the delta's convergence properties. Clearly, Mo = 1 (otherwise the delta is

not properly normalized); in the continuum limit, Mr = 0 for r > 0. For the discrete

delta, the smallest non-zero value of r for which Mr j 0 sets the order of convergence.

In particular, if Mr 7 0, then a code which uses this delta will be no higher than

rth-order convergent.

We now show that, if a delta representation is second-order convergent before

smoothing with the Gaussian filter (M0 = 1, M1 = 0, M 2 : 0), it will remain

second-order convergent after smoothing. Upon convolving the discrete delta with

the Gaussian smoother, we find

p

6gz = c6 . (3.41)
3=-p

Let us denote the moments of the smoothed delta by Mrg. As discussed in Sec. 3.2.3,

the convolution does not change the delta's normalization as long as the Gaussian

filter is itself properly normalized; thus

k+2n+p-1

Mog h E 6gi = 1. (3.42)
i=k-p

We now examine the next higher moment of the smoothed delta:
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k+2n+p-1

i=k-p

6g, (xi - a) cjS,+j(xi - a),
p k+2n+p-1

j=-p i=k-p

p k+2n+p-1

= hjc, S 6i+,(xi-a),
J=-p i=k-p

p k+2n+p-1

= h cj 6j(x+j - a - jh)
j=-p i=k-p

p k+2n+p-1

Sh E c i+ (xi+j - a)

j=-p i=k-p

p k+2n+p-1

-h E hjc E 6 i+j.
j=-p i=k-p

The first term on the final line of (3.43) gives zero: Since E 6z1x = a,

p k+2n+p-1

hj=-p i 6+(x+=k-pj-
j=-p i=k-p

p k+2n+p+j-1

h cc 6 ( (x-a)
j=-p l=k-p+j

The second line follows because IjI <= p, i = 0 if i lies outside [k, k + 2n - 1] and

M 1 = 0.

The second term on the final line of (3.43) also yields zero:

p k+2n+p-1

h E hjc, E Ji+,
j=-p z=k-p

p k+2n+p+j-1

j=- =k-p+j
j=-p l=k-p+j

= h2 jCj
j=-0

- 0 .

The Gaussian filter's symmetry property cj = cj has been applied in the last step.

Hence, we find Mfi = M, = 0.

Evaluating the second moment proceeds similarly, but we find in the end terms in-

volving P_, j2cj which do not vanish. Thus, M2 is the first non-vanishing moment
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of the discrete delta, demonstrating that the Gaussian-filtered discrete delta func-

tion exhibits second-order convergence. The argument can be extended to the delta

derivatives as well. The smoothed Teukolsky source term will thus be second-order

convergent.

3.3 Waveforms and comparisons for generic geodesic

Kerr orbits

We now present the waveforms generated by a point particle in a geodesic orbit around

a Kerr black hole. The code used to generate these waves is discussed in detail in

chapter 2; the only important change to that discussion is that the source term uses

the techniques presented in Sec. 3.2 above. We begin by reviewing Kerr black hole

geodesics, sketching the numerical scheme used to solve the equations of motion.

We then examine different classes of eccentric and inclined orbits and compare the

waveforms against those obtained from a frequency-domain code whose details are

given in Ref. [36]. We compute the correlation between the two waveforms in order

to measure our level of agreement with frequency-domain waveforms.

Our numerical grid is laid out in Boyer-Lindquist coordinates and uses (6r, S8, St) =

(0.04M, 7r/60, 0.02M) for the radial, angular and temporal resolutions. The source

term is constructed using Eqs. (3.13), (3.18) and (3.19) with no in the range 3-9 (de-

pending on the orbit) for the angular delta-function and n, = 2 for the radial delta.

We use a Gaussian filter of width b = 1.560 to smooth higher harmonic noise.

3.3.1 Geodesics in Kerr spacetime

The source term for the time-domain code takes as input the worldline of the per-

turbation's source. Here, we neglect radiation reaction and assume that the point

particle follows a bound geodesic trajectory around the central massive black hole.

This bound trajectory can be computed by numerically integrating the geodesic equa-

tions. We now briefly review how we massage the geodesic equations to put them
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into a form that makes for accurate numerical calculation; this material is presented

in greater depth in Sec. IIC of Ref. [8].

The normal "textbook" presentation of the equations governing Kerr black hole

geodesics is

E2 (d)2 = [E(r 2 + a2) -aL]2

-A [r2 + (Lz - aE)2 + Q]

- R(r) (3.46)

E2 (d)2 Q - Cos2 9 [a2 (1 - E 2 ) + L / sin 2 9]

(3.47)

E s aE + [E(r 2 + a2 ) - aLz]
dT sin 2 0A

(3.48)

dt
t = a(Lz - aE sin2 9)

d

Sr A [E(r2 + a 2 ) - aLz] . (3.49)

[See, e.g., Ref. [72], Eqs. (33.32a-d).] Here, E = r2 + a2 cos 2 , A = r2 - 2Mr + a2

(where a = ISI/M is the black hole's spin angular momentum per unit mass). The

constants of motion are orbital energy E, axial angular momentum L,, and Carter

constant Q.

This form of the equations of motion is not well suited to numerical studies; in par-

ticular, dr/dT and dO/dT pass through zero and change sign when the orbiting body

goes through turning points associated with those motions. A handy way to elimi-

nate these problems is to eliminate the turning points by remapping the coordinates

r and 0 to parameters which accumulate secularly. The following parametrization,

inspired by the Newtonian limit, has been found to work extremely well even deep in

the strong field of rapidly rotating black holes:

r= p (3.50)
1 + ecos '

cos 0 = cos Omin cos X . (3.51)
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In the Newtonian limit, p is the orbit's semi-latus rectum, and e is its eccentricity;

Omin is the minimum value of 0 reached by the orbiting body, and is used to define

the orbit's inclination 0ine

in = 2 sgn(Lz)Omin . (3.52)

Once E, Lz, and Q are specified, p, e, and in, are fully determined. It is then a

straightforward matter to turn Eqs. (3.46) and (3.47) into expressions for do/dT and

dl/dr; see Ref. [8] for details. The resulting expressions behave extremely well for

all bound orbits outside the black hole's event horizon. A numerical integrator for

these variables allows us to compute the dynamics of our orbiting body's Teukolsky

equation source term.

Before moving on, we note that, within the context of the dissipative-only or

radiative approximation to inspiral, it is simple to modify these equations to build

the worldline of an inspiralling body: We simply allow the orbital "constants" (E,

LZ, and Q; or, p, e, and inc) to evolve according to the inspiral law. Reference [8]

uses approximate radiation reaction, based on fits to strong-field radiation reaction

calculations in regimes where it is well understood, to compute the inspiral worldlines

which underlie the "kludge" waveforms. We use this prescription for evolving the

constants in Sec. 3.4 to demonstrate this code's ability to compute inspiral waves.

3.3.2 Comparison with frequency-domain waveforms

To validate our waveforms, we compare with the "snapshots" generated using the

frequency-domain code described in Ref. [36]. This code uses the fact that bound

Kerr geodesics are fully described by three frequencies (radial Q,, latitudinal Qo, and

axial Qp) to build the waveform from a geodesic orbit as a sum over harmonics of these

frequencies [35]. Since both the time-domain and frequency-domain codes solve the

same master equation, they should produce identical waveforms for identical orbits,

so long as each code is sufficiently accurate.

To quantify the accuracy with which a time-domain waveform X = (x1, X2, ... , xn)
agrees with a frequency-domain waveform Y = (yi, Y2, ... , Yn), we use the following
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correlation measure:

rxy(x - (3.53)

(The sums in all cases are from i = 1 to i = n.) This coefficient is identical to the

match between two waveforms defined by Owen [76] in the white noise limit [noise

spectral density Sh(f) = constant]. One might expect the waveforms' mean values

2 and y to equal zero. However, finite duration effects can make these quantities

slightly non-zero, so it is useful to explicitly do this subtraction.

A useful reformulation of Eq. (3.53) is

ry n E xi - xi E (3.54)

nZ x - (E xi)2 rni Eyj(y 2

Note that rxy is always between -1 and 1; a value close to 1 indicates that the

two waveforms are well correlated. Note also that the correlation depends on how

many points n are used in comparing the two waveforms (or equivalently, the span of

time over which we compare the waves). We have found that as long as n > several

hundred, we get consistent results: Changing n for a given comparison only causes

small variations in the fourth significant digit of rxy.

It is of course possible to concoct other measures of how well two waveforms

agree. Ideally, disagreements between waveforms should be quantified in terms of their

observational significance. For example, Cutler and Vallisneri have demonstrated that

it is not unusual for waveforms with a match of 0.9999 to differ significantly in their

estimates of the parameters which describe the source [31]. For our present purpose,

rxy is sufficient to demonstrate that our time-domain code produces high quality

waveforms; whether they are sufficiently high quality to be used for GW measurement

purposes will need to be re-examined at a later time.

An important step in producing accurate waveforms is to perform runs at mul-

tiple resolutions, then estimate (and eliminate) the waveform error using a form of

Richardson extrapolation [84]. This plays a crucial role in reducing "noise" from
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spurious excitation of the large black hole's quasinormal modes. The details of this

extrapolation technique are described in Appendix 3.6.

Time and frequency domain waveforms extracted atOd = ,/2.

time/M

-0.1
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time/M

22001200
time/M

Figure 3-1: Comparison of time- and frequency-domain waveforms. We show waves

for the m = 2 mode from a point particle with orbital parameters p = 6.472M,

e = 0.3 and Oin,, = 0 orbiting a black hole with spin a/M = 0.3. The angle between

the spin axis of the black hole and the line of sight is Od = 7r/2. Time-domain results

are in black, frequency-domain results in red. Top panel: "plus" polarizations in

dimensionless units. Middle: "cross" polarizations. Bottom: Comparison of Ih+ -

ih, i. This last quantity gives a good visual measure of the level of agreement between

the two waveforms. The correlations between the two waveforms are 0.9974 (plus)

and 0.9975 (cross).

Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 list the correlation coefficients for the m = 2

and m = 3 azimuthal modes of different classes of orbits. The coefficient is greater

than 0.99 for a large fraction of parameter space. Time domain runs corresponding

to each column required about 125 CPU hours on an Apple MacPro processor. That

code was compiled using the Intel C++ compiler. The frequency domain code's cost is

about 3-4 CPU hours per waveform when attempting to get both asymptotic energy

fluxes to accuracies of about 0.1% to 1% on a machine using a 3.2 GHz Pentium
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Time and frequency domain waveforms extracted ated = W3.
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Figure 3-2: Comparison of time- and frequency-domain waveforms. Here, we show

waves for the m = 2 mode for a geodesic with p = 6M, e = 0.3 and Oin = 7r/3 about

a black hole with spin a/M = 0.9; black is time-domain results, red is frequency

domain. The correlations in this case are 0.9961 (plus) and 0.9962 (cross).

4 Xeon processor. We also show (Figs. 3-1, 3-2, and 3-3) examples of the waves,

computed with both time- and frequency-domain codes, to give the reader a visual

sense of the overlap.

3.4 Inspiral waveforms

Having demonstrated that the finite-impulse source works well for astrophysically

relevant generic black hole orbits, we now examine how well we do evolving through

a sequence of such orbits. Since each orbit in the sequence is no different than the

orbits that we validated against in Sec. 3.3.2, we anticipate no great difficulty here.

Indeed, the biggest challenge is choosing a method to evolve through our sequence.

Our goal is to do this with a frequency-domain code to build the orbital-constant
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Time and frequency domain waveforms extracted at d = /2.
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Figure 3-3: Comparison of time- and frequency-domain waveforms. These waves are
for the m = 3 mode from a circular geodesic with orbital parameters p = 6M, and

Oin - 7r/4 around a hole with spin a/M - 0.9. All symbols have the same meaning
as in Fig. 3-1. The correlations are 0.9769 (plus) and 0.9770 (cross).

trajectory [E(t), Lz(t), Q(t)]. To quickly produce results that are qualitatively correct,

we presently make this trajectory using the "kludge" inspiral treatment described

in Ref. [43], and used to make model waveforms in Ref. [8]. The "kludge" uses a

somewhat idiosyncratic mix of post-Newtonian backreaction formulae combined with

numerical results from frequency-domain backreaction in the circular, inclined (e = 0,

Oinc 0) and eccentric, equatorial (e - 0, inc = 0) limits to estimate the properties

of EMRI waves. By construction, the results agree very well with Teukolsky-based

inspirals in those limits; for the generic case, they produce plausible inspirals.

Figure 3-4 shows our waveform for a "kludge" inspiral. We took the large black

hole to have spin a = 0.5M, and set the mass ratio to p/M = 0.016. The orbit

was initially chosen to have semi-latus rectum p = 10M, eccentricity e = 0.5, and

inclination linc = 0.5 radians. This figure shows features reminiscent of the geodesic
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Table 3.1: Correlation between time- and frequency-domain waveforms for the m = 2

mode for a range of equatorial, eccentric orbits. The parameters p, e and Oine are semi-

latus rectum, eccentricity, and inclination of the geodesic orbit, a/M is the black hole

spin and Od is the angle between the spin axis and the line of sight to the observer.

The last two columns show correlations for the plus and cross polarizations.

p/M e Oine (deg) a/M Od (deg) h+ corr. h, corr.

6.472 0.3 0 0.3 30 0.9961 0.9962

6.472 0.3 0 0.3 60 0.9969 0.9969

6.472 0.3 0 0.3 90 0.9974 0.9975

5.768 0.3 0 0.7 30 0.9971 0.9971

5.768 0.3 0 0.7 60 0.9977 0.9978

5.768 0.3 0 0.7 90 0.9983 0.9983

6.472 0.7 0 0.3 30 0.9915 0.9911

6.472 0.7 0 0.3 60 0.9911 0.9908

6.472 0.7 0 0.3 90 0.9900 0.9901

5.768 0.7 0 0.7 30 0.9625 0.9607

5.768 0.7 0 0.7 60 0.9621 0.9601

5.768 0.7 0 0.7 90 0.9596 0.9578

snapshots shown in Figs. 3-1, 3-2, and 3-3; in addition, one can clearly see evolution of

the wave's properties. The increase in the wave's frequency, largely due to the decay

of the orbit's semi-latus rectum, is quite clear. Perhaps less obvious is a signature of

the eccentricity's decay. This is illustrated most clearly by comparing the lower left

and lower right panels of Fig. 3-4, which zoom onto early and late portions of the

inspiral. Early on, the waveform is dominated by a series of high-frequency bursts;

these occur when the small body passes through periapsis and "whirls" most rapidly

about the massive black hole. There is then a relatively quiet section while the

body "zooms" out to apoapsis, and then comes in to "whirl" at periapsis again. As

eccentricity shrinks, the difference between periapsis and apoapsis becomes smaller.

The high-frequency bursts crowd closer and closer together, approaching a continuum

sinusoid as the eccentricity approaches zero.

Although this inspiral model is somewhat unphysical, we expect that it shares

many properties with true adiabatic inspiral waveforms. In particular, the spectral

evolution of a wave like that in Fig. 3-4 should be quite similar to the evolution of

real EMRI waveforms. It should be emphasized that computing the waveform shown
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Table 3.2: Correlation between time- and frequency-domain waveforms for the m = 2
mode for a range of inclined nearly circular orbits. All symbols have the same meaning
as in Table 3.1.
p/M e Oin (deg) a/M Od (deg) h+ corr. h, corr.

6 10-4  45 0.5 60 0.9968 0.9967
6 10- 4  45 0.5 90 0.9961 0.9960
8 10-4  45 0.5 60 0.9923 0.9919
8 10-4  45 0.5 90 0.9908 0.9903
6 10-4  45 0.9 60 0.9967 0.9967
6 10-4  45 0.9 90 0.9961 0.9961
8 10-4  45 0.9 60 0.9920 0.9919
8 10-4  45 0.9 90 0.9905 0.9907
6 10-4  60 0.5 60 0.9964 0.9965
6 10-4  60 0.5 90 0.9952 0.9952
8 10- 4  60 0.5 60 0.9917 0.9910
8 10-4  60 0.5 90 0.9888 0.9882
6 10- 4  60 0.9 60 0.9986 0.9986
6 10-4  60 0.9 90 0.9981 0.9982
8 10-4  60 0.9 60 0.9917 0.9915
8 10-4  60 0.9 90 0.9891 0.9890

in Fig. 3-4 required about as much computational effort as computing the geodesic

snapshot waves, Figs. 3-1, 3-2, and 3-3 (modulo a factor - 4-5 since the waveform in

Fig. 3-4 lasts - 4-5 times longer than the others). Given a robust code to generate

the inspiral worldline of EMRI systems, the waveforms that our code produces should

be a useful tool for examining issues in LISA measurement and data analysis.

3.5 Summary and future work

We have now shown that the finite impulse delta representation of the time-domain

Teukolsky equation's source works very well for complicated and astrophysically rel-

evant orbits. In our previous analysis ([97], chapter 2 ), we confined ourselves to

the simplest circular, equatorial black hole orbits. The basic ideas from chapter 2

work well even when the source arises from highly inclined and highly eccentric or-

bits, and when the source evolves through a sequence of those orbits. It is now a

relatively straightforward matter to compute the waves arising from a body following

112



Table 3.3: Correlation between time- and frequency-domain waveforms for the m = 2
mode for a range of generic orbits. All symbols have the same meaning as in Table

3.1.
p/M e in, (deg) a/M Od (deg) h+ corr. hx corr.

6 0.3 40 0.9 60 0.9978 0.9978
6 0.3 40 0.9 90 0.9976 0.9976
8 0.3 40 0.5 60 0.9898 0.9897
8 0.3 40 0.5 90 0.9910 0.9910
6 0.7 40 0.9 60 0.9898 0.9906
6 0.7 40 0.9 90 0.9889 0.9891
6 0.7 60 0.9 60 0.9905 0.9868
6 0.7 60 0.9 90 0.9895 0.9866
6 0.3 60 0.9 60 0.9961 0.9962
6 0.3 60 0.9 90 0.9950 0.9954
8 0.3 60 0.5 60 0.9906 0.9890
8 0.3 60 0.5 90 0.9884 0.9866

any reasonably behaved worldline in the spacetime of a black hole.

The primary complication arising from these more generic orbit classes is that

the orbiting body will cross zones within our numerical grid. The source thus be-

comes dynamical; the finite-impulse delta must likewise be dynamical to represent it.

The evolution of the impulses that we use to represent the delta can seed numerical

noise, reducing the calculation's accuracy. We have found that minor extensions of

chapter 2 's basic techniques greatly mitigate the impact of this source of numerical

noise. In particular, by using a higher-order representation (Sec. 3.2.1), the delta is

smoothed enough that the coupling to the Teukolsky equation's second-order differ-

ential operators does not seed much error. Widening the delta's stencil (Sec. 3.2.2)

also helps, since the fractional change in a given impulse will be less if the delta is

represented by more impulses. Finally, residual high frequency noise not removed by

these techniques can be taken out by convolving the Teukolsky source term with a

low-pass (Gaussian) filter (Sec. 3.2.3). It's worth emphasizing that we smooth the

entire source term, not just the delta function (which would arguably make our delta

rather similar to the truncated Gaussian [59, 23] which this technique was designed

to improve upon).

Comparison with results from the frequency-domain [36] demonstrates that the
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Table 3.4: Correlation between time- and frequency-domain waveforms for the m = 3
mode for a range of equatorial eccentric orbits. All symbols are as in Table 3.1.
p/M e ine (deg) a/M 0 d (deg) h+ corr. h× corr.
6.472 0.3 0 0.3 30 0.9908 0.9909
6.472 0.3 0 0.3 60 0.9922 0.9922
6.472 0.3 0 0.3 90 0.9930 0.9931
5.768 0.3 0 0.7 30 0.9934 0.9935
5.768 0.3 0 0.7 60 0.9943 0.9944
5.768 0.3 0 0.7 90 0.9948 0.9948
6.472 0.7 0 0.3 30 0.9931 0.9931
6.472 0.7 0 0.3 60 0.9905 0.9906
6.472 0.7 0 0.3 90 0.9923 0.9923
5.768 0.7 0 0.7 30 0.9928 0.9929
5.768 0.7 0 0.7 60 0.9932 0.9930
5.768 0.7 0 0.7 90 0.9920 0.9921

waveforms generated with this source term are of very high quality (Sec. 3.3). Visually,

the waveforms lie on top of one another in every case that we have examined; a

quantitative overlap integral demonstrates that waveforms from the two calculations

are often more than 99% correlated. A key step in achieving such high quality results

is to estimate the largest errors in our time-domain calculations, and then subtract

that estimate from our result. We do this by performing these calculations at two

different grid resolutions; under the assumption that our dominant error is quadratic

in grid spacing, we then estimate the magnitude of our error (Appendix 3.6). The

excellent agreement we achieve with frequency-domain results validates this approach,

at least for all the cases we have considered.

So far, our main physics accomplishment is excellent agreement between time-

and frequency-domain approaches to waveform calculation. It should be emphasized,

however, that for waveform calculations, there will be a large set of circumstances in

which time-domain codes are more efficient. For generic orbits, a frequency-domain

code may require the calculation and summation of many thousand multipoles and

Fourier modes. A time-domain code "automatically" sums over all modes (except

the m index), so that (in principle) it is no more difficult to compute the waves from

a highly inclined, highly eccentric black hole orbit than from an orbit with modest
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Table 3.5: Correlation between time- and frequency-domain waveforms for the m = 3

mode for a range of inclined nearly circular orbits. All symbols are as in Table 3.1.

p/M e Oinc (deg) a/M Od (deg) h+ corr. hx corr.

6 10-4  45 0.5 60 0.9918 0.9918

6 10-4  45 0.5 90 0.9907 0.9907

8 10-4  45 0.5 60 0.9798 0.9798

8 10-4  45 0.5 90 0.9773 0.9772

6 10-4  45 0.9 60 0.9912 0.9913

6 10-4  45 0.9 90 0.9905 0.9906

8 10-4  45 0.9 60 0.9787 0.9790

8 10-4  45 0.9 90 0.9769 0.9770

6 10-4  60 0.5 60 0.9884 0.9884

6 10-4  60 0.5 90 0.9876 0.9876

8 10- 4  60 0.5 60 0.9636 0.9640

8 10- 4  60 0.5 90 0.9674 0.9675

6 10- 4  60 0.9 60 0.9665 0.9661

6 10- 4  60 0.9 90 0.9680 0.9678

8 10- 4  60 0.9 60 0.9463 0.9473

8 10- 4  60 0.9 90 0.9608 0.9641

inclination and eccentricity.

The real payoff of this tool will come when we allow the source to radiatively decay,

evolving through a sequence of orbits. As a demonstration that this can be done, we

use a "kludged" inspiral to compute a body's inspiral, and then use that inspiral as

the source for our time-domain solver in Sec. 3.4. Though not a physically accurate

inspiral, this scenario shares many properties with the actual adiabatic inspiral. In

particular, it demonstrates the computational advantage of a robust time-domain code

for computing inspiral waveforms, given the worldline the inspiraling body follows.

Future work will address our goal of complete waveforms for the EMRI problem,

in the context of the dissipation-only approximation to EMRI dynamics. We have

recently extended our frequency-domain code to include the evolution of Carter's

constant in the radiative backreaction limit [88], and will use this code to produce

the radiation reaction data describing an inspiraling body. With this step in hand,

no issue of principle stands in the way of coupling the time- and frequency-domain

approaches to make usefully accurate EMRI waveforms.
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Table 3.6: Correlation between time- and frequency-domain waveforms for the m = 3
mode for a range of generic orbits. All symbols are as in Table 3.1.
p/M e inc (deg) a/M Od (deg) h+ corr. h, corr.

6 0.3 40 0.9 60 0.9917 0.9916
6 0.3 40 0.9 90 0.9915 0.9914
8 0.3 40 0.5 60 0.9801 0.9803
8 0.3 40 0.5 90 0.9785 0.9785
6 0.7 40 0.9 60 0.9906 0.9981
6 0.7 40 0.9 90 0.9899 0.9895
6 0.7 60 0.9 60 0.9862 0.9862
6 0.7 60 0.9 90 0.9819 0.9821
6 0.3 60 0.9 60 0.9790 0.9788
6 0.3 60 0.9 90 0.9840 0.9839
8 0.3 60 0.5 60 0.9788 0.9791
8 0.3 60 0.5 90 0.9747 0.9744

3.6 Appendix: Waveform extrapolation

Here we describe the variation of Richardson extrapolation which we use to estimate

and eliminate the largest errors arising from our finite difference scheme. In Ref. [97],

we showed that our algorithm is second order convergent. This means that we can

write the solution at any given resolution as

Tc = AFt + a16r 2 + a260 2 + a3 6r608 O(0 3) , (3.55)

where i is the computed solution and Ft is the "true" solution. The final term

O(63) indicates that additional error terms will be third order in the grid spacing (and

higher). The spatial and temporal dependencies of F, and Jt have been suppressed.

We now perform runs at two different resolutions, (6r 1 , 601) and (6r 2 , 602), with all

other parameters fixed. The resolutions are chosen such that

Sri 601,

r2  - 116
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Neglecting higher order terms, the two results can be written

I, , -  t + al6r, + a261 + a36r 168 1 , (3.57)

c2 -  t + a 16r 2  a268 2  a3 6r 2 92 . (3.58)

The relation between the two resolutions, Eq. (3.56), allows us to write

Ic2 = t + 1/n 2 (a6r + a26~1 + a36r1,1) . (3.59)

Subtracting Eq. (3.59) from Eq. (3.57) leaves us with

Qcl - 'Ic2 (1 - 1/n 2 )(ai6r2 + a2360 + a3 6r 139 1)

(3.60)

rearranging, we find

1- n 2  (3.61)(al6r, + a2 +a36r1) 1 C - 1/n2  (3.61)

To the extent that neglect of higher-order errors is warranted, this estimates the

largest source of error. Using Eq. (3.57) we can now estimate the "true" value:

I~t T~ - (ar a2 + a 260 a 36r1 6 1 )

C1- c2
= T - /n 2  (3.62)

1-1/n2

Figure 3-5 illustrates the improvement that this variant of Richardson extrapo-

lation can yield. We plot h+ at two different resolutions: (Sr1, 601) = (0.04, r/60)

and (6r 2, 92) = (0.026667, ,r/90). We also show the extrapolated waveform, and

the frequency-domain prediction. The particle is in a geodesic orbit with parameters

p = 6M, ine = 450, e = 10- 4 and the black hole has a spin of a = 0.9M. The two

time-domain calculations each differ noticeably from the frequency-domain result; the

extrapolated waveform by contrast agrees very well. This excellent agreement can be
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regarded as a modified three-level convergence test, whose first two levels are the time

domain waveforms and third level is the frequency domain waveform. If the code were

not second order convergent, our assumption for the functional form of the errors in

Eq. (3.61) would be erroneous. This would lead to a substantial disagreement between

the extrapolated and frequency domain waveforms.
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Figure 3-4: Waveform (m = 2 mode) of a small body spiraling into a massive black

hole. We use "kludge" backreaction to evolve through a sequence of orbits, but

compute the waves with our time-domain solver. The large black hole has spin a =

0.5M; the small body's orbit initially has parameters p = 10M, e = 0.5, and inc = 0.5

radians. The mass ratio of the system is p/M - 0.016. The top panel shows the full

span that we simulated; the bottom two panels are zooms on early (bottom left) and

late (bottom right) segments. Note the clear evolution of the wave's frequency as the

orbit's mean radius shrinks.
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Waveform Extrapolation
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Figure 3-5: Extrapolation applied to h+ for the m = 3 mode from a point particle in
a nearly circular geodesic with orbital parameters e = 10- 4, p = 6M, and in c = r/4
around a rotating black hole with spin a/M = 0.9. The dashed and solid black
lines denote h+ obtained with resolutions (6r, 6 ) = (0.04, 7r/60) and (0.026667, 7r/90)
respectively. The solid red line is the extrapolated waveform; the solid green line is
the equivalent frequency-domain waveform. Notice how well the extrapolated time-
domain wave agrees with the frequency-domain result (which is nearly hidden by the
red curve).
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Chapter 4

The transition from adiabatic

inspiral to geodesic plunge for a

compact object around a massive

Kerr black hole: Generic orbits

This chapter is based on Physical Review D 77, 124050 (2008).

4.1 Introduction and motivation

Extreme mass ratio inspirals (EMRIs), in which stellar mass compact objects radiate

gravitational energy and fall into their massive black hole companions, are promising

sources of gravitational waves. LISA [67], the proposed space based gravitational

wave detector should detect waves from the last stages of such inspirals. A clear

theoretical understanding of the dynamics of EMRIs is vital to the detection of these

gravitational waves.

The small mass ratios, which typically lie in the range p/M = 10- 5 - 10-8, allow

EMRIs to be treated within the framework of perturbation theory. The trajectory

of the compact object can be roughly broken into three regimes: (a) An adiabatic

inspiral phase, during which the dominant inspiral mechanism arises from the radi-
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ation reaction force on the smaller object. In this stage, the time scale over which

the characteristic radial separation (between the compact object and its black hole

companion) changes is large compared to the orbital period. This allows us to ap-

proximate the trajectory as a sequence of bound geodesics. (b) A plunge phase,

during which stable geodesics do not exist. It has been shown [74] that the effect of

radiation reaction is negligible during the plunge and that this phase can be modeled

as a geodesic infall. (c) A regime where the spiraling compact object transitions from

adiabatic inspiral to geodesic plunge. The course of motion at this juncture shows

aspects of both, the self-force from radiation reaction and the effects of unstable

geodesics.

In [74], Ori and Thorne introduce a method to predict the motion when the

object is constrained to an approximately circular, equatorial orbit. We generalize

this procedure to include inclined and eccentric trajectories. A few modifications to

the prescription in [74] are introduced to handle such generic orbits. The results from

our generalized prescription are in excellent agreement with [74].

The simple calculation described in this chapter is meant to serve as a stopgap for

many other open and important problems. Chapters 2 and 3 described ([97, 98] and

references therein) the development of a code to solve the Teukolsky equation in the

time-domain. The world line of the compact object serves as an input to this code.

While the world line in the adiabatic phase can be calculated from a frequency-domain

based Teukolsky equation solver [53, 36], the trajectory in the transition regime for

completely generic obits remains unknown. This calculation will provide the missing

link needed to generate a complete inspiral trajectory.

A number of researchers are working towards solving the self-force problem exactly

[80, 13]. Such an exact solution can be separated (at least qualitatively) into time-

reversal symmetric and asymmetric components. The symmetric component (the

"conservative self-force") conserves the integrals of motion. On the other hand, the

asymmetric component (the "dissipative self-force") leads to non-zero time derivatives

of the integrals of motion. Recent advances demonstrate that we are making steady

progress on this problem. For example, the self force is now essentially understood
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for circular orbits around Schwarzschild black holes [13]. Although approximate, the

results in this chapter may serve as an independent check for these solutions. It

is worth noting that if it becomes possible to include the conservative force in a

simple way, we should be able to build its impact into the formalism developed here.

This work may also be of interest for numerical relativity - a perturbative inspiral

constructed by the techniques discussed here may be an accurate point of comparison

for full numerical inspirals for small ratios (and may even be useful, if not so accurate,

for mass ratios that are not strictly perturbative).

Ref. [75] discusses the transition when the compact object is in an eccentric,

equatorial orbit. However, the focus of that paper is to calculate the transit time

and estimate the probability for LISA to observe such a transition. Our intent is to

generate the world line during the transition. We also choose our initial conditions

differently than they are chosen in Ref. [75]; we discuss these differences in more detail

in Sec. 4.3.

The rest of the chapter is organized as follows: Section 4.2 discusses circular orbits

with arbitrary inclination. Sec. 4.3 generalizes the formalism developed in Sec. 4.2

to include eccentricity. Finally, we summarize our results in Sec. 4.4.

4.2 The transition trajectory for circular orbits

Up to initial conditions, a set of three constants, the energy, E, the component of

the angular momentum along the spin axis, Lz, and the Carter constant, Q define

a geodesic. The Carter constant has an approximate interpretation of being the

square of the component of angular momentum perpendicular to the spin axis. As

the compact object radiates, the "constants" that define its geodesic will gradually

evolve. (We will refer to [E(t),Lz(t), Q(t)] as the "constants", although they are

slowly evolving.) A common approach to model the adiabatic regime consists of

treating the motion as the sequence of geodesics [53, 36] defined by these evolving

constants. As pointed out in [82], this limit amounts to a "radiative" or "dissipative"

approximation. A true adiabatic approximation would be a sequence of orbits in
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which each orbit included conservative self corrections. Since we currently use purely

geodesic orbits as our background motion (in lieu of a self-force enhanced description),

we will refer to a sequence of geodesics as an "adiabatic inspiral" throughout this

chapter. Thus, within the adiabatic approximation, the world line of a particle is

computed by mapping [E(t), Lz(t), Q(t)] to [r(t), 0(t), 0(t)]. The symbols r, 0 and ¢

are the usual Boyer-Lindquist coordinates.

In contrast, the plunge can be treated as a single unstable geodesic with almost

constant E, Lz and Q. Thus, the passage from adiabatic inspiral to geodesic plunge

must contain both these features - slowly evolving "constants" and marginal stabil-

ity.

4.2.1 Kerr Geodesics

The following system of first order equations describes geodesics in a Kerr [14, 27]

geometry:

E dr = ± R , (4.1)drdT
dO

E dV= , (4.2)

do
E-Z V, (4.3)

dt
= Vt . (4.4)

d124

124



The potentials can be expressed as:

R = 2[E (a2 r2)--aL 2

+A [(L - aE)2 + r 2 2 + Q] , (4.5)

1
Vo = 2[Q-

OS2 (a2 (2 - E 2) + L / sin2 9)] , (4.6)

V = - [Lz/sin2 0 - aE]

+ a [E (r 2 + a 2) - Lza] , (4.7)

Vt =- [a(L - aEsin2 )] +

S [E (r 2 + a2) - Lza] . (4.8)

The parameters (r, 0, q, t) are the Boyer-Lindquist coordinates, M is the black hole

mass, p is the perturbing mass, E = r2 + a2 cos 2  A = r2 - 2Mr + a2 and a is

the spin parameter of the black hole. The constants (E, Lz, Q) represent the actual

energy, momentum and Carter constant (in units of M, M 2 and M4 respectively), not

the dimensionless versions of them. By introducing the perturbing mass explicitly,

our notation deviates from previous literature. We do this in order to show the

dependence of the transition phase on the mass of the perturbing object. We also set

G = c = 1 everywhere.

4.2.2 The last stable orbit

A standard but not unique definition of the "inclination" of a Kerr geodesic is given

by

cos , (4.9)

L2 2

S= L2  (4.10)
COS2 t
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It is possible to use L to eliminate the Carter constant. Thus, any circular orbit can

be parametrized by its radius (r) and inclination (L).

The last stable orbit (LSO) serves as an important reference point - the inspiral

is adiabatic well before the compact object crosses the LSO and is approximately a

plunge well after the crossing. Since the transition occurs in the vicinity of the LSO,

a preliminary step in our computation is to determine r and (E, Lz, Q) at the LSO

for a given inclination at the LSO, LLSO. Note that t changes with time because it is

a function of [E(t), Lz(t), Q(t)].

Circular orbits satisfy

R = 0and
dRR =d 0.
dr

(4.11)

(4.12)

We must have R' = 0 because the LSO

that

lies at an extremum of R. We also require

d2 R
R" =- d > 0 ,

dr2

for the extremum to be stable. This

if R" = 0. Thus, the three equations

a given tLSO to yield r, E, L, and Q

implies that the orbit will be marginally stable

R = R' = R" = 0 can be numerically solved for

at the LSO.

4.2.3 The constants in the transition regime

We need a model of the phase space trajectory, [E(t), Lz(t), Q(t)] near the LSO in

order to compute the world line of the compact object as it transitions from inspiral
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to plunge. To this end, we Taylor expand about the LSO to obtain

E(t) - ELSO + (t - tLso)ELso , (4.14)

Lz(t) - Lz,LSO + (t - tLSO)L ,LSO , (4.15)

Q(t) QLSO + (t - tLSO)(LSO + 6Q )

+6Q , (4.16)

which are natural generalizations of equations (3.4) and (3.5) of Ref. [74]. The overdot

denotes differentiation with respect to t. We will later see that our initial condition

for t amounts to choosing tLSo, the instant at which the compact object crosses the

LSO. This choice is consistent with the procedure in Ref. [74] - Eq. (3.14) of Ref.

[74] implies a choice of tLSO = 0.

The constant terms in Eq. (4.16), 6Q and 6Q, are needed to guarantee that the

trajectory remains circular as we enter the transition. As the notation suggests, these

constants are small compared to QLSO and QLSo. They are discussed in more detail

when we discuss initial conditions for the transition in Sec. 4.2.6.

The expressions (4.14), (4.15) and (4.16) do not include conservative effects of the

self force. Pound and Poisson [82] have demonstrated that this omission will lead to

observationally significant changes. Inclusion of these effects would effectively alter

the potentials, Eq. (4.5) - Eq. (4.8) leading to slight deviations of (E, Lz, Q)LSO and

rLSO (for a given LLSO) from their geodesic values. The exact impact of these effects

will not be known until we know what the corrections are. We will later see that our

results possess all the expected qualitative features despite this handicap. Moreover,

the prescription in [74] and its generalization presented here can easily incorporate

these effects once they are known.

The fluxes at the LSO remain a parameter in our code. We use the code developed

in [53] to provide us the dimensionless fluxes, (M/l) 2 E, (M/p2) L and (1/1i3 )Q at

the LSO. Equivalently, we can use the expressions in [43] (with zero eccentricity) for

the dimensionless fluxes.
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4.2.4 Reparametrization of the 0-equation

Numerical integration of the 0-equation warrants some care. The issue arises because

dO/dt vanishes at the turning points, Oma- and 0 min, where

0 < 
0

min < Omax < 7. (4.17)

The potential problems posed by the turning points can be eliminated by reparametriz-

ing 0. Following Ref. [53], we use

z = COS2 = Z_COS2 , (4.18)

where

P(z - z+)(z - z_) 2Q + L + a2(/ 2 - E 2)
= Z2 

- z 2

Q
1t2 (4.19)

and 3 = a2 (p2 - E 2) / p 2. The 9-equation of motion now becomes

dX P(z+ - z)
dt 7 + a2Ez(X)/l '

E [(r 2 + a 2) 2  2 2MraLz
7 = -a 2 A-

(4.20)

(4.21)

Equation (4.20) can now be integrated without turning points because X varies from

0 to 7 to 2r as 0 varies from 0 min to 0 max and back to 0 min .

4.2.5 The prescription

In keeping with our main objective of obtaining the world line [r(t), 0(t), 0(t)] through

the transition regime, we eliminate T by dividing equation (4.1) by (4.4) and squaring

128

where



the result to obtain

dr) 2 R(r, X) - F

dtO Vt (r, X)2 

One more time derivative gives the acceleration:

d2r 1[ ( R)
dt2 2 or Vt2-

S(R

ox \Vt2

(4.22)

(4.23)
dr/dt I

Ideally, Eq. (4.23) must have other additive terms proportional to non-zero powers of

M. This is analogous to Eq. (3.10) of [74]. Excluding this term amounts to ignoring

the conservative self force.

Since the transition phase is in the proximity of the LSO, we can Taylor expand

F about rLSO, ELSO, Lz,LSO and QLSO to obtain

1
6

0 3 Fr so (r - rLSo) 3 +
Or3 LSO

a2F
-rdE LSO

02 F

- raQ LSO

02 F

OrOLz Lo

(E - ELSO)(r - rLSO)

(Q - QLSO)(r - rLSo) .

Thus, the acceleration now becomes 1:

d2 r

dt2
1 a 3 F

2 2 r3 LS

02 F
-r Q LSo

02 F
(r - rLso)

2 +
o araLz, LSO

(Q - QLso) + adX/dt

(Lz - Lz,LSO) +
0 2 F

2F (E - ELSO)
(4.25LO

(4.25)

We have not expanded the second term in Eq. (4.23) because we do not know the

value of X at r = rLSO a priori. Similarly, the q-equation takes the form

de V(r, X)
dt Vt (r, X)

(4.26)

'Note that Eq. (4.24) ignores terms of order (p/M)2 and higher.
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F(r, Lz, E, X, )

X dr/c d
.



The trajectory in the transition phase can now be computed by integrating equations

(4.25), (4.26) and (4.20) from some starting point outside the LSO to some ending

point inside the LSO, for a given tLSO, with time varying E, Lz and Q.

4.2.6 Initial conditions

The angles, q and X can be set to zero without loss of generality. Setting X = 0

corresponds to starting the inspiral at 0 = Omin.

The choice of initial radius depends explicitly on p. In Ref. [74], the authors

define parameters, a, 0, r, To and Ro. These are used to scale out the perturbing

mass from the equation of motion and initial conditions. Although we prefer to retain

dimensions in the equations of motion, we specify initial conditions in a dimensionless

form, independent of p. This will be useful be in interpreting our results and making

comparisons with Ref. [74]. Following Ref. [74], we define

X p ) 2/5 r--rLSO (4.27)
M Ro

Ro = (/0o)2/5 - 3 /5 , (4.28)

T 1/5 t- tLSO dT(4.29)
M To dt LSO

where

a 4 3 [R (4.30)

1[ 2 R E a2 R
E 2 + E2

+ Q 0 2  (R) (4.31)
z 2 LSO

1 dLz dLz/dt
K(t) I d d (4.32)p/M di (p/M)(dT/dt) '

K0 = KILSO, (4.33)

To = (a/3#o) - 1/ 5 , (4.34)
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with f = r/M, t= t/M, E = E/p, Lz = Lz/(,pM) and Q = Q/(pM)2.

These definitions reduce to those presented in Ref. [74] when t = 0. It is useful to

observe that r does not scale with p. We evaluate dT/dt, a, 3 and Ko at 0 = ir/ 2 -LLSO

because we do not know OLSO a priori. Notice that X and T are dimensionless.

The smoothness of the transition implies that there is no fixed instant at which

the transition starts or ends. Motivated by the choices in Ref. [74], we set T - -1 at

t = 0 and stop the numerical integrator when X < Xe = -5.

In summary, our initial conditions are T = -1, 0 = 0 and X = 0 at t = 0 2.

Setting T = -1 at t = 0 allows us to calculate tLso and hence E(0) and Lz(O) from

equations (4.14) and (4.15). We then solve R(E, L , Q, r) = 0 and dR/dr = 0 to

obtain r(0) and Q(0). This is analogous to Sec. IIIC of Ref. [74] where they enforce

X = Tto determine X at t = 0.

The trajectory is adiabatic before the start of the transition. At t = 0, we must

impose the condition [58, 87, 71] that circular orbits remain circular even under adia-

batic radiation reaction. Thus, requiring that R = dR/dt = 0 and R' = d2R/drdt = 0

leads to expressions (3.5) and (3.6) of [53] for r(0) and Q(0) respectively.

We can now substitute Q(0) and Q(0) in Eq. (4.16) to obtain two independent

equations,

Q(0) = QLSO - tLSO(QLSO + 60) + SQ and (4.35)

Q(0) = QLSO +SQ, (4.36)

which can be used to evaluate SQ and 6Q.

4.2.7 Code algorithm and numerical results

The previous sections developed the steps required to calculate the compact body's

trajectory as it transitions from inspiral to plunge. We now summarize the algorithm

that was actually used to implement this prescription:

2It is important to keep ITj small enough that our Taylor expansion about the LSO remains a
valid approximation.
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(1) Take LLSO as input.

(2) Compute E and Lz at the LSO.

(3) Obtain E and Lz at the LSO from the code developed in [53]. We may also use

the expressions in [43] (which reduce to the results in [53] for circular orbits), which

will be particularly useful when we generalize to eccentric orbits.

(4) Choose initial conditions T _ -1, 0 = 0 and X = 0 at t = 0.

(5) Calculate E(0) and Lz(0) from equations (4.14) and (4.15).

(6) Solve for r(0) and Q(0) by imposing R = 0 and dR/dr = 0 at t = 0.

(7) Compute i~(0) and Q(0) from equations (3.5) and (3.6) of [53].

(8) Substitute Q(0) and Q(0) in Eq. (4.16) to evaluate 6Q and Q.
(9) Use a Runge-Kutta integrator on (4.25), (4.26) and (4.20) to compute the coor-

dinates at the next step. A time step of 6t _ 0.05M works well.

(10) Update the "constants", Ei+l = E, + Et, Lz,i+l = Lz,i + Lz6t and Qi+ =

Q? + (Q + 6Q)t. The subscript i denotes a discrete time instant.

(11) Repeat steps (9)-(11) until X(t) _ -5.

The primary objective of this calculation is to compute the world line of the

compact object during the transition. Figures 4-1 and 4-2 illustrate r, 0 and q

motions of the compact object for a typical set of parameters. We also show a

plunging geodesic matched to the end of the transition.

Table 4.1 shows the parameters and transit times for a range of inclination angles.

In general, we find that the transit time increases with inclination. However, the

dimensionless transit time AT remains approximately constant,

AT _ 3.3 - 3.4 , (4.37)

when Xe = -5 for all values of a and t. Again, this is a consistent generalization of

the result in Ref. [74] where they find AT _ 3.3 for all circular, equatorial orbits.
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Table 4.1: Fluxes and transit times for different inclinations.

SO rLS ELSO M Lz,LSO Qz,LSO a Ro Ko TO t/M AT

10- 3  4.23 -0.00457 -0.0422 -0.000572 0.00311 0.0327 0.0699 0.603 2.80 944.9 3.36

10 4.26 -0.00446 -0.0409 -0.00684 0.00304 0.0327 0.0677 0.604 2.81 952.4 3.36

20 4.32 -0.00415 -0.0375 -0.0241 0.00284 0.0329 0.0615 0.610 2.82 974.9 3.36

30 4.43 -0.00368 -0.0323 -0.0481 0.00254 0.0333 0.0523 0.618 2.84 1012.6 3.36

40 4.59 -0.00314 -0.0262 -0.0733 0.00219 0.0342 0.0416 0.630 2.86 1065.9 3.35

50 4.78 -0.002594 -0.0198 -0.0946 0.00184 0.0363 0.0309 0.643 2.88 1134.4 3.35

60 5.01 -0.00208 -0.0139 -0.108 0.00152 0.0403 0.0211 0.657 2.90 1217.9 3.35

Table 4.2: Variation of transit time

LLSO = 0-0010, M = 1, T, = -1 and

pi/M
10-3
10

- 4

10- 5

10-6

10-7

10-8

tiM
118.9
185.6
292.2
461.9
731.3
1158.6

with perturbing mass, p/M. We set a = 0.9M,
X, = -5. Note that rLSO = 2.32M.

AT
3.449
3.397
3.375
3.367
3.363
3.362

4.2.8 Comparison with Ref. [74]

The results in Ref. [74] provide an important sanity check for the case of circular,

equatorial orbits. However, we have to account for the minor differences between the

two approaches. Ref. [74] makes the approximations

dr

dt Isco
ISCO

and (4.38)

(4.39)

which lead to

dLz/dt
S(M/M)(dT/dt) '

dLz/dtlisco
-(/M)(dT/dt)isco
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Radial trajectory in the transition regime

Figure 4-1: Radial trajectory during the transition (black line) from inspiral to plunge

for a compact object of mass p = 10-5 M in a nearly circular orbit around a black hole

with spin a = 0.8M. The compact object crosses the LSO at time tLSO = 137.5M.

The inclination of the orbit at tLSO is LLSO = 37'. The red line is a plunging geodesic

matched to the end of the transition.

which is a dimensionless constant. In our prescription, dT/dt varies with time. This

time dependence has to be enforced because dT/dt is a function of 0, whose value at

the LSO is not known a priori. The circular, equatorial case in Ref. [74] does not

suffer from this pathology because 0 = 7r/2 at all times. Thus, we treat r as a slowly

varying function of time. Table 4.2 shows the transit times for a nearly equatorial

orbit (LLSO = 0.001) and a range of mass ratios. As the mass ratio becomes smaller,

the variation in K decreases, and the dimensionless transit time converges to the limit

where K is constant.

Our initial conditions differ slightly from those used in Ref. [74]. Effectively, they

use the Taylor expansion of R(r) to solve dR/dr = 0 and d2R/(drdt) = 0 for r(O) and

i(0) respectively. In contrast, we solve the equations exactly. This leads to differences

of less than 1%.
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Angular trajectory in the transition regime

0 50 100 150 200 250 300 350 400 450
t/M
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2
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t/M

Figure 4-2: Angular motion during the transition for a compact object around a

spinning black hole with identical parameters as in Fig. 4-1.

4.3 Eccentric orbits

The methods developed thus far only discussed circular orbits. We now extend this

technique to include non-zero eccentricity. In the absence of radiation reaction, the

geodesic equations admit bound eccentric orbits. These orbits are conventionally

parametrized by the semi-latus rectum, p, and the eccentricity, e. The radial coordi-

nate can now be expressed as

r(t) P (4.41)
1 + e cos (t)

The angle 0P(t) is analogous to the eccentric anomaly and can be solved for numeri-

cally. The geodesic has turning points at / == 0,wr. Deep in the adiabatic inspiral, the

compact object's trajectory is well approximated by a sequence of orbits with slowly

varying p(t) and e(t).

Geodesics beyond the LSO do not have turning points (where dr/dt = 0). This

changes the situation considerably because the parameters, p and e are not well-

defined anymore. Thus, the trajectory ceases to have turning points somewhere

during the transition from inspiral to plunge. We will later show that this feature is
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naturally buried in our model of the transition.

4.3.1 The last stable orbit

As with circular orbits, the last stable bound geodesic is an important reference in

our procedure. The inner and outer turning points (rmin and rmax) of the LSO are

related to eLSo and PLSO through

PLSO
rmin - PL and (4.42)

1 + eLSO
PLSO

rmax - PLSO (4.43)
1 - eLSO

Our goal is to determine PLSO and the constants (E, Lz, Q) at the LSO for a given

LLSO and eLSo. This can be achieved by requiring that

dR
= 0 at r = rmin , (4.44)dr

R = 0 at r= rmin and r = rmax. (4.45)

Recall that the function R is given by Eq. (4.5) and t is defined by Eq. (4.9). We

require Eq. (4.44) to be satisfied because the inner most turning point corresponds

to a local maximum of (-R). Equation (4.45) enforces the compact object's velocity

to vanish at the turning points. Equations (4.44), (4.45) and (4.9) can be solved

numerically for p and (E, Lz, Q) at the LSO. Sec. 4.5 describes the details of this

numerical procedure.

4.3.2 The constants during the transition

As with the circular case, our initial conditions are such that we effectively choose

the LSO crossing to occur at t = tLSO. This allows us to expand the constants about
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the LSO to obtain

E(t) _ ELSO + (t - tLSO)ELSO , (4.46)

Lz(t) - Lz,LSO + (t - tLSO)Lz,LSO , (4.47)

Q(t) - QLSO + (t- tLSo)QLSo. (4.48)

Notice that we no longer need the corrections, 6Q and 6Q because there are no addi-

tional symmetries to constrain Q(O) and Q(0) ; E(t), Lz(t) and Q(t) are independent.

As discussed in Sec. 4.2.3, equations (4.46), (4.47) and (4.48) do not include

conservative effects of the self force. Just as the circular case, this will lead to a

slight shift of (E, Lz, Q)LSO and PLSO (for a given eLso and LLSO) with respect to

their geodesic values. Again, our motivation to stick with this approximation stems

from the facts that: (a) These effects can be incorporated into our prescription once

they are known, and (b) Our results show the generally expected behavior, at least

qualitatively.

Numerical methods to calculate the change in the Carter constant due to gravitational-

wave backreaction have recently become available [89, 88]. Work is in progress im-

plementing that result in the code we use to compute the rate of change of orbital

constants [33]. For now, we use the approximate expressions for Q described in [43];

it will be a simple matter to update our code when more accurate Q results are

available.

4.3.3 The prescription for eccentric orbits

Our next task is to derive equations of motion to map the phase space trajectory

to an actual world line. The angular equations, Eq. (4.20) and Eq. (4.26), remain

unaffected. Our strategy for the radial equation is to expand the geodesic equation

about (ELso, Lz,LSO, QLSO). This leaves us with
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d2r 1 [F O F dx/dt
dt2  = - + -- ]t (4.49)dt2  2 0r Ox dr/dt '
O F [2F 02 F 02F
r F 0EF (E - ELSO) + a2 (Lz - Lz,LSO) + LSOLSO)Or - OraELSO a LSO araQ LSO QLSO)

OF
+ (r, X; ELSO, Lz,LSO, QLSo) (4.50)

Note that we only expand about the constants, not the r-coordinate, because

there is no unique r at the LSO. In the absence of the first three terms in Eq.

(4.50), the equation of motion is simply a geodesic at the LSO. This is consistent

with our intuitive notion of "expanding about the LSO". The existence of turning

points presents a complication while integrating Eq. (4.50) numerically. We present

a method to tackle this in Sec. 4.6.

4.3.4 Initial conditions

We need initial conditions for r and dr/dt before we start the numerical integrator.

Motivated by the initial conditions for circular orbits, we set T - -1 at t = 0.

This amounts to choosing tLSO. We can now determine [E(O), Lz(0), Q(0)], which

can be mapped to (p, e, t) at t = 0. This mapping is allowed because the trajectory

is adiabatic before t = 0. The coordinates at any point on the geodesic defined by

[E(O), Lz(O), Q(0)] can serve as our initial conditions. For simplicity, we choose

r(0) = e' (4.51)

dr
r(0) = 0, (4.52)

¢(0) = 0, (4.53)

X(0) = 0. (4.54)

The equations of motion can now be easily integrated across the LSO.
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4.3.5 Code implementation and numerical results

Taking eccentricity into account changes our algorithm slightly. We summarize the

code's algorithm as follows:

(1) Take LLSO and eLso as input.

(2) Compute E, Lz and Q at the LSO.

(3) Obtain E, L and Q at the LSO from the expressions in Ref. [43].

(4) Choose initial conditions T - -1, ¢ = 0 and X = 0 at t = 0.

(5) Calculate E(0), L(0) and Q(0) from equations (4.46), (4.47) and (4.48).

(6) Map [E(0), Lz(0), Q(0)] to (p, e, t).

(7) Set r = p/(1 + e) and dr/dt = 0 at t = 0.

(8) Use a Runge-Kutta integrator on (4.49), (4.26) and (4.20) to compute the coor-

dinates at the next step. A time step of St _ 0.05M works well.

(10) Update the "constants", Ei+l = Ei + ELsobt, Lz,i+l = Lz,i + Lz,Lsot and

Qi+l = Qi + QLSoSt. The subscript i refers to a discrete time instant.

(11) Repeat steps (9)-(11) until X _ -5.

Recall that the local minimum of the potential R is less than zero for bound orbits

and is greater than zero for a plunging geodesic. The minimum is exactly zero at the

LSO. These conditions can be used as sanity checks while performing the numerical

integration.

Table 4.3: Fluxes and transit times for different eccentricities. We set a = 0.8M,
p = 10-5 , tLSO = 45' , M = 1, Ts = -1 and Xe = -5.

(M 
2//p) (M/ L 2

) (1/ p, )

so r LSO Lz,LSO Qz,LSO Ro o TO0 t/M AT
10- 4  3.58 -0.00974 -0.0619 -0.153 0.00517 0.0530 3.04 0.113 7.98 486.3 3.34
0.1 3.70 -0.00857 -0.0545 -0.136 0.00351 0.0506 3.54 0.0969 8.97 448.2 2.81
0.2 3.84 -0.00795 -0.0479 -0.120 0.00220 0.0484 4.33 0.0832 10.2 373.5 2.10
0.3 3.96 -0.00751 -0.0419 -0.105 0.00117 0.0463 5.83 0.0714 12.1 341.1 1.66
0.4 4.09 -0.00693 -0.0361 -0.0900 0.000365 0.0442 10.8 0.0604 15.9 332.7 1.25
0.5 4.22 -0.00607 -0.0300 -0.0745 -0.000280 0.0420 11.5 0.0496 17.7 331.6 1.14
0.6 4.35 -0.00450 -0.0236 -0.0582 -0.000801 0.0401 5.41 0.0385 15.2 338.8 1.37
0.7 4.49 -0.00351 -0.0168 -0.0413 -0.00123 0.0381 3.57 0.0272 15.1 381.9 1.56
0.8 4.62 -0.00206 -0.0100 -0.0245 -0.00159 0.0362 2.44 0.0162 16.1 507.2 1.95

Figures 4-3, 4-4 and 4-5 show a typical trajectory during the transition from inspi-

ral to plunge. The compact object starts at the minimum of the last bound geodesic

139



before the plunge. The radial coordinate increases until it reaches a maximum where

R = dr/dt = 0. Subsequently, it turns around and heads toward the minimum. After

executing a number of "whirls" near the minimum, the trajectory becomes unstable,

and thus plunges into the central black hole. The whirls are evident from the angular

trajectory plotted in Fig. 4-5. We also show a plunging geodesic matched to the end

of the transition. Notice that the plunge spends quite a bit of time at r - 2.8M -

much more time than the transition trajectory. This is because the radiation emission

built into the transition trajectory's construction pushes it off this marginally stable

orbit rather quickly.

Table 4.3 shows the various parameters and transit times for a range of eccentric-

ities. Note that the parameters a, 3, Ro, no and To (which are defined in Sec. 4.2.6)

are evaluated at PLso. In general, we find that the transit time is proportional to

a. This is not surprising because a is the first term in the Taylor expansion of the

potential, R. We also observe some degree of correlation between the transit time

and 70, the parameter used to define the dimensionless time.

Radial trajectory in the transition regime
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Figure 4-3: Radial trajectory during the transition (black line) from inspiral to plunge

for a compact object of mass p = 10-6M in an eccentric orbit around a black hole

with spin a = 0.8M. The compact object crosses the LSO at time tLSO = 196.7M.

The inclination and eccentricity of the orbit at tLSO are LLSO = 450 and eLso = 0.6

respectively. The red line is an unstable geodesic matched to the end of the transition.
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Radial trajectory in the transition regime

Figure 4-4: Same as Fig. 4-3, but zooming in on the final "whirls".

4.3.6 Comparison with Ref. [75]

As mentioned in the introduction, there are differences between our generalized pre-

scription and the method developed in Ref. [75], which only models the transition

when the compact object is in an eccentric, equatorial orbit. First, we set our initial

conditions at the start of the LSO, whereas Ref. [75] sets the initial conditions at the

end of the LSO. This educated choice allows Ref. [75] to derive an analytic form for

the trajectory. Second, we differ in the choice of final conditions. 3

In attempting to make comparisons with Ref. [75], we found a number of ty-

pographical errors. Thus, we extract the essence of the calculation in Ref. [75] and

present it in a form that (hopefully) makes the errors obvious. We start by expressing

the radial geodesic equation as

(d + V(r) - 0, (4.55)
d-r

where

R
V(r) = . (4.56)

3See Sec. IIDS and Ref. [20] of Ref. [75] for a description their choice of final conditions.
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Angular trajectory in the transition regime
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t/M

Figure 4-5: Angular
as in Fig. 4-3.

trajectory during the transition for the same set of parameters

The orbit is unstable if the local maximum of V(r) is negative. Define

I -Max{V(r)} = -V(rmax) . (4.57)

Note that this implies V'(rmax) = 0 and V"(rmax) < O0. We Taylor expand Eq. (4.55)

about the maximum of V(r) corresponding to some (E, Lz, Q) just beyond the LSO

to get

d(6r) 2

dTr )

\ \ 
2d 

t

+ V(rmax) + 6rV'(rmax)

+ 6r2V (rma)
2

+ _rVII(rm) - I2

(d(-r) ) 2

72 2 - I

(4.58)

(4.59)
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Radial trajectory in the transition regime

280
t/M

Figure 4-6: Comparison of our trajectory with approximate analytic results from Ref.

[75]. The compact object is in an eccentric, equatorial trajectory with parameters

eLSo = 0.6 and p = 10-6M. Its mass is p = 10-6M and is around a black hole

with spin a = 0.8M. The black line shows our trajectory; the blue line is obtained

from Ref. [75]. The observed deviation is because the approximation in Ref. [75] is

somewhat more restrictive than ours.

where

6r = r(t) - r,,max, (4.60)

dt Vt
S dt - , (4.61)

Trmax Ermax
r3 = 2/IV"(rmax)J . (4.62)

The solution of Eq. (4.59) in the regime of interest is

r(t) = rmax - vI sinh t) , (4.63)

where tc is an integration constant. We can compare our numerical solution with

Eq. (4.63) by letting the two trajectories intersect at some arbitrary instant. This

freedom is equivalent to choosing initial conditions. For example, Fig. 4-6 shows

the two trajectories near rmax for which t, is chosen such that they intersect at t =

300M. The compact object has mass p = 10-6M and is in an eccentric orbit with
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eLSO = 0.6 around a black hole with spin a = 0.8M. Notice that Eq. (4.63) is valid

only in the immediate vicinity of rmnx because (dt/dT) and (E, Lz, Q) are assumed

constant. Inclusion of the time-dependence of (dt/dT) is crucial because it leads to

time varying y, which alters the natural timescale in Eq. (4.63). This explains the

observed deviation at large values of I rl.

4.4 Summary and Future work

The primary focus of this chapter is to provide an approximate model for the tra-

jectory of a compact object as it transitions from an adiabatic inspiral to a geodesic

plunge. We have presented a generalization of the procedure in Ref. [74], where cir-

cular, equatorial orbits are treated. We derive approximate equations of motion [Eq.

(4.25) and Eq. (4.50)] by Taylor expanding the geodesic equations about the LSO and

subjecting them to evolving E, L, and Q. We can now readily integrate these equa-

tions numerically. Figures 4-1 and 4-2 show the radial and angular trajectories for a

typical inclined, circular orbit. We also plot the plunging geodesic that it transitions

to. Figures 4-3 and 4-5 are analogous plots for an eccentric orbit. Our numerical

experiments suggest that the transit time is correlated with a, the coefficient of the

first term in the Taylor expansion of the radial potential.

The code developed in chapters 2 and 3 solves the Teukolsky equation in the time-

domain and thus computes gravitational waveforms for almost any given trajectory

of the compact object. We intend to generate waveforms by feeding the world lines

calculated using this prescription to the time-domain Teukolsky equation-solver. The

resulting waveforms will be useful for LISA data analysis routines. An example of

such a waveform from the last stages of an EMRI is shown in Fig. 5-1. Chapter 5

explores the possibility of using these waveforms to estimate recoil velocities from

mergers of compact objects with black holes.
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4.5 Appendix A: The LSO for eccentric orbits

The following set of equations need to be solved in order to compute p and (E, Lz, Q)

at the LSO for a given inclination (L) and eccentricity, (e):

R(r,E,L,) = 0, (4.64)

R (r +e, E,L = 0 and (4.65)

dRd(r, E,L,) = 0. (4.66)
d0r

Recall that R is given by Eq. (4.5). The carter constant, Q can be eliminated using

Eq. (4.9). Applying an iterative technique to solve the above equations directly can

lead to problems because the terms that do not contain r are identical in equations

(4.64) and (4.65). We can skirt around this problem by solving the equivalent set of

equations,

Ri(r, E, Lz) = R(r, E, Lz) = 0, (4.67)

R2(r, E, Lz) = R r 1 + E, Lz R,(r, E, Lz)1-e

= 0and (4.68)

dR
R 3 (r, E, Lz) dr (r, E, L) = 0, (4.69)

using the standard Newton-Raphson method described in [84]. This iterative proce-

dure takes an initial guess for the solution as input. We use

ro = 6.1(1 - a/2), (4.70)

1 - 2qv3 + q2v 4

Lz,o = rovcost 1 - 2qv and (4.71)
1 - 3v2  + 2qv

Eo 1-v 2 + qv 3  (4.72)
V1 - 3v 2 + 2qv

where q = a/M, r = /-M-/r and So = (ro, L.,o, Eo)T is our initial guess for S =

(r, Lz, E)T. Let Si denote the solution at any given iteration. The algorithm consists
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of incrementing S, as follows:

S,+1 = S, + A x 6S,, (4.73)

(4.74)

where

-s, = J1 Bi, (4.75)

ORI/Or OR i /OE R/oLz

J, =/r 2 R 2 /OE R 2/Lz , (4.76)

0R 3/&r OR3/OE OR3/OLz

Bi = (-RIi, -R2,i,-R3,i )T , (4.77)

and A _ 0.1. The subscript "i" denotes that the expressions are evaluated at

(ri, Lz,i, E,). We stop iterating when BZI < x, where x - 10- 7 . The method outlined

here works well for a large fraction of parameter space.

4.6 Appendix B: Numerical integration across turn-

ing points

As mentioned in Sec. 4.3.3, Eq. (4.50) passes through turning points. The numerical

integrator can accumulate error when dr/dt - 0. This section describes our algorithm

to resolve the issue.

Let t, denote the instant at which dr/dt = 0. The radial motion is highly sym-

metric about the turning point. Thus, we must have,

dr dr
dr dr (4.78)dtP dt t v

where E is an infinitesimal duration of time. When the radial velocity becomes very
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small, we exploit this symmetry and set

dr dr
(4.79)

dt tp+t tp-t

which is the discretized version of Eq. (4.78).
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Chapter 5

Recoil velocities from black hole

mergers

This chapter is based on a paper in preparation, written in collaboration with Gaurav

Khanna and Scott A. Hughes. It will be submitted for publication in 2009.

5.1 Introduction and background

There is very strong evidence for the existence of supermassive black holes (SMBHs) at

the centers of most massive galaxies. Galaxy mergers lead to the formation of SMBH

binaries which ultimately coalesce. Astronomers believe that such mergers play an

important part in large-scale structure formation, especially at high redshifts. There

is already a growing catalog of candidates for such SMBH binaries. Examples include

active galaxies with double cores [62, 70, 86], systems with doubly-peaked emission

lines [47], and systems that appear to be periodic or semi-periodic, such as the blazar

OJ287 [103]. The initial separation between the components of a SMBH binary

formed in this manner is expected to be large enough that GW emission is weak.

However, the binary loses energy through interaction with field stars, ejecting them

away from the center. Ultimately, the binary ejects all the stars in its vicinity, driving

the SMBHs close enough to each other that GW emission becomes the dominant

radiation mechanism [15]. Thus, the last stages of the merger are primarily driven by
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gravitational wave (GW) emission from the compact binary. GWs radiated during

this process carry away energy and momentum (linear and angular) from the binary

black hole system. If the binary is asymmetric, the net effect of the momentum loss

is to impart a recoil velocity or "kick" to the merged object.

5.1.1 Background

Refs. [19, 78, 16] showed that GWs carry significant linear momentum away from non-

spherical radiating systems. The theoretical estimation of recoil velocities from SMBH

mergers has been the subject of much recent research. The first such computation

was done by Fitchett [39]. He treated the gravitational interaction as Newtonian

and included the lowest order mass and current multipoles needed for GW emission

to compute the recoil velocity. This early calculation predicted that recoil velocities

could approach 1000s of km/s, which is greater than the escape velocity for many

galaxies.

There have been several successful efforts to improve this calculation by including

additional general relativistic effects. The various approaches can be divided into the

following categories:

* Estimates from black hole perturbation theory: BH perturbation theory is most

widely used to describe binaries involving a massive central black hole (of mass

M) and a much less massive companion (of mass p). However, Ref. [38] has

shown that recoil estimates from perturbation theory with p/M , 0(0.1) fall

within the right ballpark. In addition, Ref. [95] applies the close-limit ap-

proximation to comparable, but unequal mass binaries and obtains results that

compare very well those from full numerical relativity simulations.

* Analytic estimates from post Newtonian (PN) theory: PN theory is a pertur-

bative expansion about GM/rc2 of the equations that govern the dynamics of

the binary. The symbol M represents the characteristic mass of the system and

r represents the characteristic separation between the BHs. In Refs. [18], the

authors estimate the recoil velocities using PN theory.
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* Estimates from numerical solutions of Einstein's equations: It has recently be-

come possible to model the final stages of binary black hole mergers by solving

Einstein's equations numerically. The authors in Refs. [9, 25] present recoil

velocity estimates from these simulations.

* The effective one-body (EOB) approach: This approximation technique has

been successfully applied to regimes spanning from the late-inspiral to the final

plunge of a binary black hole system. The central concept here is to treat the

motion of the two bodies (about one another) as the motion of a single body

in an effective space-time. The effective space-time turns out to be that of a

"deformed" black hole and thus, the approach requires an understanding of the

motion of a test body in such a geometry. This EOB approach has recently

had great success in being able to generate waveforms and recoil velocities that

match well with those from full numerical relativity [32, 91].

Irrespective of the approach followed, all calculations predict recoil velocities in the

range of a few hundred km/s for most SMBH binaries, which are much lower than

Fitchett's original calculation.

The computed recoil velocities also serve another important purpose. They can

be viewed as a common point of comparison for the four approaches to strong field

gravity viz., post Newtonian theory, numerical relativity, perturbation theory, and

the EOB approach. Computationally, the recoil velocity from a merging binary is

calculated by integrating the emitted radiation over several orbits. Any significant

systematic error in the approach (to strong field gravity) used will tend to magnify

the error in the estimated recoil velocity. Thus, the evaluated recoils for a range of BH

spins and mass ratios form a single set of numbers which serves as a good platform

for comparing various approaches to strong field gravity.

5.1.2 This chapter

Ref. [38] predicts upper and lower bounds for recoil velocities from BH perturbation

theory. In this chapter, we make use of the tools developed in earlier chapters to
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build on their work and make precise predictions. This section is brief overview of

the developments in BH perturbation theory leading to this work.

There are two components in exploiting perturbation theory to describe realis-

tic inspirals. First, we need a method to compute the world line followed by the

smaller object. Next, we need to compute the associated GWs from the inspiral. The

Teukolsky equation describes radiation that arises due to scalar, vector and tensor

perturbations. It is a second order, linear, and inhomogeneous partial differential

equation for curvature perturbations around spinning BHs. We use the Teukolsky

equation to describe BH binaries by treating the smaller companion as a perturba-

tion to the central BH's spacetime.

The Teukolsky equation can be solved by two different techniques. The equation

happens to be variable separable, leading to a decomposition of the solution into

Fourier frequency modes. This frequency-domain based decomposition works espe-

cially well when the smaller object is in a bound geodesic around the central BH

[53, 36]. (This is because GWs from bound geodesics show discrete spectra.) One of

the primary strengths of frequency domain formalism is that it can be harnessed to

produce the inspiral world-line from a large initial separation down to the last stable

geodesic orbit (LSO). This is possible because the radiated fluxes in energy and an-

gular momentum corresponding to geodesics can be computed to very high accuracy.

However, the ability of the formalism to generate waveforms from realistic inspirals

becomes inefficient because the spectrum becomes continuous and a large number of

Fourier modes need to be computed.

An alternate approach to solve the Teukolsky equation is by treating it as a (2+1)

dimensional PDE and numerically evolving the curvature perturbations with time on

a spatial grid [97, 98]. The strength of this approach lies in its ability to produce GW

solutions corresponding to inspiral world lines (which have continuous spectra). The

disadvantage is that it is computationally more expensive than the FD formalism to

calculate the radiated fluxes from most bound geodesics.

Ref. [74] and its generalization, Ref. [96] present a technique to compute the trajec-

tory of the smaller object as it transitions from the LSO and plunges into the horizon
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of the central BH. Combining this with the FD formalism, we can now compute the

entire inspiral trajectory of the smaller object (within certain approximations).

In summary, we can now compute the entire inspiral world line of the smaller

object and its associated GWs. This represents the culmination of several years of

work in BH perturbation theory by many researchers. With this in hand, we now

calculate the recoil velocity that results from the merger.

Our primary results, the recoil velocities shown in tables 5.1-5.5 and Fig. 5-5 are in

excellent agreement with earlier calculations from numerical relativity, perturbation

theory and PN theory. This is significant because: (a) Exploration of parameter space

is computationally easier in BH perturbation theory than in numerical relativity, and

(b) BH perturbation theory is more accurate for small mass ratios and in strong fields

than PN theory.

On a slight (but important) detour, we mention that this work, along with the

research leading to it presents the first simulations of GWs from the final stages of

an EMRI in a Kerr spacetime. Waveforms like those shown in Figs. 5-1 and 5-2 will

be useful in LISA data analysis routines.

The rest of this chapter is organized as follows: In Sec. 5.2, we summarize our

approach to inspirals, highlighting the approximations made. In Sec. 5.3, we present

the recoil velocities computed from our approach. We also compare these predictions

with earlier results. In Sec. 5.4 we discuss the convergence of our results with respect

to the number of azimuthal modes included in the waveforms. We use units in which

G = c = 1 throughout this chapter.

5.2 Summary of our approach to inspirals

There are two steps in the computation of the recoil velocity. First, we compute the

inspiral trajectory followed by the smaller object. Next, we utilize this trajectory to

solve the Teukolsky equation and generate its associated GWs and recoil velocities.

Our approach is strictly valid only in the limit of extremely small mass ratios.
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5.2.1 Geodesics in a Kerr spacetime

Geodesics in a Kerr spacetime [14, 27] satisfy the following equations:

dr
E = -tVR (5.1)

dT
dO

E = V+V,  (5.2)
dT

E = v,, (5.3)
dT

dt
= t. (5.4)

dT

The potentials can be expressed as:

R = [E(a2 + r2) - aL ] 2 -

+ [(Lz - aE)2 + r2A2 + Q] , (5.5)

vo = [Q-

cos2 9 (a2 (1 - E 2) + L2/ sin 2 0 )] , (5.6)

V = [Lz/ sin2 0 - aE]

+ [E (r 2 + a2 ) - Lza] , (5.7)

Vt = [a (Lz - aE sin2 0)] +

r2 + a2

A [E (r2 + a2 ) - Lza] . (5.8)

The parameters (r, 0, 0, t) are the Boyer-Lindquist coordinates, M is the black hole

mass, p is the perturbing mass, E = r2 + a2 cos 2 0, A = r2 - 2Mr + a2 and a is the

spin parameter of the black hole. Along with initial conditions, the dimensionless

energy, momentum and Carter constant, (E, Lz, Q) define a geodesic.

The geodesic equations admit two types of solutions: (i) Bound orbits, where

the radial and angular motions are periodic, and (ii) Unstable orbits, where the

particle ultimately plunges into the central BH. The constants (E, L;, Q) determine

the stability of an orbit.

154



5.2.2 The Teukolsky equation

The Teukolsky equation describes perturbations due to scalar, vector and tensor

fields in the vicinity of Kerr black holes [100, 99]. In Boyer-Lindquist coordinates,

this equation is

[ (r 2 +2a 2 )2  2 - 2 4Mar

A Aa40Tsin1  A

-2s r- + i cos 8

1
sin 0

sin2 8A

+ 2s a(r - M)+ i cos 0 F
[ A sin2

- (2 Cot 2 0 -s) I = -4rr (r2 2 2 COS2 ) T, (5.9)

where M is the mass of the black hole, a its angular momentum per unit mass,

A = r2 - 2Mr + a2 = (r - r+)(r - r_), r± = M± v'M 2 - a2 and s is the "spin

weight" of the field. The s = ±2 versions of these equations describe perturbations to

the Weyl curvature tensor, in particular the radiative degrees of freedom 00 and a4.

That is, I = /o for s = +2, and p = p-44 for s = -2, with p = -1/(r - iacos 0).

The T in the right hand side of the equation is a source term, constructed from the

trajectory of the perturbing mass. The details of the perturbing object enter here.

The equations

2h+ t2  (5.10)

dP r 2 t

(t) = lim dQ 4 , (5.11)
dt -r--oo 4r r _J

relate 04 to the "plus" (h+)/"cross" (hx) polarizations of the GWs, and the linear

momentum flux dPl/dt. The subscript i denotes a Cartesian coordinate (x, y or z).

The axial symmetry of the problem makes the azimuthal dependence simple. The
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code developed in Ref. [97, 98] factors out this dependence and uses the ansatz,

I (t,r, , ) = E em exp (im [ a inr r+ r3(Dm(t,r,O) (5.12)
m Ir+ -r_ r-r '

to solve the Teukolksy equation numerically as a (2+1) dimensional partial differential

equation. The key result of Ref. [97, 98] is that we can generate GWs from generic

non-geodesic orbits that are both inclined and eccentric. The error was shown to be

less than 1% for a large fraction of parameter space.

5.2.3 The trajectory

The trajectory of the smaller object can be broken down into three regimes: (a) An

adiabatic inspiral phase, where the inspiral time scale is much larger than the orbital

period. In this phase, we approximate the trajectory as a sequence of bound geodesics;

(b) A late-time radial infall, which can be approximated as a single unstable, plunging

geodesic; and (c) A short regime where the body transitions from inspiral to plunge

[74, 96].

Ref. [53, 36] solves the Teukolsky equation by expanding b4 as a sum of Fourier

frequency modes in r, 0, 0, and t. This frequency-domain based algorithm is very

effective at computing waveforms and radiated fluxes (, L", Q) corresponding to

bound geodesics. We use the frequency-domain code to construct the smaller object's

"phase space" trajectory [E(t), Lz(t), Q(t)] [53, 36] during the early adiabatic inspiral

that defines the sequence of geodesics it evolves through. The geodesic equations

map [E(t), Lz(t), Q(t)] to an inspiral world line [r(t), 0(t), 0(t)] for a given set of

initial conditions.

Ref. [74] and its generalization, Ref. [96] present a prescription to model the tra-

jectory during the transition from early inspiral to the final plunge. It also provides

initial conditions for the plunging geodesic that it transitions to. In summary, we can

combine the results of Ref. [53, 36, 74, 96] to construct the entire inspiral trajectory.

We reiterate that the "piecewise" trajectory constructed in this manner is only ap-

proximate in that it neglects the conservative part of the gravitational self-force on
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the smaller object.

5.3 Recoil velocities from black hole mergers

This section presents the numerically computed recoil velocities from our approach.

Tables 5.1-5.5 show the recoil velocities for a number of approximately circular inspi-

rals in the equatorial place. Each table shows data corresponding to a particular BH

spin for a range of mass ratios. Ideally, we would like the initial separation to be oo.

Due to computational restrictions, we set the initial separation such that the effect

of finite initial separation is minimal. In most cases, the major contribution to the

recoil velocity is from the final stages of the merger. Hence, the error from starting

out at a large but not infinite separation is small. However, this error increases with

black hole spin. We discuss this in detail in Sec. 5.3.2. Since the inspiral is slower for

smaller p/M, our initial separation decreases with mass ratio.

We use Eq. (5.11) to compute the linear momentum flux in the x, y and z directions

from 0 4 . We obtain the recoil velocity by integrating dP/dt,

[te dP

Vrec,i = c dt d (5.13)

Ivre = v + v2 + v . (5.14)

The upper limit te is chosen after the merger, when the amplitude of the ringdown

becomes substantially small. We choose the lower limit to such that the effect of

finite initial separation is minimal. In the absence of radiation reaction, P, is purely

sinusoidal [101]. This implies Pi = 0 when P is at a local extremum. At large enough

separation, the effect of radiation reaction is small and we expect Pi and Pi to be

approximately sinusoidal. This is seen in Fig. 5-3. Thus, we choose to to be the first

local extremum in our computed Pi(t). This assures that,

P(to) < dt . (5.15)
Sdt
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Fig. 5-1 plots 0 4(r = 200M, 0 = 7r/2, = 0, t) just before and after merger. The

sudden jump in amplitude during the final stages of merger is clearly visible. The

exponential "ringdown" to the BH's quiescent state is also visible.

Re[V 4] (blue) and Im[V4 ] (black) for = 10-6M

x 10- 9  extracted at r = 200M on the equatorial plane.
1.5

1

0.5-

-0.5

-1 I I I

7000 7050 7100 7150 7200
time/M

Figure 5-1: Waveforms from merger and ringdown of a binary consisting of a massive

black hole of mass M and a much smaller companion of mass p - 10- 6M. The central

BH has spin parameter a/M = 0.6. The complex field 04 is a radiative component of

the Weyl curvature tensor and is related to the metric perturbations via Eq. (5.10).

The waveform is extracted at a radius of 200M on the equatorial plane of the central

BH. Azimuthal modes with Iml < 5 are included in the waveform.

5.3.1 Variation with mass and spin

The data in tables 5.1-5.5 indicate that the recoil velocity scales approximately as

(p,/M)2. This is easy to understand from the viewpoint of perturbation theory. The

major contribution to the recoil comes from the final plunge, which is approximately a

geodesic. Thus, the plunging trajectory remains approximately the same for all mass

ratios. However, V4 scales as p/M which leads to dP/dt oc (i/M)2 from Eq. (5.11).

For higher mass ratios, the contribution to the recoil from the inspiral and transition

become more prominent. This leads to a deviation from the (1p/M)2 scaling.
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Re[f 4] (blue) and Im[i 4] (black) for i = 10- 6 M

extracted at r = 200M on the equatorial plane.

I i I i I I

-23

-3
2000 3000 4000

time/M
5000 6000 7000

Figure 5-2: Same as Fig. 5-1, but for the time interval prior to the merger.

Tables 5.1-5.5 show that the recoil velocity decreases with increasing BH spin.

This trend is consistent with observations from full numerical relativity simulations

in Ref. [9]. Moreover, tables 5.1-5.5 suggest that recoils from retrograde motion

(a/M < 0) are significantly higher than recoils from prograde motion (a/M > 0).

This is qualitatively simple to explain. Recoils are the result of radial, non-circular

motion. 1 In the presence of radiation reaction, the smaller object's velocity is

approximately tangential, superposed with a small radial component. The largest

amount of radial, non-circular motion happens during the final plunge phase. Thus,

a longer plunge phase leads to a greater recoil. Now, the duration of the plunge

phase depends on the radius of the innermost stable circular orbit (ISCO), which in

turn depends on the spin of the central BH. It turns out that the radius of the ISCO

decreases with a/M, which implies a longer plunge phase for retrograde motion. This

leads to the observed decrease in recoils with increasing a/M. Thus, the net effect

of alignment of the central BH's spin with the orbital angular momentum on frame

1The average Pi (t) from purely circular motion is exactly zero.
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Linear momentum fluxes: dpx/dt (blue), dp y/dt (black) and dpz/dt (red)
x yz

1000 2000 3000 4000 5000 6000 7000
Time/M

Figure 5-3: Momentum flux for a binary inspiral with

integrated recoil velocity is 1.0 x 10-6 km/sec.

parameters as in Fig. 5-1. The

dragging tends to decrease the recoil.

Table 5.1: Recoil velocities for a range of nearly circular inspirals in the equatorial

plane. The central BH has spin a/M = 0.0. The quantity p/M denotes the mass

ratio, p is the initial separation, and Vre is our numerically computed recoil velocity.

These results use the azimuthal modes lmn = 0, 1, 2, 3, 4, 5. The column Vnr shows

recoils obtained from Eq. (5.16) with best fit parameters quoted in Ref. [9]; vfit is

obtained from our best fit parameters.

p/M p/M a/M Vre, (km/sec) vnr (km/sec) vfit (km/sec) Vrec-nr (Vrec - Vfit) /Vrec

10-  6.4 0.0 1.18 x 10- 8.83 x 10- 5  1.14 x 10-  0.25 3.6 x 10-2

10- 5  6.14 0.0 1.18 x 10 - 6 8.83 x 10 - 7  1.14 x 10- 6 0.25 3.6 x 10 - 2

10- 6 6.04 0.0 1.18 x 10 - 8 8.83 x 10- 9 1.14 x 10 - 8 0.25 3.6 x 10- 2

5.3.2 Comparison with numerical relativity

It has now become possible to successfully simulate mergers (eg. Refs. [9, 25]) be-

tween comparable mass black holes by solving the Einstein field equations numerically.

These simulations of the final stages of merger give excellent estimates of the recoil

velocities. Several groups have proposed phenomenological formulae for the recoil
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Table 5.2: Same as Table 5.1, except that the central BH has spin parameter a/M

0.3.
p/M p/M a/M Vrec(km/sec) ec)(km/sec) -fit (kmnsec) r (vrec - Vfit)/Vrec

10- 4  5.45 0.3 9.64 x 10- 5  7.04 x 10- 5  9.55 x 10-  0.27 9.3 x 10-

10- 5  5.13 0.3 9.64 x 10 - 7  7.05 x 10- 7  9.55 x 10 - 7  0.27 9.1 x 10 - 3

10-6 5.025 0.3 1.05 x 10-8 7.05 x 10- 9  9.55 x 10 - 9  0.33 9.0 x 10-2

Table 5.3: Same as Table 5.1, except that the central BH has spin parameter a/M =

0.6.
p/M p/M a/M Vre (km/sec) vnr(km/sec) vfit(km/sec) re--vn (Vrec - Vfit)/Vrec

10- 4  4.35 0.6 6.94 x 10- 5  5.61 x 10- 5  7.29 x 10- 5  0.19 -5.1 x 10- 2

10- 5  3.99 0.6 6.96 x 10- 7  5.61 x 10 - 7  7.30 x 10 - 7  0.19 -4.8 x 10- 2

10- 6 3.881 0.6 6.98 x 10- 9  5.61 x 10- 9  7.30 x 10- 9  0.20 -4.5 x 10- 2

velocity by fitting the available data from simulations to analytical expressions. We

test the validity of these expressions in the extreme mass ratio limit.

For example, Ref. [9] proposes that,

Vrec = f(q, al, a 2 ; Vo, k,3) , (5.16)
32Vq 2

- (1 q)5 V/(1 - q) 2 + 2(1 - q)/3K + K 2 , (5.17)
(1 + q)5

where q = mi/m 2 , m1 and m 2 are the masses of the two BHs (ml < m2); K

k(q&. - a2 ); 61 = al/mi, 2 = a2 /m 2; a1 and a2 are the spin parameters of the BHs

with masses m, and m 2 respectively. The authors obtain the free parameters V, K

and 3 by fitting their data to Eq. (5.16). Their best fit parameters are V = 276

km/sec, 3 = 0.84 and k = 0.85.

We fit the data in tables 5.1-5.5 to Eq. (5.16) in order to provide estimates for Vo,

K and 3 from BH perturbation theory. We make the association,

M = m 1 +m 2, (5.18)

m m1 2  (5.19)

because BH perturbation theory is formulated in the center of momentum frame

whereas the numerical relativity simulations are performed in a "lab" frame.
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Table 5.4: Same as Table 5.1, except that the central BH has spin parameter a/M =
-0.3.
p/M p/M a/M Vr e(km/sec) vnr(km/sec) vfit(km/sec) Vre--Vnr (rec - Vfit)/Vrec
10 -  7.29 -0.3 1.29 x 10 - 4  1.08 x 10 -  1.30 x 10 -  0.16 -4.3 x 10 -

10 - 5  7.06 -0.3 1.28 x 10-6 1.08 x 10-6 1.30 x 10-6 0.16 -1.2 x 10-2
10-6 6.98 -0.3 1.28 x 10-8 1.08 x 10-8 1.30 x 10- 8 0.16 -1.2 x 10- 2

Table 5.5: Same as Table 5.1, except that the central BH has spin parameter a/M =
-0.6.
p/M p/M a/M Vrec(km/sec) vnr(km/sec) vfit(km/sec) Vrec-Vnr (Vre - Vfit)/Vrec
10 - 4  7.89 -0.6 1.40 x 10-  1.28 x 10 -  1.44 x 10 8.2 x 10- 2  -2.6 x 10 - 2

10- 5  7.87 -0.6 1.42 x 10- 6  1.29 x 10- 6 1.44 x 10- 6 9.5 x 10- 2 -1.2 x 10- 2

10- 6  7.86 -0.6 1.40 x 10- 8  1.29 x 10- 8  1.44 x 10- 8  8.2 x 10- 2 -2.6 x 10- 2

Sec. 5.6 outlines the chi-squared procedure adapted to fit our data to Eq. (5.16).

Our best fit parameters are Vo = 355.59 ± 5.1 km/sec, k = 0.09 ± 0.67 and 0 =

5.48 ± 40. Fig. 5-4 shows our data along with the line of best fit. The parameter

with dimensions of velocity, Vo is in fairly good agreement with Ref. [9]. On the other

hand, the dimensionless parameters k and / are poorly constrained. This is because

recoil velocities are less sensitive to substantial changes in k and / at small mass

ratios. However, the error bars on k and / are large enough to be consistent with

Ref. [9]. Interestingly, the authors in Ref. [91] also find that the effective-one-body

approach is in excellent agreement with Eq. (5.16).

Ref. [25] and Ref. [69] use another variation of Eq. (5.16),

Vrec = V 1 + v_(cos l + sin( 2) , (5.20)

m Aq2(1 - q) + B q  (5.21)
(1 + q)5 (1 + q)2 (5.21)

2
v± = H q 5  2 ( - q 1 ) , (5.22)

(1 + q)

for equatorial orbits. The orthogonal unit vectors 1 and e2 lie in the orbital plane.

Since BH perturbation theory is accurate only up to leading order in q, we ignore B
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Figure 5-4: Line of best fit (solid black) for the data in tables 5.1-5.5. Our data ("+")

are also shown.

and fit our data to,

Vree = V 2 + 2vmvI cOS + v, (5.23)

q2

SA )5 [(1 - q)2_
(1 + q)

H H2
2(1 - q) (qel - &2) os+ 2 -(q - 22 2 (5.24)

Comparing Eq. (5.23) to Eq. (5.16) gives best fit parameters A = 32Vo = 1.14 x 104

km/sec, H = kA = 1024 km/sec and cos = -, = -5.48. Ref. [9] obtains A =

1.35 x 104km/sec, B = -1.48, H = 7540 km/sec and cos = 0.82. On the other

hand, Ref. [69] obtains A = 1.2 x 104 km/sec, B = -0.93, H = 6900 km/sec and

cos ( = 0.82. Our estimates for A, the parameter that is constrained well are in good

agreement.

Fig. 5-5 is an alternate way to compare recoil velocities obtained from perturbation

theory with those obtained from numerical relativity [9, 25, 69]. The solid black

line is Eq. (5.16) for p/M = 0.1 and -0.7 < a/M < 0.7 with best fit parameters
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Figure 5-5: Comparison of recoil velocity estimates (km/sec) from various approaches

for a binary with 1p/M = 0.1 (q = 0.127). The solid black line is our estimate. The

blue (dot-dashed) line uses best fit parameters from Ref. [69]; the red (grey) line uses

best fit parameters from Ref. [9].

obtained here. The red (grey) and blue (dot-dashed) lines are Eq. (5.23) with best

fit parameters obtained from Refs. [9] and [69]. Interestingly, our estimates fall

between the numerical relativity estimates for a large fraction of parameter space.

Furthermore, our estimates are consistent with Fig. 2 of Ref. [38]. We notice that our

disagreements are largest for high spins. We discuss this below:

For a given mass ratio, the duration of the adiabatic inspiral increases with BH

spin aiM. This is because the radius of the innermost stable circular orbit decreases

with a/M, which in turn leads to a longer adiabatic phase (slow) and a shorter

plunge phase (rapid). The numerical integration time increases with the duration of

the trajectory. This makes generation of recoil data from the time-domain Teukolsky

solver (the code used here) for large spins (a/M > 0.6) computationally cumbersome.

We are investigating the possibility of using the code developed in Ref. [38] to calculate

the recoil from the early inspiral and integrating it with the code used here.

The decrease in recoils at large spins is associated with an "anti-kick" during

the merger and ringdown phases. This effect arises as a result of the loss of linear

momentum in a direction such that it cancels out most of the recoil accumulated over
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several cycles. Ref. [92] examines the anti-kick for a range of binaries. The published

version of this work will include a detailed exploration of this effect.

We incur a computational cost of approximately 1800 CPU hours on a X86_64

processor for the recoil velocity from each set of parameters. The duration of each

simulation is about 7500M.

5.4 Convergence with azimuthal mode

As mentioned in Sec. 5.2, we expand the solution

of azimuthal modes,

I'(t, r, 0, ) = eim" exp (im [  a In
m r+ - r_

If we include only one m-mode in the summation,

becomes,

of the Teukolsky equation as a sum

r - ) r 34m(t, r,) . (5.25)

the momentum flux from Eq. (5.11)

P oc docos ojm(t, r, 0)2,

0 and

l x oc d sin m m(t, r, 0)2 ,

= 0.

In general, the integral over ¢ in Eq. (5.11) is proportional to,

m,m'

OC
m,m'

P m Oc Em, m
oc

m,m'

do cos ei(m-M') ( mm ,
0

[m+16m' + 6m6m'+11 (4mD ,),

d 27r sin e(mm') ( m ,) .

[6m+16m, - 6m6m'+1] ('m,) ,
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Thus, contributions from terms with m = m' vanish. This shows that the recoil

velocity arises due to beating between adjacent m-modes.

Ideally, Eq. (5.25) should include an infinite number of m-modes. Due to compu-

tational constraints, we only include the modes Imrn <5. This is justified because we

expect contributions to decrease exponentially for larger m-modes. In this section,

we examine the convergence of our recoil velocities with m.

Table 5.6: Convergence with azimuthal mode. We show recoil velocities, Vrec for a
binary with p/M = 10 x 10- 5, a/M = 0.3 when a restricted number of azimuthal
(m) modes are included in the waveform. Inclusion of modes beyond Iml = 5 changes
Vrec only marginally.

mi-modes included Vre (km/sec)
0,1,2 7.57 x 10- 7

0,1,2,3 8.72 x 10- 7

0,1,2,3,4 9.63 x 10- 7

0,1,2,3,4,5 9.64 x 10- 7

Table 5.6 shows the effect of including additional modes on the recoil velocity for

a typical BH binary. As expected, we observe steady convergence in the recoils. The

inclusion of the m = +5, -5 modes changes the recoil only by - 0.1 percent.

5.5 Conclusions and future work

This chapter is the culmination of approximately a decade of work in BH perturbation

theory. We now have a versatile toolkit to fully exploit BH perturbation theory to

generate gravitational waveforms, fluxes, and recoil velocities from BH binaries. Figs.

5-1 and 5-2 show GWs from a typical binary. Recoil velocities from binaries with a

range of parameters are shown in tables 5.1-5.5 and Fig. 5-5. Most importantly,

the results in this chapter are in concordance with other approaches to relativistic

binaries.

A natural extension of this work will be to include completely generic inspirals,

where the orbit of the smaller object is inclined with respect to the central BH's

equator. In theory, we have all the tools required to compute recoils from such

inspirals. However, world lines from these generic inspirals are more detailed and
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require extensive computations. We are currently working on making the process

more efficient and integrating it with the existing code base.

The results here are motivation to add additional features to perturbation theory.

For example, the spin of the perturbing object is completely ignored. It will be

worthwhile to include the effects of the spin angular momentum of the perturbing

object to its dynamics and the associated GWs. The dynamics will require solving

the Papapetreau equations of motion instead of the geodesic equations done here.

The stress-energy tensor of the perturbing object (that appears in the Teukolsky

equation) will also have to be suitably generalized to account for spin.

We emphasize that the trajectory used in computing the inspirals here do not

account for the conservative part of the gravitational self force. When this becomes

available, it should be straightforward to incorporate it into our model for the trajec-

tory to yield improved waveforms and recoil velocity estimates.

5.6 Appendix: Best fit parameters

We outline our procedure to estimate the parameters Vo, k and 3 by fitting our data

to the expression Eq. (5.16). For the most part, we use the standard chi-squared

analysis [84]. We highlight some minor differences here.

For a given mass ratio (qi) and spin (ai), define

(1 + qi) 5

Yi = + re,i, (5.34)

b = (Vo, k, ) (5.35)

(1 + i) 5
F = 2 q)f (qi, 0, as; b)

= F (qi, ai; b) , and (5.36)

X2(b) = [yi - F (qi, a.; b)] 2 . (5.37)

The subscript i denotes a data point. For example, the second row of table 5.2

gives Vrec,i = 9.64 x 10- 7 km/sec, pi = 10-5M, al,, = 0 and a2,i = 0.3. Note that

the spin of the massive black hole is a2,i = ai and that of the perturbing mass is
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al,i = 0 always. The parameter a2 is the variance of y, if it were a Gaussian random

variable. Our rescaling of the numerical recoil velocities [by introducing the factor

oc (1 + qi)5 /qi - 1/p 2 in Eq. (5.37)] eliminates the effect of the scaling of Vrec,i with

p. Else, contributions from higher mass ratios will dominate X2 .

Let b be the (unknown) actual value of b. Our best fit parameters, b* =

(Vo*, k*,, *) are those that minimize X2. If y, were a Gaussian random variable,

the best fit parameters are also random and can shown to be maximum likelihood

estimators for b.

We now need a measure of the error in our estimate b* . If some b* + 6b* were

obtained for a set of data {y, + 6 yz} with the same actual parameters b, then the

random variable

AX 2 = X2 (b* + 6b*) - X2(b) (5.38)

follows a chi-squared probability distribution. Note that we can estimate a 2 in Eq.

(5.37) by computing

N-1

2 = 3 [y, - F (q,, ai; b*)] 2 /(N - M) , (5.39)
i=0

where N is the number of data points and M is the number of free parameters (which

is 3 in our case). We now want the value of 6b* for which the probability,

P[-AX2 < AX2 < X = Po. (5.40)

Here, po is the desired confidence level and AX2 can be obtained from the chi-squared

distribution. Further, 6b* is a measure of our error with a confidence of po.

In general, AX2 is approximated by,

AX2 = 6b* kj 6bj (5.41)
ky
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where a is a matrix whose components are

k a 1 N [ F(qi, ai; b) OF(qi, ai; b) (5.42)
i=O = aa bk obj b.
i=0

Finally, this leads to the error in our estimate,

6bk VA (a 1 )kk (5.43)

There is an important caveat in this analysis. Our {yi} are deterministic, they

are not the result of randomness in an experiment. Thus, it is incorrect to quote

confidence intervals. Nevertheless, minimizing the dimensionless X2 remains a valid

method to estimate the best fit parameters. Also,

X2(b*+Sb*) 2 X(b *)

1 - 2  2 x2

+- 6 bk 2 Sb , (5.44)
kl b* b b*

- X2(b*) + E 6b akj 6bj , (5.45)
k3

= AX2 ~ 6b kj Sbj . (5.46)
kj

In essence, a measures the curvature of X2. The errors we quote are

6bt = (a 1)kk . (5.47)

This is just a measure of the change in b! needed to increase X2 by unity.
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