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Abstract

This thesis is concerned with the properties of mesons and quarks which live in the
strongly coupled plasma of certain gauge theories which are similar to QCD. To study
these plasmas we exploit gauge gravity duality which has been particularly useful for
understanding QCD at temperatures above, but not far above, that at which quarks
and gluons are deconfined.

For example we will show analytically that mesons propagating through these
plasmas have a subluminal limiting velocity at non zero temperatures. This limiting
velocity decreases with increasing temperature towards the dissociation temperature.
We then argue that this behavior will be universal in gauge theories with a gravity
dual. If this result applies in QCD it would have observable effects in future heavy ion
collisions at RHIC and the LHC. We also study the width of these mesons by exploit-
ing nonperturbative string effects which can destabilize them, a result we attribute
on the gauge theory side to thermal fluctuations. We show that the lifetime of these
mesons, described via nonperturbative string effects, decreases rapidly above the mo-
mentum at which the meson speed approaches its limiting velocity. This is further
evidence for the universality of the limiting velocity and it sharpens the signature
expected in heavy ion collisions, especially when the LHC starts colliding ions.

Finally the system that was used to study these mesons has an interesting phase
structure in the plane of temperature and quark chemical potential. We find a third
order phase transition line which ends at a tricritical point. We argue that this phase
transition is driven by the same nonperturbative physics which contributed to the
meson lifetime.
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Chapter 1

Introduction

In this chapter we will begin by motivating the strong coupling problem of QCD,

focusing on attempts to understand the strongly coupled quark gluon plasma. Then

we will introduce AdS/CFT as a tool for understanding features of strongly interacting

theories, such as QCD. We will explain how to add fundamental degrees of freedom to

pure gauge theories in AdS/CFT. The system we will arrive at will be the main focus

of this thesis from which general properties of mesons and quarks in these AdS/CFT

setups will be derived.

1.1 QCD and the quark gluon plasma

The vacuum of QCD looks nothing like the perturbative degrees of freedom (quarks

and gluons) we use to define it. The reason for this is that the interactions are strong

which leads to confinement of the perturbative degrees of freedom - the spectrum

which results is that of hadrons. Thanks to asymptotic freedom, at large energies the

coupling is weak and we may talk of quarks and gluons freely.

For QCD at finite T, one would expect a similar picture where at small temper-

atures the relevant degrees of freedom are hadrons and at very high temperatures

one expects a free gas of quarks and gluons, the quark-gluon plasma. Somewhere in

between there is a deconfinement transition Td, which for real QCD at zero Baryon

density is just a cross over.



What of the region in between: above the deconfinement transition, but not too

far above it? Turning to experiment, an interesting picture has emerged over the

last few years, of a deconfined yet strongly interacting phase of quarks and gluons

(sometimes referred to as the strongly coupled QGP or sQGP.) Heavy ion experiments

at RHIC collide Gold nuclei at energies of 200GeV per nucleon. The resulting fireball

of quarks and gluons seems to behave collectively like an almost perfect liquid - a

liquid which is well described by hydrodynamics.

The conclusion of collective behavior comes from examining the asymmetry of a

collision around the collision axis. This is characterized by the elliptic flow parameter

v2 as a function of the impact parameter of the collision. v2 is the second moment

of the collision distribution around the collision axis. For a weakly interacting gas

v2 should be small, or dominated by fluctuations which go away for large number

of individual nucleon collisions. This is not found. Instead, the degrees of freedom

and hence the observable v2 are found to be best modeled by ideal hydrodynamics

[1, 2, 3]. Fitting the data on elliptic flow to hydrodynamic models gives a range for

the viscosity to entropy density ratio rl/s of 0 - 0.2 [3].

Ideal hydrodynamics actually means strong interactions - the viscosity is a measure

of the ability of the medium to transfer momentum, the stronger the interactions

between constituents the harder it is for momentum to transfer across a fixed distance

since the distance between collisions is small. For example, for weakly interacting

A 4 theory r/s - A- 2 [4], so one might imagine that the viscosity to entropy density

ratio r/s is a good measure of the inverse coupling of the theory. As a result the

observations of v2 cannot be explained in perturbation theory.

We need new tools in order to understand analytically the properties of such a

strongly interacting QGP. Lattice QCD is useful when it comes to strong coupling

properties of QCD, however it is hard to extract dynamical quantities. On the lattice,

properties are measured in Euclidean time: it is hard to rotate back to real time

without analytic results. Certainly the sQGP is a "dynamic" environment, so such a

program remains difficult'.

1See [116] for recent progress in this direction.



There is one calculation of rl/s in a class of strongly coupled quark gluon plasmas,

for which the result is universally 1/47. 2 These plasmas are exactly those which

are described by the AdS/CFT correspondence in the gravity approximation (to be

explained below.) This result has spurred interest in AdS/CFT as a tool for un-

derstanding the quark gluon plasma of QCD, and a growing list of properties (some

universal and some not) have been found for this class of theories in order to compare

to experiment. This list includes: diffusion constants [5, 6], the diffusion of quarks

through the plasma [7, 8], the opacity of the plasma to hard probes [9], etc. In the

next section we will describe the screened quark anti-quark potential in QCD which

has also been extensively investigated through AdS/CFT [10, 11, 12, 13].

1.1.1 The phenomenon of J/lI suppression

Electromagnetic interactions are screened by free electrons in an ordinary plasma.

Through this the photon receives a mass called the Debye mass mD. A similar

mechanism is at play for the QCD plasma. It is not hard to see that this will have

important consequences for bound states of quarks and anti-quarks (mesons) that

live in such a plasma. The weakened interactions should suppress their survival

probability, relative to if the mesons were simply found in vacuum. So it was suggested

in [14] that this suppression for the J/4I meson is an ideal probe of properties of the

medium itself.

The inverse Debye mass defines a scale called the screening length and char-

acterizes the size of the interactions between a heavy quark antiquark pair. Lattice

calculations [15] of this potential give an estimate of this length of around Ls - 0.5/T

as a function of temperature.

Dissociation is then simply a matter of scales [16]. For hadrons made of light

quarks (including the strange quark) the screening length already at the deconfine-

ment transition is smaller than their size, which is determined largely by the dynam-

ical scale of QCD, of around lfm. Hence they will not survive the deconfinement
2This is certainly small, in fact it has been conjectured to be a lower bound for any substance,

[117, 118, 119].



transition, and so will not be useful as probes of the deconfined quark-gluon plasma.

On the other hand the size of heavy quark bound states is determined largely by their

heavy constituent quarks. Potential models, which work well for such states [16], sug-

gest that the size of J/ is about .25 fm much smaller than the size of hadrons made

of lighter quarks. Equating this size to the screening length gives a dissociation tem-

perature of around T = 2T,. These states do survive above T, and may provide a

useful thermometer for this state of matter.

As we will discuss in more detail in Chapter 2, lattice calculations of meson spectral

functions confirm this picture, suggesting that the J/4' meson in a thermal bath

survives the deconfinement transition Tc, but dissociates (ceases to exist) at around

T = 1.5Tc [17]. However the QGP created at RHIC is not a static thermal bath, but

rather a very dynamic environment. So it would be nice to understand the effects of

a flowing plasma on the properties of the the J/P meson. Lattice calculations are not

suited to this, so we will examine this question using the AdS/CFT correspondence.

From an examination of the screened quark anti-quark potential in a flowing plasma

the authors of [10, 11] suggested that in fact the survival probability for a heavy quark

meson moving relative to the plasma would further be suppressed.

This calculation will be summarized later in this chapter, as it provides motivation

for going beyond the quark-antiquark potential and studying directly a system with

dynamical quarks and real meson bound states. This will be the main focus of this

thesis. Studying real meson bound states will further strengthen the predictions

inferred from the quark anti-quark potential. In Chapter 2 we will find that the

propagation of heavy quark mesons is dramatically modified by a limiting velocity

which is less than the speed of light. We will also find in Chapter 3 that the widths of

these mesons below their dissociation temperature increase dramatically as a function

of momentum relative to the plasma.



1.2 The Gauge Gravity Duality

The large Nc limit of gauge theories is a useful approximation to the theory at finite

Nc (that is Nc = 3 for QCD.) The limit must be carefully defined such that the

Yang-Mills coupling gyM is scaled appropriately, holding the 't Hooft coupling

A = gY2MN (1.1)

fixed. Upon making the assumption of confinement, large N, QCD was shown to

yield a weakly interacting "classical" theory of mesons and glueballs, a good starting

point for any understanding of the low energy dynamics of QCD. However, as opposed

to large N vector models where the theory becomes free, matrix models cannot be

directly solved in this limit. (For example the spectrum of mesons and glueballs

in large-N, QCD cannot be found.) Actually since we know QCD to be a strongly

interacting theory at low energies this feature is a blessing - we have not lost one of

the essential features of the theory. It was long believed that the appropriate theory

to describe large Nc QCD was in fact a string theory, with 1/Nc playing the role of

the string coupling gs. The first realization of this idea was from [18], where a specific

string theory constructed on Anti-de Sitter (AdS) space was conjectured to be dual

to a special gauge theory which was in fact a Conformal Field Theory (CFT). This

set of ideas is labeled the AdS/CFT correspondence.

This gives the simplest example of the AdS/CFT correspondence: the duality

between K = 4 super Yang-Mills (SYM) theory and classical gravity in AdS5 x

S5 [18, 19, 20, 21]. n = 4 super Yang-Mills (SYM) theory is a conformally invariant

theory with two parameters: the rank of the gauge group Nc and the 't Hooft coupling

A defined in (1.1). These parameters imprint themselves in the string theory via the

string coupling and the curvature scale of AdS in string units R/v-',

R4
47rg, = A/N, )2 = A (1.2)

In the large-N, limit, quantum effects can be neglected and in the large A limit



the string length scale is small and stringy corrections can be ignored. Upon taking

these limits gauge theory problems can be solved using classical gravity in AdS5 x S5

geometry. Throughout this thesis we will mostly be concerned with this limit. In

chapter 4 we will make some comments about relaxing the A -* oc limit.

At finite temperature, n = 4 SYM theory with a gauge group SU(Nc) can be

described by a string theory in the spacetime of a black hole in AdS5 x S5, whose

metric can be written as

r 2  R 2 dr2 2
ds2 (- f dt2 + dY2) + -- R2 d 2  (1.3)

R2 22 f

where £= (xl, X 2 , 3 ) and

f = 1- (1.4)

dQf is the metric on a unit five-sphere S5 and ro is the location of the black hole

horizon. The temperature T of the YM theory is given by the Hawking temperature

of the black hole,

T= ro (1.5)
7R2

One can think of the gauge theory as living at the boundary of AdS 5 at r --> o0, with

the spacetime coordinates (t, £) which we will collectively denote z.

It is important to note that the existence of this black hole at any finite temper-

ature T implies that A = 4 SYM is always deconfined [22]. So we will only use it as

a model of QCD above the deconfinement transition.

One of the basic maps in the dictionary between gauge theory and gravity is a

correspondence between gauge invariant local operators O(x) and fields in the bulk

gravity theory 0(,r). Correlators of such operators can be calculated using the

GKPW formula [19, 20] which relates the generating functional of the field theory to

the on-shell gravity action:

Z[b0 ]- Kexp (- J d 4 (x)O(x)) exp (- Sgrv [0 (r, x)]) (1.6)

where 0(r, x) solves the appropriate field equation in the bulk subject to certain



boundary conditions. For simplicity we will work here in Euclidean time. To describe

the boundary conditions we observe the behavior close to the boundary of AdS. This

is quite generally,

O(r, k) = 0o(k)rA-4(1 O(r-1)) + 0(k)r-A(1 + O(r-1)) (1.7)

where we are now working in Fourier space for the spacetime directions x --- k. A is

the dimension of the operator O(x) which can be calculated from gravity. The two

boundary conditions for a second order field equation are then: fix 0 at the boundary

and demand regularity of the solution in the bulk of AdS. This will then fix 0(k) in

(1.7) in terms of qo(k).

For example from (1.6) the two point function works out to be:

(O(k)O(-k)) (1.8)(k)0(k)) (k) (1.8)Oo(k)

Care must be used when defining this in real time, especially in the presence

of a horizon in the bulk. The correct prescription is to demand in-falling boundary

conditions at the horizon [123]. Then the formula (1.8) computes the retarded Greens

function in the gauge theory. We will come across real time issues in Chapter 3 of

this thesis.

The reason we have introduced this machinery is that it allows us to study the

spectrum of states in the gauge theory. We will be interested in meson bound states

which will show up as poles in the retarded greens function of certain operators which

we will discuss in the next section. From (1.8) we see that this occurs when 0o(k) = 0.

Because the overall normalization of q does not matter, the extra condition 0o(k) = 0

actually over specifies the problem and solutions of this form will only occur for a dis-

crete set of energies kP = (w,(k), k). In fact if our bulk space is regular (and there are

no annoying horizons) then the problem reduces to that of eigenvalues/eigenstates of

some Schr6dinger type problem. The potential of the resultant Schr6dinger equation

has no scattering states. The reason for this is that the boundary of AdS acts like

an infinite box. This is the classic picture of confinement in AdS/CFT [22]: if the



bulk geometry is everywhere regular, correlators of gauge invariant operators will only

have a discrete spectrum. This satisfies the expectation in the large-N limit (upon

the assumption of confinement.) We will actually see, in chapter 2 of this thesis, such

a spectrum for mesons in the deconfined phase of a gauge theory plasma, albeit with a

dispersion relation wn(k) different from the relativistic one. The reason that, despite

living in a deconfined plasma, the meson spectrum is discrete is essentially that the

field dual to the meson operator lives in a smooth geometry which is asymptotically

AdS.

If there was a horizon, then in general only solutions with complex w(k) will exist.

These are termed quasi-normal modes [23], however for our purposes they are really

just mesons with a width. In chapter 3 we will demonstrate how this comes about

for the mesons studied in chapter 2. The essential mechanism will be to generate a

black hole horizon in the normally smooth geometry these mesons live in.

1.2.1 The philosophy - universality

Having introduced AdS/CFT at non-zero T we are now in a position to discuss how

we can use this tool to make predictions for QCD without actually having a dual

gravity theory for QCD.

Firstly we should mention that although in the vacuum h = 4 SYM looks very

different to QCD at finite-T they look very similar. In vacuum Hn = 4 SYM is

supersymmetric, conformal, not confining, has gapless excitations. Whereas QCD

is certainly not supersymmetric and because of the dynamic scale AQCD it is not

conformal, it is confining and has a mass gap. At non-zero T all these differences

disappear [24]. One clear remaining difference is the number of degrees of freedom,

however for certain quantities there are ways to scale out this dependence - for example

by taking ratios. An example of such a quantity is the energy density C(T) of the

plasma, which will clearly scale with the number of degrees of freedom. However

taking the ratio of the energy density to that of the energy density of the same

system at zero coupling (the usual Stefan Boltzmann law ESB oc T 4) we can make a

useful comparison between QCD and N = 4 SYM. The calculation in N = 4 can



be done at strong coupling using gravity [25], and the result is E/ESB = .75. Lattice

calculations [26] also suggest that this ratio goes to a constant rapidly above the

deconfinement temperature, taking a value of around E/CSB = .85. The fact that this

value is less than 1 is an indication of strong interactions, it is also interesting because

it is consistent with the behavior of an interacting conformal field theory. The reason

this should be the case is still not known.

Secondly, via the AdS/CFT correspondence a new notion of universality is emerg-

ing which goes beyond the standard condensed matter definition of universality

(based on global symmetries.) The primary example of this is the universal quantity

rl/s = 1/47, which is true for all theories with string theory duals in the large-Nc

and strong coupling limit. We will present two more examples in this thesis. It is

interesting to entertain the possibility that QCD is in this universality class, or at

least close to it. We can then make predictions based on this.

Hence we will proceed, looking for quantities on the gravity side of the duality

which are universal. The calculations done in Chapter 2 and 3 were mostly done

in nA = 4 SYM. However we argue that they should apply to a large class of gauge

theories with gravity duals, and so might also apply to QCD.

1.2.2 Thermal screening from gravity

One prediction of AdS/CFT for heavy ion collisions relates to the screened interac-

tions of quarks and antiquarks bound together in a meson and moving relative to the

rest frame of the QCD plasma. This prediction was made in [10, 11] by studying

the potential between a test quark and anti-quark moving through an nA = 4SYM

plasma. This calculation is summarized in Chapter 2, Section 2.2. Here we heuris-

tically explain how such a potential may be obtained using semiclassical strings to

compute Wilson loops. This will serve as a motivation for the introduction of dy-

namical quarks/flavors, the main subject of this thesis.

The heavy quark anti-quark potential (in a pure gauge theory) is defined generally



using a Wilson loop [27],

(W(CL)) = Trexp (i A) exp(-iV(L)T) (1.9)

where the contour CL is a rectangle with spatial separation L and temporal separation

T, and the trace is taken in the fundamental representation. The potential is extracted

in the limit T > L. Ignoring the spacelike segments of the curve the Wilson loop

calculates the action of an infinitely heavy quark anti-quark pair separated by L.

In the supergravity approximation of the string theory side of the duality, this

Wilson loop is obtained by computing the action of an extremal string world sheet,

ending at r -- o00 (r being the fifth dimension of AdS5 ) on the curve CL. The heavy

quarks are represented by the ends of the string and as such live on the boundary of

AdS5 separated by a distance L. The string then hangs down from the the boundary

of AdS5 towards smaller r and represents the interactions between the quark and anti-

quark. Quantitatively the potential is then simply given by the renormalized action of

this string V(L)T = S(CL)ren, where renormalization accounts for the infinite action

of two infinitely massive and non interacting test quarks.

In K = 4 SYM theory at zero temperature, the static potential between a heavy

external quark and antiquark separated by a distance L is given in the large Nc and

large A limit by [28, 27]

V(L) = A (1.10)
F (1)4 L'

where the 1/L behavior is required by conformal invariance.

At non-zero temperature a very nice picture of thermal screening from string

theory emerges [29, 30]. The existence of a black hole at r = ro means there are now

two possible saddle points to the area extremization problem. The new saddle point

is simply two strings hanging down into the black hole unaware of each other. This

solution will become dominant for separations above a critical length Le, and hence

indicates a complete loss of interaction for L > L,. This situation is pictured in 1-1.

For A = 4 SYM it was found [29, 30] that L, = .24/T.

In limit where the tension of the string is large (A large) the potential has a
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Figure 1-1: Schematic picture of the AdS5 black hole and the computation of the

screening length from hanging semiclassical strings. The calculation for moving

quarks is very similar.

discontinuity at L = L.

X f (LT)V(L) L L < L

0 L > Lc. (1.11)

This discontinuity should be smoothed out at finite A. Of course it is natural to

identify L, as a screening length for gluon interactions. Or in other words the Debye

mass at strong coupling satisfies mD = 1/L, " 4T.This should be compared with the

screening length at weak coupling A <K 1 which is md = /"T.

At non-zero velocity a similar picture of the two saddle points exists. However

the critical length at which the change in dominance occurs is changed to [10, 11],

Ls(v, T) f Ls(0, T)(1 - v 2) 1/ 4 c (1 - v2 )1/4 . (1.12)

In words, the screening length decreases with increased motion relative to the plasma.

As will be discussed in Chapter 2.6, this behavior fits into the usual universality



discussion of Section 1.2.1, in the sense that such a scaling exists in a large class of

gauge theories with gravity duals.

For a bound state of a quark and anti-quark we can interpret the screening length

in terms of meson dissociation. The temperature at which a meson dissociates can

be estimated by the point at which the screening length becomes larger than the size

of the meson.

Given this, the velocity dependence of the screening length (1.12) suggests that

the dissociation temperature Tdiss(v), the temperature above which mesons with a

given velocity do not exist, should scale with velocity as [10]

Tdiss(V) - Tdiss(v = 0)(1 - v2)1/ 4 . (1.13)

The scaling (1.13) then indicates that slower mesons can exist up to higher tempera-

tures than faster ones.

The results (1.12) and (1.13) have a simple physical interpretation which suggests

that they could be applicable to a wide class of theories regardless of specific details.

First, note that since L,(0) - I, both (1.12) and (1.13) can be interpreted as if in

their rest frame the quark-antiquark dipole experiences a higher effective temperature

TJ. Although this is not literally the case in a weakly coupled theory, in which the

dipole will see a redshifted momentum distribution of quasiparticles coming at it from

some directions and a blueshifted distribution from others [31], we give an argument

below for how this interpretation can nevertheless be sensible. The result (1.12) can

then be seen as validating the relevance of this interpretation in a strongly coupled

plasma. The argument follows from the assumption that quarkonium propagation

and dissociation are mainly sensitive to the local energy density of the medium.3

Now, in the rest frame of the dipole, the energy density (which we shall denote by

p) is blue shifted by a factor 7y2 and since p cc T 4 in a conformal theory, the result

(1.12) is as if quarks feel a higher effective temperature given by T vl. As we have

3Note that it is not obvious that it should be energy density and not for example entropy density

for which quarkonium dissociation is sensitive to, so one may alternatively interpret (1.13) as evidence

in favor of this assumption.



already mentioned lattice calculations indicate that the quark-gluon plasma in QCD

is nearly conformal over a range of temperatures 1.5Tc < T < 5Tc, with an energy

density p - bT4 where b is a constant about 85% of the free theory value [26] (see also

[32, 33].) So it does not seem far-fetched to imagine that (1.12) could apply to QCD.

We should also note that AdS/CFT calculations in other strongly coupled gauge

theories with a gravity description are consistent with the interpretation above [34]

and that for near conformal theories the deviation from conformal theory behavior

appears to be small [34, 35].

If a velocity scaling like (1.12) and (1.13) holds for QCD, it can potentially have

important implications for quarkonium suppression in heavy ion collisions as we will

discuss at the end of Chapter 2.

While the argument leading from (1.12) to (1.13) is plausible, it is important to

have a set-up within which one can study mesons directly. Such a set-up will allow

us to move one step closer to real QCD, allowing us to study properties of mesons

which cannot be inferred from the study of the quark anti-quark potential. Dynamical

properties such as their dispersion relations and widths. It is the purpose of Chapter

2 and Chapter 3 to examine this issue in a specific model with dynamical flavors. For

now we simply introduce the AdS/CFT machinery that will make this study possible.

1.3 Adding flavors - the D3/D7 system

This brings us to a discussion of the main system of interest to us, the D3/D7 system.

We want to add fundamental matter to the previously discussed gauge theory. The

general picture of how to do this in string theory is to "add a D-brane" in the bulk.

A D-brane is a soliton/defect of string theory which strings can end on. It will turn

out that the strings which end on this D-brane have the interpretation of quarks.

To be more specific one can introduce "quarks"4 to N = 4 SYM theory by adding

Nf N = 2 hypermultiplets in the fundamental representation of the gauge group. In

the limit of large Nc with Nf finite this can be described in the dual string theory
4Quarks in this system are both bosonic and fermionic, due to supersymmetry.



side by adding Nf D7-branes in the black hole geometry5 (1.3) and to leading order

in NfI/N, the back reaction of the D7-branes on the background geometry can be

neglected. A fundamental "quark" in the YM theory can be described by an open

string with one end on the D7-branes and the other end on the black hole. Strings

corresponding to quarks and anti-quarks have opposite orientations. Open strings

with both ends on the D7-branes can be considered as "bound states" of a quark and

antiquark, thus describing meson-type excitations in the YM theory.

In the usual limit

Nc --+ oo, A oo, Nf = finite (1.14)

which corresponds to the limit g -* 0, --- 0 in the string theory side, the geometric

embedding and the dynamics of the D7-branes can be described using the Dirac-Born-

Infeld (DBI) action

S = -NfT 7  d8  -det (gmn + 2t'Fmn) . (1.15)

where gmn denotes the induced metric on the D7-brane and T7 = 1 iS the

tension of a D7-brane.

To describe the embedding of the D7-branes in (1.3), it is more convenient to

introduce a new radial coordinate u defined by

dr 2  - du 2  U4 + U40  To
-f )2 (U= with uo (1.16)

r2f(r) U2 u2  V2

in terms of which (1.3) can be written as

ds2  r 2  f (u)dt2 + r2  2 (dU2 + U2dQ)
R2 R2 2

= q(u) (-fdt2 + d +2) 2 (dp 2d +Y 2d

5 See Chapter 2 Section 3.1 for a discussion of the D7 brane at zero temperature.



where

2 = y2 2 f(U) (u - u 4 )2 -r2 -

(U4 + U4)2 2 u4

In (1.17), we have split the last term of the first line in terms of polar coordinates on
R4 x I12 with dQ2 denoting the metric on a unit three-sphere. The D7-branes can be

chosen to lie along the directions X = (t, ,Q 3, p) and using the symmetries of the

problem the embedding in the two remaining transverse directions can be taken as

0( ) = 0 and y( Q) = y(p). y(p) can be found by solving the equation of motion

obtained from the DBI action (1.15) with the boundary condition

y(oo) = L = (2ra')mq (1.19)

where mq can be interpreted as the (bare) mass of the "quarks". We denote the

resulting embedding function as yo(p), which were first obtained numerically in [43].

At a small temperature, the brane lies entirely outside the black hole, as indicated

schematically in Fig. 1-2. The brane is closest to the black hole at p = 0, where the

three-sphere in last term of (1.17) shrinks to a point. Denoting

Yo(P = 0) = Lo (1.20)

then the shortest open string connecting the D7-brane to the horizon has a mass in

the YM theory

27= dy fq . (1.21)
027ra UO p=O

mT) can be interpreted as the effective mass of the "quarks" at temperature T.

Note that mq ) decreases monotonically with T, since as we increase the tempera-

ture, the black hole becomes bigger and gravity attracts the brane more to the black

hole. There exists a temperature Td (= 2.166mq/VA), after which the branes fall into

the black hole (often called black hole embedding) through a first order phase transi-

tion [36, 37]. The physics of which was associated with the dissociation of mesons by



[38, 37]. For T > Td mesonic excitations, which we will describe in the next section,

cease to exist. We will be interested in the temperature range smaller or of order Td

in which regime we always have (/ = 1)

pm) ~ O(VA).

tip

U0

(1.22)

P

Figure 1-2: An embedding of the D7 brane (green) in the AdS5 x S5 black hole
geometry which lies entirely outside the black hole. The exact form of the embedding
has been exaggerated to emphasize certain features.

1.3.1 Properties of mesons

As described above mesons correspond to the fields living on the D7 brane. For

example the fields which encode the two transverse fluctuation of the brane are,

y(p, ) = yo(p) + 6y(p, ) -+ [O,(£)] = 3

(p, X) = 60(p, ) --[ [o0()] = 3

(1.23)

(1.24)

where Oy,O are quark bilinear operators in the gauge theory (including both scalar and

fermionic quarks.) And the correspondence between field and operator is in the sense



of (1.7) with p now playing the role of the radial coordinate r. The problem of finding

mesons is reduced to that of finding the eigenvalues of a certain Schrodinger problem

for the fluctuations (1.23) living in the geometry of the D7 brane, which is essentially

completely defined by the induced metric gmn on the D7 brane. This induced metric

for embeddings below the dissociation temperature satisfies the requirements of a

confining gauge theory, hence the mesons have zero width.

In Chapter 2 we study the dispersion relations of the mesons created by the above

operators by studying the spectrum of bound states in the dual gravity theory. We

find that at large momentum k the dispersion relations become w(k) _ vok + a +

b/k + ... , where the limiting velocity vo is the same for mesons with any quantum

numbers and depends only on the ratio of the temperature to the quark mass T/mq.

The limiting meson velocity vo becomes much smaller than the speed of light at

temperatures below but close to Tdiss. From our result for vo(T/mq), we find that the

temperature above which no meson bound states with velocity v exist is Tdiss() -

(1 - v2)'/ 4Tdi,,, up to few percent corrections. We thus confirm by direct calculation

of meson dispersion relations the result (1.13) inferred indirectly via analysis of the

screening length between a static quark and antiquark in a moving plasma.

As we have already mentioned, one draw back of this system is that for a range of

temperatures below the dissociation temperature Td these mesons have exactly zero

width. Of course this is not what one would expect for QCD, or for that matter a

quark anti-quark bound state sitting in any deconfined plasma, since in a thermal

environment one expects the meson to be bombarded with deconfined quarks and

gluons. The reason these mesons have zero width, as we will show in Chapter 3, is

that this is an artifact of the large A approximation.

As already discussed, in the Large-N limit of a confined theory one expects mesons

to have zero width. Since the glue of gV = SYM is deconfined at finite-T we need

another mechanism for confining the quarks. On the gravity side we already have a

mechanism, that is the induced metric g,, is smooth in the bulk and asymptotically

AdS. On the gauge theory side the mechanism turns out to be Boltzmann suppression.

The mesons in this theory, as we will see in Chapter 2, are actually very tightly bound



mesons. Their binding energy is of order EBE = v/AM where M is the mesons mass.

Hence any process which breaks them apart6 has a large energy cost. Such processes

occur at a rate of order exp(-EBE/T) = exp(-x/ M/T). So it is exponentially small

for large 't Hooft coupling.

In chapter 3 we show how to calculate such contributions to the meson width. We

show that this can happen through nonperturbative worldsheet instantons, allowing

mesons "living" on a D-brane which lies outside an AdS black hole to tunnel into

the black hole. These instantons have a simple interpretation in terms of thermal

quarks in the dual Yang-Mills (YM) theory. While the width of the meson is zero

to all orders in the 1/v5i expansion with A the 't Hooft coupling, it receives non-

perturbative contributions in 1/'X from worldsheet instantons. We find that the

width increases quadratically with momentum at large momentum and comment on

potential phenomenological implications of this enhancement for heavy ion collisions.

1.3.2 Finite quark density

The system possesses a U(1)B global baryon symmetry under which "quarks" trans-

form non-trivially. In Chapter 4 we will examine the the effects of turning on a

nonzero net quark density nq. In order to achieve this we need to understand some

more elements of the gauge gravity dictionary.

The associated conserved current JI is dual to the U(1) gauge field A, on the

D7-branes. Turning on a chemical potential Iq for the charge density in the boundary

theory then corresponds to imposing the following boundary condition7 for A,

Ao(p = 00oo) = q. (1.25)

6 At finite temperature there are process, suppressed by 1/Nc, which do not break the mesons

apart and still contribute to their width. This is essentially related to a diffusion type process.

See [132].
7 Also, if the D7-branes fall into the horizon there will also be a boundary condition that Ao = 0

at the horizon.



The charged density nq can be calculated from the bulk theory by

n, = lo(p = 00) (1.26)

where I o is the canonical momentum conjugate to Ao (in terms of p-slicing) evaluated

at the classical solution which satisfies the boundary condit ions (1.19) and (1.25).

By symmetry we will take Ao to depend only on p and the other components of the

gauge field will be set to zero.

Turning on a chemical potential now allows us to study the phase structure of this

theory in the p - T phase plane. This has been studied previously by [36, 39, 40, 41,

42, 43, 44, 45] where a rich phase diagram was found. In the final chapter of this thesis

we revisit the phase diagram of the N = 4 SU(N) super-Yang-Mills theory coupled to

Nf fundamental "quarks" at strong coupling using the gauge-gravity correspondence.

We show that in the plane of temperature vs. baryon chemical potential there is a

critical line of third order phase transitions which ends at a tricritical point after which

the transition becomes first order. Close to the critical line there is an intriguing

logarithmic behavior, which cannot follow from a mean field type of analysis. We

argue that on the string theory side the third order phase transition is driven by

the condensation of worldsheet instantons and that this transition might become a

smooth crossover at finite 't Hooft coupling.
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Chapter 2

Properties of mesons I - dispersion

relations

2.1 Introduction

The radii of the tightly bound heavy quark-antiquark systems of the charmonium

(J/j, I', Xc, ...) and bottomonium (T, T', ...) families provide a unique set of

decreasing length scales in strong interaction physics. On general grounds, it is ex-

pected that the attraction between a heavy quark and an anti-quark is sensitive to

the medium in which the bound state is embedded, and that this attraction weakens

with increasing temperature. In the context of ultra-relativistic nucleus-nucleus colli-

sions, the radii of some quarkonia states correspond to fractions of the natural length

scale displayed by the medium produced in heavy ion collisions, namely fractions of

its inverse temperature 1/T. Such scale considerations support the idea that mea-

surements of the medium-modification or dissociation of quarkonia can characterize

properties of the QCD matter produced in heavy ion collisions.

Matsui and Satz were the first to highlight the role of quarkonium in the study

of hot QCD matter [14]. They suggested that J/J-suppression is a signature for the

formation of deconfined quark-gluon plasma (QGP). More precisely, they argued that

in comparison to proton-proton or proton-nucleus collisions, the production of J/4

mesons should be suppressed if quark-gluon plasma is formed in sufficiently ener-



getic nucleus-nucleus collisions, since the screened interaction of a c and a c in QGP

would not bind them [14]. The theoretical basis for this argument has been clari-

fied considerably within the last two decades [16]. Model-independent calculations of

the static potential between a heavy quark and anti-quark have been performed in

lattice-regularized QCD, valid at strong coupling [47, 48, 49, 50, 51, 52, 15, 53, 54].

In lattice calculations without dynamical quarks, at temperature T = 0 and large

separation L this potential rises linearly with L, consistent with confinement. At

nonzero temperature, the potential weakens and levels off at large distances; with

increasing temperature, the distance at which this screening occurs decreases. This

behavior of the static potential has been mapped out for hot QCD matter both with-

out [51] and with [52, 15] dynamical quarks. However, the physical interpretation

of static potentials at finite temperature rests on additional assumptions. For in-

stance, even if a potential supports a bound state with several MeV binding energy,

it remains unclear which physics can be attributed to such a state in a heat bath

of - 200 MeV temperature. Such issues do not arise in a discussion of quarko-

nium mesons based directly on their Minkowski space spectral functions or disper-

sion relations. In recent years, the spectral functions have been characterized by

lattice calculations of the Euclidean correlation functions to which they are analyt-

ically related, again in hot QCD matter both without [55, 56, 57, 58, 59, 60, 61]

and with [62, 63, 64, 65] dynamical quarks. The use of these calculations of finitely

many points on a Euclidean correlator to constrain the Minkowski space spectral

function of interest via the Maximum Entropy Method requires further inputs -

for example smoothness assumptions or information on the analytic properties of

the spectral function [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. At high enough

temperatures that quark-gluon plasma becomes weakly coupled, a complementary

analytical approach based upon resummed hard-thermal-loop perturbation theory

becomes available [66, 67, 68, 69]. These calculations have the advantage that ana-

lytical continuation from Euclidean to Minkowski space does not introduce additional

uncertainties, but it remains unclear to what extent they can treat a strongly coupled

quark-gluon plasma. In broad terms, all these calculations support the qualitative



picture behind the original suggestion of Matsui and Satz that color screening in the

quark-gluon plasma is an efficient mechanism for quarkonium dissociation. In addi-

tion, these studies support the picture of a sequential dissociation pattern [17], in

which loosely bound, large, quarkonia such as the i' and Xc cease to exist close to T,

the temperature of the crossover between hadronic matter and quark-gluon plasma,

whereas more tightly bound, smaller, states dissociate only at significantly higher

temperatures. In particular, J/ mesons continue to exist for a range of tempera-

tures above the QCD phase transition and dissociate only above a temperature that

lies between 1.5 T, and 2.5 T, [17]. The observation of bound-state-specific quarkonia

suppression patterns could thus provide detailed information about the temperature

attained in heavy ion collisions.

On the experimental side, there are by now data from the NA50 and NA60 exper-

iments at the CERN SPS and from the PHENIX experiment at RHIC demonstrating

that the production of J/I mesons is suppressed in ultra-relativistic nucleus-nucleus

collisions compared to proton-proton or proton-nucleus collisions at the same center

of mass energy [70, 71, 72]. However, due to lack of statistics and resolution, an

experimental characterization of other charmonium states (I', Xc, ...) has not yet

been possible at RHIC, and bottomonium states have not yet been characterized in

any nucleus-nucleus collisions. Moreover, the observed yield of J/J mesons is ex-

pected to receive significant decay contributions from 9' and Xc, meaning that the

observed suppression of J/1 mesons may originate only in the suppression of the

larger ~' and Xc states [17], or may indicate a suppression in the number of primary

J/ W mesons themselves in addition. Thus, at present an experimental test of the se-

quential quarkonium suppression pattern is not in hand. It is expected that the LHC

heavy ion program will furnish such a test, since two LHC experiments [73, 74, 75]

have demonstrated capabilities for discriminating between the different states of the

charmonium and bottomonium families.

From the existing data in ultra-relativistic heavy ion collisions and their phe-

nomenological interpretation, it has become clear that an unambiguous characteriza-

tion of color screening effects in the quarkonium systems requires good experimental



and theoretical control of several confounding factors. These include in particular

control over the spatio-temporal evolution of the medium, control over the time scale

and mechanism of quarkonium formation, as well as control over the effects of quarko-

nium propagation through the medium. We now comment on these three sources of

uncertainty in more detail:

First, there is ample evidence by now that the systems produced in ultra-relativistic

heavy ion collisions display effects of position-momentum correlated motion (a.k.a.

flow), which are as important as the effects of random thermal motion [76, 77, 78, 79].

Moreover, the energy density achieved in these collisions drops rapidly with time as

the matter expands and falls apart after approximately 10 fm/c. As a consequence,

the modeling of quarkonium formation in heavy ion collisions cannot be limited to a

description of heavy quark bound states in a heat bath at constant temperature (which

is the information accessible in ab initio calculations in lattice-regularized QCD). The

effects of a rapid dynamical evolution during which the relevant degrees of freedom

in the medium change from partonic to hadronic must be taken into account.

Second, regarding the formation process, the conversion of a heavy quark pair

produced in a hard collision into a bound quarkonium state is not fully understood,

even in the absence of a medium. There are different production models, which all

have known limitations and for which a systematic calculation scheme remains to be

fully established (for a short review of these issues, see [80]). The need for further

clarification of the vacuum case has even led to suggestions that nuclear matter could

serve as a filter to distinguish between different production mechanisms [81, 82]. How-

ever, it has also been pointed out that there may be a novel quarkonium production

mechanism operating only in ultra-relativistic heavy ion collisions at RHIC and at the

LHC [83, 84, 85]: charm quarks may be so abundant in these collisions that c and c

quarks produced separately in different primary hard scattering interactions may find

each other and combine, contributing significantly to charmonium production at soft

and intermediate transverse momentum. To a lesser extent, this mechanism may also

contribute to the production of Upsilon mesons. Identifying and characterizing such

a novel formation process is of considerable interest, since recombination is likely to



be quadratically sensitive to the phase space density of charm and thus to properties

of the produced matter. On the other hand, if realized in nature recombination also

implies that quarkonium spectra at soft and intermediate transverse momenta are

determined predominantly during the late hadronization stage and cannot be viewed

as probes which test color screening in the quark gluon plasma. This would indi-

cate that the high transverse momentum regime (say above 5-8 GeV) of quarkonium

spectra, which should not be significantly affected by recombination, is better suited

for tests of the fundamental color screening effects predicted by QCD. However, the

sensitivity of high transverse momentum spectra to properties of the medium remains

to be established. In particular, quarkonium formation or dissociation proceeds on a

time scale comparable to the size of the bound state in its rest frame, meaning that

quark-antiquark pairs with very high transverse velocity may escape the finite-sized

droplet of hot matter produced in a heavy ion collision before they have time to form

a meson, meaning in turn that screening effects cease to play a role in quarkonium

production above some very high transverse momentum [86]. At lower transverse mo-

menta, where screening does play a role, one must nevertheless understand for how

long quarkonium is exposed to the medium and how readily it dissociates if moving

relative to that medium. For quarkonium at high transverse momentum, the time of

exposure to the medium depends on the geometry of the collision region, which deter-

mines the in-medium path length, and it depends on the propagation velocity. The

results contained in this chapter give novel input to modeling this process by demon-

strating that the real part of the finite temperature quarkonium dispersion relation

can differ significantly from the vacuum one, and can imply a limiting quarkonium

propagation velocity which is much smaller than c, the velocity of light in vacuum.

Our results indicate that at temperatures close to but below that at which a given

quarkonium state dissociates, these mesons move through a strongly coupled quark-

gluon plasma at a velocity that is much smaller than c even if they have arbitrarily

high transverse momentum. Certainly this means that the formation time arguments

of [86] will need rethinking before they can be applied quantitatively.

Third, we turn to the question of how the relative motion of quarkonium with



respect to the local rest frame of the medium affects quarkonium production. As

discussed above, the standard vacuum relation between the momentum of a quarko-

nium state and its velocity can be altered in the presence of a medium and this effect

may be phenomenologically relevant. In addition, it is expected that a finite relative

velocity between the medium and the bound state enhances the probability of dis-

sociation [31]. In a recent strong coupling calculation of hot AN = 4 supersymmetric

QCD, three of us have have shown [10, 11] that the screening length Ls for a heavy

quark-antiquark pair decreases with increasing velocity as L,(v, T) - L,(0, T)/f,

with y = 1/ 1 - v 2 the Lorentz boost factor. This suggests that a quarkonium state

that is bound at v = 0 at a given temperature could dissociate above some transverse

momentum due to the increased screening, providing a significant additional source

of quarkonium suppression at finite transverse momentum. The present work started

from the motivation to establish how this velocity scaling manifests itself in a de-

scription of mesons at finite temperature, rather than via drawing inferences from a

calculation of the screening length that characterizes the quark-antiquark potential.

This motivation is analogous to that behind going from lattice QCD calculations of

the static potential in QCD to calculations of the Minkowski space meson spectral

function. We shall do our calculation in a different strongly coupled gauge theory

plasma, in which we are able to do this investigation for mesons with nonzero veloc-

ity. We shall see that the critical velocity for the dissociation of quarkonium inferred

from the velocity scaling of the screening length also appears as a limiting velocity

for high-momentum quarkonium propagation in the hot non-abelian plasma.

Finally, the characterization of color screening also depends on the experimental

and theoretical ability to separate its effects on quarkonium production from effects

arising during the late time hadronic phase of the heavy ion collision. In particular,

it has been noted early on that significant charmonium suppression may also occur

in confined hadronic matter [87, 88, 89]. However, it has been argued on the basis

of model estimates for the hadronic J/4 dissociation cross section [90, 91, 92] that

dissociation in a hadronic heat bath is much less efficient than in a partonic one. The

operational procedure for separating such hadronic phase effects is to measure them



separately in proton-nucleus collisions [93], and to establish then to what extent the

number of J/F mesons produced in nucleus-nucleus collisions drops below the yield

extrapolated from proton-nucleus collisions [70, 71, 72, 94].

The above discussion highlights the extent to which an understanding of quarko-

nium production in heavy ion collisions relies on theoretical modeling as the bridge

between experimental observations and the underlying properties of hot QCD matter.

This task involves multiple steps. It is of obvious interest to validate or constrain by

first principle calculations as many steps as possible, even in a simplified theoreti-

cal setting. The present work is one of a number of recent developments [95] that

explore to what extent techniques from string theory, in particular the AdS/CFT

correspondence, can contribute to understanding processes in hot QCD by specify-

ing how these processes manifest themselves in a large class of hot strongly coupled

non-abelian gauge theories. Although it is not known how to extend the AdS/CFT

correspondence to QCD, there are several motivations for turning to this technique.

First, there are a growing number of explicit examples which indicate that a large

class of thermal non-abelian field theories with gravity duals share commonalities such

that their properties in the thermal sector are either universal at strong coupling, i.e.

independent of the microscopic dynamics encoded in the particular quantum field the-

ory under study, or their properties are related to each other by simple scaling laws

e.g. depending on the number of elementary degrees of freedom. This supports the

working hypothesis that by learning something about a large class of strongly coupled

thermal non-abelian quantum field theories, one can gain guidance towards under-

standing the thermal sector of QCD. Second, the AdS/CFT correspondence allows

for a technically rather simple formulation of problems involving real-time dynamics.

This is very difficult in finite temperature lattice-regularized calculations, which ex-

ploit the imaginary time formalism. In particular, this is the reason why so far lattice

QCD calculations treat only static quark-antiquark pairs in the plasma, and why the

only nonperturbative calculation of the velocity dependence of quarkonium dissocia-

tion exploits the AdS/CFT correspondence. Third, data from experiments at RHIC

pertaining to many aspects of the matter produced in heavy ion collisions indicate



that this matter is strongly coupled. Since the AdS/CFT correspondence provides

a mapping of difficult nonperturbative calculations in a quantum field theory with

strong coupling onto relatively simple, semi-classical calculations in a gravity dual,

it constitutes a novel - and often the only - technique for addressing dynamical

questions about hot strongly coupled non-abelian matter, questions that are being

raised directly by experimental results on QCD matter coming from RHIC.

We have focused in this Section on the larger context for our results. In Section

2, which is an introduction in a more narrow sense, we review the past results which

serve as an immediate motivation for our work, in particular the screening length

that characterizes the potential between a static quark and antiquark in a moving

plasma wind. Adding fundamental quarks with finite mass mq, and hence mesons,

into M = 4 SYM theory requires adding a D7-brane in the dual gravity theory, as

we review in Section 3. The fluctuations of the D7-brane are the mesons, as we

review for the case of zero temperature in Section 3. In Section 4 we set up the

analysis of the mesons at nonzero temperature, casting the action for the D7-brane

fluctuations in a particularly geometric form, written entirely in terms of curvature

invariants. Parts of the derivation are explained in more detail in Appendix A. With

all the groundwork in place, in Section 5 we derive the meson dispersion relations. In

addition to obtaining them numerically without taking any limits as has been done

previously [37], we are able to calculate them analytically in three limits: first, upon

taking the low temperature limit at fixed k; second, upon taking the low temperature

limit at fixed kT; and third, using insights from the first two calculations, at large k

for any temperature. At large k we find

b
w = vok + a + - ... (2.1)

k

where vo is independent of meson quantum numbers, depending only on T/mq. vo

turns out to be given by the local speed of light at the "tip of the D7-brane", namely

the place in the higher dimensional gravity dual theory where the D7-brane comes

closest to the black hole [37]. We compute a and b in terms of meson quantum



numbers and T/mq. Our result for the limiting velocity vo for mesons at a given

temperature T can be inverted, obtaining Tdiss(v), the temperature above which no

mesons with velocity v are found. We find that up to few percent corrections, our

result can be summarized by

Tdiss(V) = (1 - V2)1/4Tdiss, (2.2)

where Tdiss is the temperature at which zero-velocity mesons dissociate, obtained in

previous work and introduced in Section 3. As we discuss in Section 2, our results ob-

tained by direct calculation of meson dispersion relations confirm inferences reached

(in two different ways) from the analysis of the screened potential between a static

quark and antiquark in a hot plasma wind. In Section 6, we close with a discussion

of potential implications of these dispersion relations for quarkonia in QCD as well as

a look at open questions. The dispersion relations that we calculate in this chapter

describe how mesons propagate and so affect a class of observables, but determining

whether quarkonium meson formation from a precursor quark-antiquark pair is sup-

pressed by screening is a more dynamical question that can at present be addressed

only by combining our calculation and the more heuristic results of [11].

2.2 From screening in a hot wind to moving mesons

In the present work, we shall use the AdS/CFT correspondence to study the prop-

agation of mesonic excitations moving through a strongly coupled hot quark-gluon

plasma. In this Section, however, we introduce what we have learned from the sim-

pler calculation of the potential between a test quark-antiquark pair moving through

such a medium. This will allow us to pose the questions that we shall address in the

present chapter.

As discussed in the previous chapter at nonzero temperature, the potential takes



the form [29, 30, 46]

V(L,T) Af (L) L < L,

Aog(L) L > Le. (2.3)

In (2.3), at Lc = 0.24/T there is a change of dominance between different saddle

points and the slope of the potential changes discontinuously. When L < Le, the

potential is determined as at zero temperature by the area of a string world sheet

bounded by the worldlines of the quark and antiquark, but now the world sheet hangs

down into a different five-dimensional spacetime: introducing nonzero temperature in

the gauge theory is dual to introducing a black hole horizon in the five-dimensional

spacetime. When L < Le, f(L) reduces to its zero temperature behavior (1.10).

When L > Lc, g(L) has the behavior [96]

g(L) oc c1 - c2e -m gapL (2.4)

with cl, c2 and mgap constants all of which are proportional to T. This large-L

potential arises from two disjoint strings, each separately extending downward from

the quark or antiquark all the way to the black hole horizon, exchanging supergravity

modes the lightest of which has a mass given by mgap = 2.34 7rT. (There are somewhat

lighter modes with nonzero R-charge, but these are not relevant here [97].) It is

physically intuitive to interpret Lc as the screening length Ls of the plasma since

at L, the qualitative behavior of the potential changes. Similar criteria are used in

the definition of screening length in QCD [54], although in QCD there is no sharply

defined length scale at which screening sets in. Lattice calculations of the static

potential between a heavy quark and antiquark in QCD indicate a screening length

Ls - 0.5/T in hot QCD with two flavors of light quarks [15] and Ls - 0.7/T in hot

QCD with no dynamical quarks [51]. The fact that there is a sharply defined L, in

(2.3) is an artifact of the limit in which we are working.1

1The theoretical advantage of using 1/rmgap to define a screening length as advocated in [96]

is that it can be precisely defined in A = 4 SYM theory at finite A and No, as well as in QCD,



In [10, 11], the authors studied the velocity scaling of the screening length Ls in

f = 4 super-Yang-Mills theory and found that2

L,(v, 0, T) = +,O (1 - v2 ) 1 / 4  (2.5)

where 0 is the angle between the orientation of the quark-antiquark dipole and the

velocity of the moving thermal medium in the rest frame of the dipole. f (v, 0) is only

weakly dependent on both of its arguments. That is, it is close to constant. So, to a

good approximation we can write

L.(v, T) L s (0, T)(1 - v2) 1/4 O 1 V- 2)1/ 4 . (2.6)

This result, also obtained in [12, 13, 7] and further explored in [98, 34, 99], has

proved robust in the sense that it applies in various strongly coupled plasmas other

than K = 4 SYM [98, 34, 99]. The velocity dependence of the screening length (2.6)

suggests that in a theory containing dynamical heavy quarks and meson bound states

(which K = 4 SYM does not) the dissociation temperature Tdiss(v), defined as the

temperature above which mesons with a given velocity do not exist, should scale with

velocity as [10]

Tdiss(v) - Tdiss(v = 0)(1 - v 2) 1/ 4 , (2.7)

since Tdiss(v) should be the temperature at which the screening length L,(v) is com-

parable to the size of the meson bound state. The scaling (2.7) then indicates that

slower mesons can exist up to higher temperatures than faster ones. In this chapter,

as it characterizes the behavior of the static potential in the L --+ 00 limit. The disadvantage
of this proposal from a phenomenological point of view is that quarkonia are not sensitive to the
potential at distances much larger than their size. For questions relevant to the stability of bound
states, therefore, the length scale determined by the static potential that is phenomenologically most
important is that at which the potential flattens. Although this length is not defined sharply in QCD,
it is apparent in lattice calculations and can be defined operationally for practical purposes [51, 15].
This L, seems most analogous to L, in (2.3), and we shall therefore continue to refer to L. = LC as
the screening length, as in the original literature [29, 30, 46]. Note that L, is larger than 1/mgap by
a purely numerical factor - 1.8.

2In [10, 11] L, was defined using a slightly different quantity than L, in (2.3), such that L, =
0.28/T for a quark-antiquark at rest. For technical reasons, this other definition was more easily
generalizable to nonzero velocity.



we shall replace the inference that takes us from the calculated result (2.6) to the

conclusion (2.7) by a calculation of the properties of mesons themselves, specifically

their dispersion relations. We shall reproduce (2.7) in this more nuanced setting,

finding few percent corrections to the basic scaling result inferred previously.

Before beginning our analysis, let us first note a curious feature regarding the

quark potential observed in [10, 11]. There one introduces a probe brane near the

boundary of the AdS5 black hole geometry with open strings ending on it correspond-

ing to fundamental "test quarks" of mass mq > vAT. It was found that for any given

quark mass mq, there exists a maximal velocity v, given by

X2T4

v2 1- (2.8)
c = 16m4 '

beyond which there is no O(i ) potential between the pair for any value of their

separation larger than their Compton wavelength, i.e. for any distance at which a

potential can be defined. This result can be interpreted as saying that for any given

T and mq, it is impossible to obtain bound states beyond (2.8), i.e. as indicating that

there is a velocity bound (a "speed limit") for the mesons. One can also turn (2.8)

around and infer that for any large mq and v close to 1, the dissociation temperature

is given by

Tdiss 2  (1 - v2) , (2.9)

which is consistent with (2.7). Note that the above argument is at best heuristic

since n = 4 SYM itself does not contain dynamical quarks and thus genuine mesons

do not exist. In the present chapter, however, we shall see by deriving them from

meson dispersion relations that (2.8) and (2.9) are precisely correct in the limit of

large quark mass once we introduce fundamentals, and hence mesons, into the theory.

We shall also find that the more dynamical, albeit heuristic, interpretation of (2.8) as

a velocity beyond which a quark and antiquark do not feel a potential that can bind

them remains of value.



2.3 D3/D7-brane construction of mesons

In this Section we review the gravity dual description of strongly coupled A = 4

SYM theory with gauge group SU(N) coupled to Nf < N Kf = 2 hypermultiplets

in the fundamental representation of SU(N), introduced in [100] and studied in [101,

43, 102, 103, 44, 104, 105, 36, 38, 37, 106, 107, 108]. We will first describe the

theory at zero temperature and then turn to nonzero temperature. We will work

in the limit N --+ oo A = gM gN -+ 00 and Nf finite (in fact Nf - 1). In the

deconfined strongly coupled plasma that this theory describes, heavy quark mesons

exist below a dissociation temperature that, for mesons at rest, is given by Tdiss =

2.166 mq/V [43, 36, 38, 37]. In Section 5 we shall calculate the dispersion relations

for these mesons, namely the meson spectrum at nonzero momentum k and in so

doing determine Tdiss(v) directly, rather than by inference as described in Section 2.

2.3.1 Zero temperature

Consider a stack of N coincident D3-branes and Nf coincident D7-branes in 9+1-

dimensional Minkowski space, which we represent by the array

D3: 0 1 2 3 - - - -
(2.10)

D7: 0 1 2 3 4 5 6 7

which denotes in which of the 9+1 dimensions the D3- and D7-branes are extended,

and in which they occupy only points. The D3-branes sit at the origin of the 89-plane,

with L denoting the distance between the D3- and the D7-branes in the 89-plane.

Without loss of generality (due to rotational symmetry in 89-plane), we can take the

D7-branes to be at x8 = L, x 9 = 0. This is a stable configuration and preserves one

quarter of the total number of supersymmetries, meaning that it describes an N = 2

supersymmetric gauge theory as we now sketch [100].

The open string sector of the system contains 3-3 strings, both of whose ends lie

on one of the N D3-branes, 7-7 strings ending on Nf D7-branes, and 3-7 and 7-3



strings stretching between D3- and D7-branes. In the low energy limit

L
a' - 0, = finite, (2.11)27r a'

all the stringy modes decouple except for: (i) the lightest modes of the 3-3 strings,

which give rise to an SU(N) K = 4 SYM theory in 3+1-dimensional Minkowski space;

(ii) the lightest modes of the 3-7 and 7-3 strings, which give rise to Nf hypermulti-

plets in the Kf = 2 gauge theory transforming under the fundamental representation

of SU(N). The whole theory thus has K = 2 supersymmetry. We will call Nf hy-

permultiplets quarks below even though they contain both fermions and bosons. The

mass of the quarks is given by
L

q = 2ra (2.12)

where 1/(2ra') is the tension of the strings.

In the limit

N -> oo, Nf = finite, A = g 2 N > 1, (2.13)

the above gauge theory has a gravity description [100] in terms of D7-branes in the

near-horizon geometry of the D3-branes, which is AdS 5 x S5 with a metric

ds 2 = (-dt2 + dx2 + d + dx2) + Rd2 2 + R2d d
2R2 3 r2 9

-d 2 2 (2- +2 2 d+ 2 E (2.14)
i=4

where r 2  =4 x2 and dQ is the metric on a 5-sphere. R is the curvature radius

of AdS and is related to the Yang-Mills theory 't Hooft coupling by

R= VA . (2.15)
a/



The string coupling constant gs is related to the gauge theory parameters by

A
47g, = gM y= - , (2.16)

where gym is defined according to standard field theory conventions and is twice as

large as the Yang-Mills gauge coupling defined according to standard string theory

conventions. In this zero temperature setting, the embedding of the D7-branes in

the AdS5 x S5 geometry (2.14) can be read directly from (2.10). The D7-brane

worldvolumes fill the (t, xi) coordinates, with i = 1,..., 7, and are located at the

point xs = L, x9 = 0 in the 89-plane. Since Nf remains finite in the large N limit,

the gravitational back-reaction of the D7-branes on the spacetime of the D3-branes

(2.14) may be neglected.

The dictionary between the gauge theory and its dual gravity description can thus

be summarized as follows. On the gauge theory side we have two sectors: excitations

involving adjoint degrees of freedom only and excitations involving the fundamentals.

The first type of excitations correspond to closed strings in AdS5 x S5 as in the

standard AdS/CFT story. The second type is described by open strings ending on

the D7-branes3 . In particular, the low-lying (in a sense that we shall define later)

meson spectrum of the gauge theory can be described by fluctuations of xs,9 and

gauge fields on D7-branes. We shall focus on the fluctuations of z 8,9 on the D7-brane

(equivalently, the fluctuations of the position of the D7-brane in the (xs, xg) plane)

which describe scalar mesons. There are also gauge fields localized within the D7-

brane, and their fluctuations describe vector mesons. The description of the vector

mesons is expected to be similar to that of the scalar mesons. We shall limit our

presentation entirely to the scalar mesons. We shall take Nf = 1, meaning that

the gauge theory is specified by the parameters N, A and m, which are related to

their counterparts in the dual gravity theory by (2.15), (2.16) and (2.12). We see

that the N --+ oo limit corresponds to gs --+ 0, making the string theory weakly

coupled. Considering the theory with the parameter A taken to oc corresponds to

3 We will not consider baryons in this chapter.



taking the string tension to infinity. These limits justify the use of the classical gravity

approximation in which we consider strings moving in a background spacetime.

For later generalization to finite temperature, it is convenient to describe the D7-

brane in a coordinate system which makes the symmetries of its embedding more

manifest. We split the R6 factor in the last term of (2.14) into R 4 x R2 (i.e. parts

longitudinal and transverse to the D7-brane) and express them in terms of polar

coordinates respectively. More explicitly,

r2 =2 2 2 = 2 + x + 22 2 = X 2
r=p +y p 4 5 ± 6+ 7  Y 8- 9

x 8 = ycos , x 9 = ysin . (2.17)

The metric (2.14) then becomes

2 _ 2 R 2 2 2 2 2) . (2.18)

R2 2 +

The D7-brane now covers (t, ') = (t, xl, 2,x3, p, A 3) and sits at y = L and / = 0.

Note that in the radial direction the D7-brane extends from p = 0, at which the size

of the three-sphere Q3 becomes zero, to p = oo. The point p = 0 corresponds to

r = L.

We now briefly describe how to find the low-lying meson spectrum described by

the fluctuations of x8,9 . The action of the D7-brane is given by the Dirac-Born-Infeld

action

SD7 = -P7 d -dethi, (2.19)

where the (i (with i = 0, 1,..., 7) denote the worldvolume coordinates of the D7

brane and hij is the induced metric in the worldvolume

hi = G,(X) (2.20)

The value of the D7-brane tension, p7 = (27r)- 6g S-1a' - 4, will play no role in our

considerations. The spacetime metric G,, is given by (2.18) and XP( ) describe the



embedding of the D7-brane, where p runs through all spacetime coordinates. The

action (2.19) is invariant under the coordinate transformations ( -* '((). We can

use this freedom to set Ji = (t, £, p, Q3), and the embedding described below equation

(2.18) then corresponds to the following solution to the equations of motion of (2.19):

y( ) = L, ¢(() = 0 or x8s() = L, xzg() = 0. (2.21)

To find the meson spectrum corresponding to the fluctuations of the brane position,

we let

xs = L + 2a'41(J) , x9 = 0 + 2ira'4 2((), (2.22)

and expand the action (2.19) to quadratic order in 41,2, obtaining

SD7 - 7  d p p3 -1- 1 (2 R) p2 + LiR - (i l + 02ajO2) . (2.23)

In (2.23), hij denotes the induced metric on the D7-brane for the embedding (2.21)

in the absence of any fluctuations, i.e.

ds2 = hij 2  (-dt2 + dx 2) + 2 + L2 (dp2 + p 2d2 ) . (2.24)

Note that when L = 0, the above metric reduces to AdS5 x S 3 , reflecting the fact

that in the massless quark limit the Yang-Mills theory is conformally invariant in the

large N/Ny limit.

The equation of motion following from (2.23) is

R4  1 8 8 9 1

(p2 + L2)2 3 pp p 2P +L 2 )2  P-+ - + 1 V2 = ±o, (2.25)

where 4 denotes either 01 or 02, where a = 0... 3, and where V 2 denotes the Lapla-

cian operator on the unit S 3. Eq. (2.25) can be solved exactly and normalizable

solutions have a discrete spectrum. It was found in [101] that the four dimensional



mass spectrum is given by

me, 4m (n+l +l)(n+l 2), n=0,1,... , l=0,1,... , (2.26)

with degeneracy (f + 1)2, where 1 is the angular momentum on S3 . The (f + 1)2

degeneracy is understood in the field theory as arising because the scalar mesons are

in the (f/2, /2) representation of a global SU(2) x SU(2) symmetry corresponding

to rotations in the S3 in the dual gravity theory [101].

The mass scale appearing in (2.26) can also be deduced without calculation via a

scaling argument. Letting

R2  R 2

t t, 7 -- 5, p - Lp, (2.27)
L L

the metric (2.24) can be solely expressed in terms of dimensionless quantities:

ds2  (p1 2  2d) . (2.28)
= (p2 + 1) (-dt2 + dY2) + 2 (dp2 + (

R2 (2 +1 3

Thus, the mass scale for the mesonic fluctuations must be

M L 2 (2.29)
R 2  VA'

as is indeed apparent in the explicit result (2.26). We see that the mesons are very

tightly bound in the large A limit with a mass M that is parametrically smaller than

the rest mass of a separated quark and antiquark, 2 mq. This means that the binding

energy is ~ - 2 mq. From this fact and the Coulomb potential (1.10), one can also

estimate that the size of the bound states is parametrically of order - 1 , VA

Finally, we can now explain the sense in which our analysis is limited to low-lying

mesons. We are only analyzing those scalar mesons whose mass is of order M. There

are other, stringy, excitations in the theory with meson quantum numbers whose

masses are of order L/(R Va) ~-' MA1/ 4 -q mq/ 1 /4 and of order L/a' ~ MA1/ 2 ,

mq [101]. They are parametrically heavier than the mesons we analyze, and can be



neglected in the large A limit even though those with masses - m,/A1/4 are also

tightly bound, since their masses are also parametrically small compared to mq. In

Section 5, we shall see again in a different way that our analysis of the dispersion

relations for the mesons with masses - mq/V/i that we focus on is controlled by the

smallness of 1/A1/4 .

2.3.2 Nonzero Temperature

We now put the Yang-Mills theory at nonzero temperature, in which case the AdS 5

part of the metric (2.14) is replaced by the metric of an AdS Schwarzschild black

hole4

2 1 2
ds2 = - f (r)dt2 + r- d2 + dr2 + R2d , (2.30)R2 ff(r)

r 2 (1 4 (2.31)

The temperature of the gauge theory is equal to the Hawking temperature of the

black hole, which is

T = ro. (2.32)

This is the one addition at nonzero temperature to the dictionary that relates the

parameters of the (now hot) gauge theory to those of its dual gravity description.

At nonzero temperature, the embedding of the D7-brane is modified because the

D7-brane now feels a gravitational attraction due to the presence of the black hole.

To find the embedding, it is convenient to use coordinates which are analogous to

those in (2.18). For this purpose, we introduce a new radial coordinate u defined by

dr - Ru 2  i.e. u2 2 1 r 2 + r4 - r  , (2.33)
f4Note the notation used in this chapter is slightly different to that of Chapter 1,3 and 4.

4Note the notation used in this chapter is slightly different to that of Chapter 1,3 and 4.



in terms of which (2.30) can then be written as

ds 2 = -fdt + 2d R + ( 2 + dQ2 ) (2.34)
R 2  R 2 5

= -fdt 2 + 2 + 2 + 22+ y2 ) . (2.35)

As in (2.18), we have split the last term of (2.34) in terms of polar coordinates on

R4 x R2, with

u2 = y2 + p2 (2.36)

In (2.34) and (2.35), f and r should now be considered as functions of u,

4 (4 - r4/4)2
r 2  2 =2 f (u) = r/4 (2.37)

4U2' U 2R2(U 4 + r4/4)

In terms of u, the horizon is now at uo = .

The D7-brane again covers ( = (t, , p, 3) and its embedding y((), ¢(() in the

(y, ¢) plane will again be determined by extremizing the Dirac-Born-Infeld action

(2.19). Because of the rotational symmetry in the 4 direction, we can choose ¢( ) = 0.

Because of the translational symmetry in the (t, 7) directions and the rotational

symmetry in S3 , y can depend on p only. Thus, the embedding is fully specified

by a single function y(p). The induced metric on the D7-brane worldvolume can be

written in terms of this function as

2 + 2R + I()2 2 + p2 Q2)

hijdid(j  = -f(u )t 2 + d) , (2.38)

where u in (2.36) and hence f(u) are functions of p and y(p). Substituting (2.38) into

(2.19), one finds

SD7 o dP- 3 16 ( )) - I -y(p) 2 , (2.39)



which leads to the equation of motion

y"_ 3y' 8r (py' - y)S+  y +  = 0 (2.40)
1 + 2 p u 2 16u8 - r8

for y(p), where u2(p) = p2 + y2 (p).

To solve (2.40) one imposes the boundary condition that y -- L as p -+ oo, and

that the induced metric (2.38) is non-singular everywhere. L determines the bare

quark mass as in (2.12). It is convenient to introduce a parameter

_ U r2 AT 2  r2T 2

u 0  (2.41)0 - L2 - 2L2 8m2 2M 2  (2.41)

where we have used (2.32) and (2.29). Because KN = 4 SYM is scale invariant before

introducing the massive fundamentals, meaning that all dimensionful quantities must

be proportional to appropriate powers of T, when we introduce the fundamentals the

only way in which the quark mass mq can enter is through the dimensionless ratio

mq/T. Scale invariance alone does not require that this ratio be accompanied by a

VA, but it is easy to see that, after rescaling to dimensionless variables as in (2.27),

the only combination of parameters that enters (2.40) is E,. The small e regime can

equally well be thought of as a low temperature regime or a heavy quark regime. In

the remainder of this section, we shall imagine mq as fixed and describe the physics

as a function of varying T, i.e. varying horizon radius ro.

The equation of motion (2.40) that specifies the D7-brane embedding can be solved

numerically. Upon so doing, one finds that there are three types of solutions with

different topology [43, 36, 37]:

* Minkowski embeddings: The D7-brane extends all the way to p = 0 with y(0) >

uo = o (see e.g. the upper three curves in Fig. 2-1). In order for the solution

to be regular one needs y'(0) = 0. This gives rise to a one-parameter family of

solutions parameterized by y(O). The topology of the brane is R1' 7.

* Critical embedding: The D7-brane just touches the horizon, i.e. y(O) = u0 (see

e.g. the middle curve in Fig. 2-1). The worldvolume metric is singular at the
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Figure 2-1: Some possible D7-brane embeddings y(p). The quark mass to temperature

ratio is determined by y(oo) = L. Specifically, vm,/(TVX) = y(oo)/uo = 1//.

The top three curves are Minkowski embeddings, with y(p) extending from p = 0 to

p = oo00. The bottom three curves are black hole embeddings, in which the D7-brane

begins at the black hole horizon at y 2 + p2 = uo. The middle curve is the critical

embedding. The seven curves, ordered from top to bottom as they occur in the left

part of the figure, are drawn for temperatures specified by ce = 0.249, 0.471, 0.5865,
0.5948, 0.5863, 0.647 and 1.656. Note that the c, = 0.5863 black hole embedding

crosses both the €E = 0.5948 critical embedding and the c,, = 0.5865 Minkowski

embedding.

point where the D7-brane touches the horizon.

* Black hole embeddings: The D7-brane ends on the horizon uo = ro/V2' at some

p > 0 (see e.g. the lower three curves in Fig. 2-1). The topology of the D7-brane

is then R1,4 x S 3 .

It turns out [38, 37] that Minkowski embeddings that begin at p = 0 with y

close to ro/V'-, just above the critical embedding, can cross the critical embedding,

ending up at p -* oc with y(oo) just below that for the critical embedding. Similarly,

embeddings that begin just below the critical embedding can end up just above it.

Furthermore, those embeddings that begin even closer to the critical embedding can

cross it more than once. This means that there is a range of values around the

critical Ec = 0.5948 for which there are three or more embeddings for each value



of cE. At low temperatures (precisely, for cE < 0.5834) this does not occur: there

is only a single Minkowski embedding for each value of c. At high temperatures

(precisely, for ce > 0.5955) there is only a single black hole embedding per value of

C.. In the intermediate range of temperatures 0.5834 < ce < 0.5955, one needs to

compare the free energy of each of the three or more different D7-brane embeddings

that have the same value of cE, to determine which is favored. One finds that there

is a first order phase transition at a temperature Tc at which c, = 0.5863, where the

favored embedding jumps discontinuously from a Minkowski embedding to a black

hole embedding as a function of increasing temperature [38, 37]. 5

As we shall study in detail in Section 4, fluctuations about a Minkowski embedding

describe a discrete meson spectrum with a mass gap of order O(M). In contrast,

fluctuations about a black hole embedding yield a continuous spectrum [38, 37]. A

natural interpretation of the first order transition is that Tc = Tdis, the temperature

above which the mesons dissociate [38, 37]. It is interesting, and quite unlike what

is expected in QCD, that all the mesons described by the zero temperature spectrum

(2.26) dissociate at the same temperature. This is presumably related to the fact that

the mesons are so tightly bound, again unlike in QCD. We shall therefore focus on the

velocity-dependence of the meson spectrum at nonzero temperature - in other words,

the meson dispersion relations first studied in [37]. As we have explained in Section 1,

the velocity-dependence is currently inaccessible to lattice QCD calculations. Hence,

even qualitative results are sorely needed. Furthermore, inferences drawn from a

previous calculation of the potential between a moving quark-antiquark pair lead

to a velocity-scaling (2.7) of Tdiss that has a simple physical interpretation, which

suggests that it could be applicable in varied theories [10]. We shall see this velocity

dependence emerge from the meson dispersion relations in Section 5.

It is interesting to return to the qualitative estimate of Tdiss obtained from the

static quark-antiquark potential in Section 2, and see how it compares to the Tdiss =

T, obtained from the analysis of the mesons themselves. Equating the size of a
5 The critical embedding occurs at an E, = 0.5948 which is greater than the e, at which the first

order phase transition occurs, meaning that at c, = 0.5948 there is a black hole embedding that
has a lower free energy than the critical embedding.
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Figure 2-2: Eo (determined by the embedding y at infinity) versus E (determined

either by y(O), for Minkowski embeddings with E < 1, or by where the embedding

intersects the horizon, for E > 1). The right panel zooms in on the vicinity of the

critical embedding at E = 1. The stable embeddings and the first order phase tran-

sition are indicated by the thick curve; the metastable embeddings are indicated by

the thin curves.

meson with binding energy 2 mq, determined by the zero-temperature potential (1.10),

with the screening length L, = L, = 0.24/T, determined by the potential (2.3) at

nonzero temperature, yields the estimate that Tdiss should be - 2.1mq/V-A. This

is in surprisingly good agreement with Tdis = 8/- mq/V = 2.166 mq/x for

mo = 0.5863.

In subsequent sections, we shall derive the dispersion relations for mesons at T <

Tdiss. We close this section by introducing some new notation that simplifies the

analysis of the Minkowski embedding of the D7-brane, whose fluctuations we shall be

treating. We first introduce parameters

2 2

Lo - y(O) , - = 2  (2.42)

For Minkowski embeddings, E takes value in the range [0, 1], with E = 0 corresponding

to zero temperature, and E = 1 to the critical embedding. Although E, that we

introduced earlier has the advantage of being directly related to the fundamental

parameters of the theory according to (2.41), the new parameter has the advantage

that there is only one embedding for each value of E. And, E will turn out to be

convenient for analyzing the equations of motion (2.40) and the fluctuations on D7-



branes. When c, < 1, E e ,,. A full analytic relation between e and e. is not

known, but given an E one can readily find the corresponding E, numerically. For

example, at T = Tc, E = 0.756 and e, = 0.586 while for the critical embedding, e = 1

and E, = E' = 0.5948. We depict the relation between e. and e in Fig. 2-2. In

order to make this figure, for the black hole embeddings we have defined e = 1/ sin 2 0

where 0 is the angle in the (y, p) plane of Fig. 2-1 at the point at which the black hole

embedding y(p) intersects the black hole horizon y2 + p2 = ug. That is, 1 < e < 00

parametrizes black hole embeddings which begin at different points along the black

hole horizon. The seven embeddings in Fig. 2-1 have e = 0.25, 0.5, 0.756, 1.00, 1.13,

1.41 and 4.35, from top to bottom as they are ordered on the left, i.e. at the tip of

the D7-brane at y = 0 for the Minkowski embeddings and at the horizon for the black

hole embeddings.

Finally, it will also prove convenient to introduce dimensionless coordinates by a

rescaling according to

R2  R 2
t --- t, xi - R Lxi, p -* Lop, y -- Loy, (2.43)

after which the spacetime metric becomes

R 2  G,,dx"dx = -f(u)dt 2 + r(u)2d- 2 + 2 (dp2  2  + dy 2 + 2 do2)44)

and the induced metric becomes

dS27  12 = hijdid = - f(u)dt 2 2 + - ((1 + y'(p) 2)dp2 + p2 d2) (2.45)

with

2 2 2 (U 4 _ 2)2 2 U = U2 2
2  +p, f(u)= ( ) r 2 + -, (2.46)

2 where4 are now dimensionless. The equation of motion for y(p)

where both G,, and hij are now dimensionless. The equation of motion for y(p)



becomes

y" y' 8 py' -yy / 3y +  = 0 (2.47)
1 + y'2  P U2 -4U8 (2.47)

with the boundary conditions

y(0) = 1, y'(0) = 0 . (2.48)

This form of the equations of motion that determine the embedding y(p) will be useful

in subsequent sections.

2.4 Meson Fluctuations at Nonzero Temperature

In this section we derive linearized equations of motion that describe the small fluctu-

ations of the D7-brane position. A version of these equations have been derived and

solved numerically by various authors (see e.g. [43, 102, 38, 37]). Here we will rederive

the equations in a different form by choosing the worldvolume fields parameterizing

the fluctuations in a more geometric way. The new approach gives a nice geometric

interpretation for the embedding and small fluctuations. It also simplifies the equa-

tions dramatically, which will enable us to extract analytic information for the meson

dispersion relations in the next section. We present the main ideas and results in this

Section but we leave technical details to Appendix A. In that Appendix, we shall also

present a general discussion of the fluctuations of a brane embedded in any curved

spacetime.

The action for small perturbations of the D7-brane location can be obtained by

inserting

Xl( ) = Xo*( i ) + 6Xt( i)  (2.49)

into the D-brane action (2.19) and (2.20), where Xo( ) denotes the background solu-

tion that describes the embedding in the absence of fluctuations, and 65Xt describes

small fluctuations transverse to the brane. For the D7-brane under consideration, in



the coordinates used in (2.44) the general expression (2.49) becomes

y() = yo(P) + y(), () = 6() (2.50)

with yo(p) the embedding solution obtained by solving (2.47). The choice of the

worldvolume fields 6y, 6q is clearly far from unique. Any two independent functions

of by and 6 will also do. (This freedom corresponds to the freedom to choose different

coordinates for the 10-dimensional space within which the D7-brane is embedded.) In

fact, it is awkward to use by and 6S as worldvolume fields since they are differences

in coordinates and thus do not transform nicely under coordinate changes. Using

them obscures the geometric interpretation of the equations. Below we will adopt

a coordinate system which makes the geometric interpretation manifest. Since our

discussion is rather general, not specific to the particular system under consideration,

we will describe it initially using general language.

Consider a point Xo(() on the brane. The tangent space at Xo perpendicular to

the D7-brane is a two-dimensional subspace V spanned by unit vectors n", n' which

are orthogonal to the branes, i.e.

n ox - Po(P) (2.51)

n o (2.52)

Any vector q" in Vo can be written as

7" = Xln" + X2n2 . (2.53)

We can then establish a map from (X1, X2) to small perturbations 6XP in (2.49) by

shooting out geodesics of unit affine parameter from Xo with tangent r". Such a

map should be one-to-one for X1, X2 sufficiently small. Clearly X1 and X2 behave

like scalars under coordinate changes and we will use them as the worldvolume fields

parameterizing small fluctuations of the position of the brane. By solving the geodesic



equation, 6X" can be expressed in terms of X1,2 as

6X = " - lp + , (2.54)

where rO, are the Christoffel symbols of the 10-dimensional metric. Note that the

choice of X1,2 is not unique. There is in fact an SO(2) "gauge" symmetry under which

X1,2 transform as a vector, since one can make different choices of basis vectors nl, n2

that are related by a local SO(2) transformation.

We now insert (2.54) and (2.49) into the Dirac-Born-Infeld action (2.19) and, after

some algebra discussed further in Appendix A, we find that the equations of motion

satisfied by X 0 (i.e. which determine the embedding in the absence of fluctuations)

can be written as

K = 0, (2.55)

and the quadratic action for small fluctuations X1,2 about Xo takes the form

SD7 1P 7 R 8 d8 v/-dethij - DiD'Xs - XsXt (-KjK1 j + Rsijth i)

(2.56)

where s, t = 1, 2 and where we have defined the following quantities:

hij = GOXojXo  = ,G,~X X R c a o X OR ,  (2.57)

Ksij= iX o jXVVpnsi , Ks = Kijhij , (2.58)

DiXs = OiXs + UistXt , Ust = n,,,XBnV . (2.59)

Note that hij is the induced metric on the brane and i, j are raised by h2 . R,,,, is

the Riemann tensor for the 10-dimensional spacetime. Ksij is the extrinsic curvature

of the brane along the direction ng. UiSt (which is antisymmetric in s, t) is an SO(2)

connection for the SO(2) gauge symmetry and Di is the corresponding covariant

derivative. We see that the embedding equations of motion (2.55) have a very simple

geometric interpretation as requiring that the trace of the extrinsic curvature in each



orthogonal direction has to vanish, which is what we expect since this is equivalent

to the statement that the volume of the D7-brane is extremal.

The symmetries of the D7-brane embedding that we are analyzing allow us to

further simplify the action (2.56). Because n' in (2.52) is proportional to a Killing

vector and is hypersurface orthogonal, Ui12 and K2ij vanish identically. (See Appendix

A for a proof, and for the definition of hypersurface orthogonal.) With K2 = 0

satisfied as an identity, the remaining equation of motion specifying the embedding,

namely K1 = 0, is then equivalent to the equation of motion for y that we derived in

Section 3, namely Eq. (2.47). After some further algebra (see Appendix A) we find

that the action (2.56) for small fluctuations reduces to

I % 122 M2X2)

SD7 = pR8 8 /-dethi j - ( ) - 2)2 - m 2 2  2 (2.60)

with

m1 = R 1 +R 2112 + 2R22 + (8)R-R ,

m = -R 22 - R2112 , (2.61)

where we have defined

R 2112 -- nlnR Var

R 11 = nnR, ,

R22 - n ,R , (2.62)

and where R is the Ricci scalar for the 10-dimensional spacetime while (s)R is the

Ricci scalar for the induced metric hij on the D7 brane. The background metric hij

is given by (2.44). The "masses" m 2 and m2 are nontrivial functions of p. Since the

worldvolume metric is regular for Minkowski embeddings, they are well defined for

p [0, oo).

Our result in the form (2.56) is very general, applicable to the embedding of any
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Figure 2-3: The squared "masses" of the two orthonormal geometric modes of the D7-

brane fluctuations for Minkowski embeddings (left panel) and black hole embeddings

(right panel). In each figure, m2 (m2) is plotted as a solid (dashed) line for three

values of E. The Minkowski embeddings have E, = 0.587, 0.471 and 0.249 (top

to bottom) and the black hole embeddings have E, = 1.656, 0.647 and 0.586 (again

top to bottom, this time with temperature increasing from top to bottom.) The

Minkowski embedding is plotted as a function of p and the black hole embedding as

a function of u with the horizon on the left at u = 1.

codimension-two branes in any spacetime geometry. For example, we can apply it to

the embedding of D7-branes at zero temperature given by (2.21) and learn that the

meson fluctuations at zero temperature are described by (2.60) with

m = 3p - (2.63)
1 + P2

and with hij in (2.60) given by (2.24). It is also straightforward to check that equations

of motion derived from (2.60) with (2.63) and hij given by (2.24) are equivalent to

(2.25). At zero temperature, (2.23) and (2.24) are already simple enough and the

formalism we have described here does not gain us further advantage. However,

at nonzero temperature the equations of motion obtained from (2.60) yield both

technical and conceptual simplification. In Section 5 we shall use the formalism that

we have developed to obtain the dispersion relations at large momentum analytically.

Before turning to the dispersion relations, we plot the "masses" m2 and m2 for

various D7-brane embeddings at nonzero temperature in Fig. 2-3. Using a numerical

solution for y(p), it is straightforward to evaluate (2.61), obtaining the masses in the



figure. For the black hole embeddings, the D7-brane begins at the black hole horizon

at u = 1 rather than at p = 0, see Fig. 2-1, making it more convenient to plot the

masses as a function of u rather than p. We can infer several important features from

the masses plotted in Fig. 2-3. As p -- o, both m2 and m2 approach -3 for all the

embeddings. This implies that X1 and X2 couple to boundary operators of dimension

3, as shown in [106] by explicit construction of the operators in the boundary theory

which map onto X1 and X2. As e -+ 1 from below for the Minkowski embeddings

(from above for the black hole embeddings), the behavior of m at the tip of the

D7-brane at p = 0 (at u = 1) becomes singular, diverging to minus infinity. This is

a reflection of the curvature divergence at the tip of the critical embedding at p = 0

(u = 1).

We have referred to m2 and m as "masses" in quotes because the equations of

motion obtained by straightforward variation of the action (2.60) in which they arise

yields

-- i(--hi ,) - m ,j = 0, s = 1, 2 (2.64)

with h - dethij, which is a Klein-Gordon equation in a curved spacetime with spa-

tially varying "masses". If we could cast the equations of motion in such a way that

they take the form of a Schr6dinger equation with some potential, this would make

it possible to infer qualitative implications for the nature of the meson spectrum

immediately via physical intuition, which is not possible to do by inspection of the

curves in Fig. 2-3. To achieve this, we recast the equations of motion as follows. We

introduce a "tortoise coordinate" z defined by

dz 2 - (1 + yo(p) 2) d , (2.65)
u2f(U) 0

in terms of which the induced metric on the brane takes the simple form

ds2 2
7  f(-dt2 + dz2) + r2 (u)d 2 + 2d . (2.66)

(We choose the additive constant in the definition of z so that z = 0 at p = 0.) Then,



V,(z) V2(z)
10 10

8 8

6 6-

4 4

2 2

z . . . . . . . . . . . . . . . z
2 3 4 12 3 4

-2 -2

-4 -4

Figure 2-4: Potentials V,(z) for Minkowski embeddings at various temperatures, all
with k = f = 0. The left (right) panel is for s = 1 (s = 2). In each panel, the potentials

are drawn for E, = 0.249, 0.471, 0.586 and 0.5948, with the potential widening

as the critical embedding is approached, i.e. as cE is increased. The E, = 0.586

potential is that for the Minkowski embedding at the first order transition; the widest

potential shown describes the fluctuations of a metastable Minkowski embedding very

close to the critical embedding. The potential becomes infinitely wide as the critical

embedding is approached, but it does so only logarithmically in E' - E,. Note that

the tip of the D7-brane is at z = 0, on the left side of the figure, whereas p = oo has

been mapped to a finite value of the tortoise coordinate z = Zmax, corresponding to

the "wall" on the right side of each of the potentials in the figure.

we seek solutions to the equations of motion (2.64) that separate according to the

ansatz

Xs - (z) eiWt+iX Yemm(3) (2.67)

with

Z(rp (2.68)

Such a solution is the wave function for a scalar meson of type s = 1 or s = 2 with

energy w and wave vector k (note the plane wave form for the dependence on (3+1)-

dimensional Minkowski space coordinates) and with quantum numbers f, m and fin

specifying the angular momentum spherical harmonic on the "internal" three-sphere.

(Rotation symmetry of the three-sphere guarantees that the quantum numbers m and

71 will not appear in any equations.) The V,(z) that we must solve for are the wave

functions of the meson states in the fifth dimension.

The reasons for the introduction of the tortoise coordinate z and the ansatz (2.67)



for the form of the solution become apparent when we discover that the equations of

motion (2.64) now take the Schrodinger form

2 s + V,(k, z)4s = w2s , (2.69)

with potentials for each value of k = k and for each of the two scalar mesons labelled

by s = 1, 2 given by

Z" fk2  1(1 + 2)fu 2
V, (k, z) = + fm + - + (2.70)

Here, the prime denotes differentiation with respect to z. Recall that u2 = p2 +

y2(p) and it should be understood that p, u, and yo are all functions of the tortoise

coordinate z. In Figs. 2.4 and 2-5, we provide plots of V,(z) with k = f = 0 for

s = 1,2 and for Minkowski (Fig. 2.4)) and black hole (Fig. 2-5) embeddings at

various temperatures. With the tortoise coordinate z defined as we have described,

in a Minkowski embedding z extends from z = 0, which corresponds to the tip of the

D7-brane, to
Z Z dp l+yy(p)2

SZmax (2.71)

which corresponds to p = co. Here, u(p) and f(u) are given in (2.46). This defines

the width of the potentials for the Minkowski embeddings shown in Fig. 2.4, which

get wider and wider as the critical embedding is approached.

If we used the same tortoise coordinate for the black hole embeddings, the lower

limit of the integral (2.71) is then the p at which y(p) intersects the horizon and

f(u) vanishes, making the integral divergent. This means that p = 00 is mapped

onto z = oc for black hole embeddings. It is more convenient to define zbh by first

choosing the integration constant such that p = oo corresponds to zbh = 0, and then

multiplying by -1. This is the tortoise coordinate that we have used in Fig. 2-5

The qualitative implications for the meson spectrum can be inferred immediately

from Figs. 2.4 and 2-5, since we have intuition for solutions of the Schrodinger equa-

tion. We can see immediately that the Minkowski embeddings all have a discrete
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Figure 2-5: Potentials Vs(Zbh) for black hole embeddings at various temperatures, all
with k = f = 0. The left (right) panel is for s = 1 (s = 2). In each panel, the potentials
are drawn for Ec = 3584., 0.647, 0.586, 0.586, 0.5940 and 0.5948, from narrower to
wider, with the potential widening as the critical embedding is approached from the
right along the curve in Fig. 2-2. Note that Zbh is defined such that the horizon is at

Zbh = oc, and p = oc is at Zbh = 0. The narrower (wider) of the two potentials with
E = 0.586 is that for the stable (unstable) black hole embedding: at this e, there is
a first order transition (see Fig. 2-2) between the stable Minkowski embedding (whose
potential is found in Fig. 2.4) and the stable black hole embedding. The potentials at

, = 0.5940 and 0.5948 describe fluctuations of metastable black hole embeddings,
with the latter being a black hole embedding very close to the critical embedding.

spectrum of meson excitations, while the fluctuations of the black hole embeddings

all have continuous spectra. This justifies the identification of the first order phase

transition from Minkowski to black hole embeddings that we described in Section 3

as the transition at which mesons dissociate.

Other phenomena that are discussed quantitatively in [37, 38, 106] can be inferred

qualitatively directly from the potentials in Figs. 2.4 and 2-5. For example we see from

the left panel in Fig. 2-5 that, in addition to the continuous spectrum characteristic of

all black hole embeddings, those embeddings that are close to the critical embedding

will have discrete bound states for the V1 fluctuations. These bound states will always

have negative mass-squared, representing an instability. This instability arises only

in a regime of temperatures at which the black hole embeddings already have a higher

free energy than the stable Minkowski embedding, that is, at temperatures below the

first order transition [37]. They therefore represent an instability of the branch of

the spectrum that was already metastable. Similarly, the left panel of Fig. 2.4 shows



that Minkowski embeddings close to the critical embedding also have negative mass-

squared bound states; again, this instability only occurs for embeddings that were

already only metastable [37]. We see from the right panel of Fig. 2-5 that resonances

may also occur in the 42 channel for the black hole embedding. They are interpreted

as quasi-normal modes; close to the transition these resonances become more well

defined and may be interpreted as quasi-particle meson excitations [38, 106].

2.5 Dispersion relations

We have now laid the groundwork needed to evaluate the dispersion relations for

the i1 and 0 2 scalar mesons, corresponding in the gravity dual to fluctuations of

the position of the D7 brane. These fluctuations are governed by (2.69), which are

Schridinger equations with the potentials V1(k, z) or V2(k, z) given by (2.70) and

(2.61) and depicted in Fig. 2.4. The eigenvalues of these Schrodinger equations are

w2 for the mesons. So, it is now a straightforward numerical task to find the square

root of the eigenvalues of the Schr6dinger equation with, say, potential Vi (k, z), at a

sequence of values of k. At k = 0, this will reproduce the results that we reviewed in

Section 3.2. As we increase k, we map out the dispersion relation w of each of the 01

mesons. In Fig. 2-8 in Section 2.5.3 below, we show the dispersion relations for the

ground state 01 meson at several values of the temperature. Such dispersion relations

have also been obtained numerically in [37]. In order to more fully understand the

dispersion equations, and their implications, we shall focus first on analytic results.

The potentials are complicated enough that we do not have analytic solutions for the

general case. We shall show, however, that in the low temperature and/or the large-

k limit, the equations simplify sufficiently that we can find the dispersion relations

analytically. It is the large-k limit that is of interest to us, but it is very helpful to

begin first at low temperatures, before then analyzing the dispersion relations in the

large-k limit at any temperature below the dissociation temperature.

Readers who are only interested in the final results can proceed directly to Sec-

tion 2.5.4, where we summarize and discuss our central results for the dispersion



relations.

2.5.1 Low temperature

At low temperature, e < 1, the D7-branes are far from the horizon of the black hole.

In this regime, we can expand various quantities that occur in the potentials (2.70)

as power series in e2. We shall then be able to determine the dispersion relations

analytically to order E2 in two limits: (i) E -- 0 at fixed k, meaning in particular that

Ek -- 0; and (ii) E -+ 0 at fixed, large, 6k, meaning that k -- oc as E -- 0.

We begin by seeing how the equation (2.47) that determines the embedding y(p)

in the absence of fluctuations simplifies at small e. Expanding y(p) as a power series

in E, one immediately finds that y(p) is modified only at order 6
4, i.e.

y(p) = 1 + O(E4) , (2.72)

which in turn implies that

E0 = E (1 + O(e4)) . (2.73)

Thus, if we work only to order E2, we can treat the embedding as being y(p) = 1, as

at zero temperature, and can neglect the difference between E and Ce (which is to

say the difference between y(0) and y(oo)). From (2.46), then,

2 = 1 + p 2  O( 4), f 2 (1- +O(4)) . (2.74)

By expanding the curvature invariants in (2.61) to order E2, we find that

4 + 3p 2
= 4 - 3p2 + O( 4 ) , (2.75)
1 2 1 + P2

meaning that to order E2 the mass terms occurring in (2.47) are as in (2.63) at zero

temperature. Next, we expand the tortoise coordinate (2.65), finding

z = tan-1 p + E2g(p) + O( 4 ), with g(p) = 3 (3tan- p p ( 5 + 3p2 )  (2.76)16 (1 + p2 )2 (2.76)



We can then invert (2.76) to obtain p in terms of z:

p tanz -E 2
g (tanz)+ (2.7p = tan z - + .... (2.7

Cos 2 Z

Using these equations, we find that the potential (2.70) is given to order O(E2) by

V(z) = k 2 + Vo(z) - 4E2 k 2 COS 4 Z + E2h(z) + (E4, E4 k 2 ), (2.7

where

4ao 3
V(z) 1, with at e- + ( (+ 2) (2.7

sin2 2z 4

is the potential at zero temperature, and

h(z) = 3ae (sin 2 (2z) + 6z cot(2z) - 3) 9
h(z) = + sin2(2z) . (2.82 sin2(2z) 4

We shall not use the explicit form of h(z) in the following.

Low temperature at fixed k

7)

'8)

'9)

0)

At zero temperature (e = 0), solving the Schridinger equation (2.69) with potential

VO(z) yields the eigenvalues (and hence the dispersion relations)

U2 - k2 = r2
-- = rng, n= 1,2,... , = 0,1,.. , (2.81)

with m,e given by (2.26) (after restoring its dimensions). If we work in the limit

E -+ 0 with k fixed, then both the O(e2) and the O(E2k2) terms that describe the

effects of nonzero but small temperature in the potential (2.79) can be treated using

quantum mechanical perturbation theory. To first order in E2, the dispersion relation

becomes

Vw = r2 + 2 bte + O(E4 ) (2.82)



with

2 1 2

an, = 4(n, Icos 4 zn, )

bne = (n, jeh(z)ln,e) , (2.83)

where In, £) are the eigenfunctions of the Hamiltonian with the unperturbed potential

Vo of (2.79), with wave functions

0(z) = F + 32 -n(n ) (sin z) , C (cos Z) . (2.84)
f2 7rJ (n + 2f+ 3)

Using the recursion relations for the generalized Gegenbauer polynomials C( ) [109],

an can be evaluated analytically, yielding

(n + 21 + 1)(n + 21+ 2) (n + 1)(n + 2)
an = 2 -4(n + 1 + 1/2)(n + 1 + 3/2) 4(n + 1 + 3/2)(n + 1 + 5/2)

So, for the ground state with n = f = 0, a00 = 18/15. bne can be computed numer-

ically, but we will not do so here. The dispersion relation (2.82) is valid for E2 < 1

and E2k2 < 1, meaning that at small E it is valid for k < 1/E. No matter how small

E is, the perturbation theory breaks down for k n 1 and (2.82) does not apply. In

other words, the low temperature e -+ 0 limit and the high meson momentum k - o00

limits do not commute. Even though (2.82) cannot be used to determine the meson

velocity at large k, it is suggestive. We shall see below that in the large-k limit, the

meson velocity is indeed 1 - O(e 2 ), but the coefficient of e2 is not given by (2.85).

Low temperature at fixed, large, Ek

To explore the behavior of the dispersion relations in the large-k limit, we now consider

the following scaling limit

E - 0, k o00, with A2 = k 2 e2 = finite. (2.86)
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Figure 2-6: The potential (2.87) with e = 0.756 and k = 5, 20 and 100. We see
that as A = e2k2 increases, the minimum of the potential moves towards z = 0, the
potential deepens, and the curvature around the minimum increases.

In this limit, the potential (2.70) again greatly simplifies and, consistent with (2.78),

becomes

V(z) = k2 + - 1 - 4A 2 os4  . (2.87)
sin 2 2z

This potential is valid in the limit (2.86) for any value of A, small or large. If A is

small, the dispersion relation can be determined using perturbation theory as before,

yielding (2.82) without the E2bne term. In order to analyze the large-k regime, we now

consider A > 1, and seek to evaluate the dispersion relation as an expansion in 1/A.

For this purpose, we notice that as A oc the potential (2.87) develops a minimum

at

zo = ($)-o for A-oo , (2.88)

as depicted in Fig. 2-6. The curvature about the minimum is V"(zo) o A2. Thus,
if we imagine watching how the wave function changes as we take the large-A limit,

we will see the wave function getting more and more tightly localized around the

point z = zo which gets closer and closer to z = 0. That is, the wave function will

be localized around the tip of the brane z = 0. This motivates us to expand the



potential around z = 0, getting

V(z) - k2 + 1 = al (12
4 16z 2

+ +15...
43 1625

If we now introduce a new variable = A z, the Schrodinger equation (2.69) becomes

-2 +

where

Q2 = 32,

+a~2 2 + Vq = E P

1
E = (w2 - k2 + 4A2 ) ,

and V contains only terms that are higher order in 1/A:

V 1 /4ae 1-
A= 3

4) + 0(1/A 2).
3)

Thus to leading order in the large A limit, we can drop the V term in (2.90)

(2.92)

Upon

so doing, and using the expression (2.79) for ae, the equation (2.90) becomes that of

a harmonic oscillator in 4 dimensions with mass 1 and frequency t. This quantum

mechanics problem can be solved exactly, with wave functions given by

nl = 3/2+eL (+l) ( 2) e 2 (2.93)

up to a normalization constant, and with eigenvalues given by

E, = Q(n + 2), n = 0,1,... (2.94)

In (2.93), L (a) is the generalized Laguerre polynomial of order

(2.95)S=
2

The allowed values of £ are determined by the requirement that v must be a non-

negative integer. The degeneracy of n-th energy level is 33. Higher order correc-

78

- 4A 2 (1
5z 4

- 2z2 + 5 +
3

(2.89)

(2.90)

(2.91)



tions in 1/A can then be obtained using perturbation theory. For example, with the

next order correction included, the degeneracy among states with different £ and the

same n is lifted and the eigenvalues are given by

Ene = Q(n + 2) + + O(1/A 2) (2.96)

with
5 7

S= (n + 2) 2 + ( + 2). (2.97)
4 4

Thus, in the small-E limit with A fixed and large, we find using (2.91) that the

dispersion relation becomes

W2 = (1 - 4e2)k 2 + 4v/2(n + 2)ke + cne + O(1/k) . (2.98)

Notice that cne is negative for the ground state, and indeed for any n at sufficiently

small f. We learn from this calculation that in the large-k limit, at low temperatures

mesons move with a velocity given to order e2 by v = 1 - 4E2 = 1 - 2e 2. Recalling

that to the order we are working coo = e, this result can be expressed in terms of T,

mq and A using (2.41). In the next subsection, we shall obtain the meson velocity at

large k for any e .

2.5.2 Large-k dispersion relation at generic temperature

The technique of the previous subsection can be generalized to analyze the dispersion

relation in the large-k limit at a generic temperature below the dissociation temper-

ature. For general e < 1, one again observes that the potential has a sharper and

sharper minimum near the tip of the brane z = 0 as k becomes larger and larger.

Thus, in the large k limit, we only need to solve the Schrodinger equation near z = 0.

To find the potential V(z) as a power series in z near z = 0, we need to know the



solution y(p) of (2.47) near the tip of the brane at p = 0:

p2 +4(5 + 5E4 - 3E8)
y = 1 - 1 3(p 4 -1)3 + O(p4 ) . (2.99)

e-4 - 1 3(E4 - 1)3

At small p, using the expansion of y in (2.99), we find the tortoise coordinate z has

the expansion

z 1- + O( 3). (2.100)

Using (2.99) and (2.100) in (2.70), after some algebra we find

V(z) = k2  0 + 2 4 + + Z(2
2)  (2.101)

where

1 - 62
v0 = 1 2' (2.102)

2 32(1 - 2)2( + e 4 )  (2.103)
(1 + e2)5

Q2 5 - 36E2 + 28E4 - 36E6 + 5(2.104)

24(1 + E2)3

_ (f + 2) ( + 4E2 + 4 + 4E6 + gE ) - 56E4
- (1 + 2)3 (2.105)

80e 4

'72 - - + 3  (2.106)
(1 + E2)3

and where ae is given by (2.79). We can understand why the leading difference

between the potentials V and V2 for the mesons i 1 and 02 arises in this approximation

in the constant terms Tyl and y2 as follows. We see from (2.70) that the difference

between V and V2 comes only from m and m2, which do not enter multiplied by k2

and so cannot affect vo, o2 or /3e. Furthermore, m2 and m are curvature invariants,

see (2.61), and must therefore be smooth as p -- 0 because for Minkowski embeddings

the D7 brane is smooth at p = 0. This means that m n and m2 cannot affect the

coefficient of 1/z 2 in (2.101).



We can now obtain the dispersion relations from the Schrodinger equations with

potentials (2.101) as we did in the previous subsection. After making the rescaling

z = k- 1/ 2(, the Schrodinger equation (2.69) takes exactly the form (2.90), with

E = k(W2 - v k2), (2.107)

where Q and vo are given by (2.102) and (2.103) respectively, and where V,(z) contains

only terms that are subleading in the 1/k expansion, and is given by

V,(z) = k (4ye + /O34 ) + O(k-2 ) . (2.108)

Thus, we find the large-k dispersion relation

S= k2v 2 + kQe(n + 2) + dsne + 0(1/k) (2.109)

with

dine = (12)3 f(e + 2) (1 + 3e2 + 64 + 3E6 + E8)
(I + E2)3 13

- - 92 +74 - 9E6+ ) (n+2)2 -564] (2.110)

and
80E4

d2n = de + 8)3 (2.111)
(I + E2)3

Restoring dimensionful quantities in the dispersion relation (2.109), i.e. undoing

(2.43), means multiplying the k and constant terms by Lo/R 2 and L /R 4 , respectively.

We can easily obtain an explicit expression for the wave functions themselves if

we neglect the 3e, Yse and higher order terms, as the potential (2.101) is then that in

the radial wave equation for a four-dimensional harmonic oscillator. To this order,

the wave functions are given up to a normalization constant by

S= z 3/ 2 +eL+ (Qkz2 exp - QEkz22 (2.112)V 2 (_



where, as before, v = (n - f)/2 is the order of the generalized Laguerre polynomial

The dispersion relations (2.109) are the central result of Section 5. We shall

analyze (2.109) and discuss its consequences at length in Sections 5.4 and 6. First,

however, we close this more technical discussion with a few remarks related to the

approximation that we have used to obtain the large-k dispersion relations:

1. The wave function is localized at the tip of the brane, near p = 0 which is

the fixed point of the SO(4) symmetry at which the S' shrinks to zero size

and the fluctuations are fluctuations in R4 . This is the reason why we find a

four-dimensional harmonic oscillator.

2. Our approximation is valid for wave functions that are tightly localized near

z = 0. Evidently, this approximation must break down for mesons with high

enough n, whose wave functions explore more of the potential. More precisely,

if we increase n and f while keeping v fixed and small, the wave functions are

peaked at zo ()2 with a width . Or, if we increase n and v while

keeping £ fixed and small, the wave functions become wider, with v oscillations

over a range of z from near zero to near zo ~ ( ) and hence a wavelength

1 . In either case, our approximation must break down for n - k, since
(nkQ) 2

for n this large zo is no longer small and the wave function is no longer localized

near z = 0.

3. We must ask at what k (or, at what w) stringy effects that we have neglected

throughout may become important in the dispersion relations for the mesons

that we have analyzed. We can answer this question by comparing the length

scale over which the meson wave functions that we have computed varies to the

string length scale ca'2. Considering first the case where v is small, we see from

(2.66) that the proper distance between the maximum of the wave function at

z = zo and the tip of the brane at z = 0 is

1 - E2 4n

lo ~ JfO R zo ~ R - (2.113)



and the width of the wave function is

1 - e2 2
61 V/ 2 -) R (2.114)

Stringy effects can be neglected as long as 61 > a2, meaning

k < O(A-M) , (2.115)

where in the last expression we have restored the dimensions of k using (2.29)

and (2.43). (Since w = vok at at large k, this parametric criterion is the same

for w as for k.) If v is large, the wavelength of the wave function should be

compared to a'2 meaning that 61 is reduced by a factor - 1/v/ and stringy

effects can be neglected only as long as

k < O(AM/v) . (2.116)

We can conclude from either (2.115) or (2.116) that we are justified in using

the dispersion relation that we have derived in the k -+ oo limit, as long as we

take the A -- 00 limit first. 6

4. Notice that as e - 1 (i.e. approaching the critical embedding), both vo and Q

vanish. Our approximation will therefore break down at the critical embedding.

(One way to see this is to note that in the leading terms in (2.101) we will then

have zero times infinity, meaning that it is no longer obvious that these are the

leading terms.) However, the first order phase transition occurs at e = 0.756,

long before this happens.
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Figure 2-7: Potential and ground state wave function for V1i (left three panels) and

02 (right three panels) for k given by 5, 20 and 100 (top to bottom). All plots have

E = 0.756, corresponding to the Minkowski embedding at the dissociation transition.

V(z) and the ground state (n = f = 0) solutions to the Schr6dinger equation in the

potentials V are both shown as solid lines, and the ground state energies are indicated

by the horizontal (red) lines. The dashed lines show the approximation (2.112) to the

wave functions.

2.5.3 Numerical results

We can also obtain the meson wave functions and dispersion relations numerically,

without making either a small E or a large-k approximation. In this subsection we

6 Recall that although the mesons that we have focused on have masses of order M mq/v/-A,

there are also higher-lying stringy mesonic excitations with masses of order MA , mq,/A . Re-

quiring A1/ 4 to be large is what justifies our neglect of these stringy mesonic excitations, just as it

justifies our neglect of stringy corrections to theMHspersion relations of the low-lying mesons. Note



plot a few examples of such results, and compare them to the analytic expressions

that we have derived above upon making the large-k approximation.

In Fig. 2-7 we plot the potentials (2.70) and ground state wave functions for

those potentials that we have obtained numerically for three values of k. Note the

changing vertical scale in the plots of V; as k increases, V deepens. We see that as k

increases and the potential deepens, the wave function gets more and more localized

near z = 0 and, correspondingly, the expression (2.112) for the wave function that

we have derived in the large-k limit using the fact that the wave function becomes

localized becomes a better and better approximation to the exact wave function.

In Fig. 2-8 we show dispersion relations obtained numerically for the ground state

01 meson at several values of the temperature. At each k, we solve the Schr6dinger

equation to find the ground state (using the shooting method) and from the eigenvalue

we obtain w2 and hence a point on the dispersion relation. By doing this at many

k's, we obtain the curves plotted. We also overlay the linear approximation to the

large-k dispersion relations that we shall discuss in Sect. 2.5.4. In Fig. 2-9, we plot

the corresponding group velocities.

2.5.4 Summary, limiting velocity and dissociation tempera-

ture

In this Section we restate our central result for the dispersion relation and then discuss

its implications vis a vis a limiting velocity for mesons at a given temperature as well

as a limiting temperature below which mesons with a given velocity are found, and

above which they are not.

In Section 5.2, we have derived the large-k approximation to the meson dispersion

relations at any temperature below the dissociation transition. We have checked this

result against numerical solutions valid at any k in Section 5.3. We begin by restating

also that the latter becomes important at an w of order the mass of the former.



) / Tdiss
60

50

40

30

20

10

20 40 60 80
k/Tdiss

Figure 2-8: Dispersion relations for the ground state V1 meson with n = f = 0 at

various values of E (i.e. at various temperatures). The top (red) curve is the zero

temperature dispersion relation w = V'k2 + m 2 with m given by (2.26) and with a

group velocity that approaches 1 at large k, as required in vacuum by Lorentz invari-

ance. The next three solid (black) curves are the dispersion relations for e = 0.25,
0.5 and 0.756, top to bottom, the latter corresponding to the Minkowski embed-

ding at the temperature Tdiss at which the first order phase transition occurs. The

dashed (red) lines are the large-k approximation discussed in Section 2.5.4, given by

w(k) = vok + ceLo/(voR 2) with Q specified by (2.124). We see that the dispersion

relations approach their large-k linear behavior from below. The limiting velocity

vo decreases with increasing temperature. Had we plotted dispersion relations for

0.756 < E < 1 corresponding to metastable Minkowski embeddings with T > Tdiss,

we would have seen vo -- 0 as E - 1, approaching the critical embedding.

the analytic result (2.109):

2  +2)Lo L2 , +O(1/k)w = v k2 E(n + 2) k + ds, , +(/) (2.117)

where
1 -E2

V + = 2

1 + E2
32(1 - E2)2(1 + E4)

+ 2)5
(1 + €2)

(2.118)
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Figure 2-9: Group velocities vg = dw/dk for the dispersion relations from Fig. 2-
8, with e = 0.25, 0.5 and 0.756 (top to bottom). We see that the group velocity
approaches its large-k value vo from above. And, we see vo decreasing with increas-
ing temperature. (Again, vo would approach zero if we included the metastable
Minkowski embeddings with T > Tdiss.)

The constant term ds,, (which depends on whether we are discussing the 01 or 02

mesons - s = 1 or s = 2 - and on the quantum numbers n and f) was given

in (2.110) and (2.111). In writing the dispersion relation (2.117) we have restored

dimensions by undoing the rescaling (2.43). The dimensionful quantity that we had

scaled out and have now restored can be written as

L 2mq (2.119)

where we have used (2.32), (2.41) and (2.42). The first factor in (2.119) is a (dimen-

sionful) constant. The quantity e./e appearing in the second, dimensionless, factor

is weakly temperature dependent: it can be read from Fig. 2-2, and is not constant

to the degree that the curve in this plot is not a straight line (in the relevant regime

0 < e < 0.756, as e = 0.756 corresponds to T = Tdiss.) Although using dimensionless

variables obtained via scaling by the temperature-dependent Lo/R 2 was very conve-

nient in deriving all our results, in plotting the dispersion relation and group velocity



in Figs. 2-8 and 2-9 we have instead plotted w and k in units of Tdiss = 2.166 mq//,

which is a relevant, constant, physical, quantity comparable in magnitude to Lo/R 2

In the remainder of this section, we shall analyze (2.117).

In the large-k limit, the asymptotic value of the group velocity dw/dk is given by

vo. This velocity decreases with increasing temperature, and vanishes as e -- 1 on the

critical embedding that separates Minkowski and black hole embeddings in Figs. 2-1

and 2-2. At the temperature at which the first order dissociation transition occurs,

E = 0.756 and vo = 0.273.

There is a natural explanation within the dual gravity theory for how the asymp-

totic velocity vo can arise. Using (2.46), it is easy to show that vo in (2.118) can also

be written as
f(p = 0)o (p 0) , (2.120)0 2(p = 0) '

which we see from (2.44) is precisely the local speed of light at the tip of the D7-brane.

(The local speed of light is 1 at u = oo, and decreases with decreasing u, decreasing

to vo at the tip of the D7-brane where p = 0 and u = y = 1.) Since we have seen

that in the large-k limit the wave function of the meson fluctuations becomes more

and more localized closer and closer to the tip of the D7-brane, this makes it natural

that vo emerges as the asymptotic velocity for mesons with large k.

In the low temperature (equivalently, heavy quark) limit, we find (either directly

from (2.118) or, initially, in (2.98) in Section 5.1) that

v 2 1 - 4E2 (2.121)

Since , E at small E, using (2.41) we have

A2 T 4

v 0  16m 4 , (2.122)
16mq

which is precisely the critical velocity (2.8) obtained in [11] from the screening calcu-

lation as the velocity above which the potential between two moving quarks of mass

mq cannot be defined. This is the first of two quantitative comparisons that we will be



able to make between our present results for meson propagation and results obtained

previously via the screening calculation. We see from Fig. 2-10 that (2.121) works

very well where T < mq/V/-, which is where it was derived (both here and in [10]).
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Figure 2-10: The asymptotic velocity vo from (2.118) as a function of e. The low
temperature approximation (2.121) is plotted as a dashed line. Recall that the dis-
sociation transition occurs at e = 0.756.

In order to analyze (2.117) beyond the k 2 term, it is instructive to rewrite it as a

large-k approximation to the dispersion relation w itself rather than to w2, yielding

e(n + 2)Lo 4d v2 - Q 2 2(n + 2)2 L 2 1
w(k) = vok + 2voR 2  + 8v R-- - + O(1/k2)

2voR2 0U3 R4 k (2.123)

in the form we discussed in Section 1. We see that the term linear in k in (2.117)

yields a constant shift in the meson energies in (2.123). Whereas vo is independent of

s, n and £, the constant term in (2.123) results in evenly spaced dispersion relations

for mesons with differing n quantum number, separated by

QeLo (27rmq, 8,C(1 + e 4)

2voR 2
- (1+ 2) 3 (2.124)

which we plot in Fig. 2-11.

If we neglect the O(1/k) and higher order terms in (2.123), the dispersion relations
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Figure 2-11: The k-independent spacing QeLo/2voR 2 between the dispersion relations

for any two mesons whose n quantum numbers differ by 1, in units of Tdiss. See (2.124).

are the same for mesons V1 and 02 and are independent of £. These degeneracies are

broken at order O(1/k), where dsne first appears. We find that the coefficient of 1/k

in w(k) of (2.123) is typically negative: it is negative at all e < 1 if f = 0 for any n;

it can become positive only if E, n and £ are all large enough. When this coefficient

is negative, it means that w(k) approaches its large-k asymptotic behavior (which is

a straight line with slope vo offset by the constant term in (2.123)) from below. This

means that d2w/dk2 < 0 at large k and means that the group velocity v = dw/dk

approaches vo from above at large k, as shown in Fig. 2-9. However, at k 0 the

group velocity vanishes and d2w/dk 2 > 0. (We have shown this analytically at small

e in Section 5.1, see (2.82), and our numerical results as in Section 5.3 indicate that

this is so at all E.) So, as a function of increasing k, the group velocity begins at zero,

increases to some maximum value that is greater than vo, and then decreases to vo

as k - c0 as depicted in Fig. 2-9.7 Although v0o is not the maximum possible group

velocity, it appears that the maximal velocity exceeds vo only by a small margin. For

7This behavior is not inconsistent with our identification of vo with the local speed of light at

the tip of the brane: it is only for k -- oc that the meson wave function is squeezed down to the tip

of the brane; at finite k, the wave function is peaked where the local speed of light exceeds vo.
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Figure 2-12: Left panel: The solid curve is the limiting velocity vo as a function of
T/Tdiss, where Tdiss is the temperature of the dissociation transition at zero velocity.
The dissociation transition occurs at the dot, where vo 4 0.273. The dashed curve
is the approximation obtained by setting f(v) = 1 in (2.125). Right panel: f(v), the
ratio of the solid and dashed curves in the left panel at a given v. We see that f(v)
is within a few percent of 1 at all velocities.

example, for the ground state 0 1 meson whose dispersion relations are given in Figs. 2-

8 and 2-9, we find that vo = 0.882, 0.6, and 0.273 for E = 0.25, 0.5, and 0.756 whereas

the maximal velocities are 0.896, 0.634 and 0.342, respectively. We shall therefore

simplify the following discussion by taking the maximal possible meson velocity at

a given temperature to be the limiting velocity vo, neglecting the slight imprecision

that this introduces.

We now wish to compare our results for the limiting meson velocity vo at a given

temperature to the result (2.7) inferred (qualitatively) from the analysis of screening

in a hot wind in [11]. We must first convert vo(E) into vo(T), meaning that we must

convert from E to c. as discussed in and around Fig. 2-2. The result is the solid curve

in the left panel of Fig. 2-12, where we have plotted vo versus T/Tdi's. We have derived

this curve as a limiting meson velocity at a given temperature. However, it can just

as well be read (by asking where it cuts horizontal lines rather than vertical ones) as

giving Tdiss(v), the temperature below which mesons with a given velocity v are found

and above which no mesons with that velocity exist. We see that Tdiss(v) --+ 0 for

v --> 1, the regime where vo is given by (2.122) and Tdiss(v) is therefore given by (2.9).

In order to compare our result for Tdiss(v) at all velocities to (2.7), we parameterize



our result as

Tdiss(v) = f(v)(1 - v 2 )1/4Tdiss(0) . (2.125)

In the left panel of Fig. 2-12 we compare our result (the solid curve) to (2.125) with

f(v) set to 1, which is of course (2.7). In the right panel, we plot f(v). We see that

this function is close to 1 at all velocities, varying between 1.021 at its maximum

and 0.924 at v = 1. The weakness of the dependence of f(v) on v is a measure of

the robustness with which the simple scaling (2.7) describes our result for the meson

dissociation temperature at all velocities.

2.6 Discussion and Open Questions

We have used the AdS/CFT correspondence to compute the dispersion relation w(k)

for the heavy "quarkonium" mesons that exist as stable bound states in the strongly

coupled plasma of M = 4 SYM to which heavy fundamental quarks with mass mq have

been added. In Section 4 we have introduced a new, and more geometrical, method

of analyzing these mesons that has allowed us, in Section 5, to obtain the dispersion

relations at large-k analytically in the form (2.123), which we can summarize as in

Section 1 by writing
b

w(k) = vok +a a + +.... (2.126)

We have computed a and b explicitly and analytically in Section 5, but at present we

have no argument that the behavior of these coefficients, which depend on the meson

quantum numbers, could teach us lessons that generalize beyond the particular theory

in which we have computed them. On the other hand, the limiting large-k meson

velocity vo seems to encode much physics that may generalize to meson bound states

in other strongly coupled gauge theory plasmas.

* Our explicit result is
1 - E2

vo = 2  (2.127)
1 + E2

where E is related to c, = AT2/(8m 2,) as in Fig. 2-2. We see that vo depends
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on the temperature (in the combination v"AT/mq) but not on the meson quan-

tum numbers. We see in Figs. 2-8 and 2-9 that vo decreases with increasing

temperature, becoming much less than 1 as the temperature approaches Tdiss,

the temperature at which mesons at rest dissociate. We see in these figures

that the coefficient b in (2.126) can be negative, meaning that the group veloc-

ity approaches its large-k value vo from above. Thus, vo is the limiting meson

velocity at large k, but the maximal velocity occurs at finite k and is slightly

larger than vo. We describe this quantitatively in Section 5, but it is a small

effect and in this discussion we shall ignore the distinction between vo and the

maximal velocity.

* We find that vo, which in the gauge theory is the limiting velocity of the mesons

that they attain at large k, also has a nice interpretation in the dual gravity

theory. It is precisely the local velocity of light at the "tip" of the D7-brane,

namely where the D7-brane reaches closest to the black hole. This is physically

sensible because we have shown that the D7-brane fluctuations - i.e. the

mesons in the dual gravity theory - are localized at the D7-brane tip in the

large-k limit.

* At low temperatures or, equivalently, for heavy quarks we find

A2T 4

vo 1 -32 (2.128)
32m4q

This is precisely, i.e. even including the numerical factor, the criterion for meson

dissociation inferred from a completely different starting point in [11]. The logic

there was that the screening length that characterizes the potential between a

quark and antiquark moving with v > vo is shorter than the quark Compton

wavelength, meaning that if a quark and antiquark moving with v > vo are

separated by more than a Compton wavelength, to leading order in NV they

feel no attractive force. By inference, no mesons should exist with v > vo. We

now see this result emerging by direct calculation of meson dispersion relations,



rather than by inference.

* We have a result for vo(T), the limiting velocity beyond which there are no

meson bound states, at all T < Tdiss not just at low temperatures, see Fig. 2-12.

We can just as well read this as determining a temperature Tdiss(v) above which

no meson bound states with velocity v exist. We find that up to few percent

corrections, see Fig. 2-12, this is given by

Tdiss(V) = (1 - V2)1/4Tdiss . (2.129)

Once again, this is a result that was previously inferred from analysis of the ve-

locity dependence of the screening length characterizing the potential between

a quark and antiquark moving through the plasma [10]. We have now derived

this result and the (few percent) corrections to it for the mesons whose disper-

sion relations we have explicitly constructed. We should also note that it is a

slight abuse of terminology to call Tdiss(v) at v > 0 a "dissociation" tempera-

ture: although it is a temperature above which no mesons with velocity v exist,

if we imagine heating the plasma through Tdiss(v) we have not shown that any

mesons present therein dissociate - they may simply slow down. The question

of what happens in this hypothetical context is a dynamical one that cannot be

answered just from the dispersion relations we have analyzed.

* As we discussed in Section 2, the result (2.129) can be read as saying that no

mesons with velocity v exist when the energy density of the strongly coupled

plasma exceeds Pdiss(V) where, up to small corrections,

Pdiss(V) = (1 - V2 )Pdiss , (2.130)

with Pdiss the energy density at which mesons at rest dissociate. Correspond-

ingly, the low temperature result (2.128) can be written as

1 - vo = constant , (2.131)
Pdiss



valid when p < Pdiss and vo is close to 1. Thinking as in [34], we can ask whether

the same result holds in other theories. It will be interesting to address this

question in (3 + 1)-dimensional gauge theories that are in various senses more

QCD-like than M = 4 SYM. At present, however, we have only investigated the

(p + 1)-dimensional gauge theories described by N Dp-branes [110] into which

fundamental quarks, and hence mesons, have been introduced by embedding a

Dq-brane [111, 105, 36, 37]. The Dp-branes fill coordinates 0, 1,..., p. The Dq-

brane fills the first d+1 of these coordinates 0, 1,..., d, where d may be less than

or equal to p, as well as q - d of the remaining 9 - p coordinates. In Appendix

B, we sketch an investigation of those theories for which p - d + q - d = 4. (The

case that we have analyzed throughout the rest of this chapter is p = d = 3,

q = 7.) These theories are not conformal for p f 3, as their coupling constant A

has dimension p - 3. It is convenient to introduce a dimensionless Aef f- ATp- 3

We have not repeated our entire construction for the Dp-Dq-brane theories.

However, we expect that the wave functions for large-k mesons will again be

localized at the tip of the Dq-brane, and therefore expect that in these theories

vo will again be given by the local velocity of light at this location. We compute

this velocity in Appendix B. Assuming that this is indeed the limiting meson

velocity, we find (1 - e(7- p) / 2 )

= l( 7-)/ 2  , (2.132)

where E is given at small T/mq by

( T 2 2 2/(5-p) 4/(5-p)

00 2/(5-p) 2 (2.133)

(Relating e to c, beyond the small T/mq limit requires solving the embedding

equation given in Appendix B.) In these theories, the energy density of the

plasma depends on parameters according to [110]

p N2Tp+ (-3)/(5-p) - N2 (p-3)/(5-p)T(14 - 2p ) / (5 - p ) , (2.134)
P O(.. . eftf-



and zero-velocity mesons dissociate at some energy density Pdiss corresponding

to E = Ediss where Ediss = 0(1). From these results we notice that at small E

(7-p)/2 O /(7-)/(5-p)14-2p)/(5- , (2.135)
mq Pdiss

meaning that the velocity vo of (2.132) can be written in the form (2.131) for

all values of p! In Appendix B, we describe the verification that (2.129) also

holds, but only when phrased as in (2.130) in terms of energy density rather

than temperature.

Emboldened by these successes, we advocate investigating the consequences that

follow from hypothesizing that T and J/ mesons in the strongly coupled quark-

gluon plasma of QCD propagate with a dispersion relation (2.126) with vo dropping

dramatically as the temperature approaches Tdiss from below, and with no bound

states with velocity v possible if T > Tdiss(v) given by (2.129). In applying (2.129)

to QCD, it is important to scale Tdiss(v) relative to the Tdiss for T and J/P mesons

in QCD itself. The result Tdiss = 2.166mq/x/ for the mesons that we have analyzed

is surely affected by the fact that they are deeply bound and so should not be used

as a guide to quarkonia in QCD. For example, it seems to overestimate Tdiss for J/4

mesons by a factor of 2 or 3. However, as argued in [10, 11] and as we have discussed

above, the velocity scaling (2.129) may transcend the detailed meson physics in any

one theory and apply to mesonic bound states in any strongly coupled plasma. The

successful comparison of our detailed results to this simple scaling form supports this

conjecture.

As we have explained at length in Section 1, meson propagation is only one piece

of the physics that must be treated in order to understand quarkonium suppression in

heavy ion collisions. Introducing the dispersion relation and limiting velocity that we

have found into such a treatment is something we leave to the future, instead making

only a few qualitative remarks.

First, from the dispersion relations alone we cannot conclude that if a quark-

antiquark pair is produced (from an initial hard scattering) with a velocity v > vo(T),



with vo(T) the limiting meson velocity in the plasma of temperature T in which the

quark-antiquark pair finds itself, then the quark-antiquark pair do not bind into a

meson. The reason that we cannot make this inference is that the dispersion rela-

tions describe stable mesons with arbitrarily large momentum k, making it a logical

possibility that a high velocity quark-antiquark pair with arbitrarily high momentum

interacts with the medium in some way such as to slow down and lose energy while

conserving its momentum, and thus in some way dresses itself into a meson with

arbitrarily high momentum k, and velocity vo. That is, since the dispersion relations

describe the propagation of mesons with arbitrarily large momentum, by themselves

they do not require that quarkonium production is suppressed when the precursor

quark-antiquark pair has velocity v > vo(T). Excluding this possibility, allowed by

the kinematics, requires some consideration of the dynamics. The heuristic argu-

ment of [11] provides guidance: the precursor quark-antiquark pair with v > vo(T)

do not attract each other and so even though it is kinematically allowed by the me-

son dispersion relations for them to slow down and form a meson, instead they will

propagate independently through the medium. Thus, the pT-dependent quarkonium

suppression pattern proposed in [10], with the production of quarkonium states with

Tdiss higher than the temperature reached in a given heavy ion collision experiment

nevertheless becoming suppressed above a threshold transverse momentum at which

a quark-antiquark pair with that transverse momentum has velocity vo(T), rests upon

the dynamical argument of [11]. It is natural that analyzing quarkonium suppression

requires consideration of both the precursor quark-antiquark pair and the putative

meson, and only the latter is described by the meson dispersion relation. It is then

nice to discover that the limiting meson velocity vo(T) agrees precisely with the ve-

locity at which quark-antiquark pairs can no longer feel a force at order VX.

The argument of the previous paragraph is rather heuristic, and would be hard

to confirm directly from a string theory calculation. Indeed it would be quite disap-

pointing if the weakened interactions between quark-antiquark pairs at high velocity

did not directly imprint itself on the meson bound states studied in this chapter.

In Chapter 3 we will fix this discrepancy, and in so doing strengthen the argument



above. This will be done by first finding a mechanism for these mesons to decay

and then studying the momentum dependence of the resulting widths. As we have

mentioned the mesons we have analyzed at T < Tdiss are stable, with zero width. The

dispersion relations that we have found have no imaginary part. This is certainly an

artifact of the large number of colors N and large coupling A limits that we have taken

throughout. Processes in which one meson decays into two mesons are suppressed by

1/N. And, thermal fluctuations which unbind a meson whose binding energy is 2 mq

are suppressed by the Boltzmann factor

exp(-2mq/T) = exp(-0.92v/-Tdiss/T) , (2.136)

which at some fixed T/Tdiss is nonperturbative in an expansion about infinite A. In

Chapter 3 we will show how to calculate such a contribution to the widths, we will

be particularly interested in the momentum dependence of the widths.

We will find that as the meson approaches its limiting velocity vo(T) its width

grows quadratically with momentum. We will see that this growth is related to the

existence of a limiting velocity. So in hindsight it is not necessary to make dynamical

arguments about the formation of a meson from a quark-antiquark pair in order to

predict increased suppression at high PT, however such dynamical considerations are

still important and may lead to further suppression. It is pleasing to note that both

suppression mechanisms have a related origin.

We have just argued that the very large-k region of the meson dispersion relation

is unlikely to be populated in heavy ion collisions. But, whether or not such large-k

modes are excited, it is clear from Fig. 2-8 that at temperatures near to Tdiss mesons

at any k move much more slowly than they would if they propagated with their vac-

uum dispersion relation. There are several in-principle-observable signatures of the

slow velocity of quarkonium mesons. First, it increases the separation in space long

after the collision between those mesons that are produced at the surface of the fire-

ball moving outwards, and hence escape into vacuum promptly, and those which are

produced in the center of the plasma and hence move more slowly than if they had



their vacuum dispersion relation. An increase in the typical separation of identical

mesons because of this slow velocity effect will shift the onset of Bose-Einstein en-

hancement in the two particle momentum correlation to a lower relative momentum.

This simple idea underlies a technique widely used in heavy ion physics and often

referred to as Hanbury-Brown Twiss (HBT) two-particle interferometry, in which

identical two-particle momentum correlations are used to determine spatio-temporal

characteristics of the collision region. For a review, see Ref. [1121. Quarkonium HBT

interferometry would thus in principle be able to find signatures of a depressed me-

son velocity. Second, non-identical two-particle correlation functions are sensitive to

whether one particle species A is emitted from the medium on average before or after

another particle species B. Such a difference in average emission times could result,

for instance, if the maximal velocities in the dispersion relations for A and B differ

because of their different mass. The analysis of the effect of a difference in aver-

age emission times on non-identical two-particle correlation functions can be found

in [113]. In principle, this provides a second way of finding signatures of a depressed

velocity for those mesons for which the plasma reaches temperatures close to their

dissociation temperature.

Of course for mesons with a nonzero width, their slow velocity has a further

consequence in the context of heavy ion collisions: because they move more slowly,

they spend a longer time in the medium giving the absorptive imaginary part more

time to effect the dissociation of the meson than would otherwise be the case.

Our discussion in this Section has highlighted different avenues of further investi-

gation opened up by our analysis of meson dispersion relations in a strongly coupled

gauge theory plasma. The first is the investigation of the phenomenological conse-

quences for J/ and T suppression in heavy ion collisions of a dispersion relation

of the form (2.126) with (2.129). Second, we could gain significant confidence in the

application of the lessons we have learned to QCD by repeating our analysis for heavy

quark mesons in the plasma of other strongly coupled gauge theories, in particular

those with a controlled degree of nonconformality.



Finally as emphasized here in the next Chapter of this thesis we will answer some

questions/speculations raised here by studying the width of the mesons in this system

at finite A. Most importantly we will demonstrate that their lifetime becomes smaller

at larger momentum consistent with the discussion of this section.
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Chapter 3

Properties of mesons II - width

3.1 Introduction

A heavy quarkonium bound state, like J/' or T, which finds itself in the quark-gluon

plasma (QGP), becomes increasingly unstable and eventually dissociates at suffi-

ciently high temperatures. On the one hand this can be attributed to the weakening

attraction between a heavy quark and anti-quark in the bound state due to color

screening of the medium [14]. On the other hand the bound state can be broken up

from collisions with the deconfined quarks and gluons in the medium [90]. Given that

the QGP at RHIC and LHC is likely strongly coupled, understanding such medium

effects on the propagation and dissociation of heavy quarkonia presents nontrivial

theoretical challenges which must be confronted in order to interpret experimental

data on quarkonium suppression.

Interesting insights have recently been made into this problem from strongly cou-

pled model gauge theories using the AdS/CFT correspondence. AdS/CFT-based

methods are powerful at attacking questions of dynamical origin, such as how the

motion of quarkonia relative to the medium affects their various properties. The sim-

plest example of the correspondence is provided by the duality between N = 4 SU(N,)

super Yang-Mills (SYM) theory and string theory in AdS5 x S5 [18, 19, 20, 21]. As de-

scribed in Chapter 1, based on a calculation of the potential between a pair of heavy

external quark and antiquark moving in the strongly coupled hot AN = 4 plasma,
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it has been argued in [10, 11] (see also [12, 13]) that the dissociation temperature

Tdiss of a heavy quarkonium decreases with their velocity v relative to the medium as

Tdiss(V) (1 - v2)lTdiss(v = 0). Such a velocity scaling, which can be heuristically

understood as due to increased screening from the boosted medium, could provide

a significant additional source of quarkonium suppression at nonzero transverse mo-

mentum in heavy ion collisions [10, 11].

Rather than drawing inferences from the heavy quark potential, it is also possible

to directly study the propagation of mesons in a strongly coupled plasma. While

NJ = 4 SYM theory itself does not contain dynamical mesons, one can obtain a closely

related theory which does contain mesons by adding to it Nf <K N, fundamental

"quarks", which corresponds to adding some D7-branes to AdS5 x S 5 in the gravity

picture [100]. We saw in Chapter 2 that meson dispersion relations are dramatically

modified by the plasma and in particular, there exists a limiting velocity v,(T) < 1,

which decreases with increasing temperature. The existence of a subluminal limiting

velocity is consistent with the velocity-enhanced screening obtained from the heavy

quark potential, as when v > vc(T) the quark and anti-quark are completely screened

and no bound states are possible.

For a more complete understanding of the dissociation of mesons one needs to

study their widths. We will be particularly interested in the momentum dependence

of the widths. This has not been possible within the classical gravity approximation

developed so far. In this approximation, the mesons are stable (i.e. they have zero

width) for T smaller than a dissociation temperature Tdiss, but completely disappear

for T > Tdiss [101, 43, 102, 38, 37]. The approximation also has another important

drawback: the densities of quarks and antiquarks are identically zero for a range of

temperatures and chemical potentials [42] even though they should obey the standard

thermal distribution.

In this chapter, we discuss a novel tunneling effect on the string worldsheet which

gives rise to nonzero quark densities and meson widths for T < Tdiss. This enables us

to calculate explicitly the momentum dependence of the width of a meson in a strongly

coupled QGP. We find that the width increases quadratically with momentum at large
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momentum. These non-perturbative effects also have important implications for the

phase structure of the theory obtained in the classical gravity limit.

3.2 Setup

Recall that at finite temperature, NA = 4 SYM theory can be described by a string

theory in the spacetime of a black hole in AdS5 x S5 , whose metric can be written as

ds 2  -_fdt2 +  dr2 + -rd2 + R2dGQ (3.1)

where f = i 1 - , = (x, X2 , X3 ). dQ is the metric on a unit five-sphere S5

which can be written as

dQ2 = dO2 + sin 2 OdQ 2 + cos 2 OdO 2, 0 E 0, I (3.2)

with dQ2 the metric for a three-sphere S3. The string coupling g, is related to the

Yang-Mills coupling gyM by gs = 4rgym and the curvature radius R is related to the

't Hooft coupling A = g2 N by R = v1A. The perturbative g, and a' expansions in

the bulk string theory are related to the 1/N, and expansions in the Yang-Mills

theory respectively. The temperature T of the YM theory is given by the Hawking

temperature of the black hole, T = ~.2 Adding Nf fundamental "quarks" can

be described in the dual string theory by adding Nf D7-branes in (3.1) [100]. A

fundamental "quark" in the YM theory can be described by an open string with one

end on the D7-branes and the other end on the black hole. Open strings with both

ends on the D7-branes can be considered as "bound states" of a quark and antiquark,

thus describing meson-type excitations in the YM theory.
We now briefly outline the standard procedure for obtaining the meson spec-

trum [101, 43, 102], which was obtained in more detail in the previous chapter. We

will take Nf = 1, N, -- oc, and A large but finite throughout the chapter. The

D7-brane can be chosen to lie along the directions ~a = (t, 2, Q3 , 0) and using the

symmetries of the problem the embedding in the two remaining transverse directions
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Figure 3-1: An embedding of the D7 brane (green) in the AdS 5 x S5 black hole

geometry for T < Tdis which lies entirely outside the black hole. Inset: the Euclidean

r - T plane at 0 = 0 showing a world-sheet instanton (red) connecting the tip of D7

brane r = rm to the horizon at the center of the disk r = r0.

can be taken as q(() = 0 and r((a) = r(0). At the lowest order in the a' expansion,

r(0) can be determined by extremizing the Dirac-Born-Infeld (DBI) action of the

D7-brane with the boundary condition r(0) cos Ojo_ -- L, where L is related to the

mass mq of a quark in the Yang-Mills theory as mq = . For T smaller than some

Tdiss, r(9) has the form shown in Fig. 3-1. The brane is closest to the black hole at

0 = 0, where there lies a 4-dimensional subspace spanned by (t, ) since here the S3

in (3.2) shrinks to a point. Denoting rm - r(0 = 0) > r0 , the shortest open string

connecting the D7-brane to the horizon has a mass in the YM theory

T) rm- ro Am- 1 Am = m (3.3)

27ra' 2 ro

Note that Am is a dimensionless number of O(AO) determined by the ratio L/ro, and

mqT) can be interpreted as the effective mass of a quark at temperature T.

The mesons corresponding to massless fluctuations on the D7-brane can be found

by solving the linearized equations resulting from expanding the DBI action around

the embedding. For example, the quadratic action for the fluctuation XO((0) of the
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location of D7-brane in the 0 direction can be written as

SDBI[x*] = - J d8 ( % gGoo ga 'i10X1 (3.4)
2j

where P7 = (2r)7a,'4 is the tension of the D7-brane, Goo = R2 cos 2 0, and gp denotes

the induced metric on the D7-brane. Writing XO = e-it+i&FY(Q 3)~(3)(0), the equation

of motion for 0 can be written as

IH(k, 1)0(0) = w20(0) (3.5)

where H(k, 1) is a second order differential operator in 0 and Y are spherical harmonics

on the S3 . For a given k, 1, H(k, 1) has only discrete eigenvalues w' labeled by an

integer n, giving rise to dispersion relations w = w,(k, 1), all of which have zero

width. In particular, the meson masses are of order M = = Since M is

parametrically smaller than mq in vv, the mesons have a large binding energy, given

by 2mT). There exists a temperature Tdiss = 0.122M, beyond which the D7 brane falls

into the black hole and mesons cease to exist as well-defined quasi-particles [38, 37].

We stress that the zero-width conclusion only depends on the topology of the

embedding in Fig. 3-1. Since mesons can only dissociate by falling into the black hole,

when the D7-brane lies above the black hole horizon the mesons are necessarily stable.

Given that the brane embedding and the background geometry are smooth, including

higher order perturbative corrections in a' should not change the topology of the brane

embedding if the distance between the brane and the horizon is parametrically larger

than the string scale. This implies that the widths of mesons should remain zero to

all orders in the perturbative - expansion.

One can also turn on a quark chemical potential p < m ) in the boundary theory

by setting At = p, where At is the time component of the gauge field on the D7-

brane [42, 41, 40, 125]. Since the DBI action and its higher order a' corrections

contain only derivatives of At, the D7-embedding and the meson spectrum are not

modified by turning on the constant mode of At. Thus, the meson widths and the net

quark density remain zero to all orders in the a' expansion even at a finite chemical
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potential 1.

The above conclusions can be further illuminated by simple thermodynamic rea-

soning. From (3.3), 3mf oc v, the quark (or anti-quark) density, being propor-

tional to e- m )+  , is then exponentially suppressed in vA for P < m~). Similarly,

since the binding energy EBE of a meson is 2mT), thermal effects which destabilize

the mesons are also exponentially suppressed in VX. Thus the meson widths and

quark densities are not visible in the perturbative expansion in 1/v/X and can only

have non-perturbative origins on the worldsheet.

There are indeed non-perturbative corrections in a' which effectively change the

topology of the D7-brane embedding and generate non-vanishing meson widths and

quark densities. To see this it is more convenient to analytically continue (3.1) to

Euclidean signature with t --> -ir. Then the r - 7 plane has the topology of a

disk. The angular direction T has a period given by the inverse temperature /. The

center of the disk is located at r = ro. Open strings on the D7-brane are described

by worldsheets with the topology of a disk whose boundary lies on the D7-brane.

Denoting the worldsheet coordinates as p E [0, 1] and oa E [0, 2r), the worldsheets

separate into different topological sectors corresponding to the winding number m

of the target space disk (r, T) wrapping around the worldsheet disk (p, a). The DBI

action arises from the sector of trivial winding number m = 0, in which (p, a) is

mapped to a single point on the D7-brane. In all the other (nontrivial) sectors, the

string worldsheet is mapped to the region in the r - T plane from the location of the

D7-brane all the way to the horizon r = ro (see inset of Fig. 3-1). When analytically

continued back to the Lorentzian signature, such a worldsheet describes a tunneling

process in which a tiny neck is generated between the D7-brane and the black hole

horizon. As a result mesons can leak through the tiny neck into the black hole and

dissociate.

1Above p > mqT) a new phase, where the D7 brane falls into the horizon, is thermodynamically
preferred. This phase exhibits both meson widths and finite quark density [127, 126, 41, 42].
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3.3 Calculation of the width

As an illustration, we now calculate the contributions from m = ±1 sectors to the

quark density and the widths of mesons in (3.4). We will only be interested in the

lowest order term in the a' expansion. The relevant spacetime effective action for the

D7-brane can be obtained from the worldsheet path integral [129]

SE[X'] = Jisk DX e-I[X]+P=1 da"-u-IB[le] (3.6)

where X = (J,, r, q) denotes collectively the worldsheet fields. I[X] is the worldsheet

action, which for our purpose can be taken to be the Nambu-Goto action for a string

propagating in (3.1)

I[X] = ddp th (3.7)

with hab = GMNOaXMObXN the induced metric on the worldsheet and GMN the

Euclidean version of the metric (3.1). The second term in the exponential of (3.6)

corresponds to turning on A, = -ip which gives in the Euclidean theory a nonzero

(quark) chemical potential p in the boundary YM theory. IB[XO] = fp=l du R' XOp'

is the boundary action which couples the worldsheet to Xo( ). We have suppressed

any dependence on spacetime and world sheet fermions. The integral (3.6) can be

evaluated using the saddle point approximation in each topological sector [130, 131],

i.e. SE = Sm=o + Sm=+ + Sm+ S=- + --- with Sm=0 = SDBI-

For m = ±1, (3.7) has a classical solution given by

7T=- , r = (p), 0=0, q =0, £= o (3.8)

where Xo is an arbitrary constant position vector and (p) is chosen so that ?(1) = rm

and f dT2 + !dI 2 c dp2 + p2dU2 . Eq. (3.8) represents the worldsheet of a string

connecting the tip of the brane to the horizon with the ± sign corresponding to

opposite orientations. It has a classical action 1± = /3m(T) where m(T) is the effective

quark mass introduced in (3.3). One can readily verify that (3.8) minimizes the action

and satisfies the right boundary conditions at the D7-brane. Note that there are only
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three bosonic zero modes in (3.8) 2, since it costs energy to move away from 0 = 0

and the worldsheet time a now coincides with T. With XO set to zero, Eq. (3.6) then

yields

Sm-1 = e- mP ep l-DV 3 = -n+ V3  (3.9)
gs

where the e±A arises from the second term in the exponential of (3.6), V3 is the

spatial volume from integrating over the three zero modes in (3.8), and the 1 factor

arises because we are evaluating the disk path integral. D is a real number com-

ing from Gaussian integration around the saddle point (3.8) (including worldsheet

fermions) whose sign we will fix from physical requirements. Identifying the Eu-

clidean action with PF(P, jp) where F(P, ,p) is the free energy, equation (3.9) leads to

a net quark charge density 2De-PmiT) sinh Op, which in turn requires that D should
98

be negative 3. It is natural to interpret Sm=±l as the contributions from quarks and

anti-quarks separately leading to a quark and antiquark number density given by

n± = e- Om elA (-D) from which we obtain the second equality in (3.9). Note

that n± oc 1/g, oc Nc since quarks come in an Nc-multiplet.

In our derivation of (3.9) we have assumed the embedding of the D7-brane is given

by that determined by the DBI action. This is justified for p < m(T) since the cor-

rection to the DBI action is exponentially small. When p > m (T) , the backreactions

from instantons become large and the embedding of Fig. 3-1 cannot be trusted.

The nonzero quark densities for nonzero p < mqT) have important implications

for the phase structure of the theory. As discussed in [42] (see also [41]) based on the

analysis of the DBI action (which corresponds to A = oc), at low temperature there is

a phase transition in chemical potential at which the net quark charge density jumps

from zero to a nonzero value. Our results strongly indicate this phase transition is

smoothed to a crossover at any finite value of A.

To find the widths of the mesons described by (3.4), we need to compute (3.6) to

2In contrast, the n = 0 sector has eight zero modes corresponding to all directions on the D7-

brane. There are also no fermionic zero modes here.
3 There are a few other indications that D should be negative. The instanton action also induces

a tadpole for the r component of the transverse fluctuations. One finds for D negative the tadpole
pulls the brane toward the horizon as required by physical consistency. Also only for D negative, do

the meson widths we calculated below have the correct sign.
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quadratic order in XO. For simplicity, we will restrict to the 1 = 0 mode on the S3 .

Near 0 = 0, the worldsheet action for q is given by R f dpd (0) 2 , which is free.

The path integral is then straightforward to compute and yields for Sm=±l

R2 Jd3xodrdT' (X(T, -o)GD( , U')X(T', FO)) (3.10)
2 'a'2 0=0

where GD (, r') = limp- l,p'-- OppGD(p, U, ; p ') with GD(p, o; p', a') the Dirichlet

propagator for a canonically normalized massless field on the unit disk and a = 7.

Note that (3.10) only depends on the value of XO at the tip of the brane and is nonlocal

in the Euclidean time direction.

Treating (3.10) as a small perturbation to (3.4), one can compute the corrections

to the Euclidean two-point function of the (meson) operator dual to XO in the bound-

ary YM theory, from which the corrections to the Lorentzian retarded function can

be found by analytic continuation. One finds that the poles of the retarded func-

tion now obtain a nonzero imaginary part, see Appendix ?? for a discussion of the

analytic structure of this retarded greens function. Alternatively one can directly

obtain the Lorentzian counterpart of (3.10) by analytically continuing the worldsheet

disk to Lorentzian signature with a = irl = i27rt/, which gives the part of Rindler

spacetime ds2 = dp2 - p2dq2 with p < 1. The Lorentzian spacetime effective action

can be obtained using the Schwinger-Keldysh contour (see Appendix ??), giving the

Lorentzian equation of motion 4

&,, ( / gG0 ¢ X ) - 7r±6(0) 2 dt' GR(r - l')x'(t') (3.11)

where GR(1 - r') = lim,1,_l op, pGR(p, n; p', ri) with GR(p, r; p', r') the retarded

propagator for a massless field in the Rindler spacetime with Dirichlet boundary

condition at p = 1. Fourier transforming (3.11) to momentum space and using

4Eq. (3.11) can also be obtained directly from the Euclidean action (3.10) using the following
general prescription: write down the equation of motion following from the Euclidean action; replace
the Euclidean worldsheet time by the Lorentzian worldsheet time and the Euclidean propagator by
the corresponding retarded propagator in the Lorentzian signature.
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f dl e""GRR(r) = iv, one finds that (3.5) is modified to

H(k, 1 = 0)0 - 3A (0)(0) = w2 p(0) (3.12)

with A = gV1 (-gtt). Writing the dispersion relation as w = W, - 'F, where n

denotes the excitation number, and using first order perturbation theory in n± we

find 5

7 )= 2 Ir n (0 = 0)12 n (3.13)

with 4,(0 = 0) eigenfunctions of (3.5) evaluated at the tip of the brane. Recall that

n± are thermal densities for quarks and antiquarks and are proportional to N,.

The ratio
r,(k) i C n( = O; f)>2

(3.14)
Fn(0) In (0 = 0; k = 0)12

can be evaluated numerically and the results are shown in Fig. 3-2. For large k, the

asymptotic form of the wave function, found in [124], can be used to show that the

width (3.14) scales like k2 for large k: Fr(k)/Fr(0) = R[T/M](k/M)2 + O(k) for

some function Rn [T/M]. Furthermore for temperatures T < M and k > one
Fn(k) 2(47r) 4  T

4 k2

finds the closed form expression F;(O) (n+2)(n+3/2) M 6 Fig. 3-2 has the interesting

feature that the width is roughly constant for small k, but turns up quadratically

around k/M = 0.52(Tdiss/T) 2, which is roughly the momentum at which the meson

approaches its limiting velocity v,(T). This is consistent with the conclusions based

on the velocity dependence of the screened quark potential found in [10]. Note that

the width as defined here is in the rest frame of the plasma, so the k2 behavior at

large k should be contrasted with the 1/k behavior of a relativistic decay width which

comes from the usual time-dilation argument.

The plots here also share some similarities with those in [126] for momentum-

dependence of meson widths obtained for p > mr  with A = oo where the relevant

D7 brane embedding resembles a long spike reaching down to the horizon.

5 We normalize the eigenfunctions 0n of as(, 1) as L f dO -g9 G (-gtt) I(k, ; 0)2 = 1

so that 'b, is dimensionless and has a smooth zero temperature limit. It depends on ratios of T, M

and k but not explicitly on A.
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Figure 3-2: The behavior of the width as a function of k for T/Tdiss = .99, .71, .3, .13
from left to right. The dashed lines are analytic results for large momenta.

q

Figure 3-3: Schematic diagrams of the relevant thermal processes contributing to
the meson width. For large A the first process is dominant, coming from the single
instanton sector.

3.4 Discussion

Our result (3.13) has a very simple physical interpretation as shown in the left plot

of Fig. 3-3, in which a meson breaks apart by colliding with a quark (or anti-quark)

in the thermal bath. There are also processes corresponding to a meson breaking up

by colliding with gluons in the thermal bath, shown in the right plot of Fig. 3-3. For

such a process to happen the gluon should have an energy above the binding energy

of the meson. The density of such gluons is thus suppressed by e-2m ) and should
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be described by an instanton and anti-instanton so that the resulting worldsheet has

trivial topology. We expect that contributions from such processes are also controlled

by the value of the meson wave function at the tip of the brane, and possibly have

similar growth with momentum.

Our method should be generic to any theory with a holographic dual. While

the precise value of the width is clearly model dependent, it is conceivable that the

momentum dependence may apply in a wider context including QCD. In particular,

our result highlights the contributions to quarkonium suppression from the collisions

with medium quarks and gluons in the large transverse momentum region in heavy

ion collisions.

Consider the effect of such a momentum scaling on J/ with M 3GeV. The

dissociation temperature from the gravity set-up is Tdiss = 0.122M m 370MeV in

fairly good agreement with lattice data [58, 59, 62, 64] for QCD Tds , 2.1Tc for Tc =

170MeV [42]. If we take the RHIC temperature of T = 250MeV (this corresponds

to the second curve from the left in Fig. 2) then a moving J/J's width will increase

by a factor of 2(10) at a momentum k = 6(13)GeV. When the width of a meson

approaches the spacing between different meson states, the meson can no longer be

considered as a well-defined quasi-particle. The momentum scaling thus implies a

maximal momentum beyond which the meson no longer exists. As an illustration,

suppose the width for the J/ in the QGP at zero momentum is about 200 MeV

(which is not known) then one expects a maximal momentum around 7 GeV.

Finally, we expect the worldsheet instantons found here to have many other ap-

plications to various aspects of flavor physics in AdS/CFT.
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Chapter 4

Small quark density analysis of the

D3/D7 model

4.1 Introduction

In this chapter we are interested in understanding the phase structure of a large Nc

gauge theory coupled to a small number Nf fundamental quarks at strong coupling

from gravity. More precisely, we consider A/ = 4 SYM theory with a gauge group

SU(Nc) coupled to Nf (K = 2) hypermultiplets in the fundamental representation of

SU(Ne), which in the limit of N, > Nf and strong 't Hooft coupling can be described

in terms of Nf probe D7-branes in the AdS5 x S5 geometry [100]1. Comparing to QCD,

the system has the following distinct features:

1. N, > Nf, while in QCD N, N Nf.

2. There are both fermionic and bosonic "quarks", which are charged under a

U(1)B baryon number symmetry.

3. The beta-function for gauge coupling is zero to leading order in Nf/Nc. The

scale of the system is set by the quark mass mq,.
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Despite many important differences from QCD, the system appears to be rather

interesting in its own right and provides a nice laboratory for studying strongly

coupled quark-gluon systems under extreme conditions. At zero baryon density

and finite temperature it has been used to model heavy quark mesons in QCD

[132, 106, 127, 128, 133, 134, 124]. At finite baryon density and zero temperatures

some novel dynamical features were recently found in [135, 136, 137, 138].

The phase diagram of the system at finite temperature T and baryon chemical

potential2 Aq can be worked out by studying possible configurations of D7-branes in

the background geometry (which is a black hole in AdS5 x S5 ) and has been studied

by various authors in [36, 39, 40, 41, 42, 43, 44, 45] 3. The results can be summarized

as follows (see Fig. 4-1):

1. There is a transition curve in the pq - T plane which intersects with the hori-

zontal axis at q = mq with mq the bare quark mass, and with the vertical axis

at some temperature T = Tda. Except for a small region near the vertical axis,

the transition curve is given by

Pq = m (T) (4.1)

where mq is the effective quark mass at finite temperature (it decreases with

temperature). In particular, the transition is second order [41] along the hor-

izontal axis (T = 0) and first order along the vertical axis (pq = 0) [36]. The

transition along the vertical axis at T = Td has been interpreted as a dissociation

transition for mesons [36, 38, 37].

2. The region inside the curve in the pq - T plane is described by a D7-brane

embedding which lies entirely outside the black hole (Minkowski-type embed-

ding), while the region outside the curve is described by a configuration in which

2In this chapter we will use the terms baryon charge density and quark charge density inter-
changeably without a factor 1/N, between them. In other words we take the U(1)B charge of a
quark (anti-quark) to be 1(-1).

3For related studies of the same system see [125, 139, 140] and for related studies of a confining
theory see [141, 141]
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part of the D7-branes falls into the black hole (black hole-type embedding). In

terms of the boundary gauge theory, the baryon number density is zero inside

the curve and becomes nonzero outside (except along the vertical axis q, where

the baryon density is always zero.)

T/Td

1.0 .. Tc

0.8 -

- X% 3rd order

0.6 -

0.4 -
ng =0

0.2 -

0.2 0.4 0.6 0.8 1.0

Figure 4-1: The phase diagram in the q, - T plane. The dashed line indicates
a continuous transition. The transition line lies exactly on the curve mT until a
critical temperature Tc very close (but not equal) to the dissociation temperature Td.

In this chapter we improve on the above description and show that the transition

along the curve (4.1) is a continuous (3rd order) phase transition which connects to

a first order line (near the vertical axis) through a tricritical point whose location we

identify precisely, see Fig .4-1.

While our conclusions of a continuous phase transition along (4.1) are consistent

with the analysis of [40] who noted a phase transition along the mT) line at zero

density they are different from a later discussion in [42] where a first order transition

was noted. In [42] the relation between charge density and temperature was studied

numerically near the transition line and a very small discontinuity in density was no-

ticed, due to a change in dominance between a Minkowski type embedding with zero

density and a black hole embedding. It appears to us that the discontinuity likely

has to do with the numerical accuracy of their calculation. We do not find a discon-
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tinuity in charge density along the transition line (see equation (4.2) below) 4. More

importantly, we have identified a clear physical reason for the phase transition, which

indicates that it should not be considered as an exchange of dominance between dif-

ferent embedding solutions, which was behind the reasoning of the conclusion in [42].

As observed in [143], for Minkowski type embedding at finite temperature, there are

worldsheet instanton corrections to the leading order Dirac-Born-Infeld (DBI) action

for the D7-branes. While for a Minkowski type embedding, particle excitations on

the D7-branes are not sensitive to the value of the chemical potential, the worldsheet

instantons which correspond to semi-classical strings stretched between D7-branes

and the black hole do. In particular, when the baryon chemical potential exceeds

the value (4.1), the instanton actions exponentially dominate over the DBI action in

the large 't Hooft coupling limit and induce an instability. The consequence of the

instability is that instantons "condense" and generate a genuine neck between the D7-

branes and the black hole. Thus beyond (4.1) the Minkowski-type embedding cannot

exist and should be replaced by a black hole type embedding.5 The transition also

has a simple interpretation in the gauge theory. As discussed in [143], the instantons

can be interpreted in the boundary gauge theory as thermal medium quarks. When

P/q exceeds the value of (4.1), the quarks have negative free energies and will condense

and generate a finite charge density, although it is not clear whether it is fermionic

quarks or bosonic quarks which are condensing.

More explicitly, we find along the critical line (4.1) (approaching it from above),

the baryon charge density and the chemical potential are related by

Pq- mT) = -B(T)E log e + A(T)E + O(&2) (4.2)

where e is the quark charge density (normalized to be dimensionless) and A(T), B(T)

are some functions of temperature. In the zero temperature limit, B(T) goes to

4We have obtained our results both analytically and numerically with agreement.
5 Note that this reasoning does not by itself imply that the transition should be continuous, it

only indicates that the transition is not an exchange of dominance as is normally the case for a first

order transition. Our explicit calculation shows that there is no jump in the baryon charge density

across the transition line in the infinite 't Hooft coupling limit.
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zero and A(T) goes to a finite constant, and one recovers the second transition at

T = 0 (found in [41]), where various exponents are given by their mean field values.

At any finite temperature, however, it is always the logarithmic term on RHS of (4.2)

that dominates at small enough densities and as a result the transition becomes third

order. The logarithmic behavior does not appear to have a mean field counterpart,

and thus this is an example of continuous phase transition from gravity which does

not obey the Landau-Ginzburg behavior. Such log terms however do appear to be a

common feature of the renormalization group analysis of condensed matter systems

at their upper critical dimension.

There also exists a temperature Tc at which B(Tc) = 0 and beyond which B(T) <

0. At Tc the transition is again second order. For T > Tc, the transition becomes

first order since for a given pq close to, but smaller than mqT), now there are two

black hole type embeddings with E - 0 in addition to the Minkowski type embedding.

Connecting a continuous critical line and a first order transition line, the point (T =

Tc, tq = mT) (T)) is thus a tricritical point. Again the critical behavior near the

tricritical point is not the same as that of a Landau-Ginzburg type effective theory.

While it is natural to connect the first transition near the tricritical point with

that near the vertical axis at pq = 0, our approximation in (4.2) which applies to

small densities does not extend all the way to q = 0. Thus that part of the phase

diagram remains a conjecture at the moment. Also numerical work at finite density

by other authors [42] suggest this should be the case, however a conclusive argument

remains to be made.

The phase diagram in Fig. 4-1 is for the A = oo limit, where the quark charge

density is identically zero inside the transition curve. At finite A, as pointed out

in [143], for any pUq 0 at any finite temperature, the baryon charge density is in

fact nonzero, given by a dilute Boltzmann gas of quarks. This immediately raises

the question whether the transition along (4.1) is an artifact of the infinite A limit

and will be smoothed into a crossover at any finite A. To settle this question requires

summing over the worldsheet instantons found in [143] and will be pursued in a

separate publication.
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The plan of the chapter is as follows. In section 4.2 we discuss the gravity de-

scription of the gauge theory system. In sec. 4.2.1 we review how to introduce a finite

baryon chemical potential. In sec. 4.2.2 we argue that the phase transition is driven

by string worldsheet instantons. In sec 4.3 we give a detailed analytically derivation

of equation (4.2) and verify it numerically. In sec. 4.4 we discuss the thermodynamics

of the system which can be gathered from equation (4.2). In the conclusion sec. 4.5

we discuss the connection of the critical point to the first order dissociation transition

at pq = 0. We also discuss what happens to the phase diagram at finite A.

4.2 Gravity description of the gauge theory

4.2.1 General setup - finite baryon chemical potential

The general setup has been described in Chapter 1 section 3, including the introduc-

tion of a chemical potential by turning on the gauge field on the D-brane. Our staring

point is the DBI action (1.15) which can be written explicitly in terms of y(p), Ao(p)

as

S = -NfT 7 / dS% p3q3/2 [fq (1+ (y')2) - a,2] (4.3)

where prime denotes derivative with respect to p, and we have introduced

a(p) = 27a'Ao . (4.4)

We will denote the integrand of (4.3) as L. Since (4.3) does not depend on a (only

a') we have a conserved quantity c:

0L a' p 3 q 3/ 2

E (4.5)Oa' (fq(1 + (y,)2 )_ a,2)

a'2 = fq(1+y' 2 ) . (4.6)
p 6q3 + 2
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From (1.26), we thus find the charge density in the boundary gauge theory is given

n, = NfT (27a') (2F 2 ) E (4.7)

where the factor 2-r2 comes from the volume of the three sphere.

Since we will be expanding in terms of small density later, it will be convenient

to scale coordinates and E so that they are dimensionless, i.e.

E Loe , a(p) -- Loa(p) (4.8)

where Lo is the location of the tip of the brane (1.20) before turning on a chemical

potential'. From now on, u, y, p, e, a(p) are all dimensionless. After the scaling (1.18)

become

U2 = y2 2 p2, q(u)- 1 + f U4 + 4 24
U0
Lo<1

-L0

The boundary conditions for y(p) and a(p) now are

L 2wa'
y(00) = Lo, a(oo) = Lo-

Lo Lo
(4.10)

and equation (1.21) becomes

m(T) =- Lo dy /fpq
q fp=0

(4.11)

To obtain the equation of motion for y it is convenient to perform a Legendre

transformation on (4.3) to express it in terms of E. The transformed action is

- ea' + = V/ 2 + p6 q 3 V/fq(1+ y 2) (4.12)

6One can also choose to normalize them using L (1.19) which is more directly related to the field
theory mass. But in our calculation below using Lo is slightly more convenient. Lo is fixed once
the ratio mq/T is given. Another alternative is to use the temperature but that will make the zero
temperature limit more subtle.

119

(4.9)

u, y, p -+ Lo(u, y, p),



which leads to equation of motion

y" I 3y' 8 py'- y 2 3y' 6 py'- y 1
S + + 4 0 1

1 + y2 p U2 u88 -18 2 + P6q3 p U2 1 + 47

When e = 0 (i.e. zero density), equation (4.13) becomes

y"_ 3y' 8 py' - Y
1 + y'2 p U2 U8 1-8 1

(4.13)

(4.14)

whose solution is given by yo(p) described earlier around equation (1.20). 7 In Fig. 4-2

we plot how Lo/L and r change with temperature for an embedding governed by

yo(P).

T/Td
0.4 0.6 0.8 1.0

Figure 4-2: Lo/L and r for the Minkowski solution (E = 0) as a function of T/Td.

4.2.2 Phase transition driven by string worldsheet instantons

For any value of pq (and T < Td), one can always have the following solution to

equations of motion (4.6) and (4.13) with

Ao = Pq = const, C = 0, y(p) = Yo(p)

for which (4.13) reduces to (4.14). This solution is somewhat peculiar, since it im-

plies that the quark charge density n, is zero even at a finite temperature and fi-

nite chemical potential pq. This appears to contradict with field theory expectation

7 As stated earlier we will only consider T < Td for which there is only one Minkowski embedding

solution.
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that the density for quark and anti-quark should be given (at low density) by the

Boltzmann distribution n± e-P(m qr  )  which gives a nonzero net charge density

n, = n+ -n_ -4 0 for a nonzero q,. There is in fact no contradiction, since (4.15) is

the result in the A = oc limit (supergravity limit) and in this limit due to (1.22),

n+ , nq e- VA, for p < mT). (4.16)

The charge density is thus exponentially small in the large A limit and not visible to

any order in the 1/4v1 (or a') expansion.

In [143], it was found for the embedding (4.15) there are non-perturbative open

string worldsheet instanton corrections to the DBI action (1.15) which accounts for

the exponentially small quark density. More explicitly, the instantons are given by

open strings stretching between the tip of the D7-branes and the black hole horizon

and winding around the Euclidean time direction, as indicated in the left plot of

Fig. 4-3. They are classified a winding number n. From the spacetime point of view,

these instantons generate tiny virtual necks which connect the tip of the branes to

the black hole horizon. The total Euclidean action for the D7-branes, which gives

the thermodynamic potential of the boundary gauge theory in the grand canonical

ensemble, can be written as

S = SDBI +-- D, exp (-In(m(mT) - sgn[n]puq)) +... (4.17)
n=-l,=2,...

where n sums over the instanton contributions, Dn arises from the worldsheet deter-

minant for each instantons , and - -denotes other perturbative 1/VXA (or a') correc-

tions. These string worldsheet instantons have a simple interpretation in the bound-

ary gauge theory as representing thermal medium quarks. In particular, the n = ±1

terms in (4.17) are precisely what one expects of a dilute Boltzmann gas of quarks

and anti-quarks. 9

8It also includes possible integrations over instanton moduli space.
9Higher n contributions should encode corrections due to Bose-Einstein or Fermi-Dirac statistics

and other corrections due to interactions.
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Due to (1.22), when p, < m ) the instanton contributions in (4.17) are exponen-

tially small in VX compared with the DBI action SDBI. But for

Pq > m( T) (4.18)

the instanton sum will be exponentially large compared with the DBI action and the

solution (4.15) can no longer be trusted. In particular, since the instanton contri-

butions are dominating, we expect them to "condense" and create a genuine neck

between the brane and the black hole. This implies in the range (4.18) a new solu-

tion to the DBI action with the branes going into the black hole should emerge, as

indicated in the right plot of Fig. 4-3. Thus in the infinite A limit we have a phase

transition at pq = mqT) where the Minkowski-type embedding (4.15) goes over to a

black-hole-type embedding. The transition also has a simple interpretation from the

gauge theory point of view; when pq satisfies (4.18), the quarks have negative free

energies and will thus condense and generate a finite charge density.

The possibility for such a phase transition has been studied before in [42, 40, 39],

where a single1 o black hole embedding solution was found for pq > mT) and it was

concluded in [42] that the transition was first order. One reason for the conclusion

was that it appeared that the Minkowski embedding solution (4.15) was still valid for

Iq > mq ) and thus the transition appeared to be a change of dominance between

different solutions. As we discussed above, the Minkowski embedding solution should

be replaced by a black hole embedding solution in the parameter region (4.18). Thus

if there is only a single black hole embedding solution for pq > m7' ) the transition

is most likely to be continuous. Indeed we will show in section 4.4, the transition

is third order for temperature not too high, but then becomes first order through a

tricritical point.11

10 at a temperature not too high
"Beyond the tricritical point it becomes possible to have multiple black hole embedding solutions

for a given Pq. See section 4.4.
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Figure 4-3: Left plot: For Minkowski type embedding (4.15), there exist worldsheet

instantons which correspond to semi-classical strings stretching between the tip of

the D7-branes to the black hole horizon and winding around the Euclidean time

direction represented as the angle on the inset disk. The radial direction on the disk

is the same as the radial direction in the y - p plane. Right plot: for ,q > mT

instantons dominate over the DBI contributions and will condense to form a genuine

neck between the branes and the horizon, i.e. one should have a black hole type

embedding.

4.2.3 Black hole embedding at finite density

As discussed in last subsection, for q m!T) we expect a black hole type embedding

for D7-branes in the gravity side and a nonzero quark charge density on the gauge

theory side. That the quark density for a black hole type embedding should be zero

can be seen as follows. For a black hole type embedding, one should impose an

additional boundary condition Ao = 0 for the gauge field at the horizon in order to

ensure the regularity of the solution. From (1.25) this implies that Ao should evolve

nontrivially from the boundary to the horizon, i.e. there is a nontrivial electric field

in the radial direction on the branes, which from (1.26) in turn implies n, # 0 (and

thus Ec 0). Thus we should now consider equation (4.13) with E - 0. Conversely it

has also been argued previously in [139] that for any c f 0, only black hole type of

embeddings are allowed since for a Minkowski type embedding it is not possible to

have a non-singular distribution of a finite charge density on the branes12 .

Let us now consider the boundary conditions for y(p) at the horizon for a black

hole type embedding. We will denote the point that the brane enters the horizon p,

12See also [41] for a discussion at zero temperature
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and y, - Y(Pc). Note that

y2 + p = U (4.19)

and in order for the the third term in (4.13) to be nonsingular at the horizon, we will

also need that

y'(Pc) = Yc (4.20)
Pc

i.e. the brane should be perpendicular to the horizon. The precise of value of pc is

determined by the boundary condition (4.10).

For regularity we will also require the gauge potential vanish at the horizon 13 ,

i.e. a(pc) = 0. From equation (4.6), we can express the chemical potential in terms

of density c as
Lo f q(1 + y 2) (4.21)p, = -- dp (4.21)

27ra'f p ./E2 + p6q3

The main technical task of the chapter is to determine the behavior of , in the limit

of small E, which will be carried out in next section. Once the expansion of q in terms

of E is known, we will be able to determine the order of the phase transition and other

thermodynamic properties of the system. This will be carried out in section 4.4.

4.3 Small density expansion of the chemical po-

tential

In this section we study the behavior of (4.21) in the small e limit. Expanding (4.21)

in small E is somewhat complicated since the solution y(p) depends nontrivially on

E. The expansion of y(p) in terms of small e is also involved; one cannot treat the

e-dependent term in (4.13) as a small perturbation of (4.14) uniformly for all values

of p since the term becomes of 0(1) for sufficiently small p (when p6q3  (E2)).

The main result of the section is equation (4.45). Readers who are not interested

in the detailed derivation can go directly to (4.45) and subsequent discussions.

lOtherwise the one-form Aodt will be singular at the horizon since the norm for 2 vanishes there.
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4.3.1 Expansion of the solution

Since the perturbation in e is not uniform in p one needs to divide the p axis into

different regions, treating the perturbations in each region separately, and matching

them together at the end. For our purpose, it turns out enough to split the p-axis

into two regions:

1
* Inner p = E2 for a, < a < A

* Outer PA < p < 00

where
1 1

Pc = 62 c, P = PA A . (4.22)

The reason for the choice of scaling in the inner region can be seen by letting p = Eca

in (4.13) and one finds that for e = 1 a nontrivial scaling limit exists, which results

differential equation in (4.29) below. Also see Appendix B for a discussion of the

T = 0 solution where this scaling is evident.

We will consider the limit

E -+ 0, a = finite, A -- oo, PA -+ 0. (4.23)

We expand the solution in the inner and outer regions as14

yz(a) = Yo() + Y1() + 2
2 (a) +.. (4.24)

Yo(P) = Yo(P) + E1y() + 2 y2 (p) + -... . (4.25)

Plugging (4.24) and (4.25) respectively into (4.13) and expanding the equation in E,

we obtain a series of differential equations for various functions in (4.24) and (4.25).

These equations are rather complicated and not exactly solvable. We will work out

the behavior of Yo(a), Y1(a) in the large a limit and yo(P), Y1(P) in the small p limit

14 While it is not a priori obvious the expansion parameter should be e and not some other power,
the expansions below do yield consistent results.
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and match them in the overlapping region. Fortunately it turns out this is enough to

find the leading expansion of Auq in the small e limit analytically.

Let us first examine the outer region. yo is simply the solution to (4.14) which

describes the embedding at zero density. It satisfies the boundary condition (4.10) at

the boundary and near p = 0 has the following expansion

p2 8(5 + 5p8 - 3716)4
o(P) = 1 1 - 3 1 6 )4 + O(p6) . (4.26)

-8 - 1 3(1 - 718)3

yi satisfies a homogeneous linear equation obtained by linearizing (4.14). For small

p it has an expansion,

yj = b_lp- 2 + bo log p + b, + O(p) (4.27)

where bl 1 and bl are integration constants and

28b1
bo = - 28b_ . (4.28)

(1 - q4)2(1 + 74)
2

Note that the first two terms diverge in the p -- 0 limit. The coefficient b-1 of the

quadratically divergent term will be fixed later by matching with the inner solution.

bl should be determined by requiring yi (p - oc) - 0 since yo already satisfies the

required boundary condition (4.10) there.

Now we look at the inner region. Yo(u) satisfies a second order non-linear differ-

ential equation (primes below denotes derivative w.r.t. a)

yo= +03 1+ o y -o + - 0 (4.29)
Y2 Y 2 y08 l-8 _ 1 Y 1 0 Yo - -

From (4.19) and (4.20) the boundary condition at the horizon is

Yo(co) = r, Yo(cro) = 7 (4.30)
70
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where ua is an integration constant. ua is the zero-th order term in the expansion in

e of ac = pc/lE/ 2 (where again it is a non trivial fact that this expansion begins at

0(1) in E)

ac = ao + EU a + -- (4.31)

and can be determined by the boundary condition at infinity,

Yo(a) -- 1 as a -+ oo . (4.32)

The above condition is fixed by comparing with the leading term in (4.26). At large

a, Yo has the expansion

1 -2 4(-3 + 5774 )  -4Yo(a) = 1- 1 a2 + a(-
2(1 + 714)3/2 4(-1+ 74)(1 + r 4 )4

n4 (27 - 1317]4 + 15378 - 1057712) 6

24(-1 + 4) 2(1 + 774 ) 13/ 2

Note that the coefficient before a -8 is an integration constant which can be fixed

by (4.30). We will not need its value below.

Yl ( a) satisfies a second order linear differential equation with coefficients that

depend on Yo(a). It is not homogeneous and rather complicated. We will not write

it here. For large a we find the expansion

Y1 () = a_1U2 + ao log a + al + O(c-1) (4.34)

where al is an integration constant (the other integration constant presumably ap-

pears at higher order in the expansion) and

r18 141sa- a = 1 4, ao =7 (4.35)

Note the first two terms of (4.34) are divergent as a -4 oc. The constant al can be

determined by matching with the solution of the outer region. The other boundary

condition is determined by the regularity condition (4.19-4.20) (expanded to this
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order) at the horizon, this gives only one boundary condition on Y and its derivative

because the first order correction al in (4.31) is a free parameter. This parameter o

would then be determined by the resulting solution.

We will now determine various integration constants above by matching the so-
1

lutions in the inner and outer regions around PA. Note given the relation p = E2a,

the E expansion in the outer region is reshuffled compared to that in the inner region.

Comparing the first term in (4.27) to the second term of (4.33) we find that

1 141 8

b_ = - I bo - 1 (4.36)2(1+ 4)3/2 (1 - 4)2( + 4)(4.36)

where we have used (4.28) in obtaining the second equation. From (4.36) and (4.35)

we see that the logarithmic term in (4.27) precisely match with that in (4.34); this

is a nontrivial self-consistency check of our expansion. It now remains to match

the constant terms in (4.27) and (4.34). Given the difference in the argument of

logarithmic term in (4.27) and (4.34), we thus find that

1 79"
a = b + -bologE = b, + ,log E . (4.37)

2 (1 - 4)2(1 4)7

As remarked below (4.28), bl is determined by the boundary condition yl (oo) = 0 and

since the equation for yl is independent of e, so is b1.15 Thus we see from (4.37) that

the integration constant al for inner solution Y now contains a log e piece!16 This

will be important in our determination of the leading order behavior for pq below.

As a check on our above results we can make sure that the exact (numerical)

solution at small densities matches well onto our expansions in the two different

regions. This is demonstrated in Fig. (4-4). The agreement is very precise suggesting

the two regions we have used are sufficient. Higher order corrections in the two regions

would appear as divergences toward the exact solution.

1 5Determining bl requires solving the two-point boundary value problem for yi.
16 This in turn implies that 1 in (4.31) also contains log e.
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Figure 4-4: The exact embeddings for E = 10 - 11, 10-9, 10- 7 shown in green. To

clearly show the two regions we have plotted y(p) as a function of log(p). These are

compared to the zeroth order inner (solid) and outer (dashed) solutions. The inner

solution Yo(a) is a function of a = pE-1/2 so for the various fixed densities the curve

is simply shifted along the log(p) axis. The agreement between the three curves on

the overlapping regions is very precise.

4.3.2 Expansion of the chemical potential

We now look at the small e expansion of (4.21). We will give the main steps and final

results, leaving further details to Appendix D.

The pq integral (4.21) can be split into integrals over the inner and outer regions

IPA 

I=

Pq = (--)+ ( =-)z ++o. 
(4.38)

Pc 

PA

pz and po can now be expanded in terms of c using (4.24) and (4.25). The outer

region contribution po starts with order E, i.e.

o = E /() + O(e2) (4.39)

and for i) only yo is needed. Using the small p expansion of yo (4.26) we find that

the integral for p() contains a quadratic and a logarithmic divergent term in the limit
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PA - 0,

(1) Lo 1 - r4 2T4(3 - 94 + 3r1 )S2(1- 4 2 ( - r 4 4 log(pA) + Ko(7, L/Lo) (4.40)
27a' 2(17 4 ) 2p2 (1 - q4)(1 + 14)44

where Ko denotes the part which remains finite in the limit PA -> 0 Ko, whose

explicit expression is given in Appendix D, depends on the full solution yo(p) and can

only be evaluated numerically.

The inner region contribution also contains an 0(1) piece

(0) (1(4.41)
- + (4.41)Z "'

with (recall that a = E 2p)

L YA 4 _ 74
P = da Y (') o] 4  = ('" -- ( " - ) (4.42)2 a y 0 + 4 A

where in the second equality we have separated the expression into two pieces by

splitting the integral. Now changing the integration variable of the first integral into

Yo and comparing it with (4.11), we find that it is precisely m q). The second term

can be evaluated in power series of 1/A by using the expression (4.33) for Yo at large

a, leading to
(o) (T) _ Lo (1 - 474) - 4)
I q 2a' 2(1+ 4)2A2 +  -4) (4.43)

To evaluate pz1) one also needs Y1. Using the expansion (4.34) of Y and Y1 for large

a, we find that the integral for p(1) contains a logarithmic divergence (in the A - oo

limit) from the upper end of the integral and can be written as

(1) Lo (2r/4(3 - q4 + 3r 8) 7T8 log E LLo)
S 2a (1- r 4)(1 + r4)4 (1- K)(1 + roq4) 4

(4.44)

Note that in the finite part we have isolated a piece proportional to log e which comes

from the integration constant al of Y through equation (4.37) (see Appendix D for

details). Kz is finite and independent of E. Its explicit expression is given in D and
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can only be evaluated numerically.

Now adding (4.40) and (4.43), (4.44) together we find that the second term

in (4.43) precisely cancels the quadratic divergence in (4.40) and the logarithmic

divergence in (4.44) precisely cancels with that in (4.40), leaving a finite piece pro-

portional to e log e. We thus find that

P= m T ) - B(T)e log c + A(T)e + O(E2) (4.45)

where

Lo ]4 (3 - 8r 4 + 3r 8 )  LoB(T) = BI(T) + B 2(T) = ( + A(T) = (Ko + K)2wa' (1 - q4)(1 + q4)4 2ira'
(4.46)

and

SL 0 94(3 - 4 + 3]8) Lo 78
Bi (T) = B2(T) = (4.47)

27ra' (1 - r4)(1 + q4)4' 2a' (1 - 774 )(1 +

Note that in writing (4.46) and (4.47) we have emphasized that the coefficient of

e log e receives contributions from two different sources; B 1 from cancellation of the

logarithmic divergence and B 2 from the finite piece in (4.44). The expressions for Ko

and Kz are given in Appendix D, which can only be evaluated numerically. We also

note that in the E -- 0 limit it is the E log E which dominates and whose coefficient we

have determined exactly. Note that Lo, which gives of the location of the tip of the

D7-branes in the absence of a charged density (1.20), is also temperature-dependent.

Again we can use exact (numerical) solutions for small densities to check our

analysis. The log e dependence is not easy to see, so we must push our analysis to

very small densities with a wide range of densities. Then the best way to extract the

behavior is to plot the function x(c) defined by,

dlog(p - m T))
X(E) d (4.48)

dlog E
A(T) - B(T)(log E + 1)

(4.49)A(T) - B(T) log E
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Figure 4-5: Plots of the exponent x(c) as defined in (4.48), for various values of the
temperature. At zero temperature the exponent is simply 1 and all these curves
should eventually limit to 1 at small enough densities. The slow running of this
exponent is a consequence of the log E behavior of the chemical potential. The dashed
line is a (1 parameter) fit to the numerical curve using (4.49).

where for the last equality we have used our derived small E expression (4.45). We can

fit this later form to the numerical result and find the ratio A(T)/B(T), after which

we can use the overall normalization of 1pq - mT) to fix A(T) and B(T) separately.

This agreement in the form of the solution is shown in Fig. 4-5.

4.3.3 Behavior of B(T) and A(T)

Let us now examine the behavior of B(T) and A(T) as we vary T. In the T -- 0 (i.e.

77 0) limit, from (4.46)

l3

mq(T) = mq, A(T) = mq 2 , B(T) = 0 (4.50)

which reduces to the correct zero temperature behavior (C.4) in Appendix C. In the

above equation r, is a number defined by the integral r, = fo dx/(x 6 +1). For general

temperature T, the behavior of A(T), B(T) and mqT) are plotted in Fig. 4-6. Note
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Figure 4-6: The quantities in (4.45) are plotted as a function of T/Td. The dots
represent the values of A(T) and B(T) obtained through fitting the numerical results
to the form of the small density expansion. The actual curves come from the results
of section III (which also require numerics to calculate A(T).) The consistency is
gratifying.

that in obtaining Fig. 4-6 we have converted the dependence on r into T and also the

temperature dependence of Lo using the relations demonstrated in Fig. 4-2.

Note that B(T) is positive at small temperature and becomes negative for

1 4

r > 7rc, c = (3(4 - V/)) 1 ,  i.e. T > Tc, T - .982Td, B(Tc) = )4.51)

Also note that A(T) becomes negative at some temperature higher than Tc. Further-

more it can be shown that A(T) diverges at a temperature Tm (Tm1.008Td), beyond

which Minkowski embedding no longer exists; clearly our analysis does not apply

since there is no zero density solution about which to perturb in c.

4.4 Thermodynamics

From our small E analysis we can now extract some important aspects of the thermo-

dynamics of this gauge theory. We will mostly work in the grand canonical ensemble,

where we fix T, pq and use the pressure P(pq, T) as the appropriate thermodynamic
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potential.

4.4.1 A third order phase transition for 0 < T < T,

As noted above B(T) > 0 for 0 < T < Tc. In this case (4.45) may be inverted to find

E(pq) which is then a single-valued function of ,q for pq > mT). In other words there

is only a single black hole embedding for a given fixed pq > mqT). Thus for B(T) > 0

we conclude there is a continuous phase transition at P, = mT) For pq < T)we

have a single Minkowski embedding with e = 0.

Examining derivatives of the pressure on either side of m T) one finds for pq <
(T)

P(T,) = Po(T), n, O = 0, = 0, for all n > 1 (4.52)

(T)
and for pq > mq ), we find

_2P Op -1 1
o2 Dc A - B - B log (4.53)

and

3 (4.54)
& 82 E (A - B - BlogC)2

In the limit e -- 0, -- 0 and --+ oo. This implies that there is a third order

phase transition since the third derivative of the pressure is discontinuous across the

phase boundary. Also since > 0, the system is thermodynamically stable.

Note that exactly for B(T) = 0 the transition becomes second order, since (4.53)

is then discontinuous across the phase boundary. This happens at two places, the

first is the zero temperature critical point which was studied in [41]. The second is a
(T=Tc)

new critical point at (T, p) = (T, Pc) where T, is given in (4.51) and p, = mT

.0418mq. We will discuss the phase structure around this point in the next subsection.

In Fig. (4-1) we display the phase diagram in the pq - T plane, where this 3rd

order phase transition is the predominant feature.

134



4.4.2 First order phase transition for T > Tc

Beyond the critical point T > Tc we find that B(T) becomes negative. From (4.53)

this implies that 2P becomes negative in the limit of small E indicating a thermody-

namic instability.

To see what happens beyond Tc, let us plot /pq at fixed T as a function of e. As

indicated in the left plot of Fig. 4-7 the curve drops below p, = m T) . Since we expect

the curve will go up again for sufficiently large density, there must be at least one

minimum somewhere, which we call will Pmin. This minimum satisfies Pmin < mT).

That is there will be multiple black hole embeddings for a fixed pq > Pmin and which

appear as a function of pq before one reaches pq = mqT). This allows for the possibility

of a first order phase transition from the Minkowski embedding with e = 0 to a black

hole embedding with e = ed(T) # 0 for some chemical potential pq = Id(T) between

Pmin < Pd < mqT ) . In this way one circumvents the thermodynamically unstable

solution.

q (-mq
(
7)

0.0004

0.0003 4. x 10-8

0.0002 ,'- 2. x 10-8
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-0. -0.06W05 " 0.00005- - - - 0.01 o 

-

.0 00 0.003 0.004 -2. x 10
8

-0.0001

-4x 10-"
-0.0002

Figure 4-7: (left) The quark chemical potential as a function of quark density, for
three temperatures T/Td = .980, .995, .996. The first (long dashes) is below T, and
has no minimum. For the other two we have indicated the chemical potential at which
the transition occurs. (right) The grand potential density (related to the pressure by
P = -g) as a function of chemical potential for the same temperatures as the left
figure.

Although this discussion was quite general for T > Tc, we can make it more explicit

by considering temperatures IT - TI < T, then the minimum and the other black

hole embedding still lie at small enough values of E that (4.45) applies with only small

corrections. The left plot of Fig. 4-7 gives the behavior of the chemical potential as
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a function of quark density near Tc and the right plot of Fig. (4-7) demonstrates the

swallow tail behavior of the pressure for this first order transition. Using (4.45), the

first order transition point Ad and the discontinuity in the density Ed can be expressed

in terms of the functions A(T) and B(T) as

(A - B/2 
MT

Ed(T) exp B/2(T - mT) 2 Bed(T)

and very close to T, we can expand A(T) and B(T)

(4.55)

A = Ac + O(T - T), B = -B'(T - T ) + O(T - TC) 2

to find

de(T) exp( B A- T) )= exp(-.12Td/(T - T))

In Fig. (4-8) we plot Ed and Ld as functions of T near Tc using (4.55).

(4.56)

(4.57)

T/Td

0.995

0.990

0.985

0.980

)003 -0.0001 0. 0.0001 q q 0.001 0.002 0.003 0.

Figure 4-8: (left) The first order phase transition line (solid) close to the critical

point, in the (IPq - mT)) - T plane. Also shown (dashed) is the region where mul-
tiple embeddings are available at fixed pq. (right) The behavior of Ed(T) above the
critical temperature The shaded region represents the onset of a thermodynamic in-
stability. In the canonical ensemble this region is circumvent as usual by the Maxwell
construction.

To conclude this section we note that our analysis near Tc relies on the small

density behavior (4.45). An implicit assumption in our discussion is that various

curves in the left plot of Fig. 4-7 does not turn back down at larger densities. While

our small e analysis itself does not rule out this possibility, we believe it does not
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happen for temperature sufficiently close to Tc from our own numerical study of

embedding solutions and from the finite density analysis of [139].17 Our analysis of

the first order phase transition cannot be trusted for temperatures too high above

Tc - since then the density at the first order phase transition will lie out of the

range of applicability of (4.45). Note that (4.45) is likely to break down much earlier

than simply when E - 1. The reason for this is that at some temperature multiple

embeddings for a fixed density should appear, something which our analysis has not

allowed for. This is clearly the case (as discussed earlier) for zero density, where there

exists a temperature Tbh < Td above which multiple embeddings are allowed (the

original Minkowski embedding and two new black hole embeddings). 18 One expects

this to be the case for small densities. Indeed these new embeddings will be continuous

deformations of black hole embeddings away from zero density, so our starting point

(Minkowski embeddings) is not good for seeing these multiple embeddings. As we

will discuss later the reason for this break down is closely related to how this line of

first order phase transition connects to the zero density dissociation transition.

4.5 Conclusions and Discussions

In this chapter we showed that in the plane of temperature v.s. baryon chemical

potential there is a critical line of third order phase transition which ends at a tri-

critical point after which the transition becomes first order. The critical behavior at

the critical line is given by (4.45) which contains an intriguing logarithmic behavior.

It would be interesting to have a microscopic understanding of this behavior, and

more generally the structure of the whole phase diagram. In particular, it would be

interesting to see whether the logarithmic behavior is related to the spiral behavior

observed in [36, 37] at zero chemical potential. Below we discuss in more detail two

open issues of our investigation.

17 At some higher temperature, this could happen.
1sNote that Tbh = 0.9975Td is far enough away from Tc = .982Td that one can trust that multiple

embeddings do not appear then.
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4.5.1 Connection to the dissociation transition

To complete the phase diagram, we need to address whether the first order phase

transition slightly above T, discussed in sec. 4.4.2 connects to the first order phase

transition along the vertical axis at T = Td and pq = 0, and if yes, how. Note that

such a conclusion is suggested by numerical work in [40] and is consistent with the

numerical work in [42].

For convenience of discussion let us first briefly review some important aspects

of the transition at pq = 0. At a low temperature there is only a single Minkowski

embedding. As one increases T to a temperature Tbh, two new black hole embeddings

appear and when one further increases the temperature to Td > Tbh = 0.997Td,

a first order phase transition occurs, above which one of the black hole embedding

thermodynamically dominates over the Minkowski embedding. For all the embedding

solutions, the baryon density is zero. Thus the discontinuity cd(T) at the phase

transition is trivially zero.

We now return to the question at hand, which unfortunately our analysis for small

density cannot directly answer. To see this, if we were to extrapolate our analysis

of the 1st order phase transition line (the solid line in the left figure of Fig. 4-8),

we find that the line pd(T) crosses the pq = 0 axis at some temperature. This

temperature is slightly higher than Td and hence would seem to give an estimate of

Td itself, subject to c corrections. This small difference from Td might not seem like

a problem, and one might guess we have a nice description of the physics of the zero

density dissociation transition. However it is qualitatively wrong, since we also find

Ed(T) grows monotonically along this line. This is qualitatively wrong because on the

axis uq = 0, the phase transition should occur at zero density. This demonstrates

that (4.45) must have broken down quite drastically somewhere before pd(T) = 0 is

reached.

We will now consider the simplest possibility, i.e. assuming that 1st order tran-

sition line from T, does smoothly connect with the transition at zero pLq. For this

to happen the transition density Ed(T) should first increase as we increase T from
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mT) m(T) m(T)

E

Figure 4-9: The qualitative behavior of ,q(E) at different temperatures in order for the
1st order phase transition near Tc discussed in last section to connect to the transition
at pq = 0, E = 0. Left plot: for a temperature T slightly above Tc. Middle plot: for a
temperature T above T, and below Tbh. Right plot: for T > Tbh.

Tc (consistent with the behavior derived from (4.45)) and then decrease to zero as

Td is approached. In turn this implies that the minimum of the curve pq(c) should

approach the e = 0 axis as the temperature is increased to T = Tbh. In Fig.4-9 we plot

qualitatively, at different temperatures, what is required of the curve ,q(E) for this

to happen. In particular, the minimum of the curve will hit the origin C = -q = 0,

exactly at the temperature T = Tbh, where two black hole embeddings appear at zero

density. For temperatures above T > Tbh moving towards T = Td the curve pq() is

similar to that at T = Tbh. However now the point at which the 1st order phase tran-

sition occurs (which we have called (pd, Ed)) should move towards the origin. Note

that plots of form of Fig. 4-9 were found numerically in [39].

An important feature of the last two plots in Fig.4-9 is that when the temperature

is sufficiently high, p can be multi-valued for a fixed e. For T > Tbh, this is consistent

with our expectation that there should be three black hole embeddings at small e, two

from small density perturbations of the black hole embeddings at zero density one

from the small perturbation of the Minkowski embedding which we discussed earlier

in this paper. We have done some preliminary study of the behavior of the p - E

plot near the origin for T - Tbh from perturbing two black hole embeddings at zero

density and confirmed the qualitative behavior presented in the last two plots. But

the extrapolation to the branch we studied in this paper requires studying the finite

density solution and that part of the curve is pure speculation at the moment. We

leave the full exploration to future work.

Since, for high enough temperatures, there are multiple embeddings with different
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chemical potentials and the same density, if we examine the thermodynamics in the

canonical ensemble, there will be an interesting set of phase transitions unrelated to

the one identified above that can occur between embeddings with different chemical

potentials, but the same density. These phase transitions are quite strange, and as

discussed in [139] occur between solutions which are potential thermodynamically un-

stable. These transitions should involve embeddings with chemical potentials higher

than that at which the 1st order phase transition in the grand canonical ensemble

occurs. Hence such transitions will be hidden from the point of view of the grand

canonical ensemble. Since thermodynamics should be consistent in the two different

ensembles one would expect that a proper consideration of the canonical ensemble

using for example, the Maxwell construction of inhomogeneous phases, should remove

these differences.

4.5.2 Transition at finite A

T/Td

1.0 Tc

0.8 -

0.6 -
0 cross over

0.4

nq =e- (mq -p)

0.2 -" .

0.2 0.4 0.6 0.8 1.0

Figure 4-10: Possible phase diagram at finite A. The lower region consists of a
Boltzmann gas of quarks and anti-quarks. The third order phase transition of Fig. 4-
1 is potentially smoothed to a cross over.

Another important question is what could happen to the phase diagram at finite
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't Hooft coupling A. At finite A, as pointed out in [143] and commented upon earlier

in [42], for any pq, 0 at any finite temperature, the baryon charge density is in fact

nonzero, given by a dilute Boltzmann gas of quarks. Thus in the phase diagram Fig. 4-

1, the region below the critical line also has a finite density. This is of course expected

for a deconfined plasma. In particular the value of quark density at the transition line

should be nonzero and continuous at finite A. This immediately raises the possibility

whether the transition is smoothed into a crossover at any finite A. To have a definite

answer to this question requires summing over the instanton contributions in (4.17)

for all n and then taking the limit pq --- mT) in the resulting expression. This is

certainly beyond the scope of the current paper. In Fig 4-10 we plot qualitatively the

structure of the phase diagram if the transition is smoothed out.

Here we mention another indirect indication that the transition might be smoothed

out. In [143] we have argued that at any finite A, in the region below the transition

line in the phase diagram, the mesons have a width proportional to the sum of quark

and anti-quark densities,

327r 3V/
S N= m I J(O = 0)12 (n+ + n) . (4.58)

where n± oc exp(-(m T)+ pq)/T) and are exponentially small in V/A as argued in

sec.4.2.2. (90 = 0) is the meson wave function at the tip of the brane. We have also

performed [144] a calculation of the meson width on the critical line from above and

found at small densities exactly the same answer as (4.58).19 Note that one of the

key signatures of the phase transition at zero density (in fact potentially the defining

signature) is the spectrum of mesons (quark and anti-quark bound states)[38, 37].

Here we find the meson widths and thus the spectrum are continuous across the

critical line indicating that the transition might be smoothed out.

19The meson widths at small density have also been studied numerically in [126].
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Appendix A

General discussion of brane

embedding and fluctuations

In this appendix we present a general discussion of brane embedding in a curved

spacetime (in the absence of fluxes) and its small fluctuations. We then specialize to

the case of D7-branes embedded in the AdS5 x S 5 black hole geometry.

A.1 General discussion

Consider a p + 1-dimensional brane in a D-dimensional target space whose action is

SDp = -fp dP+1 -dethij , (A.1)

where (2,i = 0 , 1 ,... ,p denote the worldvolume coordinates and hij is the induced

metric in the worldvolume

p =0,1,...,D- 1. (A.2)

Suppose that Xo((') solves the equations of motion following from (A.1), thus de-

scribing an embedding of the brane in the target spacetime. We are interested in
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understanding the behavior of small fluctuations around Xo. For this purpose, let

X ) = Xo ( ) + 6Xt( 2i). (A.3)

The action for 6X can then be obtained straightforwardly from (A.1). The resulting

action and equations of motion for 6X" are, however, not geometrically transparent.

This is due to the fact that X( 'i) is the difference between coordinates and thus

does not have good properties under coordinate transformations. A more convenient

way to parameterize 6Xt(() is to use the exponential map to express it in terms of

a vector in the tangent space at XoL, as we now describe. (Such techniques have also

been used in the calculation of string worldsheet beta functions [114].) Given a vector

T", we shoot out geodesics of unit affine parameter from Xo with tangent T". The

end point of such a geodesic is identified with X" + 6X 1. Such a map should be

one-to-one within a small neighborhood of X0 . To second order in r one may solve

the geodesic differential equation, finding

1
6XI = 7/" - p(X 0)rP +... . (A.4)

Note that the appearance of F is consistent with the coordinate dependence of 6X;

they can both be shown to have the same variation under a coordinate transformation.

Using the parametrization (A.4), we find that

hij = Gp(Xo + 6X)01(x' + 6X'")d(X" + 6X") (A.5)

= + 2G,,vA VJ)r" -- Gj,,VijqtVJ?'  - o lA' Rulpo

with

hij = G,,(Xo)OiXoOjX = A'Aj,, V = AfV , A' = O X . (A.6)

The simplest way to find (A.5) is to use the Riemann Normal coordinates at Xo in

which the Christoffel symbols vanish. hij is the induced metric in the worldvolume
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theory and below indices i, j will be raised and lowered by h. To quadratic order in

rl we have

-dethj = /-deth 1 + AiVj" + V77"Vi, - (AV )(AV)

+ (Az•Vi +")2 77a i al . (A.7)

We now take r" to be orthogonal to the brane worldvolume (which corresponds to

choosing the static gauge), i.e.

rl = Xsns(Xo), s = 1,..., D -p - 1, (A.8)

where n,(Xo) are unit vectors orthogonal to the worldvolume direction. Note that A

and n" together span the full tangent space at Xo. i.e.

An,, = O, n,,n = 6st, "Aj = , (A.9)

and

A" = A A + n t ns, . (A.10)

We now introduce

Ksij = A Vns,, Ks = Ksijhj, it = nVintv = nmAV V.nt, (A.11)

Kij is the extrinsic curvature of the brane in the s-direction, and is symmetric in i, j.

(This follows from the fact that a surface orthogonal to n" satisfies V [,nt = - vs nI

for some one-form v'. Note also that Ksij can be written as Kij = -L,,hij, where

L is the Lie derivative along n-direction.) U.t , which is antisymmetric in s, t, is an

SO(D - 1 - p) connection for the transverse directions. Note that the choice of nt

(and thus X,) is not unique. One can choose a different set of basis vectors by making

an arbitrary local SO(D - 1 - p) transformation. Thus X, transforms as a vector

under the SO(D - 1-p) "gauge" symmetry and Ut transform as a connection. Note

145



that this gauge symmetry is not dynamical. With these definitions we can now write

Vjir = (DiXs)nr, + KsjX sA I (A.12)

where

DiXs = oiXs + UistXt (A.13)

is an SO(D - p - 1) covariant derivative. Using (A.12) in (A.7), we now find that

SDp - -I-p dp+1 /-dethi(I + XsKs + DiXDXs + XsXt (-KsijKt +
2

RsijthiJ + KKt))

(A.14)

with Rsijt= nst = Ai Rap. For Xo to satisfy the equations of motion, the terms in

(A.14) that are linear in the X's have to vanish. This implies that

Ks = KsijhiJ = 0, s= 1,...,D-p-1 .

These are the embedding equations for the background. Thus, the action (A.14) for

the small fluctuations to quadratic order becomes

SDp = lp f dp+1( v/-dethij (2 DixsDXS
1

- XsXt (-KsijKt
2

We have used both the embedding equations (A.15) and the action for the small

fluctuations (A.16) in Section 4.

The action (A.16) can be further simplified if nP satisfies additional constraints.

For example, if nP is proportional to a Killing vector, then

Ksij = . (A.17)

This follows from the fact that n" satisfies V(,n) = v(,n) for some v,. If in addition

n' is a hypersurface orthogonal, i.e. if it satisfies V[,nI = w[,n' for some one form
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w,, then

Uis = 0, for all t . (A.18)

We have used this simplification in Section 4.

Finally, note that equation (A.16) was written using the coordinate split (A.9).

One can write it and other equations in a more covariant way by introducing

hpi,= hJAjA h = .. , h = , (A.19)

and using these objects in place of hij and A" in various places. h,, = gt, - nsfn,

is the covariant induced metric on the brane and h," is the projector onto the world-

volume directions.

A.2 D7-branes in AdS 5 x S5 black hole

We now specialize to the case of D7-branes considered in the main text, where we

have two transverse directions with

n1 =- -yo(P) , n 2 =  , (A.20)

where N1,2 are normalization factors. In this case Ut is proportional to the two-

dimensional antisymmetric tensor Ect. It is easy to see that nv is both hypersurface

orthogonal and proportional to a Killing vector (since nothing depends on ¢). We

thus have K 2ij = 0 and U12 = 0. The action (A.16) now reduces to the form we have

used in Section 4, namely

f/ 2 2 2 1 2 2

where the "masses" are given by

m = -R11- R2112- Ki jK , (A.22)

m = -R22 -R2112, (A.23)
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with R2 1 1 2 , R11 and R 22 as defined in (2.62). In writing (A.21)-(A.23) we have used

the identities

Rsit h ij = Rn hijA AR,Q, = -Rst - Rsllt - Rs22t, s,t = 1, 2 (A.24)

and the fact that R 12 = 0 for the AdS 5 x S 5 black hole spacetime. We can also use

the generalization of the Gauss-Codazzi relation for a codimension two surface which

we derive in Section A.3, see Eq. (A.28), to write

KlijK = - (8)R + R - 2R 11 - 2R22 - 2R2112 (A.25)

Therefore, m in (A.22) can equivalently be written as

= R11 + R 21 12 + 2R22 + (8)R - R, (A.26)

which is the form that we used in Section 4.

A.3 Gauss-Codazzi relations for co-dimension 2

Define the covariant derivative on the D7 brane as

Ds = hhVsV . (A.27)

This is equivalent to the covariant derivative defined with respect to hij. We can now

use D, to define the curvature of the D7-brane and then relate it to the curvature of

the full space. Calculations similar to those in [115] reveal that

()Ri pR 1 ijk + (Ks)ik(K) - (K')jk(Ks)l
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where s labels the two directions perpendicular to the brane and is summed over.

P(R) is the projection of the full Riemann tensor onto the D7-brane,

P(R)ijkl = A A ~AI R . (A.29)

Taking further contractions of Eq. (A.28) with 65 and hik and using Eq.(A.10) gives

(8)R = R - 2Rss - Rt,,t + K,K, - (Kij KJ'), (A.30)

where s, t are both summed. In the case of interest, where K2ij = 0 because n' is

proportional to a Killing vector and where Ks = 0 is the embedding equation, we

obtain (A.25).

149



150



Appendix B

Dp-Dq-Brane Theories

It will be of interest in future to study the degree to which the meson dispersion

relations that we have derived, together with their consequences like (2.128) and

(2.129), change as one modifies the gauge theory to make it more QCD-like. In this

appendix, we report on a check that we have mentioned in Section 6 in which the

gauge theory is modified, albeit not in the direction of QCD. We consider the (p + 1)-

dimensional gauge theories described by N Dp-branes [110] into which fundamental

quarks, and hence mesons, have been introduced by embedding Nf Dq-branes [111,

105, 36, 37]. The Dp-branes fill coordinates 0, 1,..., p. The Dq-branes fill coordinates

0, 1,..., d, where d < p, as well as q-d of the remaining 9-p coordinates. In the large-

N limit, the near horizon geometry of the Dp-branes is dual to a (p + 1)-dimensional

supersymmetric Yang-Mills theory with 16 supercharges that is nonconformal for

p # 3. We will restrict to p < 5. In the Nf/N -> 0 approximation, the Dq-branes live

in the background Dp-brane geometry, and their back-reaction on the geometry can

be neglected. Strings which stretch between the Dq- and the Dp-branes are dual to

Nf fundamental quarks in the gauge theory. We shall set Nf = 1. And, scalar mesons

in the gauge theory are represented by fluctuations of the position of the Dq-brane.

The specific case that we have analyzed throughout most of this paper is p = d = 3,

q = 7. In this more general setting, as in the specific case, there is a dissociation

transition at some Tdiss at which the spectrum of meson fluctuations changes from

discrete to continuous.
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The background Dp-brane geometry is described by the metric [110]

ds 2  R (3-p)/2 (fdt2 + 7  2 dX (p-3)/2 + dy2 + 2 dQ dQ
LS -o -fdt 2  -p _ 2  (2 2 2 pdq-d-1  y d28-p-q+d)

(B.1)

and the dilaton
(b (p-3)(7-p)/4

e () gsr (p- 3)(7 - p )/4 , (B.2)

where

f = u - ( 7 - p ) / 2 (u 7 - _ (7)/2 )2 (B3)
SPU7 + e( 7-)/ 2  (B.)

r(7 - p ) / 2 = u - (7 -p ) / 2 (u - p + E(7- )/ 2) , (B.4)

u2 = y2+p2 , (B.5)

and where we are using dimensionless coordinates as in (2.44). The black hole horizon

is located at u = uo - VE. Lo specifies the position where the Dq-brane that we

introduce will sit, as follows. We shall embed a Dq-brane described, in the absence

of fluctuations, by a curve y(p) with the Dq-brane placed such that its tip is located

at p = 0 and y = L, and then use Lo to rescale metric coordinates such that the tip

of the Dq-brane is at y(0) = 1. After this rescaling, the metric and dilaton are given

by (B.1) and (B.2). The holographic dictionary determines the coupling, number of

colors, and temperature in the gauge theory via

A (16r 3 )(p- 3 )/ 2 R7  5  (B.6)= R r-p p-5 , (B.6)

S2P-17p- 2 g9st(p- 3)/ 2  (B.7)
N

(7 - p)2(5 -p)/( 7 -p) (5-Lp)/2 Lo ( (5- p)/ 2

T= u47rp)/2R-1R (B.8)

Note that A has dimension p- 3, making it useful to define the dimensionless coupling

Aeff - AT p- (B.9)
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The differential equation that specifies the shape of the embedding curve y(p) can

be derived as we did in obtaining (2.40). For the special case in which p-d+q-d = 4,

the embedding equation simplifies, becoming

y" (q - d - l)y' 2e(7-P)/2(y - y'p) (3 - d)u'-P + (q - d)E(7-p)/2

1+ yt2 2  U 2(7-p) - E7-p

(B.10)

We have scaled our variables so that the tip of the Dq-brane is at y(0) = 1; in order

to have a smooth embedding we require y'(0) = 0; using these boundary conditions,

we can then solve the embedding equation and obtain y(oo), which defines c, via

y(oo) = V/c- , . Finally, we can determine what the mass mq of the quarks that

we are analyzing is via

2 E . (B.11)m- 47r2Cxo 2

From (B.6), (B.8) and (B.11) we find that

(oo = a T)2 A2/(5-p) 4/(5-p)/- , (B.12)
oo=a Aeff M a 2

mq

where the constant ap is given by

2(10-2p)/(7-p) 7(3-p))/(5-p) (( 2/(5-p) (B. 13)

ap (7 - p) 4 /( 5-p) 2))2(-

We also note that the energy density of the plasma is given by [110]

p = bN2Tp+1 (p - 3 )/( 5 - p ) = bpN2 (p-3)/(5-p)T(14-2p)/(5-p) , (B.14)

where the constant bp is given by

= (9 - p) 26 7r(13-3p)/(5-p) ( _ (p))2/(5-p)
(7 - p)(19- 3 p)/( 5 -p) 2

This means that
( )( 7 -p)/ 2  p(T) 

(B.16)

dss d(B.16)600 Pdiss
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where the zero-velocity mesons dissociate at a temperature Tdiss corresponding to

P = Pdiss and coo = Eo , with e' a constant of order unity.

We shall not repeat our construction of the meson wave functions and dispersion

relations for the Dp-Dq system here. Instead, we shall assume that in the large-k

limit the meson wave functions become localized at the tip of the Dq brane at p = 0

and y = 1, as we found for the D3-D7 system. As a consequence, the limiting meson

velocity will be given by the local speed of light at the tip of the Dq-brane. This

velocity can be read from the metric (B.1), and is given by

(1 - e (7 - p) / 2  (B.17)
vo = .(B.17)

+ E(7-p)/2

In Section 6 we have analyzed this result in the small E limit, showing that in this limit

it takes on the form (2.131) for any p. This illustrates the generality of the result

(2.128) when it is phrased in terms of the energy density. Here, we shall analyze

(B.17) at arbitrary E < 1, seeking to compare it to (2.129). From (B.17) and (B.16)

we see that the critical velocity satisfies

1 - v0  1 - v 2  _ E(7-p)/2 P 6 diss (B. 8)
1 + vo (1 + v) 2  Pdiss 00E

Recall that Edis is a constant of order unity and that E/E, is a weak function of

temperature and hence of p, obtained by solving the embedding equation and making

a plot of E, vs. e as in Fig. 2-2, and reading off the ratio.

Much as we did in Section 6, we can see (B.18) either as giving the limiting velocity

vo as a function of p, or as giving Pdiss(V), the energy density above which no mesons

with velocity v exist, via

dis )(-)/2
Pdiss(V) = (1 - V2 )Pdiss ss(1 )2 s -) (B.19)

(1 + v) 00 Eco(B.19)

This is the generalization of (2.129) to the Dp-Dq system. It is written somewhat

implicitly, since E/c.0 which occurs within the square brackets is a weak function of

Pdiss(V). It is nevertheless manifest that the entire expression in the square brackets
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is a weak function of v, varying from one constant of order one at v = 0 to some

different constant of order one at v = 1. As in (2.125), we can then define a function

f(v) by rewriting (B.19) as

Pdiss(V) [f V)] (14-2p)/(5-p) Pdiss(O)Pdi,(V)= [ 2 (B.20)

where y = 1//1 - v2 is the Lorentz boost factor. Equivalently, using (B.14) we can

write

Tdiss(V) )Tdiss (0) (B.21)Y (5-p)/(7-p)

We have seen in Fig. 2-12 that for the D3-D7 brane system, f(v) is everywhere close to

1, with f(1) = 0.924 being the farthest it gets from 1. We have also done the exercise

of solving the embedding equations for p = 4, the D4-D6 brane system with d = 3,

and find in that case that the farthest that f(v) gets from f(v) = 1 is f(1) = 1.048.

Given its derivation via (B.18), it would have been reasonable to try writing

diss(V) = ) (14-2p)/(5-p)diss(0) 1 V(B.22)

instead of (B.20). This does not work as well, yielding a f(v) that reaches 1.306

for the D3-D7 system and 1.261 for the D4-D6 system. So although there is no

important parametric difference between (B.22) and (B.20), we have focussed on the

form (B.20), and hence (B.21), throughout this paper.

The most important conclusion from our Dp-Dq investigation in this Appendix

comes by comparing (B.20) and (B.21). We see that in all the Dp-Dq systems we

analyze, the leading velocity dependence of Pdiss(v) is that it is proportional to 1/7 2,

as if the mesons see a boosted energy density as we discussed in Section 2. In contrast,

Tdiss(V) scales with a power of y that depends on p.
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Appendix C

The zero temperature solution at

small densities

One way to motivate the scaling of the inner region p = au1/ 2 is to look at the zero

temperature solution in detail, where the exact solution is known.

This solution is:

c
y'(p) = a'(p) = -y'(p) (C.1)

V/p6 + E2 - C2 C

where c is an integration constant related to the expectation of the mass operator

dual to the field y on the gravity side. The boundary conditions are y(O) = a(O) = 0.

We can fix c in terms of the quark mass, or equivalently in terms of L. After

rescaling as (4.8) by Lo = L the condition y(oo) = 1 fixes the quark mass. Integrating

(C.1) one finds for c,

K3 = (2 _ C2)

where , is a number defined by the integral, , = fo' dx/(X 6 + 1). For small densities

the condensate c approaches e as,

c r - (K/L)SE2 , C2 - C2  I 3(/L) 3  (C.2)

Note that by small densities we really mean c < L3 or equivalently nq/(Nci-/) < mq.
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From (C.1) it is clear the cross over scale for y(p) between a flat Minkowski

embedding and the curved solution going to the (AdS) horizon is p6  2 - C2 or

p r 61/2 at small densities. This is the scaling that we set out to demonstrate.

Rescaling a = p/l 1 / 2 we find the zero temperature inner solution becomes,

dYo  1
S- (C.3)

do - +( -)

In this limit the chemical potential to order e receives contributions only from inner

region with the result

- L 1 + - + O(62) (C.4)= 22rl
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Appendix D

Detailed analysis of the chemical

potential

In this appendix we give some details in the small e-expansion of /q, equation (4.21),

which we copy here for convenience

Lo dp fq(1 + y 2)
tq 27ra dp E2 + p6q3 (D.1)

Various functions in (D.1) were introduced in (4.9). We split the above integral into

those over the inner and outer regions

,q= (-...)+ (D.2)

which can then be expanded in terms of E using the expansions (4.24), (4.25) of y(p)

in inner and outer regions respectively.

Let us first look at Po. We find that it starts with order c

0 = EP ) + O(2) (D.3)

Sdp (1 4/u) _1 + y2
PA (1 + 774/u4)2P3

(D.4)
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and U2 = p2 + y2(p). Using the expansion (4.26) of yo at small p, we find that the

integral contains a quadratic and a logarithmic divergent term in the limit PA - 0,

given by

27a' ) 1 - 4

L o 4 2 -2
Lo 2(1 + 44 2 .

2/]4(3 - r4 + 3 ] 8 )

(- 74 + 378) 1log(pA) + Ko
(1 - q 4) (I- +74)1

(D.5)

where Ko denotes the finite part of the integral. It can be defined more precisely by

Ko = lim
PA-+0

- /4 / 4 ) 1+y

(1 + 4/U4)2 P3

(1 -74)

2(1 + 774) pA

2/]4 (3 -_ 4 + 37 8)
(- + 774)(1 + 4)4

Once yo(p) is known numerically, Ko can be calculated numerically.

We now look at pz which can be expanded as

(0) + (1)
[ L1+l.
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(D.7)

JOdp 
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