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Abstract

Large volumes of continuous waveform data are now collected in hospitals. These
datasets provide an opportunity to advance medical care, by capturing rare or sub-
tle phenomena associated with specific medical conditions, and by providing fresh
insights into disease dynamics over long time scales.

We describe how progress in medicine can be accelerated through the use of so-
phisticated computational methods for the structured analysis of large multi-patient,
multi-signal datasets. We propose two new approaches, morphologic variability (MV)
and physiological symbolic analysis, for the analysis of continuous long-term signals.
MV studies subtle micro-level variations in the shape of physiological signals over
long periods. These variations, which are often widely considered to be noise, can
contain important information about the state of the underlying system. Symbolic
analysis studies the macro-level information in signals by abstracting them into sym-
bolic sequences. Converting continuous waveforms into symbolic sequences facilitates
the development of efficient algorithms to discover high risk patterns and patients
who are outliers in a population.

We apply our methods to the clinical challenge of identifying patients at high risk
of cardiovascular mortality (almost 30% of all deaths worldwide each year). When
evaluated on ECG data from over 4,500 patients, high MV was strongly associated
with both cardiovascular death and sudden cardiac death. MV was a better predic-
tor of these events than other ECG-based metrics. Furthermore, these results were
independent of information in echocardiography, clinical characteristics, and biomark-
ers. Our symbolic analysis techniques also identified groups of patients exhibiting a
varying risk of adverse outcomes. One group, with a particular set of symbolic char-
acteristics, showed a 23 fold increased risk of death in the months following a mild
heart attack, while another exhibited a 5 fold increased risk of future heart attacks.
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Title: Professor, Electrical Engineering and Computer Science





Acknowledgments

I chose John Guttag as an academic advisor at the end of freshman year, an exercise

that entailed randomly selecting from a list of faculty members I had never met. For

a decision made with precious little information, it has proven to be a pivotal one.

Working with John has been one of my most cherished and enduring associations. He

has been a teacher, mentor, colleague, friend, and family over the last many years,
and his devotion to his students has been - surreal. None of the work presented in

this thesis would have been possible without his inspiration and technical intuition,
and his positive influence on my life and personality extends beyond the realm of

research. It has been an absolute delight to have worked with John, and a pleasure

to anticipate learning so much more from him in the years to come.

I also owe a great debt of gratitude to Collin Stultz, whose contributions to the

work presented in this thesis are immeasurable. His dynamism and incredible knowl-

edge of medicine and engineering have been invaluable while working at the inter-

section of these disciplines, and his unstinted support for our research has been a

great comfort over the years. In addition, Collin has been a source of guidance on

matters both technical and non-technical, and his dedication to the cause of others

is an example that will remain with me for a long time.

I am indebted to Benjamin Scirica, who has been an esteemed colleague and won-

derful friend during the course of this project. All aspects of our work have benefited

immensely from Ben's varied skills. He has given direction to our research with his

clinical insights and experience, helped us gain access to data that was instrumental

in the development and testing of new hypotheses, suggested sophisticated statistical

techniques to evaluate our work rigorously. and been an excellent sounding board for

new ideas. Throughout the course of this project, Ben has helped accelerate progress

and motivated us with his endless enthusiasm. I also thank Ben for introducing us to

Christopher Cannon, Peter Stone, David Morrow, Satishkumar Mohanavelu, Eugene
Braunwald and the rest of the TIMI Study Group at the Brigham and Women's Hos-

pital. I am grateful to them for sharing their data and expertise with us, and consider

myself fortunate to have worked with some of the finest clinical minds of our time.

I also feel privileged to have worked with George Verghese, who continues to be a

role model with his extensive knowledge spanning many disciplines and his humility.
His feedback and questions have helped identify important areas where significant

improvements were possible, and have been essential in helping me develop a more

complete grasp of complex engineering principles.
I am grateful to Piotr Indyk for the substantial algorithmic improvements in our

work, most notably in the area of symbolic analysis, which were possible with his help.

Piotr has always been available to help on short notice, and it has been fascinating

to watch him reason about complicated theoretical issues with great ease and clarity.

Manolis Kellis has also helped by sharing his expertise on motif discovery meth-

ods. His in-depth knowledge and input have helped shape much of our work on

computational physiology.
This work has also benefited greatly from Gari Clifford and his expertise in the

analysis of electrocardiographic data. Gari has contributed many important tools



that were used in our project and almost all aspects of this thesis bears some imprint
of his ideas.

Thomas Heldt has motivated our work on the pathophysiology of morphologic
variability, and his suggestions on experiments to validate our theory represent an
exciting area of future research. In addition, Thomas has been a source of encour-
agement and during the course of this project, has grown to be a good friend.

I thank Roger Mark, George Moody, and the Physionet Group for contributing the
Physionet database, which formed the starting point of our work. The work in this
thesis also owes greatly to Barbara Liskov and the Programming Methodology Group
at MIT. Their kindness in sharing computational resources was critical in helping us
develop, refine and validate our work, and has allowed the scale of our project to
expand significantly.

I would also like to thank James Glass, Hari Balakrishnan, Tommi Jaakkola,
Samuel Madden, Michael Collins, Dina Kitabi, Srini Devadas, and Ronitt Rubinfeld
for their many suggestions to improve various aspects of this work, and for their help
in determining how best to communicate our findings to the rest of the scientific
community. The presence of so many brilliant and friendly individuals is an aspect
of MIT that continues to amaze even after all these years.

I am grateful to Adam Wolfberg for creating the opportunity for us to extend our
work to fetal datasets. Adam has added an important dimension to our research, and
helped evolve our vision of how computational methods can make a broad clinical
impact. His enthusiasm while solving the hard problem of fetal risk stratification has
been inspirational.

I am also indebted to Charles Vest, Danielle Guichard-Ashbrook, Humayun Bashir,
Umer Shah, Salik Malik, and Mubasher Humayun. Their support and guidance en-
abled me to return to MIT for my PhD, and I credit them with this work.

I take great pride in having been one of the initial members of the Data Driven
Medicine Group, which has been a fabulous home for me over the years, and allowed
me to meet some exceptional individuals. I owe a great deal both personally and
professionally to Dorothy Curtis, Sheila Marian, Donna Kaufmann, John Ankcorn,
Eugene Shih, Godfrey Tan, Irene Fan, Jenna Wiens, Anima Singh, Al Kharbouch,
Daniel Leeds, Jason Gift, Marcia Jung, Joyatee Sarker, and Jennifer Carlisle. I also
thank all the members of the Network and Mobile Systems group, who have shared
many experiences with me for the last many years: Srikanth Kandula, Sachin Katti,
Magda Balazinska, Michel Goraczko, Allen Miu, Kyle Jamieson, Hariharan Rahul,
Vladimir Bychkovsky, Jaeyeon Jung, Nick Feamster, Bodhi Priyantha, and David
Andersen.

I mention Phil Sung separately, for his contributions to this thesis are immense.
He has been a close colleague over the last two years, and his brilliance and work
ethic have led to significant improvements in the way that morphologic variability is
measured. It was a pleasure working with him, and I sincerely hope our paths will
cross again in the future.

Ali Shoeb appears late in this list, but only because he represents the bridge
between my professional and social lives. I have enjoyed his company since the start
of freshman year, taken nearly all of my classes at MIT with him, followed in his



example by joining the Harvard-MIT Health Sciences and Technology program, and
shared an office with him for as long as I can recall. I have often marveled at the
range and depth of Ali's knowledge, and his ability to explain things with pristine
clarity. His contributions to this thesis are too many to recount, and his suggestions
pervade all aspects of our work.

It would be impossible to mention all of my other friends at MIT, but I thank
Ebad, Murtaza, Daanish, Rehan, Saad, Elena, Sarfraz, Faisal, Imran, and Adnan, in
particular, for contributing ideas that have gone into improving the work presented
in this thesis, and for making my academic career at MIT a pleasure.

Finally, I dedicate my efforts to my family, who have made many sacrifices to

allow me to be where I am today. My parents have taught me to advance myself at
every step of life, value integrity, work hard, and demonstrate a concern for others.
I am eternally indebted for everything that they have empowered me to achieve. I
also owe thanks to my wife, whose consistent support and encouragement during the

later stages of my PhD have been an immensely valuable asset.





Contents

1 Introduction

1.1 Opportunities . ...............

1.2 Challenges . .................

1.3 Proposed Solutions . ............

1.4 Clinical Application . ............

1.5 Contributions . ...............

1.6 Organization of Thesis . ..........

2 Background

2.1 Cardiac Function . .............

2.2 Electrocardiogram .............

2.3 Acute Coronary Syndromes ........

2.4 Arrhythmias . ................

2.5 Post-ACS Risk Stratification ........

2.5.1 TIMI Risk Score ..........

2.5.2 Echocardiography ..........

2.5.3 Long Term ECG Techniques .

2.6 Summary ..................

3 Morphologic Variability

3.1 Pathophysiology of Morphologic Variability

3.2 Measuring Morphologic Variability . . ..

3.2.1 ECG Signal Preprocessing . . . . .

9

49

50

52

54

.... . . .. . . . . .

....... ... .

......... . .



3.2.2 ECG Segmentation and Removal of Ectopy .......... . 55

3.2.3 Comparing ECG Beats ................... ... 56

3.2.4 Morphologic Distance (MD) Time Series . ........... 59

3.2.5 Spectral Energy of Morphologic Differences .......... . 60

3.3 Evaluation of Morphologic Variability .................. 63

3.3.1 Methodology ................... ...... . 63

3.3.2 Results ....... ............. 65

3.4 Other Applications of MV: Quantifying Treatment Effects . ..... 72

3.5 Summary ................... ........... .. 73

4 Symbolic Analysis 75

4.1 Overview of Symbolization and Computational Physiology ...... 76

4.1.1 Symbolization ................... ...... . 76

4.1.2 Computational Physiology ................... . 77

4.1.3 Challenges ................... ........ .. 78

4.1.4 Our Approach ................... ...... . 79

4.2 Creating Symbolic Representations ................... 80

4.2.1 Max-Min Clustering with Dynamic Time-Warping ...... . 83

4.2.2 Evaluation ................... ........ .. 85

4.3 Symbolic Analysis ................... ......... 99

4.3.1 Pattern Discovery in Positive Examples . ............ 100

4.3.2 Evaluation of Pattern Discovery in Positive Examples ..... 110

4.3.3 Pattern Discovery in Positive/Negative Examples ...... . 118

4.3.4 Evaluation of Pattern Discovery in Positive/Negative Examples 132

4.3.5 Symbolic Mismatch ................... ..... 134

4.3.6 Evaluation of Symbolic Mismatch . ............... 139

4.4 Other Applications of Symbolic Analysis: Fetal Risk Stratification . . 144

4.5 Summary ................... ............ .. 149

5 Visualization of Long-Term Data 151

5.1 Visualizing Data as Symbolic Sequences . ............... 151



5.2 Prototypical Representation of Biological Activity . .......... 155

5.2.1 Prototype Construction ................... .. 156

5.2.2 Evaluation ................... ........ . 159

5.3 Summary ................... ........... .. 163

6 Conclusion and Future Work 165

6.1 Summary ................... ........... .. 165

6.1.1 New Concepts ................... ........ 165

6.1.2 New Methods ................... ........ 167

6.1.3 New Clinical Results ................... .. . 167

6.2 Conclusions ................... ............ 168

6.3 Future Work ................... .......... .. 169

A Proof of Conservation of Length 173



12



List of Figures

2-1 Main components of the cardiac conduction system. . .......... 33

2-2 Cardiac conduction pathway and corresponding ECG recording. . . . 36

2-3 Consequences of coronary thrombosis. . ............. . . . 37

3-1 Healthy myocardium. ................................ . 51

3-2 Myocardium with islands of non-conducting or slowly conducting tissue. 51

3-3 Race conditions leading to variability in ECG morphology. ...... . 51

3-4 Time-varying islands of non-conducting or slowly conducting tissue. . 52

3-5 ECG tracings from two patients. . ................ . . 53

3-6 System for measuring morphologic variability. . ........... . 53

3-7 Alignment of beats by dynamic time-warping. . ........... . 57

3-8 Traditional and modified recurrence relation of dynamic time-warping. 60

3-9 Heatmap showing c-statistic as a function of low- and high-frequency

cutoffs. A maximum c-statistic value of 0.77 is obtained for the fre-

quency band 0.300.55 Hz. ................... ..... 62

3-10 Kaplan-Meier survival curves for cardiovascular death in patients with

LV EF>40% ... . . . . . . . . . . . . . . . . ... . . . . . . . . . 69

3-11 Kaplan-Meier survival curve for sudden cardiac death in patients with

LV EF>40% .. . . . . . . . . . . . . . . . . . .. . . . . . . . . .. 70

3-12 Kaplan-Meier survival curve for myocardial infarction in patients with

LVEF>40% ....... ......................... 70

4-1 Parallel between the use of symbolization in computational biology and

in computational physiology. . .................. . . 77



4-2 Overview of symbolic analysis: (a) Raw data corresponding to Patient

106 in the MIT-BIH Arrhythmia Database. The red rectangle denotes

a particular pattern hidden within the raw data. This pattern is diffi-

cult to identify by visual examination of the original signal alone. (b)

The raw ECG data is mapped into a symbolic representation (11 lines

of the symbol sequence are elided from this figure). (c) An example

rhythm of a repeating sequence, found in the symbolized representa-

tion of a region of data corresponding to the boxed area of the raw data

in (a). (d) An archetypal representation, created using the techniques

in Section 5.2, of the repeating signal. . .................. 81

4-3 Histogram of clusters per patients: The number of clusters determined

automatically per patient is distributed as shown, with a median value

of 22...... ................... . ......... .. 86

4-4 Mislabeling Error: Over a quarter of the patients had no mislabel-

ing errors using our clustering approach, over 65% had less than 1%

mislabeled beats relative to cardiologist labels. . ............. 91

4-5 Raw tracing of ECG for patient 213 in the MIT-BIH database with

fusion of ventricular and normal beats: A sequence of ECG is shown

containing beats labeled as both normal (N) and fusion (F). The mor-

phological differences between the two classes of beats are subtle. This

excerpt corresponds to time 4:15 in the recording. . ........ . . 92

4-6 Raw tracing of ECG for patient 124 in the MIT-BIH database with

junctional escape beats: A sequence of ECG is shown containing both

right bundle branch block (R) and junctional premature (J) beats. The

morphological differences between the two classes of beats are again

subtle. This excerpt corresponds to time 4:39 in the recording. ..... 92



4-7 Raw tracing of ECG for patient 115 in the MIT-BIH database with

normal beats: A sequence of ECG is shown containing normal beats.

This sequence represents an example where morphology-based analysis

separates the beats into short (first 7 beats) and long (last three beats)

classes. The beats still fall in the same clinical class, but this separa-

tion, which indicates an abrupt change in heart rate, may potentially

be of interest for the purpose of higher level analysis. This excerpt

corresponds to time 7:40 in the recording. . ............ . . 93

4-8 Raw tracing of ECG for patient 106 in the MIT-BIH database with

normal beats: (a) ECG corresponding to time 16:54 in the file. (b)

ECG corresponding to time 21:26 in the file. Morphology-based anal-

ysis places the beats shown in (a) and (b) into separate clusters based

on changes in amplitude. .......................... . 93

4-9 A patient with ventricular bigeminy. ................... 95

4-10 A patient with ventricular trigeminy. ............... . . . 96

4-11 A rhythm of 4 units corresponding to an ectopic atrial rhythm..... . 96

4-12 A patient with recurrent tachyarrhythmic episodes. These episodes ap-

pear in the raw tracing as dense regions, corresponding to an increased

number of heart beats during these periods owing to faster heart rate. 97

4-13 Raw ECG tracing, symbolic signal and entropy taken over 30 second

windows for a patient with atrial fibrillation. As in Figure 14, atrial

fibrillation in the raw tracings corresponds to the dense regions. . . . 98

4-14 Respiration and arterial blood pressure signals for a patient with pulsus

paradoxus. ....................................... . 98

4-15 ECG and arterial blood pressure signals for a patient in whom fast

heart rate leads to increased arterial blood pressure. . .......... 99

4-16 Prediction through conservation in the context of a population of pa-

tients affected by a common acute clinical event . ........... 100

4-17 Motifs of length 4, 10 and 16 found using TCM. . .......... . 111

4-18 Motifs of length 4, 10 and 16 found using Gibbs sampling. ...... . 111



4-19 Motifs of length 4, 10 and 16 found using Consensus. . ....... . 112

4-20 Motifs of length 4, 10 and 16 found using Gibbs2. . ........ . . 114

4-21 Relation of the average contribution of each sequence to the log-odds

likelihood for the best scoring motif with increasing values of C. . . 114

4-22 Motifs of length 4 found using Consensus (top) and Seeded Consensus

(bottom). ................... ..... ....... 115

4-23 Two-stage Gibbs2 motifs of length 4. The top motif comprises a work-

ing set of size 12, while the second motif corresponds to those 11 se-

quences (from a total population of 23) that were not included in the

original working set. ................... ........ 116

4-24 Motifs of length 4 found using Consensus (top) and Seeded Consensus

(bottom). .................... ..... ....... 119

4-25 Overview of the pattern discovery process. . ............... 121

4-26 In the absence of clustering there is significant redundancy between

the Hamming radii of approximate patterns. Partitioning the data into

disjoint clusters can help address this issue. In our work, we reduce the

original approximate patterns into a small group with some overlap to

span the search space. ................... ........ 127

4-27 Calculating symbolic mismatch (SM) between two patients. ECG sig-

nals are first symbolized using a Max-Min iterative clustering approach

that employs a dynamic time-warping (DTW) distance measure to

compare beat morphology. The resulting symbol centroids and prob-

ability distribution over all symbol classes are used to obtain a final

SM value measuring the long-term electrocardiographic dissimilarity

between the patients. ................... ........ 136

4-28 A hypothetical example of the SM calculation. . ............. 137

4-29 Stages in the patient clustering process to determine high risk minority

groups that are population outliers. . .................. 138

4-30 Kaplan-Meier survival curves for (a) death, (b) MI and (c) death/MI

comparing the high SM risk (n=229) and low SM (n=457) groups. .. 141



4-31 Relation between morphologic entropy and IL-6 levels in cord blood (Y

= -59.13 + 55.67X; p = 0.019; standard error for coefficients = 17.38

and 11.93; RMSE = 7.68) ...... ................. 146

4-32 Relation between morphologic entropy and IL-8 levels in cord blood (Y

= -48.89 + 45.82X; p = 0.009; standard error for coefficients = 11.01

and 7.56; RMSE = 4.75) ...... .................. 146

4-33 Relation between morphologic entropy and NSE levels in cord blood

(Y = -97.73 + 90.38X; p = 0.005; standard error for coefficients =

17.67 and 12.14; RMSE = 7.34) .............. ........ . 147

5-1 Screenshot of compact symbolic display of long-term ECG. ...... . 153

5-2 Screenshot of simultaneous ECG information display. . ......... 154

5-3 Decomposition of 0 into a, 0 and -y segments. Horizontal runs along

the DTW distance matrix correspond to a-segments, vertical ones to

/-segments, and diagonal traversals to 7-segments. . .......... 157

5-4 Hierarchical aggregation topology: The complete binary tree repre-

sentation corresponds to a flat organization of observations that are

aggregated in a breadth-first manner in pairs. . ............. 159

5-5 Example illustrating the limitations of RMSE and SNR as a measure

of error in the presence of time-skew. . ............... . . 160

5-6 Synthetic ECG error: From top to bottom, the RMSE, MD, 1/SNR

and DTWC of the ensemble average and prototype relative to the deter-

ministic ECG signals are shown for different additive noise and warping

levels (each cell corresponds to a different randomly generated set of

observations). We use 1/SNR instead of SNR to display experiments

corresponding to no noise (i.e., SNR= oc and 1/SNR= 0). ...... . 162



18



List of Tables

3.1 Baseline clinical characteristics for patients with and without available

data..... ......................... ...... 66

3.2 Correlation between different risk variables following dichotomization. 66

3.3 Association of risk variables with cardiovascular death in patients with

LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value). 67

3.4 Association of risk variables with cardiovascular death in patients with

LVEF>40% after adjusting for the TIMI risk score (the TIMI risk

score comprises the following predictors: age 65 years or older, at least

3 risk factors for coronary artery disease, prior coronary stenosis of

50% or more, ST-segment deviation on electrocardiogram at presen-

tation, at least 2 anginal events in prior 24 hours, use of aspirin in

prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,

CI=confidence interval, P=P value). . ................. 68

3.5 Association of risk variables with sudden cardiac death in patients with

LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value). 68

3.6 Association of risk variables with sudden cardiac death in patients

with LVEF>40% after adjusting for the TIMI risk score (the TIMI

risk score comprises the following predictors: age 65 years or older, at

least 3 risk factors for coronary artery disease, prior coronary stenosis

of 50% or more, ST-segment deviation on electrocardiogram at pre-

sentation, at least 2 anginal events in prior 24 hours, use of aspirin in

prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,

CI=confidence interval, P=P value). . ................. 68



3.7 Association of risk variables with myocardial infarction in patients with

LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value). 69

3.8 Association of risk variables with myocardial infarction in patients with

LVEF>40% after adjusting for the TIMI risk score (the TIMI risk

score comprises the following predictors: age 65 years or older, at least

3 risk factors for coronary artery disease, prior coronary stenosis of

50% or more, ST-segment deviation on electrocardiogram at presen-

tation, at least 2 anginal events in prior 24 hours, use of aspirin in

prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,

CI=confidence interval, P=P value). ................... 69

3.9 Characteristics of ECG variables in ranolazine and placebo group. .. 73

4.1 Beats detected for each patient in the MIT-BIT Arrhythmia database

using symbolization. To compactly display results we group the clinical

classes (Mis = mislabeled beat). ................... .. 89

4.2 Summary comparison of detection through symbolization to cardiolo-

gist supplied labels. The labels used correspond to the original MIT-

BIH Arrhythmia database annotations (N = normal, L = left bundle

branch block, R = right bundle branch block, A = atrial premature

beats, a = aberrated atrial premature beats, V = premature ventricu-

lar complex, P = paced beat, f = fusion of normal and paced beat, F

= fusion of ventricular and normal beat j = junctional escape beat).

The top row is indicative of how well the clustering did at identifying

the presence of classes of clinical activity identified by the cardiologists

for each patient. The bottom row indicates how well the clustering did

at assigning individual beats to the same classes as the cardiologists. 90

4.3 Summary comparison of detection through symbolization to cardiolo-

gist supplied labels for the MGH/MF Waveform database. The labels

of the columns match those in Table 4.2 with J = junctional premature

beats. .................. .......... ...... 94



4.4 Statistical significance of approximate patterns found on a training set

of 765 post-NSTEACS patients (15 deaths over a 90 day follow-up

period) when evaluated on a test population of 250 patients (10 deaths). 134

4.5 Time taken by the LSHCS and NoSeqStats pattern discovery algo-

rithms on the cardiovascular training dataset. . .......... . . 134

4.6 Association of risk variables with death in univariate and multivariate

analyses (n=686). ................... . ........ 140

4.7 Association of risk variables with MI in univariate and multivariate

analyses (n=686) .......... .......... 140

4.8 Association of risk variables with death/MI in univariate and multi-

variate analyses (n=686). ................... ...... 142

4.9 Percentage of patients with events in five largest clusters in the high

SM risk group relative to low SM risk group. . ........ . . . 143

4.10 Percentage of patients with events in aggregate of five largest clusters

in high SM risk group compared to low SM risk group. . ...... . 144

4.11 HRV metrics for subjects. Mean heart rate (Mean HR) and the stan-

dard deviation of the heart rate (STD HR) are also provided for each

subject. . ..... ........................ 148

4.12 Cord blood markers for subjects. ................... . 148



22



Chapter 1

Introduction

In this thesis, we present novel ways to improve medical care by using sophisticated

computational methods to analyze clinical data. A rough problem statement for our

work is to develop automated tools for the prediction of future health and treatment

efficacy. There are two aspects to this: discovering knowledge from large multi-signal

datasets collected from a population of patients, and applying this knowledge to de-

veloping automated methods for improved prognosis and intervention. This research

uses techniques drawn from machine learning, data mining, applied algorithms, and

signal processing; as well as an understanding of the underlying biological systems.

1.1 Opportunities

Our work is motivated by the increasing amounts of continuous long-term primary

data available for patients in hospital and ambulatory settings. With advances in

recording and storage technology, we are now able to collect larger volumes of data

than was previously possible. This increase in available data has taken place both

at the level of individual patients (i.e., with more types of data now being captured

over longer periods), and at the level of the population as a whole (i.e., more patients

being monitored with ambulatory devices).

These large physiological datasets present an opportunity to advance medical care

along different dimensions. Monitoring many different patients continuously over long



periods (i.e., from hours to weeks) increases the likelihood of discovering previously

unknown phenomena, and helps provide fresh insights into disease dynamics over

long time scales. We can therefore use continuous long-term data to discover new

medical knowledge. In addition to this, continuous monitoring also makes it possible

to observe known but rare events that would otherwise be missed if patient health was

assessed in a point-in-time manner (e.g., patients who have hypertensive episodes at

night are routinely missed by blood pressure measurements in the doctor's office [2]).

We can therefore use continuous long-term data to apply known medical knowledge

better. Both the discovery of new knowledge and the ability to apply knowledge

better allow patients to be matched to therapies that are most appropriate for their

risk.

1.2 Challenges

Despite the opportunities provided by large amounts of continuous long-term data,

the sheer volume of information is a serious challenge. Patients in an ICU setting,

for example, often have continuous streams of data arising from telemetry monitors,

pulse oximeters, Swan-Ganz catheters, and arterial blood gas lines to name just a

few sources. Any process that requires humans to examine more than small amounts

of data is infeasible and often highly error prone. To put things in perspective,

the electrocardiographic (ECG) signals from a single patient admitted to a hospital

following a heart attack would fill 8,000 pages. It is therefore not surprising that

errors have been associated with "information overload" and that clinically relevant

events are often missed [70, 71].

Unfortunately, existing software systems are also largely inadequate for studying

large physiological datasets. First, existing software systems focus largely on detec-

tion and are restricted in their ability to do broad knowledge discovery and identify

previously unrecognized activity. They do not exploit the opportunity provided by

large physiological datasets to discover new medical knowledge. What work there has

been has largely focused on the analysis of categorical data (e.g., health records) or



nucleotide sequences, and has not addressed the challenge of studying large datasets

comprising continuous time-series signals.

Secondly, existing software systems are limited in their ability to apply medical

knowledge. In particular, the choice of which detectors to apply to continuous data

is based on assumptions about which events are most likely to occur (e.g., the use

of arrhythmia monitors following a heart attack). This limits their ability to detect

even known events that were not considered probable ahead of time.

Another challenge while working with continuous long-term signals is that of effi-

ciency. The process of collecting data sampled at high frequencies over long periods

(i.e., days to weeks) for thousands of patients leads to very large datasets. Analyzing

these datasets with complex methods is computationally intractable. This creates

the need for methods that are both robust and efficient.

1.3 Proposed Solutions

We propose two broad areas of complementary research for studying information

in large physiological datasets. Our methods address the goals of both discovering

and applying medical knowledge, and are intended to promote personalized medicine

through more accurate risk stratification and the choice of interventions that are

consistent with each patient's individual risk. Our methods achieve computational

efficiency through use of algorithmic improvements and abstraction to reduce data.

At an abstract level, we view interesting activity in physiological signals as vari-

ability at different scales.

Morphologic variability focuses on the micro-level changes in continuous signals,

and quantifies subtle variability in signals over long periods. This is intended as a

way to measure instability in the underlying physiological system.

Symbolic analysis, looks at the macro-level information in signals by abstracting

them into symbolic sequences and studying the resulting textual representations of

the time series signals for interesting higher-level constructs.

In this thesis, we show how both approaches can be used separately or together



to obtain clinically significant results.

1.4 Clinical Application

While the computational methods we develop in this thesis are applicable to signals

from many different physiological systems, and potentially to data from non-medical

applications, we present and evaluate these tools in the context of cardiovascular

disease. There are a variety of factors that led us to this decision.

Cardiovascular disease is a key clinical area. According to the statistics reported

for 2005, there were 864,500 deaths in the US due to cardiovascular disease [72],

corresponding to 35.5% of all deaths. For the same period, an estimated 17.5 million

people died from cardiovascular disease around the world (30% of all global deaths)

[3]. Nearly 151,000 individuals in the US who experienced cardiovascular mortality

in 2005 were under age 65, well below the average life expectancy of 77.8 years [72].

The associated direct and indirect costs of dealing with cardiovascular disease was

$475.3 billion [72].

One of the challenges of modern cardiovascular medicine is to supplement ad-

vances in therapy with similar advances in diagnostics. An example of the present

divide between treatment and diagnostics is provided by implantable cardioverter de-

fibrillators (ICDs) [73]. These devices are typically given to the patients believed to

be at the greatest risk, and have great value in reducing deaths when serious arrhyth-

mias occur. However, according to some estimates, 90% of the patients who received

ICDs never end up using these devices [73]. This represents a major inefficiency and

danger, since these devices are expensive and require a surgical procedure (with a 1%

operative risk of death) for implantation. At the other end of the spectrum are the

hundreds of deaths that take place each day of patients who were truly at high risk of

fatal arrhythmias, but were not correctly categorized and did not receive an ICD. Our

work attempts to remedy this kind of situation, by using sophisticated computational

methods to analyze large amounts of cardiovascular data to identify high (or low)

risk patients.



The majority of our work focuses on a specific kind of cardiovascular signal, i.e., the

electrocardiogram (ECG). This follows from the availability of large datasets of ECG

signals collected routinely during hospitalization and clinical trials. Access to these

signals and detailed follow-up data for patients has helped us rigorously evaluate our

methods. The choice of ECG signals is also motivated by the fact that these signals

have been extensively studied in the past. It is thus possible to demonstrate how

sophisticated computational methods can be used to yield novel information even

from well-studied sources of data. Finally, ECG signals are often collected for many

days by ambulatory monitors. This has allowed us to demonstrate the utility of

studying data collected over long periods of time using the right tools.

1.5 Contributions

We briefly review some of the major contributions of our work. A more detailed

discussion on the different contributions made by our work is deferred to subsequent

parts of the thesis.

* Concept of Morphologic Variability: We propose the concept of morpho-

logic variability, and introduce the idea that subtle variations in the shape of

physiological signals, which are often widely considered to be noise, contain

important information about the health of the underlying system.

* Method to Measure Morphologic Variability: We develop a method to

measure morphologic variability, which addresses the challenge of quantifying

subtle pathological variability in noisy signals with time-skew. Our algorithm

uses a modified dynamic time-warping approach to compare variations in mor-

phology between consecutive beats, and the Lomb-Scargle periodogram to iden-

tify a spectral signature for these variations that corresponds to high risk.

* Clinical Study of Morphologic Variability: We conducted a clinical study

on data from over 4,500 patients, and show that morphologic variability has



considerable predictive value in the setting of cardiovascular disease. For exam-

ple, patients with high morphologic variability are at a 6-7 fold increased risk

of death in the three months following a heart attack. Moreover, the informa-

tion in morphologic variability is independent of other generally accepted risk

variables (e.g., echocardiography and other electrocardiographic metrics) and

morphologic variability is a better predictor of death than almost all of these

variables. In particular, it has great value in identifying patients who are missed

by echocardiography, which is widely used to identify a small high risk group

of patients but may miss over two-thirds of all deaths [1].

* Concept of Physiological Symbolic Analysis: We propose the concept of

physiological symbolic analysis, i.e., representing and searching through con-

tinuous physiological waveform signals as textual data rather than real-valued

time-series. We develop a symbolic analysis framework that allows for physio-

logical datasets to be studied in a manner analogously to nucleotide data.

* Method to Symbolize Physiological Signals: We present an efficient Max-

Min clustering-based algorithm for symbolization, and demonstrate this trans-

formation preserves useful clinical information while making the data easier to

analyze. We show how different analyses on symbolic representations can be

used to detect various kinds of interesting activity, e.g., searching for approx-

imate repeated sequences finds ventricular bigeminy and trigeminy; searching

for statistically overrepresented patterns reveals tachyarrhythmias; and locating

high entropy periods detects atrial fibrillation. We also demonstrate how these

methods can be used to find kinds of complex activity that often go unnoticed

in clinical practice, e.g., atrial ectopic rhythms.

* Method for Discovering Predictors of Acute Events in Symbolic Data:

We present novel methods that can be used to discover predictors of acute events

in an automated manner, by searching for approximate symbolic patterns that

occur more often preceding events than one would expect by chance alone. We

approach pattern discovery as a significance and classification problem, and use



the ideas of locality sensitive hashing (LSH), multi-level Gibbs sampling, and

sequential statistics to make the search for interesting activity more efficient.

* Clinical Study of Predictor Discovery: We demonstrate the utility of our

methods to discover predictors of acute events, both for detecting markers as-

sociated with long-term risk and for markers associated with imminent acute

events (e.g., sudden cardiac death). In a small study of patients who expe-

rienced sudden cardiac death, our algorithms correctly predicted 70% of the

deaths while classifying none of the normal individuals and only 8% of the

patients with supraventricular arrhythmias as being at risk.

* Method for Comparative Risk Stratification with Symbolic Data: We

develop an algorithm to compare the long-term symbolic dynamics of patients

by measuring the probability-weighted mismatch of symbol prototypes across

patients to assess similarity. We present a second, clustering-based algorithm

that uses this similarity information to partition patients into groups with sim-

ilar risk profiles.

* Clinical Study of Comparative Risk Stratification with Symbolic Data:

We evaluated our comparative methods on cardiac data to partition patients

with cardiovascular disease into groups, and found that different groups of pa-

tients exhibit a varying risk of adverse outcomes. One group, with a particular

set of time-series characteristics, showed a 23 fold increased risk of death in

the months following a mild heart attack, while another exhibited a 5 fold in-

creased risk of future heart attacks. This potentially allows more fine-grained

risk assessment of patients.

* Concept of Visualizing Physiological Signals as Symbolic Sequences:

We propose the concept of visualizing large amounts of continuous monitoring

data as a sequence of symbols rather than raw samples, and develop tools to vi-

sualize continuous long-term signals. Looking at physiological data as symbolic

sequences provides many advantages over visualizing raw samples. It results



in a large decrease in the number of data points that need to be visualized,

makes it easier to see when changes occur, and makes the data more readily

interpretable. Our software supports visualizing continuous long-term signals

as symbols, while retaining information (in the form of prototypes and even the

raw data) that is available to users interested in looking at waveforms.

Concept and Method of Creating Prototypical Signals Averaged in

Amplitude and Time: We develop the idea of creating prototypical rep-

resentations of physiological activity. In contrast to conventional aggregation

approaches, which average the amplitude of multiple observations, we propose

creating a signal where the duration of each physiological waveform was also

averaged in time. We also propose an algorithm to create prototypical sig-

nals from noisy, time-skewed observations, by relating time-warped information

across observations and combining data hierarchically while preserving length

characteristics. We demonstrate how these prototypes can be used for both

data visualization, and for robust decision making.

1.6 Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents background

on the heart and the ECG signal. Chapter 3 introduces the concept of morphologic

variability and evaluates its use to identify high risk cardiovascular patients. Chapter

4 presents and evaluates symbolic analysis of large datasets of physiological signals.

Chapter 5 describes tools to compactly visualize interesting activity over long pe-

riods of continuous patient monitoring. Chapter 6 concludes with a summary and

discussion of future work.



Chapter 2

Background

In this chapter, we review the clinical background for our work. We start with a

discussion of the normal anatomy and function of the heart in Section 2.1. We focus,

in particular, on aspects of cardiac function related to electrophysiology. This is

followed by a presentation of the normal electrocardiogram (ECG) signal in Section

2.2. Cardiovascular pathophysiology is then reviewed in Sections 2.3 and 2.4, which

describe acute coronary syndromes (ACS) and arrhythmias respectively. Finally, we

present a summary of existing methods to identify high risk patients in Section 2.5.

This material provides context for our work. The methods introduced in this

thesis have largely been validated on ECG data from post-ACS patients, some of

whom experience fatal arrhythmias. Readers may therefore find a discussion of the

electrocardiogram, acute coronary syndromes, and arrhythmias to be helpful. Those

readers already knowledgeable about these topics may want to skip to Section 2.5.3,

which provides a review of existing methods to identify high risk cardiac patients.

We compare our work with these methods later in this thesis.

This chapter borrows heavily from the discussion of these subjects in [68, 69].

2.1 Cardiac Function

The heart has four separate compartments or chambers. The upper chambers on

either side of the heart, which are called atria, receive and collect the blood coming



to the heart. The right atrium receives blood from the inferior and superior vena cava

and the left atrium is supplied by the pulmonary veins. The atria then deliver blood to

the powerful lower chambers, called ventricles, which pump blood away from the heart

through powerful, rhythmic contractions. Blood leaves the right ventricle through the

pulmonary artery and similarly, the left ventricle is connected to the aorta. The first

branches of the aorta are small arteries known as the coronary arteries. These supply

blood to the heart itself.

The heart circulates blood via the coordinated action of its chambers. Each heart-

beat can be divided into two main stages: systole and diastole. During systole, the

atria first contract, pushing a small fraction of their volume of blood into the ven-

tricles to fill them to maximum capacity. This is followed by the contraction of the

ventricles, which pushes blood out of the heart and into the pulmonary artery and

the aorta. Diastole takes place once systole is complete. During this period, both the

atria and ventricles are relaxed, and continue to fill with blood till the next systole

occurs.

At rest, the heart beats roughly about 70 times per minute, with each beat having

a corresponding duration of approximately 800 ms. The heart rate and the duration of

each beat vary significantly among individuals and may also have different values for

the same person depending on the activity being performed. The periodic pumping

action of the heart results in the unidirectional flow of blood through the human

body, and is known as the cardiac cycle. This process is coordinated by the orderly

propagation of electrical impulses throughout the myocardium, or heart muscle, which

causes these cells to contract.

In the remainder of this section, we focus on the electrophysiology of the heart.

The normal conduction system of the heart is pictured in Figure 2-1. A wave of

depolarization (i..e, a temporary reversal of the cell membrane voltage) begins in

the sinoatrial (SA) node, which contains pacemaker cells that spontaneously produce

electrical impulses. From there, depolarization spreads throughout the atria, causing

them to contract. The wave then reaches the atrioventricular (AV) node. This is

the only connection between the conduction systems of the atria and the ventricles,



Figure 2-1: Main components of the cardiac conduction system. From Lilly [95].

which are elsewhere separated by insulating fibrous tissue. The AV node consists

of specialized tissue that conducts slowly, so it delays electrical impulses that pass

through it for a short time (about 0.1 sec). This delay is important for efficient circu-

lation because it allows the atria to completely empty their blood into the ventricles

before the ventricles begin to contract. Finally, the wave of depolarization spreads

throughout the ventricles by way of the Bundle of His and the left and right bundle

branches, causing the ventricles to contract.

The electrical activity of the heart is associated with different changes at the

cellular level. The membrane of a myocardial cell contains ion channels, specialized

proteins that span the cell membrane and regulate the movement of specific ions across

the membrane [95]. Different types of ion channels are selective for different kinds

of ions, allowing only ions of a specific type to pass. In addition, the conformation

of ion channels changes with the membrane voltage difference to allow (or block) the

diffusion of ions. Ion channels act as voltage-regulated passive gates for ions: the flow

of ions through ion channels is determined by the concentration gradient and by the

electrical potential difference (voltage) across the membrane. Cell membranes also

contain active ion pumps, which consume energy in the form of adenosine triphosphate

(ATP) to pump ions across a membrane against their natural gradient.

In a cardiac cell at rest, the ion channels and ion pumps together maintain a

resting potential of -90 mV inside the cell by selectively moving Na + and CaS+



ions out of the cell and K+ ions into the cell. If the membrane voltage goes above

approximately -70 mV, an action potential begins. Some sodium ion channels open,

allowing Na + ions to enter the cell, raising the potential inside, causing more sodium

ion channels to open, and so on, creating a positive feedback loop. The cell quickly

(within milliseconds) becomes depolarized and reaches a peak voltage of slightly more

than 0 mV. This voltage is high enough to raise the membrane voltage in a nearby

area of the cell or a neighboring cell, causing the action potential to propagate.

At the peak voltage, the sodium channels close and remain inactivated until the

cell has returned to resting potential (as described below). In healthy myocardial

tissue, this refractory period prevents recently depolarized cells from depolarizing

again, regardless of the membrane voltage. This ensures that the wave of depolariza-

tion propagates forward and never backward.

The cell now begins the process of repolarization in order to prepare for the next

action potential. When the membrane voltage becomes high enough, the potassium

and calcium channels open, allowing K+ and Ca + + ions to flow out of and into the

cell, respectively. Calcium ions entering the cell during this phase activate a pathway

that induces the physical contraction of cardiac muscle cells. Finally, the original

concentrations of each ion, and the resting potential, are restored by ion pumps in

order to prepare the cell for another action potential.

Abnormal cardiac depolarization and repolarization may lead to fatal arrhythmias,

as will be discussed in Section 2.4. We believe that the techniques presented in this

thesis can help detect problems with the electrical system of the heart, and quantify

the extent of any present abnormalities.

2.2 Electrocardiogram

An electrocardiogram (ECG) is a recording of the electrical activity of the heart.

ECG data is routinely recorded for hospitalized patients, since it is useful for both

monitoring them and diagnosing conditions such as ACS or arrhythmias. ECG can be

acquired inexpensively and with minimal invasiveness; a Holter monitor (a portable



ECG device worn on a patient) can record data for 24 hours or more. Therefore, ECG

data is useful for analysis of rare and noisy phenomena. Depending on the setting

and on the reason for the recording, varying numbers of electrodes may be used in

order to capture a varying number of channels of data. Typical ECG monitors record

between 1 and 12 channels.

A cardiac muscle cell at rest maintains a negative voltage with respect to the

outside of the cell. While at rest, the surface of the cell is uniformly charged with

a positive voltage, but during depolarization, this voltage decreases and may even

become negative. Consequently, when depolarization is propagating through a cell,

there exists a potential difference on the membrane between the part of the cell that

has been depolarized and the part of the cell at resting potential. After the cell

is completely depolarized, its membrane is uniformly charged again (although now

negatively instead of positively).

These changes in potential, summed over many cells, can be measured by elec-

trodes placed on the skin. For any pair of electrodes, a voltage is recorded whenever

the direction of depolarization (or repolarization) is aligned with the line connecting

the two electrodes. The sign of the voltage indicates the direction of depolariza-

tion, and the axis of the electrode pair is termed the lead. Multiple electrodes along

different axes can be used so that the average direction of depolarization, as a three-

dimensional vector, can be reconstructed from the ECG tracings. However, such

multi-lead data is not always available, especially in the case of ambulatory monitors

that maximize battery life by reducing the number of electrodes used. Much of our

work in this thesis is therefore designed for the single ECG lead case. As we show in

subsequent chapters, there is sufficient information even within a single lead of ECG

to risk stratify patients.

Three major segments can be identified in a normal ECG, corresponding to dif-

ferent parts of the action potential. Schematics of the cardiac conduction pathway

and a typical ECG recording are shown in Figure 2-2. The P wave is associated with

depolarization of the atria. The QRS complex is associated with depolarization of the

ventricles. The T wave is associated with repolarization of the ventricles. The QRS
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Figure 2-2: Cardiac conduction pathway, with corresponding waveforms on the ECG
recording. The electrical impulse begins at the SA node (1). The wave of depolariza-
tion traverses the atria (2). Conduction is slowed at the AV node (3). The wave of
depolarization traverses the ventricles (4). From Lilly [95].

complex is larger than the P wave because the ventricles are much larger than the

atria. The QRS complex coincides with repolarization of the atria, which is therefore

usually not seen on the ECG. The T wave has a larger width and smaller amplitude

than the QRS complex because repolarization takes longer than depolarization.

2.3 Acute Coronary Syndromes

We follow the earlier discussion of normal cardiac function and electrophysiology with

brief review of cardiac pathophysiology. In particular, we focus on acute coronary syn-

drome (ACS), an umbrella term covering clinical symptoms compatible with reduced

blood supply to the heart (i.e., myocardial ischemia). Heart attacks and unstable

angina are included in this group.

An acute coronary syndrome (ACS) is an event in which the blood supply to part of

the myocardium is blocked or severely reduced. The most common symptom of ACS

is unusual and unprovoked chest pain, but this may often be absent (most notably
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Figure 2-3: Consequences of coronary thrombosis. From Lilly [95].

in patients with diabetes who experience "silent" heart attacks). Other symptoms

include shortness of breath, profuse sweating, and nausea.

An ACS is usually caused by the rupture of an atherosclerotic plaque producing

a blood clot within a coronary artery. This restricts blood flow to the heart, causing

ischemia and potentially cell death in the myocardium. Various subclassifications

of ACS are distinguished by the presence of myocardial necrosis (cell death) and by

ECG diagnosis. An overview of these subclassifications is shown in Figure 2-3.

Unstable angina refers to an ACS event in which necrosis does not occur, while

myocardial infarction (MI) refers to one in which it does. An ACS is also sub-

classified based on the extent to which the coronary artery is occluded, which can

often be inferred noninvasively from ECG recordings. An ECG showing elevation in

the ST segment is indicative of complete occlusion of an artery and necrosis (and

therefore, myocardial infarction). Such patients are given a diagnosis of ST-elevation

MI (STEMI) and are typically higher risk relative to patients with non-ST-elevation

ACS.

Non-ST-elevation ACS (NSTEACS) is indicative of partial occlusion of an artery

and is a less severe condition. NSTEACS may be diagnosed by the presence of

certain ECG irregularities (ST depression or T wave inversion). Two subclasses of



NSTEACS, unstable angina and a non-ST-elevation MI (NSTEMI), are distinguished

by whether necrosis occurs. Blood tests are used to determine levels of two serum

biomarkers, cardiac-specific troponin and creatine kinase MB (CK-MB), which are

chemicals released into the bloodstream when myocardial necrosis occurs.

Treatment for NSTEACS focuses on inducing the dissolution of blood clots by

natural pathways (via aspirin or heparin), and on reducing ischemia by lowering the

heart's oxygen demand and raising oxygen supply. Drugs that dilate blood vessels

(nitrates) or lower heart rate (Q-blockers) are commonly employed. STEMI patients

may benefit from the same treatments, but they also receive more aggressive throm-

bolytic drugs to break down blood clots and restore normal blood flow. Percutaneous

coronary intervention (PCI) and coronary artery bypass graft (CABG) may also be

conducted, either immediately or after the patient's condition has stabilized.

2.4 Arrhythmias

An ACS may leave damaged or scarred heart tissue, which can interfere with the

heart's electrical conduction system. This may lead to arrhythmias, i.e., abnormal

heart rhythms. The heart may beat too fast or too slowly, and may be regular or

irregular.

Some arrhythmias are life-threatening medical emergencies that can result in car-

diac arrest and sudden death. Others cause symptoms such as palpitations, while still

others may not be associated with any symptoms at all, but predispose toward po-

tentially life-threatening stroke or embolus. Arrhythmias are generally classified into

two groups: tachyarrhythmias (where the heart beats too quickly) and bradyarrhyth-

mias (where the heart beats too slowly). These may arise from irregularities in the

generation of action potentials, or in the conduction of action potentials through the

myocardium.

The generation of action potentials is usually the job of the SA node. In abnormal

situations, other parts of the heart may start to spontaneously depolarize (leading to

tachyarrhythmias) or impulse generation may be impaired (leading to bradyarrhyth-



mias). Typically, a bradyarrhythmia stemming from impaired impulse generation is

not a life-threatening situation, because the myocardium contains multiple regions

of tissue that have the potential to spontaneously depolarize; these act as "backup"

pacemakers if impulse generation at the SA node becomes too slow.

Major conduction pathway alterations can also lead to arrhythmias. A conduc-

tion block arises when a region of unexcitable tissue stops the wave of depolarization

entirely, preventing part of the heart from contracting. Reentry is a phenomenon in

which a wave of depolarization travels around a closed-loop conduction path, some-

times around an island of unexcitable or slowly conducting tissue. The wave of

depolarization becomes self-sustaining, leading to a tachyarrhythmia.

One of the most serious arrhythmias is ventricular fibrillation (VF), which is

associated with chaotic and rapid twitching of the ventricles without any effective

pumping of blood through the heart. This may lead to cardiac arrest (i.e., failure of

the heart to circulate blood around the body effectively) and death if not promptly

treated. Ventricular fibrillation occurs because of a reentrant conduction pattern in

the ventricles (as a parallel, reentry in the atria may lead to atrial flutter and atrial

fibrillation).

Arrhythmias may be treated by drugs that raise or lower the heart rate, or by other

more invasive interventions such as ablation of reentry pathway tissue. A persistent

bradyarrhythmia may be treated by the implantation of an artificial pacemaker. An

artificial pacemaker applies electrical stimulation to induce depolarization at a desired

rate, preempting the heart's (too slow) natural pacemaker.

A tachyarrhythmia caused by reentry may be an emergency situation since it may

lead to cardiac arrest. Such a condition is treated by the application of an electrical

current across the chest. This depolarizes the entire myocardium so that reentrant

patterns are interrupted. The heart's natural pacemaker then resumes control of

heart rhythm. This technique is called defibrillation in the case of ventricular fibril-

lation. In other cases, the discharge has to be synchronized with the QRS complex in

order to avoid inducing ventricular fibrillation; in these cases, this technique is called

cardioversion.



Patients at high risk of tachyarrhythmias may receive an implantable cardioverter-

defibrillator (ICD). This is a device implanted within the thoracic cavity, with leads

to the ventricles, that may detect aberrant heart rhythms and apply electrical shocks

to restore normal rhythm.

2.5 Post-ACS Risk Stratification

Since patients who experience ACS remain at an elevated risk of death, even after

receiving treatment [27], post-ACS risk stratification is an important clinical step in

determining which patients should be monitored and treated more (or less) aggres-

sively. This section provides background information on post-ACS risk stratification

methods. We consider the TIMI risk score (TRS), echocardiography, and long-term

ECG-based techniques.

The TRS [106, 107, 108] provides a general assessment of risk based on clinical vari-

ables that can easily be obtained at the time of admission. The variables considered

by the TRS represent seven significant independent predictors of risk. Echocardiogra-

phy is a technique for imaging the heart using ultrasound; it yields information about

blood flow in the heart as well as the shape of the heart. As described in Section

2.3, ECG data may also be used to diagnose the severity of an ACS at the time of

presentation and is typically used to guide immediate treatment.

Each of the techniques considered here incorporates some information about a

patient and yields a number that can be used to estimate the patient's risk. For

example, higher values of the TRS are associated with higher risk. We evaluate the

utility of these risk stratification techniques using two metrics. The c-statistic, or area

under the receiver operating characteristic (ROC) [116], identifies the degree to which

progressively higher values of a continuous variable are associated with an increased

risk of adverse events. The Cox proportional hazards regression model, in contrast,

estimates the relative ratio of the instantaneous rate of death (i.e., the hazard ratio)

between different groups defined by a discrete variable. This may be useful when

treatments are chosen based on a dichotomized value of a particular variable, e.g.,



if its value is above or less than some threshold value, or if the risk variable is not

continuous and can only take a small number of discrete values (such as the TRS).

2.5.1 TIMI Risk Score

The TIMI risk score (TRS) [106, 107, 108] is a simple risk stratification technique

that incorporates clinical variables easily acquired at the time of admission. It can

therefore be used in triage and immediate decision-making with regard to treatment

options. The GRACE [117] and PURSUIT [118] risk scores perform similar functions.

The TRS considers the following binary predictor variables:

* Age 65 years or older

* At least 3 risk factors for coronary artery disease among the following: hy-

pertension, hypercholesterolemia, diabetes, family history of coronary artery

disease, or being a current smoker

* Prior diagnosed coronary stenosis (narrowing of an artery) of 50% or more

* ST-segment deviation on ECG at presentation

* Severe anginal symptoms (at least 2 anginal events in prior 24 hours)

* Use of aspirin in prior 7 days

* Elevated serum cardiac markers (CK-MB or troponin)

One point is accrued for each variable that is observed, and the TIMI risk score

is the total number of points (between 0 and 7). The set of variables was obtained

by selecting independent prognostic variables from a set of 12 prospective clinical

variables after a multivariate logistic regression [106]. The other 5 variables that were

considered but not included in the TRS were: prior MI, prior coronary artery bypass

graft (CABG), prior angioplasty (PTCA), prior history of congestive heart failure,

and use of IV heparin within 24 hours of enrollment.



The TIMI 11B and ESSENCE trials [106] showed that a higher TRS is associated

with higher rates of adverse events, defined as death, MI, or severe recurrent ischemia,

in the 14 days following the initial event. The TIMI risk score has also been shown

to be useful in risk stratification of patients over longer follow up periods [108, 109].

2.5.2 Echocardiography

Echocardiography (often referred to as simply "echo") is the use of ultrasound tech-

niques to create an image of the heart. An echocardiogram can yield structural in-

formation about the heart and its valves, and information about blood flow through

the heart. Magnetic resonance imaging (MRI), nuclear imaging, and angiography can

provide some of the same information.

An echocardiogram is frequently used to assess left ventricular function [119].

The left ventricle is the largest chamber of the heart and is responsible for pumping

oxygenated blood to the body. This leads to left ventricular function being critically

important to the health of the body. If the myocardium is damaged, for example

post-MI, the left ventricle may be unable to pump out sufficient blood. This may

lead to symptoms of congestive heart failure, and has been shown to be strongly

associated with fatal arrhythmias [120].

One measure of left ventricular function is the left ventricular ejection fraction

(LVEF), i.e., the fraction of the blood volume ejected from the left ventricle during

systole (the contraction phase of the heartbeat) relative to the volume present at the

end of diastole (the relaxation phase of the heartbeat). An echocardiogram may be

used to estimate the LVEF as:

LVEF _ (LV volume before systole) - (LV volume after systole)
(LV volume before systole)

A healthy heart has an LVEF of between 0.55 and 0.75 [95]. Patients with an

LVEF of below 0.40 are considered as having significant left ventricular dysfunction

[97]. The results of the MADIT II trial [120] strongly suggest that patients with

LVEF less than 0.30 should have defibrillators implanted despite the risk of these



invasive procedures.

2.5.3 Long Term ECG Techniques

A variety of methods have been proposed that assess risk based on automated analysis

of long-term ECG data collected in the hours or days following admission. Such

data is routinely collected during a patient's stay and therefore these additional risk

assessments can be obtained at almost no additional cost. We discuss three ECG-

based methods that have been proposed in the literature: heart rate variability (HRV)

[93, 111], heart rate turbulence (HRT) [104], and deceleration capacity (DC) [90].

Each of these measures has been shown to correlate with risk of various adverse events

in the period following an ACS. In subsequent parts of the thesis, we compare our

methods to use information in long-term ECG signals with these existing ECG-based

risk variables.

One additional long-term ECG-based risk stratification technique, T-wave alter-

nans (TWA) [115], has also received some attention. However, evaluating TWA

requires the use of specialized equipment and requires patients to complete specific

maneuvers in order to elevate their heart rate. Unlike the other long-term ECG risk

measures we consider, TWA cannot be computed using regular Holter monitor data.

It is unlikely that TWA (in its current form) could be used widely for risk stratification

in general populations, and as such we do not consider it further in this thesis.

Heart Rate Variability

The class of ECG-based risk stratification techniques that has been discussed most

extensively in the literature is based on measurements of heart rate variability (HRV)

[93, 111]. The theory underlying HRV-based techniques is that in healthy people, the

body should continuously compensate for changes in oxygen demand, by changing the

heart rate. The heart rate should also changes as a result of physiological phenomena

such as respiratory sinus arrhythmia [95]. A heart rate that changes little suggests

that the heart or its control systems are not actively responding to stimuli. HRV-



based measures attempt to quantify the change in a patient's instantaneous heart

rate over a period of monitoring in order to yield an estimate of risk.

Heart rate is primarily modulated by the autonomic nervous system, which com-

prises the the sympathetic and parasympathetic nervous systems. The parasympa-

thetic nervous system's effects on heart rate are mediated by the release of acetyl-

choline by the vagus nerve, which lowers the heart rate. The sympathetic nervous

system's effects are mediated by the release of epinephrine and norepinephrine, which

raise heart rate. Decreased vagal or parasympathetic modulation (i.e. reduced down-

regulation of heart rate) is thought to be strongly linked to increased risk of death

[98, 99]. One possible explanation for this is that reduced down-regulation corre-

sponds to an increase in heart rate, which although useful in maintaining a steady

blood supply, further imposes stress on heart muscle already affected by ischemia

or infarction. However, there is little consensus on whether low HRV is simply a

correlate of poor outcomes, or whether it is part of some mechanism that leads to

arrhythmias [93].

In general, HRV-based techniques first compute the sequence of intervals between

heartbeats, which may be determined from ECG tracings. These are typically ob-

tained by counting from one QRS complex to the next [93] since the QRS complex is

the most prominent feature of a heartbeat. Abnormal beats are ignored, since the fo-

cus of HRV is to study how the nervous system modulates heart rate. While abnormal

beats change the heart rate, these changes are the result of a different physiological

phenomenon (e.g., the presence of abnormal beat foci) and are ignored so as not to

be confused with heart rate changes due to impulses from the nervous system. Since

only heartbeats resulting from normal depolarization of the SA node are considered,

the sequence of R-wave to R-wave intervals studied for HRV analysis is termed the

NN (for normal-to-normal) series. One of a number of methods is then used to sum-

marize this series with a single number indicating the amount of heart rate variability.

These HRV measures can be roughly divided into time domain, frequency domain,

and nonlinear measures. [93] provides a more complete overview of HRV metrics.

Time domain HRV methods give a measure of total variation in heart rate. Com-



monly considered time domain HRV metrics include SDNN (standard deviation of

NN intervals) and SDANN (standard deviation of mean NN interval over five-minute

windows of the recording). Other time domain measures include:

* ASDNN, the mean of the standard deviation of NN intervals within five-minute

windows.

* RMSSD, the root-mean-square of differences of successive NN intervals.

* HRVI (HRV triangular index), the maximum number of items in a single bin

in a histogram of NN intervals (using a standard bin width of 1/128 s), divided

by the total number of NN intervals.

* pNN50, the fraction of differences of successive NN intervals that exceeded 50

ms.

Frequency domain HRV methods rely on the fact that vagal and sympathetic

activity are mediated by biochemical pathways associated with different time scales

[93]. In particular, acetylcholine (which mediates vagal activity) is faster acting than

epinephrine and norepinephrine (which mediate sympathetic activity). As a result,

it is believed that changes in heart rate in the high frequency (HF) range (0.15-0.40

Hz) correspond to vagal activity, while changes in heart rate in the low frequency

(LF) range (0.04-0.15 Hz) correspond to sympathetic activity. There is, however,

considerable disagreement as to the specific phenomena measured by these bands

[5, 6].

One of the most commonly used frequency domain metrics, LF/HF, is defined as

the ratio of the total power at LF and HF frequencies in the power spectral density

(PSD) of the NN series. The PSD of the NN series is usually measured using the

Lomb-Scargle periodogram [89], which is designed to estimate the frequency content

of a signal that is sampled at irregular intervals. This makes it well suited for the NN

series, where samples are often irregularly spaced due to the removal of noisy parts

of the ECG signal and abnormal beats. The LF/HF ratio is computed for 5-minute



windows, as in [93], and the median value across windows is used as the LF/HF value

for that patient. Patients with low HRV-LF/HF are considered to be at risk.

In our experiments, we found that HRV-LF/HF performed better at identifying

patients at high risk of death post-ACS than any of the time domain metrics. These

results are consistent with earlier findings reported by the Framingham Heart Study

[101]. Frequency-based methods may be more robust, in general, because they focus

on specific physiologically relevant frequencies in the NN series, and ignore artifacts

at other frequencies.

Heart Rate Turbulence

Heart rate turbulence (HRT) [90] is related to HRV in that it studies the autonomic

tone of patients. HRT studies the return to equilibrium of the heart rate after a

premature ventricular contraction (PVC). Typically, following a PVC there is a brief

speed-up in heart rate following by a slow decrease back to the baseline rate. This

corresponds to the "turbulence" in the heart rate and is present in patients with a

healthy autonomic nervous system.

HRT is essentially a baroreflex phenomenon. When a PVC interrupts the normal

cardiac cycle, the ventricles have not had time to fill to their normal level, resulting

in a weaker pulse. This triggers the homeostatic mechanisms that compensate by

increasing heart rate. This compensatory increase in heart rate causes blood pressure

to overcompensate and active the baroreflex in reverse.

HRT is quantified using two metrics: turbulence onset (TO) and turbulence slope

(TS). The turbulence onset is a measurement of the acceleration in HR and is cal-

culated based on the two RR intervals preceding the PVC and the two RR intervals

immediately following the PVC.

TO = (RR 1 + RR 2)- (RR- 1 + RR- 2 ) 1 0 0 % (2.2)
(RR_1 + RR_2 )

TS is measured as the steepest slope of the linear regression line for each sequence

of five consecutive RR intervals. High risk patients have either TO > 0 or TS < 2.5.



Patients with both these findings are at highest risk.

HRT was evaluated prospectively in a study on 1137 post acute MI patients [90].

Patients were categorized as either 0, 1 or 2 based on the outcome of the HRT test

(0 corresponding to no risk findings and 2 corresponding to both risk findings) and

followed for an average of 22 months. During this period 70 all-cause deaths occurred.

On multivariate analysis in this patient population, HRT category 2 (i.e., having both

TO > 0 and TS < 2.5) was found to be a stronger predictor of death than age, a

history of diabetes, and LVEF.

Deceleration Capacity

Deceleration capacity (DC) is an extension of work on heart rate turbulence [104].

Like HRV, DC attempts to measure impaired vagal modulation of heart rate, which

is believed to be associated with high risk. The theory underlying the DC technique

is that vagal activity can be distinguished from sympathetic activity because vagal

activation causes heart rate deceleration while the sympathetic nervous system causes

heart rate acceleration [90].

To compute DC, we begin with the RR interval sequence RR[n] and search for

anchors, i.e., RR intervals that are longer than the ones preceding them. Denoting

the index of the ith anchor as n, and the total number of anchors by N, we define

X [n] as the average RR interval length around each anchor. This is measured by:

1N
X[n] = N RR[n, + n] (2.3)

DC is then computed from this information as:

DC -_ (X[0] + X[1]) - (X[-1] + X[-2]) (2.4)
4

Roughly speaking, DC measures the magnitude of the typical beat-to-beat deceler-

ation. The hypothesis underlying this work is that impaired deceleration corresponds

to a heart that is unresponsive to vagal stimulation.

In 2006, a cohort study investigating DC as a predictor of mortality after MI



showed that DC > 4.5 was indicative of an extremely low risk of death, while DC <

2.5 predicted high risk for mortality even in patients with preserved LVEF [90]. The

cohort study developed DC cut-off values using data from 1455 patients from a post-

infarction study in Munich. These cutoff values were then prospectively tested on a

total of 1256 patients from both London, UK (656) and Oulu, Finland(600).

2.6 Summary

In this chapter, we reviewed clinical background on the heart, electrocardiogram,

acute coronary syndromes, arrhythmias, and existing risk stratification methods.

With this context in place, we now present our work on developing novel compu-

tational methods to identify high risk patients with cardiovascular disease. We focus,

in particular, on risk stratification post-ACS and provide data in subsequent chapters

showing how our work can improve upon the existing practice of medicine through

traditional risk assessment techniques.



Chapter 3

Morphologic Variability

In this chapter, we present our work on morphologic variability (MV). MV is a mea-

sure of the amount of subtle variability in the shape of signals over long periods. The

intuition underlying this work is that measuring variability in physiological signals

provides useful prognostic information about the generative system. The presence

of too little variability may suggest that the generative system is unresponsive and

fails to react to external stresses. Conversely, the presence of too much variability

may indicate a generative system that is unstable and is unable to settle in a happy

medium of repeatable function.

In the context of cardiac disease, our hypothesis is that increased MV is associ-

ated with increased instability in the underlying physiological system, i.e., the heart

or myocardium. Measuring subtle variations in the shape of the ECG signal is not

straightforward. Key technical problems include detecting small changes in the pres-

ence of relatively large and variable time-skew, and finding techniques to summarize

these changes across different time scales.

We show how these challenges can be addressed to produce a robust and powerful

risk stratification tool. The results of our studies on MV, which we will discuss

shortly, suggest that high MV is strongly associated with cardiovascular mortality

and sudden cardiac death. This holds true even after adjusting for existing risk

stratification approaches. In fact, there is a strong association between high MV and

death even in patients who are missed by widely used risk assessment techniques such



as echocardiography. This data indicates that MV is not only independent of other

clinical measures, but moreover, it may potentially address cases where these other

methods fail.

In what follows, Section 3.1 describes the pathophysiological basis for our work

on morphologic variability and presents a hypothesis for how unstable bifurcations in

the myocardium can lead to variability in the shape of ECG signals. Section 3.2 then

details the process through which MV is measured, including a dynamic time-warping

(DTW) algorithm for comparing the morphology of entire heartbeats. We present an

evaluation of MV on ECG signals from post-ACS patients in Section 3.3. Finally, we

show how MV can be used in settings beyond risk stratification for ACS in Section

3.4.

3.1 Pathophysiology of Morphologic Variability

In a stationary and homogeneous myocardial conducting system, the activated path-

ways through excitable cells are usually similar for consecutive beats. However, in the

presence of ischemia, the conducting system has multiple irregular islands of severely

depressed and unexcitable myocardium [78] that leads to discontinuous electrophysi-

ological characteristics [81]. The presence of several possible adjacent pathways that

can invade the non-functioning area leads to variations in the spatial direction of the

invading vector [75]. Measured electrical activity in this phase can best be described

in probabilistic terms because of beat-to-beat activation and repolarization variability,

stemming from subtle unstable conduction bifurcations. Furthermore, propagation of

a beat may be dependent on the route of propagation of the previous beat. The over-

all effect of such minor conduction inhomogeneities is not well understood, but it is

possible that they correlate with myocardial electrical instability and have potentially

predictive value for ventricular arrhythmias [75] or other adverse events.

Our pathophysiological hypothesis for MV is illustrated in Figures 3-1 to 3-4. A

healthy myocardium (Figure 3-1) conducts electrical impulses smoothly. However, if

parts of the myocardium are infarcted or ischemic (Figure 3-2), then the electrical



Figure 3-1: Healthy myocardium.

Figure 3-2: Myocardium with islands of non-conducting or slowly conducting tissue.
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Figure 3-3: Race conditions leading to variability in ECG morphology.



Figure 3-4: Time-varying islands of non-conducting or slowly conducting tissue.

impulse cannot propagate through this tissue and must pass around it. This leads

to a race condition (Figure 3-3), where multiple advancing wavefronts from adjacent

healthy tissue compete to polarize myocardium beyond the diseased region. The

outcome of the race condition is probabilistic, and as the specific wavefront that first

propagates around the infarcted or ischemic tissue changes from beat to beat, the

path of the electrical impulse through the heart and the ECG morphology measuring

the electrical field of the heart also changes from beat to beat. If the disease process

itself is time-varying (Figure 3-4), e.g., due to intermittent coronary artery spasm,

then this may cause the number of non-conducting or slowly conducting islands of

tissue to further change over time. This represents an added source of variability in

the shape of the ECG signal.

This variability can be quite subtle in practice. As an example of this, consider

the two tracings shown in Figure 3-5. While it is hard to visually determine if one of

the patients has more beat to beat variability in morphology, a significant difference

is found computationally. The ECG tracing for the patient on the left has four times

the morphologic variability of the patient on the right.

3.2 Measuring Morphologic Variability

The overall system for measuring MV is shown in Figure 3-6.



Patient 19919 (died)
(MV > 2 x high risk threshold)

Patient 1593 (survived)
(MV < 1/2 x high risk threshold)

Figure 3-5: ECG tracings from two patients.
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Figure 3-6: System for measuring morphologic variability.
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3.2.1 ECG Signal Preprocessing

The process of analyzing ECG morphology is more sensitive to noise than techniques

focusing exclusively on the heart rate. This is because the heart rate can often be

estimated robustly, even in the presence of significant amounts of noise, by searching

for high amplitude R-waves in the signal. In contrast, characterizing the morphology

requires using information even from those parts of the ECG that are low amplitude

and where small amounts of noise can significantly affect the signal-to-noise ratio.

To minimize this effect, we employ techniques for noise removal and for automated

signal rejection.

Noise removal is carried out in three steps over the length of the entire signal.

Baseline wander is first removed by subtracting an estimate of the wander obtained

by median filtering the original ECG signal as described in [76]. The ECG signal is

then filtered using wavelet denoising with a soft-threshold [77]. Finally, sensitivity

to calibration errors is decreased by normalizing the entire ECG signal by the mean

R-wave amplitude.

While the noise removal steps help remove artifacts commonly encountered in

long-term electrocardiographic records, the signal rejection process is designed to

remove segments of the ECG signal where the signal-to-noise ratio is sufficiently low

that meaningful analysis of the morphology is challenging even after noise removal.

Such regions are typically dominated by artifacts unrelated to cardiac activity but

that have similar spectral characteristics to the ECG signal, e.g., segments recorded

during periods when there was substantial muscle artifact.

The process of signal rejection proceeds in two stages. Parts of the ECG signal

with a low signal quality index [82] are first identified by combining four analysis

methods: disagreement between multiple beat detection algorithms on a single ECG

lead, disagreement between the same beat detection algorithm on different ECG leads,

the kurtosis of a segment of ECG, and the ratio of power in the spectral distribution

of a given ECG segment between 5-14 Hz and 5-50 Hz. In our work, we use the Phys-

ionet SQI package implementation [82] to carry out these analyses and automatically



remove parts of the ECG signal with a low signal quality index. The remaining data

is then divided into half hour windows, and the standard deviation of the R-waves

during each half hour window is calculated. We discard any window with a standard

deviation greater than 0.2887. Given the earlier normalization of the ECG signal,

under a conservative model that allows the R-wave amplitude to uniformly vary be-

tween 0.5 and 1.5 every beat (i.e., up to 50% of its mean amplitude), we expect the

standard deviation of the R-wave amplitudes to be less than 0.2887 for any half hour

window. This heuristic identifies windows that are likely corrupted by significant

non-physiological additive noise, and where the morphology of the ECG cannot be

meaningfully analyzed.

3.2.2 ECG Segmentation and Removal of Ectopy

To segment the ECG signal into beats, we use two open-source QRS detection al-

gorithms with different noise sensitivities. The first of these makes use of digital

filtering and integration [79] and has been shown to achieve a sensitivity of 99.69%,

while the second is based on a length transform after filtering [86] and has a sensitivity

of 99.65%. Both techniques have a positive predictivity of 99.77%. QRS complexes

were marked only at locations where these algorithms agreed.

Prior to further analysis, we also remove ectopic parts of the signals in a fully

automated manner. This is done using the beat classification algorithm of [80] present

in the Physionet SQI package. The beat classification algorithm characterizes each

beat by a number of features such as width, amplitude and RR interval, and then

compares it to previously detected beat types to assign it a label.

The decision to remove ectopic beats is motivated by the fact that MV is de-

signed to measure variations in morphology arising from unstable bifurcations in the

myocardium. While ectopic beats have changes in morphology that are suggestive

of abnormalities, the source of these abnormalities corresponds to a different under-

lying phenomenon (i.e., abnormal impulse formation as opposed to abnormalities in

impulse propagation). For measuring MV, we therefore remove ectopic beats from

analysis.



Due to the removal of ectopic beats, MV is measured on mainly "normal looking"

ECG. We believe that analyzing this data is one of the strengths of our work, i.e.,

MV focuses on precisely the same data that is often considered to be clinically unin-

teresting yet contains much valuable information. As the results of our evaluations

in Section 3.3 show, this seemingly unintuitive decision to study variation in "normal

looking" ECG morphology allows us to discover important new information that is

independent of other widely used risk metrics.

3.2.3 Comparing ECG Beats

We develop a metric that quantifies how the ECG morphology of two beats differs.

The simplest way to calculate this energy difference is to subtract the samples of

one beat from another. However, if samples are compared based strictly on their

distance from the start of the beat, this process may end up computing the differences

between samples associated with different waves or intervals. For example, consider

the two heart beats depicted in Figure 3-7. In the drawing on the left, samples are

aligned based on their distance from the onset of the P-wave. Vertical lines connect

corresponding samples from the beat colored red to the beat colored blue. If samples

are compared strictly on their distance from the start of the beat, this process may

end up computing the difference between unrelated parts of the two beats. In the

drawing on the left, samples are aligned based on their distance from the onset of the

P-wave. One consequence of this is that samples that are part of the T-wave of the

top beat are compared with samples not associated with the T-wave of the bottom

beat. A measure computed this way will not reflect differences in the shapes of the

T-waves of adjacent beats.

We use a variant of dynamic time-warping (DTW) [85] to align samples that

correspond to the same underlying physiological activity. As depicted in the drawing

on the right side of Figure 3-7, this can lead to aligning a single sample in one beat

with multiple samples in another beat. The algorithm uses dynamic programming to

search for an alignment that minimizes the overall distortion. Distortion is measured

using the method described in [87], which captures differences in both amplitude and
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Figure 3-7: Alignment of beats by dynamic time-warping.

timing of ECG waves.

More precisely, given two beats, xz and x 2, of length 11 and 12 respectively, DTW

produces the optimal alignment of the two sequences by first constructing an 11-by-12

distance matrix d. Each entry (i,j) in this matrix d represents the square of the

difference between samples xl[i] and x2[j]. A particular alignment then corresponds

to a path, f through the distance matrix of the form:

O(k) = ( 1l(k), 2 (k)), 1 < k < K (3.1)

where fi and f2 represent row and column indices into the distance matrix, and K is

the alignment length. Any feasible path must obey the endpoint constraints:

1(1) = 02(1) = 1 (3.2)

01(K)= 11 (3.3)

2 (K)= 12 (3.4)

as well as the continuity and monotonicity conditions:



(3.5)

02(k + 1) 02(k) + 1 (3.6)

01(k + 1) > 0 1(k) (3.7)

02(k + 1) < 02(k) (3.8)

The optimal alignment produced by DTW minimizes the overall cost:

C(xl, 2) = min CO(xl,x 2) (3.9)

where CO is the total cost of the alignment path f and is defined as:

K

C(xI,x 2) = > d(xi[ 1(k)],x2 [02(k)]) (3.10)
k=1

The search for the optimal path is carried out in an efficient manner using a

dynamic programming algorithm derived from the following recurrence for the cumu-

lative path distance, y(i. j), and the distance matrix d:

7(i1,j-1)
y(i,j) = d(i, j) + min Y(i- 1,j) (3.11)

The final energy difference between the two beats xz and x2 , is given by the cost

of their optimal alignment, which depends on the amplitude differences between the

two signals and the length, K, of the alignment (which increases if the two signals

differ in their timing characteristics). In a typical formulation of DTW, this difference

is divided by K to remove the dependence of the cost on the length of the original

observations. A problem with applying this correction in our context is that some

01(k + 1) < 01(k) + 1



paths are long not because the segments to be aligned are long, but rather because

they differ in length. In these cases, dividing by K is inappropriate since a difference

in the length of a beats (or of parts of beats) often provides diagnostic information

that is complementary to the information provided by the morphology. Consequently,

in our algorithm we omit the division by K.

A further modification to traditional DTW in our work is that we restrict the

local range of the alignment path in the vicinity of a point to prevent biologically

implausible alignments of large parts of one beat with small parts of another. For

example, for an entry (i, j) in the distance matrix d, we only allow valid paths passing

through (i-1,j-1), (i-1,j-2), (i-2, j-1), (i-1,j-3) and (i-3,j-1). This is an

adaptation of the Type III and Type IV local continuity constraints proposed in [83].

It ensures that there are no long horizontal or vertical edges along the optimal path

through the distance matrix, corresponding to a large number of different samples in

one beat being aligned with a single sample in the other. This leads to the following

recurrence relation (which is also shown graphically in Figure 3-8):

7(i- 1,j- 1)

d(i - 1,j) + -,(i - 2,j - 1)

y(i, j) = d(i, j) + min I d(i - 1,j) + d(i - 2,j) + -y(i - 3,j - 1) (3.12)

d(i,j - 1) + }(i - 1,j - 2)

d(i,j - 1) + d(i,j - 2) + (i - 1,j - 3)

3.2.4 Morphologic Distance (MD) Time Series

Using the process described above, we can transform the original ECG signal from

a sequence of beats to a sequence of energy differences between consecutive pairs of

beats. We call the resulting time series the morphologic distance (MD) time series for

the patient. This new signal, comprising pair-wise, time-aligned energy differences

between beats, is then smoothed using a median filter of length 8. The median filtering

process addresses noisy and ectopic heart beats that may have passed through the
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Figure 3-8: Traditional and modified recurrence relation of dynamic time-warping.

earlier preprocessing stage and lead to high morphologic

process is geared towards ensuring that high values in the

to locally persistent morphology changes, i.e., sustained

morphology.

distances. The smoothing

MD time series correspond

differences in beat-to-beat

3.2.5 Spectral Energy of Morphologic Differences

We choose to summarize information in the MD time series in the frequency domain,

rather than the time domain. This decision is based on a desire to reduce the influence

of noise on MV measurements. In contrast to summing up information in the MD

signal in the time domain, i.e., over all frequencies, our objective is to measure energy

with a specific frequency range of the MD power spectral density. This frequency

range is chosen to best distinguish between pathological variability, and variability

due to noise. In this way, our approach is analogous to work on HRV (Section 2.5.3),

where frequency domain measures provide an improvement over risk assessment using

time domain measures.

We estimate the power spectral density of the MD time series using the Lomb-

Scargle periodogram [89], which is well-suited to measure the spectral content of an



irregularly sampled signal (such as the MD series which is unevenly sampled following

the removal of noise and ectopy). The Lomb-Scargle periodogram takes into account

both the signal value and the time of each sample. For a time series where the value

m[n] is sampled at time t[n], the energy at frequency w is estimated as:

1 E,[(m[n] - p) cosw(t[n] - 7)]2 ] n[(m[n] - pL) sin w(t[n] - T)]2

2P( a2) = COS 2 w(t[n] - r) + sin 2 w(t[[n] - 7)
(3.13)

where and s are the mean and variance of the m[n], and t is defined as:

Z, sin(2wt[n]
tan(2wT) = sin(2wt[n] (3.14), cos(2wt[n])

We note that when using the Lomb-Scargle periodogram both the value and time

of the MD samples are supplied as inputs to the estimation process. Therefore, rather

than measuring the power spectrum of a signal indexed by sample number, we measure

the power spectrum of a signal (in this case the MD time series) that is indexed by

absolute time. This allows us to estimate the power spectrum of beat to beat changes

in morphology in terms of absolute frequencies (i.e., in terms of seconds rather than

samples). This is useful because it allows us to directly relate the frequency at which

changes occur in the MD signal to the pharmacokinetics of autonomic modulators

such as acetylcholine, epinephrine and norepinephrine.

To distinguish between pathological variations in morphology and those resulting

from noise or non-pathological physical effects, we investigated an absolute frequency

range within the power spectral density of the MD time series that had maximal

prognostic information. This was done by evaluating all possible frequency bands

within 0.10.6 Hz with a granularity of 0.01 Hz in a training set of data. The range

of 0.1 - 0.6 Hz was based on the theory of how the vagal and sympathetic nervous

systems modulate the heart through different biochemical pathways (Section 2.5.3).

Within the rough range predicted by theory, we empirically derived the frequency

range containing maximum diagnostic information.

We used ECG recordings from 764 patients in the DISPERSE2 TIMI33 study [88]
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Figure 3-9: Heatmap showing c-statistic as a function of low- and high-frequency
cutoffs. A maximum c-statistic value of 0.77 is obtained for the frequency band
0.300.55 Hz.

for this purpose. Patients in the DISPERSE2 study had 24 hour Holter ECG data

recorded at 128 Hz within 48 hours of admission due to NSTEACS. 15 deaths were

observed in this population over a follow-up period of 90 days. For each possible

choice of prognostic frequencies, we computed energy in the MD power spectrum for

all patients in the study population. These ranges were evaluated for their ability to

discriminate between those patients who died and those who did not by measuring

the corresponding c-statistic (i.e., the area under the receiver operating characteristic

curve) [84]. As shown in Figure 3-9, the frequency range of 0.30-0.55 Hz yielded the

maximum prognostic information in the study population and led to a training set

c-statistic of 0.77. Based on this experiment, we define MV as the energy in the MD

time series power spectral density between 0.300.55 Hz.

We measure MV over five minute windows, and aggregate information across



windows for longer recordings. Specifically, given MV values for different five minute

windows of ECG, the final MV for the patient is set to the 90th percentile of the

five minute values. The choice of five minute windows and the 90th percentile are

based on empirical evidence on patients in the DISPERSE2 TIMI33 study (a detailed

discussion of these experiments can be found in [68]).

Consistent with existing risk stratification approaches, which dichotomize contin-

uous variables into different risk groups with potentially distinct therapeutic conse-

quences, we set the high risk cutoff for MV at 52.5 (i.e., values above 52.5 indicate

patients at increased risk). This value was chosen as the highest quintile of MV in

the DISPERSE2 TIMI33 population, in keeping with tradition [93].

3.3 Evaluation of Morphologic Variability

We developed and fine-tuned MV on training data from patients in the DISPERSE2

TIMI33 study. We then evaluated MV without any changes in a blind study on

patients from a different trial, i.e., the MERLIN TIMI36 trial [94].

3.3.1 Methodology

The MERLIN TIMI36 trail was designed to compare the efficacy of ranolazine, a

new anti-anginal drug, to matching placebo. The study enrolled 6560 patients within

48 hours of admission for NSTEACS. Full inclusion and exclusion criteria, as well

as study procedures, have been previously published [94]. Patients in the MERLIN

TIMI36 trial received standard medical and interventional therapy according to local

practice guidelines, and were followed for up to 24 months (median follow-up of 348

days). Holter ECG recordings (Lifecard CF, DelMar Reynolds/Spacelabs, Issaqua,

WA) were performed at 128 Hz in 6455 (98%) patients for a median duration of 6.8

days after randomization. Since all patients had Holter ECG for at least a day, we

focused on the first 24 hours of ECG for evaluation.

MV was measured for each patient as described earlier. To assess the extent to

which MV provided information beyond existing risk stratification techniques, we also



included HRT, DC, LVEF and TRS in our study (i.e., all risk variables from Section

2.5 with the exception of HRV). The decision to leave out HRV was based on the

fact that HRT and DC have been shown in recent studies to be better measures of

impaired sympathovagal modulation of the heart than HRV [104, 90]. The use of

these metrics, therefore, made the inclusion of HRV unnecessary as it does not add

any useful information beyond HRT and DC for risk stratification.

We measured HRT and DC for each patient using the libRASCH software provided

for research use by the inventors of the method (Technische Universitat Mnchen,

Munich, Germany) [104, 90]. HRT was categorized based on the turbulence onset

(TO) and turbulence slope (TS) as follows: HRTO (TO< 0 and TS> 2.5), HRT1

(either TO=0 or TS=2.5ms), and HRT2 (TO=0 and TS=2.5ms). These categories

were based on earlier results suggesting that the risk of death increases in a graded

manner from patients with HRTO to those with HRT2 [104]. DC was categorized as

follows: category 0 (> 4.5), category 1 (2.5 - 4.5), and category 2 (< 2.5). These

categories were based on earlier results suggesting that the risk of death increases in

a graded manner from patients with DC> 4.5 to those with DC< 2.5 [90].

For LVEF and the TIMI risk score, we used the values already available as part

of the MERLIN TIMI36 dataset. We divided patients into three LVEF categories,

LVEF< 30%, 30%<LVEF<40%, and LVEF>40%. The decision to categorize patients

in this manner was based on a lack of consensus across different studies as to the right

cutoff for LVEF dichotomization. Values between 30% [102] and 40% [103] have been

used in different studies. We therefore decided to study patients with LVEF between

30% and 40% as a separate group. For the TRS, we categorized patients as low risk

(TRS=1,2), moderate risk (TRS=3,4) and high risk (TRS=5,6,7), consistent with

earlier work [94].

All statistical analyses were performed using Stata version 9.2 (StataCorp LP,

College Station, TX). Hazard ratios (HR) and 95% confidence intervals (CIs) were

estimated by use of a Cox proportional-hazards regression model. Event rates are

presented as Kaplan-Meier failure rates at 52 weeks.

To address the issue of non-negligible amounts of correlation between the ECG



variables, we did not evaluate the ECG variables simultaneously in a multivariate

model. One problem caused by the presence of correlation, while trying to under-

stand the interplay of predictors in multivariate models, is that the values of the

regression coefficients may be distorted. Often, they are quite low and may fail to

achieve statistical significance. This effect takes place because standard regression

procedures assess each variable while controlling for all other predictors. At the time

the procedure evaluates a given variable, other correlated variables may account for

its variance. Another problem is that the standard errors of the regression weights

of correlated predictors can be inflated, thereby enlarging their confidence intervals.

More details on these and other issues can be found in [92].

As a result of this, instead of comparing the ECG variables collectively in a stan-

dard multivariate model, we carried out a different analysis. We assessed each ECG

variable separately, and studied its usefulness while accounting for TRS and LVEF.

3.3.2 Results

After accounting for missing files, 4557 (71%) of the recordings were available for

further analysis. There were no significant differences in the clinical characteristics of

patients with and without available ECG data (Table 3.1). In the patient population

with ECG recordings, there were 195 cardiovascular deaths (including 81 sudden

cardiac deaths) and 347 myocardial infarctions during the follow-up period.

Table 3.2 presents the correlation between the different risk variables in the patient

population with available data. The ECG risk variables had low to moderate levels

of correlation with each other, and a low correlation with both LVEF (R<0.21) and

the TIMI risk score (R<0.18).

Results of univariate and multivariate analysis for cardiovascular death are pre-

sented in Tables 3.3 and 3.4. We did not notice a statistically significant associa-

tion between any of the ECG variables and cardiovascular death in patients with

LVEF<40% (n=266, events=39). On univariate analysis, we found that MV was

strongly associated with cardiovascular death over follow-up in patients with LVEF>40%.

These results continued to hold even after adjusting for the TRS, which comprises a



Table 3.1: Baseline clinical characteristics for patients
data.

with and without available

Age, median (IQR), y
Female sex
BMI, median (IQR)
Diabetes Mellitus
Hypertension
Hyperlipidemia
Current smoker
Prior MI
Prior angina
Index event

Unstable angina
NSTEMI

Patients with Data

(n=4557)
63 (55-72)

35
29 (25-31)

34
73
67
26
33
55

47
53

Patients without Data

(n=1898)
65 (56-72)

36
28 (26-32)

35
75
68
23
37
58

50
50

Table 3.2: Correlation between different risk variables following dichotomization.

HRT DC
1.00 0.39

1.00

MV TRS LVEF
0.22 0.16 0.15
0.43 0.18 0.21
1.00 0.10 0.13

1.00 0.13
1.00

HRT
DC
MV
TRS
LVEF

---



Table 3.3: Association of risk variables with cardiovascular death in patients with
LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value).

Parameter HR 95% CI P
HRT

1 vs. 0 1.82 1.09-3.04 0.021
2 vs. 0 3.38 1.83-6.27 <0.001

DC
1 vs. 0 2.42 1.51-3.88 <0.001
2 vs. 0 3.29 1.79-6.07 <0.001

MV>52.5 3.21 2.07-4.95 <0.001

variety of information related to the clinical characteristics of the patients, biomark-

ers, and medications. Similar results were obtained for HRT and DC, although MV

had a higher hazard ratio than either of these metrics after adjusting for the TRS.

For the endpoint of sudden cardiac death, we obtained results that paralleled

those for cardiovascular death (Tables 3.5 and 3.6). In particular, MV was strongly

associated with sudden cardiac death in patients with LVEF>40%, and these results

were consistent even after adjusting for the TRS. In this case, however, neither DC

nor HRT were associated with sudden cardiac death during follow-up after adjusting

for the TRS. Similar to our results for cardiovascular death, we did not notice a

statistically significant association between any of the ECG variables and sudden

cardiac death in patients with LVEF<40% (n=266, events=18).

Finally, in the case of myocardial infarction, we did not see a significant associa-

tion between MV and the endpoint during follow-up (Tables 3.7 and 3.8). In general,

all three ECG risk variables performed poorly for this event although HRT and DC

appear to have some promise. We did not notice a statistically significant associa-

tion between any of the ECG variables and myocardial infarction in patients with

LVEF<40% (n=266, events=36).

Kaplan-Meier curves for MV and the endpoints of cardiovascular mortality, sudden

cardiac death, and myocardial infarction and presented in Figures 3-10 to 3-12.

Our results on the MERLIN TIMI36 data are quite encouraging and suggest that

MV could play an important role in identifying high risk patients for both cardiovas-

cular death and sudden cardiac death. In particular, we note that MV is strongly



Table 3.4: Association of risk variables with cardiovascular death in patients with
LVEF>40% after adjusting for the TIMI risk score (the TIMI risk score comprises
the following predictors: age 65 years or older, at least 3 risk factors for coronary
artery disease, prior coronary stenosis of 50% or more, ST-segment deviation on
electrocardiogram at presentation, at least 2 anginal events in prior 24 hours, use
of aspirin in prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,
CI=confidence interval, P=P value).

Parameter HR 95% CI P
HRT

1 vs. 0 1.60 0.96-2.67 0.073
2 vs. 0 2.65 1.42-4.97 0.002

DC
1 vs. 0 2.11 1.32-3.39 0.002
2 vs. 0 2.58 1.40-4.77 0.002

MV>52.5 2.93 1.90-4.54 <0.001

Table 3.5: Association of risk variables with sudden cardiac death in patients with
LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value).

Parameter HR 95% CI P
HRT

1 vs. 0 2.03 1.01-4.05 0.046
2 vs. 0 2.18 0.80-5.94 0.129

DC
1 vs. 0 1.73 0.87-3.41 0.115
2 vs. 0 2.02 0.77-5.30 0.156

MV>52.5 2.44 1.28-4.66 0.007

Table 3.6: Association of risk variables with sudden cardiac death in patients with
LVEF>40% after adjusting for the TIMI risk score (the TIMI risk score comprises
the following predictors: age 65 years or older, at least 3 risk factors for coronary
artery disease, prior coronary stenosis of 50% or more, ST-segment deviation on
electrocardiogram at presentation, at least 2 anginal events in prior 24 hours, use
of aspirin in prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,
CI=confidence interval, P=P value).

Parameter HR 95% CI P
HRT

1 vs. 0 1.80 0.90-3.61 0.097
2 vs. 0 1.90 0.68-5.26 0.218

DC
1 vs. 0 1.53 0.77-3.03 0.224
2 vs. 0 1.66 0.63-4.38 0.309

MV>52.5 2.27 1.19-4.32 0.013



Table 3.7: Association of risk variables with myocardial infarction in patients with

LVEF>40% (HR=hazard ratio, CI=confidence interval, P=P value).

Parameter
HRT

1 vs. 0
2 vs. 0

DC
1 vs. 0
2 vs. 0

MV>52.5

HR 95% CI P

1.69 1.21-2.36 0.002
1.86 1.14-3.04 0.014

1.66 1.20-2.28
1.28 0.75-2.20
1.12 0.77-1.62

0.002
0.365
0.553

Table 3.8: Association of risk variables with myocardial infarction in patients with

LVEF>40% after adjusting for the TIMI risk score (the TIMI risk score comprises

the following predictors: age 65 years or older, at least 3 risk factors for coronary

artery disease, prior coronary stenosis of 50% or more, ST-segment deviation on

electrocardiogram at presentation, at least 2 anginal events in prior 24 hours, use

of aspirin in prior 7 days, and elevated serum cardiac markers) (HR=hazard ratio,

CI=confidence interval, P=P value).

Parameter
HRT

1 vs. 0
2 vs. 0

DC
1 vs. 0
2 vs. 0

MV>52.5

HR 95% CI P

1.54 1.10-2.15 0.012
1.53 0.93-2.52 0.097

1.50 1.09-2.07
1.11 0.64-1.91
1.04 0.72-1.51

0.013
0.712
0.824

Figure 3-10: Kaplan-Meier
LVEF>40%.

survival curves for cardiovascular death in patients with



Figure 3-11: Kaplan-Meier survival curve for sudden cardiac death in patients with
LVEF>40%.

Figure 3-12: Kaplan-Meier survival curve
LVEF>40%.

for myocardial infarction in patients with



associated with both these outcomes in patients with preserved LVEF. These results

hold even after adjusting for the TIMI risk score.

The preserved LVEF patient group is particularly interesting for a variety of rea-

sons. First, it represents the overwhelming majority of the patients (almost 90% of the

patients in the MERLIN TIMI36 trial for whom LVEF was available had LVEF>40%)

and also the majority of the cardiovascular (68%) and sudden cardiac (69%) deaths

that occurred during follow-up had preserved LVEF. Second, the preserved LVEF

group is also the most challenging to risk stratify, since these patients appear to be

low risk according to echocardiography. Third, the deaths that take place in patients

who have low LVEF correspond to patients failing to respond to treatments once they

have been determined to be high risk by echocardiography. In contrast, we speculate

that the deaths that take place in patients who have preserved LVEF correspond to

patients who were missed by echocardiography and might have befitted from more

aggressive treatment. From this perspective, we believe that improved diagnosis may

have a greater impact in patients with LVEF>40% group.

Among patients already determined to be at high risk by echocardiography, we

did not see an improvement with the use of any of the ECG risk variables. We believe

that this result is in part due to statistical limitations, i.e., only a small minority of

patients are categorized as high risk by echocardiography and the number of patients

does not provide sufficient power for analysis. We also note that patients determined

to be high risk by echocardiography may have received treatments that confound the

evaluation process (e.g., some patients may have received ICDs).

Our results are also consistent for both cardiovascular death and sudden cardiac

death. We consider this a particularly exciting aspect of our work. In contrast to

death due to known cardiac causes, sudden cardiac death is poorly understood and

widely considered as being harder to predict. Furthermore, treatment for sudden

cardiac death generally corresponds to ICD implantation, which is both expensive

and invasive. False positives therefore represent a huge inefficiency. At the same

time, missing sudden cardiac death cases can also be disastrous. Therefore, errors

in risk stratification for sudden cardiac death may be more costly than for death in



general. We are therefore encouraged by the potential presented by MV to identify

patients at high risk of sudden cardiac death.

Finally, we note that our evaluation is restricted to post-NSTEACS patients. This

is a consequence of the availability of patient data. We believe that MV may be useful

in other patient populations, including the diagnosis of patients without prior history

of cardiac disease for de novo events. More testing is needed, however, to validate

this hypothesis.

3.4 Other Applications of MV: Quantifying Treat-

ment Effects

In addition to developing risk metrics that can be used to predict adverse outcomes,

an associated goal of our work has been to explore the use of these metrics to quantify

the impact of various treatments. We believe that this may help clinicians make better

decisions about which therapies are working and which should be reconsidered.

In this context, we explored the use of MV and other ECG metrics to assess the

impact of ranolazine (ranexa), a new cardiovascular drug that was recently proposed

and formed the basis of the MERLIN trial [94]. Ranolazine failed to show any im-

provement in the survival of patients following NSTEACS during the trial, but is still

widely used for symptomatic relief.

We studied differences in MV, HRT and DC between the ranolazine and placebo

patients in MERLIN using the Wilcoxon rank sum test. Each ECG parameter was

measured on the first 24 hours of data. We also compared the percentage of patients

in each group considered to be high risk by the ECG metrics categorized as described

earlier.

Treatment with ranolazine did not change HRT, but resulted in significantly lower

MV and DC (Table 3.9), with a decrease in MV corresponding to decreased risk

and a decrease in DC corresponding to increased risk. Similar results were seem in

subsequent days. The percentage of patients at risk by ECG metrics in the ranolazine



Table 3.9: Characteristics of ECG variables in ranolazine and placebo group.

Parameter Ranolazine Group Placebo Group P Value

(n=2255) (n=2302)
DC 5.3 (3.9-6.9) 5.6 (4.0-7.6) <0.001
MV 43.4 (29.6-46.4) 46.7 (30.3-50.0) <0.001

group was 36.4% (DC) and 16.9% (MV) compared to the placebo group 31.0% (DC)

and 21.7% (MV).

Our results suggest that ranolazine may potentially reduce myocardial electrical

instability (as reflected by lower MV), while adversely dampening the autonomic

responsiveness of the heart (resulting in lower DC).

More generally, the data from our experiment also motivates the use of computer-

ized metrics to evaluate a broader set of therapies and to make personalized decisions

on which treatments are appropriate for individual patients. Using metrics such as

HRT, DC and MV, it might be possible to "troubleshoot" treatments and make pre-

cise, quantifiable statements about how they affect different physiological processes.

This could play an important role in improving the existing practice of clinical trials

by providing an inexpensive and quick means of supplementing the coarse survival

data available through these trials.

3.5 Summary

In this chapter, we introduced the concept of morphologic variability. Our hypothesis

was that subtle variability in the shape of signals over long periods, which is often

confused for noise, contains valuable information about the underlying generative sys-

tem. We motivate our work with a theory of how subtle changes in ECG morphology

over long periods may be indicative of unstable bifurcations in the myocardium.

In addition to introducing the concept of morphologic variability, we also de-

scribed a system to measure MV. We addressed the key challenge of detecting small

pathological changes in the presence of relatively large and variable time-skew. This

is done through an algorithm based on dynamic time-warping and the Lomb-Scargle



periodogram.

We evaluated MV on a large population of post-NSTEACS patients from the

MERLIN TIMI36 trial. Our results show that high MV is strongly associated with

both cardiovascular mortality and sudden cardiac death in patients with preserved

LVEF. This holds true even after adjusting for the TIMI risk score. Moreover, for

the endpoint of sudden cardiac death, MV is the only long-term ECG metric that

is associated with events over follow-up. We are encouraged by these results, since

they suggest that MV is not only independent of other clinical measures, but more-

over, it may potentially address cases where methods such as echocardiography and

other long-term ECG risk variables fail to find patients who could benefit from more

aggressive care. We also show how MV can be useful in quantifying the effects of

treatments, and potentially troubleshooting new treatments by evaluating their im-

pact on different physiological processes.

In our work on MV, we focus on the micro-level variability in signals, i.e., subtle

variability among "normal looking" ECG beats. We ignore the different kinds of beats

that occur over time. In the next chapter, we turn our attention towards symbolic

analysis, which is a complementary method for studying ECG signals and focuses on

the macro-level variability in signals.



Chapter 4

Symbolic Analysis

In this chapter, we present our work on the symbolic analysis of physiological signals.

In contrast to the micro-level changes studied by morphologic variability, symbolic

analysis focuses on macro-level changes in physiological signals. For ECG, this means

that while morphologic variability studies subtle changes within "normal looking"

beats, symbolic analysis looks at the different classes of beats that occur over time

and ignores subtle changes within these groups.

The central idea underlying our work on symbolic analysis is that symbolization,

i.e., the transformation of continuous time series into symbolic sequences (or strings),

facilitates many kinds of analysis. In particular, it allows us to represent and search

through physiological signals as textual data rather than real-valued time series. This

allows us to leverage an extensive body of work on searching and analyzing textual

data, including ideas from computational biology and information theory.

In what follows, we first present an overview of symbolic analysis in Section 4.1.

We review the concept of symbolization and how it is used in different disciplines, and

describe how we can extend this idea to physiological signals. In particular, we discuss

why symbolic analysis is an appropriate and powerful paradigm for physiological

data, and what domain specific challenges need to be addressed for its use in this

setting. We then present an efficient algorithm to symbolize many broad classes of

physiological signals in Section 4.2, and demonstrate how symbolization using this

algorithm preserves important information in the original signal. After introducing



the concept of symbolization and presenting an algorithm to symbolize physiological

signals, we turn our attention to the analysis of symbolic signals from multiple patients

for risk stratification in Section 4.3. We propose the idea of finding high risk symbolic

patterns that are conserved in patients experiencing adverse events, and the idea of

finding patients at risk of different adverse outcomes through a comparative approach

that groups together patients with similar symbolic sequences (and potentially similar

risk profiles). For both these ideas, we propose algorithms that are runtime and space

efficient, and can handle very large datasets. Finally, we show how symbolic analysis

can be used in settings beyond risk stratification for ACS in Section 4.4.

4.1 Overview of Symbolization and Computational

Physiology

4.1.1 Symbolization

Symbolization, or the discretization of raw time series into a sequence of symbols,

is widely used in different disciplines (an excellent review on this subject appears in

[67]). In many of these applications, the time series of interest cannot be analyzed

by traditional tools. This is often due to two factors. The time series may possess

complex dynamics that cannot be analyzed by traditional tools. Instead, more sophis-

ticated but computationally expensive analyses are necessary. The runtime of these

analyses may be prohibitive. Alternatively, even in cases where simpler analyses may

make sense, computational costs are a concern if large amounts of data need to be

studied.

In this setting, symbolization can be a powerful tool. It can help reduce the

amount of data while retaining much of the important temporal information. An

advantage of working with symbols rather than the original time series data is that

the efficiency of computations is greatly increased. Furthermore, by abstracting away

information that is not relevant, symbolization may enhance our understanding of

the process being studied. The analysis of symbolic data is also often less sensitive
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Figure 4-1: Parallel between the use of symbolization in computational biology and

in computational physiology.

to measurement noise. Symbolic methods are thus favored in circumstances where

complicated analyses are necessary, large amounts of data exists, and where speed,

understanding and robustness to noise are important.

4.1.2 Computational Physiology

The factors discussed in Section 4.1.1 are particularly relevant in the study of phys-

iological signals. We therefore approach the analysis of this data within a symbolic

framework.

We note that there is a successful precedent for the use of symbolization in the

analysis of biological data, i.e., the discipline of computational biology. One of the

key early successes of this field was to use a powerful abstraction for representing

genomic data as string data. By representing different chemical units as symbols

(e.g., guanine = G, cytosine = C), computational biologists were able to transform

chemical data into text. This symbolization transformed the data into a form where

it was more amenable to analysis, given the extensive literature that exists on the

efficient analysis of string data.

We use machine learning (more specifically, clustering methods) in a similar man-

ner to achieve the symbolization of physiological data. This leads to the development



of a parallel discipline of computational physiology (Figure 4-1).

4.1.3 Challenges

Our concept of computational physiology shares many of the same challenges as com-

putational biology. We study our signals in the absence of significant prior knowledge,

and focus instead on using statistics to find interesting patterns and activity. We also

deal with the problem of these patterns and activity occurring in an approximate

form. While approximate patterns exist in genomic data due to nucleotide muta-

tions, in our work the presence of noise in the original signal, errors associated with

symbolization, and randomness in the physiological system generating the signal may

all lead to a similar effect.

In addition to this, our work faces some additional challenges. One of the differ-

ences between our vision of computational physiology, and the use of symbolization in

computational biology, is that in the case of computational biology the symbol defini-

tions are universal and consistent. For example, a cytosine molecular does not change

from one patient to another, and as a consequence of this, the mapping cytosine = C

does not change either.

For physiological signals, however, the same functional activity may look different

across patients (e.g., a heart rate of 95 beats per minute may be normal for one

patient, but may be abnormally fast for another). This means that the symbols for

different patients are essentially derived from different alphabets, since they cannot be

directly compared. Symbolization in the context of physiological signals is therefore

associated with the need to relate functionally similar activity across patients. This

problem of symbol registration may be particularly hard for applications that make

use of little or no prior knowledge, and must therefore discover what constitutes the

same functional activity across patients as part of the symbolization or subsequent

analysis process.

Another challenge associated with the symbolization of physiological signals is

determining which segments of the signal should be treated as units for symbolization.

For signals with repetitive structure, such as cardiovascular and respiratory data,



the quasi-periodic units of activity can be symbolized. However, many important

physiological signals are not periodic or quasi-periodic, e.g., EEG data and other

neurological signals in general. In these cases, an alternative is necessary, such as

segmenting the signal into fixed time windows [121] or stationary segments [122].

Finally, different analyses are necessary while analyzing symbolic representations

of physiological data, than for symbolic representations of genomic data. In particular,

the problem of risk stratification needs to be framed within the context of symbolic

data. This requires the need for new broad areas of analysis and efficient algorithms

to solve these problems.

4.1.4 Our Approach

In our work, we propose a two-step process for discovering relevant information in

physiological datasets. As a preliminary step, we segment physiological signals into

quasi-periodic units (e.g., hearts beats recorded on ECG). These units are then par-

titioned into classes using morphological features. This allows the original signal to

be re-expressed as a symbolic string, corresponding to the sequence of class labels

assigned to the underlying units. We also create a prototypical representation of

each symbol by aggregating the units that fall into the same class using techniques

described in Section 5.2. This allows us to re-represent the original signal as a sym-

bolic sequence, while retaining information about the physiological activity that the

specific symbols correspond to.

The second step involves searching for significant patterns in the reduced represen-

tation resulting from symbolization. In the absence of prior knowledge, significance

is assessed by organization of basic units as adjacent repeats, frequently occurring

words, or subsequences that co-occur temporally with activity in other signals. The

fundamental idea is to search for variations that are unlikely to occur purely by

chance, since such patterns are more likely to be clinically relevant. For the multi-

patient case, we propose methods that are robust and allow for symbols to be drawn

from different alphabets to be compared.

Figure 4-2 presents an overview of this approach. We start by using conventional



techniques to segment an ECG signal into individual beats. The beats are then

automatically partitioned into classes based upon their morphological properties. For

the data in Figure 4-2, our algorithm found five distinct classes of beats, denoted

in the figure by the arbitrary symbols 0, y, 3, a, and ? (Figure 4-2). For each

class an archetypal beat is constructed that provides an easily understood visible

representation of the types of beats in that class. The original ECG signal is then

replaced by the corresponding sequence of symbols. This process allows us to shift

from the analysis of raw signals to the analysis of symbolic strings. The discrete

symbolic representation provides a layer of data reduction, reducing the data rate

from 3960 bits/second (sampling at 360 Hz with 11 bit quantization) to n bits/second

(where n depends upon the number of bits needed to differentiate between symbols,

three for this example). Finally, various techniques are used to find segments of the

symbol sequence that are of potential clinical interest. In this example, a search

for approximate repeating patterns found the rhythm shown in Figure 4-2. The

corresponding prototypical representation in Figure 4-2 allows this activity to be

readily visualized in a compact form.

This example helps illustrate an important advantage of symbolization. Finding

interesting activity similar to that shown in Figure 4-2 would have been hard while

operating directly on the time series signal. However, within a symbolic framework,

it could be discovered efficiently. We believe that symbolization offers an elegant way

to carry out analyses that are otherwise hard for time series signals.

4.2 Creating Symbolic Representations

An extensive literature exists on the subject of symbolization [67]. Essentially, the

task of symbolizing data can be divided into two sub-tasks. As a first step, the signal

needs to be segmented into intervals of activity. Following this, the set of segments

is partitioned into classes and a label associated with each class. The segmentation

stage decomposes the continuous input signal into intervals with biologically relevant

boundaries. A natural approach to achieve this is to segment the physiological signals
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Figure 4-2: Overview of symbolic analysis: (a) Raw data corresponding to Patient 106

in the MIT-BIH Arrhythmia Database. The red rectangle denotes a particular pattern

hidden within the raw data. This pattern is difficult to identify by visual examination

of the original signal alone. (b) The raw ECG data is mapped into a symbolic

representation (11 lines of the symbol sequence are elided from this figure). (c)

An example rhythm of a repeating sequence, found in the symbolized representation

of a region of data corresponding to the boxed area of the raw data in (a). (d) An

archetypal representation, created using the techniques in Section 5.2, of the repeating

signal.



according to some well-defined notion. In this work, we use R-R intervals for heart

beats and peaks of inspiration and expiration for respiratory cycles. Since most

cardiovascular signals are quasi-periodic, we can exploit cyclostationarity for data

segmentation [66].

We treat the task of partitioning as a data clustering problem. Roughly speaking,

the goal is to partition the set of segments into the smallest number of clusters such

that each segment within a cluster represents the same underlying physiological activ-

ity. For example, in the case of ECG data, one cluster might contain only ventricular

beats (i.e., beats arising from the ventricular cavities in the heart) and another only

junctional beats (i.e., beats arising from a region of the heart called the atrioventric-

ular junction). Each of these beats has different morphological characteristics that

enable us to place them in different clusters. There is a set of generally accepted

labels that cardiologists use to differentiate distinct kinds of heart beats. Although

cardiologists frequently disagree about what label should be applied to some beats,

labels supplied by cardiologists provide a useful way to check whether or not the beats

in a cluster represent the same underlying physiological activity.

In many cases finer distinctions than provided by conventional classification can

be clinically relevant. Normal beats, for example, are usually defined as beats that

have morphologic characteristics that fall within a relatively broad range; e.g., QRS

complex less than 120 ms and PR interval less than 200 ms. Nevertheless, it may

be clinically useful to further divide "normal" beats into multiple classes since some

normal beats have subtle morphological features that are associated with clinically

relevant states. One example of this phenomenon is Wolff-Parkinson-White (WPW)

syndrome. In this disorder, patients have ECG beats that appear grossly normal, yet

on close inspection, their QRS complexes contain a subtle deflection called a d-wave

and a short PR interval [66]. Since such patients are predisposed to arrhythmias,

the identification of this electrocardiographic finding is of interest [66]. For reasons

such as this, standard labels cannot be used to determine the appropriate number of

clusters.

In our work, we avoid the use of significant prior knowledge and instead use the raw



samples of each segment as features. Many different clustering algorithms can then

be applied for the unsupervised labeling of a collection of individual observations into

characteristic classes ([65] provides a detailed examination of a number of methods

that have been used to label ECG beats). Unfortunately, most of these methods

are computationally intensive and also tend to ignore small clusters (new clusters

are created to better fit high density regions of the clustering space, rather than

to fit clusters that are different from other groups but comprise a small number of

observations). We attempt to address both these shortcomings, and develop clustering

methods that are efficient and also have a higher sensitivity (i.e., can discover classes

that occur rarely during the course of a recording) than the techniques described in

[65].

4.2.1 Max-Min Clustering with Dynamic Time-Warping

We make use of Max-Min clustering to separate segmented units of cardiovascular

signals into groups. The partitioning proceeds in a greedy manner, identifying a new

group at each iteration that is maximally separated from existing groups.

Central to this clustering process is the method used to measure the distance

between two segments. As was described in Section 3.2.3, one of the challenges of

comparing the morphology of segments (defined as the raw samples of each segment)

is that simple metrics such as the Euclidean distance are insufficient. The presence of

time-skew, which is a common occurrence in physiological signals and leads to these

signals being variably dilated or shrunk, leads to physiologically different activity

being compared when one segment is blindly subtracted from the other. We therefore

adopt our earlier approach of using dynamic time-warping (DTW) to align samples

in segments before measuring the differences between them (Section 3.2.3).

The use of DTW means that segments cannot be compared on the basis of indi-

vidual features (i.e., each raw sample), but instead we can only measure how different

two segments are. This creates the need for clustering algorithms that are not feature

driven, but distance driven. In [62] and [63], clustering methods are proposed that

build on top of DTW. A modified fuzzy clustering approach is described in [62], while



[63] explores the use of hierarchical clustering. Denoting the number of observations

to be clustered as N, both methods require a total of O(N 2) comparisons to cal-

culate the dissimilarity between every pair of observations. If each observation has

length M, the time taken for each dissimilarity comparison is O(M 2 ). Therefore, the

total running time for the clustering methods in [62] and [63] is O(M 2 N 2). Addi-

tionally, storing the entire matrix of comparisons between every pair of observations

requires O(N 2) space. For very large datasets, the runtime and space requirements

are prohibitive.

To reduce the requirements in terms of running time and space, we employ Max-

Min clustering [64], which can be implemented to discover k clusters using O(Nk)

comparisons. This leads to a total running time of O(M 2Nk), with an O(N) space

requirement.

Max-Min clustering proceeds by choosing an observation at random as the first

centroid cl and setting the set S of centroids to {c1 }. During the i-th iteration, c, is

chosen such that it maximizes the minimum distance between c, and observations in

S:

c, = arg max min C(x, y) (4.1)
x S yeS

where C(z, y) is defined as in Equation 3.9. The set S is incremented at the end of

each iteration such that S = S U ci.

The number of clusters discovered by Max-Min clustering is chosen by iterating

until the maximized minimum dissimilarity measure in Equation 4.1 falls below a

specified threshold 0. Therefore the number of clusters, k, depends on the separability

of the underlying data to be clustered.

The running time of O(M 2Nk) can be further reduced by exploiting the fact that

in many cases two observations may be sufficiently similar that it is not necessary

to calculate the optimal alignment between them. A preliminary processing block

that identifies c such homogeneous groups from N observations without alignment of

time-samples will reduce the number of DTW comparisons, each of which is O(M 2 ),



from O(Nk) to O(ck). This pre-clustering can be achieved in a computationally

inexpensive manner through an initial round of Max-Min clustering using a simple

distance metric.

The running time using pre-clustering is given by O(MNc) + O(M 2ck). The

asymptotic worst case behavior with this approach is still O(M 2Nk), e.g., when all

the observations are sufficiently different that c = N. However, for the ECG data we

have examined, c is an order of magnitude less than N. For example, pre-clustering

with a hierarchical Max-Min approach yielded a speedup factor of 12 on the data

from the MIT-BIH Arrhythmia database used in the evaluation presented later in

this chapter.

4.2.2 Evaluation

In what follows, we evaluate our work on symbolization by applying it to ECG

datasets. We first report on the use of Max-Min clustering with a DTW-based dis-

tance metric to partition ECG beats at a finer granularity than existing clinical labels.

We then study how symbolization retains useful information in the original signal by

reporting the results of simple analyses on symbolized ECG data.

We stress that these studies are intended purely for evaluation. Neither set of

experiments addresses a direct goal of our work. Instead, we use these experiments

for illustrative purposes, to explore the strengths and weaknesses of our work on

symbolization.

ECG Symbolization by Max-Min Clustering with Dynamic Time-Warping

We applied symbolization to electrocardiographic data in the Physionet MIT-BIH

Arrhythmia database, which contains excerpts of two-channel ECG sampled at 360

Hz per channel with 11-bit resolution. Activity is hand-annotated by cardiologists,

allowing our findings to be validated against human specialists.

For each patient in the database, we searched for different classes of ECG activity

between consecutive R waves within each QRS complex. A Max-Min threshold of
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Figure 4-3: Histogram of clusters per patients: The number of clusters determined
automatically per patient is distributed as shown, with a median value of 22.

0 = 50 was used, with this value being chosen experimentally to produce a small

number of clusters, while generally separating out clinical classes of activity for each

patient. As we report at the end of this section, a prospective study on blind data

not used during the original design of our algorithm shows that the value of the 0

parameter generalizes quite well.

Beats were segmented using the algorithm described in [79]. A histogram for

the number of clusters found automatically for each patient is provided in Figure

4-3. For the median patient, 2202 distinct beats were partitioned into 22 classes. A

much larger number of clusters were found in some cases, in particular patients 105,

203, 207 and 222. These files are described in the MIT-BIH Arrhythmia database as

being difficult to analyze owing to considerable high-grade baseline noise and muscle

artifact noise. This leads to highly dissimilar beats, and also makes the ECG signals

difficult to segment. For patient 207, the problem is compounded by the presence of

multiform premature ventricular contractions (PVCs). Collectively, these records are

characterized by long runs of beats corresponding to singleton clusters, which can be

easily detected and discarded (i.e., long periods of time where every segmented unit

looks significantly different from everything else encountered).

Our algorithm clusters data without incorporating prior, domain-specific knowl-



edge. As such, our method was not designed to solve the classification problem of

placing beats into pre-specified clinical classes corresponding to cardiologist labels.

Nevertheless, a comparison between our clustering algorithm and cardiologist pro-

vided labels is of interest. Therefore we compared our partitioning of the data to

cardiologist provided labels included in the MIT-BIH Arrhythmia database. There

are a number of ways to compare a clustering produced by our algorithm (CA) to the

implicit clustering which is defined by cardiologist supplied labels (CL).

CA and CL are said to be isomorphic if for every pair of beats, the beats are

in the same cluster in CA if and only if they are in the same cluster in CL. If CA

and CL are isomorphic, our algorithm has duplicated the clustering provided by

cardiologists. In most cases CA and CL will not be isomorphic because our algorithm

typically produces more clusters than are traditionally defined by cardiologists. We

view this as an advantage of our approach since it allow our method to identify new

morphologies and patterns that may be of clinical interest.

We say that CA is consistent with CL if an isomorphism between the two can be

created by merging clusters in CA. For example, two beats in an ECG data stream

may have abnormally long lengths and therefore represent "wide-complex" beats.

However, if they have sufficiently different morphologies, they will be placed in dif-

ferent clusters. We can facilitate the creation of an isomorphism between CA and CL

by merging all clusters in CA that consist of wide-complex beats. While consistency

is a useful property, it is not sufficient. For example, if every cluster in CA contained

exactly one beat, it would be consistent with CL. As discussed above, however, in

most cases our algorithm produces a reasonable number of clusters.

To determine whether our algorithm generates a clustering that is consistent with

cardiologists supplied labels, we examined the labels of beats in each cluster and

assigned the cluster a label corresponding to its majority element. For example, a

cluster containing 1381 normal beats, and 2 atrial premature beats would be labeled

as being normal. Beats in the original signal were then assigned the labels of their

clusters (e.g., the 2 atrial beats in the above example would be labeled as normal).

Finally, we tabulate the differences between the labels generated by this process



and the cardiologist supplied labels in the database. This procedure identifies, and

effectively merges, clusters that contain similar types of beats.

We considered only classes of activity that occurred in at least 5% of the patients

in the population, i.e., 3 or more patients in the MIT-BIH Arrhythmia database.

Specifically, even though we successfully detected the presence of atrial escape beats

in patient 223 of the MIT-BIH Arrhythmia database and ventricular escape beats in

patient 207, we do not report these results in the subsequent discussion since no other

patients in the population had atrial or ventricular escape activity and it is hard to

generalize from performance on a single individual. During the evaluation process,

labels that occur fewer than three times in the original labeling for a patient (i.e, less

than 0.1% of the time) were also ignored.

Tables 4.1 and 4.2 show the result of this testing process. We document differences

between the labeling generated by our process and the cardiologist supplied labels

appearing in the database. Differences do not necessarily represent errors. Visual

inspection of these differences by a board-certified cardiologist, who was not involved

in the initial labeling of beats in the Physionet MIT-BIH Arrhythmia database, in-

dicates that experts can disagree on the appropriate labeling of many of the beats

where the classification differed. Nevertheless, for simplicity we will henceforth refer

to "differences" as "errors."

In Table 4.1, for the purpose of compactly presenting results, we organize clinical

activity into the following groups:

* N = Normal

* Atr = Atrial (atrial premature beats, aberrated atrial premature beats and

atrial ectopic beats)

* Ven = Ventricular (premature ventricular contractions, ventricular ectopic beats

and fusion of normal and ventricular beats)

* Bbb = Bundle branch block (left and right bundle branch block beats)

* Jet = Junctional (premature junctional beats and junctional escape beats)



Table 4.1: Beats detected for each patient in the MIT-BIT Arrhythmia database
using symbolization. To compactly display results we group the clinical classes (Mis
= mislabeled

Patient
100
101
102
103
104
105
106
107
108
109
111
112
113
114
115
116
117
118
119
121
122
123
124
200
201
202
203
205
207
208
209
210
212
213
214
215
217
219
220
221

222
223
228
230
231
232
233
234
Total Beats
Total Patients

beat).

N

2234/2234
1852/1852
14/99

2076/2076
51/163

2530/2534
1500/1500

1748/1748

2117/2117
2533/2533
1782/1782
1815/1815
1946/1946
2281/2281
1528/1528

1540/1540
1858/1858
2475/2475
1510/1510

1737/1739
1605/1605
2043/2046
2432/2442
2564/2565

1507/1575
2603/2617
2411/2416
920/920
2632/2635

3190/3191
229/242
2077/2077
1942/1947
2028/2028

Atr
30/33

3/3

1/4

5/5
4/8

82/96

1/29
65/76
32/48

1/3
114/116

317/383
14/21

4/28
260/261

0/7
91/93

1939/1977 121/187
2021/2025 20/89
1685/1687 0/3
2249/2249
312/312

1407/1423

2219/2220 0/7
2695/2696
76430/768022312/2662
41/41 18/21

Ven Bbb

39/40
508/511

59/59
17/18
37/40

47/48

107/107

16/16

443/443

52/52
796/815
184/185
18/20

318/345
76/77

190/208
1327/1348

164/183

321/581
1980/1993
156/159
138/157
31/63

381/382

462/484
366/371

814/828

3/3
7334/7808
29/29

2486/2486

2147/2161

1523/1526

1538/1559

1821/1824

1246/1247

435/437

13176/13233
8/8

Jct Oth Mis
3/2267
0/1855

2077/2079 87/2182
0/2076

2027/2040 125/2203
5/2574
3/2011

2074/2075 1/2134
4/1770
3/2526
0/2117
0/2533
0/1787
5/1871
0/1946
0/2388
0/1528
28/2273
0/1983
0/1858
0/2475
0/1510

6/34 31/1612
49/2583

3/11 20/1877
21/2114
37/2787
4/2645
41/1883
89/2923
80/3000
31/2620
3/2744

287/3244
14/2254 0.62%

4/3350
1720/1802 114/2201

39/2147
7/2040
1/2410
0.04%

125/216 195/2380
95/2598
10/2061
0/2249

1/1559
18/1860
22/3055

35/50 16/2749
169/311 7898/7996 1493/108812

4/4 4/4

Mis %
0.13%
0.00%
3.99%
0.00%
5.67%
0.19%
0.15%
0.05%
0.23%
0 12%
0.00%
0.00%
0.00%
0.27%
0.00%
0.00%
0.00%
1 23%
0.00%
0.00%
0.00%
0.00%
1.92%
1.90%
1.07%
0.99%
1.33%
0.15%
2.18%
3.04%
2.67%
1.18%
0.11%
8.85%

0.12%
5.18%
1.82%
0.34%

8.19%
3.66%
0.49%
0.00%
0.06%
0.97%
0.72%
0.58%
1.37%



Table 4.2: Summary comparison of detection through symbolization to cardiologist
supplied labels. The labels used correspond to the original MIT-BIH Arrhythmia
database annotations (N = normal, L = left bundle branch block, R = right bundle
branch block, A = atrial premature beats, a = aberrated atrial premature beats, V
= premature ventricular complex, P = paced beat, f = fusion of normal and paced
beat, F = fusion of ventricular and normal beat j = junctional escape beat). The top
row is indicative of how well the clustering did at identifying the presence of classes
of clinical activity identified by the cardiologists for each patient. The bottom row
indicates how well the clustering did at assigning individual beats to the same classes
as the cardiologists.

N L R A a V P f F j
Percentage of 100.0 100.0 100.0 84.21 100.0 100.0 100.0 100.0 75.0 100.0
total patients

detected
Percentage of 99.52 99.50 99.67 87.30 85.11 96.80 99.91 78.75 46.69 56.96

total beats
detected

* Oth = Others

The overall misclassification percentage is approximately 1.4%.

Figure 4-4 also illustrates how the mislabeling error associated with our clustering

approach is distributed across patients. In the majority of the patients, there is less

than 1% error.

The data in the first row of Table 4.2 sheds light on critical errors; i.e. errors that

cause one to conclude that a patient does not exhibit a certain type of beat when

in fact, their ECG signal does contain a significant number of the beats in question.

More precisely, we say that a critical error has occurred when a patient has at least

three instances of a clinically relevant type of beat and there does not exist at least

one cluster in which that beat is a majority element. For example, for each patient

for whom the cardiologists found three or more "premature ventricular complexes,"

the algorithm formed a cluster for beats of that type. On the other hand, for one

quarter of the patients with at least three "fusion of ventricular and normal beats,"

the algorithm did not form a cluster for that type of beat. In 43 out of 48 patients
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Figure 4-4: Mislabeling Error: Over a quarter of the patients had no mislabeling

errors using our clustering approach, over 65% had less than 1% mislabeled beats

relative to cardiologist labels.

there were no critical errors. This is important because, in the presence of critical

errors, an inspection of the data through visualization of the cluster representatives

would conceal the presence of some activity in the dataset. Avoiding critical errors

is a challenge because for some patients, the number of elements in different clinical

classes varies by a few orders of magnitude.

As Tables 4.1 and 4.2 indicate our symbolization technique does a reasonably good

job both at identifying clinically relevant clusters and at assigning individual beats

to the appropriate cluster.

For some classes of activity, however, our morphology-based clustering generated

labels different from those provided by the cardiologists. Figure 4-5 presents an

example where morphology-based clustering differed from the labels in the database.

However, given the similarity between the beats labeled F and N in the database,

it is not clear that our algorithm is in error. Similarly, our algorithm also failed to

distinguish right bundle branch block and junctional premature beats, as shown in

Figure 4-6.

Sometimes our algorithm places beats for which cardiologists have supplied the

same label into different clusters. As was discussed above, this is not necessarily a bad

thing as subtle distinctions between "normal" beats may contain useful clinical infor-

mation. Figures 4-7 and 4-8 present instances in which our algorithm separated beats



Figure 4-5: Raw tracing of ECG for patient 213 in the MIT-BIH database with fusion
of ventricular and normal beats: A sequence of ECG is shown containing beats labeled
as both normal (N) and fusion (F). The morphological differences between the two
classes of beats are subtle. This excerpt corresponds to time 4:15 in the recording.

Figure 4-6: Raw tracing of ECG for patient 124 in the MIT-BIH database with
junctional escape beats: A sequence of ECG is shown containing both right bundle
branch block (R) and junctional premature (J) beats. The morphological differences
between the two classes of beats are again subtle. This excerpt corresponds to time
4:39 in the recording.

that were assigned the same label by cardiologists. In Figure 4-7, morphology-based

analysis is able to distinguish changes in length. In Figure 4-8, changes in amplitude

are discerned automatically. These morphological differences may represent clinically

important distinctions. In each instance, beats that are classified as "normal" have

very different morphologic features that may be associated with important disease

states. Abrupt changes in the R-R interval, like that noted in Figure 4-7, correspond

to rapid fluctuations in the heart rate; a finding which can be associated with a num-

ber of clinically important conditions such as Sick Sinus Syndrome (SSS) or sinus

arrhythmia [66]. Similarly, significant changes in QRS amplitude, like that seen in

Figure 4-8, can be observed in patients with large pericardial effusions [66]. Both of

these diagnoses are important syndromes that can be associated with adverse clinical

outcomes. Therefore we view the ability to make such distinctions between beats as

a benefit of the method.

Data from the MIT-BIH Arrhythmia database were used during the initial design

of the symbolization algorithm, and the results reported in Tables 4.1 and 4.2 were



Figure 4-7: Raw tracing of ECG for patient 115 in the MIT-BIH database with normal

beats: A sequence of ECG is shown containing normal beats. This sequence represents

an example where morphology-based analysis separates the beats into short (first 7

beats) and long (last three beats) classes. The beats still fall in the same clinical class,

but this separation, which indicates an abrupt change in heart rate, may potentially

be of interest for the purpose of higher level analysis. This excerpt corresponds to

time 7:40 in the recording.

(a)

Figure 4-8: Raw tracing of ECG for patient 106 in the MIT-BIH database with normal

beats: (a) ECG corresponding to time 16:54 in the file. (b) ECG corresponding to

time 21:26 in the file. Morphology-based analysis places the beats shown in (a) and

(b) into separate clusters based on changes in amplitude.



Table 4.3: Summary comparison of detection through symbolization to cardiologist
supplied labels for the MGH/MF Waveform database. The labels of the columns
match those in Table 4.2 with J = junctional premature beats.

N V P J F
Percentage of total patients detected 100.0 100.0 100.0 100.0 100.0
Percentage of total beats detected 99.91 96.51 98.84 100.0 100.0

generated on this data set. To test the robustness of the method, we also tested

our algorithm on ECG data on the first forty patients from the MGH/MF Waveform

database (i.e., mgh001-mgh040), which was not used in design of the algorithm.

This dataset contains fewer episodes of interesting arrhythmic activity than the MIT-

BIH Arrhythmia database and is also relatively noisy, but contains ECG signals

sampled at the same rate (i.e., 360 Hz) with 12 bit resolution; i.e., a sampling rate

and resolution similar to that of the MIT-BIH Arrhythmia database. The recordings

are also typically an hour long instead of 30 minutes for the MIT-BIH Arrhythmia

database.

Table 4.3 shows the performance of the symbolization algorithm on this dataset.

The results are comparable to the ones obtained for the MIT-BIH Arrhythmia dataset.

The median number of clusters found in this case was 43. We removed file mgh026

from analysis because of the many errors in the annotation file which prevented any

meaningful comparisons against the cardiologist provided labels. We also removed file

mgh002, which was corrupted by noise that led to errors in the segmentation of the

ECG signal. We also detected the presence of atrial escape beats for patient mgh018,

but do not report results for this class in Table 4.3 since no other patients revealed

similar activity.

Preservation of Information in Symbolized Data

We supplement our evaluation of Max-Min clustering with a DTW distance metric

by studying how symbolization retains useful information in the original signal. We

do this by reporting the results of simple analyses on symbolized ECG data. We
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Figure 4-9: A patient with ventricular bigeminy.

show that even with these simple analyses, important information related to many

pathological conditions is preserved in the symbolized ECG signal.

Figures 4-9 and 4-10 provide examples of applying techniques to detect approxi-

mate tandem repeats. The figures show a fragment of the raw signal and a pictorial

representation of the symbol stream for that fragment. The pictorial representation

provides a compact display of the symbol string and facilitates viewing the signal over

long time intervals. In each case, the repeating sequence in the symbolic signal cor-

responds to a well-known cardiac rhythm that can be recognized in the raw tracings.

Figure 4-9 presents a signal showing a ventricular bigeminy pattern, while Figure 4-10

shows trigeminy. The associated symbolic streams provided for both figures show the

repetitious activity in the reduced symbolic representations.

Figure 4-11 shows how searching for approximate tandem repeats in symbolized

data can discover complex rhythms that are easy for clinicians to miss. In this case,

approximate repeat detection identifies an intricate pattern which likely represents

episodes of an ectopic atrial rhythm with aberrant ventricular conduction superim-

posed on an underlying sinus rhythm. This clinically significant rhythm was not

marked by the clinicians who annotated the signal.

Figure 4-12 shows an example in which the detection of recurrent transient pat-

terns in symbolic signals reveals many short, unsustained episodes of tachyarrhythmic
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Figure 4-10: A patient with ventricular trigeminy.
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Figure 4-11: A rhythm of 4 units corresponding to an ectopic atrial rhythm.
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Figure 4-12: A patient with recurrent tachyarrhythmic episodes. These episodes

appear in the raw tracing as dense regions, corresponding to an increased number of

heart beats during these periods owing to faster heart rate.

activity. The tachyarrhythmic beats occur infrequently relative to normal beats, and

consecutive runs of such activity are unlikely to have occurred merely at random.

Figure 4-13 presents the result of applying techniques to discover high entropy

segments. These techniques are able to discover segments of ECG corresponding to

atrial fibrillation. The irregularity of activity leads to entropy increasing noticeably in

windows of the symbolic stream, owing to the unstructured nature of the underlying

disorder.

Figures 4-14 and 4-15 demonstrate multi-signal trend detection on symbolized

data. In Figure 4-14 the search for correlated activity revealed a case of pulsus

paradoxus, where inspiration is associated with a significant drop in arterial blood

pressure. This is often associated with cardiac tamponade, severe COPD, pulmonary

embolism or right ventricular infarction. In Figure 4-15 episodes of faster heart rate

can be seen to occur in conjunction with increased arterial blood pressure, a find-

ing indicative of a hemodynamically significant rhythm. In both cases, associations

between the symbolic representations allow for these phenomena to be easily detected.
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Figure 4-13: Raw ECG tracing, symbolic signal and entropy taken over 30 second
windows for a patient with atrial fibrillation. As in Figure 14, atrial fibrillation in
the raw tracings corresponds to the dense regions.
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Figure 4-14: Respiration and arterial blood pressure signals for a patient with pulsus
paradoxus.
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Figure 4-15: ECG and arterial blood pressure signals for a patient in whom fast heart

rate leads to increased arterial blood pressure.

4.3 Symbolic Analysis

In the remainder of this section, we focus our attention on analyzing symbolic se-

quences from multiple patients with the goal of risk stratification. We approach risk

stratification in two different ways.

A first approach is to study symbolic sequences from multiple patients to find

activity that has a statistically significant presence or absence in sub-populations,

i.e., we find sub-sequences that are consistently present or absent in the symbolic

sequences for patients who have events. In what follows, we describe the discovery

of these patterns only using data from patients who experience events (Section 4.3.1)

and using data both from patients who have and do not have events (Section 4.3.3).

A second approach for risk stratification within a symbolic framework is to identify

patients with similar symbol dynamics over long periods of time. The hypothesis

underlying this work is that patients with similar symbolic signals will have similar

risk profiles. We develop this proposed idea further, and describe algorithms for

carrying out this analysis in Section 4.3.5.
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Figure 4-16: Prediction through conservation in the context of a population of patients
affected by a common acute clinical event

4.3.1 Pattern Discovery in Positive Examples

We model prediction as the problem of identifying activity that consistently precedes

an event of interest. In the absence of any prior knowledge, this activity can be

discovered by observing multiple occurrences of the event and detecting statistically

significant commonalities in the data preceding it, i.e., by searching for conserved

elements unlikely to occur purely by chance prior to the event of interest (Figure

4-16). To handle noise, we further adopt a relaxed view of conservation, whereby

precursors may approximately match or be altogether absent on some observations

of the event. A further practical consideration is that the search be computationally

efficient to handle large amounts of data resulting from multiple observations.

This model of prediction is similar to the search for regulatory motifs in the setting

of computational biology. Motif discovery techniques operate on genomic datasets

and search for DNA sequences that are conserved across genomes. We generalize

this model and describe how the search for precursors to acute clinical events can

be carried out in an analogous manner, by first converting continuous physiological

signals into an alphabetical representation, and then mining this representation for

conserved activity. A variety of randomized greedy algorithms can be used to ef-

ficiently carry out the search for such patterns. We use techniques such as TCM

and Gibbs sampling as the foundation of our work, and enhance them to operate on

data with highly divergent background distributions of symbols, frequent noise and
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patterns of increased degeneracy relative to genomic data.

In what follows, we describe the proposed unsupervised inference methodology.

While the techniques we suggest can be used on a variety of signals and are suffi-

ciently general-purpose, we motivate them in the more concrete setting of searching

for predictive activity in physiological signals. We detail the challenges associated

with such an approach and describe its benefits and limitations.

Creating Symbolic Representations for Multiple Patients

From a knowledge discovery goal, it is appealing to derive the alphabet for symbol-

ization directly from the data itself. Techniques such as those in Section 4.2 can be

employed to achieve this goal. While the approach of generating a patient-specific

symbolic representation is powerful in its ability to capture significant changes across

a patient, it poses the problem that the clusters are derived separately for each pa-

tient. This restricts comparisons across a population. A possible means for addressing

this issue is to use a semi-supervised approach where the symbols derived for each

patient are related by a human expert. This allows for the symbols to be dynamically

derived based on characteristics inherent in the data itself, and for these symbols to

be related and compared across a population.

For our work on pattern discovery, registering patient-specific symbols obtained

by the techniques described in Section 4.2 represents an area of continuing work. The

discussion that follows focuses instead on the use of clinical annotations (or of semi-

supervised symbols related manually across patients) despite the possible benefits of

patient-specific symbols.

Physiological Motifs

In the setting of computational biology, regulatory motifs correspond to short DNA

sequences that regulate gene expression. This notion of a genetic switch that controls

activity further downstream is well-suited to our model for prediction. We generalize

this idea and choose to model regulatory motifs as sequential triggers that precede

abrupt clinical events and are conserved across a population of patients owing to an
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association with the event.

A recent strategy for regulatory motif discovery that has gained popularity is to

make use of comparative genomics [52]. This allows for the discovery of regulatory

elements by exploiting their evolutionary conservation across related species. Under

this approach, regulatory motif discovery can be viewed computationally as finding

sequences that are recurrent is a group of strings, upstream of specified endpoints.

The problem of regulatory motif discovery can be stated more formally in either

a combinatorial or probabilistic framework [51]. While the two frameworks both

attempt to identify similar preceding subsequences, they may lead to slightly different

results and require distinct algorithmic techniques.

Combinatorial: Given a set of sequences {s1, ... , SN} find a subsequence mi, ... , mw

that occurs in all s, with k or fewer differences.

ProbabilEstic: Given a set of sequences {sl,..., sN} find a set of starting positions

{pl,...,PN} in the sequences that lead to the best (as defined below) A x W profile

matrix M (where A zs the number of different symbols in the data and W is the

length of the motif).

For the probabilistic case, the profile matrix is derived from the subsequences of

length W immediately following the starting positions P, ... , PN in each of l, ..., Si.

These subsequences are lined up and the probability of each of the A unique symbols

at every one of the W motif positions is estimated. M(x, y) then gives the probability

that the motif has character x at position y. The resulting profile matrix can be scored

using different criteria with the implicit goal of seeking a non-trivial profile that is

strongly conserved at each position and best explains the data. The scoring function

most often used is the log-odds likelihood, i.e.:

N W M ( s t(p t + j - 1), j)
score = 1 log[ B(s,(p + j-1))] (4.2)

1=
1 J =

1

where B gives the background distribution of each unique symbol in the data. Ef-

fectively, this calculates the log-likelihood of a motif while compensating for trivial

occurrences that would be seen in the data merely due to the frequent occurrence of
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certain symbols.

A complication arising in the context of physiological signals is that of the sparsity

of abnormal activity. Periods with interesting events are typically separated by long,

variable-sized runs of normal behavior, i.e., the distribution of the symbols is signif-

icantly skewed in favor of normal labels. This increases the number of trivial motifs

in the data and consequently the running time of the motif discovery algorithms. In

addition, for algorithms such as TCM and Gibbs sampling discussed shortly, a sec-

ondary effect resulting from the presence of long stretches of normal behavior is that

the starting locations chosen randomly may often correspond to uninteresting regions

of the signal, further increasing time to convergence.

The issue of degeneracy is frequently encountered in DNA sequences and assumes a

critical role for physiological motifs as well. Predictive patterns may be approximately

conserved across some patients in a population, while in others, they may be missing

altogether. This results from a variety of factors, including differences in the age,

gender, clinical history, medications and lifestyle of patients, as well as noise obscuring

predictive patterns in some recordings.

The goal of detecting imperfectly conserved activity represents a significant chal-

lenge to the task of discovering precursors. Since patterns can vary, the process of

determining whether a pattern appears in a patient is required to explore a larger

search space, spanning all possible variations. Similarly, the fact that some patients

may have the predictive activity obscured due to noise requires recognizing these

cases and preventing motif discovery algorithms from forcibly incorporating this data

in the search process.

Computational Biology Algorithms for Motif Discovery

We review three popular algorithms for finding regulatory motifs using compara-

tive genomics; the Two Component Mixture (TCM) algorithm using expectation-

maximization, Gibbs sampling, and Consensus. TCM and Gibbs sampling attempt

to solve the probabilistic formulation of motif discovery, while Consensus focuses on

the combinatorial problem.
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Two Component Mixture (TCM): TCM is an enhancement to the basic EM algo-

rithm [53], which essentially reduces the search into two smaller, decoupled problems.

The first (i.e., the M-step) involves constructing the profile for a motif given a set

of fuzzy starting positions Pi,...,PN in the input sequences (the M-step). The sec-

ond (i.e., the E-step) then uses this matrix profile representation to score all possible

starting positions in every sequence and update the initial Pi,..., PN.

The overall TCM algorithm operates in the following manner:

TCM({sl,...,SN}, W):

1. Set random starting positions Pl,...,PN

2. Do

i. M-step to update profile matrix

ii. E-step to update starting positions

Until the change in the score of M is less than some threshold e

The M-step of TCM estimates the profile matrix using the probability Z,, that the

motif starts in sequence i at position j. As a first step, the values n,,k are estimated,

which indicate how often the character c occurs at position k in the motif.

nc,k = 2 Z 3 s,,=c Zj k > 0 (4.3)

n. - Ej=l Wnc,3 k = 0

k = 0 represents the case where character c occurs in the sequence outside the

motif while nc gives the total number of times c occurs in the data. Using these

values, we can obtain a profile matrix M as follows:

Mk ,,k + dc,4.4)
CEa(na,k + da,k)

where dc,k denotes the pseudocount for character c and helps ensure that the prob-

ability of c at position k is not zero while estimating frequencies from finite data

[53].
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In addition to computing the profile matrix during the M-step, TCM also calcu-

lates a prior probability that a motif might start arbitrarily at any position in the

data. This is denoted by A and is obtained by taking the average of Z,, across all

sequences and positions.

TCM primarily differs from other EM approaches to motif discovery in its E-step.

For every sequence si in the dataset TCM assigns a likelihood Lj to the W-mer

starting at each position j:

3+W-1

Lz3(1) = Pr(slZ, Zj = 1, M,b) = 1 Mk-3+1,ck (4.5)
k=j

and:

J+W-1

Li,(O) = Pr(s.,1Z 3 = O, M,b) = I bck (4.6)
k=3

where b gives the background probability for each character in the dataset. For

iteration t of TCM, the values of Z, can then be estimated using:

z = 3 (1)( (4.7)

L(t) (0)[1 - A(t)] + L(1) A()

Gibbs Sampling: Gibbs sampling [49] can be viewed as a stochastic analogue of EM

for finding regulatory motifs and is less susceptible to local minima than EM. It is

also much faster and uses less memory in practice. This is because unlike EM, the

Gibbs sampling approach keeps track only of the starting locations P1, ... , PN of the

motif in each sequence and does not maintain a distribution over all possible starting

positions for the motif (i.e., the Z,, in TCM representing fuzzy starting positions are

replaced by hard p, ... , PN).

The Gibbs sampling algorithm for motif discovery can then be written as:

GIBBS({sl,..., SN}, W):

1. Set random initial values for p
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2. Do

i. Select sequence si at random

ii. Estimate M from set 1,..., sSN - st

iii. Use M to score all starts in s,

iv. Pick start p, with probability proportional to its score

Until the change in the score of M is less than some threshold e

Gibbs sampling is less dependent on the initial parameters than TCM and there-

fore more versatile. However, it is dependent on all sequences having the motif. This

is an inefficiency we address in our work.

Consensus: Consensus [50] is a greedy motif clustering algorithm that picks out two

sequences at random, finds the most conserved pairs amongst them and then iterates

over all the remaining sequences adding the W-mers that match best to the results

of the previous iteration at every stage.

The Consensus algorithm is as follows:

CONSENSUS({sl,..., SN}, W):

1. Pick sequences s, and sj at random

2. Find most similar W-mers in s, and s,

3. For each unprocessed sequence Sk

i. Expand solution set with W-mers from sk that

match best with previous ones

Data Transformations and Subset Based Tecniques

Active Regions: The issue of skewed symbol distributions can be addressed by re-

moving long stretches of activity that are known to be uninteresting. By definition,

a predictive motif is associated with an acute clinical event and must be associated

with abnormal activity. As a result, trivial motifs comprising normal activity can

be trimmed away to reduce the running time associated with the motif-discovery

algorithms. For example, given the sequence:
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VJVJ JNNNNNN NNNNNVNVNBBr

A possible reduction of this data would be:

V J V J J N+ V N+ V N+ B B r

This technique is associated with a significant loss of information. Specifically, the

search for motifs proceeds in the transformed space, and the N+ regular expression

may occur in motifs without a consistent meaning (i.e., it may be arbitrarily long in

some patients). The more general issue here is that conservation of a pattern in the

transformed space does not imply conservation in the original signals.

To avoid this issue, we identify regions of abnormal activity, i.e., active regions,

by splicing out trivial periods in the signal. Given a motif length W, this involves

iterating over the data and removing all normal symbols that would occur only in

trivial motifs. This approach preserves the temporal structure of abnormal stretches

of the signal, ensuring that the motifs correspond to patterns that are conserved in

all of the original signals. For example, using this approach for a motif of length 3,

the original example pattern above would map to:

VJVJ JNNVNVNBBr

Gibbs2 and Seeded Consensus: The Gibbs sampling algorithm presented earlier as-

sumes that a motif is present in all sequences. To deal with the issue of degeneracy,

where noise may obscure the predictive pattern completely for some patients, we

propose a new algorithm that provides a layer of robustness while dealing with a

population where activity may be altogether absent in some of the observed exam-

ples. This is achieved by adding a second layer of Gibbs sampling to the original

algorithm, leading to the Gibbs2 algorithm presented here.

The Gibbs2 algorithm operates at any time on a working subset V = vl,..., vc of

the original sequences Sl, ..., SN. Sequences are dynamically swapped into and out of

this set with the goal of replacing poor matches with potentially better options. The

underlying goal is to arrive at a cluster of sequences that share a strongly conserved

motif.
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The initial subset of sequences is chosen at random, and at each iteration, a single

sequence v, in the working set is scored at every position p, using the profile generated

from V - v2, i.e.:

score(v (p,)) = W log [ ( ( -- 1)i (4.8)
3=1 B(s,(p, + j- 1))

With some probability v, is swapped out and replaced by one of the sequences

outside the working set. The probability of being swapped out varies inversely with

the maximum score seen for the sequence at any position, i.e., the score at the position

that corresponds most strongly to the profile matrix:

log[Pr(swap)] oc - max[score(v (p,))] (4.9)

with the proportionality factor depending on the length of the motifs being searched

for.

The intuition behind the Gibbs2 algorithm is that if a sequence scores high for

a motif, it matches quite well with other sequences used to derive the profile and is

retained with a higher probability. Conversely, if a sequence does not score highly, it

matches poorly with the remaining sequences in the working set used to derive the

profile.

Ideally, the sequence swapped out should be replaced by one that scores highest

on the profile matrix being used. This approach is computationally intensive since

all outstanding sequences need to be scored before the optimal one can be chosen.

To avoid this, once a sequence is swapped out, it is replaced by any of the sequences

outside the working set at random. This avoids the need to score all previously

excluded sequences to find the one with the best match. Furthermore, after each swap,

further swapping is temporarily disabled to allow the new sequence to be absorbed

and contribute to the profile matrix.

The Gibbs2 algorithm can be written as follows (with C denoting the size of the

working set and K representing the number of iterations swapping is disabled after a

sequence is replaced from one outside the working set):
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GIBBS({sl,...,SN}, W, C, K):

1. Choose C sequences at random from {s1,...,sN}

2. Set random initial values for p

3. Do

i. Select sequence v, at random

ii. Estimate M from set V - v,

iii. Use M to score all starts in v,

iv. Swap out vi with Pr(swap) and replace it with a random

sequence outside the working set

v. If swap occurs

a. Disable swapping for K iterations

vi. Pick start p, with probability proportional to its score

Until the change in the score of M is less than some threshold 6

The Gibbs2 approach can be used to iteratively partition the data into a set

containing a strongly conserved motif and an outstanding set that can be broken into

further subsets sharing a common pattern. This allows for the discovery of multiple

predictive motifs occurring in subsets of the population.

We propose choosing the working set size by studying how the log-odds likelihood

of motifs changes for different selections of C. The average contribution to the log-

odds likelihood by each sequence in the working set can be measured as:

1 W M(s(P, + j - 1), j)
E log[ ](4.10)

C =1 j=1 B(s(p, +j -1))

As sequences are added to the working set, the average contribution measured

decreases significantly if the addition of a further sequence prevents the working set

from sharing a common motif, i.e., if the additional sequence does not allow a strong

motif to be identified. The size of the working set for the Gibbs2 algorithm can

therefore be determined by searching for a knee in the curve relating the average

contribution to the log-odds likelihood by each sequence with C. This process may

be approximated by a binary search to reduce computation.
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The use of Gibbs2 also allows for the performance of the Consensus algorithm to

be improved. Specifically, Consensus can be seeded using a strongly conserved pattern

obtained by Gibbs2. This reduces the likelihood that Consensus will be affected by

a poor choice of the initial two strings.

4.3.2 Evaluation of Pattern Discovery in Positive Examples

We applied our techniques to the Physionet Sudden Cardiac Death Holter Database

(SDDB). This database contains several hours of ECG data recorded using Holter

monitors from 23 patients who experienced sudden cardiac death. The recordings

were obtained in the 1980s in Boston area hospitals and were compiled as part of

a later study of ventricular arrhythmias. Owing to the retrospective nature of this

collection, there are important limitations. Patient information is limited, and some-

times completely unavailable, including drug regimens and dosages. Furthermore,

sudden cardiac death may result from a variety of underlying causes and it is likely

that among the 23 patients there are multiple groups sharing different regulatory

factors. Despite these shortcomings, the SDDB ECG signals represent an interesting

dataset since they represent a population sharing a common acute event. In addition,

the recordings are sufficiently long (up to 24 hours prior to death in some cases) that

it is likely the predictive factors occurred during the recording period. Finally, the

signals in SDDB are generally well-annotated, with cardiologists providing labels at

the level of each beat, and this yields a source of clinically relevant symbols that can

be used to search for motifs.

For the 23 SDDB patients TCM, Gibbs sampling, Gibbs2 and Consensus were

used to discover potentially predictive motifs of lengths 4, 10 and 16. Since TCM,

Consensus and the variants of the Gibbs sampling algorithms are stochastic in nature,

a hundred runs were executed with the strongest motifs being automatically returned

as the solution. The scoring function used was the log-likelihood score.

In each case, the endpoint used to signify the acute event associated with death

was the occurrence of ventricular fibrillation (VF). This was annotated for all patients

and only regions preceding VF were searched for conserved motifs.
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Figure 4-17: Motifs of length 4, 10 and 16 found using TCM.
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Figure 4-18: Motifs of length 4, 10 and 16 found using Gibbs sampling.

For visualization purposes, we used WebLogo [22] to display the motifs returned

by our algorithms. This uses the profile matrix to represent motifs as sequence logos,

which are graphical representations consisting of stacks of symbols. For each posi-

tion in the motif, the overall height of the stack indicates how strongly the motif is

conserved at that position, while the height of symbols within the stack indicates the

relative frequency of each symbol at that position. For example, for the length 10

motif in Figure 4-17, the sequence logo shows that the motif is strongly conserved at

positions 8 and 10, where the predictive sequence was found to contain normal beats

across patients. The motif is also conserved at positions 1, 3 and 5, where ventricular

activity was seen for most patients, with some occurrences of normal beats (position

1) and supraventricular beats (positions 3 and 5) as well.

For position j in the motif, the height of symbol i at that location is given by:
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Figure 4-19: Motifs of length 4, 10 and 16 found using Consensus.

M(i, j)[2 - H(j)] (4.11)

where:

H(j) = - M(k, j)log2(M(k, j)) (4.12)

For Consensus, where a profile matrix is not explicitly constructed, the best-

matching subsequences were used to derive a profile that could be represented using

WebLogo. This allowed for results to be consistently visualized, irrespective of the

algorithm used to discover motifs.

More information on WebLogo can be found at http://weblogo.berkeley.edu.

Data Transformation

The transformations discussed earlier can be evaluated in terms of the data compres-

sion realized using these approaches. This allows for an appreciation of the extent to

which the original data contains long runs of normal activity that can be compacted.

The original sequences across the 23 patients contained 1,216,435 symbols in total,

each corresponding to a single beat annotated by a skilled cardiologist. Using the

notion of active regions and stripping away uninteresting normal motifs reduced the

size of the data to 257,479 characters, i.e., a reduction of 78.83%.
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TCM, Gibbs Sampling and Consensus

Figures 4-17 to 4-19 present the results returned by TCM, Gibbs sampling and Con-

sensus as sequence logos. Commonly occurring labels are N=normal, V=premature

ventricular contraction, and S=supraventricular premature or ectopic beats.

The motifs discovered by all three algorithms were similar and comprised runs of

premature ventricular contractions. For each choice of motif length, TCM returned

more strongly conserved motifs than both Gibbs sampling and Consensus. This can

be explained by the fact that TCM scores all starting positions in every sequence

during each iteration, and is stochastic only in the choice of an initial profile matrix.

It employs significantly more computation than either Gibbs sampling or Consensus

and is able to find more strongly conserved patterns as a result. On the other hand, the

Gibbs sampling algorithm depends on both a random set of initial starting positions

and probabilistic choices during each iteration to select a string s, and a new starting

position within that string. Consensus is similar to TCM in that it is stochastic only

in its initial choice of sequences to use as seed, but unlike TCM, where a poor initial

choice can be corrected during subsequent iterations, in the case of Consensus, the

effects of a poor initial choice propagate all the way through.

Although TCM produced the best results in this case, the process of scoring every

starting position in each sequence was considerably more time consuming and took

an order of magnitude more time than either Gibbs sampling and Consensus.

Gibbs2 and Seeded Consensus

Figure 4-20 shows the motifs discovered by the Gibbs2 algorithm with an initial

working set of size 12 containing sequences chosen at random. The size of the initial

working set was determined from the average contribution of each sequence to the

log-odds likelihood of the best scoring motif. Figure 4-21 illustrates how the average

contribution of the log-odds likelihood changed with increased values of C.

In this case, the predictive motif found once again comprised runs of prema-

ture ventricular contractions, but was more strongly conserved than the best results
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Figure 4-20: Motifs of length 4, 10 and 16 found using Gibbs2.
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Figure 4-21: Relation of the average contribution of each sequence to the log-odds

likelihood for the best scoring motif with increasing values of C.
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Figure 4-22: Motifs of length 4 found using Consensus (top) and Seeded Consensus

(bottom).

produced earlier by TCM, Gibbs sampling and Consensus. Specifically, comparing

Figures 4-17 to 4-20, the stack of symbols in Figure 7 shows the premature ventricular

activity figuring more prominently at positions within the motifs.

This effect may be attributed to the ability of Gibbs2 to select a group of patients

who had matching motifs comprising premature ventricular activity, unlike TCM,

Gibbs sampling and Consensus, which were constrained to find a less conserved inter-

mediate that was a best fit for data from all the different patients in the population.

For this reason, Gibbs2 provided an improvement not only over the original Gibbs

sampling algorithm but also the more computationally intensive TCM. The Gibbs2

algorithm has the same basic structure as the original Gibbs sampling technique,

but is able to outperform TCM by addressing the issue of subsets of the population

exhibiting different regulatory activity.

Figure 4-22 presents the result of using Seeded Consensus to detect motifs of length

4 relative to the original Consensus algorithm. In this case, the Gibbs2 algorithm with

a working set of size 5 was used to first find an initial seed for the Consensus algorithm.

As the data shows, Seeded Consensus produced more strongly conserved results than

the original Consensus algorithm. This effect followed from reducing the chance that

a poor initial choice of sequences would propagate and adversely affect the search for

motifs.

The motif found using Seeded Consensus in Figure 4-22 is not as strongly con-

served as the one discovered by Gibbs2 in Figure 4-20. This can be explained by

the fact that Seeded Consensus uses Gibbs2 to discover an initial seed but otherwise
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Figure 4-23: Two-stage Gibbs2 motifs of length 4. The top motif comprises a working
set of size 12, while the second motif corresponds to those 11 sequences (from a total

population of 23) that were not included in the original working set.

still operates on all the sequences in the data. The issue of motifs occurring only

in a subset of patients does not therefore get addressed, although Seeded Consensus

is still able to produce results that are comparable with TCM without the need for

intensive computation.

The results of these experiments suggest that subset based techniques using Gibbs2

either to search for motifs directly, or for the purpose of providing seeds that can be

fed into the Consensus algorithm, may allow for more strongly conserved motifs to

be discovered than through use of TCM, Gibbs sampling and the original Consensus

algorithm. Moreover, the improvement provided by the Gibbs2 algorithm proposed

in our work is not associated with a significant computational overhead. In addition,

the ability to partition the data into groups with homogenous motifs allows for the

discovery of more than one predictive pattern, each of which may be associated with

the outcome in a different group of patients. We explore this idea in more detail in

the next section.

Two-Stage Gibbs2

For the motif of length 4, the sequences remaining outside the working set at the

termination the of Gibbs2 algorithm were searched for a second motif common to

this group. Figure 4-23 shows the results of this approach.

In this case, a second motif comprising runs of supraventricular premature or ec-

topic beats was found among this subgroup of the population. Notably, these patients

did not show a motif similar to the ones found earlier, i.e., comprising premature ven-
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tricular beats, during any of the multiple executions of the motif discovery algorithm.

This suggests that the subset of patients left outside the working set by Gibbs2 did

not exhibit regulatory activity similar to the ones for whom a premature ventricular

motif was discovered. Including these patients in the search for a predictive motif,

as would be the case for non-subset-based techniques, would therefore lead to a less

informative motif and would obscure the fact that different groups of patients show

varied predictive patterns associated with an endpoint.

Motif-Event Delay

Using the motif of length 10 shown in Figure 4-20, for each sequence, the time delay

between the starting location of the motif, i.e., pi, and the clinical endpoint (the

occurrence of VF in the patients) was calculated for the Gibbs2 algorithm. For one

of the 23 patients in the dataset, the motif occurred less than a minute prior to the

event itself. In all other cases, the motif discovered preceded the actual event by at

least 20 minutes or more. The median motif-event delay was 60 minutes, while the

25% and 75% quartile times were 42 and 179 minutes respectively. The maximum

time separation of the motif and the event was 604 minutes.

These results suggest that the motif occurred sufficiently in advance of the end-

point to be considered merely an extension of the final event itself. Furthermore,

the fact that the motif may occur at a wide range of times prior to the endpoint

reinforces the need to carry out the search for predictive patterns in an automated

manner, which is able to relate information across a range of positions within each

sequence.

Comparison with Controls

For each patient in the SDDB population, the log-likelihood score was calculated for

each starting position in the ECG label sequence. The overall score for the patient

was the maximum log-likehood score found. Intuitively, this strategy assigns each

patient the risk score associated with the occurrence of the discovered motif of length

10 shown in Figure 4-20 at any point during the recording, i.e., if activity similar to
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the motif associated with sudden death is seen anywhere, the patient is assumed to

be at higher risk for the event.

Figure 4-24 shows the probability density function that can be estimated from the

scores for the SDDB population. A similar strategy was adopted to score patients

in two control datasets; the Physionet Normal Sinus Rhythm Database (NSRDB)

and the Physionet Supraventricular Arrhythmia Database (SVDB). The decision to

use SVDB data in addition to normal individuals was owing to the fact that the

SVDB signals contained the same labels as the SDDB data with a higher background

frequency of abnormal symbols. This ensured that a difference in scores across pop-

ulations did not result from an absence of labels, but more so because activity was

organized in different forms. Specifically, 1.45% of the beats in the SDDB data were

premature ventricular contractions. By comparison, 5.39% of the beats in the SVDB

signals and 0.002% of the NSRDB beats fell into the same category. This suggests

that if the motifs seen in the SDDB population were random occurrences, then they

would be expected to be seen more frequently in the SVDB dataset. With this in

mind, the fact that SVDB patients had a higher percentage of premature ventricular

activity but still scored lower on the discovered motifs provides further indication that

the motif corresponded to activity that was not purely a random occurrence in the

sudden death population. Using a maximum likelihood separator, we were able to use

our motif to correctly identify 70% of the patients who suffered sudden cardiac death

during 24 hours of recording while classifying none of the normal individuals, and

only 8% of the patients from the supraventricular dataset as being at risk. The small

number of patients in the dataset, however, does not allow for us to make statistically

significant clinical statements about these findings.

4.3.3 Pattern Discovery in Positive/Negative Examples

Section 4.3.1 focused on the discovery of predictive patterns when only positive exam-

ples are available (i.e., where events occur). If negative examples (i.e., where events

do not occur) are further available, this extra information can be factored into the

search.
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Figure 4-24: Motifs of length 4 found using Consensus (top) and Seeded Consensus

(bottom).

Pattern discovery has been proposed in this context as a machine learning problem

[30]:

Given two sets of sequences S + and S- drawn randomly from families F+ and

F- respectively such that F + n F- = 0, find the pattern W of length L that has high

likelihood in F + but not in F-.

This formulation is sufficiently general to apply to a wide variety of applications

where sequential data exists. We make the notion of a pattern more explicit by

refining the goal of pattern discovery described above as follows:

Given two sets of sequences S + and S- drawn randomly from families F + and F-

respectively such that F + n F- = 0, find the subsequence W of length L that occurs

with a Hamming distance of at most d with higher likelihood in F + but not in F-.

In what follows, we propose a method to efficiently carry out the search for such

approximate patterns. A variety of techniques have been proposed to address this

problem statement [33, 53, 35, 38, 39, 41]. The common strategy adopted by these

methods is to approach the problem of pattern discovery by finding activity that is

statistically unlikely but occurs consistently in positive examples. Negative examples

are primarily used for evaluation. This process means that discriminative patterns

in negatively labeled sequences are not explored for classification. Other algorithms

for discovery of patterns [43, 42] enumerate all exact patterns across both positive
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and negative examples to identify sequences that can discriminate between these two

cases, but become computationally intractable when allowing subsequences to have

an approximate form. As a result, sequential pattern discovery methods have tra-

ditionally been divided into two major groups: identifying approximately conserved

patterns in positive examples, or finding exactly conserved patterns using both posi-

tive and negative instances.

We describe a locality sensitive (LSH) based algorithm to efficiently estimate the

frequencies of all approximately conserved subsequences with a certain Hamming

radius in both positive and negative examples. The search process attempts to identify

patterns that allow maximum discrimination between the two groups. In this way,

our method unifies the broad areas of existing work in sequential pattern detection

for classification by proposing a way to discover patterns that are both approximate

and derived using the additional information available in negative instances.

LSH forms a key component of our method. The use of LSH has been proposed

earlier in the context of pattern discovery to identify interesting activity in positive

examples [31, 32]. We supplement this work by allowing for information from negative

examples to be factored into the search. In particular, we expand the use of LSH in

pattern discovery from indexing to fast counting and approximate clustering. While

LSH provides runtime efficiency to the search process, it imposes significant space

requirements, and we describe an iterative method that uses a single LSH table in

memory to address this issue. We also explore the idea of using clustering as part of

pattern discovery to reduce approximate subsequences with significantly overlapping

Hamming radii to a small number. This aspect of our work resembles efforts for web

clustering [36]. We explore similar ideas within the context of approximate pattern

discovery. This decreases the number of motifs to be evaluated while still providing

a fairly exhaustive coverage of the search space. We describe a clustering method

based on a 2-approximate solution of the k-center problem to achieve this goal.

The process of identifying patterns with discriminative ability makes use of con-

cordance and rank sum testing. In many cases, the goodness of approximate patterns

can be tested without using data from all training sequences. We propose a further
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Figure 4-25: Overview of the pattern discovery process.

optimization to address these cases. The runtime and space requirements of the pat-

tern discovery process can be reduced by using sequential statistical methods that

allow the search process for patterns to terminate after using data from only as many

training examples as are needed to assess significance.

Overview

The process of discovering discriminative patterns of a specified length L from positive

and negative sequences is carried out in two stages: frequency estimation and pattern

ranking. Figure 4-25 presents an overview of the pattern discovery algorithm.

Frequency Estimation: Given a set of positive examples S + = {S+Ix = 1, ..., N + } and

a set of negative examples S- = {S,-ly = 1, ..., N-} the frequency estimation step

measures the frequency of every unique subsequence Wi for i = 1, ..., M in sequences

belonging to S+ and S-. The resulting frequency for Wi in positive and negative

examples is denoted as:

f+ = {fi+zl z E S+}fl- = {fiIz e S-} (4.13)

where fz and fi- are the frequencies with which Wi appears in sequences z drawn

from S+ and S-, and f+ and f- are vectors measuring the frequency of W, in all

positive and negative sequences.

To allow for approximate patterns, unique subsequences are then matched to all

other subsequences at a Hamming distance of at most d from Wi. Denoting this

group of subsequences as Dw,, the resulting frequency for the subsequence Wi and

its approximate matches is defined as:
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g = fj = E f (4.14)
jEDw jeDw,

where g, and g, are vectors obtained by summing up the vectors f+ and f,- for all

subsequences within a given Hamming radius d of W,.

In what follows, we describe an LSH-based solution that allows for efficient dis-

covery of the subsequences Dw, matching W. We also present a clustering approach

to reduce overlapping approximate patterns for which frequencies are estimated to a

smaller number with less redundancy for subsequent analysis.

Pattern Ranking: The goal of the search process is to identify approximately matching

subsequences that can discriminate between positive and negative training examples.

The pattern ranking stage therefore scores each candidate approximate pattern ac-

cording to its discriminative ability. We use two measures to assess the goodness of

patterns.

The first approach to score patterns is to use rank sum testing. This technique is a

non-parametric approach for assessing whether two samples of observations come from

the same distribution. Patterns are ordered based on the significance of separation (as

measured by the p-value) obtained by rank sum testing. A second scoring criterion

used by our work is the c-statistic, which corresponds to the area under the receiver

operating characteristic (ROC) curve. Details of these techniques are provided in the

remainder of this Section. We further describe how sequential methods can be used

to reduce the search process to only process as many training examples as are needed

to determine if a candidate pattern has high or low discriminative ability.

Locality Sensitive Hashing

Finding Approximate Matches for a Subsequence: Locality sensitive hashing [44] has

been proposed as a randomized approximation algorithm to solve the nearest neighbor

problem. Given a set of subsequences, the goal of LSH is to preprocess the data so

that future queries searching for closest points under some 1, norm can be answered
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efficiently. A brief review of LSH is presented here.

Given two subsequences S, and S, of length L, we describe them as being similar

if they have a Hamming distance of at most d. To detect similarity, we choose K

indices il, ... , iK at random with replacement from the set {1, ..., L}. The locality

sensitive hash function LSH(S) is then defined as:

LSH(S) =< S[il], ...,S[ik] > (4.15)

where < ... > corresponds to the concatenation operator. Under this scheme, S, and

S, are declared to be similar if:

LSH(Sx) = LSH(Sy) (4.16)

The equality in 4.16 corresponds to an exact match. The approximate nature of

the match is captured in the indices chosen, which may span less than the entire

original subsequences Sx and S,.

Practically, LSH is implemented by creating a hash table using the LSH(S) values

for all subsequences as the keys. Searching for the approximate neighbors of a query

subsequence corresponds to a two-step process. The locality sensitive hash function

is first applied to the query. Following this, the bucket to which the query is mapped

is searched for all original subsequences with a Hamming distance of at most d.

Two sequences with a Hamming distance of d or less may not match for a random

choice of K indices if one of the indices corresponds to a position in which Sx and S,

differ. The probability of such a miss is bounded by [44]:

Pr[LSH(Sx) $ LSH(S)] < [1 - (1 - d)K] (4.17)

By repeating the process of choosing K indices T times this probability can be

reduced further to:

Pr[LSH(Sx) = LSH(Sy)] < [1 - (1 - d)K]T (4.18)
L
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Effectively, 4.18 corresponds to constructing a data structure comprising T hash

tables using different locality sensitive hash functions LSH1(S), ... , LSHT(S). Ap-

proximate neighbors for a query are detected by searching for matches in each of these

hash tables as described earlier.

The intuition behind LSH can be understood as an attempt to reduce the problem

of searching through all possible sequences in the dataset for a match to the more

feasible problem of searching through a much smaller set of false positives with a

bounded error. The lower the desired error bound for false negatives affecting cor-

rectness (i.e., by choosing K and T), the higher the corresponding false positive rate

affecting the runtime of the algorithm. The choice between these two parameters

depends on the application and the underlying dataset.

Finding Approximate Matches Between All Subsequences: LSH provides an efficient

mechanism to find the nearest neighbors of a given subsequence. To find the nearest

neighbors for all M subsequences in the dataset, each member of the set can be

passed through the entire LSH data structure comprising T hash tables for matches.

Unfortunately, this process is both computationally and memory intensive. In what

follows, we describe a strategy to reduce the space requirements of LSH-based search

for all approximate matches between subsequences. In what follows, we address

runtime issues by proposing a clustering amendment to the search process.

Different approaches have been proposed recently to reduce the space requirements

of LSH. In particular, the use of multi-probe LSH [40] has been shown to substantially

reduce the memory requirements for traditional LSH by searching each hash table

corresponding to a random selection of K indices more thoroughly for misses. This

additional work translates into fewer LSH hash tables being needed to bound the

given error rate and the space of the LSH data structure decreases. In our work, the

memory requirements of LSH are reduced by organizing the approximate matching

process as T iterations. Each iteration makes use of a single locality sensitive hash

function and maintains only a solitary hash table at any time in memory. To preserve

state across iterations, the search process maintains a list of matching pairs found
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during each loop after removing false positives by measuring the actual distance. The

subsequences Dw, matching Wi are found as:

T

Dw, = U{W3,LSHt(WIj)= LSHt(W,)} (4.19)
t=1

Clustering Subsequences

The runtime of the pattern discovery process as described so far is dominated by ap-

proximate matching of all subsequences. Every subsequence is first used to create the

LSH data structure, and then passed through the LSH data structure to find matches

with a Hamming distance of at most d. This process is associated with considerable

redundancy, as matches are sought individually for subsequences that are similar to

each other. The overlap between approximate patterns increases the computational

needs of the pattern discovery process and also makes it more challenging to interpret

the results as good patterns may appear many times in the output.

To address this issue, we reduce patterns to a much smaller group that still collec-

tively spans the search space. This is done by making use of a clustering method based

on a 2-approximate solution to the k-center problem. The focus of this clustering is

to group together the original subsequences falling into the same hash bucket during

the first LSH iteration. Each of the clusters obtained at the end of this process cor-

responds to an approximate pattern that is retained. During subsequent iterations,

while all subsequences are still used to construct the LSH tables, only the cluster cen-

troids are passed through the LSH data structure. This reduces the runtime of the

search by reducing the number of times subsequences have to be passed through the

LSH tables to find true and false positives. It also reduces the memory requirements

of the search by reducing the number of subsequences for which we need to maintain

state about approximate matches.

The traditional k-center problem can be formally posed as follows. Given a com-

plete graph G = (V, E) with edge weights we > 0, e E E and w(v, v) = 0, v E V, the

k-center problem is to find a subset Z E V of size at most k such that the following

quantity is minimized:
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W(Z) = max min w(,,) (4.20)
tEV 3EZ

The k-center problem is NP-hard, but a 2-approximate solution has been proposed

[37] for the case where the triangular inequality holds:

W(t,J) + W(3 ,k) (,k) (4.21)

The Hamming distance metric obeys the triangular inequality. Under this con-

dition, the process of clustering can be decomposed into two stages. During the

first LSH iteration, we identify subsequences that serve as cluster seeds using the

2-approximate solution to the k-center problem. Subsequent LSH iterations are used

to grow the clusters till the probability that any subsequence within a Hamming dis-

tance at most d of the cluster centroid is missed becomes small. This approach can be

considered as being identical to choosing a set of subsequences during the first LSH

iteration, and finding their approximate matches by multiple LSH iterations.

More formally, during the first LSH iteration, for each bucket b, in the hash table

for i = 1, ..., B, we solve the k-center problem using the 2-approximate method [37]

with a Hamming distance metric. The number of subsequences forming centers k, for

the i-th hash table bucket is determined alongside the specific centroid susbsequences

from:

k, = min{k| min W(z,(k)) < d} (4.22)

where W(Z) is defined as in 4.20 and Z,(k) denotes the subsequence centers chosen for

a particular choice of k in 4.22, i.e.:

kt = min{kI max min w(3,z(k)) < d} (4.23)
3Eb, z,(k)

The final set of subsequences chosen as centroids at the end of the first LSH

iteration then corresponds to:
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Figure 4-26: In the absence of clustering there is significant redundancy between the
Hamming radii of approximate patterns. Partitioning the data into disjoint clusters
can help address this issue. In our work, we reduce the original approximate patterns
into a small group with some overlap to span the search space.

B

D= U zi(k) (4.24)
i=1

The LSH iterations that follow find approximate matches to the subsequences in

4. It is important to note that while clustering reduces a large number of overlapping

approximate patterns to a much smaller group, the clusters formed during this process

may still overlap. This overlap corresponds to missed approximate matches that do

not hash to a single bucket during the first LSH iteration. Techniques to merge

clusters can be used at the end of the first LSH iteration to reduce overlap. In our

work, we tolerate small amounts of overlap between clusters analogous to the use of

sliding windows to more thoroughly span the search space. Figure 4-26 illustrates the

clustering process.

Pattern Ranking

Given the frequencies g and gi of an approximate pattern, corresponding to all

subsequences within a Hamming distance d of the subsequence Wi, a score can be

assigned to the pattern by using concordance statistics and rank sum testing.

Concordance Statistic: The concordance statistic (c-statistic) [116] measures the dis-

criminative ability of a feature to classify binary endpoints. The c-statistic corre-
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sponds to the area under the receiver operating characteristic (ROC) curve, which

describes the inherent tradeoff between sensitivity and specificity. As opposed to mea-

suring the performance of a particular classifier, the c-statistic directly measures the

goodness of a feature (in this case the frequency with which an approximate pattern

occurs) by evaluating its average sensitivity over all possible specificities.

The c-statistic ranges from 0-1. A pattern that is randomly associated with the

labels would have a c-statistic of 0.5. Conversely, good discriminators would corre-

spond to either low or high c-statistic values.

Rank Sum Testing: An alternate approach to assess the goodness of patterns is to

make use of rank sum testing [34, 45]. This corresponds to a non-parametric method

to test whether a pattern occurs with statistically different frequencies in both positive

and negative examples.

Given the frequencies g+ and g- of an approximate pattern in both positive and

negative examples, the null and alternate hypotheses correspond to:

Ho : pg+ = gL- H 1 : pg+ € j# g- (4.25)

Rank sum testing calculates the statistic U whose distribution under Ho is known.

This is done by arranging the g+ and g- into a single ranked series. The ranks for

the observations from the g. series are added up. Denoting this value as R + and the

number of positive examples by N + , the statistic U is given by:

U = R + - N+(N+ + 1) (4.26)
2

The obtained value of U is compared to the known distribution under Ho and a

probability for this observation corresponding to the null hypothesis is obtained (i.e.,

the p-value) under the known distribution. For large samples, U is approximately

normally distributed and its standardized value can be checked in tables of the nor-

mal distribution [48, 47]. The lower the p-value obtained through rank sum testing,

the more probable it is that g+ and g- have distributions with different means, i.e.,
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that the approximate pattern is distributed differently in positive and negative ex-

amples.

Sequential Statistical Tests: The runtime and space requirements of the pattern dis-

covery process can be reduced by analyzing only a subset of the training data. For

example, it may be possible to recognize patterns with high discriminative ability

without the need to analyze all positive and negative examples. Our pattern dis-

covery algorithm starts out by using a small subset of the initial training data for

batch analysis. This helps identify candidate approximate patterns that occur in the

dataset and collectively span the search space. The remaining training examples are

used for scoring purposes only. These examples are added in an online manner and

during each iteration, the occurrence of outstanding candidate patterns in positive

and negative examples is updated. Patterns may then be marked as being good or bad

(and consequently removed from further analysis) or requiring further information to

resolve uncertainty. The number of candidate patterns is therefore monotonically

non-increasing with iteration number. This results in the process of analyzing addi-

tional training examples becoming faster as more data is added since fewer patterns

need to be scored.

A sequential formulation for rank sum testing has been proposed [29] that adds

positive and negative examples in pairs. The frequencies of an approximate pattern

in positive and negative examples at the end of iteration n can be denoted as gf(j)

and gl(j) where j = 1, ..., n. The corresponding statistic for rank sum testing is:

Un = I(g+(x) > g7(y)) (4.27)
x=1 y=l

The operator I(.) is equal to one when the inequality holds and zero otherwise.

Using this statistic, the decision at the end of the n-th iteration corresponds to ac-

cepting Ho if:

Un n 1-0
< - A log( ) (4.28)

n 2 a
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while H 1 is accepted if:

Un nS> - - Alog( ) (4.29)
n 2 1-a

where A is defined as [29]:

1 2 33 64

A = 2 3V 48 (4.30)

In 4.28 to 4.30, a and / correspond to desired false positive and false negative

rates for the sequential rank sum testing process, while 5 is a user-specified parameter

that reflects the preferences of the user regarding how fine or coarse a difference the

distributions are allowed to have under the alternate hypothesis. If both inequalities

are not met, the process of adding data continues until there are no more training

examples to add. In this case, all outstanding candidate patterns are rejected.

This formulation of sequential rank sum testing adds data in pairs of positive and

negative examples. In cases where there is a skew in the training examples (without

loss of generalization we assume a much larger number of negative examples than

positive ones), we use a different formulation of sequential testing [46]. Denoting the

mean frequency in positive training samples as:

N
+

f = g() (4.31)
x=1

The alternate hypothesis can be redefined as the case where h, = g- - P+ is

asymmetrically distributed about the origin. This can be identified using the statistic:

1
Un = E sgn(hi(x))R x (4.32)

x=1 X + 1

where Rx, is defined as the rank of Ih (x)I in the set {|h,(1)l , ... , Ih(y) } with x = y

and sgn(lh,(x)|) is 1 if h,(x) = 0 and -1 otherwise. The test procedure using the

statistic continues taking observations as long as U. E (-6, 6) where 6 is a user-

specified parameter.

Traditional formulations of sequential significance testing remove good patterns
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from analysis when the test statistic is first found to lie above or below a given

threshold. Patterns with potentially low discriminative ability are retained for further

analysis and are discarded if they do not meet any of the admission criteria during

any iteration of the search process. Since there may be a large number of such

patterns with low discriminative value, we make use of a modified approach to reject

poor hypotheses while retaining patterns that may have value in classification. This

strategy improves efficiency, while also ensuring that good patterns are ranked using

the available training data. Given the typical goal of pattern discovery to return the

best patterns found during the search process, this technique naturally addresses the

problem statement.

Given the test statistics in 4.27 and 4.32, we remove all patterns that have a test

statistic:

Un < AUmax (4.33)

where Umax is the maximum test statistic for any pattern and A is a user-specific

fraction (e.g., 0.2).

Multiple Hypothesis Correction: While assessing a large number of approximate pat-

terns, M, the statistical significance required for goodness must be adjusted for Type

I (i.e., false positive) errors. If we declare a pattern to be significant for some prob-

ability of the null hypothesis less than 0, then the overall false positive rate for the

experiment assuming independence of patterns is given by:

FP = 1 - (1 - 8)" (4.34)

If we do not assume that the patterns are independent, the false positive rate can

be bounded by:

FP < OM (4.35)

To account for this condition, a more restrictive level of significance must be
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set consistent with the number of unique patterns being evaluated (in our case, the

clusters obtained earlier). If c clusters are assessed for goodness, the Bonferroni

correction [28] suggests that the level of significance be set at:

0' = - (4.36)
C

This addresses the issue of increasing false positives caused by the evaluation of a

large number of clusters by correspondingly lowering the p-value required to accept

a pattern.

4.3.4 Evaluation of Pattern Discovery in Positive/Negative

Examples

We evaluated our method on 24-hour electrocardiographic (ECG) signals from the

DISPERSE2 TIMI33 and MERLIN TIMI36 trials (Chapter 3.3). These data were

collected from patients admitted with non-ST-elevation acute coronary syndromes

(NSTEACS). We applied our pattern discover algorithm to discover specific sequences

of beat-to-beat morphology changes that had predictive value for future cardiovascular

death.

Given a 24-hour ECG signal, we first converted the data recorded during the

course of hospitalization into a morphology differences (MD) time series using the

methods described in Section 3.2.4. The morphology change time series was then

converted into a sequence by using symbolic aggregate approximation (SAX) [21]

with an alphabet size of 10. In this manner, multiple ECG signals were transformed

into sequences that could be analyzed by our method. On average, each sequence

corresponding to 24 hours of ECG was almost 100,000 symbols long.

We used the DISPERSE2 TIMI33 dataset as training data. The 15 patients who

died over the 90 day period following NSTEACS were treated as positive examples,

while the remaining 750 patients comprised negative examples. we applied our pattern

discovery algorithm to learn sequences of morphology changes in the ECG signal that

were predictive of death. We searched for patterns of length 8 with a Hamming
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distance of at most 2. Parameters were chosen using the inequality in Equation 4.18

so that the LSH probability of false negatives was less than 0.01. We selected patterns

that showed a c-statistic greater than 0.7 and a rank sum test p-value of 0.05 corrected

for multiple hypotheses using the Bonferroni correction. These were then evaluated

on a test set of 250 patients from the MERLIN TIMI36 trial with 10 deaths.

We also studied the runtime performance of our algorithm on this dataset with

and without the use of sequential statistics to find significant patterns. Given the

large number of negative examples in the training data, we employed the sequential

formulation in Equations 4.31 and 4.32 with A = 0.2. We denote our original algo-

rithm using sequential statistics as LSHCS while the variation that avoids sequential

statistics is denoted by NoSeqStats.

Our pattern discovery method returned 2 approximate patterns that were assessed

to have discriminative value in the training set (i.e., a c-statistic of more than 0.7 and a

p-value of less than 0.05 after accounting for the Bonferroni correction). Representing

the symbols obtained using SAX by the letters A-J, where A corresponds to the

symbol class for the least beat-to-beat change in morphology and J denotes the symbol

for the greater change, the centroids for the approximate pattern can be written as:

ABCCDFGJFFJJJJCC (4.37)

The first of these patterns is equivalent to increasing time-aligned energy changes

between successive beats. This may suggest increased instability in the conduction

system of the heart. The second pattern corresponds to a run of instability followed by

a return to baseline. This pattern can be interpreted as a potential arrhythmia. The

results of testing both patterns on previously unseen data from 250 patients (with

10 deaths over a 90 day follow-up period) are shown in Table 4.4. Both patterns

found by our approximate pattern discovery algorithm showed statistical significance

in predicting death according to both the c-statistic and rank sum criteria in the test

population.

A comparison of the running times for the LSHCS and NoSeqStats algorithms is
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Table 4.4: Statistical significance of approximate patterns found on a training set
of 765 post-NSTEACS patients (15 deaths over a 90 day follow-up period) when
evaluated on a test population of 250 patients (10 deaths).

Pattern (Centroid) Rank Sum P-Value C-statistic
ABCCDFGJ 0.025 0.71
FFJJJJCC 0.004 0.70

Table 4.5: Time taken by the LSHCS and NoSeqStats pattern discovery algorithms
on the cardiovascular training dataset.

Algorithm Time
LSHCS 5:08:24
NoSeqStats 9:43:09

presented in Table 4.5. While the outputs produced by both algorithms were identical,

the use of sequential statistics helped our LSHCS method decrease the runtime of

the search process to almost half. We also note that the NoSeqStats variation used

considerably more memory than the LSHCS approach. This effect was due to LSHCS

purging state for patterns that did not obey the inequality in Equation 4.32. In the

absence of sequential statistics, NoSeqStats had to retain ranking information for all

patterns till the training dataset was completely analyzed.

4.3.5 Symbolic Mismatch

In Sections 4.3.1 and 4.3.3, we described how risk stratification could be carried out

within a symbolic framework by searching for high risk symbolic patterns. Patients

whose ECG signals match these patterns can be recognized as being at an elevated

risk of adverse outcomes. From this perspective, the work in Sections 4.3.1 and 4.3.3

corresponds to a feature-based approach for risk stratification (where the feature of

interest is whether the high risk symbolic pattern occurred or not). We now focus on

an alternative approach. In contrast to recognizing patients at high risk depending

on a specific feature, we recognize high risk patients as individuals who represent
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outliers in a population, i.e., we develop a comparative risk stratification approach

rather than a feature-based one.

Evidence suggests that high risk patients constitute a small minority. For example,

cardiac mortality over a 90 day period following ACS was reported to be 1.79% for

the SYMPHONY trial involving 14970 patients [27] and 1.71% for the DISPERSE2

trial with 990 patients [88]. The rate of myocardial infarction (MI) over the same

period for the two trials was 5.11% for the SYMPHONY trial and 3.54% for the

DISPERSE2 trial.

While many different feature-based approaches have been proposed to identify

high risk patients, we focus instead on finding cases that are atypical in morphology

and dynamics. We propose a new metric, called the symbolic mismatch (SM), that

quantifies the extent to which the long-term ECG recordings from two patients differ.

The pairwise differences are used to partition patients into groups with similar ECG

characteristics and potentially common risk profiles.

Our hypothesis is that those patients whose long-term electrocardiograms did

not match the dominant group in the population, are at increased risk of adverse

cardiovascular events. These cases have a high symbolic mismatch relative to the

majority of the patients in the population, and form one or more subgroups that are

suspected to be at an increased risk of adverse events in the future.

Our approach is orthogonal to the use of specialized high risk features along two

important dimensions. Firstly, it does not require the presence of significant prior

knowledge. We only assume that ECG signals from patients who are at high risk

differ from those of the rest of the population. There are no specific assumptions

about the nature of these differences. Secondly, the ability to partition patients into

groups with similar ECG characteristics and potentially common risk profiles allows

for a more fine-grained understanding of a how a patients future health may evolve

over time. Matching patients to past cases with similar ECG signals could lead to

more accurate assignments of risk scores for particular events such as death and MI.
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Figure 4-27: Calculating symbolic mismatch (SM) between two patients. ECG signals

are first symbolized using a Max-Min iterative clustering approach that employs a

dynamic time-warping (DTW) distance measure to compare beat morphology. The

resulting symbol centroids and probability distribution over all symbol classes are used

to obtain a final SM value measuring the long-term electrocardiographic dissimilarity

between the patients.

Quantifying Differences in Symbol Distributions

The symbolic mismatch (SM) between two patients, p and q, is calculated using the

process shown in Figure 4-27.

Denoting the set of symbols for patient p as SP and the set of probabilities with

which these symbols occur in the electrocardiogram as Pp (for patient q an analogous

representation is adopted), we calculate the SM between these patients as:

SMp,q = E C(a, b)Pp[a]Pq[b] (4.38)
aESp bESq

C(a, b) corresponds to the dynamic time-warping cost of aligning the centroids of

symbol classes a and b.

Intuitively, the symbolic mismatch between patients p and q corresponds to an

estimate of the expected dynamic time-warping cost of aligning any two randomly

chosen beats from these patients. The SM calculation above achieves this by weighting

the cost between every pair of symbols between the patients by the probabilities with

which these symbols occur. An example of the SM calculation is presented in Figure

4-28.

An important feature of SM is that it is explicitly designed to avoid the need to

set up a correspondence between the symbols of patients p and q for comparative

purposes. In contrast to cluster matching techniques [25, 26] that compare data for
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Figure 4-28: A hypothetical example of the SM calculation.

two patients by first making an assignment from symbols in one patient to the other,

SM does not require any cross-patient registration of symbols and performs weighted

comparisons between all symbols for p and q.

Hierarchical Clustering of Patients Using SM

For every pair of patients in a population, the symbolic mismatch between them is

computed using the techniques described in Section 4.3.5. The resulting divergence

matrix, D, relating the pairwise symbolic mismatches between all the patients is used

to partition the population into groups with similar cardiac characteristics. This

process is carried out by means of hierarchical clustering [24].

Hierarchical clustering starts out by assigning each patient to a separate cluster.

It then proceeds to combine two clusters at every iteration, choosing clusters that

obey some concept of being the "closest" pair. We use a definition of closest that

corresponds to merging two clusters A and B for which the mean symbolic mismatch

between the elements of the clusters is minimized, i.e., we choose clusters A and B

such that they minimize the merge distance, f, which is given by:

1
f = I SM, (4.39)

IA.IB zExA yinB

where JAl and BI correspond to the number of elements in each cluster.

137



-JC-~C-- - - - - - - - - - -e

ECGi nei CaCulate pMir.e ECGM disas Hhjrchil duw.W np pa m Ad. ..M\ Mu ¢ d t-n& of -.num ber

Figure 4-29: Stages in the patient clustering process to determine high risk minority

groups that are population outliers.

Intuitively, this approach picks two clusters to merge that are closest in the sense

that the average distance between elements in the two clusters is minimized. This

definition of closest is similar to the unweighted pair group method with arithmetic

mean (UPGMA) or average linkage criterion [23].

Broadly speaking, there are two approaches to decide when to terminate the iter-

ative clustering process. The simplest approach is to terminate at the iteration when

the clustering process has produced a pre-determined number of clusters. However, in

this case we have no prior assumptions about the appropriate number of clusters. We

therefore use a more complex approach in which the number of clusters is determined

by the dataset.

The merge distance defined in 4.39 is monotonically nondecreasing with iteration

number. Small increases in the merge distance suggest that the clustering process

is merging clusters that are close. Conversely, large merge distances correspond to

clusters being merged that are dissimilar. We therefore use the merge distance to

indicate when the clustering process is beginning to show diminishing returns, i.e.,

merging clusters that are increasingly far apart. Continuing beyond this point may

lead to the new clusters created containing heterogenous elements. We therefore

terminate the clustering process when the merge distance for the next three iterations

would show a quadratic concave up increase.

The process of hierarchically clustering patients using SM is shown in Figure 4-29.
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4.3.6 Evaluation of Symbolic Mismatch

We tested symbolic mismatch on patients in the DISPERSE2 TIMI33 trial (Sections

3.2.5 and 4.3.4). To evaluate the ability of symbolic mismatch to identify patients at

increased risk of future cardiovascular events, we first separated the patients into a

dominant normal sub-population (i.e., the low risk SM group) and a group of abnor-

mal patients (i.e., the high risk SM group). This was done by terminating hierarchical

clustering automatically and labeling all patients outside the largest cluster as being

abnormal and potentially high risk. In the subsequent discussion, we denote this

new risk variable as the ECG Non-Dominance (ECGND). Patients placed in the non-

dominant group by SM clustering were assigned an ECGND value of 1, while those

in the dominant group had a value of 0.

Kaplan-Meier survival analysis was used to study the event rates for death and

MI. Hazard ratios (HR) and 95% confidence interval (CI) were estimated by using a

Cox proportional hazards regression model to study event rates in patients within the

dominant and non-dominant groups. The HR for the dominant and non-dominant

SM groups was compared to other clinical risk variables; age, gender, smoking history,

hypertension, diabetes mellitus, hyperlipidemia, coronary heart disease (CHD), prior

MI, prior angina and ST depression on holter. The risk variables were also examined

using multivariate analysis. The outcomes of death and MI were studied both sepa-

rately, as well as after being combined to create a combined endpoint of death or MI

(death/MI).

The results of univariate analysis for death, MI and the combined outcome are

shown in Tables 4.6 to 4.8 for all risk variables including ECGND. The corresponding

Kaplan-Meier curves are presented in Figure 4-30.

Of the clinical risk variables examined, age showed a consistent, though small,

association with both adverse endpoints on univariate analysis over the 90 day follow-

up period. The presence of diabetes was also found to be associated with cardiac

mortality.

In the case of ECGND, patients who were electrocardiographically mismatched
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Table 4.6: Association of risk variables with death in univariate and multivariate
analyses (n=686).

Variable

Age
Gender
Smoker

Hypertension
Diabetes

Hyperlipidemia
CHD

Prior MI
Prior angina

ST depression
ECGND

Univariate Hazard
Ratio
1.10
2.53
0.59
6.03
3.36
0.57
0.13
2.25
2.61
2.51
4.71

P
Value
<0.01
0.086
0.321
0.083
0.024
0.288
0.051
0.134
0.141
0.120
<0.01

Multivariate Hazard
Ratio
1.07
1.81
2.32
3.39
1.75
0.61
0.23
2.01
1.83
1.26
3.62

Table 4.7: Association of risk variables with MI in univariate and multivariate anal-
yses (n=686).

Variable

Age
Gender
Smoker

Hypertension
Diabetes

Hyperlipidemia
CHD

Prior MI
Prior angina

ST depression
ECGND

Univariate Hazard
Ratio
1.04
0.50
1.22
1.71
1.36
0.76
1.15
1.21
0.70
0.73
1.69

P
Value
0.034
0.128
0.605
0.246
0.463
0.466
0.725
0.644
0.351
0.411
0.167

Multivariate Hazard
Ratio
1.05
0.38
1.15
1.86
1.19
0.81
1.49
1.20
0.62
0.61
1.66
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P
Value
0.056
0.353
0.227
0.253
0.331
0.411
0.164
0.235
0.393
0.707
0.038

P
Value
0.011
0.050
0.745
0.208
0.693
0.610
0.333
0.689
0.245
0.238
0.193
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Figure 4-30: Kaplan-Meier survival curves for (a) death, (b) MI and (c) death/MI
comparing the high SM risk (n=229) and low SM (n=457) groups.
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Table 4.8: Association of risk variables with death/MI in univariate and multivariate
analyses (n=686).

Variable Univariate Hazard P Multivariate Hazard P
Ratio Value Ratio Value

Age 1.05 <0.01 1.05 <0.01
Gender 0.77 0.468 0.63 0.242
Smoker 1.15 0.670 1.52 0.285

Hypertension 1.99 0.103 1.81 0.185
Diabetes 1.84 0.077 1.41 0.350

Hyperlipidemia 0.74 0.362 0.76 0.429
CHD 0.85 0.635 1.14 0.720

Prior MI 1.46 0.281 1.33 0.451
Prior angina 1.03 0.932 0.87 0.707

ST depression 1.04 0.910 0.74 0.387
ECGND 2.58 <0.01 2.43 <0.01

with the dominant group of the population showed an increased risk of adverse car-

diovascular events. Patients outside the dominant cluster had a much higher rate

of death during follow-up than patients in the dominant cluster (4.37% vs. 0.88%;

p<0.01). A similar trend was seen for MI (5.68% vs. 3.28%) although in this case the

relationship was not statistically significant (p=0.167). For the combined death/MI

endpoint, i.e., the occurrence of either of these adverse outcomes, the cumulative in-

cidence in the high risk group was 9.17% as opposed to 3.50% in the low risk group

(p<0.01).

The results of multivariate analysis for death, MI and the combined outcome are

also shown in Tables 4.6 to 4.8 for all risk variables including ECGND.

On multivariate analysis, ECGND was the only risk variable evaluated that showed

an independent association with death over a 90 day period following non-ST segment

elevation acute coronary syndrome (NSTEACS). There was no statistically significant

association between ECGND and MI. For the combined death/MI endpoint both age

and ECGND showed an independent association with the 90 day outcome, with a

higher hazard ratio being observed in the case of ECGND.

Hierarchical patient clustering produced 46 clusters in all, i.e., one dominant clus-
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Table 4.9: Percentage of patients with events in five largest clusters in the high SM
risk group relative to low SM risk group.

Cluster # of Patients % % MI %
Death Death/MI

A 53 3.77 1.89 5.66
B 48 2.08 8.33 10.42
C 22 18.18 4.55 22.73
D 20 10.00 5.00 10.00
E 12 0.00 16.67 16.67

Low SM 457 0.88 3.28 3.50

ter that constituted the low risk SM group of patients and 45 clusters that collectively

formed the high risk SM group. Of the high risk SM clusters, 31 had only a single

element, potentially corresponding to isolated singletons resulting from noisy elec-

trocardiograms. Conversely, 5 of the high risk SM clusters had 10 or more patients.

These 5 clusters are labeled A-E.

Table 4.9 presents the risk of events for the non-dominant clusters comprising

10 or more patients. The data suggest that patients in different clusters may have

distinct risk profiles. Consider, for example, patients in the C cluster. The risk of

death for these patients is 18.18% relative to a risk of 0.88% in the dominant cluster

population (HR 23.20, p<0.01 ). The overall risk of death/MI is also correspondingly

elevated (22.73% vs. 3.50%; HR 7.54, p<0.01). Cluster C had a higher rate of death

not only than the dominant cluster, but also relative to other non-dominant clusters

(HR 9.05, p<0.01) suggesting a worse prognosis for patients in that group.

Similarly, in the E cluster, there are no deaths but the risk of MI is 16.67% as

opposed to 3.28% in the dominant cluster (HR 5.35, p=0.026). However, in this case,

there is no statistically significant increase in the rate of MI relative to the rest of the

non-dominant clusters (HR 2.99, p=0.164).

The percentage of events in the combined population comprised only by the non-

dominant clusters with 10 or more members (i.e., A-E) is shown in Table 4.10. For

each endpoint, there is a higher percentage of events in the cumulative population
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Table 4.10: Percentage of patients with events in aggregate of five largest clusters in
high SM risk group compared to low SM risk group.

Cluster # of Patients % % MI %
Death Death/MI

A-E 155 5.81 5.81 10.97
Low SM 457 0.88 3.28 3.50

comprising only clusters with 10 or more patients than when the entire non-dominant

cluster population (including clusters less than 10 patients) is analyzed. These data

suggest that improved noise removal techniques, or disregarding small electrocardio-

graphically mismatched clusters, could allow for a further focus on high risk cases.

4.4 Other Applications of Symbolic Analysis: Fe-

tal Risk Stratification

In addition to our work on risk stratification following NSTEACS, we also applied

symbolic analysis to fetal ECG data.

Inflammatory conditions such as intrauterine infection (chorioamnionitis) during

pregnancy are associated with an increased risk of sepsis, cerebral palsy, and death

in newborns [10, 11, 12]. Early detection of inflammation may allow for interventions

that reduce the risk of adverse newborn outcome. The standard approaches to diag-

nosing intrauterine infection are based on measuring the mothers body temperature

periodically during labor or measuring fetal HRV. These approaches only detect in-

fections once the inflammatory process is sufficiently advanced to elevate maternal

core temperature or to cause a fetal systemic response.

We propose morphologic entropy in the fetal electrocardiogram signal as a new

risk metric for the early detection of inflammation and neuronal injury during preg-

nancy. This metric is computed using a two-step process. We first represent the

original ECG signal x[n] as a symbolic sequence comprising labels derived from an

unsupervised algorithm to partition ECG beats into distinct classes with character-
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istic morphology. We then measure the entropy in this symbolic representation to

derive the morphologic entropy as:

H(x) = - 1 f(c,) log(f(ci)) (4.40)
c ES

where f(c,) is the frequency of ci in the symbolic representation of the fetal ECG

signal.

We evaluated morphologic entropy in a preliminary study on fetal ECG signals

from five subjects. These signals were sampled at 1000 Hz with 32 bit quantization

and recorded using a fetal scalp electrode placed for a clinical reason following am-

niotic rupture. The recording of patient data was carried out at the Brigham and

Womens Hospital, Boston, MA USA, with informed consent obtained from mothers

considered at high risk for delivering a baby with fetal injury. Each recording was

between 57-200 minutes long with a mean recording duration of 144 minutes. We as-

sessed the quality of each fetal ECG signal using the Physionet Signal Quality Index

(SQI) package [82] and by measuring the standard deviation (SD) of the normalized

R-wave amplitude. All five recordings were found to be sufficiently high quality (i.e.,

SQI , 90% and SD i 0.2887) for further analysis.

For each patient, IL-6, IL-8 and NSE were also measured from cord serum using

fully-automated random and enzyme-linked immunosorbent assays. The sensitivity

and coefficient of variation (CV) for the assays were 1 pg/ml and i 10% for IL-6, 10

pm/ml and i 10% for IL-8 and 1 ug/l and i 5% for NSE. Abnormal ranges for the

biomarkers were chosen from the literature to be , 11 for IL-6, Z 90 for IL-8 and ,

12.5 for NSE [7, 8, 9].

Figures 4-31 - 4-33 show the association between morphologic entropy and IL-6,

IL-8 and NSE. In each case, we observed a strong linear relation between morphologic

entropy and marker levels in cord serum (p i 0.05). As the measured IL-6, IL-8 and

NSE levels increased, there was an associated increase in the entropy of the fetal ECG

morphology.

In addition to the markers of inflammation and neuronal injury, periodic mater-
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Figure 4-31: Relation between morphologic entropy

(Y = -59.13 + 55.67X; p = 0.019; standard error for

RMSE = 7.68)

50.00

45.00

40.00

35.00

30.00

co 25.00
-J

20.00

15.00

10.00

5.00

0.00

and IL-6 levels in cord blood
coefficients = 17.38 and 11.93;

1.5

Morphologic Entropy

Figure 4-32: Relation between morphologic entropy and IL-8 levels in cord blood (Y

= -48.89 + 45.82X; p = 0.009; standard error for coefficients = 11.01 and 7.56; RMSE

= 4.75)
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Figure 4-33: Relation between morphologic entropy and NSE levels in cord blood
(Y = -97.73 + 90.38X; p = 0.005; standard error for coefficients = 17.67 and 12.14;
RMSE = 7.34)

nal temperature measurements were also recorded for all five subjects. None of the

mothers developed a fever during labor, despite the increased IL-6, IL-8 and NSE

levels in some of the cases. Furthermore, in the period of hospitalization post-labor,

fever was observed in only one of the five mothers. The cord levels of the different

markers for this case were IL-6 = 4.98 pg/ml, IL-8 = 3.81 pg/ml and NSE = 15.85

ug/l, i.e., the mother did not represent one of the cases with the highest inflammatory

or brain injury markers in the cord labs. This data suggests that while morphologic

entropy of the fetal ECG is strongly associated with IL-6, IL-8 and NSE levels in

the cord blood, the absence of fever in the mother is a poor predictor of the lack of

inflammation or neuronal injury.

We also evaluated different metrics based on heart rate variability for association

with IL-6, IL-8 and NSE. We measured the SDNN, SDANN, ASDNN, rMSSD, HRVI,

pNN50 and LF/HF metrics for each patient. Tables 4.11 and 4.12 present the HRV

metrics computed for each subject and the measured levels of the markers in cord

blood. None of the HRV metrics showed a statistically significant linear relation (i.e.,

p i 0.05) with IL-6, IL-8 or NSE. These data suggest that in this study population,

HRV metrics were a poor indicator of inflammation or brain injury to the fetus.

Our findings suggest that morphologic entropy may have value in early detection

of inflammatory processes such as intrauterine infections and fetal brain injury. Our
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Table 4.11: HRV metrics for subjects. Mean heart rate (Mean HR) and the standard
deviation of the heart rate (STD HR) are also provided for each subject.

ID SDNN SDANN ASDNN HRVI pNN50 RMSSD LF/HF MEAN
HR

0.25 26 1.64 123
0.08 21 2.24 101
0.13 22 2.36 114
0.02 9 2.79 104
0.16 20 2.98 107

Table 4.12: Cord blood markers for subjects.

IL-6
34
12
49
5
1

IL-8
18
17
43
4
1

NSE
27
11
88
16
12
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HR
13.9
16.5
12.8
5.7
10.9



results also suggest that morphologic entropy may be a better detector of high-risk

conditions than the present strategy of measuring maternal fever or using heart rate

variability-based metrics. While the results of our work are promising, we note that

our dataset presently represents a small population. Although this did not prevent

us from obtaining statistically significant results, because of the strong association

between morphologic entropy and the different markers measured in cord blood, these

findings should be considered a preliminary study. We hope to supplement these

initial data with testing on a larger population to build a stronger case for the use

of morphologic entropy in clinical practice. We also note that in our study, we used

ECG signals recorded with a fetal scalp electrode placed during labor. While the scalp

electrode used for testing is not strictly noninvasive, as it requires the insertion of a

wire electrode into the scalp of the fetus, we believe that the increased entropy in fetal

ECG is independent of the specific ECG acquisition technology, and speculate that

it can be measured noninvasively using fetal ECG derived from maternal abdominal

leads. However, further experimentation is needed to test this hypothesis.

4.5 Summary

In this chapter, we proposed the notion of computational physiology, i.e., the analysis

of large amounts of physiological data as symbolic sequences. We reviewd the concept

of symbolization as it appears in different disciplines, and described how we can extend

this idea to physiological signals. We explained, in particular, why symbolic analysis

is an appropriate and powerful paradigm for physiological data, and what domain

specific challenges need to be addressed for its use in this setting. We also proposed

algorithms to symbolize many broad classes of physiological signals, and to analyze

symbolic representations of physiological data with the goal of risk stratification.

We presented the idea of finding high risk symbolic patterns that are conserved or

absent in patients experiencing adverse events, and the idea of finding patients at risk

of different adverse outcomes through a comparative approach that groups together

patients with similar symbolic sequences (and potentially similar risk profiles). We
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evaluated both these approaches, and also described how similar ideas can be applied

to fetal ECG signals to risk stratify for cerebral palsy.

The work discussed in Chapters 3 and 4 focused on the analysis of large amounts

of physiological data with the goal of risk stratification. We now turn out attention

towards visualizing the activity discovered by our methods, so that interesting findings

can be communicated in a compact form to clinicians.
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Chapter 5

Visualization of Long-Term Data

In Chapters 3 and 4, we proposed techniques for the automated analysis of large

amounts of continuous data. As a complement to this work, we have also developed

visualization tools to help clinicians and researchers look at information in long-term

signals.

Our visualization tools are based on the symbolic framework described in Chapter

4. We make use of the data reduction provided by symbolization to compactly dis-

play physiological signals as symbolic sequences rather than waveforms. We further

supplement this with the ability to drill down and visualize prototypical waveforms

associated with each symbol as well as individual raw data points.

In what follows, Section 5.1 presents the design concepts and interfaces for our vi-

sualization tools to compactly display information in long-term signals. We illustrate

how visualizing long-term data as symbolic sequences makes it easier to identifying

interesting activity. Section 5.2 then focuses on the creation of prototypes for the

visualization of each symbol class, by characterizing persistent physiological activity

while removing variations due to noise and time-skew.

5.1 Visualizing Data as Symbolic Sequences

We believe that looking at data as a sequence of symbols, where each symbol has an

interpretable form, helps facilitate the visualization of data. In particular, it provides
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many advantages over the alternative of visualzing raw samples. First, symbolization

results in a large decrease in the number of data points that need to be visualized

(i.e., there are fewer data points along the x-axis as many samples are compacted

into a single symbol). Second, symbolization also makes it easier to see when changes

occur (i.e., there are fewer discrete values for symbols than raw samples, so data

is easier to visualize along the y-axis). Finally, symbolization also makes the data

more readily interpretable (i.e., it may be more natural to reason in terms of changes

in different classes of physiological activity than changes in terms of raw samples).

Our philosophy is therefore to visualize long-term data as symbols, while retaining

information (in the form of prototypes and even the raw data) that can be available

to users interested in looking at waveforms.

Figure 5-1 shows an interface for our visualization tool. The raw ECG signal is

shown in the top panel with a symbolic representation of this data just below. While

it is hard to appreciate the different kinds of activity taking place by looking at the

raw ECG signal, the symbolic display makes it easy to recognize that three different

classes of heart beats occurred and also the temporal distribution of this activity.

The lower left panel of the tool shows a 2-dimensional down-projection of all the

ECG beats using PCA [4]. This is intended to allow users to appreciate the intra-

and inter-cluster distance between beats. Individual heart beats, and the prototypical

representations of the symbol classes to which these beats were assigned, can be seen

in the panels on the bottom right.

In this way, the display in Figure 5-1 provides a quick and compact way to visualize

the different kinds of heart beats that were observed during the course of continuous

monitoring, the time-distribution of these different classes of activity, how different

these groups of beats were, and also what the prototypical representation of each beat

group is.

We also allow users to choose between different clustering options for symboliza-

tion, and to configure the granularity of the clustering (top right panel). This provides

users with flexibility on the process through which symbols are created, and also how

many symbols to create.
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Figure 5-1: Screenshot of compact symbolic display of long-term ECG.
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Figure 5-2: Screenshot of simultaneous ECG information display.

Figure 5-2 provides further information. In addition to showing the raw ECG

signal (top panel) and the symbolic representation of this signal (second panel from

top), it also shows the entropy of the symbolic sequence as a function of time (second

panel from bottom), and how the distribution of different beat classes changes over

time (bottom panel). Users can also click individual beats in the symbolic sequence

to display the prototypical beat for the symbol, or the specific beat clicked (panels

on right).

We use the entropy of the symbolic sequence as a proxy for the complexity of

the underlying signal. As we showed in Section 4.2.2, changes in complexity may

correspond to pathological conditions such as atrial fibrillation.

Figures 4-9 to 4-15, shown earlier in Section 4.2.2, were derived using our vi-

sualization tool and illustrate how our tool can be used to discover physiologically

interesting activity. More generally, we expect clinicians to use our visualization tool

to efficiently analyze long-term data (e.g., patient data between doctor visits) in a

154



systematic manner. As a first step, this may involve noting the different symbols or

classes of activity that took place over the course of long-term monitoring. Clinicians

could then study how the distribution of the symbols changed over time, and poten-

tially how the entropy or complexity of the signal evolved. Finally, clinicians could

review interesting symbolic constructs, such as rhythms and frequently occurring pat-

terns. These analyses would reveal information on what kind of activity occurred,

when it occurred, and how it was organized. In Section 4.2.2 we showed how this

information may correspond to important kinds of pathological activity.

In the remainder of this chapter, we now discuss our techniques for creating proto-

typical representations of physiological activity. The use of prototypes is an important

supplement to the display of symbolic sequences, since it allows users to easily vi-

sualize a robust archetype of the activity corresponding to a symbol. Collectively,

the display of symbols makes it easy to understand how different classes of activity

change over time, while the prototype makes it easy to understand what each class

represents.

5.2 Prototypical Representation of Biological Ac-

tivity

Many biological signals exhibit quasi-periodicity, and this property encourages the use

of a variety of aggregation techniques to create composite signals. Signal averaging

is commonly employed to reduce additive noise and improve the quality of data. An

associated advantage of this approach is that it can help address the problem of

"information overload" by compressing the often overwhelming amounts of patient

data collected during long-term monitoring.

Automated information fusion techniques and aggregation operations have been

previously applied to a number of different fields. Ensemble averaging is frequently

employed, and prototype construction in numerical, ordinal and categorical data has

been explored using the plurality rule, medians, Sugeno integrals and ordinal weighted
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means [13]. The idea of weighted averaging [14] appears in various forms, using pos-

sibility theory [15], the minimum energy principle [16], signal-to-noise maximization

with the Rayleigh quotient and generalized eigenvalue problem [17], and adaptive

weight estimation [18]. In [19], a general discussion is provided on the application of

averaging to quasi-periodic biological signals. Combination in this case proceeds by

means of weighted averaging, where each observation influences the composite signal

according to its weight and aggregation can be viewed as an optimization problem

over the vector of weights using an objective function that measures the distance

between the resulting prototype and each observation.

The works described above typically model all inter-period variations across the

signals as noise. This includes variation due to time-skew, where the signal is not

noise-corrupted, but may be variably delayed or advanced along its length. In this

case, existing techniques for aggregation fail to make use of clean signal. We relax this

view and attempt to separate noise from naturally occurring variations along the time

axis in biological signals. This addresses the case of changes across signals resulting

from misalignments of activity, rather than corruption of the data. To achieve this, we

supplement previous aggregation algorithms with a mechanism to relate time-warped

information across observations and combine data hierarchically. This ensures that

the averaging process combines consistent physiological activity. We also make use

of the differences in time-skew across observations to estimate an average length for

each part of the signal. Under the time-warped model, we view the construction of

prototypes as the merging of information along both the amplitude and time axes, i.e.,

the goal of our work is to produce representative signals where events have average

amplitude and occur at average displacements from fiducial points.

5.2.1 Prototype Construction

As discussed in Section 3.2.3, the classic dynamic time-warping algorithm [83] pro-

duces the optimal alignment of two sequences u[n] and v[n], each of length N. For

cardiovascular signals, u[n] and v[n] may be heartbeats. The optimal alignment can

be denoted by q = (,, v,) and represents a mapping of length K between the samples
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Figure 5-3: Decomposition of q into a, / and y segments. Horizontal runs along the

DTW distance matrix correspond to a-segments, vertical ones to /-segments, and

diagonal traversals to y-segments.

of the two sequences, i.e.:

u[vu(i)] +- v[,v(i)] 1 < i < K (5.1)

The process of aggregating u[n] and v[n] then proceeds by decomposing the op-

timal alignment 0 into a, 0 and y segments as shown in Figure 5-3. An a-segment

corresponds to a locally maximal (i.e., non-extendible) segment of the alignment path

such that multiple samples from u[n] are aligned against a single sample from v[n].

Conversely, a /-segment comprises a locally maximal segment of the alignment path

where multiple samples from v[n] are aligned against u[n]. The remainder of 0 cor-

responds to y-segments.

Aggregation proceeds by iterating over all the decomposed segments in q. Each a-

segment of length I starting at position k (denoted by ak) first undergoes a two-point

average for 1 < n < [1/2J:

()[n ] = u[o,(k + 2n - 1)] + u[~,(k + 2n)] (5.2)
4

with:

a[L + 1] = u[(k + 1)] (5.3)
I2 2

Information is then merged with v for 1 < n < [1/2J + 1 by:
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/-segments are handled in an analogous manner to yield 3k2) [n]. For ?-segments,

there is no compacting or internal 71) [n] state. Instead, for 1 < n < 1:

(2)[n] u[(k + n - 1)] + v[O~(k + n - 1)] (55)
2

The algorithm for aggregation cycles through all segments, and concatenates the

respective (2), / 2) and -y2) sub-signals together to yield an aggregate signal x[n].

For alternate a or 3 segments with even length (no distinction is drawn between the

two cases), the last element corresponding to 5.4 is left out to ensure conservation of

length.

It is critical that this pair-wise aggregation of observations yields a signal of the

same length as the ones being combined. Conservation of length permits a hierarchical

approach to compacting activity across multiple observations. We prove that this

property is maintained by our algorithm for aggregation in Appendix A.

The combined effect of the halving associated with odd, /odd,, 71 aeven and 3 even

segments is that a total of 2N samples across the two signals combined is aggregated

to yield a composite sequence of length N. The net effect of the pair-wise aggregation

process is therefore to combine information in both amplitude and time, yielding a

sequence that has the same length as the initial observations.

Figure 5-4 illustrates how a complete binary tree topology with depth log(M) can

be used to merge information in a uniform, unbiased manner. This contains O(M)

internal nodes, each corresponding to an O(N 2) aggregation step associated with

DTW-based pair-wise aggregation.

For very large observation sets, random sampling may be used to reduce M, or

observations can be down sampled to obtain a quadratic speedup associated with the

O(N 2) factor.
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Figure 5-4: Hierarchical aggregation topology: The complete binary tree represen-
tation corresponds to a flat organization of observations that are aggregated in a
breadth-first manner in pairs.

5.2.2 Evaluation

We used the synthetic ECG generator of [20] to evaluate the ability of our techniques

to recover an original signal from observations corrupted by varying levels of noise

and time-warping. Noise was specified directly to the generator in millivolts, while

time-warping was expressed as the standard deviation of heart rate in terms of beats

per minute. Since the number of observations generated was finite, the time-warping

was not always centered around the original signal, i.e, the warped beats could on

average be longer or shorter.

We tested our algorithm under various test conditions and calculated the root

mean-square error (RMSE), maximal absolute difference (MD), signal-to-noise ratio

(SNR), and dynamic time-warping cost (DTWC) between the aggregate prototype

signals and the original signal. 100 observations were used, each corresponding to

ECG sampled at 256 Hz with a mean heart rate of 80 beats per minute. The position

of the R wave was used as the fiducial point.

The penalty under RMSE and SNR for a missing waveform can be half that for
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B

Figure 5-5: Example illustrating the limitations of RMSE and SNR as a measure of

error in the presence of time-skew.
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a slight change in the timing of that waveform. For example, consider the beats

shown in Figure 5-5. RMSE and SNR would conclude that beats A and C were more

dissimilar than beats A and B. This would occur because while comparing beats A

and C, a slight delay in the R wave would lead to two mismatches, i.e., the R wave

from beat A would correspond to low amplitudes parts of beat C, while the R wave

from beat C would correspond to low amplitude parts of beat A. In contrast, even

though beat B is missing the R wave altogether, RMSE and SNR would consider it

more similar to beat A as there would only be one R wave mismatch (i.e., the R wave

from beat A corresponding to low amplitude parts of beat B).

This phenomenon occurred in our experiments because of the finite sample issue

discussed earlier. Similarly, the MD measure penalizes deletion as much as displace-

ment. Since missing events altogether is typically more serious in the clinical setting

than minor relocations, we consider the DTWC, which penalizes deletion more than

displacement, to be a more useful measure of error.

The results of these experiments are shown in Figure 5-6. Each experiment is

shown as a two dimensional grid, with noise increasing from top to bottom, and time-

skew increasing from left to right. The color of each cell within the grid corresponds

to the error. There are a total of eight grids in Figure 5-6, corresponding to the

diffents experiments conducted. The left panel (i.e., the four grids in the left column)

show error using each of the four measures between the ensemble average and the

original signal. The right panel (i..e, the four grids in the right column) shows the

corresponding errors for the prototype.

In the absence of time-warping, the ensemble provides a least squares optimal

estimate of the original signal. This can be seen from the low error along the top

of each grid on the left side of Figure 5-6. Even so, there is not much difference

between the performance of the ensemble and that of the prototype in the absence of

time-warping. Furthermore, with even small amounts of time-warping, the prototype

provides a significant performance improvement. This can be seen from the greater

increase in error (from top to bottom) in the grids on the left side of Figure 5-6 than

on the right.
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Ensemble Average

x-axis: noise-to-signal ratio of generated observations
y-axis: time-warping in beats per minute

Figure 5-6: Synthetic ECG error: From top to bottom, the RMSE, MD, I/SNR
and DTWC of the ensemble average and prototype relative to the deterministic ECG
signals are shown for different additive noise and warping levels (each cell corresponds
to a different randomly generated set of observations). We use 1/SNR instead of SNR
to display experiments corresponding to no noise (i.e., SNR= oc and 1/SNR= 0).

162

Prototype

I~ u
I-

I rr
1la
1:
~

1 r
bI I 9d
IOi



5.3 Summary

In this section, we presented our work on the visualization of information in large

physiological datasets. We described a visualization tool that uses our symbolic

framework to compactly present interesting activity in long-term physiological sig-

nals, and proposed algorithms to aggregate signals with noise and time-skew into

prototypes.
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Chapter 6

Conclusion and Future Work

We end with a summary of the major aspects of our work (Section 6.1), a review of

our conclusions (Section 6.2), and a discussion of future research (Section 6.3).

6.1 Summary

In this thesis, we described several novel computational methods to analyze large

amounts of continuous long-term physiological data. We focused largely on techniques

to discover information that can be used to predict patients at high risk of adverse

events, and applied these methods to cardiovascular datasets to risk stratify patients

following non-ST-elevation acute coronary syndromes (NSTEACS).

6.1.1 New Concepts

We proposed two complementary areas of analysis.

Morphologic variability (MV) measures subtle micro-level changes in continuous

signals, as a way to estimate instability in the underlying physiological system. These

subtle variations have historically been considered to be noise. We show, however,

that MV can provide a clinically useful estimate of instability in the underlying phys-

iological system by identifying instabilities in the signal generated by that system. In

the case of cardiac disease, we attribute these instabilities to the presence of unstable
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bifurcations in the myocardium causing increased variability in ECG morphology.

We also presented the notion of symbolic analysis. In contrast to our work on MV,

this looks at macro-level information in signals by abstracting them into symbolic se-

quences and studying the resulting textual representations of the time series signals

for interesting higher-level constructs (e.g., "words" within the textual representa-

tions that are associated with adverse outcomes). We explained how symbolization,

which is used in many other disciplines, is useful within the context of physiological

signals. More specifically, we demonstrated a symbolic framework that allows phys-

iological datasets to be studied in a manner analogously to nucleotide data (albeit

with different kinds of analyses).

We described two analyses for identifying high risk patients within a symbolic

framework. We presented methods for discovering predictors of acute events by

searching for approximate symbolic patterns that occur more often preceding events

than one would expect by chance alone. We also introduced the idea of using com-

parative methods to relate long-term symbolic representations of time-series from

different patients, and to identify "abnormal" patients as outliers in a population.

In addition to our work on morphologic variability and symbolic analysis, a third

component of our work was the development of visualhzaton tools for long-term sg-

nals. Our tools built upon our symbolic framework, and allow users to view continuous

long-term signals as sequences of symbols while providing a mapping of each symbol

to a prototypical waveform representation. This results in a large decrease in the

number of data points that need to be visualized, makes it easier to see when changes

occurred, and makes the data more readily interpretable.

As part of this work on visualization, we developed the idea of creating proto-

typical signals that aggregated both amplitude and time information. In contrast to

conventional aggregation approaches, which average the amplitude of multiple ob-

servations, we proposed creating a signal where the duration of each physiological

waveform was also averaged in time.
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6.1.2 New Methods

In addition to proposing the concept of MV, we designed a system to measure MV,

which addresses the challenge of finding subtle diagnostic variability in large amounts

of noisy data with time-skew. Our algorithm uses a modified dynamic time-warping

approach to compare variations in morphology between consecutive beats, and the

Lomb-Scargle periodogram to identify a spectral signature for these variations that

corresponds to high risk.

We also presented an efficient Max Min clustering-based algorithm for symboliza-

tion, and demonstrated that this transformation preserves useful clinical information

while making the data easier to analyze. For example, we showed how different anal-

yses on symbolic representations can be used to detect various kinds of clinically sig-

nificant activity, e.g., searching for approximate repeated sequences finds ventricular

bigeminy and trigeminy; searching for statistically overrepresented patterns reveals

tachyarrhythmias; and locating high entropy periods detects atrial fibrillation. Our

algorithms also uncovered kinds of complex activity that often go unnoticed in clinical

practice, e.g., atrial ectopic rhythms.

We approached the problem of pattern discovery as a significance and classification

problem, and used the ideas of locality sensitive hashing (LSH), multi-level Gibbs sam-

pling, and sequential statistics to make the search for relevant activity more efficient.

We also developed the symbolic mismatch method to compare long-term symbolic

representations of time-series from different patients, by reducing the time-series for

each patient to prototypical segments and measuring the probability-weighted mis-

match of these segments across patients to assess similarity. This approach was used

to partition patients into groups with similar risk profiles.

6.1.3 New Clinical Results

We developed MV using data from the DISPERSE2 TIMI33 study of approximately

800 patients. When evaluated on over 4,500 patients from the MERLIN TIMI36

study, we found that high MV was associated with cardiovascular death and sudden
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cardiac death post-NSTEACS. These results were consistent even after adjusting

for clinical characteristics, biomarker data, and medications. Our data show that

information in MV may be independent of information provided by the other risk

variables, and in particular, MV is a better predictor of death than other long-term

ECG-based metrics. MV also has great value in identifying patients who are missed

by echocardiography. The adjusted hazard ratios in patients with LVEF>40% were

2.93 (p<0.001) for cardiovascular death and 2.27 (p=0.013) for sudden cardiac death.

We demonstrated the utility of our symbolic analysis methods to discover predic-

tors of acute events, both for detecting markers associated with long-term risk and

for markers associated with imminent acute events (e.g., sudden cardiac death). In

a small study on patients from the Physionet Sudden Cardiac Death database, who

experienced sudden cardiac death, our algorithms correctly identified 70% of the pa-

tients who died while classifying none of the normal individuals and only 8% of the

patients with supraventricular arrhythmias as being as risk.

We evaluated our comparative methods on data from roughly 800 patients in

the DISPERSE2 TIMI33 study. We used our methods to partition patients with

cardiovascular disease into groups using their ECG signals. We found that different

groups of patients exhibit a varying risk of adverse outcomes. One group, with a

particular set of time-series characteristics, shows a 23 fold increased risk of death,

while another exhibits a 5 fold increased risk of future heart attacks.

While most of our clinical results address the problem of cardiovascular risk strat-

ification within adult populations, we also showed that both morphologic variability

and symbolic analysis are more broadly useful. In particular, we demonstrated how

these tools can help quantify the effects of pharmaceutical treatment, and may also

have value in applications such as fetal risk stratification for cerebral palsy.

6.2 Conclusions

The practice of medicine can be simplified into different steps, e.g., evaluating pa-

tients, choosing interventions and performing interventions. Perhaps the weakest link
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in this loop is the evaluation of patients. This is one reason that the existing practice

of medicine is largely curative rather than preventative.

Computational techniques and tools can play a critical role in addressing this

problem. They can improve our ability to understand what constitutes risk and help

us develop real-time methods for identifying high risk patients. We can achieve both

these goals without raising cost or burdening caregivers or patients.

Our work on analyzing ECG data represents exactly such a scenario. Our methods

are able to identify high risk patients using data that is already routinely collected

in hospitals and ambulatory monitoring. We are therefore potentially able to make a

positive impact without the need for any new hardware or patient maneuvers. Since

our tools are fully automated, we do not expect a significant increase in clinician time.

The success of our work on ECG signals also helps make an important point:

there is often much information, even in traditional signals like the ECG that have

been around since the late nineteenth century, that can be used to make a significant

difference. This is particularly true of long-term recordings, which are challenging to

analyze with the human eye and have only recently become widely available because

of advances in recording technologies. The challenge, however, is extracting the infor-

mation in these signals, and it is in this context that computational tools to analyze

physiological signals can make a useful contribution.

6.3 Future Work

In the near term, there is a need to reproduce our results on other datasets, so that

our risk metrics can be incorporated into clinical practice. While our studies were

prospectively designed, the data on which they were conducted was part of concluded

drug trials. We hope to carry out similar analyses in a prospective trial, on larger

patient populations. We also hope to study patients with ST-elevation MI in addition

to NSTEACS, so that we may be able to more completely evaluate our tools for risk

stratification post-ACS.

A different extension of our work would be to study our tools on data from patients
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who have no prior history of coronary heart disease, and evaluate their utility in risk

stratifying patients for de novo events. While we believe that techniques such as MV

may have value in this context, this theory needs to be rigorously tested.

There is also a need to validate our pathophysiological theory for morphologic

variability. This will require animal studies and high resolution imaging to confirm

that variability in the shape of the ECG signals is due to unstable bifurcations.

For morphologic variability, another important area of work is to reduce the

amount of data needed to measure MV. Presently, our algorithm for measuring MV

requires roughly ten hours worth of data. This restricts MV to use on patients who are

hospitalized or subject to ambulatory monitoring. Being able to reduce the amount

of data needed to measure MV would facilitate using this technique to identify indi-

viduals within the general population who are at high risk of adverse cardiovascular

outcomes.

We also hope to extend our work to signals other than the ECG. In the near

future, this may correspond to other easily segmentable signals (e.g., blood pressure

and respiration). Using related computational methods to analyze signals from the

brain represent another potentially exciting area of research. However, we believe

that analyzing signals emanating from the brain is likely to require methods that are

quite different from those we have used thus far.

We would also like to address a limitation of our present approach, i.e., both mor-

phologic variability and symbolic analysis study time-series signals as direct observa-

tions of the underlying physiological system. It does not attempt to relate changes

in these observations to changes in the system being observed (i.e., the heart). We

believe that there is a need to extend our work to include a process of deconvolution,

e.g., through Hidden Markov Models (HMMs) or blind system identification meth-

ods, that allows one to study the internal state of physiological systems rather than

operate at the level of their stochastic outputs. Such methods might, for example,

reveal how the underlying functional states change from baseline periods to periods

preceding acute events such as fatal arrhythmias.

Another potential area of future work is the study of multi-signal trends. In
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medicine, there are often tens of relevant variables to consider; far more than a

physician is able to assimilate. We believe that our work on symbolization may help

address this situation. In particular, we would like to develop computational methods

for deducing clinically significant interactions among multiple long-term time-series.

The search space for these multi-modal interactions is, of course, immense. It can be

reduced using some of the techniques discussed above, but that will not be sufficient.

One approach we consider promising is to produce synthetic signals that combine

multiple time-series, e.g., signals that combine the electrical activity measured by an

ECG with the pressure waveform associated with blood pressure. We also believe

that truncation approaches for measuring mutual information may be successful.

Finally, we also believe there is a need to test our visualization tools more rig-

orously. Presently, these tools have been restricted to experimental use. We hope

to make them publicly available, so that a more comprehensive understanding of the

value of these tools can be developed.

In summary, this thesis represents an initial attempt to develop computaitonal

methods to analyze large multi-patient, multi-signal physiological datasets. We ex-

pect this area to grow further, and believe it may have a valuable role in helping

accelerate the progress of medicine.
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Appendix A

Proof of Conservation of Length

Theorem: For two inputs u[n] and v[n] of length N, the x[n] produced by the aggre-

gation algorithm in Section 5.2 is also of length N.

Proof: The total length of the aggregated sequence x[n] can be found by distinguish-

ing between a and 3 segments of even or odd length. a dd and /odd segments of odd

length l merge together l + 1 samples across both signals (1 samples along one signal,

and one sample along the other) to yield a (2) or 3(2) sub-signals of length [1/2] + 1.

Since 1 is odd:

[ j + 1= +1 (A.1)
2 2

Each aodd or /odd segment therefore reduces the distinct samples along it (i.e., the

samples from both signals that comprise these segments) by half. A similar effect can

be seen for -y-segments, each of which compact 21 distinct samples into a y(2) signal

of length 1. What remains to be proven is that aeven and 1even segments also compact

the number of distinct samples along them by half.

In the case of aeven and /even segments, the corresponding lengths of a (2) and /3(2)

are alternately [l1/2J +1 and [1/2]. This follows from the fact that, as described earlier,

for alternate a or / segments with even length, the last element corresponding to 5.4

is left out. The resulting effect due to this approach is that every odd occurrence of an

aeven or Oeven segment has a length exceeding (1 + 1)/2 by half a sample, while every
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even occurrence has a length that is less by the same amount, which counterbalances

the earlier excess. In other words, the net effect of having an even number of ae,,,ven

and 3even segments is that cumulatively, these segments compact samples along both

signals by half.

We can prove the existence of an even number of aeven and /even segments as

follows. Each DTW alignment path starting at (1, 1) and ending at (N, N) can be

described through 2N1 movements in the --+ or t direction. Denoting the m-th a,

0, and 7 segments by am, 3m, and n and length by the operator L(.), it is easy to

verify that:

2N - 1 = ( L(m ) + E L(/3mo) + 2 L(-y,) + m, + mo - 1 (A.2)
mC mre my

Replacing the summation terms by w,, wo and w,:

2N - 1 = w, + wp + 2w, + m + m, - 1 (A.3)

Distinguishing between even (e) and odd (o) length terms this can be rewritten

as:

2N = w 0 ,e , + W,,o + WO,o + 2w + e+ ,e + mT,o + mo,e + m 3,o (A.4)

The terms corresponding to 2 wgamma, Wa,e and wp,e must always be even. Remov-

ing them:

2N' = Wa,o + WO,o + ma,e + ma,o + mpo, + mp,o (A.5)

wo,o can only be odd if an odd number of aodd-segments are present, i.e., m,o

is odd. Similarly, the condition for w,,o to be odd is that mp,o is odd. From this it

follows that:

174



wc,o + WP,o (mod2) = ma,o + mp,o (mod2)

This means that:

(A.7)2N" = m,e + mfl,e

An even number of aeven and 3even segments must therefore exist.
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