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Cooperative Robot Control and Synchronization of Lagrangian Systems

Soon-Jo Chung and Jean-Jacques E. Slotine

Abstract— This article presents a simple synchronization
framework that can be directly applied to cooperative control of
multi-agent systems and oscillation synchronization in robotic
manipulation and teleoperation. A dynamical network of mul-
tiple Lagrangian systems is constructed by adding diffusive
couplings to otherwise freely moving or flying robots. The
proposed decentralized tracking control law synchronizes an
arbitrary number of robots into a common trajectory with
global exponential convergence. The proposed strategy is much
simpler than earlier work in terms of both the computational
load and the required signals. Furthermore, in contrast with
prior work which used simple double integrator models, the
proposed method permits highly nonlinear systems and is
further extended to time-delayed communications, adaptive
control, partial-joint coupling, and leader-follower networks.

I. INTRODUCTION

Group synchronization and cooperative control are topics

that are currently receiving a lot of interest in a variety

of research communities. The objective of this paper is

to introduce a unified synchronization framework that can

be directly applied to cooperative control of multi-robot

systems or vehicle formations. For example, a large swarm

of robots can synchronize first to form a certain formation

pattern, then track the common trajectory. In manufacturing

applications, where high manipulability and maneuverability

cannot be achieved by a single system [9], there has been

widespread interest in cooperative manipulation schemes. A

stellar formation flight interferometer is another example

where precision control of relative spacecraft motions is

indispensable. The proposed synchronization tracking control

law can be implemented for such purposes. Other potential

applications include oscillation synchronization of robotic

locomotion, and tele-manipulation of robots.

The consensus problems on graph [5] and the coordination

of multi-agent systems [2], [6], [7] are closely related with

the synchronization problem. In particular, the use of graph

theory and Laplacian produced many interesting results [2],

[4], [5]. The main drawback of the aforementioned work

is that they mainly deal with very simple dynamic models

such as linear systems and single or double integrator models

with a constant inertia matrix. Hence, most of earlier work on

multi-agent coordination cannot be used for highly nonlinear

systems (e.g. helicopters, spacecraft attitude dynamics, and

manipulator robots). As shall be seen later, the proof of
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the synchronization for network systems that possess a

nonlinear inertia matrix is much more involved and difficult.

In addition, the mutual synchronization problem, which not

only synchronizes the sub-members but also enforces them

to follow a common reference trajectory, is not addressed in

the consensus problems. This paper focuses on the mutual

synchronization of dynamical networks consisting of highly

nonlinear time-varying systems. Since the main nonlinear

stability tool is contraction analysis [3], [10], we derive exact

and global stability results with exponential convergence.

One recent representative work on synchronization of

multi-link robots is [9]. The following difficulties can be

identified. The number of variables to be estimated increases

with the number of robots to be synchronized, which imposes

a significant communication burden. Additionally, the feed-

back of estimated acceleration errors requires unnecessary in-

formation and complexity. Thus, a method to eliminate both

the all-to-all coupling and the feedback of the acceleration

terms is explored in this paper.

We believe our approach using contraction analysis has a

clear advantage in its broad applications to a larger class of

identical or nonidentical nonlinear time-varying systems even

with time-delays, non-passive input-output, and complex

coupling geometry including concurrent synchronization [8]

and partial degrees-of-freedom coupling, while ensuring a

simple decentralized coupling control law (see Fig. 1 for

network structures permitted in this paper).

II. MODELING OF MULTI-ROBOT NETWORK

The equations of motion for a robot with multiple joints

(qi ∈ R
n) can be derived by exploiting the Euler-Lagrange

equations:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (1)

where i, (1 ≤ i ≤ p) denotes the index of robots or

dynamical systems comprising a network, and p is the total

number of the individual elements. In addition, gi(qi) = ∂V
qi

,

and τi is a generalized force or torque acting on the i-th

robot. Note that we define Ci(qi, q̇i) such that (Ṁi − 2Ci)
is skew-symmetric, and this property plays a central role in

our stability analysis using contraction theory [1].

The robot system in (1) is assumed to be fully actuated.

Also, the mass-inertia matrix Mi(qi) is uniformly positive

definite.

III. A NEW APPROACH TO SYNCHRONIZATION

TRACKING CONTROL

An exponentially stabilizing nonlinear control law which

can synchronize an arbitrary number of robots to track a

common reference trajectory is introduced in this section.
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Fig. 1. Multi-agent networks of identical or nonidentical robots using local
couplings. More complex geometries can also be constructed (see Sec. V-G).

A. Proposed Synchronization Control Strategy

The following tracking control law with two-way-ring

symmetry is proposed for the i-th robot in the network

consisting of p identical robots (see Fig. 1):

τi = M(qi)q̈ir + C(qi, q̇i)q̇ir + g(qi) (2)

− K1(q̇i − q̇ir) + K2(q̇i−1 − q̇i−1,r) + K2(q̇i+1 − q̇i+1,r)

where a positive-definite matrix K1 ∈ R
n×n is a feedback

gain for the i-th robot, and another positive-definite matrix

K2 ∈ R
n×n is a coupling gain with the adjacent members

(i−1, i+1). The above control law can also be applied to a

network consisting of p non-identical robots (Fig. 1(b)), as

shall be seen in Section V-A.

The reference velocity vector, q̇ir is given by shifting the

common desired velocity q̇d with the position error:

q̇ir = q̇d − Λq̃i = q̇d − Λ(qi − qd) (3)

where Λ is a positive diagonal matrix.

In contrast with [9], the proposed control law requires only

the coupling feedback of the most adjacent robots (i−1 and

i+1) for exponential convergence (see Fig. 1). Note that the

last (p-th) robot is connected with the first robot to form a

ring network as suggested in [10]. Moreover, estimates of q̈

are no longer required.

The closed-loop dynamics using (1) and (2) become

M(qi)ṡi+C(qi, q̇i)si+K1si−K2si−1−K2si+1 = 0 (4)

where si denotes the composite variable si = q̇i − q̇ir.

Let us define the following p×p square matrices:[Lp
A,B] =



A B 0 0 ··· B
B A B 0 ··· 0

...
. . .

. . .
. . .

...
0 B A B 0
B ··· 0 0 B A




p×p

, [Up
A] =




A A ··· A
A A ··· A

...
...

. . .
...

A A ··· A




p×p

By the definition of the controller in (2), [Lp
A,B] has only

three nonzero matrix elements in each row (i.e., A,B,B).

Then, we can write the closed-loop dynamics in (4) in a

block matrix form for x = (s1, · · · , sp)
T :

[M]ẋ + [C]x +
(
[Lp

K1,−K2
] + [Up

K2
]
)
x = [Up

K2
]x (5)

[M] =

[
M(q1) ··· 0

...
. . .

...
0 ··· M(qp)

]
, [C] =

[
C(q1,q̇1) ··· 0

...
. . .

...
0 ··· C(qp,q̇p)

]
.

[Lp
K1,−K2

] can be viewed as the weighted Laplacian of

the network in the context of graph theory. In other words,

[Lp
K1,−K2

] indicates the connectivity with adjacent systems

as well as the strength of the coupling by K2. Note that there

are only three nonzero elements in each row of the matrix,

which implies that there exist diffusive couplings only be-

tween adjacent members (see Fig. 1). It should be noted that

the matrix [Lp
K1,−K2

] is different from a standard Laplacian

matrix, which always has a zero eigenvalue; a strictly positive

definite [Lp
K1,−K2

] is required for exponential convergence

for the proposed control law in this paper.

We are well poised to introduce the main theorems of the

present paper.

Theorem 3.1: Global Exponential Convergence to the

Desired Trajectory

If [Lp
K1,−K2

] is positive definite, then every member of the

network follows the desired trajectory qd exponentially fast

regardless of initial conditions.

[Lp
K1,−K2

] > 0 (6)

In other words, if K1 − 2K2 > 0, then qi, (i = 1, 2, · · · , p,

p ≥ 3) converges to qd exponentially fast from any initial

conditions. For two-robot systems (p = 2), K1 − K2 > 0
needs to be true instead.

Proof: We can cancel out the [Up
K2

] matrix term in (5)

to obtain

[M]ẋ + [C]x + [Lp
K1,−K2

]x = 0. (7)

Consider the virtual system of y obtained by replacing x

with y in (7).

[M]ẏ + [C]y + [Lp
K1,−K2

]y = 0 (8)

This virtual y system has two particular solutions: x =
(s1, · · · , sp)

T and 0. The squared-length analysis with the

positive-definite metric [M] yields

d

dt

(
δyT [M]δy

)
= 2δyT [M]δẏ + δyT [Ṁ]δy

= −2δyT
(
[C]δy + [Lp

K1,−K2
]δy

)
+ δyT [Ṁ]δy (9)

= −2δyT [Lp
K1,−K2

]δy

where we used the skew-symmetric property of [Ṁ]− 2[C].
Accordingly, [Lp

K1,−K2
] > 0 will make the system con-

tracting [3], thus all solutions of y converge to a single

trajectory exponentially fast. This in turn indicates that the

composite variable of each robot tends to zero exponentially

(s → 0). By the definition of si, the exponential convergence

of qi to the common reference trajectory qd is proven.

The next question to be addressed is how to guarantee the

synchronization of the individual dynamics.

Theorem 3.2: Synchronization of Multiple Robots

Suppose the conditions in Theorem 3.1 are true, thus the

individual dynamics are exponentially tracking the common

desired trajectory. A swarm of p robots synchronize expo-

nentially from any initial conditions if ∃ diagonal matrices

K1 > 0, K2 > 0 such that

[Lp
K1,−K2

] + [Up
K2

] > 0

In addition, Λ is a positive diagonal matrix defining a stable

composite variable si = ˙̃qi + Λq̃i.
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Proof: The proof is expanded in Section IV by sep-

arating the two different time scales of the closed-loop

dynamics. As shall be seen later, multiple dynamics need

not be identical to achieve stable synchronization.

It is useful to note that the above condition corresponds

to K1 + K2 > 0 for two-robot and three-robot networks

(p = 2, 3). A four-robot network (p = 4) would require

K1 +2K2 > 0. We can also construct a network of multiple

robots that can synchronize even with unstable tracking. In

this case, the follow lemma can be used.

Lemma 3.3: Synchronization of Identical Robots with

Unstable Tracking

Suppose the conditions in Theorem 3.1 are not true, thus the

individual systems are exponentially unstable or indifferent.

Nevertheless, a swarm of p identical robots synchronize

exponentially fast from any initial conditions if ∃ diagonal

matrices K1 > 0, K2 such that

[Lp
K1,−K2

] + [Up
K2

] > 0

In this case, Λ should be sufficiently large such that ‖Λ‖ ≫
‖K1−K2‖
σ(M(q)) for p = 2 or ‖Λ‖ ≫ ‖K1−2K2‖

σ(M(q)) for p ≥ 3. In

contrast with Theorem 3.2, the individual dynamics must be

identical in the unstable tracking case.

Proof: See [1].

Note that we can render the system synchronized first, then

follow the common trajectory by tuning the gains properly.

For an example of a two-robot network, K2 > 0 ensures

that the two robots synchronize faster than they follow the

common desired trajectory, since K1 + K2 > K1 − K2

for ∀ K2 > 0. This indicates that there exist two different

time-scales in the closed-loop systems constructed with the

proposed controllers. For two-robot systems, the convergence

of exponential tracking is proportional to K1 −K2 whereas

the synchronization has a convergence rate of K1+K2. This

multi-time-scale behavior will be exploited in the subsequent

sections.

IV. PROOF OF EXPONENTIAL SYNCHRONIZATION

We prove Theorem 3.2 for the exponential synchronization

of multiple nonlinear dynamics in this section. Suppose that

M(q) remains constant, thereby making C(q, q̇) zero. Then,

we can easily prove s1 and s2 tend to each other from

Mṡ1 + (K1 + K2)s1 = K2(s1 + s2)

Mṡ2 + (K1 + K2)s2 = K2(s1 + s2)
(10)

Since the virtual system

Mẏ + (K1 + K2)y = K2(s1 + s2) (11)

is contracting with K1 + K2 > 0. Hence, its particular

solutions s1 and s2 tend to each other exponentially fast

according to contraction theory [3]. Without loss of gener-

ality, this result can easily be extended to arbitrarily large

networks. The synchronization of a large network with a

constant metric is already discussed in [10] using contraction

analysis.

We now turn to a much more difficult problem focused

on the synchronization of two robots with non-constant

nonlinear metrics (M(q1) 6= M(q2)).

Fig. 2. Multiple timescales of synchronization (faster) and tracking
(slower). The dashed line indicates the desired trajectory. Arrows indicate
increasing time.

A. Contraction with Two Time-Scales

Recall the closed-loop dynamics given in (5):

[M]ẋ + [C]x + [Lp
K1,−K2

]x = 0 (12)

Since [Lp
K1,−K2

] is a real symmetric matrix, we can

perform the spectral decomposition. This is a special case

of the concurrent synchronization [8] that corresponds to

convergence to a flow invariant subspace (the eigenspace).

[Lp
K1,−K2

] = VDVT , VT [Lp
K1,−K2

]V = D (13)

where D is a block diagonal matrix and VT V = VVT = I.

The symmetry of [Lp
K1,−K2

] gives rise to real eigenvalues

and orthogonal eigenvectors.

Pre-multiplying (12) by VT and setting x = VVT x result

in
(
VT [M]V

)
VT ẋ +

(
VT [C]V

)
VT x (14)

+
(
VT [Lp

K1,−K2
]V

)
VT x = 0

By setting VT x = z, (14) becomes
(
VT [M]V

)
ż +

(
VT [C]V

)
z + Dz = 0 (15)

Then, we can develop the squared-length analysis. Notice

that
(
VT [M]V

)
is always symmetric positive definite since

[M] is symmetric positive definite. For the case of a two-

agent network, we can easily verify that

VT [M]V =

[
M1+M2

2
M1−M2

2
M1−M2

2
M1+M2

2

]
, V =

[
1√
2
I 1√

2
I

1√
2
I − 1√

2
I

]
,

and D = diag (K1 − K2,K1 + K2) with Mi = M(qi).
As discussed earlier, the convergence rate of exponential

tracking to the desired trajectory is proportional to K1 −
K2 whereas the synchronization counterpart has the faster

convergence of K1 + K2.

K1 + K2 > K1 − K2, ∀ K2 > 0 (16)

This multi timescale behavior is graphically illustrated in

Fig. 2. The figure1 depicts that s1 and s2 synchronize first,

then they converge to the desired trajectory while staying

together. This observation motivates separation of the two

different time scales, namely K1 + K2 and K1 −K2. Intu-

itively, for sufficiently small M1 − M2, the above equation

1The picture is slightly exaggerated because s1 and s2 appear overlapped
when they synchronize. Strictly speaking, their difference is decreasing
exponentially to zero but they will never be the same unless time tends
to infinity.
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indicates that sp has the convergence rate proportional to

λ(K1 − K2) whereas sm has λ(K1 + K2).
Consider the virtual system of y = (y1,y2)

T which has

two particular solutions: (y1 = s1 + s2,y2 = s1 − s2)
T and

(y1 = 0,y2 = 0)T

(
VT [M]V

)
ẏ +

(
VT [C]V

)
y + Dy = 0 (17)

For K2 > 0 and K1 −K2 > 0, which also lead to K1 +
K2 > K1−K2, we can show that the above virtual system is

contracting. We take the symmetric block matrix VT [M]V
as our contraction metric.

Performing the squared-length analysis with respect to this

metric yields

d

dt

(
δy1

δy2

)T [
M1+M2

2
M1−M2

2
M1−M2

2
M1+M2

2

] (
δy1

δy2

)
(18)

= −2

(
δy1

δy2

)T [
K1 − K2 0

0 K1 + K2

] (
δy1

δy2

)

where we used the skew-symmetric property of Ṁ − 2C.

We can recall the stability analysis of the trajectory

tracking, depending on the sign of K1 − K2 in Theorem

3.1. In the following, three possible cases are classified by

the sign of K1 − K2, and discussed respectively. Namely,

stable tracking with K1 −K2 > 0; indifferent tracking with

K1 − K2 = 0; unstable tracking with K1 − K2 < 0.
1) Case I: K1 − K2 > 0: If K1 + K2 > K1 − K2 > 0,

the rate of the virtual length in (18) is uniformly negative

definite. Consequently, the combined virtual system in (17)

is contracting. In other words, δy1, δy2 → 0 exponentially

fast. This in turn implies all solutions of y1 and y2 tend to

the single trajectory. As a result, sp = s1 + s2 and sm =
s1 − s2 tend to zero exponentially. It is straightforward to

show that sm → 0 also hierarchically makes q1 tend to q2

exponentially. From the definition of the composite variables

in (4), we can find the following contracting dynamics,

(q̇1 − q̇2) + Λ(q1 − q2) = sm (19)

Note that ẏ + Λy = 0 is contracting with Λ > 0. Conse-

quently, Λ > 0 and sm → 0 make q1 → q2 exponentially

fast. This also implies that the diagonal terms of the metric,
M(q1)−M(q2)

2 tend to zero exponentially, thereby eliminating

the coupling of the inertia term.
[

M1+M2

2
M1−M2

2
M1−M2

2
M1+M2

2

]
→

[
M(q1)+M(q2)

2 0

0
M(q1)+M(q2)

2

]

(20)

This in turn implies that the convergence rate of tracking,

(δy1) is proportional to K1−K2 while the synchronization,

(δy2) occurs at a faster convergence rate, K1 + K2. This

completes the proof of Theorem 3.2.
2) Case II: K1 − K2 = 0: We can also consider a case

with K1 − K2 = 0, which fails the exponential stability

condition in Theorem 3.1. The combined virtual system per

se is then semi-contracting ([3]) since the squared-length

analysis in (18) yields the negative semi-definite matrix:

V̇ =

(
δy1

δy2

)T [
0 0

0 −2(K1 + K2)

] (
δy1

δy2

)
≤ 0 (21)

While δy1, representing the tracking dynamics, remains

in a finite ball due to K1 − K2 = 0, δy2 tends to zero

exponentially due to −2(K1 + K2) < 0. This result can be

proven as follows. V̇ is uniformly continuous since bounded

δẏ2 from (17) leads to bounded V̈ from V̈ = −4δyT
2 (K1 +

K2)δẏ2. Due to V̇ ≤ 0, the use of Barbalat’s lemma verifies

that V̇ → 0 as t → ∞. This implies that δy2 tends to

zero asymptotically fast. This will eventually decouple the

metric matrix with Λ > 0, as seen in (20), since M1 −M2

tends to zero simultaneously as q1 → q2. As a result, when

M1 − M2 is sufficiently close to zero, the convergence of

δy2 → 0 turns exponential.

3) Case III: K1 −K2 < 0: Consider a case when the in-

dividual tracking system is unstable with K1−K2 < 0. This

case warrants further discussions. We refer the readers to [1]

for details. In essence, we can show the synchronization can

occur fast enough to overcome the tracking instability.

B. Generalization

We can extend the method in this section to ar-

bitrarily large networks. For example, a network of

three robots has the following V whose columns

are orthonormal eigenvectors of [Lp=3
K1,−K2

]: V =[− 1
√

3
I − 2

√

6
I 0

− 1
√

3
I 1

√

6
I − 1

√

2
I

− 1
√

3
I 1

√

6
I 1

√

2
I

]
. The diagonal matrix D is also com-

puted as diag (K1 − 2K2,K1 + K2,K1 + K2). See [1] for

further details.

V. EXTENSIONS AND EXAMPLES

Let us examine the effectiveness of the proposed control

law in a variety of nonlinear dynamics networks.

A. Synchronization of Non-Identical Robots

Notice that the proposed tracking and synchronization con-

trol law in (2) can easily be applied to a network consisting

of heterogenous robots in (1). For example, the M1, M2,

C1, and C2 notations used in the previous sections can be

interpreted as M1 = M1(q1) and M2 = M2(q2) with

M1(·) 6= M2(·) (the same for the C matrices). However,

the synchronization with unstable tracking (Lemma 3.3) is no

longer true for the case of non-identical robots since q1 = q2

does not cancel M1 − M2 in the metric matrix in (18).

B. Tracking Synchronization of Four Robots

The four identical 3-DOF robots at some arbitrary initial

conditions, are driven to synchronize as well as to track

the following desired trajectory (Fig. 3). The dynamics

modeling of the 3-DOF robot is based upon the frictionless

double inverted pendulum robot on a cart [1]. Note that this

simulation fully considers the nonlinear rotational dynamics

of the robots, as opposed to some earlier work on multi-

agent coordination [5], [6]. Fig. 4 represents a time history

plot of Fig. 3. The control gains are selected such that the

corresponding tracking gain K1−2K2 = 0.2 is smaller than

the synchronization gain K1 + 2K2 = 1.8; the robots syn-

chronize first, and then converge to the reference trajectory

together.
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C. Synchronization with Partial DOF Coupling

We now consider multiple dynamics with partially coupled

variables. We can assume that only the lower joint is coupled

in a two-robot system having two joint variables with q =
(x1, x2)

T for (i = 1, j = 2) or (i = 2, j = 1):

τi = M(qi)q̈ir + C(qi, q̇i)q̇ir + g(qi)

−K1si + K2

(
˙̃x1

0

)

qj

+ K2Λ

(
x̃1

0

)

qj

(22)

It is straightforward to prove that Theorems 3.1 and 3.2

still hold for positive diagonal K1 and K2. This is because

(K1 + K2 [ 1 0
0 0 ]) and (K1 − K2[ 1 0

0 0 ]) are still uniformly

positive definite, enabling exponential synchronization and

exponential convergence to the desired trajectory, respec-

tively. Hence, we did not break any assumptions in the proof

of Theorem 3.2.

D. Effects of Transmission Delays

Extending [11], the proposed synchronization coupling

control law in (2) is proven to synchronize multiple robots

as well as to track the common trajectory, regardless of time

delays in the communication. Consider two two-link ma-

nipulators transmitting their state information to each other

via time-delayed transmission channels. T12 is a positive

constant denoting the time delay in the communication from

the first robot to the second robot. T21 denotes the delay

from the second robot to the first robot. Similar to [11], we

can modify our original Lagrangian systems consisting of

two identical robots as follows

M(q1)ṡ1 + C(q1, q̇1)s1 + K1s1 − K2s2(t − T21) = 0

M(q2)ṡ2 + C(q2, q̇2)s2 + K1s2 − K2s1(t − T12) = 0

(23)

which can be shown to be asymptotically contracting using

the following differential length similar to [11]:

V =
1

2
δsT

1 M(q1)δs1 +
1

2
δsT

2 M(q2)δs2 +
1

2
V1,2 (24)

where

V1,2 =

∫ t

t−T12

δvT
12δv12dǫ +

∫ t

t−T21

δvT
21δv21dǫ

−

∫ 0

−T12

δvT
12δv12dǫ −

∫ 0

−T21

δvT
21δv21dǫ

(25)

In conclusion, the robot network systems, individually con-

tracting (exponentially converging) and interacting through

time-delayed diffusion-like coupling are asymptotically con-

tracting regardless of the values of the time delays.

E. Adaptive Synchronization

Consider the following adaptive control law, which has the

same local coupling structure as the proposed control law in

(2):

τi = Yiâi − K1si + K2si−1 + K2si+1 (26)

= M̂iq̈ir + Ĉiq̇ir + ĝi(qi) − K1si + K2si−1 + K2si+1

where si denotes the composite variable for the i-th robot

such that si = q̇i − q̇ir.

The parameter estimate âi for the i-th member is updated

by the correlation integral: ˙̂ai = −ΓYT
i si, where Γ is a

symmetric positive definite matrix. Hence, the closed-loop

system for a network consisting of two non-identical robots

can be written as (i = 1, 2)
[

Mi(qi) 0

0 Γ−1

] (
ṡi

˙̃ai

)
+

[
Ci(qi,q̇i)+K −Yi

YT
i 0

] ( si

ãi

)
=

(
u(t)
0

)

(27)

where K = K1 +K2 and u(t) = K2(s1 +s2). Additionally,

ã denotes an error of the estimate such that ã = â − a.

Note that a is a constant vector of the true parameter values,

resulting in ˙̃ai = ˙̂ai.

Similar to Section IV, by applying the spectral transfor-

mation, we can show that the system is semi-contracting [3]

with K1 − K2 > 0 and K1 + K2 > 0. Using Barbalat’s
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Fig. 5. Concurrent synchronization between two different groups. The
desired trajectory inputs are denoted by the dashed-lines whereas the solid
lines indicate mutual diffusive couplings. The independent leader sends the
same desired trajectory input to the first network group.

lemma (see Section IV, Case II), it is straightforward to prove

that s1 and s2 tend to each other asymptotically while the

parameter estimates a1 and a2 synchronize as well.

F. PD Synchronization of Robots

One may consider the following Proportional and Deriva-

tive (PD) coupling control law for two identical robots from

(1) for (i = 1, j = 2) or (i = 2, j = 1):

τi = −K1(q̇i + Λq̃i) + K2(q̇j + Λq̃j) (28)

where the bounded reference position qd has zero velocity

such that ˙̃qi = q̇i. Similar to Section IV-A, we can perform a

spectral decomposition. By invoking LaSalle’s invariant set

theorem, we can conclude that q1 and q2 will follow qd

while q1 and q2 synchronize asymptotically. (see [1] for the

detailed proof).

G. Concurrent Synchronization

In the context of the synchronization of multiple La-

grangian dynamics, discussed in this paper, we are interested

in the concurrent synchronization [8] of different aggregates

of multiple identical or nonidentical dynamics. As discussed

earlier, we pay particular attention to the fact that there exist

two different time scales of the proposed synchronization

tracking control law. This in turn implies that there are two

different inputs to the system, namely, the common reference

trajectory qd(t) and the diffusive couplings with the adjacent

members. Accordingly, we exploit a desired trajectory qd(t)
to create multiple combinations of different dynamics groups.

For instance, Figure 5 represents the concurrent synchroniza-

tion of two different dynamical networks. The first network,

consisting of four different robots, has the diffusive coupling

structure proposed by the tracking control law in (2). The

independent leader sends a desired trajectory command qd

to the first network. With an appropriate selection of gains,

each dynamics in the first network synchronize while ex-

ponentially following the leader. Therefore, the proposed

scheme can be interpreted in the context of the leader-

follower problem. The second network consists of three non-

identical dynamics, also different from those of the first

group. Once the first network is synchronized, the second

network also ends up receiving the same reference trajectory

to follow while they interact to synchronize exponentially

fast. Accordingly, we can achieve concurrent synchronization

between two different network groups. This can be extended

to arbitrarily large groups of synchronized dynamics by

appropriately assigning the reference trajectory inputs and

the diffusive couplings. Note that the number of agents in

one layer can be different from that of another layer as seen

in Figure 5.

VI. CONCLUSIONS

This article has presented the new decentralized tracking

control law that can be directly applied to synchronization

and cooperative control of highly nonlinear robot dynamics.

Providing exact nonlinear stability results constitutes one

of the main contributions of this paper. Another benefit of

synchronization is its implication for model reduction. It has

been reported that the faster convergence rate represents the

transient boundary layer dynamics of synchronization while

the slower rate determines how fast the synchronized sys-

tems track the common reference trajectory. The exponential

synchronization of multiple nonlinear dynamics allows us

to reduce the dimensionality of the stability analysis of a

large network. Further extensions to partial-joint coupling,

PD coupling, time-delayed communications, adaptive syn-

chronization and concurrent synchronization are also pre-

sented. For future work, we are interested in extending this

methodology to dynamical networks on unbalanced or open

graphs. Also, it would be useful to consider multi-agent

systems consisting of underactuated dynamics.
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