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ABSTRACT

The performance of Burg's multivariate prediction estimator used

for computing maximum entropy (autoregressive) spectra was evaluated.

Specifically, the accuracy, resolution, effects of noise, and

estimation of autoregressive order were studied using synthesized

data. Results of these empirical studies demonstrated the superiority

of Burg's technique over the conventional windowing and transforming

method. Spectral analysis was then carried out on three geological

data sets from South Indian Ocean cores. Results of the analysis tend

to support the conclusion of Hays et. al. (1976) that pleistocene

ice ages have as one of their possible causes variation in the orbital

motion of the Earth.
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INTRODUCTION

In geophysics, the effect of a given physical process can often show up in

several types of observable quantities. In such cases, multi-channel time series

spectral analysis can be used to establish correlations between the different data

sets and thereby help to define the basic process controlling the observations.

Examples taken from the area of seismology include three component seismic data

recorded at a single station, seismic array data, multi-station/multi-source

seismic reflection data and pore-pressure, tilt, elastic velocity profile, and so on.

Geophysical variables such as magnetic and gravity values sampled along a single

profile, temperature, pressure, and wind speed measured at a single station, or

chemical composition, density, and interval velocity collected as functions of depth

in a well log constitute other examples of multiple channel data. Although each of

the above quantities may be analysed independently, the interval mechanism of the

system or process generating them can be intimately related. In some cases such as

pore pressure and velocity or pressure and wind speed, one of the variables is the

cause of the other. A knowledge of whether certain variables are correlated, and a

measure of such a correlation is therefore vital to understanding the nature of the

systems governing the observations.

Multi-variate spectral analysis provides one method with which correlation informa-

tion existing between several variables can be uncovered and evaluated. For many

types of data, the shape and amplitude of a spectrum is itself useful information, in

particular when the form of the spectrum can be predicted by theory.

If the various channels are correlated, multi-variate spectral analysis can be

applied to deduce the relative phase relationships between them. The success of

spectral analysis in this respect has been well demonstrated by the use of the maximum

likelihood method in wave number analysis of array processing (Capon, 1969).



- 2 -

Conventional methods for estimating cross spectral density of multi-

channel time series are based on generalizations of the Blackman and Tukey (1959)

and the periodogram techniques (Jones, 1965). In the Blackman and Tukey approach,

autocorrelation matrix R is estimated from the data Xi(n) , i=1, ,m, n-1, ,T

N-1
by1*

Rij(l) = - Xi(n) Xj (n+l)

n*k1
1=o,1, ,k

where an asterisk (*) denotes, conjugate transpose of a column vector. Each auto-

correlation matrix element is tapered with w(t) and then Fourier transformed to

produce the spectral matrix Pij(w):

Pij(w) = Rig(t)e iwt dt

For this reason, the method is also referred to as taper and transform.

The periodogram approach does not require an estimate of the autocorrelation

sequence. Instead, the data sequence is first partitioned into smaller sequences of

identical length. Each individual sequence is Fourier transformed and multiplied by

the transform of its conjugate transpose to produce one matrix spectral sequence.

The spectral sequences from all partitions are then averaged to result in an estimate

of the matrix power spectral sequence.

The Blackman and Tukey and periodogram approaches as applied to single channel

data have difficulties that do not disappear in their multi-variate extensions.

Specifically, smearing and leakage of power due to their smoothing operations

reduce the resolution of the resulting spectra. The multi-variate extension of the

periodogram method likewise has the same problem.

Autoregressive spectral estimation techniques provide an alternative method. One

estimator in particular has been studied and discussed extensively by geophysicists

and electrical engineers (Lacoss, 1971; Ulrych, 1972; Ulrych and Bishop, 1975; Kavah

and Cooper, 1976). This particular estimator was proposed by Burg (1967) from the

point of view of maximizing the entropy per sample of a time series, subject to
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constraints of known estimates of its autocorrelation samples. He, therefore,

referred to it as the Maximum Entropy Method. An alternative approach of arriving

at an estimator, based on fitting an autoregressive model to the time series

has also been suggested by Parzen (1969). This autoregressive model acts as a linear

filter which reduces the original data to a white process if the data is truly

autoregressive of finite order. This white process is generally referred to as the

innovation, or prediction error with equivalent connotation.

An algorithm, developed by Burg (1975), utilizes the Levinson-Durbin Recursion

relation to estimate the autoregressive coefficients directly from the data.

Specifically, at each iteration of the recursion, a new set of coefficients is

computed by minimizing the sum of -squares of the one step ahead forward and backward

prediction errors. Alternative to Burg's method, the Yule-Walker method computes

the model parameters directly from the autocorrelation of the data, which must be

estimated in a windowed or non-windowed manner.

Superior accuracy, resolution, and stability of Maximum Entropy spectral estimates

over B-T or periodogram for single channel data have been demonstrated by Lacoss (1971)

and others for both the Yule-Walker and the Burg algorithms. It, therefore, seems

logical that this method should be extended to spectral analysis of multiple time

series.

Until recently, almost all research into Maximum Entropy Method of spectral

estimation was concerned with single channel processing. Extension of the Yule-

Walker algorithm to multiple time series is given in Burg (1975) and Parzen (1975).

Applications of this algorithm in estimation of cross-power, coherence, and phase

spectra have also been reported (Jones, 1974; Parzen, 1976).

A major problem encountered by the application of Yule-Walker algorithm is the

need for estimating the sample autocorrelation sequence. Most often the estimated

autocorrelation sequence may not necessarily be positive definite, resulting in

negative values of power spectra at certain frequencies.
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The Burg algorithm applied to single channel time series can be shown to

guarantee non-negative spectral estimates. A basic requirement of extending this

algorithm to spectral analysis of multiple time series is therefore the preservation

of this distinctive property. Such an extension was done by Jones (1976), Nuttal

(1976) and Lacoss (1976) independently.

The main objective of this thesis is to demonstrate the properties of Burg's

Maximum Entropy Method, as extended to multiple time series as an estimator of cross

power spectra. To the best knowledge of the author, no application of this method

in multichannel processing of real data has been reported.

The orgAnization of the present thesis is conceptually divided into three major

chapters. Chapter I reviews the theoretical development of the Multivariate Burg

Estimator. Algorithm derived from this development has been implemented into a

system of Fortran programs with which the experimental studies reported in the other

chapters were conducted.

Results of experiments conducted with synthesized data are given in Chapter II.

Specifically, accuracy and resolution of estimated spectra will be evaluated. Several

problems associated with applications of the Burg estimator are also discussed, which

include the very important problem of choosing an optimal autoregressive order.

An application of the Multivariate Burg Spectral Estimator to real data is

reported in Chapter III. This technique has been used to explore the correlation

relation among three geological data sets to test the validity of the Astronomical

Theory of ice ages. The results are compared to the findings of Hays and others

(1976) who utilized the procedures of Blackman and Tukey.

Conclusions and future work are discussed in the final chapter. Owing to the

empirical nature of this investigation, these conclusions reached are far from

universal and unchangeable. It is hoped that a more theoretical approach in studying

the method will be forthcoming.
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the validity of the Astronomical Theory of ice ages. The results are

compared to the findings of Hays and others (1976) who utilized the

procedures of Blackman and Tukey.

Conclusions and future works are discussed in the final chapter.

Owing to the complexity of the field of spectral analysis, and the

empirical nature of investigation as reported by the present thesis,

these conclusions are far from universal and unchangeable. It is hoped

that a more theoretical approach in studying the bias, error, consistency,

and efficiency of the Multivariate Burg Spectral Estimator can be developed

in the future.



I. Maximum Entropy Estimation of Multivariate Spectra

I.1 Multivariate Yule-Walker Equation

Let x(n) represent an m dimensional, stationary vector random

process with zero mean. Given that an order L is specified, a set of

forward autoregression coefficients A , and a set of backward autore-

gression coefficients B are defined by the relations

L L
e(L)(n) = x(n) + A x(n-9.) (1.1)

X=1
n=L+1,...,N

and

LL(L)
e(L)(n) x(n) + BL x(n+Z) (1.2)

9,=1
n=1,. . . ,N-L

(L)
where e+ (n) is the forward innovation, or forward prediction error

sequence; similarly, e (L)(n) is the backward innovation, or backward

prediction error sequence.

Let E denote the conjugate transpose of a complex vector a, then a

forward prediction error matrix and a backward prediction error matrix

can be defined by

J N e(L) (n L)(n) (1-3)
n=L+

and

N-L (L) (L)
J = e( (n) e (n) (1.4)

n=1



substituting (1.1) in (1.3)

N

J L+ =
n=L+1

L (L)
{x(n)R(n) + x(n) I R(n-9)A L)+ A. Lx(n-Z)R(n)

9,=1 9=1

L L (L) -C(L)I
+ I A x(n-t)i(n-m)A I
9'=1 m=1m

The sample autocorrelation matrix of lag k is defined as

( 1
R (k) = N-1L

(1.5)

(1.6)
N

Ix(n)(n-k)
n=L+1

Using this definition in (1.5)

= (N-L) {R(o)+ L( L)+ A( )
=1 =L

+ A(L L
I Tm

(1.7)
t=1 m=1

The criterion for choosing the autoregressive coefficients is then

k
to minimize the trace of this matrix. If a denotes the ith row and

(L)
jth column element of Ak , then

a trace{Ji =k +
3a..

iJ

LA
(N-L) trace {() k A(L)

9=1 3a.,

+ A A(L)

L L (L) ' ~(L)
+ (N-L) I trace{[A (m-)] k Am

1 m=1 a

a A (L)[Am-)AL)" k A9. [Rm-9)A m@a..
13

(1.8)

If I. . denotes a matrix with a nonzero element of 1 only at the ith row

and jth column, then the following relations are true.



(i) a A L)

13

(ii A()
( ak m

13

=1I 6
ij kk

_ I 6 -1 6ji km iJ km

(iii) trace I.. B} = B . =$..

(iv) trace {B I.. I = B..

(v) trace {B} = trace {B}

Using these relations, (1.8) can be reduced to

1 a trace {J I + 2R..
N-L k + iJ

ij

L CL)A
(k) + 2 [Am R(k-m)]..

m=1 1

k=1,2,...,L (1.9)

To minimize the term on the L.H.S., the sum of terms on the R.H.S. are

set equal to zero, resulting in the matrix equation

L
R$(k)+ 

m=1
A(L) $(k-m) =m

The above equation can be rewritten as follows:

(L) (L)
[A1 A2

(L)
... AL ] Ro(0)

R(-1)

R(l).......R(L-1)

$(O).......R(L-2)

= [-R(l) -R(2)

(1.11)

(1.10)

A A

R(-L+l R(-L+2) ... (0)
a



(L) (L) (L)
If the row vector [A1 A2 A ]

adding the identity matrix I, equation

( )(L)] R"(0) i(1) .......$(L)
[IA ... A

R(-) ) (L-1)

R(-L) $(-L+1) ... () 

is augmented on the right by

(1.11) can be rearranged into

[U(L) 0 0 ... 0]

(1.12)

The matrix U (L), also called the forward prediction error matrix for

reasons that will be given in the next section, is artificially created

by adding an extra column to the augmented autocorrelation matrix in

order to keep it in Toeplitz form. This matrix is given by

UL) = A(0) + A(L) A(-m)+ m1 m
(1.13)

A similar derivation applied to the backward prediction error

martix J results in the equation for the backward autoregressive coeffi-

(L)
cients B as follows:

[B(L) BL) . )(O) ^()........() =[0 ..... 0 U(L)
L L-1

AR -1)

R (-L)

with U(L) = N(0)+ L)
m1 m

N(0) ^(L-1)

N(-L+1) ..... N(0)M (1.14)

(1-15)AN(m)

10



Equations (1.12) and (1.14) are then combined to form a single

equation, which is the multivariate equivalence of the Yule-Walker

equation in univariate maximum entropy spectral estimation theory.

equation is

(L) (L) (L)
I A1  ... A AL I
B CL) (L) I

B .B ILL L-1" 1

R(o)

R (-l)

R (-L )

R(l).......R(

R(o).......R(
L)

L-1)

=U+ 0 ...O 0O

0 0...O U - A

This

Prediction error matrices

( L) an ( L)
particularly important properties of U+ and U_ can be

First, post-multiplying equation (1.14) by the column vector

I L) -(L)
).. AL results in

(1) (L) ((o) )l)....... A 1L)A .. A ]R(0 R(1....R(L) I = Ul * L F I r 1+

Taking the conjugate

symmetry property of

R(-1) R(o)....... (L-1)

R(-L) R(-L+1) ....R^(0)

transpose of both sides of

R(L),

A(CL)

A1 _

(L) Cli tAL(1

(1.19) and using the

-7)

1.2

Tw

deduced

[I A(L)

[I



SR(0)
R(-1)

R(l) ....... R(L)

R(O) R(L-1)

I

(L)A1

-(L)

= 0+

$(-L R(-L+1) $(0) L(1.18)

Comparing (1.17) and (1.18), it is obvious that the matrix U(L) as given

by (1.15) is symmetric (or Hermitian for complex valued data), that is

U =L U (1.19)

It can be proven by similar derivation that

U(L) _ (L) (1.20)

The second property of these matrices is now deduced by noting that

the matrices J+ and J_ whose traces are being minimized can be written

in a form similar to that given by equation (1.17). Specifically,

equation (1.7) becomes

1 (L) (L) (L)
N-L J+ =[IA 1 2 ... I F(l).......A(L)I F'

S(-1)

RN(-L)

R(O) ....... (L-1)

R(-L+1) R(0)

A(L)A1

(L)
AL

(1.21)

substituting (1.12) into (1.21) results in

12

[I A, ... AL]



l J = (L) (1.22)
N-L + +

Similarly, it can be proven that

1 J = U(L) (1.23)
N-L - -

Therefore, the two matrices U (L) and U (L) are indeed the minimum trace

prediction error matrices at the autoregressive order of L.

1.3 Multivariate Levinson-Durbin Recursion

Owing to the special form of a Toeplitz type matrix, the Yule-

Walker equation (1.16) can be solved recursively. This recursion was

first proposed by Levinson and improved by Durbin for application in

single channel signal processing. Extension of the recursion scheme to

multichannel signal processing has been given by Wiggins and Robinson

(1965). An adaptation of this scheme for the solution of equation

(1.16) is described below.

It would be assumed that forward and backward autoregressive coeffi-

cients of order L-1 has been known, together with their corresponding

prediction error matrices as given by (1.13) and (1.15). The (L-l)th

order Yule-Walker equation is then given by

I (L-1) (L-1) () ()...(L1 =U(L-1)..A1 . L-1

(L-1) (L-1) - ^)^.(L-1)
B LB L R(-) R(0) R(L-2) 0 ........ U

N^(-L+1)N^(-L+2) R^(0) (1.24)

13



Define matrix coefficients

[ (L) (L)
I A ........ A

B(L) (L)
BL.........B5 I

C(L)
+

0

C+ CL) by the recursion relation

(L-1) (L-1)
A1  . . . . . .Al

B L-1......B

0 0 B(L-1)
BL-1

(CL) (L-1)

0

(L-i)
.... B 1

BLi

Substituting this relation

(1.25)
into equation (1.16) and using (1.24), one

has

L) ... C0..O U( .... E(L) CL)
S(L- + L0 ....... 0O..U(L E(L 0...... U(- 1 0

0 E L) ..... U -

0.E

C - TL)]

(1.26)

where

E(L)
+ = R(L) +

L-1

m=l

and

E(L) = (
L-1

m=1

(1.27)A(L-1) -(Lm)

B(L-i) R(-L+m)
mn

(1.28)

Equating both sides of equation (1.26) column by column, equations for

the matrices C+ and C_ can be obtained as follows:

EL) + CL) UL-) 0

E + C U- 0

from which

C (L) -E (L) [U(L1 1

and

CL) -E(L) [UL1 1

(1.29)

(1.30)

(1.31)

(1.32)

I

and

IF
O0



once C+ and C_ are computed, U+(L) and U(L) can readily be expressed

in terms of U U(L1) using equation (1.26), and A(L), B (L) be

given by A L-) BL-1) using equation (1.25). A summary of the recursion

beginning with order zero is given below

(i) A -

0

U(0) _
B0
U(0)-

C(L) - L-1
m=0

A(L)
0

A(L-1) (L-m)} [U(L-1) 1
m

- I

A(L) (L-i) + C(L) B(L-1)
1 + L-

9 = 1,2,... ,L-l

A(L) = C(L)
L +

U(L) [I-CL) CL) UL-i)

CL) _ L CL-i) $(-L+m)} [UL-) -

m=0 m

B(L)
0

= I

(L) (L-1) C(L) (L-1)= B + C

B (L) C(L)
L -

U (L) [I- C(L) C(L) ] U (L-1)

Z = 1,2,... ,L-1

(ii)

(iii)

(1.33)



I.4 Multivariate Burg Spectral Estimator

The Yule-Walker algorithm computes the reflection coefficients

C)+ c'- using estimates of the sample autocorrelation sequence R(k)

up to a maximum lag of L. Numerical experimentation indicates that this

method does not necessarily give estimates of power spectra which are

non-negative at all frequencies. To remedy this pitfall, Burg suggested

estimating the reflection coefficient directly from the data by minimizing

the sum of squares of the next step prediction error. In single channel

signal processing, the forward reflection coefficient C(L) and the

backward reflection coefficient C(L) are both scalars which are also

conjugate of one another. Thus minimizing the forward prediction error

and backward prediction error separately results in the same power

spectral estimate. No such simple relation exists in multichannel

signal processing, and the two separate spectral estimates may not be

the same.

To assure a single multivariate spectral estimate by minimizing the

sum of squares of both forward and backward prediction errors simultaneously,

one single parameter in place of the two reflection coefficients has to

(L) (L)
be defined. Judging by the forms of C+ and C given in equations

(1.31) and (1.32), Jones suggested a matrix G defined by

CL) -G(L) [U(L-1) -1 (1.34)

c(L) ~(L) r(L-1) ]1 (.5C = G [U ](1.35)

where G denotes the conjugate transpose of G.

The recursions in the forward and backward autoregressive coefficients

now become

16



A(L) _
0

(1.36)A(L) (L-) (L) [(L1) 1 (L-1)

A(L) -G(L) [UL1) 1

(L)
0

B(L) = BL-i) (L) [U(L)-1£ 2, +

B(L) __ L) L-1) -1
L [U

(1.37)

If e+L (L) represent the Lth order forward and backward prediction

errors respectively, that is,

e(L)(n) = x(n) + A x(n-)
+ j ,

n=L+1,...,N

(1.38)
and

eCL)(n) = x(n) + L B CL) x(n+)
2=1

n=1,2, . . .N

(1.39)

then substituting (1.35), (1.36) in these relations results in

eL)(n) = eL1)(n) -G(L) [UCL-1 - (L-)C(n-L)

n=L+1,. . . ,N (1.4o)

and

eCL)(n) = eL1)(n) - 5(L)[U(L-1) e L-)(n+L)

n=1,2,. . . ,N-L (1.41)

The following prediction error matrices are defined:

17

and



WL)
N

n=L+l

WC = N L
n=1

e()9 ()9

W(L)
n=L+1

W(L) N L

-+ n-1

(L)9 (L)

e (L) (L) (n+L) = -(L)
-+ +-

It is shown by substituting (1.39), (1.40) in these that

(L) (L-1) =G(L) [U(L-1) - W(L-1) [(L-1)-l G(L)

- W(Li) (L-1) -5L) - G(L) [UCLi)Yi W(L-)

(1.43)

and

W WL1) + (L)[U(L-1) -1 -1) L-l) -L G(L)

-W(L-1)(L-1) -l G(L) _ d(L) [(L-1) -lWL1

(1.44)

18

(1.42)

(L)(n) e ( )



The matrix G (L) is then estimated by minimizing the trace of the sum of

W and W . Upon some matrix algebra manipulation, an equation for

G(L) is obtained as follows:

{[UL)-l W(L-1) (L-1) -l} G(L) = G(L) {[U(L-1) 1- W (L-1) 1)-

[U(L-1) -l (L-1) + W(L-1) L-1) -1 (1.45)

Matrix equation of this form can be solved by a numerical procedure

given by Lacoss and Shakal (1976).

The extended Burg spectral estimator for multiple channel signal

processing will now be summarized in the following algorithm:

(i) Prediction errors and error matrices are initialized.

e(O) (n) = x(n)

e(0) (n) = x(n)

W(0)_ (0)= ( , W) = N(1)

U(0) U(0) = A(O)
(L) + -

(ii) G is obtained by solving the equation

{[U(L-1) -l W(L-1) (L-1) -1} G(L) + G(L) {[U(L-1) 1 WL-1) (L
+ ++ ] G + [u-V w- u l]l

[U(L-1) -l W(L-1) + W(L-1) L

(iii) Reflection coefficients are computed.

C(L) = -G(L) [U(Ll) -1

CL) _ L)[U(L-1)-l

19



(iv) Forward and backward autoregressive coefficients are

generated.

= I

A

= CL)

+ C(L) B(L-i)
+ L-2

B(L)B0

B(L)B9

B(L)
L

= I

S L-) + CL) A(L-i)
9 - L-9

SCL)

k = 1,2,..., L-1

(v) Prediction errors updated.

(n) - G(L) [U L

(n) - d(L) [U(L-1) -1 (L-1)

(vi) Prediction error matrices are updated.

(L) N (L) (L)
W++ = e+ (n) 6+

n=L+1

(L) N-L (L) (L)
W__ = e- (n) &_ C

(L) (L)
e+ (n) s-

(n-L)

(n+L)

n = L+1,...,N

n = 1,2,... ,N-L

(n)

n)

(n-L)
n=L+1

(L)
= [I - C +

CL) CL-i)
c_ ] U+

(L) (L) (L-1)
= [I - C_ C+ ]U-
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and step (ii) is repeated for the next iteration.

1.5 Autoregressive Spectra

If the data to be processed is truly autoregressive of finite

order, or an infinite number of autoregressive coefficients are estimated,

the prediction error, or innovation, is by theory a white process. This

white process can be regarded as the output of a linear, time-invariant

system acting on the data. The impulse response of this system is then

given by the estimated autoregressive coefficients. That is,

e(n) = A * x(n) (1.46)

where * denotes convolution of two sequences. The z-transform of

equation (1.46) is

E(z) = A (z) X(z) (1.47)

The multivariate power spectra are defined by

iWk 1W4 iW
W(e ) = E(e ) E(e ) (1.48)

and

S(eiw) = X(e W) X(e i) (1.49)

where a tilda denotes the conjugate transpose of a vector or matrix.

Substituting these in (1.47) results in

W(ew) = A(eiw) S(elw) A(e'") (1.50)



Since e(A) is a white process, W(eiw) = constant and (1.50) becomes

S(eiw) = [A (e )]~1 W[A (eiw)]~1

The Lth order spectral estimate of S(elw) is therefore given by

(L) ei

(1.51)

(1.52)

--MMMMMOOMMM

S(L) n)=[(L) iw]- -L)



II. Empirical Study of Multivariate Burg Estimator

II.1 Introduction

Various aspects of Multivariate Burg Spectral Estimator will be

investigated in this chapter. Specifically, the accuracy and resolu-

tion of estimated spectra will be evaluated. Several problems associated

with applications of the Burg Estimator are also discussed. These

include the specific form of the spectra to be analyzed, the determination

of an optimal autoregressive order, and the effect of additive white

noises on the correctness of an autoregressive model for the data.

Although theoretical study of the properties of autoregressive

spectral estimator has been attempted by several authors (Kromer, 1970),

a complete and satisfactory theory has not yet been developed. Therefore,

the investigation undertaken in the present paper is strictly empirical.

Owing to the large variety of data and their respective spectra that

have to be processed and analyzed in all disciplines of science, no

statement based on results of any empirical investigation can be conclusive.

Also, the lack of a quantitative measure of performance imposes a serious

handicap in evaluating, interpreting, and comparing results. Therefore,

conclusions derived from these studies are unavoidably general and

subjective.

Most often, interpretation of results can be affected by any apriori

knowledge of the data processed. Consequently, studies based on certain

idealized data types can be very beneficial. Other than illuminating

various characteristics of the Multivariate Burg Estimator under a well

controlled and adjustable experimental environment, these studies can
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also provide insights and guidance in understanding and interpreting

spectra of more complicated nature.

In general, a spectrum can be decomposed into a broad band component

and a narrow band component. The boundary between these two catagories

is nevertheless not too well defined. However, the extreme forms of

these can be identified. On one side of the scale, there is the perfectly

flat spectrum of a white process. And on the other end, one has the

discrete line spectrum of signal composing of multiple sinusoids. These

two ideal test data will be used extensively by the empirical studies

described in this chapter.

11.2 Representations of cross spectrum

The first problem encountered by spectral analysis is necessarily

the form of spectrum to be analyzed. In the analysis of power spectra,

which do not have an imaginary part, the problem does not exist. This

is no longer true in the analysis of cross spectra. A cross spectrum is

in general a complex valued function of frequency. And it is well known

that a non-zero complex variable can be represented by its real and

imaginary components, or amplitude and phase components. It will be

demonstrated later that amplitude and phase spectra possess distinctive

characters intimately related to the original data, and are therefore

used most often by spectral analysts.

Several other spectra can be computed from the amplitude and phase

spectra. If a complex valued cross spectrum between channels i and j is

represented by
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P (o(A) = A. .(w) exp[i . (W)]
lj 10 1j

where A.. (w) is the amplitude spectrum, and .. (w) is the phase spectrum,

a coherence spectrum is defined by

C. (W) = P. (W)/[P.. (w)P. ()]
lj 1j 11 jJj

where P..() and P.. (W) are the power spectra of channels i and j respec-
11 it]

tively. A phase delay spectrum is defined by

D. . (W) = 4. (W)/o
la ij

and a group delay spectrum is defined by

G. .(W) = d- 4..(W)

provided such a derivative exists. The significance of these spectra

will be made clear in the next two sections.

11.3 Cross spectrum of shifted broad band signals

Consider the following model for two channels of data

x1 (t) = s(t) + n1 (t)

x2 (t) = as(t+d) + n2(t)

where s(t) is a random process with non-zero power spectrum, n1 (t) and

n2 (t) are uncorrelated white noises, a is a scaling factor, and d is the

relative shift of the signals. The cross correlation function is then

given by
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P 1 2 (T) = Efx 1(t)x 2(t+T)}p21 2

with E{-} denoting the expected value operator. If the autocorrelation

function of the signal s(t) is represented by p (t) and its power

spectrum by P (w), then it is easily verified that

pl2 ( = apss(T+d)

The cross spectrum is therefore given by

12 f p1 2 (T)e WTdT
-00

00

= f ap (T)e e dT

= a P (w) eiWd

It is obvious that the amplitude spectrum in this case is just the power

spectrum of the signal multiplied by the scaling factor. More important

is the linear phase spectrum typical of this model. If the power of the

white noises n1 (t) and n 2(t) are denoted by N1 and N2 respectively, then

11 (W ss(w) 1

P 2 2 (w) a 2pss(w) + N2

and the coherence is therefore
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aP (w)

C1 2 (P p (w)+N ) (a2pss ()+N 2

N
= +ss (W

N2
1 ss

The special case when a=l, and N =N 2=N results in

C (W)= 1
12 1+N/P ( )

The phase delay is

D 12(o) = od/wo d

and the group delay is

G1(w) = -(wd) = d
12 dw

II.4 Cross spectrum of multiple sinusoids

Consider the following model for two channels of data

n
x1 (t) = I a exp[iv (t+a )] + n (t)

j=ln

n
x2 (t) = X b exp[lv (t+6.)] + n 2(t)

j=ln
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with v .=-v , a =a. b =b., a =a, S = , and n (t), n (t) are uncorrelated
- j -jj' -j j -j j -j j' 1 2

white noises with powers N and N2 respectively. If expected value is

computed using time averaging, the cross correlation function is then

given by

00

P12  1 f xl(t)x2 (t+T)dt

n n
X a ib.j exp[i(v ia.+ i )] exp(iv.T)

i=-n j=-n

CO

f exp[i(v +v )t]dt

n
a b exp[iv. -a )] exp(iv.T)

j=-n

The cross spectrum is

00

P1 2 (w) j P1 2(T) elw dT

n

= a.b. exp[iv.( -a.) 6(o-v.
j=-n aai iiaa

where 6(w-v.) is the Dirac delta function in the frequency w. It can be

seen that the cross spectrum is likewise discrete, with spectral lines

at frequencies of the signal power spectrum. At these frequencies, the

phase is the difference between the corresponding time delays of the

same component in the two channels, multiplied by the frequency. The

power spectra of these channels are
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n
P () = a 6(-v) + N

j=-n

n
P 2() = b 6(-v) + N

j=-n 
'

The coherence at frequency v. is therefore

a b 6(v-W )

12 [a2 6(W-v.)+N ] [b2 6(w-v.)+N
j 3 1 2

a.b. 6(w-v.)

a b. 6(W-v.

= 1.

The phase delay at frequency v is

D 12 (v ) = v. (.-a.)/v. = 6 -a

The group delay is obviously not defined for this type of data.

11.5 Accuracy and resolution of Multivariate Burg Estimator

The results derived in the previous sections will now be verified

using a two dimensional Burg Estimator. The resulting cross spectral

amplitude, coherence, phase, and phase delay estimates are compared with

those predicted by theory. The ability of this estimator to resolve

spectral peaks close to one another in a cross spectrum is also examined.

Test data for the experiments are generated from a system depicted

in Figure la. In one experiment, the signal s(t) was 100 samples of a
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white process with variance 100., and the time shift was chosen to be -3

samples. Uncorrelated white noises of unit variances were then added to

produce the data as shown in Figure 2.

Cross spectra were generated using an autoregressive order of 3.

The amplitude, coherence, phase, and phase delay spectra are shown in

Figures 3 to 6 respectively. It can be observed that the maximum and

minimum cross powers are within 3 dB of the true value of 100. Values

of the estimated coherence at all frequencies are well above 0.97, with

maxima close to 0.99, which is the true coherence for a signal to noise

ratio of 100. Phase estimate is strikingly linear, with a slope of

exactly -3 samples computed at a frequency of 0.5 cycles per sample.

Phase delays computed at other frequencies vary from this value by less

than 0.03 sample.

The high accuracy of the Burg estimator is well demonstrated.

Indeed, the superiority of this estimator over the windowing method is

clearly illustrated by Figures 7 and 8. In these figures, coherence and

phase estimated by Burg's method are compared with those computed by

taking the Fourier transform of a windowed estimate of the cross correla-

tion sequence. Two coherence and phase spectra are shown, one with a six

sample Bartlett window, and the other a 100 sample Bartlett window. The

six sample Bartlett spectral estimates are evidently erroneous. Even

the 100 sample Bartlett estimates cannot reach the same accuracy achieved

by the Burg estimates.

The same procedure has also been applied on data composing of

multiple sinusoids. Referring to Figure lb, the signal s(t) now contains

100 samples of two sinusoids with frequencies 0.04 and 0.05 cycles per

sample respectively. The peak amplitudes of the harmonic components are
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10. and 5. in the first channel, 5. and 10. in the second channel; and

time shifts at both frequencies of the second channel are both -3 samples.

Uncorrelated white noises of unit variances are added to produce the

data as shown in Figure 9.

Cross spectral amplitude, coherence, phase, and phase delay spectra

computed from a Burg Estimator of order 10 are shown in Figures 10

through 13. The two spectral peaks are well resolved. Although the

peak values at frequency of 0.04 is smaller than that at frequency of

0.05, the first spectral line has a larger width than the other. Con-

sequently the area within each spectral line can be equal.

Coherences at frequencies 0.04 and 0.05 are practically equal to

one. However, they are not as well resolved as the cross amplitude.

Phases at these frequencies are -46' and -550, which are equivalent to

time shifts of -3.2 and -3.05 respectively. The errors are within one

sample and are generally acceptable.

It has long been recognized that one important property of single

channel Burg estimator is its ability to reproduce a sharply peaked

spectral line in estimating power spectrum of a truncated sinusoid.

Smearing of the spectral peak by the conventional method as a result of

convolution with a window function is not present in a Burg estimate.

That the same statement can be said about Burg estimate of cross spectrum

of a truncated sinusoid is demonstrated in Figures 14, 15. Three estimates

of cross spectrum between two truncated sinusoids with the same frequency

of 0.1, but with phases differ by 1080 at the frequency are shown. Of

these, the Burg estimate of order 4 obviously resembles most of a line

spectrum. The 100 sample Bartlett estimator shows a much smaller peak

value, and a number of side lobes can be seen adjacent to the main lobe.
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The 8 sample Bartlett estimate is too flat to be considered a peak.

Phase estimate from the fourth order Burg estimator and the 100 sample

Bartlett estimator generally agree within the frequency range where

cross power is substantial. The phase estimate from the 8 sample Bartlett

estimator is also approximately correct, except that it is 3600 out of

phase with the others.

11.6 Determination of optimal autoregressive order

A problem of paramount importance facing a user of either the

univariate or multivariate Burg estimator is the choice of an autoregres-

sive order. Since spectra can be computed at any order less than the

number of data samples being processed, the compatibility of these

spectra is of major concern to an analyst. Two situations should be

considered separately.

The basic principle of Burg's method is to fit an autoregressive

model of finite order to the data with minimum squared residual error.

If the data to be processed is a true autoregressive process of finite

order, then residuals computed from orders less than this true order

would have gross error, while those computed from orders at or larger

than this true order would be samll and the same. On the other hand, if

the data is not autoregressive, all residuals computed from a fitted

autoregressive model of any order are always decreasing. As a conse-

quence, the conventional definition of an optimal spectral estimate is

that one whose squared prediction error is minimum. Specifically,

autoregression coefficients are computed recursively until the residual

error, which is a monotonically decreasing function of regression order,

stabilizes and ceases to decrease substantially.



However, there is a second contribution to the error in the spectral

estimate. This contribution is the consequence of estimating the auto-

regressive coefficients from a finite number of data samples. The

result is a statistical deviation of the estimated coefficients from

their true values. As the autoregression order increases, more coefficients

have to be estimated from the same number of data samples, and consequently

the statistical deviation of those estimates are expected to increase.

One way to measure the combined effect of these two contributions

is the use of a criterion called Final Prediction Error (Akaike, 1971).

This criterion is

(n+1~p m
FPE(p) = |Up I n-lmp

where p is the order of the autoregression, m the dimensionality of the

data, and n the number of data samples. jU | is the determinant of the
p

residual error matrix as defined in Chapter II. An order of the auto-

regression is chosen to be that which minimizes this criterion.

A similar approach was also proposed by Akaike. In this scheme, it

is assumed that there is a true order p such that the data is autoregres-

sive. Then, at each successive order, a criterion called Akaike Informa-

tion Criterion (Akaike, 1974) can be computed. Conceptually, this can

be regarded as a measure of information available to the estimation of

the autoregression coefficients. Specifically it is

AIC(p) = log |U I + n
p n

A third approach was proposed by Parzen, This approach does not

assume that the data is finite order autoregressive, or even autoregres-
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sive at all, provided that the z-transform of the data model impulse

response converges. A theorem was given (Parzen, 1976) which states

that, for a stationary time series Y(t) with continuous positive spectral

density function, there is always a frequency transfer function denoted

G,(z) = I + A z + A 2z2 + ...

and a white process e(t) such that

Y(t) + A 1Y(t-1) + A 2 Y(t-2) + ... = e(t)

An approximation to the true transfer function A(z) is usually obtained

by terminating it at a finite order. This approximation is referred to

as the Autoregressive Transfer Function Approximator Converging to the

Truth (ARTFACT). A criterion, designated Criterion of Autoregressive

Transfer Function (Parzen, 1975) is introduced which provides an estimate

of the mean square overall error of ARTFACT. This is defined as

m ^-1 ^-l
CAT(p) = trace { U - U

n p

when

0 = n

3 n-jm J

Aided by the above criterion, the problem of determining an optimal

order reduces to choosing that one which minimizes the FPE, AIC, or CAT.

In many experiments conducted with synthesized data, the orders thus

chosen generally agree with one another. Nevertheless, exceptions to

this do occur, and in these cases, CAT is found to be a more reliable

indicator of an optimal order.
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To illustrate the use of these three criterions, two channels of

white processes generated as described in section 111.5 were processed.

The two white processes have a relative time shift of 10 samples.

Residual error matrices were estimated recursively up to a maximum order

of 45, and the three criterions mentioned above were computed at each

order of the recursion. These are plotted in Figures 16 to 18.

The data used in this experiment is truly autoregressive of order

10. This statement is evidently supported by a study of the three

criterions, which all show a significant reduction in value at the

autoregressive order of 10. However, FPE continues to decrease gently

until order 38, while both AIC and CAT start rallying upwards immediately

after order 10. It is generally observed that FPE, and occasionally

AIC, has a flat bottom ranging over a large number of orders with very

small difference in value. This shows that FPE is a less relaible

indicator of an optimal order than either AIC or CAT. The same phenomenon

can be observed when data seemingly not autoregressive are analyzed and

discussed in Chapter IV.

One widely acclaimed advantage of autoregressive estimator is its

ability to provide good estimates with a relatively small order, thus

requiring less computation. Recalling from Chapter I that an autoregres-

sive model of order p is equivalent to using autocorrelation information

of the data up to a maximum lag of p samples. A comparison of a pth

order Burg's estimate with a Bartlett windowed transform of the autocor-

relation sequence with maximum lag of p has been made for p ranging from

2 to 50, for the two shifted white processes as described earlier in

this section. The coherence and phase estimate are shown in Figures 19

and 20.

35



It is clearly demonstrated in the figures how Burg's estimate

rapidly converge to the true spectra at and beyond the autoregressive

order of 10. Phase estimates from the other method are comparable to

Burg's estiamtes only when autocorrelation lags of 20 and longer are

used. Coherence estimates, nevertheless, seem incapable of achieving

the same level of accuracy as Burg's estimates even when 50 samples of

the autocorrelation sequence are used.

11.7 Effect of noise on error in autoregressive model

As mentioned above, one major source of error in estimating spectra

using Burg's method is caused by errors in fitting the data with a

finite order autoregressive model. For certain types of data, this

model may not be appropriate. One example that occurs often in data

processing is autoregressive processes contaminated by additive white

noises. Indeed, it has been shown (Pagano, 1974) that this kind of data

can be modelled as autoregressive moving average. One would expect that

the larger the level of the noise, the larger the deviation from a true

spectrum will be. Figure 21 shows coherence and phase estimates of a

two channel shifted white signal with five levels of additive white

noises. It is obvious from the figure that the accuracy of the estimates

deteriorates as the noise power increases. The coherence estimate is

particularly sensitive to the presence of noise. A comparison with

estimates obtained from a 100 sample Bartlett estimator indicates that,

even in the presence of noise, Burg's estimator can still provide more

accurate coherence and phase estimates than the other estimator.



11.8 Conclusions

Empirical studies have been carried out on synthesized data to

evaluate certain characteristics of the Multivariate Burg Estimator.

High accuracy and good resolution of this estimator were verified by

results of these studies. Superiority of this estimator over the

convention windowed and transformed method was well demonstrated.

Burg's estimates of spectrum were found to be stable in the presence of

noise. The determination of an optimal autoregressive order was achieved

utilizing the criterions of FPE, AIC, and CAT. It has also been shown

that Burg Estimator requires a shorter lag of autocorrelation sequence

than the windowed and transformed method.

:37



III. Spectral Analysis of Ocean Core Geological Data

III.1 Introduction

One of the many explanations of Pleistocene ice ages attributes

climatic changes to variations in the Earth's orbital geometry. One

strategy of testing this orbital theory is to treat secular changes in

the orbit as a forcing function of a system whose output is the geological

record of climate (Hays, et al., 1976). With the assumption of constant

sedimentation rate, spectral analysis can be applied to the geological

data. The objective of the analysis is to measure any significant

frequencies existing in the data. These significant frequencies are

compared to the Earth's obliquity and precession frequencies. This

comparison will furnish a test on the validity of the orbital theory.

Phase relation between each of the geological records can also be estimated

at these frequencies. These are also compared with values obtained from

other methods. The purpose of this chapter is to apply the Multivariate

Burg Estimator as a new spectral analysis technique in such a testing

procedure.

111.2 Sources of data

Three climatically sensitive geological variables were measured

from two deep-sea cores located in the Southern Indian Ocean. A continuous

record of the last 450,000 years can be obtained. With an accumulation

rate of approximately 3 cm/1,000 yrs, resolution of climatic fluctuations

is well below 20,000 years. Identical samples were analyzed for the

three variables at 10 cm intervals throughout both cores.
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The first geological variable is an estimate of summer sea-surface

temperatures at the core site, derived from a statistical analysis of

radiolarian assemblages. Accuracy of these estimates is ±1.50C.

The second geological variable is the oxygen isotopic composition

of planktonic foraminifera. Down-core variations in 6 0 reflect

changes in oceanic isotopic composition, caused by the waxing and waning

of northern hemisphere ice sheets. It ties the core record into a

global stratigraphic framework based on isotopic and geomagnetic variations.

Therefore, although this variable was measured in subantarctic cores, it

represents a record of the northern hemisphere climate.

The third geological variable is the percent of Cycladorphora

davisiana relative to all other radiolaria. A high abundance of this

species can be related to the low salinity of summer surface waters.

For the analysis procedure described below, 157 samples of each variable

were used, representing geological records from 3,000 to 471,000 years

ago. The means of each record were estimated and subtracted from the

data. Each record was also scaled independently so that the variance of

all three records are the same and equal to unity.

111.3 Analysis procedures

The procedure with which power and cross spectra of the three

geological data were estimated can be divided into three steps. First,

reflection coefficients (or partial correlation coefficients), and

residual (or prediction) error matrices were estimated at each order of

the recursion up to a maximum order generally taken to be the number of

data samples in each record divided by twice the dimension of the data,

that is, twice the number of records being processed.
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An autoregressive order analysis was then carried out for each of

these reflection coefficients and residual error matrices. Specifically,

the three criterions of FPE, AIC, and CAT were computed and plotted as a

function of autoregressive order. The optimal order, and consequently

the reflection coefficient and residual error matrix used to compute the

autoregressive coefficients, was determined by choosing that which

indicated sufficiently small values of all three criterions.

Finally, autoregressive coefficients were computed and spectra were

generated. The power spectral density of each geological data was

displayed and studied. This provides evidence of periodicities, or

significant frequencies, existing in the data. The cross power spectral

amplitude between two records then indicates those frequency components

contributing to the correlation between the corresponding records. The

degree of correlation is given by the coherence at those frequencies. A

knowledge of the coherence is critical in assigning confidence to the

phase information obtained from the phase spectrum at these frequencies.

III.4 Preliminary analysis

The normalized data constructed as described in the last section

was processed by the procedure outlined also in the last section. The

three geological records are shown in Figure 22. Plots of the AIC and

CAT are shown in Figure 23. An abrupt reduction in the values of these

criterions at a small order usually indicates the presence of broad band

structure, although existence of small narrow band signals is not precluded.

The power spectral densities of the geological records estimated

using an autoregressive order of 2 are shown in Figures 24. The spectral



densities are evidently dominated by low frequency components up to a

period of 15,000 years. The most dominant frequency is approximately

0.015 cycles/1,000 yrs, or a period of 67,000 years.

The coherence and phase spectra are also shown in Figures 25 and

26. Coherence at this frequency is 0.75, which is generally considered

large enough for a reliable estimate of phase informations. On the

whole, coherences at frequencies less than 0.035 cycles/1,000 yrs are

well above 0.50. The phase of the oxygen ratio record is found to lead

the surface temperature record, with the maximum phase lead of 0.68

radians occurring at periods of 50,000 years to 67,000 years, equivalent

to a time lead of 5,000 to 7,000 years. The phase of the salinity

record also leads the surface temperature record by as much as 0.40

radians occurring at periods of 60,000 to 100,000 years, equivalent to a

time lead of 4,000 to 6,000 years. While the salinity record lags the

oxygen ratio record by 0.60 radians around a period of 20,000 years,

equivalent to a time lag of 2,000 years.

111.5 Analysis of low-passed data

Although analysis at this stage does disclose some preliminary

nature regarding the gross structure of the spectral decomposition and

correlation of the original data, more detailed analysis is necessary to

reveal local structure of the spectra. However, the presence of a broad

band background conceals any fine structure otherwise observable in the

criterions of FPE, AIC, and CAT. As a consequence, it is not permissible

to locate an autoregressive order beyond the one indicative of the broad

band background, which would lead to spectra containing more detailed

structures than those obtained above.
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A solution to the above problem is to destroy the broad band back-

ground by low passing the original data. Guided by results of the

preliminary analysis, the three geological records were low-passed with

a first order Butterworth filter. The cut-off frequency was chosen to

be 0.055. As a result, power of components with period shorter than

18,000 years are suppressed, while spectral information of periods

longer than 18,000 years remains intact. This low-passed data was then

processed by the same procedure as described in section IV.3.

Results of autoregressive order analysis are shown in Figure 27.

With the exception of FPE, the abrupt reductions in the other criterions

are replaced by more gradually decreasing patterns. It can also be

observed that a new optimal autoregressive order of 24 is indicated by

both AIC and CAT. However, a more liberal judgement would agree that

autoregressive orders ranging from 21 through 30 are acceptable with no

substantial difference in values of either AIC of CAT.

In general, if a span of autoregressive orders is available, the

smallest one should be chosen in order to eliminate unnecessary complexity

in the spectra. Therefore, spectra are estimated using an autoregressive

model of order 21. These spectra will be displayed and analysed in the

following sections.

111.6 Power spectral densities

The power spectral densities of the three geological data are shown

in Figure 28. Only powers at frequencies less than 0.06 cycles/1,000

yrs are plotted. The spectra evidently possess more complicated and

finer structures from which several spectral groups can be identified.



Power spectral density of surface temperature record is characterised

by five well separated clusters of peaks. The most prominant one occupies

the low frequency region of the spectrum with periods ranging from 110

to 75 thousand years. The next three clusters, with dominant periods of

approximately 43, 31 and 23 thousand years respectively, have more or

less the same power. A smaller, broader peak with period of 18,000

years can be observed at the end of the spectrum.

Presence of the same clusters of spectral peaks is also evident in

the power spectral density of oxygen isotope ratio record. The broadness

and levels of these clusters are, however, quite different. The range

of the first group is reduced to 90 to 75 thousand years. The one

around 43,000 yrs is partially occulted by the enhanced broad band

background. The spectral groups centered at 31,000 and 23,000 years

still stand out very well, while the one with 18,000 yrs is almost

invisible. Instead, a new one emerges at a period of approximately

25,000 yrs.

Power spectral density of the salinity record shows a much broader

cluster of low frequency peaks. Typically, large power density extends

from a period of 200,000 yrs to a period of 75,000 yrs. Strangely

enough, though the long period bound of this prominant cluster varies

from one geological variable to the others, the short period bound

remains close to 75,000 yrs. A slightly smaller spectral group around a

dominant period of 60,000 yrs can be seen between the long period band

and the one at 43,000 yrs. The spectral group of 31,000 yrs is again

present, followed by smaller group of 23,000 yrs, and an even smaller

one of 18,000 yrs.
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Besides the prominant low frequency cluster, the spectral groups

with dominant periods of 43,000 yrs, 31,000 yrs, and 23,000 yrs are also

common to all three geological measurements. To understand the signifi-

cance of these periods, they are compared to the dominant periods of

three orbital variables postulated to have affected the Pleistocene ice

ages cycle. One of these is the eccentricity of the Earth's orbit,

which exhibits an average period of 93,000 years. Obliquity, defined as

the angle between the equatorial and ecliptic planes, is also an important

variable. Its average period was found to be about 41,000 years. The

third variable is called precessional index, which is approximately

equal to the Earth-sun distance in June, expressed as a fraction of that

distance in 1950. This index has an average period of 21,000 years.

Of the three orbital variables, the eccentricity affects only the

total annual insolation (solar radiation received at the top of the

atmospheres), while the others also affect the orientation of the Earth

relative to the sun. Therefore, eccentricity effect is generally considered

unimportant. More important, direct analysis of insolation data (Hays,

et al., 1976) indicates that its spectrum is dominated by periods of

41,000 yrs, 23,000 yrs, and 19,000 yrs. This further strengthens the

conviction that eccentricity effect is small, if not negligible.

As a consequence, the contribution to low frequency power present

in spectra of the geological data is of some unknown origins. The

dominant periods of 43,000 yrs and 23,000 yrs obtained from spectral

analysis of the geological records agree well enough with the average

periods of obliquity and precessional index, and with the insolation

data, which is the combined consequence of these. The other dominant

period of 31,000 yrs in the geological spectra does not have a counterpart

in the orbital data, and remains unexplained in the present study.
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111.7 Coherence and phase analysis

Coherence spectra as shown in Figure 29 furnish support for the

conclusion that the three geological variables are strongly correlated

at the periods of 43,000 yrs and 23,000 yrs. The spectral period of

31,000 yrs is also strongly correlated among the three variables. It is

interesting, however, to note that salinity is not as strongly correlated

with the other two variables, at the low frequency region, as that

between surface temperature and oxygen isotope ratio.

Phase and phase delay spectra are shown in Figures 30 and 31 respec-

tively. The phase shifts and time shifts between any two of the three

geological variables can then be deduced. At the spectral period of

43,000 yrs, oxygen isotope ratio leads surface temperature by a phase

of 80, or equivalently, 1,000 yrs. Salinity also leads surface temperature

by approximately 250, or 3,000 yrs. At the spectral period of 23,000

yrs, oxygen isotope ratio again leads surface temperature by about 390,

or 2,500 yrs while salinity lags surface temperature by 160, or 1,000

yrs.

This tends to imply that obliquity variation produces changes in

salinity before it produces changes in the others. Likewise, oxygen

isotope ratio is affected by the precessional variation more efficiently.

However, these findings do not agree with those obtained by Hays who

employed a time domain technique to estimate these phase relations. The

discrepancy obviously results from the difference between the method

employed in this study and the one used by Hays. Further investigations,

probably with an entirely different technique, are needed to verify

either of the results.
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Also, such an investigation is needed to verify the significance of

the apparently unaccountable period of 31,000 yrs. At this period, the

oxygen isotopes ratio leads surface temperature by 420, or 3,500 yrs.

And salinity leads surface temperature by 170, or 1,500 yrs. It seems

that if certain physical parameters can be identified with an average

period of 31,000 yrs, it would have an earlier effect on the oxygen

isotopes ratio (and therefore on the northern hemisphere climate) than

the other geological variables.

111.8 Conclusions

Spectral analysis of three gological data has been completed. The

results tend to confirm the validity of the Astronomical Theory of

Pleistocene ice ages as proposed by Hays and others. Discrepancies

exist between phase estimates obtained from this study and that of Hays.

These discrepancies, however, are within the errors of the estimation.

Further works with better precision are needed to test the accuracy of

either estimates.

46



IV. Conclusions and Discussion

An extension of Burg's method for estimating maximum entropy spectra

to multiple channel signal processing has been developed. Implementation

of this method into a system of Fortran programs was completed. Empirical

studies were carried out on synthesized data to evaluate certain charac-

teristics of the Multivariate Burg Spectral Estimator. Results from

these studies indicated that high accuracy and good resolution of spectral

estimates can be achieved. The level of accuracy and resolution evident

in the Burg estimates are superior to those obtained from the Taper and

Transform method using the same maximum lag of autocorrelation information.

Determination of an optimal autoregressive order has also been

discussed. The strategy is to choose an order at which the Final Predic-

tion Error, Akaike's Information Criterion, and Criterion of Autoregres-

sive Transfer Function have minimum values. It has been found that

autoregressive orders indicated by the three criterions are in general

consistent. Empirical studies seem to show that CAT is a more relaible

indicator of autoregressive order in case discrepancy does arise.

Spectral analysis of three geological data utilizing the Multivariate

Burg Estimator was conducted to test an Astronomical Theory of Pleistocene

ice ages. Frequencies of spectral peaks estimated by this method agree

very well with the findings of Hays and others, and therefore offer

strong evidence of the orbital-climatic relation as an origin of ice

ages. However, phase relations among the three geological variables do

not agree with those obtained by Hays. In veiw of the small magnitudes

of these estimates, the discrepancies may well be within the errors of

the estimation. Although an accurate estimation of these phase relations
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is useful in understanding the mechanism of the Astronomical Theory, it

has no direct effect on the validity of the theory.

Owing to the complexity of the field of spectral analysis, and the

empirical nature of investigation as reported by the present thesis,

these conclusions are far from universal and unchangeable. More experi-

mental studies, both on synthesized data and real data, are definitely

needed. Most importantly, a theoretical approach in studying the bias,

error, consistency, and efficiency of this estimator needs to be developed.

Finally, a spectral estimator of a more general class, like the autoregres-

sive moving average estimator to which the autoregressive estimator

belongs as a subclass, requires further development and investigation.
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