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ABSTRACT

Normal maximum and minimum temperatures are computed for each date
of the winter season from the 92-year Boston temperature record. Trend
is removed from the normal and individual yearly values and standard
deviations and errors are computed. Statistical significance levels are
calculated and a count of significant values is made. The probability
of obtaining these by chance is computed and found to be quite high.
Average maximum and minimum values are computed for each date for each
phase of the double sunspot cycle in addition to a major-half phase and
minor-half phase. A procedure similar to that mentioned earlier is
followed and four phases out of 20 are found to have 1% significance
counts with a high degree of confidence. The standard deviations of
both maximum and minimum temperatures for the eight phases exhibit cycles
that are parallel to the double sunspot cycle. The result of applying
a statistical "F" test indicates that the maximum and minimum cycles
are real. An apparent division of the winter season is examined in which
anomalous values tend to occur in the early part of the winter during
the minor-half phases and in the latter part of the winter during the
major-half phases.
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Title: Professor of Meteorology
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SECTION I

INTRODUCTION

A. HISTORICAL BACKGROUND

An investigation of the folklore of the world will reveal many

references to the annual recurrence of weather phenomena characterized

by periods of unseasonable warmth or cold. Names such as - "January

Thaw", "January Frost", Ice Saints", "Indian Summer", "Old Wives'

Summer" and "Christmas Thaw", to mention only a few, are common terms

throughout the world, although some may apply only to certain geographic

areas. Most amateur forecasters and meteorologists will stand fast and

unambiguously maintain that these "singularities" are real and will

undoubtedly recur in the future; while among professional meteorologists,

the subject has always and is presently quite controversial.

At this point, it is necessary to define the terms, "1singularity"

and"anomaly", and to adopt these meanings throughout this text, although

it may be necessary to supersede the definition when a direct quote is

used. The term "anomaly" will be used to denote a value which appears

to be a peak or trough in the parameter's time profile, while the term

'singularity" will be used to denote an "anomaly" which can be shown to

be statistically significant.

A review of the literature shows that the concept of temperature

singularities dates as far back as 1860 when Forbes (1860) discussed



"Periodic Anomalies" in the 40 year temperature record of Edinburgh.

Talman (1919) published a comprehensive bibliography of work done on

this subject up to that date. In the past half century, the majority

of contributions have come from the European scene (Bayer, 1956; Blagoev

and Lalovski, 1958; Brooks and Mirrlees, 1930; Kramer, Post, and

Scharringer, 1952; Lamb, 1950; McIntosh, 1953; Peczely, 1958; Reynolds,

1955; and Shinya, 1958). In general, results have been quite contro-

versial with some agreement among authors and considerable disagreement.

The work in America has been chiefly confined to investigations of

the "January Thaw". Since the origin of this "Thaw" is folklore, there

is no precise, universal definition of this phenomenon. In New England,

the "January Thaw" is thought to be a warm spell occurring approximately

on 21-22 January. There is another warm period during the first week

of January that has also been given this name in other parts of the

country.

In 1919, Marvin, who was then chief of the United States Weather

Bureau, made an examination of the annual temperature record of several

North American cities. He concluded that: "Each striking feature on

a long record is therefore no evidence of the persistent recurrence of

peculiar irregularities, but is simply a residual scar or imprint of

some unusual event or a few which have fortuitously combined at about

the time in question. Time will inevitably efface these,...."

There is no doubt that these stern and quite conclusive results

seemed to close the case of "singularities" and hindered any further

2



undertakings on this subject. Although research was hindered, it was

not entirely stopped by Marvin's conclusions.

In contrast, Slocum (1941) investigated the temperature records

in Washington, D. C.,and a few other selected stations, and concluded

that there was a definite "warm anomaly" during the period 20-23

January followed by a colder than normal period about 5 February.

In Marvin's (1919) paper, he stipulates that for a singularity

to exist, it must be supported by physical reasoning, Further research

along these lines was performed by Wahl (1952) who studied the tempera-

ture record of Boston, Massachusetts and other selected stations in

addition to records of other parameters such as gradient wind direction,

pressure gradient, thundershower occurrence, and snow depth. He

attempted to relate the January Thaw to a general circulation index-

cycle pattern.

When he compared the normal sea-level pressure chart for 20

January with that of 27 January, he found a striking contrast. On 20

January, the Bermuda High is stronger and further North than normal.

In addition, the normal trough along the east coast of the United States

is displaced far out to sea and another trough is located in the Midwest

creating a strong southwesterly flow in the eastern United States. By

the 27th, the pattern has completely changed. The trough that was in

the Midwest is now off the East Coast and a large anticyclone dominates

most of the United States. Thus Wahl concludes that a low zonal index-

cycle pattern favors the anomalous warmth in January.



Another investigation seeking a link between a January Thaw and

the general circulation was performed by Duquet (1963). Using 700 mb

and mean weekly surface temperature data of many stations, he concludes:

"The course of the winter ... involves two stages in the northeastern

United States. The stages are separated by a 'warm spell' which occurs

in early January. The geographical extent of the warm spell indicates

that Gulf Coast cyclones tracking along the Appalachians are the vehicle

by which warm air is transported into the region. Secular changes in

the amplitude of the warm spell ... are related to simultaneous changes

in the planetary circulation and are not independent fluctuations."

Duquet also notes that at the time of the thaw the potential energy in

the atmosphere over North America is at a maximum due to the fact that

over the northwestern part of North America, the temperature is at a

minimum.

This would lead one to expect to find the thaw at stations in

the West at a different time than its occurrence in the East. This is

confirmed by Wahl, who found a rise in temperature at Columbia, Missouri,

between 17 and 21 January. Kangresses (1957) also found a possible

singularity in the minimum temperature at Phoenix, Arizona. Rebman

(1954) and Schick (1944) found similar results in other western stations.

In each of these two cases, either normal or below normal temperatures

occurred during 21-22 January.

In another investigation, Lautzenheiser (1957) tabulated dates of

thaw periods during January in Boston in order to find a preferential



period of occurrence. He concludes that: "This failed to show any

particular date as being much favored over another, ... it is a curious

fact that the period January 21-23 ... actually had fewer thaws than

any other three day period." He attributes the fact that more thaws

occur during the earlier part of January than the latter to the annual

march of temperature. le further concludes that: "one cannot pick out

a preferred date for a 'January Thaw' other than it should occur in

January. They do not occur every year ... (but) on the other hand,

over 50% of the January's had two or more thaws."

As can be seen by the brief discussions above of previous work on

this subject that conclusions are inconsistent or contradictory. In

addition, due to the lack of universal definition of the January Thaw,

different time periods have been used for the occurrence of the thaw in

many of the investigations.

B. OBJECT

The primary object of this study is to examine the winter-season

temperature records of Boston, Massachusetts, and to investigate the

existence of the January Thaw. By comparison with other singularities

in the temperature record, the actual significance will be determined.

It is necessary to emphasize the use of the term significance rather

than reality. It is almost impossible, when dealing with data such as

this, to prove that a singularity is real and exists, but it is possible

to show that the probability of the chance occurrence of these anomalous

points in the temperature record is very small.



It is not intended that a physical cause-and-effect relationship

should be formed between the "Thaw" and some other parameter, but

rather to determine when and how significant are any singularities

during winter. It is also intended that a comparison between the

"January Thaw" with other anomalies be made and a determination of its

relationship to other time periods. The possible relationship between

the eight phases of the double sunspot cycle and occurrence of anomalies

will also be investigated.



SECTION II

INVESTIGATION OF NORMAL DATA

The official Weather Bureau temperature record for Boston,

Massachusetts dates back to 1872. Although this consists of data

taken at different locations, the errors introduced by different

locations may be considered negligible because in this study only

deviationsfrom the normals are used. Although most previous studies

examined either the mean temperature record of a station or the maximum

temperature, it was decided to investigate both the maximum and minimum

temperature records and treat each as an independent entity. The data

consist of the 92-yearly values for each date of the winter season,

defined as 1 December to 28 February. Since 29 February occurs only

approximately every four years and would therefore comprise a small

sample, it was omitted from this study.

A 92-year arithmetic mean was computed for both maximum and

minimum temperatures for each date. Let us call this the daily "normal",

and denote it by X.,

92
n

X. = - (i = 1, 2, 3, ... 90) (1)
z 92
n= 1

Since maximum and minimum temperatures are treated separately, the

notion may be applied to either.



Since the data contain a trend due to the annual march of

temperature, it was decided that all computations would be done on

data that are trend-free, i.e., actual data values minus the smoothed

daily normal which represents the trend. If the trend were not removed

and deviations, A., were computed from the grand normal, X,

90 -

X = 2 (2)

i= 1

A. = X. - X (3)
1 1

unrealistic results would be obtained and would undoubtedly lead to

incorrect conclusions concerning singularities and their significance.

If a trend curve were used instead of the grand normal, the seasonal

influence would be removed and all deviations would be relative to a

straight-line mean.

Figures 1 through 3 illustrate this point. As can be seen in

Figure 1, all deviations computed from point A to point C will have

positive values while those computed from C to D will be negative.

Figure 2 illustrates a hypothetical "normal" value curve and an associ-

ated trend curve. Figure 3 shows the result of taking deviations with

respect to the trend. The mean X - X in this figure equals zero. As

is quite evident, there are positive and negative values present

throughout the entire time period.

The actual method used to determine the seasonal trend was

arbitrary. Some authors (Duquet, 1963; McIntosh, 1953; and others)



Figure 1. Example of a temperature record.
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used the first two harmonics to determine the periodic fluctuations

of their data. But, in contrast to their data which covered 12-month

periods, these data consist of a record of only three months. Therefore,

since harmonic analysis can only be used on data which contains at least

one cycle, another method would have to be used to determine an analytic

expression for the trend. Panofsky (1958) suggests that when the trend

shows definite curvature, a parabola may be fitted to the data by the

method of least squares.

Figures 4 and 5 illustrate the 92-year normal curves and the

second degree fitted polynomial, denoted in the term'trend". In the

mathematical process of curve fitting, the convention of numbering the

dates consecutively from 1 to 90 was adopted. The equations of the

polynomials are as follows:

for maximum temperatures,

X = 43.3 - 0.270D + 0.0025D2  (4)

for minimum temperatures,

X = 29.6 - 0.318D + 0.0027D 2  (5)

where X = Temperature

D = Date (1 December = 1, 28 February = 90).

The temperature value on the trend curve (Xti, i = 1, 2, 3, ... 90) was

subtracted from each of 92 data points for each date (xi.., i = 1, 2,

3, ... 90, j = 1, 2, ... 92) and a standard deviation of these
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departures was computed according to the following:

90 92 2

-2'I (A) (6)8280
i=l j=l

where

A. . = x. . - X . (i = 1,2,3,...90; j = 1,2,3.. .92) (7)
1,] 1,] tl

In addition, a standard deviation of the departures of the 92-year normal

values from the trend was computed. Let us call this af:

90 2
i -2
-2 f) (8)

i= 1

where

f. = X. - X . (i = 1,2,3,...90) (9)

When working with a distribution of mean values of a sample,

statistical theory states that the standard deviation of these means, or

the standard error, as it is called, may be defined as:

C A (10)

A IN

where N equals the number of A's in each A. Thus the effect of averag-

ing random data is to reduce the standard deviation of the raw data by

a factor of - . In terms of the terminology used in this paper,
1N

OAcrA (11)

(TA O A N

Table I lists values of *A' c0f, and the standard error, a-_ , obtained
A

from the above calculations. It is interesting to note that the values

13



Table I

Values of OA , cr and N
,N

2
r (deg )

Maximum Temperatures

Minimum Temperatures

10.22

10.33

N (deg)
0- f(deg )

1.07

1.08

1.11

1.21

N = 92



of a-f were slightly greater than the standard error. This can be

interpreted to mean that the grouping of the data into date means is not

random, but there is an indication of a more than random tendency towards

formation of singularities.

The question now arises as to how significant are the ridges and

valleys in the normal temperature curves presented in Figures 4 and 5.

In order to answer this question, statistical significance tests must

be employed. In general, these tests can only be applied to data which

consist of independent samples. This infers that there should be a

low autocorrelation between points. It is a well known fact that a

daily temperature record does not constitute an independent-data set.

The interdependence of daily temperature has been called "coherence"

by some authors (Walker, 1946). McIntosh (1953) was faced with a

similar problem. He made a comparison of the frequency distributions

of a non-coherent random series (very small autocorrelation), a coherent

random series and the theoretical normal Gaussian distribution. The

number of points falling in intervals > 2 t, where:

t = (12)

x = point value of data

a = standard deviation of data

were quite similar in all instances. McIntosh concludes that a coherent

series of random temperature departures can legitimately be assumed to

approximate the normal distribution.



A significance level represents the probability of a random number

taking on a certain value different than the mean. Generally signifi-

cance levels are computed from the relation:

t = (13)

x = point value of data

= mean of data

a = standard deviation of data

and the normal distribution function. Table II presents various levels

of significance and their respective values of "t". To illustrate

this point, take for example, the case of a point falling outside the

1% level. This means that the ratio of its deviation from the mean

value to the standard deviation is greater than the value of "t" for

one percent. It can be interpreted as saying that there is less than

one chance in one hundred that this value is really not significantly

different from the mean value and is only a random occurrence.

It is quite evident that the larger the value of "t", the greater

is the significance of any values found at that distance from the mean,

and the probability that the value has been obtained by a random

fluctuation is smaller. In the case of the data being investigated,

the significance bands representing the various levels are parabolic

curves that are parallel to the trend curve. These are presented in

Figures 4 and 5.

A significance count was made using the criterion that if two

dates which are significant on any level less than 5% are not three

16



Table II

Values of "t" and corresponding levels of signif-
icance.

Level of
Significance t

(M)

1.0 2.576

2.5 2.041

5.0 1.960

10.0 1.650

20.0 1.282

50.0 0.674



days apart, only one would be included in the "count". This is necessary

since the normal distribution assumes that the data are independent

and as was discussed before, temperature data are not. Table III

presents the "counts" for the normal maximum and minimum curves.

The significance of the counts obtained may also be found in order

to determine if "k" values obtained at a particular level are different

from what one could expect by random chance. In this case, "T" as defined

by (14), corresponds to a significance level similar to "t" used above.

T k - E

0-

E = Np (15)

-dNpq (16)

where

k = number of values obtained at a particular level

N = total number of points

p = probability of an event occurring

q = probability of an event not occurring = (1-p)

E = probable number of values obtained at a particular level.

Table IV presents values of "T" for the values obtained in Table

III and their corresponding levels of significance.

As one can notice immediately, the probability of obtaining these

counts from a random sample by chance is quite large. Therefore,

nothing conclusive can be said about the occurrence of singularities in

the 92-year normal maximum and minimum temperature record.



Table III

Table IV

Values of "T" and significance levels for various counts.

SIGNIFICANCE COUNTS

5% 2 % 1%

Maximum Temperatures 5 3 1

Minimum Temperatures 5 3 2

Significance Significance

Level of Data Significance N T Level of Counts

(M) Count

5 5 90 0.242 81

22 3 90 0.500 62

1 1 90 0.105 92

1 2 90 1.160 25



The eleven maximum and eight minimum values which exhibited the

largest significance are presented in Table V. Upon investigating

the maximum curve values, one finds a sharp contrast in the levels of

significance that appear during the early half of the winter (1 December-

21 January) as compared to the latter half. From 7 December to 20

January, the most significant level present is the 4% level, while in

the period from 21 January to 15 February all values are equal to or

more significant than the 4% value. The most outstanding singularity

occurs on 21-22 January. The percentages for the two days cannot be

thought of as separate entities due to their proximity in time.

The minimum curve values are quite different, with all but one

below the 10% level. The 2-3 February period appears as the most

significant and, as a matter of fact, even more significant than the

21-22 January period in the maximum values.

To conclude, it is quite evident from this type of analysis that

the reality of the January Thaw during 21-22 January cannot be accepted

with confidence since the chance probability of obtaining only one

value at the 1% level with a total of 90 data points is rather high.

Secondly, it appears that there is at least one other singularity

that is equally as or more significant than the January Thaw. Evidently

this type of averaging does not clearly bring out the singularities.

It is interesting to note that Wahl (1952) presents a similar conclusion

and suggests that since averaging over allyears shows only the residual

effects, some other method of averaging must be devised.



Table V

Significance levels (%) of selected dates for normal maximum and minimum

temperatures.

DATE D7 D16 Jl J2 J7 J21 J22 J29 F2 F15 F20
MAXIMUM

TEMPERATURES

Level of
Significance +9 -4 +13 +11 +9 +0.9 +0.9 -3 -2 +4 +9

(M)

DATE J3 J7 J21 J22 J29 F2 F3 F14

MINIMUM
TEMPERATURES

Level of
Significance +8 +1 +3 +1 -16 -0.2 -0.2 +9

(%)

D = December

J = January

F = February

+ above normal

- below normal



It was with this thought in mind that it was decided to extend

this analysis in order to determine another way of classifying the data.



SECTION III

INVESTIGATION OF RELATIONSHIP
TO DOUBLE SUNSPOT CYCLE

Since another averaging scheme was needed, and changes in tempera-

ture can be related to variationsin the general circulation, it was

decided to classify the data into groups which reflected these variations.

Willett (1949) has related the 20-24 year double sunspot cycle to changes

in the general circulation. Willett has suspected that there might be

a predominance of singularities during certain phases of this cycle.

The classification of the data according to this cycle appeared to be

a convenient and logical manner to further investigate this problem.

The 20-24 year double sunspot cycle is based on the fact that

alternate (major and minor) sunspot maxima have significant physical

differences. The double sunspot cycle consists of the following eight

three-year phases:

1) N-MM - The three years of most rapid increase in average

value of the Zurich relative sunspot number (RSS) following a minor

maximum.

2) MM (Major Maximum) - The three years of maximum average value

of RSS.

3) MM-NN - The three years of most rapid decline in average

value of RSS following the major maximum.

4) NN - The three years of minimum average value of RSS following

the major maximum.



5) NN-M - The three years of most rapid increase in average

value of RSS following a major maximum.

6) M (Minor Maximum) - The three years of maximum average RSS

at the alternate maximum, usually but not always lower in number than

the major maximum.

7) M-N - The three years of most rapid decline in average value

of RSS following a minor maximum.

8) N - The three years of minimum average value of RSS following

a minor maximum.

In addition to a division into these eight phases, a division

into two other phases were considered: a major-half phase and a minor-

half phase. The major-half phase was an average of phases 1-4 and the

minor half phase was an average of phases 5-8.

Figure 6 illustrates graphically the above definition of the eight

phases. It must be noted that this is an idealized curve of RSS vs

time. Differences from this and in general between the two halves of

the cycle are discussed by Willett (1964): "Although the basic cycle

of sunspot numbers is the so-called eleven-year cycle, which has

actually varied in length from seven to seventeen years between suc-

cessive sunspot maxima, and from nine to fourteen years between minima,

the so-called Hale or double sunspot cycle is much more clearly reflected

in solar-climatic relationships, at least outside of the tropics. That

there is a physical reality in the double sunspot cycle on the sun is

indicated by a tendency for the sunspot number to be alternately lower
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Figure 6. Schematic representation of idealized 20-24 year
double sunspot cycle.



and higher with successive maxima, for the polarity of the magnetic

fields associated with sunspot groups on the sun's surface to reverse

from one maximum to the next, and for the corpuscular (charged particle)

radiations reaching the earth from the sun to be quite differently

related to alternate maxima."

The shortening or lengthening of the cycle may occasionally cause

one year's overlap or an extra year between the three-year phases of the

cycle. Table VI contains a summary of the classification of the years

1872-1964 according to the phases of the double sunspot cycle.

The data were classified according to Table VI and averages,

standard deviations and standard errors were computed in a manner

similar to that described in Section II. It is necessary to emphasize

that the above calculations were made on trend-free data.

Figures 7 through 26 show the average maximum and minimum tempera-

ture values for each phase of the double sunspot cycle and also the

trend curve. The 5% and 1% significance bands are also shown and will

be discussed below.

Table VII lists the computed values of the standard deviations of

each phase (computed from all data points in phase, not from average

phase values) and their standard errors. The cycle that is present

in the standard deviations appears very interesting and rather signi-

ficant. If one considers a large group of random data and divides them

into eight equal subgroups, one would expect to find equal standard



Table VI

Classification of years 1872-1964 by phases of Double Sunspot

Cycle.

N- MM MM MM-NN NN NN-M M M- N N

1890 1872 1872 1877 1879 1882 1885 1888

1891 1892 1873 1878 1880 1883 1886 1889

1892 1893 1874 1879 1881 1884 1887 1890

1915 1894 1895 1900 1903 1905 1908 1911

1916 1917 1896 1901 1904 1906 1909 1912

1917 1918 1897 1902 1905 1907 1910 1913

1935 1919 1919 1922 1924 1927 1930 1932

1936 1937 1920 1923 1925 1928 1931 1933

1937 1938 1921 1924 1926 1929 1932 1934

1955 1939 1940 1942 1945 1947 1950 1952

1956 1957 1941 1943 1946 1948 1951 1953

1957 1958 1942 1944 1947 1949 1952 1954

1959 1960 1963

1961 1964

1962
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Table VII

Standard deviations and standard errors of maximum and

minimum temperatures for phases of Double Sunspot Cycle.

STANDARD DEVIATIONS STANDARD 2ERROR

(deg2) (deg2

Maximum Minimum Phase Maximum Minimum

Temperatures Temperatures Temperatures Temperatures

10.09 10.28 N-MM 2.91 2.97

9.90 10.15 MM 2.86 2.93

9.51 9.93 MM-NN 2.75 2.87

9.43 9.80 NN 2.72 2.83

9.73 10.05 Major 1.35 1.39

9.97 9.98 NN-M 2.88 2.88

10.28 10.24 M 2.97 2.96

10.62 10.53 M-N 3.07 3.04

10.97 10.58 N 3.17 3.05

10.51 10.42 Minor 1.52 1.50



deviations for each group or values which were not greatly different.

If this were not the case, the question of the validity of the

assumption that the data is random can be raised. But if the data are

classified in such a way that the variability of each group was not

random, then one could expect widely differing values of the standard

deviations.

To determine the chance that this cycle is a random occurrence

or significant result, a statistical "F" Test (see Panofsky, 1958) was

applied to the data. An "F" value is a ratio of the variance between

the groups being tested and the variance within the groupsbeing tested.

If the variation within the groups is larger, then the variation

between groups may be just a random fluctuation. There are tables

available which give different significance levels and corresponding

values of "F". If the value of "F" exceeds this tabulated value then

the group-mean values are significantly different at that level.

For the maximum curve values, an "F" value was obtained which

states that this cycle was significant on the 0.0000015% level while

the cycle of minimum curve standard deviations was significant on the

0.06% level. Thus the variation of the variability of temperature

between the eight phases of the double sunspot cycle is much more

significant than the variation within each phase and thus the cycle is

significant and, in view of the level of significance, undoubtedly

real.



The significance bands placed on the individual phase curves are

shown in Figures 7 through 26. Upon inspection, it will be found that

anomalous values occur on certain dates during some phases, but not

during others. Even the preferred date of the January Thaw on 21-22

January appears insignificantly different from the mean value during

a few phases. Table VIII contains a significance count for each of the

ten phases for both maximum and minimum values. Table IX shows the

level of significance of the counts as was shown in Section II. These

results, similar to those in Section II, are not too impressive.

Looking at the 5% and 2 % category, one cannot find a phase which

has a count that would not be expected just by chance. The 1% category

has three maximum and one minimum phases that can be considered signi-

ficant. If the categories are summed individually for maximum and

minimum values, only the 1% maximum category shows any semblance of

significance.

Table Xa andXb contain a tabulation of the significance levels of

certain dat'es during each of the phases. The dates were chosen from

the 92-year normal curves as representing the most probable dates of

singularities. Most dates are significant only during a particular

phase or two at most. The January Thaw period has interesting and

opposing values. The 21 January date appears to be significant during

the minor-half phases while 22 January is significant during the major-

half phases. As a matter of fact, there appears to be a tendency for

anomalous dates from 1 December to 21 January to show more significance



Table VIII

Significance counts.

MAXIMUM TEMPERATURES MINIMUM TEMPERATURES

Phase <5% < 2% < 1% < 5% <2 % < 1%

N-MM 4 4 2 5 2 1

MM 7 1 0 3 1 1

MM-NN 4 3 0 1 0 0

NN 3 1 1 1 1 1

Major 6 4 3 4 3 3

NN-M 1 0 0 3 0 0

M 5 4 3 5 4 2

M-N 7 3 2 4 1 0

N 5 3 1 7 1 1

Minor 7 5 3 6 2 1

Normal 5 3 1 5 3 2

Sum 54 31 16 44 18 12



Table IX

Values of "T" and significance levels for various
counts.

Significance Level Significance Level
Being Counted Count N T of Count

(M) (%)

5 7 90 1.210 22.6

5 54 990 0.685 49.0

5 44 990 -0.840 40.0

2 4 90 1.170 24.0

21 31 990 1.270 20.0

2 18 990 -1.380 16.8

1 3 90 2.220 2.6

1 16 990 1.930 5.4

1 12 990 0.665 51.0



Table Xa

Significance levels (%) of selected dates for phases of Double Sunspot
Cycle.

D7 D16 Ji J2 J7 J21

MAXIMUM TEMPERATURES

DATE
PHASE

+23

+65

+69

-21

+66

+27

+ 9

+24

+11

+0.6

-55

-63

-25

-11

-5

-48

-92

- 4

+ 6

-10

-86

+73

+61

-44

-94

+94

+20

+ 3

+ 3

+0.4

+30

+15

+16

-69

+ 6

-42

-81

+13

+0.2

+ 6

+23

+48

-88

-14

+83

+42

+21

+10

+22

+ 1

+39

+78

+83

+28

+21

+60

+33

+ 2

+11

+0.7

+ 3

+ 3

+22

+11

+0.01

-98

+50

+20

-59

+51

-58

+73

- 1

-38

- 8

-38

-31

+47

-41

-32

-17

-13

- 1

-97

-0.5

- 6

-73

+82

+68

-47

+19

+6

+47

-42

+10

-92

+12

+52

+19

+ 9

-83

+42

-56

+56

+76

-92

+44

+52

+ 8

+11

D = December

J = January

F = February

+ Above Normal

- Below Normal

N-MM

MM

MM-NN

NN

Major

NN-M

M

M-N

N

Minor

J22 J29 F2 F15 F20



Table Xb

Significance levels (%) of selected dates for phases of Double Sunspot
Cycle.

MINIMUM TEMPERATURES

J21DATE
PHASE

+11

+61

+ 4

-13

+20

-27

-73

+11

+0.2

+ 7

+ 7

+34

-78

-48

+35

+47

+14

+26

+ 3

+0.3

+11

+56

+67

+26

+ 7

-62

+52

+12

+24

+11

J22

+ 2

+ 3

+ 6

+57

+.08

-47

+87

+26

+98

+72

J = January

F = February

J29

-94

+44

- 15

-36

-42

-28

-79

+47

- 7

-20

+ Above

- Below

- 2

-31

- 9

+86

-2

-6

-76

-65

+98

-17

-0.3

-79

-31

-48

-1

-8

-16

-32

+41

- 8

Norma 1

Normal

N-NM

MM

MM-NN

NN

Major

NN-M

M

M- N

N

Minor

F14

+54

+32

+36

-19

+42

+67

+ 1

+43

-58

+10



during the minor half with the exception of the 14 February minimum and

20 February maximum.

For a closer look at this, average values of significance were

computed for each phase by using the absolute value of the individual

levels. In addition, an average was computed for each of the two

apparent halves of the winter season. The results of these calculations

are shown in Table XIa and XTh. They illustrate the apparent differences

in the winter season noted above, although not unambiguously. The

significance levels involved are all rather large and it is very diffi-

cult to show distinctly by this method the time preference for the

major- and minor-half phases.

Another method to illustrate this discrepancy in the winter season

involves the use of a weighted mean. If the reciprocals of the values

in Table Xa and Xb are computed and averages of these values are com-

puted in the same manner as was used for Table XIa and XIb, the occur-

rence of a value at the 1% level is weighted 10 times more than an

occurrence at the 10% level. Although this might not be the best

weighting scheme, it will suffice to illustrate this point.

Table XIIa and XIIb present the results of applying this scheme.

Large values indicate high significance.

It is possible to conclude from these results that there is a

tendency for anomalies to occur in the first half of the winter during



Table XIa

Average absolute value of significance levels (%)
of selected dates for phases of Double Sunspot
Cycle.

MAXIMUM TEMPERATURES

D7-J21
DATE A4l Davs J22-F15 F20

PHASE

N-MM 39.6 24.2 48.4

MM 43.5 23.8 54.9

MM-NN 42.6 17.8 56.9

NN 39.2 47.0 34.7

Major 33.6 4.6 50.1

NN-M 58.1 58.5 57.9

M 42.4 41.5 42.9

M-N 28.1 50.2 15.4

N 22.6 46.8 8.7

Minor 15.3 34.8 4.2

Normal 6.0 2.5 8.0

D = December

J January

F = February



Table XIb

Average absolute value of significance levels (%)
of selected dates for phases of Double Sunspot
Cycle.

MINIMUM TEMPERATURES

DATE All Days J22-F3 D15-J21

PH ASE F14

N-MM 23.6 24.6 22.8

MM 48.7 39.2 56.2

MM-NN 32.6 15.2 46.4

NN 39.1 56.8 25.0

Major 23.7 11.3 33.6

NN-M 35.8 22.2 46.6

M 53.6 64.5 44.8

M-N 39.3 42.5 36.8

N 46.8 61.0 35.4

Minor 21.9 29.2 16.1

Normal 7.3 4.4 9.6

D = December

J = January

F = February



Table XIIa

Average reciprocal of significance levels (%) of
selected dates for phases of Double Sunspot Cycle.

MAXIMUM TEMPERATURES

DATE All Days J22-F15 D7F21

PHAS

N-MM 0.06 0.12 0.03

MM 0.07 0.15 0.02

MM-NN 0.20 0.52 0.02

NN 0.04 0.04 0.04

Major 9.34 25.6 0.07

NN-M 0.03 0.05 0.02

M 0.04 0.04 0.04

M-N 0.13 0.03 0.19

N 0.54 0.03 0.84

Minor 0.65 0.05 0.99

Normal 0.12 0.55 0.27

D = December

J,= January

F = February



Table XIIb

Average reciprocal of significance levels (%) of
selected dates for phases of Double Sunspot Cycle.

MINIMUM TEMPERATURES

D15-J21
DATE All Days J22-F3 F14

PHASE

N-MM 0.52 1.09 0.08

MM 0.06 0.10 0.02

MM-NN 0.08 0.09 0.07

NN 0.04 0.02 0.05

Major 1.59 3.51 0.52

NN-M 0.05 0.09 0.02

M 0.14 0,02 0.22

M-N 0.04 0.03 0.05

N 0.62 0.05 1.08

Minor 0.44 0.06 0.74

Normal 1.41 2.77 0.32

D = December

J = January

F = February



the minor half of the double sunspot cycle and to occur in the second

half during the major half.



SECTION IV

CONCLUSIONS

To summarize, there are four conclusions that may be drawn from

this investigation:

1) That it is impossible on the basis of Boston temperature data

to establish the reality of the"January Thaw"or any other singularities

using normal curves due to the small difference between the actual

count of significant anomalies and the number to be expected by chance.

2) When the data are classified according to the 20-24 year

double sunspot cycle it is once again not possible to prove any presence

of singularities.

3) The variation in the variability of temperature is quite cyclic

in character and parallels the 20-24 year double sunspot cycle. This

is the one clearly significant relationship between the temperature

regime at Boston and the double sunspot cycle that emerges from this

study.

4) There appears to be a division in the winter season. Higher

anomalous values appear during the minor half of the double sunspot

cycle for the period from 1 December to 21 January while for the

remainder of the winter they occur during the major half of the cycle.

This is consistent with the fact that major blocks in the general



circulation tend to occur most strongly and regularly during the

latter half of the winter and during the major half of the double

sunspot cycle.
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