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Abstract

Chapter 1. Different Synthetic Approaches to Modeling the Active Sites of

Carboxylate-Bridged Non-Heme Diiron Enzymes

Carboxylate-bridged non-heme diiron enzymes activate dioxygen to perform a

variety of biological functions. Synthetic model compounds have been prepared

to gain insight into the intricacies of dioxygen activation in these enzymes. In this

introductory chapter, the challenges and advances of different diiron systems

with terphenyl and dendrimer-appended carboxylates, nitrogen-rich, and syn N-

donor ligands are highlighted.

Chapter 2. 9-Triptycenecarboxylate-Bridged Diiron(ll) Complexes: Capture

of the Paddlewheel Geometric Isomer

The synthesis and characterization of diiron(ll) complexes supported by 9-

triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of

the triptycenecarboxylates facilitates formation of quadruply bridged diiron(ll)

complexes of the type [Fe 2(-O 2CTrp) 4(L) 2] (L = THF, pyridine or imidazole

derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe

distance occurs with the increase in steric bulk of the neutral donor L, resulting in



values of up to 3 A without disassembly of the paddlewheel structure. Reactions

with an excess of water do not lead to decomposition of the diiron(ll) core,
indicating that these quadruply bridged complexes are exceptionally stable. The

red-colored complexes [Fe2(f-O2CTrp) 4(4-AcPy) 2] (10) and [Fe2(M-O2CTrp)4(4-

CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents

that was studied by variable temperature UV-vis spectroscopy. Reaction of

[Fe 2(1-O2CTrp)4(THF)2] with N,N,N',N'-tetramethylethylenediamine (TM EDA),
tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the

formation of mononuclear complexes [Fe(O 2CTrp) 2(TMEDA)] (13),

(nBu 4N)2[Fe(O2CTrp) 2(SCN) 2] (14), and [Fe(O 2CTrp)2(2-Melm) 2] (15) having an

0 4/N2 coordination sphere composition.

Chapter 3. Synthesis, Characterization, and Oxygenation Studies of
Carboxylate-Bridged Diiron(ll) Complexes with Aromatic Substrates
Tethered to Pyridine Ligands and the Formation of a Unique Trinuclear
Complex

In this study, diiron(ll) complexes were synthesized as small molecule mimics of

the reduced active sites in the hydroxylase components of bacterial
multicomponent monooxygenases (BMMs). Tethered aromatic substrates were
introduced in the form of 2-phenoxypyridines, incorporating hydroxy and methoxy

functionalities into windmill-type diiron(llII) compounds [Fe 2(M-0 2CArR)2
-

(O2CArR) 2(L) 2] (1-4), where -O2CArR is a sterically encumbering carboxylate, 2,6-

di(4-fluorophenyl)- or 2,6-di(p-tolyl)benzoate (R = 4-FPh or Tol, respectively). The

inability of 1-4 to hydroxylate the aromatic substrates was ascertained. Upon

reaction with dioxygen, compounds 2 and 3 (L = 2-(m-MeOPhO)Py, 2-(p-

MeOPhO)Py, respectively) decompose by a known bimolecular pathway to form

mixed-valent diiron(ll,lll) species at low temperature. Use of 2-(pyridin-2-

yloxy)phenol as the ligand L resulted in a doubly bridged diiron complex (4) and
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an unprecedented phenoxide-bridged triiron(ll) complex (5) under slightly

modified reaction conditions.

Chapter 4. Modeling the Syn-Disposition of Nitrogen Donors in Non-Heme

Diiron Enzymes. Synthesis, Characterization and Hydrogen Peroxide

Reactivity of Diiron(lll) Complexes with the Syn N-Donor Ligand

H2BPG2DEV

In order to model the syn disposition of histidine residues in carboxylate-bridged

non-heme diiron enzymes, we prepared a new dinucleating ligand, H2BPG 2DEV,

that provides this geometric feature. The ligand incorporates biologically relevant

carboxylate functionalities, which have not been explored as extensively as

nitrogen-only analogs. Three novel oxo-bridged diiron(lll) complexes [Fe 2( -

O)(H20) 2(BPG2DEV)](CI0 4)2 (6), [Fe 2(p-O)(-O02CAriPro)(BPG 2DEV)](CIO 4) (7),

and [Fe 2(,1-O)(-CO 3)(BPG 2DEV)] (8) were prepared. Single crystal X-ray

structural characterization confirms that two pyridines are bound syn with respect

to the Fe-Fe vector in these compounds. The carbonato-bridged complex 8

forms quantitatively from 6 in a rapid reaction with gaseous CO02 in organic

solvents. A common maroon-colored intermediate (max = 490 nm; e= 1500 M- 1

cm - 1) forms in reactions of 6, 7, or 8 with H20 2 and NEt 3 in CH 3CN/H 20 solutions.

Mass spectrometric analyses of this species, formed using 180-labeled H20 2 ,

indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(lll)

center. The Mossbauer spectrum at 90 K of the EPR-silent intermediate exhibits

a quadrupole doublet with 6 = 0.58 mm/s and AEQ = 0.58 mm/s. The isomer shift

is typical for a peroxodiiron(lll) species, but the quadrupole splitting parameter is

unusually small compared to related complexes. These Mossbauer parameters

are comparable to those observed for a peroxo intermediate formed in the

reaction of reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH) with

dioxygen. Resonance Raman studies reveal an unusually low-energy 0-0

stretching mode in the peroxo intermediate that is consistent with a short diiron



distance. Although peroxodiiron(lll) intermediates generated from 6, 7, and 8 are

poor O-atom transfer catalysts, they display highly efficient catalase activity, with

turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of

diiron(Ill) complexes that lack a dinucleating ligand, the intermediates generated

here could be reformed in significant quantities after a second addition of H20 2 ,

as observed spectroscopically and by mass spectrometry.

Appendix 1. Supporting Tables and Figures for Chapter 2

Appendix 2. Supporting Information for Chapter 4

Appendix 3. Synthesis of Triptycene Carboxylate-Bridged Dimetallic

Complexes with First Row Transition Metals

The synthesis and structural characterization of dimetallic complexes of the type

[M2(1t-02CTrp) 4(THF)2] (M = Mn, Co, Ni, Cu, Zn) supported by triptycene-

carboxylate ligands (-O 2CTrp) is described.

Appendix 4. Synthesis and Structure of a Molecular Ferrous Wheel,

[Fe(0 2CH)(O 2CArPro)(1,4-dioxane)]6

The structural characterization of a novel, hexanuclear iron(ll) compound with the

carboxylate ArPrOCO2- is described.

Thesis Supervisor: Stephen J. Lippard
Title: Arthur Amos Noyes Professor of Chemistry
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I. Carboxylate-Bridged Non-Heme Diiron Enzymes - Structural and

Functional Similarities.

Iron plays an important role in the chemistry of life.1' 2 The versatile

functionality of iron-containing enzymes can be attributed to the Lewis acidity and

redox properties of this element. Carboxylate-bridged non-heme diiron proteins

are involved in dioxygen binding and/or activation.3-7 Well-studied members of

this protein family have various roles in biology, such as generation of an

essential tyrosyl radical in the ribonucleotide reductase subunit R2 (RNR-R2),8-11

fatty acid desaturation in A9 stearoyl-acyl carrier protein desaturase (A9D), 12' 13

iron storage in ferritins (Ft),3'14'15 and hydrocarbon oxidation in the hydroxylase

components of bacterial multicomponent monooxygenases (BMMs).1 617

Hydroxylase proteins belonging to the BMM family are soluble methane

monooxygenase (sMMOH),1 8-20 toluene/o-xylene monooxygenase (ToMOH), 21

and phenol hydroxylase (PHH).22 The diiron active sites, which are each

embedded in a four-helix bundle of protein a-helices, bear a common structural

motif. Each diiron center is coordinated by four carboxylates from glutamate

and/or aspartate residues and two imidazoles from histidine side chains that are

bound in a syn disposition with respect to the diiron vector. The reduced and

oxidized diiron sites of sMMOH and RNR-R2 are depicted in Figure 1.1. For both

of these enzymes, a carboxylate shift of the bridging glutamate residue is

observed upon interconversion between the two oxidation states. It is evident

that subtle differences between these active sites, such as the coordination

number of each iron atom, the carboxylate binding mode, and additional ligation

L~ -- ;;; - .-----;;r~ .-. ~;;-j-:_-i;;i ; ::i- ~:~~ii:-;;ii:;~~l; ~;i~~$U~~~~~



by water or hydroxide, as well as energetic and structural contributions from the

surrounding protein environment, play important roles in the functional versatility

of these enzymes.

The most recently recognized members of this family of enzymes contain

carboxylate-bridged diiron sites with more than two histidine residues. One of

them is myo-inositol oxygenase, which catalyzes the ring-opening glycol

cleavage of myo-inositol by a radical new pathway for dioxygen activation at a

non-heme diiron cluster.23 The other enzyme is a flavo-diiron protein, which is

reported to function as a dioxygen- and/or nitric oxide-scavenging reductase.24

H7O E243 E209 HO E243

4246 H147 24

(A 17 s MoO204

E238 H E238

E204

HiloHilo118 1 H118 1

EIS RNR-R2rd 1 RNR-R2ox

Figure 1.1. Carboxylate-bridged non-heme diiron enzyme active sites of sMMOH
and RNR-R2 in their oxidized (ox) and reduced (red) forms. A schematic view of
the four-helix bundle is displayed in the center.

The general pathway of dioxygen activation in carboxylate-bridged non-

heme diiron enzymes is illustrated in Scheme 1.1. Dioxygen activation is initiated

by reduction of the diiron(lll) resting state by two electrons originating from either

..........
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NADH or NADPH to form a reactive diiron(ll) species. Upon reaction with

dioxygen, peroxodiiron(lll) species with common spectroscopic features are

observed. Some characteristic signatures include a peroxo ligand-to-iron(lll)

charge transfer (LMCT) band centered between 650 to 725 nm and M6ssbauer

parameters of 8 = 0.62-0.68 mm/s and AEQ > 1.0 mm/s. 20 Mechanistic

hypotheses logically imply that the formation of a superoxodiiron(ll,lll1) species

precedes generation of the peroxodiiron(Ill) complex, since superoxo species are

observed in heme proteins 25 and synthetic iron porphyrin complexes.26

Experimental evidence for such species, however, has not been observed.

H 2H+ , 2e-

Fel Fe" Fe"' O\Fel . Fe" Fe"

H 
H0 H 2 0

02

OH2

Fe'v Fe" Fel' '-Fell -- Fel"' Fe"l

Y Y W+ W PEROXO
x

FeV O Fel

SO S

Scheme 1.1. Dioxygen activation at carboxylate-bridged non-heme diiron
centers. Abbreviations: Y = tyrosine; W = tryptophan; S = substrate.

Spectroscopic studies of peroxo intermediates of ferritin, 27-29 RNR-R230 ,31 and

A9D32 ,33 suggest a cis-M-1,2-peroxo binding mode (Chart 1.1), but studies of the
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peroxo intermediate in sMMOH (Hperoxo) 3 4 36 have not been conclusive. Based on

UV-vis, resonance Raman, and Missbauer spectroscopic data of a structurally

characterized synthetic peroxodiiron(lll) complex, a y-1,2-peroxo binding mode in

Hperoxo seems to be a reasonable assignment.3 7 Theoretical studies of this

intermediate, however, propose a u-r/2: r 2-peroxo butterfly structure, which could

explain its competence for hydrocarbon oxidation.38 In contrast to these peroxo

species, the oxygenated intermediate in ToMOH, which catalyzes the oxidation

of aromatics like toluene and phenol, has distinctive Mossbauer parameters and

lacks an observable UV-vis absorption band. 39,40 This intermediate was

tentatively assigned as a peroxodiiron(Ill) species having a different coordination

mode and/or protonation state. It has also been demonstrated that an

oxygenated intermediate formed by PHH has nearly identical spectroscopic

features, implying a structure related to that of ToMOH.41

0O 0-0 00 0-0 O ;
I \/ M / M M M MI MM M 0 0

'71-superoxo r 2-superoxo trans-M-1,2-peroxo cis-y-1,2-peroxo -rj2:r 2-peroxo

Chart 1.1. Common metal-dioxygen adduct structures.

Following 0-0 bond cleavage of the peroxo moiety, high-valent iron

species, such as the mixed-valent (u-oxo)diiron(lll,IV) intermediate X in RNR-

R2 42,43 and the methane-oxidizing di(u-oxo)diiron(IV) intermediate Q in

sMMOH 20,44 are formed. 45,46 Intermediate X catalyzes the one-electron oxidation

of aromatic amino residues, whereas intermediate Q can oxidize methane and

various other substrates. Despite extensive studies on sMMOH, two important



goals remain. The first is to determine the geometric structures of Hperoxo and Q,

which to date have not been established with certainty. The second is to

understand factors that govern the formation of spectroscopically different

oxygenated intermediates in ToMOH and PHH.

II. Synthetic Modeling Chemistry.

The purpose of modeling the active site of carboxylate-bridged non-heme

diiron enzymes is not only to achieve an understanding of their functions and

how they relate to one another, but also to develop new biomimetic iron catalysts

for synthetic applications.4 7 The construction of functional and structural small

molecule protein mimics encompasses ligand design and synthesis, coordination

chemistry, and catalysis.2'48 52 One disadvantage of small molecule model

complexes is that they cannot mimic the environmental effects that are imposed

by the surrounding protein. Instead they offer a glimpse at the intrinsic properties

of the active site, without any secondary influence from the protein environment.

Attempts to more closely imitate the protein scaffold have relied on different

strategies, such as the use of sterically demanding groups, 49,53 dendrimer

ligands, 54 or artificial proteins. 55 Different approaches to model the enzyme active

site have been pursued. One method focuses on the synthesis of carboxylate-

rich diiron complexes - a challenging task due to their tendency to form mono- or

polyiron species.5 6 The introduction of sterically hindered carboxylate ligands

afforded discrete diiron species and this approach was consequently expanded

to include carboxylate-functionalized dendrimers to provide a more protective



sheath. A second method has been the use of nitrogen-rich chelating ligands,

which facilitate the formation of high-valent diiron intermediates. A third approach

utilizes dinucleating alkoxide- and phenoxide-bridged ligands to stabilize the

diiron core and prevent dissociation. Finally, a fourth strategy is the incorporation

of ligands that mimic the syn orientation of the histidine residues in non-heme

diiron enzymes. Examples of these ligand systems and the oxidation chemistry of

the resulting diiron complexes are outlined in this introductory chapter.

A. Carboxylate-Rich Coordination Environments

(i) Diiron Model Complexes with Sterically-Hindered Carboxylate Ligands

Sterically-hindered ligands facilitate the synthesis of discrete diiron(ll)

complexes with a stoichiometry identical to that in non-heme diiron enzymes,

with four carboxylates and two neutral donors (L). 7 ,49,57-59 Examples of these

carboxylate ligands are shown in Chart 1.2. The hydrophobic shield that is

provided by the backbone mimics the protein environment that encapsulates the

enzyme active site and dramatically influences the geometry and hence the

dioxygen reactivity of the resulting diiron(ll) complexes.

Rb Rd /I

Ra Rb Rd c OO

Ra, RC = CH3; Rb, Rd = H: ArTolCO 2  dxlCO2 TrpCO 2  biphCO2
Ra, Rc= F; Rb, Rd= H: Ar4-FPhCO 2

Ra, Rb, Rc, Rd = CH 3 : ArMesCO 2"
Rb= CH3; Ra, RC, Rd= H: ArPh,XylCO 2-

Chart 1.2.
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The m-terphenyl-based carboxylates, 2,6-di(p-tolyl)benzoate (ArToICO2- )

and 2,6-di(4-fluorophenyl)benzoate (Ar4-FPhCO2-), afford neutral diiron(ll)

complexes having the general formula [Fe 2(02CR)4(L)2]. An equilibrium between

doubly- and quadruply-bridged species was found by variable-temperature

solution 19F NMR spectroscopic studies and X-ray crystallography (Chart 1.3).6 o

The Fe-Fe distances vary between 3.8 and 4.4 A in doubly bridged diiron

complexes and are reduced to ca. 2.8 A in quadruply bridged diiron complexes.

Several triply bridged diiron species with the general formula [Fe2(M-

0 2CR)3(02CR)(L)] and Fe-Fe distances of 3.2-3.4 A were also characterized,

suggesting possible intermediates in this equilibrium. 60- 62 One remarkable

observation is the conversion from a paddlewheel to a windmill species induced

by the binding of two water molecules.63 ,64 The introduction of electron-poor

donor ligands, such as 4-cyano- and 4-acetylpyridine facilitated the synthesis of

colored diiron(ll) complexes by shifting the ligand-to-metal charge-transfer

(LMCT) band into the visible region of the absorption spectrum.6 5 With these

compounds, it was possible to study the effect of water on the oxygenation rate

by stopped-flow spectroscopy; the rate of oxygenation increases by a factor of 10

in the presence of water when compared to the reactivity of the anhydrous

analog. 65' 66 Differences in the rate of oxygenation due to carboxylate shifts is a

significant discovery that has important implications for understanding the

mechanism of dioxygen activation at non-heme diiron sites. The ability of diiron

complexes with tolyl- and 4-fluorophenyl-substituted m-terphenyl carboxylates to

provide carboxylate shifts is extraordinary and can be attributed to the rotational
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flexibility of these substituents as compared to those with mesityl-substituents

(vide infra), which are less accommodating.

R R OR R

.R .O I, O O -,O
O-Fe Fe-O Fe Fe-L L-Fe' F e-L

L#'\ / 0A, O OO "OOu  1TO O R RO

R R

windmill-structure triply-bridged paddlewheel-structure

R OOL 0O e o e,, L

y4koR 0I 0-' O _O

"dimer of dimers" linear triiron

Chart 1.3. Oligonuclear structural motifs in carboxylate-rich diiron(ll) complexes
containing a {Fen(O2CR)2n core.

The 2,6-dimesitylbenzoate ligand (ArMesCO2-) facilitates the formation of a

diiron windmill compound, [Fe 2(M-O2CArMes) 2(O2CArMes)2M N)2], that can

dissociate into mononuclear species upon addition of various pyridine donors. 59

The less sterically demanding, asymmetric m-terphenyl carboxylate ligand

ArPh'XyICO2 Was introduced with the intention of synthesizing doubly bridged

diiron(ll) complexes with short Fe-Fe distances.62 As predicted, the M-M

distances shortened to 3.36 A (vide supra). In combination with 2,6-di(p-

tolyl)benzoate ligands (ArTOCO2-), the first diiron complexes with mixed

carboxylates were synthesized, with a general formula [Fe 2( u-



0 2CArTO) 2(O2CArPh'XYl) 2(MeCN) 2], in which the bridging 2,6-di-(p-tolyl)benzoate

prevents a shortening of the Fe-Fe distances.

The benzyl-substituted benzoate ligand dxlCO2- was designed to ease

steric crowding around the dimetal center and provide more structural flexibility.

Diiron paddlewheel complexes, however, were exclusively observed in the solid

state.67 The same trend is observed for the recently introduced triptycene

carboxylate ligand (TrpCO2-). 68 Here, the stability of the paddlewheel diiron(ll)

complexes was tested by adding either sterically hindered neutral donors or

excess water, but neither a carboxylate shift nor dissociation of the dinuclear

core was observed. Instead, a systematic lengthening of the Fe-Fe distance up

to values of 3.007(2) A, the longest so far reported for diiron paddlewheel

compounds, resulted in proportion to the steric bulkiness of the neutral donor

ligand. X-ray structural analysis reveals an interlocking geometry for the

triptycene units, which stabilizes the diiron core. Studies with the less bulky

biphenyl carboxylate (biphCO 2-) facilitated the synthesis of iron clusters of higher

nuclearity.69 Here, linear triiron(ll) and tetrairon(ll) ("dimer of dimers') assemblies

were observed, which could be converted into paddlewheel complexes by

addition of strong N-donors, such as pyridine and 1-methylimidazole. 69 The

tetranuclear complex revealed an unprecedentedly strong association between

the two diiron units through the anti lone pairs of the bridging oxygen atoms of

the carboxylates. The introduction of sterically encumbering or dinucleating

neutral donors to any of these carboxylate-bridged clusters generally results in

the formation of mononuclear complexes. 68-73



Diiron(ll) complexes of the type [Fe 2(O2CArTI) 4(L) 2] (L = 4-tBuPy and Py,

for example) formed a deep green solution with dioxygen at -78 OC in non-

coordinating solvents (CH 2C12, toluene).57 '74 Detailed analyses of the oxygenated

product confirmed the presence of an equal mixture of the quadruply bridged

diiron(ll,lll) 75 and a diiron(lll,IV)76 species. The proposed reaction pathway of

formation is outlined in Scheme 1.2. Initially, a peroxodiiron(lll) species forms in

the reaction of the diiron(ll) complex with dioxygen, which may convert to a high-

valent diiron(IV) species. The latter acts as one-electron oxidant towards the

diiron(ll) starting material, which leads to the formation of a 1:1 mixture of the two

mixed-valent species. The diiron(lll,IV) species effects the oxidation of phenol

substrates: this process closely resembles the mechanism in RNR-R2, in which

the diiron(lll,IV) intermediate X oxidizes a neighboring tyrosine residue.42

RO

O O R
L-Fe" F-L70 R IllO Fe 0 0 

R
L Fe-L Fe' 0 -Fe" O-

O O 02 1 L 02 or L-Fe F--L

R R O'Y 
"  Fel Fe IV R '-O o

or RR

R o 0-0 R R +

L-Fe Fe-L {FeilFeIV(0 2")2  ,

L-Fe" Fe-L
R OoO' I

R = dxl, L = py R = ArTM , L = 4-tBupy R

Scheme 1.2.

Oxygenation reactions with [Fe 2(Mi-O 2CArMes)2(O2CArMes)2(MeCN) 2] at low

temperatures yielded a purple-colored intermediate, which was spectroscopically



assigned as a symmetric peroxo-bridged species.5 8 The quadruply bridged

diiron(ll) complex with dxlCO2-, [Fe2(k-O2Cdxl)4(py)2], reacted with dioxygen to

generate an asymmetrically bound peroxo species. Two possible structures were

suggested by spectroscopic analysis (Scheme 1.2).67

Tethered Substrates

Generally, the ability of an oxygenated diiron species to transfer an O-

atom is determined by examining its reaction toward external substrates.4,77,78

This reaction has not yet been achieved with carboxylate-rich diiron complexes,

possibly due to restricted access of the substrate due to steric encumberance by

the ligands and quenching of the reactive species by an intramolecular electron-

transfer (ET) pathway. In order to circumvent this problem, the potential substrate

was tethered to ancillary neutral donor ligands. The diiron(ll) complex [Fe2(Mt-

0 2CArToi)2(0 2CArTo) 2 (N,N-Bn 2en)2] incorporates N,N-dibenzylethylenediamine,

which upon reaction with dioxygen undergoes intramolecular benzylic oxidation,

followed by oxidative N-dealkylation to afford benzaldehyde (Scheme 1.3).71' 79 A

detailed investigation of the mechanism of this reaction, including Hammett

analysis and kinetic isotope effects, suggests that it proceeds by a one-electron

oxidation of the amine nitrogen atom, followed by an a-H atom abstraction and

subsequent oxygen rebound. 80 '81 This study was extended to include benzyl- and

ethyl- substituted pyridines and anilines,82 ,83 and N-donors where the benzylic

position was substituted with a sulfide or phosphine functionality.61' 62 The extent

of substrate oxidation depends considerably on the proximity of the substrate to

i i i~~'~~~~"i~;-"l rr~xIl-~ -----^;----r;i~ ;r-_.xl------- .r,----r;~_~~ i~r~is-~i:-~-~ ;~ -~^-1-- I--- i--^-1 r-n^;-r,,~.-r~cr~i



the diiron center. Either no or very little oxidation was observed when the

substrate moiety was installed in the meta or para position of the pyridine

ligand.84 The tethering of aromatic substrates did not lead to any oxidation, most

likely due to restricted access to the diiron center.8 5

R Ph 0 R

R N Ph Ph H NH2' H Ph0 0 N I0 1
Ph O-Fe Fe-O 02 Fe, , Fe'"

N O O- CR CH 2 12  PhO/ N

H2 o-i---O o o0 Ph

ph R R
R

R = ArTOI

Scheme 1.3.

(ii) Dendrimer Encapsulation of the Diiron Active Site

Significant advances have been made in the synthesis of catalytically

active dendrimer complexes as biomimetic analogs of enzymes. 54 Dendrimers

have highly branched and organized three-dimensional structures that facilitate

the encapsulation of reactive metallocenters. Similar to the protein scaffold in a

metalloenzyme, the dendritic shielding creates a distinct microenvironment

around the active core, which protects it from unwanted side reactions and

controls its reactivity. Dendritically functionalized ligands have been explored

extensively to model heme enzymes 86 -89 and were recently applied towards

understanding non-heme diiron systems. The first dendrimer-derived mimic of a

non-heme diiron enzyme contained a triazacyclononane ligand bearing

poly(benzylether) dendritic substituents (L3TACN). 90 The resulting mononuclear

iron(ll) starting material reacted upon oxygenation to form an oxo-bridged



diiron(llII) complex, assigned as [Fe 2(/ -O)(pu-OAc) 2(L3TACN) 2]2 + . Photoirradiation

of this complex led to 2-electron reduction and subsequent oxidation to the

diiron(lll) complex in the presence of dioxygen. In order to prevent deleterious

intermolecular ET reactions as observed in compounds with m-terphenyl

carboxylate ligands (vide supra) and restrict access of solvent molecules to the

active site, the basic structure of these ligands was extended with third-

generation dendritic poly(benzylether) units.6 6 The dendrimer-appended

carboxylate, [G-3]-CO2-, facilitated the synthesis of doubly bridged diiron(ll)

complexes with a general formula [Fe2(p-O 2C-[G3]) 2(O2C-[G3]) 2(4-RPy)2] (R =

cyano, pyrrolidino). The hydrophobic shield diminished gas permeability, which

resulted in a 300-fold decrease in reaction rate compared with those of the

unsubstituted m-terphenyl carboxylate-based complexes (Scheme 1.4).65

1
FellO- -Felll

00 02,
0 0 -29 0C,

SO toluene

/ Fe(OTf)2 -2MeCN, THF R'4 0 '0 L
O-Fe Fe-O

4-RPy, pentane L\ O/ ' R'

R = pyrrolidino, cyano R'
R'= [G-3] [Fe([G-3 4-RP

[Fe2([G-3]COO)4(4-RPy)21

Nae

Scheme 1.4.
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Unlike the parent compounds, the dendrimer complexes allow the stabilization of

a new intermediate upon oxygenation. Mossbauer, UV-vis, EPR, and X-ray

absorption spectroscopic studies suggest the formation of a superoxodiiron(ll,lll)

species. This intermediate was stable at temperatures below -5 oC, which can be

accounted for by the protective shell of the dendrimer. Preliminary studies also

revealed the oxidation of external substrates by this oxygenated product.

B. Nitrogen-Rich Ligand Systems

(i) Ligands Based on Tris(picolyl)amine

Although they do not resemble the coordination environment in

carboxylate-bridged non-heme diiron enzymes, a successful strategy to model

the active site of these enzymes is based on the use of chelating nitrogen-rich

capping ligands. These molecules facilitate the assembly of diiron(ll) and

diiron(lll) complexes with oxo, hydroxo, and carboxylato bridging ligands.

R"

R' R3

R'
N N R2( n2  NR

Me3tacn R = H: HBpz 3  R, R', R" = H: TPA
R = iPr: HB(3,5-'Pr 2pz) 3  R, R" = H; R = CH 3: 6-Me 3-TPA

R, R' = H; R" = CH3 : 5-Me 3-TPA
R, R' = H; R" = C2 H5 : 5-Et 3-TPA
R, R", R1, R2 = H; R3 = CH3 : 6-Me-TPA
R = R' = CH3 ; R" = OCH 3

Chart 1.4.
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The first synthetic complexes to mimic the reduced state of hemerythrin (Hr)

were prepared with triazacyclononane ligands (Chart 1.4).91 The

tris(pyrazolyl)borate framework supported peroxodiiron(lll) complexes.4 9,53

Noteworthy is the versatile biomimetic chemistry observed with ligands

derived from tris(picolyl)amine (TPA), which have afforded several high-valent

diiron core structures relevant to the metalloenzymes of interest. 92 The ligands L

= TPA; 5-Me 3-TPA; 5-Et 3-TPA facilitate the formation of diiron(lll) complexes of

the type [Fe2(M-O)(OH)(H 20)L 2]3
+, which react with hydrogen peroxide at -40 OC

to form a deep green species. Spectroscopic, mass spectral 93 94 and X-ray

crystallographic95 analyses implied a mixed-valent di(-oxo)diiron(llII,IV) species

[Fe"'Fe'V(-O) 2L2]3+, with an overall S = 3/2 ground state. In contrast, application

of the derivative 6-Me-TPA led to the formation of a diiron(lll,IV) intermediate with

a unique geometric and electronic structure. Spectroscopic and reactivity studies

revealed properties that resemble those of the key biological intermediate,

compound X in RNR-R2.5 ,42 Here the high spin iron atoms are

antiferromagnetically coupled to form an S = 1/2 ground state and one of the oxo

groups is bound terminally (Scheme 1.5.A).96 ,97 Reactions of the diiron(ll) and

diiron(lll) complexes with the slightly modified ligand 6-Me 3-TPA with dioxyen

and hydrogen peroxide, respectively, afforded a (u-oxo)(y-peroxo)diiron(lllII)

intermediate as a precursor to this high-valent intermediate.98 99 Lowering the

reaction temperature from -60 to -80 OC in this oxygenation reaction gave rise to

end-on bound r"1-superoxo diiron(ll,lll) and rl'-hydroperoxo diiron(lll,lll) species,

as revealed by resonance Raman spectroscopy.100 These intermediates are the

~r~_~__l~~~_~~_ii___^~_____^_lnrrj__~ _



precursor states to the (y-oxo)(y-peroxo)diiron(lll) species (Scheme 1.5.A). In

contrast to the peroxo species, which is inert toward 2,4-di-tert-butylphenol

(DTBP), the superoxo species readily performs a one-electron oxidation on this

substrate, suggesting that metal-superoxo species may play an unprecedented

role as oxidants in metalloenzymes. Recently, a more electron-donating ligand,

tris(4-methoxy-3,5-dimethylpyridyl-2-methyl)amine, was prepared and, for the

first time, a diiron(IV) complex with a [FeV 2(u-O) 2] core structure, proposed for

intermediate Q in sMMOH, was obtained. 101 This species was generated by bulk

electrolysis of the di(y-oxo)diiron(lll,IV) precursor [Fe"Fe'V(t-O) 2L2]3+ and

characterized by resonance Raman and Mossbauer spectroscopy and extended

X-ray absorption fine structure (EXAFS) analysis. In a subsequent study, this

diiron(IV) complex was chemically synthesized from a diiron(lll) precursor and

stoichiometric amounts of hydrogen peroxide and perchloric acid (Scheme

1.5.B). 10 2 Here, a new diiron(IV) species, with distinct Mssbauer parameters for

each iron atom, was observed as a precursor to the di(-oxo)diiron(IV) species.

EXAFS studies and DFT geometry optimizations suggested a diiron site with a

single terminal oxo ligand. It must be noted that, despite their similarity to the

proposed structure of intermediate Q in sMMOH, these complexes have a

nitrogen-rich ligand set and do not incorporate any carboxylate ligands, which

results in low-spin diiron compounds. Therefore, the UV-vis and Mossbauer

spectroscopic properties differ significantly from those in the enzyme and the

oxidative strength towards substrates is greatly diminished.
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A H
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Fe" Fe" Fe' Fe" Fe1  Fel - Fe"' Fe"' Fe"* / *FeIV

0 /  0 O 0 O \ / 1 e 1 II
H O* H OH O OH2 O
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H2 0 Fe" O FeV

O H20 2  IV H/O
Fe"' "- iFeh Fe"' Fe Fe

H 0/O

H20 FelV FelV

L= O

Scheme 1.5.

(ii) Dinucleating Ligands With Alkoxide and Phenoxide Bridges

In order to form kinetically stable diiron complexes, polypyridyl-,

polyimidazolyl-, and polybenzimidazolyl-based ligands with a bridging alkoxide or

phenoxide group were designed (Chart 1.5).53,103 These systems chelate two

metal centers with Fe-Fe distances of ca. 3.5 A and have one or two

carboxylates bridging the diiron center, as found in the enzyme active sites.

Substitution on the pyridine and imidazole units facilitates formation of a cavity

that encapsulates the diiron center and prevents the bimolecular decay of

oxygenated intermediates. Some of the corresponding diiron(ll) complexes

exhibit reversible binding of dioxygen to form peroxodiiron(lll) species, which

were characterized spectroscopically. In the pyridyl series, the peroxide stability

increases with increasing donor strength of the pyridine and bridging

carboxylate.104 The stability of two peroxodiiron(lll) complexes with

benzimidazole- (N-Et-HPTB) 10 5 and imidazole-substituted (HPh-BIMP) 106 ligands

- - lEk 1 -1 = - - - - - - I - I I - - - -- - - - -- - - , -
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allowed their low temperature crystallization and structural determination. These

structures revealed a cis-p-1,2-peroxo coordination mode, buried deep in the

cavity. The decomposition of [Fe 2(p-O2)(u-2 CPh)-O2CPh)(N-Et-HPTB)] 2 with an

irreversibly bound peroxide has been studied in detail and found to undergo a

bimolecular pathway.10 7' 10 8 These findings accentuate the importance of a ligand

design that protects reactive oxygenated diiron species from this type of

decomposition reaction.

Rf N R  
N R Ph N Ph

NN/ Ph N OH N Ph

Ph Ph
R' R'

R, R'= H: HPTB HPh-BIMP
R = EtOH; R' = H: H-EtOH-HPTB
R = H; R'= CH 3: Me 2HPTB
R = Et; R' = H: N-Et-HPTB

Chart 1.5.

C. Syn N-Donor Ligands

Despite the large number of model complexes, a structural feature that

none of the previous ligand motifs can rigidly enforce is the syn disposition of the

nitrogen donors with respect to the diiron vector present in all carboxylate-

bridged non-heme diiron enzymes. Its significance is still unclear, but it is likely

that nature did not choose this stereochemistry arbitrarily and that it plays an

essential role in dioxygen activation. Recent DFT studies on the intermediate Q

of sMMOH suggest that a stereoelectronic effect is born from this configuration
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that helps to control the reactivity of this key intermediate.44 For this reason, we

designed and synthesized dinucleating ligands that enforce the desired

coordination mode. A requirement of the ligand is that the linker must fix the N-

donor groups at the correct distance and orientation yet be sufficiently flexible to

accommodate different Fe-Fe distances. In addition, the resulting metal

complexes should have a carboxylate-rich coordination environment and

withstand bimolecular decomposition or oligomerization. To address these

challenges, we prepared a series of ligands with a 1,2-diethynylbenzene linker

connecting two heterocycles such as pyridines, quinolines, and imidazoles. The

facile functionalization of the pyridine substituent allowed the synthesis of a

series of ligands with the 1,2-bis(pyridin-3-ylethynyl)benzene moiety.109,110 This

type of ligand has proved to be a useful template for preparing dimetallic

complexes with a syn N-donor configuration. Interesting structural features were

noted upon inspection of dimetallic compounds with this ligand scaffold. The

complexes revealed M-M distances that range from 2.54 to 5.17 A (Figure 1.2),

suggesting that this seemingly rigid linker is flexible enough to accommodate

changes in the Fe-Fe distance upon reaction with dioxygen. 111 -113 Additionally,

the diethynylbenzene backbone provides a pocket in which a bridging oxo-group

can be accommodated, as may occur in intermediate Q of sMMOH. Finally,

functionalization of the pyridine moiety can provide additional protection from

bimolecular decomposition, formation of polymers, or head-to-head ligand

dimerization as observed with PIC 2DET (Figure 1.2, 5).



\ R Meo /o, / OMe

N0/ ,o/A\ \ NO N- -o, , Fe o
N N N-FF FOe b-Fe\ Na. 0-Fe Fe-0 Meo OMe

0O t N O O - EtO O Ott FC
EtO O O-O 0 -6 0

0 O RR R R

1 2 3 4 5-

M-M (A): 2.56 3.11 3.18 3.58 5.17

Figure 1.2. Structures of complexes [Cu 2(Et 2BCQEBEt)(- ) 2] (1), [Fe2 (1 -O)(u-
C0 3)BPG 2DEV] (2), [NaFe(PIC 2DET)(O 2CTrp) 3] (3), [Fe 2(Et 2BCQEBEt)(Y-

O2CArTol) 3]+ (4), [Fe 2(-OTf) 2 (PlC 2DET) 2 2+ (5), and comparison of the M-M
distances in these compounds.

The structures of several diiron complexes were recently characterized by

X-ray crystallography as the first to display syn coordination of two N-donors

(Figure 1.2). The quinoline-based ligand Et 2BCQEBEt (1,2-bis(3-ethynyl-8-

carboxylatequinoline)benzene ethyl ester), afforded a diiron(ll) complex,

[Fe 2(Et 2BCQEBE)(u-0 2CArTl) 3]+ (4), with three bridging carboxylates. 1 1

Furthermore, another carboxylate-rich, but heterodinuclear complex,

[NaFe(PIC 2DET)(-O 2CTrp) 3] (3), was isolated. 113 The recently introduced

H2BPG 2DEV ligand affords three oxo-bridged diiron(lll) complexes, [Fe 2(u-

O)(H 20) 2BPG 2DEV](C10 4)2 , [Fe2(-0)(Y-O2CAripro)BPG 2DEV](C10 4), and [Fe2(y-

O)(Y-C0 3)BPG 2DEV] (2), which form peroxodiiron(lll) species upon reaction with

hydrogen peroxide.114 The spectroscopic properties of these intermediates differ

significantly from those of related (-oxo)(-peroxo)diiron(lll) species, which may

be a result of the rigid scaffold that restrains the diiron distance to shorter values.

Finding a correlation between the properties of the peroxo moiety and the Fe-Fe
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distances is important for understanding the chemistry of oxygenated

intermediates in the enzymes.

II. Conclusions and Perspective

The different types of ligand systems outlined in this chapter highlight the

progress that has been made in modeling the active sites of carboxylate-bridged

non-heme diiron centers and the challenges that remain. Terphenyl-based

carboxylate ligands allow the synthesis of diiron complexes that have the

adequate flexibility to perform bio-inspired reactions, but cannot sufficiently

stabilize high-valent species. Compounds with dendrimer-appended terphenyl

carboxylates protect the diiron core in such a way that allows the isolation of

novel oxygenated diiron species. Nitrogen-rich ligand systems have the

advantage to stabilize high-valent diiron species, but the iron atoms are in a low-

spin rather than a high-spin state, which results in less reactive oxygenated

species and non-biomimetic spectral properties. Syn N-donor ligands enable

incorporation of a more carboxylate-rich system that more accurately resembles

the geometry and stoichiometry of the enzyme active sites. This last strategy

may allow access of the structural and functional features of dioxygen-activating

non-heme diiron enzymes.

Progress towards the goal of understanding the chemistry occurring at the

active site of carboxylate-bridged non-heme diiron enzymes by developing

structural, functional and spectroscopic models is outlined in this dissertation.

Based on previous work on diiron complexes with m-terphenyl carboxylate

_ ~*"~~"------~~~~'~~~~"r9~r~~-;i~ii--;~-j ;



ligands, the coordination chemistry of the sterically encumbering triptycene

carboxylate was explored, as described in Chapter 2. Chapter 3 explores the

synthesis and dioxygen reactivity of carboxylate-rich diiron(ll) complexes

containing phenoxypyridine ligands, which were designed as functional models

for aromatic hydroxylation in bacterial multicomponent monoxygenases. The

synthesis and characterization of three diiron(lll) compounds with a novel syn N-

donor ligand is described in Chapter 4. This dinucleating ligand system stabilizes

a peroxodiiron(lll) species having spectroscopic properties relevant to those in

peroxo intermediates in non-heme diiron enzymes.
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Chapter 2

Triptycenecarboxylate-Bridged Diiron(ll) Complexes:

Capture of the Paddlewheel Geometric Isomer

This work was previously published: Friedle, S.; Kodanko, J. J.; Fornace, K. L.;
Lippard, S. J. J. Mol. Struct. 2008, 890, 317-327.



Introduction

Dinuclear metal complexes bridged by four carboxylate ligands, such as

occurs in the classic paddlewheel "copper acetate" core, 1-3 comprise an

extensive class of compounds. More than 1600 structures of this type have been

reported.4 Tetracarboxylate-bridged diiron(ll) complexes are relatively rare

species, however, with only 25 crystallographically characterized structures

reported in the literature to date.5-8 This small number is not surprising,

considering that Fe(ll) carboxylate complexes are rather kinetically labile and

have a strong tendency to form species of higher nuclearity.9' 10

R' R1

_O O R" 0@0 R 0 _0 O;

TrpCO2- ArTO'C02-, R = CH 3  dxlCO,- biphCO2-
Ar4-FPhCO2 - , R = F
ArMesCO2 - , R' = R = CH3

Chart 2.1

Tetracarboxylate-bridged diiron(ll) complexes with sterically encumbered

carboxylate ligands have been prepared in order to model enzyme active sites,

examples of which are displayed in Chart 2.1. The Fe(ll) coordination chemistry

of these carboxylates has been investigated with the aim of synthesizing model

complexes for the active sites of such carboxylate-bridged diiron

metalloproteins 11-14 as soluble methane monooxygenase (sMMOH),15 '1 6

ribonucleotide reductase (RNR-R2),17 -19 stearoyl-acyl carrier protein (ACP) A9-

desaturase (A9D), 20, 21 and toluene monooxygenase (ToMOH). 2 2 ,23 The active
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sites of these enzymes share the following structural features: two iron atoms

coordinated by four carboxylates from either glutamate and/or aspartate and two

N-donor ligands from histidines. However, they differ in the carboxylate

coordination mode, metal ion coordination number, and the presence of

additional ligands, such as water or hydroxide ion.

The steric requirements of these sterically demanding carboxylate ligands

determine the geometry of the resulting diiron(ll) compounds and significantly

influence their reactivity. Discrete diiron(ll) tetracarboxylate compounds, which

have the same ligand stoichiometry as the enzymes, can be obtained from an

Fe(ll) source and an m-terphenyl-derived carboxylate -O 2CArR (R = Tol, 4-FPh,

Mes) or the dixylyl-substituted benzoates -O2Cdxl in an efficient self-assembly

process.24 Despite the similarity of the carboxylate ligand structures, the resulting

diiron(ll) complexes differ in their solid-state geometries, forming either doubly

(windmill) or quadruply (paddlewheel) bridged species. Moreover, the physical

properties and reactivities of these complexes vary. The compounds with

-O2CArR (R = Tol, 4-FPh) undergo dynamic carboxylate shifts between the

windmill and paddlewheel forms in solution (Scheme 2.1),25 whereas those with

-O2CArMes are trapped in the doubly bridged windmill conformation.26 The former

ligand also facilitates formation of triply bridged diiron(ll) complexes with bulkier

neutral ligands.25 The Fe-Fe distances range between 2.7 and 4.3 A for the

doubly, triply, and quadruply bridged species. The selective addition of

stoichiometric amounts of water affects the stereochemistry of dinuclear

complexes and also yields doubly bridged complexes with two additional bridging



water molecules.27-29 The carboxylate ligand -02Cdxl facilitates formation of

paddlewheel diiron(ll) complexes, which can undergo carboxylate shifts in

reactions with dioxygen to form stable diiron(lll) peroxo intermediates, revealing

a flexibility of the paddlewheel core.8 The sterically less hindered

biphenylcarboxylate ligand (-O2Cbiph), which is asymmetric, preferentially forms

tetranuclear iron(ll) complexes. These oligomers, however, can disassemble

when N-donors are added to form either linear trinuclear iron(ll) or paddlewheel

diiron(ll) species.30 Scheme 2.1 summarizes the structural conformations and

transformations that these iron-carboxylate compounds can undergo.

R R OR R

o.,0 ,, 1 1 .
O-Fe Fe-O L-Fe Fe-L L-Fe" Fe-L'e "O ." *I I 00

OC ' 0 R 0 RY O R R  R o0
R R

windmill structure triply-bridged paddlewheel structure

R

R R
In this chapter, the synthesis and pyridine of quadruply bridged

aa - -O "R '- 0

R Rplanar tetrairon(ll) linear triiron(ll) paddlewheel structure

Scheme 2.1.

In this chapter, the synthesis and characterization of quadruply bridged

diiron(ll) complexes with the general formula [Fe2(t-O2CTrp)4(L) 2], bearing four

bridging 9-triptycenecarboxylates (-O2CTrp) and two terminal neutral donor

ligands (L), is described. These complexes are noteworthy for their stability with



respect to disassembly or rearrangement of the diiron(ll) paddlewheel core.

Introduction of pyridine ligands with electron-withdrawing groups, such as 4-

cyano- or 4-acetylpyridine, results in compounds with red-shifted absorption

bands that facilitate the study of solvent-dependent thermochromism in

coordinating solvents. The disassembly of paddlewheel complexes into

mononuclear species by addition of sterically demanding or chelating neutral or

anionic donor ligands is also described.

Experimental Section

General Procedures and Methods. Tetrahydrofuran (THF), diethyl ether

(Et20), pentane, toluene, and dichloromethane (CH 2CI2) were saturated with

nitrogen and purified by passage through activated alumina columns under an

argon atmosphere. Anhydrous 1,2-dichloroethane (DCE), 1,2-dimethoxyethane

(DME), and chlorobenzene were purchased from Aldrich. The 9-

triptycenecarboxylate (HO2CTrp) was prepared by a modification of literature

procedures31,32 and the corresponding sodium salt was synthesized by allowing

the acid to react with a stoichiometric amount of NaOH in MeOH.

Fe(OTf)2-2MeCN was prepared by a reported method. 33 The synthesis of 1-Et-2-

'Prlm has been reported previously,34 but a different synthetic route was followed

here. All other reagents were obtained from commercial sources and used as

received unless otherwise noted. Air-sensitive manipulations were performed by

using Schlenk techniques or under a nitrogen atmosphere in an MBraun

glovebox.
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Physical Measurements. 1H NMR spectra were recorded on a Varian

300 spectrometer in the Massachusetts Institute of Technology Department of

Chemistry Instrument Facility (MIT DCIF). Chemical shifts were referenced to the

residual solvent peaks. All spectra were recorded at ambient probe temperature.

FT-IR spectra were measured on a Thermo Nicolet Avatar 360 spectrometer with

OMNIC software. UV-vis spectra were obtained on a Hewlett-Packard 8453

diode-array spectrophotometer under anaerobic conditions. The temperature was

controlled with an Oxford ITC 601 cryostat during variable temperature UV-vis

studies. Melting points were acquired on an electrothermal Mel-Temp melting

point apparatus. When a compound was prepared by two methods, the

composition of the material synthesized by the alternative method was confirmed

by a unit cell determination of crystalline material and by IR spectroscopy.

Mdssbauer spectra were obtained on an MS1 spectrometer (WEB Research Co.)

with a 57Co source in a Rh matrix maintained at room temperature. Solid samples

of 1, 8, 9, and 13 were prepared by suspending ca. 25 umol of pulverized

crystalline material in Apiezon N grease and loading the suspension into a nylon

sample holder. All data were collected at 4.2 K and the isomer shift (6) values are

reported with respect to natural iron foil that was used for velocity calibration at

room temperature. The spectra were fit to Gaussian lines by using the WMOSS

plot and fit program. 35

1-Ethyl-2-isopropyl-imidazole (1-Et-2-'Prlm). To a suspension of NaH

(0.350 g, 14.5 mmol) in 30 mL of dry THF under an argon atmosphere was

added 2-isopropylimidazole (1.50 g, 13.6 mmol) in small portions. The resulting



reaction mixture was allowed to stir for 30 min. Ethyl iodide (1.16 mL, 14.5 mmol)

was added dropwise to the pale yellow suspension over a period of 5 min and

stirred for another hour. After removal of the solvent, water and CH2CI2 (each 50

mL) were added. The organic phase was separated, washed with water (2 x 20

mL), and the combined organic layers were dried with Na2SO 4. The crude

material was purified on alumina using EtOAc/CH 2C12 (2:1) to yield 1-Et-2-'Prlm

as pale yellow oil. Yield: 1.15 g (61%). 1H NMR (300 MHz, CDCI3) 6: 6.96 (s, 1H),

6.81 (s, 1H), 3.91 (q, 2H), 2.99 (m, 1H), 1.34 (m, 9H). FT-IR (cm- 1, film on NaCI):

3103 (w), 2972 (s), 2931 (m), 2870 (m), 1519 (w), 1491 (s), 1441 (m), 1381 (m),

1361 (w), 1332 (w), 1273 (s), 1185 (w), 1155 (m), 1088 (w), 1070 (m), 1054 (w),

962 (w), 923 (w), 749 (w), 719 (m). ESI-MS (m/z, MeOH/DCM): Calcd. for

C8 H15N2 [M+H] : 139.1 Found: 139.0.

I-Propyl-2-isopropyl-imidazole (1-Pr-2-'Prlm). This compound was

prepared by a procedure analogous to that for 1-ethyl-2-isopropyl-imidazole,

except that n-propyl iodide was added instead of ethyl iodide. The product was

purified on alumina (EtOAc/CHC13, 1:1) to yield 1-Pr-2-'Prlm as a colorless oil.

Yield: 1.15 g (56%). 1H NMR (300 MHz, CDCI3) 6: 6.88 (s, 1H), 6.72 (s, 1H), 3.75

(t, 2H), 2.93 (m, 1H), 1.70 (m, 2H), 1.26 (m, 6H), 0.88 (t, 3H). FT-IR (cm-', film on

NaCI): 3106 (w), 2968 (s), 2933 (m), 2877 (m), 1517 (w), 1490 (m), 1467 (m),

1440 (m), 1383 (w), 1359 (w), 1329 (w), 1275 (m), 1156 (w), 1133 (w), 1096 (w),

1071 (m), 926 (w), 798 (w), 748 (w), 722 (m). ESI-MS (m/z, MeOH/DCM): Calcd.

for C9 H17N2 [M+H] : 153.1 Found: 153.0.
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1-Propyl-2-phenyl-imidazole (1-Pr-2-Phlm). This compound was

prepared by a procedure analogous to that for 1-ethyl-2-isopropyl-imidazole,

except that n-propyl iodide was added instead of ethyl iodide. Purification on

alumina (EtOAc/CHCI 3, 1:1) yielded 1-propyl-2-phenyl-imidazole as a yellow oil.

1H NMR (300 MHz, CDCI3) 6: 7.57 (m, 2H), 7.44 (m, 3H), 7.14 (s, 1H), 7.03 (s,

1H), 3.97 (t, 2H), 1.78 (m, 2H), 0.89 (t, 3H). FT-IR (cm-1 , film on NaCI): 3103 (m),

3063 (m), 2965 (s), 2934 (m), 2876 (m), 1605 (w), 1498 (m), 1474 (s), 1418 (s),

1384 (m), 1350 (w), 1272 (s), 1139 (m), 1101 (w), 1074 (m), 1018 (w), 917 (m),

801 (w), 773 (s), 744 (m), 700 (s), 680 (w). ESI-MS (m/z, MeOH/DCM): Calcd. for

C12H15 N2 [M+H] : 187.1 Found: 187.0.

[Fe2(/-0 2CTrp)4(THF) 2] (Ia). Method A. A portion of NaO 2CTrp (845 mg,

2.64 mmol) in THF (20 mL) was added to a solution of [Fe(H20) 6](BF4)2 (446 mg,

1.32 mmol) in THF (30 mL) and the reaction mixture was stirred for 1 d in the

presence of molecular sieves (4 A). The suspension was filtered and the solvent

removed to yield a dark pink microcrystalline solid. The crude material was

recrystallized from CH 2CI2/THF/pentane to yield colorless blocks of la and pink-

brown crystals of the side-product lb, both suitable for X-ray crystallographic

analysis. Yield: 517 mg (54%). Method B. A solution of NaO 2CTrp (50 mg, 156

ymol) in THF (5 mL) was added dropwise to a rapidly stirred THF solution (5 mL)

of Fe(OTf)2-2MeCN (33 mg, 76 ymol). The resulting pale yellow solution was

stirred overnight. The solvent was removed and the product extracted with

CH 2CI 2 (2 x 5 mL) to yield 26 mg of crude material, which was recrystallized by

diffusing pentane into a solution of CH2 012 that had been layered with THF to

~-~ -............-...-~.~-~~1..,~.~-



yield colorless crystals (8 mg, 14%) suitable for X-ray crystallography. FT-IR

(cm- 1, KBr): 3059 (w), 3036 (w), 3015 (w), 2957 (w), 2891 (w), 1612 (s), 1459 (s),

1446 (s), 1408 (s), 1314 (m), 1292 (m), 1178 (m), 1031 (m), 943 (m), 928 (m),

873 (m), 786 (m), 763 (m), 748 (s), 722 (m), 687 (m), 648 (m), 626 (s), 609 (m).

Anal. Calcd. for la-0.75CH2CI2 (C92.75H 69.5Cl1 5010Fe 2): C, 73.83 ; H, 4.61. Found:

C, 73.48; H, 4.41. Mp: 240 0C (dec).

[Fe2(9-02CTrp)4(py)2] (2) A solution of 1 (55 mg, 38 umol) in

chlorobenzene (8 mL) was treated with pyridine (py) (10 yL, 116 Mmol) under

vigorous stirring. Pale yellow rods of 2 formed after 5 d by introduction of Et20

into this solution. Block-shaped crystals of 2 suitable for X-ray crystallography

were obtained by vapor diffusion of Et20 into a solution of 2 in DME. Yield: 40 mg

(72%). FT-IR (cm-1 , KBr): 3059 (w), 2955 (w), 2856 (w), 1618 (s), 1486 (w), 1458

(m), 1447 (s), 1408 (s), 1292 (m), 1218 (w), 1179 (w), 1111 (w), 1083 (w), 1068

(w), 1018 (w), 947 (w), 873 (w), 846 (w), 785 (m), 746 (s), 722 (m), 699 (m), 688

(w), 658 (w), 648 (w), 625 (s), 479 (w), 457 (m), 417 (w). Mp: 235 0C (dec).

[Fe 2(p-O 2CTrp)4(1-Melm) 2] (3). 1-Methylimidazole (1-Melm) (14 mg, 220

Mmol) was added to a solution of 1 (100 mg, 69 Mmol) in toluene (4 mL) and

stirred for 1.5 h. The colorless microcrystalline precipitate was isolated by

filtration and washed with Et20. Colorless block crystals suitable for X-ray

crystallography were obtained by vapor diffusion of Et20 into a solution of 3 in

DME. Yield: 67 mg (67%). FT-IR (cm-1 , KBr): 3129 (w), 3058 (w), 2956 (w), 1620

(s), 1535 (m), 1458 (m), 1446 (s), 1407 (s), 1287 (m), 1234 (w), 1178 (w), 1142



(w), 1110 (m), 1089 (m), 1032 (w), 947 (w), 873 (w), 786 (w), 749 (s), 721 (m),

688 (w), 658 (w), 648 (w), 625 (s), 610 (w), 481 (w), 464 (w). Mp: 235 oC (dec).

[Fe2(/Z-O 2CTrp)4(2-Melm) 2] (4). This compound was prepared from I

(100 mg, 69 umol) and 2-methylimidazole (2-Melm) (14 mg, 220 Mmol) by a

procedure analogous to that used for synthesizing 3. The colorless

microcrystalline precipitate of 4 was recrystallized in hot DME followed by vapor

diffusion of Et20 to yield colorless crystals suitable for X-ray crystallography.

Yield: 86 mg, (86%). FT-IR (cm- 1, KBr): 3383, 3190, 3059, 2957, 1598, 1485,

1458, 1445, 1402, 1287, 1177, 1155, 1128, 1109, 1033, 1016, 874, 806, 786,

750, 722, 688, 646, 625, 610, 482. Mp: 240 oC (dec).

[Fe 2(4 -0 2CTrp) 4(2-'Prm) 21 (5). This compound was prepared from 1 (200

mg, 138 Mmol) and 2-isopropylimidazole (2-'Prlm) (34 mg, 440 Mmol) by a

procedure analogous to that used to obtain 3. The colorless microcrystalline

precipitate of 5 was recrystallized in hot DME followed by vapor diffusion of Et20

to yield colorless block crystals suitable for X-ray crystallography. Yield: 120 mg

(46%). FT-IR (cm- 1, KBr): 3403 (w), 3247 (w), 3058 (w), 2955 (w), 2926 (w),

2875 (w), 2818 (w), 1623 (s), 1562 (m), 1458 (s), 1446 (s), 1405 (s), 1291 (m),

1178 (w), 1132 (w), 1092 (m), 1062 (w), 1032 (w), 872 (w), 848 (w), 785 (m), 750

(s), 721 (m), 687 (w), 647 (m), 625 (s), 610 (m), 481 (m), 457 (m). Anal. Calcd.

for 5-1.5C4H100 2, C102H87N40 11Fe2: C, 73.96; H, 5.29; N, 3.38. Found: C, 73.81;

H, 5.05; N, 3.56. Mp: 225 0C (dec).

[Fe 2(P-0 2CTrp) 4(2-Phlm)2] (6). This compound was prepared from 1 (100

mg, 69 ymol) and 2-phenylimidazole (2-Phim) (22 mg, 220 Mmol) by a procedure

_ ------ ~-.. ---- p Bg7 __ - - 77Y - . Z -- , D^Y-Y~N- YII
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analogous to that used for synthesizing 3. The colorless microcrystalline

precipitate of 6 was recrystallized in hot DME followed by vapor diffusion of Et20

to yield colorless crystals suitable for X-ray crystallography. Yield: 75 mg (68%).

FT-IR (cm- 1, KBr): 3136 (w), 3059 (w), 3007 (w), 2954 (w), 2827 (w), 1623 (s),

1458 (s), 1446 (s), 1404 (s), 1290 (m), 1176 (w), 1107 (m), 1086 (m), 1031 (m),

873 (w), 783 (m), 763 (m), 749 (m), 723 (w), 648 (w), 627 (s), 475 (w), 442 (w).

Mp: 255 0C (dec).

[Fe 2(/-0 2CTrp)4(1-Et-2-'Prlm) 2] (7). To a solution of 1 (40 mg, 27 umol) in

DCE (2 mL) was added a solution of 1-Et-2-'Prlm (7.7 mg, 56 ymol) in CH 2CI2 (1

mL) and the resulting yellow solution was stirred overnight. After removal of the

solvent the residue was recrystallized by vapor diffusion of Et20 into a solution of

chlorobenzene (2 mL) to yield colorless blocks of 7. FT-IR (cm - 1, KBr): 3058 (w),

3031 (w), 3013 (w), 2967 (w), 2868 (w), 1624 (s), 1574 (m), 1477 (m), 1458 (m),

1446 (s), 1404 (s), 1286 (m), 1270 (m), 1177 (w), 1131 (w), 1084 (m), 1031 (m),

869 (w), 783 (m), 746 (s), 722 (m), 683 (m), 647 (w), 626 (s), 607 (w), 490 (w),

480 (w), 467 (w).

[Fe2(P-O2CTrp)4(1-Pr-2-'Prlm)2] (8) A chlorobenzene (1 mL) solution of 1

(48.4 mg, 33.5 Mmol) was combined with a chlorobenzene (1 mL) solution of 1-

Pr-2-'Prlm (10 mg, 67 umol) and the reaction mixture was stirred for 10 min. The

resulting deep orange-yellow solution was filtered and subjected to vapor

diffusion of pentane to yield colorless blocks of 8 (34 mg, 54%). FT-IR (cm -1 ,

KBr): 3058 (w), 2967 (w), 1622 (s), 1582 (m), 1477 (m), 1457 (m), 1445 (s), 1021

(s), 1290 (m), 1266 (w), 1177 (w), 1157 (w), 1132 (w), 1082 (m), 1032 (m), 1021



(m), 948 (w), 927 (w), 907 (w), 872 (w), 785 (m), 762 (m), 745 (s), 722 (m), 702

(m), 687 (m), 648 (m), 626 (s), 609 (w), 489 (w), 468 (w), 446 (w). Anal. Calcd.

for 8-4C 6H5CI, C126H104Fe2N408 CI4 : C, 73.62; H, 5.10; N, 2.73. Found: C, 73.55;

H, 4.92; N, 2.92.

[Fe 2(p-0 2CTrp)4(1-Pr-2-Phlm)2] (9). A portion of 1-Pr-2-Phlm (30 mg, 160

Mmol) was added to a DCE (3 mL) solution of 1 (116 mg, 80 umol) to form a

yellow solution, which was stirred for 10 min. Colorless blocks of 9 (84 mg, 63%),

suitable for X-ray crystallography, were obtained by vapor diffusion of pentane

into the filtered solution. FT-IR (cm- 1, KBr): 3057 (w), 2955 (w), 1624 (s), 1476

(m), 1458 (m), 1446 (s), 1404 (s), 1315 (w), 1285 (w), 1268 (w), 1213 (w), 1177

(w) 1146 (w), 1077 (w), 1033 (w), 1014 (w), 947 (w), 925 (w), 874 (w), 802 (w),

785 (m), 764 (m), 747 (m), 703 (m), 688 (w), 657 (w), 648 (m), 626 (s), 609 (w),

481 (w), 454 (w).

[Fe 2(p-0 2CTrp) 4(4-AcPy) 2] (10). Bright red-orange crystals of 10, suitable

for X-ray crystallography, were isolated by vapor diffusion of pentane into a

reaction mixture of 1 (60.0 mg, 42.1 Mmol) and 4-acetylpyridine (4-AcPy) (10.4

mg, 91.2 Mmol) in CH 2CI2 (2.5 mL). Yield: 24 mg (37%). FT-IR (cm- 1, KBr): 3058

(w), 3015 (w), 2953 (w), 2869 (w), 1701 (m, VC=O(acetyl)), 1631 (s), 1614 (s), 1557

(m), 1458 (s), 1446 (s), 1407 (s), 1361 (m), 1291 (m), 1264 (m), 1175 (w), 1061

(w), 1033 (w), 1018 (w), 928 (w), 872 (w), 822 (w), 784 (w), 751 (s), 721 (m), 648

(w), 626 (s), 595 (w). UV-vis (CH 2CI2) (Omax, nm (e, M- 1 cm- 1)): 450 (1050). Mp:

320 0C (dec).



[Fe2(p-O 2CTrp)4(4-CNPy) 21 (11). Method A. Intensely red-orange colored

crystals of 11, suitable for X-ray crystallography, were isolated by vapor diffusion

of pentane into a reaction mixture of 1 (80.0 mg, 55.4 umol) and 4-cyanopyridine

(4-CNPy) (11.5 mg, 111 Mmol) in CH 2CI2 (6 mL). Yield: 49 mg (58%). Method B.

To a rapidly stirred THF solution (5 mL) of Fe(OTf)2-2MeCN (33 mg, 78 umol)

and NaO 2CTrp (50 mg, 156 umol) was added dropwise a solution of 4-CNPy (8.1

mg, 78 umol) in THF (5 mL). The resulting suspension was stirred overnight. The

solvent was removed and the product was extracted with CH 2CI2 (2 x 3 mL),

filtered, and recrystallized from CH2CI2/pentane to yield red-orange colored

crystals of 11. Yield: 34 mg (57%). FT-IR (cm-1, KBr): 3057 (w), 3016 (w), 2954

(w), 2870 (w), 2234 (s, VC-N), 2070 (w), 1611 (s), 1487 (w), 1458 (m), 1446 (m),

1407 (w), 1291 (m), 1261 (w), 1215 (w), 1178 (w), 1156 (w), 1065 (w), 1031 (w),

1017 (w), 944 (w), 926 (w), 872 (w), 829 (w), 786 (m), 763 (m), 749 (s), 721 (m),

688 (w), 648 (w), 626 (s), 609 (w), 600 (w). UV-vis (CH 2C12) (/.max, nm (E, M- 1

cm-1)): 475 (1230). Anal. Calcd. for 11-0.75CH 2CI 2, C96.75H61 .5N408C1.5Fe 2: C,

73.88; H, 3.94; N, 3.56. Found: C, 74.15; H, 4.47; N, 3.36. Mp: 315 oC (dec). The

presence of residual CH 2CI2 was confirmed by 1H NMR spectroscopy of 11 in

CDCI 3.

[Fe2(P-0 2CTrp)4(4-PPy)2] (12). Yellow crystals of 12, suitable for X-ray

crystallography, were isolated by vapor diffusion of Et20 into a reaction mixture

of 1 (40 mg, 28 Mmol) and 4-pyrrolidinopyridine (4-PPy) (8.2 mg, 56 umol) in

CH 2C12 (2.5 mL). Yield: 24 mg (54%). FT-IR (cm- 1, KBr): 3058 (w), 2955 (w),

2858 (w), 1719 (w), 1609 (s), 1532 (m), 1482 (w), 1458 (m), 1446 (m), 1408 (s),
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1349 (w), 1316 (w), 1290 (w), 1226 (m), 1178 (w), 1156 (w), 1105 (w), 1033 (w),

1015 (m), 948 (w), 926 (w), 873 (w), 809 (w), 786 (w), 749 (m), 722 (m), 688 (w),

658 (w), 647 (w), 626 (m), 609 (w), 526 (w).

[Fe(O 2CTrp) 2(TMEDA)] (13). Method A. A CH 2CI2 solution (2 mL) of 1

(60 mg, 42 ymol) was allowed to react with N,N,N',N'-tetramethylethylenediamine

(TMEDA) (7.5 mg, 84 umol) for 10 min under stirring. Vapor diffusion of pentane

into the pale yellow colored solution afforded colorless blocks of 13. Yield: 36 mg

(57%). Method B. To a rapidly stirred THF solution (5 mL) of Fe(OTf) 2-2MeCN

(34 mg, 78 Mmol) and NaO 2CTrp (50 mg, 156 Mmol) was added dropwise a

solution of TMEDA (9.5 mg, 82 Mmol) in THF (5 mL) and the resulting suspension

was stirred overnight. The solvent was removed and the product was extracted

into CH2C12 (3 x 3 mL) and recrystallized from CH2CI2/pentane to yield colorless

crystals of 13. Yield: 34 mg (57%). FT-IR (cm- 1, KBr): 3060 (w), 3003 (w), 2951

(w), 2848 (w), 2797 (w), 1566 (s), 1459 (s), 1445 (s), 1417 (s), 1400 (s), 1286

(m), 1263 (m), 1176 (m), 1029 (m), 950 (m), 875 (m), 797 (m), 764 (s), 732 (m),

688 (m), 645 (m), 625 (s), 608 (w). Anal. Calcd. for 13-CH 2CI2, C49H44N204C12Fe:

C, 69.11; H, 5.21; N, 3.29. Found: C, 68.50; H, 5.18; N, 3.34. Mp: 250 'C (dec).

(nBu 4N)2[Fe(O 2CTrp)2(NCS)2] (14). Colorless block crystals of 14, suitable

for X-ray crystallography, were obtained by vapor diffusion of Et20 into a filtered,

pale yellow reaction mixture of 1 (50 mg, 35 Mmol) and tetrabutylammonium

thiocyanate (nBu 4N)SCN (38.2 mg, 142 ymol) in CH2C12 (3 mL) that had been

stirred for five min. Yield: 48 mg (55%). FT-IR (cm-1 , KBr): 3065 (w), 3014 (w),

2957 (s), 2932 (m), 2873 (m), 2078 (vs, vc-N), 1584 (s), 1573 (m), 1479 (m),
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1458 (m), 1446 (m), 1408 (m), 1379 (m), 1287 (w), 1177 (w), 1152 (w), 1030 (w),

874 (w), 800 (m), 768 (m), 750 (m), 725 (w), 688 (w), 645 (w), 626 (m). Anal.

Calcd. for 14, C76H98N4 FeO4S2: C, 72.93; H, 7.89; N, 4.48. Found: C, 72.74; H,

7.73; N, 4.48. Mp: 210 oC (dec).

[Fe(0 2CTrp)2(2-Melm) 2] (15). Colorless block crystals of 15 (ca. 32 mg),

suitable for X-ray crystallography, were obtained from Et20 vapor diffusion into a

reaction mixture of 1 (40 mg, 28 yumol) containing 6.0 equiv of (2-Melm) (13.6

mg, 166 umol) in a solution of DME (3 mL).

X-ray Crystallographic Studies. Single crystals were coated with

Paratone-N oil, mounted at room temperature on the tips of glass fibers or nylon

loops (Oxford magnetic mounting system), and cooled under a stream of cold N2

maintained by a KRYO-FLEX low-temperature apparatus. Intensity data were

collected on a Bruker APEX CCD diffractometer with graphite-monochromated

Mo Kc radiation (A = 0.71073 A) controlled by a Pentium-based PC running the

SMART software package.36 A total of 2800 frames were acquired for each

measurement. The structures were solved by difference Fourier or Patterson

methods and refined on F2 by using the SHELXTL-97 software included in the

SHELXTL software package.37'38 Empirical absorption corrections were applied

with SADABS 39 and the structures were checked for higher symmetry with

PLATON. 40 All non-hydrogen atoms were refined anisotropically. In general,

hydrogen atoms were assigned idealized positions and given thermal parameters

equivalent to either 1.5 (methyl hydrogen atoms) or 1.2 (all other hydrogen

atoms) times the thermal parameter of the atom to which they were attached.



Crystal data, data collection parameters, and structure refinement details for all

compounds are provided in Table A1.1. Bond distances and angles of 2-15 are

displayed in Table A1.2, and ORTEP diagrams of the molecular structures of 2-

12 are shown in Figures Al.1-Al.11 in Appendix 1.

Complex Ia crystallizes with seven CH2CI2 molecules per asymmetric unit.

The structure of 2 has one DME molecule in the asymmetric unit that is not

disordered and a second one that shares a position with an Et20 molecule.

Furthermore, one phenyl ring of a triptycene ligand is disordered and distributed

at occupancies of 0.62 and 0.38. Compound 3 crystallizes with two DME

molecules in the crystal lattice. Disordered molecules of DME and Et20 were

identified in the crystal lattice of 4. The methyl group of one DME molecule was

distributed over two positions with occupancies of 0.60 and 0.40, and the

methoxy group of a second DME molecule was distributed with occupancies of

0.73 and 0.27 and refined. An Et20 and a DME molecule share one position, with

the latter being disordered over two positions. Compound 5 contains disordered

DME and Et20 molecules as well. The oxygen atom of one DME molecule is

disordered over two positions with a ratio of 66:34. Another molecule of DME

shares one position with an Et20 molecule in a 56:44 ratio. An Et20 molecule is

present that lies on a center of symmetry and was refined at full occupancy, with

the two ethyl groups equally distributed over two positions. An Et20 molecule is

present in the structure of 6. In addition, an Et20 and a DME molecule share one

position at 0.52 and 0.48 occupancies, respectively. As in the structure of 4, an

Et20 and a DME molecule share one position with the latter distributed over two



positions. The structures of 7 and 8 each have four chlorobenzene solvent

molecules in the lattice. In 7, one is disordered over two positions and was

anisotropically refined at 0.91 and 0.09 occupancy. The structure of 9 contains

two molecules of DCE, one being distributed over four positions and refined.

Compound 10 has two CH 2CI 2 molecules in the asymmetric unit, one of which

was distributed over two positions with occupancies at 0.62 and 0.38 and refined.

Compound 11 contains four CH 2CI2 molecules. Two of these have occupancy of

1.0 and are disordered over two positions. The other two have occupancy of 0.25

and are also disordered over two positions. The crystal lattice of 12 contains one

molecule of CH 2CI2 at full occupancy. Another molecule of CH 2CI2 shares one

position with a molecule of pentane and is additionally distributed over two

positions. The mononuclear complex 13 has one molecule of CH 2CI2 in the

asymmetric unit. No solvent molecules were located in the crystal structure of 14.

In the crystal structure of 15, one Et20 molecule has its ethyl groups disordered

over two positions with occupancies of 0.65 and 0.35 and the oxygen atom at full

occupancy. Compounds 5, 7-9, and 12-15 contain small fractions of brominated

-O2CTrp, which cocrystallized with the unbrominated material. This impurity

fraction was modeled in these structures.

Reactions with Water. In a typical experiment, a CH 2CI2 solution of 1 (20

mg, 14 ymol) was prepared and two equiv of the N-donor were added, followed

by the addition of a deoxygenated solution of H20 in THF. The reaction mixture

was stirred vigorously, filtered, and subjected either to pentane or Et20 vapor



diffusion. X-ray quality crystals were taken directly from the reaction vessel for

analysis.

A. Reaction of 7 with H20. The general protocol described above was followed.

Here, 13 equiv of water (1.08 mL, 0.18 mmol, 0.17 M) were added. After stirring

for 5 min, the filtered reaction mixture was subjected to pentane vapor diffusion.

A small amount of colorless crystals of 7, suitable for X-ray crystallography, were

recovered.

B. Reaction of 12 with H20. The general protocol above was followed. To a

solution of 1 (20 mg, 14 Mmol) in CH 2CI2 (1.5 mL) was added 4-PPy (4.1 mg, 28

Mmol) and the resulting yellow solution was allowed to react for 5 min. Then,

either 70 or 350 equiv of water in THF solution (0.49 mL, 0.98 mmol, 2.0 M or

2.44 mL, 4.65 mmol, 2.0 M) were added, and the resulting solutions were stirred

for either 5 min (70 equiv) or 2.5 h (350 equiv), before being subjected to vapor

diffusion of Et20. Pale yellow blocks with unit cell parameters identical to those of

12 were recovered in both cases.

Results and Discussion

Ligand Synthesis and Metalation; Preparation and Structural

Characterization of [Fe 2(/r-0 2CTrp) 4(THF) 2] (la). The sodium salt of the

triptycenecarboxylic acid (HO2CTrp) was prepared in three steps by modification

of literature procedures. A summary of the synthetic steps is provided in Scheme

2.2.31,32 9-Bromotriptycene was obtained by a Diels-Alder reaction between 9-

bromoanthracene and the benzyne intermediates, generated from the unstable
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diazonium salt prepared from anthranilic acid. Treatment of this product with a

lithiating agent led to the formation of 9-triptycyllithium, which was carbonated

and subsequently protonated to form HO2CTrp. Initially, this crude product was

purified by recrystallization in 1,4-dioxane/petroleum ether and then treated with

NaOH to obtain the metal salt NaO 2CTrp. This salt was employed in anion

metathesis reactions with [Fe(H20)6](BF 4)2 or Fe(OTf)2-2MeCN in anhydrous

THF to synthesize the starting material 1 and the resultant iron(ll) complexes.

The carboxylate salt did not show any impurities when analyzed by 1H NMR

spectroscopy. Impurities derived from the 9-bromo-10-triptycenecarboxylic acid,

however, were observed in crystal structures of the resulting iron complexes.

This brominated ligand impurity could be eliminated by purification of HO 2CTrp

on silica gel using ethyl acetate/hexanes (1:1) as eluent. Some of the crystal

structures reported herein were determined for material synthesized with

NaO2CTrp containing fractions of the brominated side product (up to 6%), which

cocrystallized as observed in the corresponding X-ray structures of the diiron

compounds. Because the bromine atom is not located near the iron coordination

site, it had no effect on the coordination geometry.

Reaction of [Fe(H 20) 6](BF4)2 with two equivalents of NaO 2CTrp in

anhydrous THF afforded the crude starting material 1. Molecular sieves were

present in this reaction mixture in order to keep it anhydrous. Recrystallization of

the dark pink powder led to colorless crystals of the paddlewheel complex la and

larger, pink-brown block crystals of a side-product Ib. The ratio of these two

species was estimated to be approximately 7:1 by visual inspection. Compounds



74

la and Ib, which have an identical iron-to-carboxylate ratio, form in 54% yield

based on Ia and were employed in further reactions with N-donor ligands. For

simplicity, the mixture of la and lb is hereafter defined as starting material 1 and

all yields are based on Ia. An alternative route (B) for the synthesis of pure la

was established, in which Fe(OTf)2-2MeCN was used a in metathesis reaction

with the sodium salt of the carboxylate. This route yielded pure Ia in smaller

yields, however, so the starting material prepared by the former method (A) was

employed in further reactions.

Br -

1. nBuLi
2. CO2 (g)
3. HCI (aq.)

/ NaOH /

NaO O HO O

Scheme 2.2.

The colorless complex la exhibits the well-known paddlewheel structure

with two iron atoms bridged by four carboxylates. The crystal structure of la is

displayed in Figure 2.1 and selected bond angles and distances are depicted in

Table 2.1. The two Fe(ll) atoms are separated by 2.7307(8) A and bridged by

four carboxylate ligands, which are related by a pseudo-C4 axis along the Fe-Fe

vector. The structure of this paddlewheel complex is analogous to those of the

diiron(ll) compounds [Fe2(-O 2CR)4(THF)2], where R = Ar4-FPh and dxl (Chart
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2.1), which have very similar Fe-Fe distances of 2.7277(7) A and 2.735 A,

respectively.8 '2 5 In all cases, the coordination sphere around the iron atoms is

square pyramidal with the THF donor in the axial position.

During the synthesis of the paddlewheel complex [Fe2(t-O 2CTrp) 4(THF)2]

from [Fe(H20) 6](BF 4)2 and two equivalents of NaO 2CTrp, pale pink-brown blocks

of lb formed as a side-product. X-ray crystallographic analysis exhibited a

neutral, trinuclear Fe(ll) complex. A triply bridging fluoride ion is located in the

center of a nearly equilateral triangle formed by the three iron atoms and is

raised only slightly above this plane (ca. 0.14 A). Two pairs of iron atoms are

linked by two bridging carboxylates, whereas the other iron pair is only singly

bridged by another carboxylate. The coordination spheres at these two iron

atoms are completed by a sixth carboxylate ligand that is protonated and is

therefore only bound in a monodentate fashion. Unfortunately, the quality of the

data set was not to sufficient to provide a reliable assignment for the occupancy

of this carboxylic acid ligand nor the remaining ligands for this coordination site

and, therefore, detailed crystallographic information is not provided here. The

proposed chemical structure of lb is displayed as Figure A1.12 (Appendix 1).

This type of [Fe3(M-F)] core has been observed before, but only in

pentanuclear complexes in which two equivalent [Fe3(y-F)] triangles share a

common vertex.41 As in the synthesis of these complexes, the fluoride ion in lb

apparently originates from the BF4- anion of the starting material. It is well-known

that fluoride ions are released from BF4- in the presence of strong bases; in this



case hydroxide ions are present in the reaction mixture, derived from water

molecules that are present in the iron starting material.42

0(6) C(1C)

0(5)

0(2T)

0Fe(1)-Fe(2) 2.7307(8) Fe(1)-O()-C() 119.1(3) 03)
Fe(1)-O(1T) 2.083(3) Fe(1)-O(3)-C(1B) 132.7(3)0(1)

0(1e(1)-O(2T) 2.069(3) Fe(1)-O(5)-C(C) 126.7(3 T)
0(8)

C(1Fe(1)-O(1) 2.043(3) Fe(1D)
0(7)

Figure 2.1. ORTEP diagrams of [Fe2(2)-02CTrp)4(THF)2 (1a) Showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Left: The complete
molecule. Right: The molecule omitting triptycene units.

Table 2.1. Selected Bond Lengths (A) and Angles (deg) for la.

Fe(1)-Fe(2) 2.7307(8) Fe(2)-O(4)-C(1A) 119.1(3)
Fe(1)-O(1T) 2.083(3) Fe(1)-O(3)-C(11B) 132.7(3)

Fe(1)-O(2T) 2.069(3) Fe(1)-O(5)-C(1 C) 126.7(3)
Fe(2)-O(1) 2.043(3) Fe(1)-O(7)-C(1D) 122.8(2)
Fe(1)-O(3) 2.110(3) Fe(2)-0(2)-C(1A) 131.3(3)

Fe(1)-O(5) 2.060(3) Fe(2)-O(4)-C(1 B) 117.3(3)

Fe(1)-O(7) 2.039(3) Fe(2)-O(6)-C(1 C) 122.8(3)

Fe(2)-O(2) 2.090(3) Fe(2)-O(8)-C(1 D) 127.6(2)
Fe(2)-O(4) 2.057(3)

Fe(2)-O(6) 2.054(3)

Fe(2)-O(8) 2.069(3)

Numbers in parentheses are estimated standard deviations of the last significant figure.
Atoms are labeled as indicated in Figure 2.1.

~;;;;;;;-;;~ I I
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Further evidence for lb only containing ferrous iron is provided by

M6ssbauer spectroscopy of the starting material 1. Its M6ssbauer spectrum,

acquired at 4.2 K at zero field is displayed in Figure A1.13 (Appendix 1) and

consists of a somewhat broader quadrupole doublet (6 = 1.33(2) mm/s, AEQ =

2.64(2) mm/s and F = 0.54 mm/s). These values are characteristic for high spin

Fe(ll) in an oxygen-rich coordination environment and are in agreement with the

proposed structure for lb. 29 The M6ssbauer spectra of 8 and 9 that were

acquired under the same conditions, exhibit nearly identical parameters (6 =

1.16(2) mm/s, AEQ = 2.77(2) mm/s and F = 0.33 mm/s for 8 and 6 = 1.16(2)

mm/s, AEQ = 2.69(2) mm/s and F = 0.39 mm/s for 9) which are characteristic for

high-spin iron sites in an N/O environment.29 The corresponding spectra are

shown in Appendix 1 in Figures A1.14 and A1.15.

Synthesis and Structural Characterization of Quadruply Bridged

Diiron(ll) Complexes [Fe2(/-0 2CTrp) 4(L)2], 2-12. Compounds 2-12 having the

general formula [Fe 2(t-O2CTrp)4(L) 2] were prepared from 1 by displacement of

the weakly bound THF molecules upon addition of two equiv of N-donor ligand

(L) in modest to excellent yields (37%-86%). Scheme 2.3 summarizes the

reactions and the corresponding products. The synthetic procedures for these

paddlewheel complexes differ depending on the solubilities of the products.

Compounds 3-6 are quite insoluble and a strategy to prepare them was to

precipitate the microcrystalline product from a reaction mixture in toluene, which

could then be recrystallized from boiling 1,2-dimethoxyethane followed by Et20

vapor diffusion to obtain X-ray quality crystals. In addition, 2-Phlm and 2-'Prlm



were alkylated in the N1-position (R' = propyl, ethyl) to enhance the solubility of

the corresponding diiron complexes. This reaction involved deprotonation of the

imidazole followed by nucleophilic substitution with an alkyl iodide. The resulting

compounds 7-9 as well as those with pyridine ligands, 2, 10-12, had improved

solubility, and X-ray quality crystals could be isolated by vapor diffusion of either

Et20 or pentane into the corresponding reaction mixtures. Paddlewheel diiron(ll)

compounds that are soluble in CH 2CI2 can be prepared in a one-pot reaction

between Fe(OTf)2-2MeCN, NaO 2CTrp, and the N-donor in a 1:2:1 ratio. This

alternative method was utilized for the synthesis of 11, as well as for that of l a,

vide supra.

The crystal structures of 2-12 are shown in Figures A1.1-A1.11 and

selected bond distances and angles are displayed in Table A1.2 (Appendix 1).

Crystal data and data collection parameters are presented in Table A1.1. All the

paddlewheel complexes have structures with parameters comparable to those of

compound la, the only difference being the neutral donor ligand L. In all

compounds except 11, two five-coordinate iron centers are related by a

crystallographic inversion center, requiring the iron atoms and four oxygen atoms

from two of the bridging carboxylates to be positioned in a common plane. One

N-donor ligand is bound axially to each of the iron atoms, which have square-

pyramidal coordination geometry. Compound 11 crystallizes in a tetragonal

space group with one molecule in the asymmetric unit and has analogous

metrical parameters to those of the other paddlewheel complexes.
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The Fe-Fe distances in a, 2-12 range from 2.7307(8) to 3.007(2) A. The1"'0O PIZ N

2.8694(15) A. In the series of paddlewheel complexes with imidazole-derivedligands thN-Fe Fe-Fe distances increase significantly, from 2.8603(8) to 3.007(2) A,

Zrp -'O Trp

Trp

R = H (2), Ac (10), CN (11), pyrrolidyl (12)

Scheme 2.3

The Fe-Fe distances in la, 2-12 range from 2.7307(8) to 3.007(2) A. The

smallest distance occurs in the paddlewheel complex with L = THF followed by

those with pyridine donor ligands, which have distances between 2.7718(14) and

2.8694(15) A. In the series of paddlewheel complexes with imidazole-derived

ligands the Fe-Fe distances increase significantly, from 2.8603(8) to 3.007(2) A,

with increasing bulkiness of the substituent R on the O2-position of the

heterocycle (R = H < Me < 'Pr < Ph). Compared to this 0.15 A increase in Fe-Fe

distance for the imidazole-substituted paddlewheel complexes, those in the

series of pyridine-substituted compounds vary less, by ca. 0.10 A. This difference

can be explained by the fact that the residues R in the imidazole ligands sterically



80

interact with the neighboring triptycenecarboxylates, causing them to be pushed

away from the Fe-center and the average Fe-O-C angle to increase. The para-

substituents on the pyridine derivatives are directed away from the steric bulk of

the triptycenecarboxylates and have no significant steric influence on the diiron

distance.

A summary of Fe-Fe, Fe-L, and average Fe-O distances, and average

Fe-O-C angles of la, 2-12 is presented in Table 2.2. It reveals the

aforementioned Fe-O-C angle variation (125.00-128.30) that reflects the

increasing bulkiness of the N-donor, but no major change in Fe-Oavg bond

lengths. This difference is to be expected because angle deformations require

less energy than lengthening or shortening of bonds. 43 Figure 2.2 illustrates the

linear relationship between Fe-Fe distances and Fe-O-C angles in la, 2-12,

revealing a systematic trend. These results stand in contrast to those obtained

for a series of diiron(ll) paddlewheel complexes with m-terphenylcarboxylate

ligands of the type [Fe 2(t-O 2CAr4-FPh) 4(L)2], where L = THF, 1-Melm, py and

tBuPy. 2 5 Here, the Fe-Fe distances for all the compounds with N-donor ligands

are essentially the same (2.8247-2.8249 A) and the Fe-O-C angles span a

narrow range (123.860-124.890); only the THF complex has smaller distances

and angles. These dinuclear complexes disassemble to form a mononuclear

species when the steric bulk on the N-donor increases (L = 1-benzylimidazole, 1-

methylbenzimidazole). 44 These observations reveal that the triptycene-

carboxylate imparts a significantly greater stability to the dinuclear core than

other sterically hindered carboxylates.



Table 2.2. Comparison of Fe-Fe and Fe-L Distances (A) and the Average
Fe-O-C Angles (deg) in Complexes of the Type [Fe2(1-O2CTrp)4(L) 2].

Trp C1A

010 2 rp
I 4A.3A

L1-- Fe1 FelA-L1A
03 04

Trp ',0 O
I 2A 1A

C1B
Trp

Ligand (L)

THF (la)

4-CNPy (11)

4-PPy (12)

Py (2)

4-AcPy (10)

1-Melm (3)

2-Melm(4)

1-Pr-2-'Prlm(8)

2-'Prlm (5)

1-Et-2-'Prlm (7)

1 -Pr-2-Phlm(9)

2-Phlm(6)

Fe-Fe

2.7307(8)

2.772(2)

2.821(2)

2.8460(6)

2.8692(15)

2.8604(8)

2.9033(9)

2.906(1)

2.912(1)

2.9215(10)

2.9639(11)

3.007(2)

Fe-O-Cavg

125.0

125.5

126.3

126.5

126.6

126.8

126.8

126.9

127.2

127.1

128.3

128.3

Fe-L

2.076(3)a

2.086(3)

2.083(3)

2.1184(19)

2.126(4)

2.080(3)

2.0837(19)

2.088(2)

2.084(2)

2.094(2)

2.109(3)

2.133(2)

Fe-Oavg

2.065

2.054

2.077

2.076

2.067

2.077

2.075

2.087

2.080

2.077

2.079

2.089
Numbers in parentheses are estimated standard deviations
a Average value.

of the last significant figure.

The Fe-Fe distances of 2.9036(9) A to 3.007(2) A observed for 4-9 are

about 0.14 A longer than the largest one previously reported, for the quadruply-

bridged diiron(ll) complex [Fe 2(Y-O 2Cdxl)4(1-Melm) 2] (2.864 A).8 The Fe-Fe

distance range that can be accommodated in these paddlewheel complexes is

significant, 0.27 A, compared to other dimetallic complexes with different

carboxylates in which the distances between the metals usually fall into a narrow

range.

---
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Figure 2.2. Correlation between Fe-Fe distances (A) and the average Fe-O-C
angles in complexes of the type [Fe 2(p-O2CTrp)4(L)2] 2-12.

Stability of the Diiron Paddlewheel Core. As pointed out above, despite

an increase in steric bulk of the neutral donor L, the paddlewheel core stays

intact and undergoes neither a carboxylate shift nor disassembly into

mononuclear species. In order to investigate further the stability of these diiron

paddlewheels, the complexes were allowed to react with water and checked for

decomposition of the core or carboxylate shifts. The influence of water on the

conformational stability was previously discovered for m-terphenylcarboxylate

diiron(ll) complexes.27-29,45 Here, addition of -17 equiv of water to the diiron

compound resulted in coordination of one water molecule to each iron center,

converting it from a quadruply to a doubly bridging diiron carboxylate complex, as

portrayed in Scheme 2.4.

Compounds 7 and 12 were chosen for water reactivity studies because of

their good solubility in CH 2CI2. Solutions of water in anhydrous THF were added



to CH 2C12 solutions of the diiron complexes in an excess of 13 to 350 equiv. The

reaction mixtures were stirred for either five min or 2.5 h before being set up for

crystallization by vapor diffusion. In all cases, even where a large excess of water

had been added and the reaction time was extended to 2.5 h, the resulting

crystalline products maintained their structural integrity. This behavior is

remarkable, considering that a hexaaquairon(ll) cation forms in the case of m-

terphenylcarboxylate diiron(ll) compounds with the addition of only 35 equiv of

water to the dinuclear starting material.28

R

I P Ov IL-Fe" Fe-L

R

R = Ar4-FPh

+ 35 equiv H 20 OH 2

R H20-Fe-OH2  R

R

+ 17 equiv H 20 O- Fe 2Fe-0
Le \H20 /
OyO 0 R

R

Trp

O OQ<T rp

I ,'I'O' + ca. 350 equiv
L-Fe' Fe-L
O I OO H20

Trp
Trp

Trp

O O.<
T rp

I .~0O
L-Fe Fe'-L

Trp YT
Trp

no structural change!

Scheme 2.4.

From these studies it can be concluded that the triptycene-bridged

diiron(ll) core has unprecedented conformational stability, which can be



attributed to interligand steric interactions between the triptycene units. These

are locked together in a tongue-in-groove fashion, whereby one phenyl group is

embedded between two phenyl rings of the neighboring triptycenecarboxylate,

preventing them from undergoing carboxylate shifts. Two space-filling diagrams

of compound I a are displayed in Figure 2.3 to illustrate this interaction.

Figure 2.3. Space-filling diagram of [Fe2(jt-O2CTrp)4(THF)2] (Ila). Left: View
showing the Fe-Fe vector. Right: View along the Fe-Fe vector.

Electronic Spectroscopy and Equilibria in Coordinating Solvents.

High-spin iron(ll) complexes with a carboxylate-rich environment are typically

colorless, making it difficult to apply UV-vis spectroscopic methods to investigate

their chemical reactivity. For this reason, pyridine ligands with electron-

withdrawing substituents, such as 4-cyano- (4-CNPy) and 4-acetylpyridine (4-

AcPy), were introduced into triptycenecarboxylate-rich diiron(ll) complexes,

which resulted in the intensely colored complexes [Fe 2(-O 2CTrp)4(4-AcPy) 2] (10)

and [Fe 2(f-O 2CTrp)4(4-CNPy)2] (11). In 10 and 11, absorptions occur in the

visible region at raxm = 450 nm (eM= 1050 M- 1 cm-') and Anax = 475 nm (EM=

M ............



1230 M- 1 cm -1) in CH 2012 solutions, respectively. This approach was applied

recently in our group for m-terphenyl-derived carboxylate diiron(ll) compounds.

Investigation by resonance Raman and electronic absorption spectroscopy

confirmed that the colors originate from a charge-transfer transition from the

ferrous iron to a ;fr orbital of the pyridine ligand (MLCT).2 9,4 5 Solutions of these

diiron(ll) complexes absorb in CH2CI 2 at somewhat longer wavelengths than the

present diiron(ll) compounds with -O2CTrp ligands. For example, the complex

[Fe 2(O-O2CAr ToI)4 (4-CNPy)2] has an absorption maximum at Amax = 510 nm (SM =

2200 M-1 cm-1), but that of a compound having the more electron-withdrawing

carboxylate ligands, [Fe 2(O-0 2CAr4-FPh) 4(4-CNPy)2] (eM = 2300 M- 1 cm- 1), is blue-

shifted to Amax = 480 nm. This observation is consistent with the assignment of

the electronic transition as a MLCT. The triptycenecarboxylate-bridged diiron(ll)

complex 11 absorbs at a wavelength similar to that of the diiron complex with the

more electron-withdrawing terphenylcarboxylate ligands, which leads to the

conclusion that the electron-donating capability of the -O2CTrp is about the same

as that of -O2CAr 4 -FPh. The absorbance maximum of 10, which has the neutral

donor 4-AcPy, is blue-shifted by comparison to that of 11. This trend is consistent

with the hypsochromic shift in absorbance maximum when L is changed from 4-

CNPy to 4-AcPy in the complex [Fe 2(1-O2CAr T ')4(L) 2 ].

When compounds 10 and 11 are dissolved in a coordinating solvent, such

as THF, the color disappears, only to reappear when the solutions are cooled to

low temperatures. This solvent-dependent thermochromism was investigated for

11 by variable-temperature UV-vis-spectroscopy, monitoring the absorbance
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change over a temperature range from 193 to 293 K. The equilibrium between 11

and the colorless species can be described by eq 1.

[Fe2 (Y-O 2 CTrp)4 (4-CNPy) 2] + 2 THF [Fe 2(Y-O 2CTrP) 4 (THF)2] + 2 (4-CNPy) (1)

A mathematical analysis that fits the data to a model represented by eq 1,

which presumes constant extinction coefficients over the complete temperature

range, has been described recently for a similar system.2 9 The change in

absorbance spectra and a least-squares fit are displayed in Figure 2.4. The

thermodynamic parameters derived from this experiment are AH = 18.5(2) kJ

mo1-1 and AS = -16.3(10) J mor-1 K- 1, which are very similar to those determined

from an analogous study of the windmill complex [Fe 2(M-O2CArTol) 2(O2 CArToI) 2 (4-

CNPy) 2], AH = 19.0(6) kJ mo'-1, AS = -16.2(16) J mo-1 K-1 .2 9

Considering that the geometric structure of the latter is quite different from

that of paddlewheel complex 11, this result may seem somewhat surprising.

However, it was previously determined that these terphenylcarboxylate

complexes undergo dynamic carboxylate-shifts from doubly to quadruply bridged

structures in a process that does not require much energy. The thermodynamic

parameters for exchange of 4-CNPy by THF solvent are therefore mainly

determined by the relative strengths of the THF-Fe and (4-CNPy)-Fe bonds and

by solvation energies. Preliminary kinetic measurements of a reaction between

11 with excess pyridine suggest that the diiron(ll) paddlewheel core stays intact

in solution during ligand substitution of 4-CNPy by pyridine.

~~~;r---~-;i-~;;-~;~;- ;; -; ~ ----- ~~~;
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Figure 2.4. Temperature-dependent UV-vis spectra of [Fe2(1-O2CTrp)4
(4-CNPy)2] (11) in THF solution (Left). The absorbance change at 475 nm fit to
eq 1 (Right). The solid line represents a least-squares fit to the data points and
the estimated errors for the derived thermodynamic parameters are given in the
text.

Dimetallic Core Disassembly to Form Mononuclear Fe(ll) Complexes.

Synthesis and Structural Characterization of 13 - 15. The crystal structure,

bond lengths, and interbond angles for 13 - 15 are displayed in Figure 2.5 and

Table 2.3. Compound 13 can be prepared from 1 by direct ligand substitution

using TMEDA or by self-assembly from Fe(OTf)2-2MeCN, NaO2CTrp, and

TMEDA in a 1:2:1 ratio in anhydrous THF. Colorless crystals of

[Fe(O2CTrp)2(TMEDA)] (13), suitable for X-ray crystallography, were isolated in

good yields (57%) by either method. Two carboxylates and one bidentate

TMEDA molecule comprise the ligand sphere around the six-coordinate iron(ll)

atom. The carboxylate ligands each have a long and a short Fe-O bond (AFe-O =

0.18 A), with the shorter bond being trans to the amine donors. The Missbauer

spectrum of 13, displayed in Figure A1.16 (Appendix 1), was acquired at zero



field and 4.2 K. It shows a sharp quadrupole doublet with a linewidth of r = 0.31

mm/s, from which an isomer shift of 6 = 1.13(2) mm/s and a quadrupole splitting

parameter AEQ = 3.01(2) mm/s could be derived. These values are characteristic

for a high-spin (S = 2) Fe(ll) center.2 9'44 Reaction of 1 with four equivalents of

tetrabutylammonium thiocyanate led to instant disassembly of the dinuclear

starting material to afford colorless blocks of (nBu 4N) 2[Fe(O 2CTrp) 2(SCN)2] (14) in

good yield (55%). The compound has a crystallographically required C2-axis

bisecting the molecule. Two symmetry-related bidentate carboxylates and two

isothiocyanate ligands support a distorted octahedral coordination environment

around the Fe(ll) atom. The carboxylates bind in an asymmetric fashion, which is

reflected by the two distinct Fe-O distances with AFe-O = 0.21 A. The longer Fe-

O bond is situated anti to the isothiocyanate ligand that binds through its nitrogen

(N1) atom at a distance of 2.045(4) A. The thiocyanate anion is nearly linear, with

an N(1)-C(1)-S(1) angle of 178.2(4)0. The angle of coordination, Fe(1)-N(1)-

C(1), is 163.1(4)0.

( ) Fe(1) N)1A) Fe() N(2)

0(i e l sN(2) CONA) 0(2)
0MA) S(l 0(1)

(1) N( 3)

Figure 2.5. ORTEP diagram of [Fe(O2CTrp)2(TMEDA)] (13),
[Fe(O2CTrp)2(SCN)2] 2- (14) and [Fe(O2CTrp)2(2-Melm)2] (15) (illustrating 50%

probability thermal ellipsoids for all non-hydrogen atoms).
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Compound 15 was isolated from a mixture in which 1 was accidentally

allowed to react with an excess (ca. 6.0 equiv) of 2-Melm. Only a few colorless

blocks of this compound, which were suitable for X-ray crystallography, formed,

together with an amorphous precipitate, and no attempt was made to optimize

the synthesis. The Fe(ll) atom is coordinated by two bidentate carboxylates and

two imidazole ligands. One of the carboxylate ligands binds asymmetrically with

AFe-O = 0.198 A, whereas the other one coordinates in a more symmetric fashion.

The distances between the iron and the imidazole N-atoms are nearly identical.

Addition of a stoichiometric amount of N-donor to I results in minimal

perturbation of its diiron paddlewheel core to yield 2-12. Reactions of 1 with the

bidentate N-donor ligand TMEDA, an excessive amount of monodentate ligand

2-Melm, or the thiocyanate anion, converted the dinuclear core to mononuclear

complexes. Monoiron(ll) complexes having two carboxylate and two N-donor

ligands are relatively rare, and a CSD search3 revealed that they all contain

sterically hindered m-terphenylcarboxylate-ligands. 44,46  The complexes

[Fe(O 2CArT °')2(TMEDA)] and [Fe(O 2CArM es)2(TMEDA)] have a stoichiometry

analogous to that of 13, but differ in the carboxylate-binding mode. In particular,

only one carboxylate is bidentate and the second is monodentate, which results

in five-coordinate species. A complex similar to 15, [Fe(O 2CArM es)2(1-Melm) 2],

has an unusual, nearly tetrahedral coordination environment. The m-

terphenylcarboxylate compounds feature a low coordinate geometry because the

steric bulk hinders bidentate coordination. In contrast, for 13-15, which contain

-O 2CTrp, no bulky residues point toward the iron atoms, allowing the



carboxylates to bind in a bidentate manner while preventing higher

oligomerization.

Table 2.3. Selected Bond Lengths (A) and Angles (deg) for 13-15.

13
Fe(1)-O(1) 2.097(2) O(2)-Fe(1 )-0(4) 85.71(7)
Fe(1)-0(2) 2.281(2) O(1)-Fe(1)-N(1) 109.60(9)
Fe(l)-O(3) 2.087(2) O(1)-Fe(1)-N(2) 100.86(9)
Fe(1)-0(4) 2.257(2) 0(2)-Fe(1 )-N(1) 105.27(9)
Fe(1)-N(1) 2.145(2) 0(2)-Fe(1)-N(2) 160.50(9)
Fe(1)-N(2) 2.202(2) 0(3)-Fe(1)-N(1) 93.20(9)
0(1)-Fe(1)-O(2) 59.87(7) 0(3)-Fe(1)-N(2) 99.88(9)
0(1)-Fe(1)-0(3) 150.71(8) 0(4)-Fe(1)-N(1) 152.99(8)
0(1)-Fe(1)-0(4) 97.30(7) 0(4)-Fe(1)-N(2) 94.53(8)
0(3)-Fe(1)-0(4) 60.56(7)

14
Fe(1)-O(1) 2.099(3) O(1)-Fe(1)-0(2A) 95.3(1)
Fe(1)-0(2) 2.312(3) O(1)-Fe(1)-O(1A) 146.5(2)
Fe(1)-N(1) 2.045(4) 0(2)-Fe(1)-0(2A) 84.2(2)
S(1)-C(1) 1.643(6) N(1)-Fe(1)-O(1) 101.2(1)
C(1)-N(1) 1.139(6) N(1)-Fe(1)-O(1A) 98.91(12)
C(1)-N(1)-Fe(1) 163.1(4) N(1)-Fe(1)-0(2) 89.14(13)
N(1)-C(1)-S(1) 178.2(4) N(1)-Fe(1)-N(1A) 105.8(2)
0(1)-Fe(1)-0(2) 58.7(1)

15
Fe(1 )-0(1) 2.1178(2) 0(2)-Fe(1)-0(4) 97.33(7)
Fe(1)-0(2) 2.315(2) O(1)-Fe(1)-N(1) 101.28(9)
Fe(1)-0(3) 2.222(2) O(1)-Fe(1)-N(2) 104.11(8)
Fe(1)-0(4) 2.146(2) 0(2)-Fe(1)-N(1) 90.33(8)
Fe(1)-N(1) 2.095(2) 0(2)-Fe(1)-N(2) 162.77(8)
Fe(1)-N(2) 2.099(2) 0(3)-Fe(1)-N(1) 160.81(8)
0(1)-Fe(1)-0(2) 58.78(7) 0(3)-Fe(1)-N(2) 92.51(8)
0(1)-Fe(1)-0(3) 93.55(7) 0(4)-Fe(1)-N(1) 101.50(9)
0(1)-Fe(1)-0(4) 146.82(8) 0(4)-Fe(1)-N(2) 97.32(8)
0(3)-Fe(1)-0(4) 60.11(7)

Numbers in parentheses are estimated standard
Atoms are labeled as indicated in Figure 2.5.

deviations of the last significant figure.

Compound 14 was prepared in an attempt to synthesize an anionic

tetracarboxylate-bridged diiron(ll) complex with terminal thiocyanate ligands. No

complex of this type has been reported in the literature. When thiocyanate was



added to the dinuclear complex 1 in a 2:1 ratio, however, the structure converted

to mononuclear 14 with two isothiocyanate ligands per iron atom. Although many

structures have two thiocyanates coordinated to Fe(ll), 47, 4 8 no compound with the

carboxylate-coordination environment of 14 has been previously described.

Conclusions

A general strategy is described for synthesizing triptycenecarboxylate-

bridged diiron(ll) complexes. With increasing steric demand of the neutral donor

axial ligand (L) in these [Fe 2(t-O2CTrp) 4(L) 2] compounds, a systematic increase

in Fe-Fe distance occurs and, for the first time, a diiron(ll) paddlewheel complex

with an Fe-Fe distance greater than 3 A was obtained. The reactivity of these

complexes with excess water was tested and revealed neither disassembly of the

dinuclear core nor a carboxylate shift, leading to the conclusion that the

triptycene tetracarboxylate framework has unusual kinetic stability. The

thermochromism of the colored compound 11 was used in variable UV-vis

temperature studies to determine thermodynamic parameters for ligand

substitution. Reactions of 1 with chelating or anionic ligands or with an excess of

the N-donor converted the dinuclear core into mononuclear species, which all

have an 0 4N2 coordination sphere, with a six-coordinate iron atom. Other

mononuclear iron(ll) complexes of bulky carboxylates have a lower coordination

number of 4 or 5.
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Chapter 3

Synthesis, Characterization, and Oxygenation Studies of

Carboxylate-Bridged Diiron(ll) Complexes with Aromatic Substrates

Tethered to Pyridine Ligands and the Formation of a

Unique Trinuclear Complex



Introduction

Bacterial multicomponent monooxygenases (BMMs) are a class of enzymes that

catalyze the regio- and enantioselective oxidation of an array of hydrocarbons,

including alkanes, alkenes and aromatics. 1' 2 Enzymes belonging to this family

include soluble methane monooxygenase (sMMO), 3 toluene/o-xylene

monooxygenase (ToMO),4 '5 and phenol hydroxylase (PH).6 The hydroxylase (H)

components of these enzymes house a catalytic diiron center, coordinated by

four carboxylates from glutamate and two histidine ligands, that differ only in the

carboxylate binding modes and the ligation of water or hydroxide ion. The diiron

active sites of sMMOH in its reduced form and of the manganese(ll)-

reconstituted ToMOH, an accurate model of its reduced form, are depicted in

Chart 3.1.

H E243 E209 H20 E231 E197

E11 4A 'H20 E104A H O2 O O
H147 F;"F'O H246 H137 Mn OMn'O H234

SN H 2 Fe N N \H 2 /

N Y N N O N
E144 H H E134 H

sMMOH Mn2ToMOH

Chart 3.1.

The dioxygen activation mechanism of sMMOH has been studied in

detail.3 The reduced state of this enzyme forms a peroxodiiron(lll) intermediate

(MMOHperoxo) in a reaction with dioxygen, which converts to a high-valent

diiron(IV) species (Q). The latter is capable of C-H bond activation to oxidize

methane selectively to methanol. MMOHperoxo also functions as hydrocarbon

_:; ;___i__YLL~___~_I~1_~il~~~T-~lri----t-i - ri:iii;i ii --~-1-~I~I_11--^^---T--(X~---il_ -l~~~ili~~~i~-l~~i~i----lli---~~-- __lii-lill-l E~-__~_--i_-_--i_-_ -_iiiii-liiii-~iti ; ̂ ---i-i--l--i----~-~
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oxidant.7'8 In addition to methane, sMMOH is a competent oxidant for alkynes,

amines, and sulfides.9-13 In ToMOH and PHH, peroxodiiron(lll) intermediates are

the catalytically relevant species. In contrast to MMOHperoxo, these species have

featureless UV-vis absorption spectra and significantly different Mossbauer

spectroscopic parameters. 14

Inspired by the versatile oxidation chemistry catalyzed by these non-heme

diiron centers, we have been developing synthetic analogues to mimic enzyme

function and to gain insight into the complexities of their dioxygen activation

mechanisms. The introduction of sterically demanding m-terphenyl carboxylates,

depicted in Chart 3.2, has facilitated the synthesis of the diiron complexes having

the same ligand stoichiometry as that in non-heme diiron enzymes, namely, four

carboxylates and two neutral N-donors.15-17 The carboxylate ligands create a

protective, hydrophobic sheath around the diiron centers, similar to that in the

protein active sites, which prevents them from decomposition and offers excellent

solubility in organic solvents. The dinuclear core structures can be tuned by the

steric requirements of the carboxylate ligands, which results in doubly- triply-,

and quadruply bridged diiron complexes. 18

Attempts to oxidize external substrates by oxygenated diiron complexes

bearing sterically hindered m-terphenyl carboxylates have thus been

unsuccessful, presumably because the protective bulk around the diiron center

blocks substrate access. 1 9 -2 2 To circumvent this problem, the substrates were

tethered to the ancillary neutral donor ligands. With the use of this approach, C-

H activation of benzylic moieties in benzyl- and ethylpyridines,2 3 oxidation of
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sulfides and phosphines,24-26 and oxidative N-dealkylation reactions were

achieved.27-29 The extent of oxidation reflected the proximity of the substrate to

the diiron center, and little or no oxidation was observed when a substrate moiety

was installed in the meta or para position of the pyridine ligand.

0-0 F 010 F

ArTolC0 2 -  Ar4-FPhCO2 -

Chart 3.2

Models for ToMOH with polydentate, nitrogen-rich ligands have been

reported previously.30 32 In these studies, aromatic hydroxylation of the ligand

was observed, and in one case a peroxodiiron(lll) intermediate was

characterized.33 In the present work, we prepared synthetic model complexes for

ToMOH and PHH with a carboxylate-rich ligand environment, with aryl groups

tethered to the pyridine donor as potential substrates. The N-donor ligand 2-

(pyridin-2-yloxy)phenol was incorporated to supply phenol, a substrate for PHH.

Diiron complexes of this ligand displayed interesting coordination properties,

forming dinuclear and trinuclear complexes that were characterized by structural

and Massbauer spectroscopic methods. All iron complexes were analyzed by

single crystal structural X-ray methods. The dioxygen reactivity of these

compounds was investigated by UV-vis spectroscopy and by product analysis.
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Experimental

General Procedures and Methods. Tetrahydrofuran (THF), diethylether

(Et20), pentane, and dichloromethane (CH 2C12) were saturated with nitrogen and

purified by passage through activated alumina columns under an argon

atmosphere. Dry 1,2-dichloroethane (DCE) was purchased from Aldrich.

Dioxygen (99.994%, BOC gases) was dried by passing the gas stream through a

column of Drierite®. The synthesis and characterization of compounds [Fe 2(1 -

0 2CAr4-FPh) 2(O2CAr4-FPh) 2(THF)2]18 and [Fe 2(-0CArTO2 o')2(0CAAr T oI) 2(THF)2] 15 are

reported elsewhere. The ligands 2-(3-methoxyphenoxy)pyridine [2-(m-

MeOPhO)Py], 2-(4-methoxyphenoxy)pyridine [(2-(p-MeOPhO)Py], and 2-(pyridin-

2-yloxy)phenol [2-(o-HOPhO)Py] were prepared using modified literature

procedures.34 All other reagents were obtained from commercial sources and

used as received. Air sensitive manipulations were performed using Schlenk

techniques or under nitrogen atmosphere in an MBraun glovebox.

Physical measurements. FT-IR spectra were recorded on a Thermo

Nicolet Avatar 360 spectrometer with OMNIC software. Melting points were

acquired on an electrothermal Mel-Temp melting point apparatus. All gas

chromatographic studies were carried out on an Agilent 6890 gas chromatograph

attached to an Agilent 5973N mass selective detector. An HP-5ms (5%-phenyl-

substituted methylpolysiloxane) capillary column (30 m x 0.25 mm x 0.25 tim)

was used.

[Fe 2(/U-O 2CAr 4-FPh) 2(O 2CAr 4-FPh) 2(2-PhOPy)2] (1). A pale yellow solution of

[Fe 2(tt-O2CAr 4-FPh) 2(O2CAr4-FPh) 2(THF)2] (90.0 mg, 60.3 umol) in CH 2CI2 (3 mL)
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was combined with 2-phenoxypyridine (2-PhOpy; 20.7 mg, 121 Mmol) and

allowed to react for 10 min. Vapor diffusion of Et20 into the filtered solution

resulted in the formation of pale yellow crystals of I suitable for X-ray

crystallography. Yield: 43.0 mg (41%). FT-IR (KBr, cm- 1): 3106 (w), 3065 (w),

3035 (w), 2961 (w), 2846 (w), 1605 (s), 1569 (m), 1534 (m), 1511 (vs), 1489 (m),

1473 (s), 1454 (s), 1439 (s), 1410 (m), 1383 (m), 1281 (m), 1226 (s), 1204

(m),1159 (s), 1096 (m), 1014 (m), 892 (w), 859 (m), 845 (m), 839 (m), 807 (m),

789 (m), 774 (m), 752 (w), 733 (w), 712 (w). 691 (w), 579 (w), 555 (m), 528 (m),

478 (w), 460 (w). Anal. Calcd. for 1, Fe2F8 O10 N2C 98H62: C, 69.60; H, 3.70; N,

1.66. Found: C, 69.23; H, 3.83; N, 1.35. Mp: 163-165 oC (dec).

[Fe 2(-02CAr 4 FPh) 2 ( 2CArr4Ph2(2CAr4FPh 2(2-(m-MeOPhO)Py) 2 (2). A solution of 2-

(m-MeOPhO)py (32.3 mg, 161 Mmol) was added to a stirred suspension of

[Fe 2(1-O 2CAr4-FPh) 2(O2CAr4 -FPh) 2(THF)2] (120 mg, 80.4 Mmol) in 5 mL of CH 2CI2

and allowed to react for 10 min. After the yellow solution had been filtered, it was

subjected to Et20 vapor diffusion to yield pale yellow-green blocks of 2 suitable

for X-ray crystallography. Yield: 94.5 mg (70.0%). FT-IR (KBr, cm- 1): 3057 (w),

2961 (w), 2921 (w), 2851 (w), 1605 (s), 1573 (m), 1455 (m), 1437 (m), 1411 (m),

1262 (m), 1160 (m), 1142 (m), 1040 (m), 1017 (m), 853 (w), 80 (m), 788 (w), 770

(w), 712 (m), 555 (w). Anal. Calcd. for 2-0.25CH 2CI2, Fe2F80 12N2C 100.25Hs6.5Co.5:

C, 67.93; H, 3.78; N, 1.58. Found: C, 67.90; H, 3.88; N, 1.13. Mp: 158-160 OC

(dec).

[Fe 2(/-0 2CAr4-FPh) 2(0 2CAr 4-FPh) 2(2-(p-MeOPhO)Py) 2 (3). Pale yellow-

green X-ray quality crystals of 3 formed by vapor diffusion of pentanes into a
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reaction mixture of [Fe2(-O 2CAr4-FPh) 2(O2CAr4-FPh) 2(THF) 2] (120 mg, 80.4 ymol)

and 2-(p-MeOPhO)py (32.3 mg, 161 Mmol) in 5 mL of CH 2C12. Yield: 118 mg

(83%). FT-IR (KBr, cm- 1): 3065 (w), 2952 (w), 2837 (w), 1604 (s), 1547 (m), 1511

(s), 1473 (m), 1438 (m), 1277 (w), 1244 (m), 1222 (m), 1200 (m), 1160 (m), 1060

(w), 1016 (w), 846 (m), 809 (m), 793 (w), 775 (w), 735 (w), 713 (w), 550 (w).

Anal. Calcd. for 3, Fe2F80 12N2C 100 H66: C, 68.58; H, 3.80; N, 1.60. Found: C,

68.85; H, 3.95; N, 1.95. Mp: 165-167 0C (dec).

[Fe 2(P-0 2CArTro) 2(0 2CArTo)2(2-(o-HOPhO)Py) 2] (4). A pale yellow CH2C12

solution of [Fe2(-02O2CArT o)2 (O2C2(O2CArT) 2(THF)2] (50 mg, 34 umol) was combined

with a solution of 2-(o-HOPhO)Py (13 mg, 70 umol) and allowed to react for 10

min. Vapor diffusion of pentane into the lime-green filtered solution (total volume

2 mL) resulted in the formation of colorless crystals of 4 suitable for X-ray

crystallography. Yield: 49 mg (86%). FT-IR (KBr, cm- 1): 3050 (w), 3019 (w), 2917

(w), 2857 (w), 1605 (s), 1590 (s), 1574 (s), 1563 (s), 1515 (m), 1492 (m), 1472

(s), 1455 (m), 1437 (s), 1411 (m), 1378 (m), 1277 (s), 1253 (w), 1185 (w), 1148

(w), 1108 (w), 1094 (w), 1016 (w), 897 (w), 861 (w), 817 (w), 800 (m), 767 (m),

734 (m), 712 (w), 702 (w), 584 (w), 545 (w), 519 (w), 452 (w). Anal. Calcd. for 4

Fe 201 2N2C1 0 6 H8 6 : C, 75.27; H, 5.12; N, 1.66. Found: C, 74.75; H, 5.10; N, 1.93.

Mp: 118-120 'C (dec).

[Fe3(92-02CArTol)2(02CArTol)2(2-(o-P2-O-PhO)Py)2] (5). In a procedure

similar to that described above, a CH2CI 2 solution of [Fe 2(u-O 2CArT ol) 2

(O2CArTOI)2(THF)2] (47 mg, 32 ~umol) was combined with a solution of 2-(o-

HOPhO)Py (8.0 mg, 43 umol). The total volume of the resulting solution was ca.
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2.5 mL. After filtration of the solution, ca. 2 mL of Et20 was added and the lime-

green solution was subjected to vapor diffusion of pentane. Lime-green blocks of

5, suitable for X-ray crystallography, were harvested. Yield: 28 mg (80%). FT-IR

(KBr, cm- 1): 3054 (w), 3021 (w), 2916 (w), 2854 (w), 1604 (m), 1597 (m), 1572

(m), 1545 (s), 1514 (s), 1490 (s), 1472 (s), 1436 (s), 1411 (m), 1387 (s), 1286 (s),

1257 (s), 1181 (w), 1156 (w), 1110 (w), 1098 (w), 1022 (w), 898 (w), 859 (w), 834

(w), 817 (m), 800 (m), 785 (m), 768 (m), 753 (m), 738 (m), 715 (m), 699 (w), 582

(m), 552 (w), 527 (m), 455 (w), 425 (w). Anal. Calcd. for 5, Fe30 12 N2C 106H84: C,

72.94; H, 4.85; N, 1.61. Found: C, 72.89; H, 4.98; N, 1.59. Mp: 215-217 oC (dec).

X-ray Crystallographic Studies. Single crystals were taken directly from

the reaction vessel, coated with Paratone-N oil, and mounted at room

temperature on the tips of quartz fibers or nylon loops (OXFORD magnetic

mounting system), and cooled to 110 K under a stream of cold N2 maintained by

a KRYO-FLEX low-temperature apparatus. Intensity data were collected on a

Bruker (formerly Siemens) APEX CCD diffractometer with graphite-

monochromated Mo Ka radiation (k = 0.71073 A) controlled by a Pentium-based

PC running the SMART software package.35 The structures were solved by direct

methods and refined on F2 by using the SHELXTL-97 software. 36 37 Empirical

absorption corrections were applied with SADABS 38 and the structures were

checked for higher symmetry with PLATON. 39 All non-hydrogen atoms were

refined anisotropically. Hydrogen atoms were generally assigned idealized

positions and given thermal parameters equivalent to either 1.5 (methyl hydrogen

atoms) or 1.2 (all other hydrogen atoms) times the thermal parameter of the

li:__lllLl~~__~~_~~~11-~-~-~-~_-111--- ~~~~_*_11-1_------- -_._r__~_1ll -__)_1^ i
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carbon to which they were attached. The hydrogen atom of the hydroxyl group

(05) of the 2-(pyridin-2-yloxy)phenol ligand in 4 was located on a difference

electron density map. Complex 1 crystallizes without any solvent in the lattice. A

pentane and a CH 2CI 2 molecule share one position with a refined ratio of 73:27 in

compound 2. A molecule of CH 2CI 2 was identified in the asymmetric unit of

complex 3. In the structure of 4, a pentane molecule was disordered over two

positions with 58% and 42% occupancy. Complex 5 contains two molecules of

CH 2CI 2 per triiron unit. Crystal data, data collection parameters, and structure

refinement details for 1-5 are provided in Table 1.

M6ssbauer Spectroscopy. Mossbauer spectra were obtained on an MS1

spectrometer (WEB Research Co.) with a 57Co source in a Rh matrix maintained

at room temperature. All samples were enriched with 57Fe (40%) and prepared

from 57Fe(OTf)2-2MeCN, which was synthesized following a published

procedure.40 Solid samples of 4 and 5 were prepared by suspending ca. 15 mg of

pulverized compound in Apiezon N-grease and loading the suspension into a

nylon sample holder. Solution samples of 4 and 5 were prepared in benzene and

frozen. Data were acquired at temperatures ranging from 4.2 K to 200 K. The

isomer shift (6) values are reported with respect to natural iron foil that was used

for velocity calibration at room temperature. The spectra were fit to Lorentzian

lines by using the WMOSS plot and fit software.4 1

Oxidation Reactions. Solutions of 1-4 in CH 2CI2 prepared under

anaerobic conditions in a glove box and dry dioxygen was bubbled through these

solutions for at least 2-4 min at -78 OC. The reaction mixture was allowed to
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warm up to 25 OC and stirred overnight. For the analysis of the products from the

oxidation reaction, it was necessary to remove iron from the solutions. A

chelating resin, CHELEX-100®, was employed for this purpose. The resulting

pale-colored solutions were filtered and analyzed by GC-MS spectrometry by

comparing their properties to those of authentic samples.

UV-vis Spectroscopy Studies. UV-vis spectra were recorded on a

Hewlett-Packard 8453 diode array spectrophotometer. Solutions of [Fe 2] in

CH2CI2 or toluene under N2-atmosphere were cooled to -78 oC (acetone/dry ice)

in a custom-made quartz-cuvette, 1 cm pathlength, fused into a vacuum-jacketed

dewar. Dry 02 was bubbled through the solutions for 30 s, and UV-vis spectra

were recorded at various time intervals.

EPR Spectroscopy. X-band EPR spectra were acquired on a Bruker

EMX EPR spectrometer at the Department of Chemistry Instrumentation

Facilities at MIT running Bruker Win-EPR software. An OXFORD instruments

EPR 900 cryostat and an ITC503 controller were used to maintain the

temperature at 4 K. Samples were prepared by transferring 300 ML aliquots of a

3.0 M solution of 3 in CH2012 into EPR tubes under anaerobic conditions, which

were then septum-sealed. Dry dioxygen was bubbled through these solutions for

at least 20 s at -78 OC. The oxygenated solutions were frozen after 1, 2, 5, and

60 min reaction time at 77 K.



Table 3.1. Crystal Data and Details of Data Collection for 1-5.

Empirical formula

Formula weight

Crystal System

Space group

a (A)

b (A)

c (A)
(a (deg)

p (deg)

y (deg)

V (A3 )
Z

Pcalc (g/cm3)

Temperature (K)

y (Mo Ka), (mm')

8 limits (deg)

Crystal size (mm)

Completeness to 8

max, min peaks (e/A3 )

Total no. of data

No. of unique data

Goodness-of-fit on F2

R, (%)"

wR 2 (%)b

a R, = XItFoI-IFjI/IF ol,

Fe 2C 98H62N2010 F8

1691.20

Monoclinic

P2,/c

12.205(4)

24.088(7)

13.440(4)

97.980(6)

3913(2)

2-1.5C 5H12"0.5CH2CI2

Fe 2C 107.9H84.N 20 12FCI11
1902.33

Monoclinic

C2/c

23.578(5)

15.730(5)

25.052(6)

104.898(5)

8979(4)

2 4

1.435 1.407

110 110

0.456 0.438

2.28 to 25.68 2.12 to 27.12

0.08 x 0.10 x 0.20 0.10 x 0.10 x 0.15

99.9 % 99.9 %

0.691 and -0.678 0.680 and -0.940

57171 72313

7431 9902

1.112 1.104

6.34 6.17

11.91 14.31

wR 2 = (-[W(Fo-Fc )]/ [w(Fo )211Z

4-C5H12

Fe 2C 116 1 080 12N2

1833.74

Monoclinic

P21/c

16.035(3)

23.707(4)

13.007(2)

5-2CH2CI2

Fe3 C10 8H8 8012 N2 C14

1915.15

Orthorhombic

Pccn

25.648(5)

14.847(3)

23.726(5)

Table 3.1. Crystal Data and Details of Data Collection for 1-5. 3-2CH2C12

Fe 2C10 2H70N20 12F8CI4
1921.10

Triclinic

Pi

12.160(2)

13.918(3)

13.924(3)

105.674(3)

92.481(3)

106.665(3)

2154.9(7)

1

1.480

110

0.545

2.18 to 25.03

0.10 x 0.15 x 0.10

99.7 %

0.946 and -0.578

29990

7661

1.121

6.43

14.98

9035(3)
4

1.408

110

0.660

2.20 - 27.10

0.06 x 0.20 x 0.35

99.9 %

0.458 and -0.373

140867

9962

1.089
4.77

9.90

104.267(3)

4791.8(14)

2

1.272

110

0.368

2.16- 25.68

0.06 x 0.22 x 0.40

99.9 %

1.381 and -0.737

69173

9072

1.030

6.57

15.25
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Results and Discussion

Synthesis and Structural Characterization of [Fe2(/-0 2CAr4-FPh) 2(0 2 C-

Ar4-FPh) 2(L)2] with L = 2-PhOPy (1), 2-(m-OMePhO)Py (2), 2-(p-OMePhO)Py

(3). Reaction of [Fe 2(Y-O 2CAr4-FPh) 2 (O2CAr 4-FPh) 2(THF)2] with two equivalents of

N-donor ligand (L) led to the formation of the diiron(ll) complexes 1, 2, and 3

having the general formula [Fe2(-0 2CAr4-FPh) 2 (O2CAr4-FPh) 2(L) 2] in good yields

(Scheme 3.1).

\O-_- AOFe -ArO Ar

F O O O -0-

O O-0-Fe Fe-\-N-cAr Ar 0

N; /' O O A O-ArAr Ar

Scheme 3.1.

The structures of 1-3 are displayed in Figure 3.1 and pertinent bond

lengths and angles are listed in Table 3.2. Each compound adopts a windmill

geometry in which the iron atoms, related by a center of inversion, are
geometry in which the iron atoms, related by a center of inversion, are
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coordinated by two bridging carboxylates, a terminal carboxylate and a nitrogen

atom from a pyridine ligand. The geometric parameters of 1-3 are very similar.

The rather long Fe-Fe distances lie in a narrow range between 4.368 A and

4.424 A and are typical for doubly carboxylate-bridged diiron(ll) complexes.18

Table 3.2. Selected Interatomic Bond Lengths (A) and Angles (deg) for 1-4.

Ar

Ar'C O, ?'O3 N1
O-FelA Fel-0 2

N 0 04 O 1 Ar

Ar

1 2-1.5C5H 12  3-2CH 2C12  4-2C 5H12
-0.5CH2CI2

Fe(l)-Fe(1A) 4.3679(16) 4.4243(9) 4.4153(12) 4.2743(12)

Fe(1)-N(1) 2.133(3) 2.132(2) 2.137(3) 2.137(3)

Fe(1)-O(1) 2.237(2) 2.308(2) 2.344(3) 2.398(3)

Fe(1)-0(2) 2.089(2) 2.0590(19) 2.054(2) 2.054(3)

Fe(1)-0(3) 1.967(2) 1.946(2) 1.955(3) 1.927(3)

Fe(1)-0(4) 2.018(2) 2.0182(19) 2.026(2) 2.028(3)

0(1)-Fe(1)-0(2) 60.33(8) 60.13(7) 59.56(9) 58.43(9)

O(1)-Fe(1)-0(3) 93.09(9) 95.87(8) 96.37(9) 104.65(10)

0(1)-Fe(1)-0(4) 101.00(9) 97.13(7) 97.60(9) 88.28(10)

O(2)-Fe(1)-0(3) 133.53(9) 131.98(9) 135.09(10) 134.04(12)

0(2)-Fe(1)-O(4) 109.52(10) 112.63(8) 110.45(10) 109.22(11)

0(3)-Fe(1)-0(4) 112.81(10) 111.12(9) 109.89(9) 112.74(12)

0(1)-Fe(1)-N(1) 153.88(9) 149.56(8) 154.56(9) 147.91(10)

0(2)-Fe(1)-N(1) 94.81(9) 89.46(9) 95.49(10) 90.10(11)

0(3)-Fe(1)-N(1) 99.97(10) 105.01(9) 99.40(10) 102.12(12)

0(4)-Fe(1)-N(1) 94.67(10) 95.71(8) 95.5(1) 97.45(11)

0(2)-0(5) - - - 2.686(4)

Numbers in parentheses are estimated standard deviations of the last significant figures.



110

0(6A)

Figure 3.1. ORTEP diagrams of [Fe 2(-02CAr 4 F) 2 (2CAr4-FPh)2(2-PhOPy)2] (1),
[Fe 2(-0 2CAr4-FPh )2(O2CAr4-FPh) 2(2-(m-MeOPhO)Py) 2] (2), and [Fe2(-02C-

CA4FP)2(02CAr4-FPh) 2(2-(p-MeOPhO)Py) 2] (3) showing 50% probability thermal
ellipsoids for all non-hydrogen atoms. The 4-fluorophenyl groups of the
-O2CAr4-FPh ligands are omitted for clarity.
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Interestingly, a related diiron(ll) compound with 2-phenylthiopyridine, the

sulfur analog of 2-phenoxypyridine, adopts a rather different geometry and

stoichiometry.25 In this case, a triply bridged diiron(ll) complex forms having a

single pyridine donor bound to the diiron unit, the formula being [Fe 2(P-

0 2CArToI) 3(O2CArTI)(L)]. Chart 3.3 shows a comparison of this structure with that

of 1. The Fe-S distance in the thioether complex is 3.090 A, which indicates a

very weak interaction between the two atoms made possible by the larger size

and more diffuse orbitals of sulfur.2 6 In the case of the phenoxypyridine complex,

however, no bonding interaction is feasible at an Fe-O distance larger than 3 A

and the complex therefore adopts the typical windmill structure. It is unlikely that

the use of different carboxylates, -O 2CArTO' VS -O 2CAr 4 FPh, would affect the

coordination geometry.

Ar Ar\ Ar

o OIO "Ar

Ar Ar

Chart 3.3. Comparison of the structure of [Fe 2(M-O 2CArTo) 3(O2CAr ToI)(2-
PhSPy)]25 (left) with that of [Fe 2(Y-O2CAr4-FPh) 2(O2CAr4 FPh) 2(2-PhOPy)2] (1; right).

Synthesis and Structural Characterization of Compounds 4 and 5

with 2-(Pyridin-2-yloxy)phenol. Treatment of [Fe 2(t-O 2CArToI) 2(O2CArToI) 2

(THF)2] with 2-(pyridin-2-yloxy)phenol in CH 2CI2 resulted in a lime-green solution,
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which was initially subjected to vapor diffusion of pentane or Et20 to isolate the

product. We anticipated formation of a doubly bridged diiron complex having a

structure analogous to those of compounds 1-3. Colorless block-shaped crystals

of the diiron(ll) complex [Fe 2(-O0 2CArTo) 2(0 2CArTo) 2(2-o-HOPhOPy) 2] (4) were

isolated from the reaction mixture by pentane vapor diffusion in high yield

(Scheme 3.2). Complex 4 has a windmill structure, as occurs in 1-3, with each

iron center being pentacoordinate and an Fe-Fe distance of 4.2743(12) A. The

structure is shown in Figure 3.2 and selected bond lengths and angles are

compared to those of 1-3 in Table 3.2. The tethered phenol forms a strong

hydrogen-bond to an oxygen atom of a terminal carboxylate, the 0-0 distance

being 2.686(4) A. This compound is rather air-sensitive and the colorless crystals

readily turn black upon exposure to air. An attempt to incorporate meta- and

para-(pyridin-2-yloxy)phenol ligands into the diiron(ll) complex resulted in the

formation of colorless crystals, which suffered from loss of solvent and rapid

decomposition in air, which precluded their study by X-ray crystallography.

Ar- O

pentane vapor 0 O N O
diffusion O W Fe Fe 0  HO

O OH Ar
Ar, .,(, 0 0 Ar

0 - F +2 4 colorless crystals

Ar 
[Fe3( -02CAr T)2(02CArTol)2(2-(o-2-OPhOPY))2

lime-green reaction addition of Et2O,
mixture in CH2CI2  pentane vapor 5 lime-green crystals

diffusion

Scheme 3.2.
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When the reaction mixture from the synthesis of 4, which contained Et20,

was further subjected to vapor diffusion of pentane, lime-green crystals of the

triiron(ll) compound [Fe3(-O2CCA)2( ArTo)2(2-(o-p-OPhO)Py)2] (5) formed in

significant quantity (Scheme 3.2). Knowing the exact composition of 5 from its

crystal structure allowed us to adjust the stoichiometry of reagents to prevent

formation of the dinuclear compound 4 as a side product and the complex could

then be prepared in excellent yield (80%). Compound 5 has an unprecedented

triiron(ll) core, which is displayed in Figure 3.2. Selected bond lengths and

angles are listed in Table 3.3. Three iron(ll) atoms subtend an angle of 1340 at

the central atom, which resides on a two-fold symmetry axis. The two identical

neighboring iron atoms contain a pentacoordinate ligand environment and are

each connected to the central atom by a carboxylate and a phenoxide bridge. In

contrast to 4, the phenol is deprotonated, as deduced by charge considerations.

The 2-(pyridin-2-yloxy)phenoxide ligand connects all three iron atoms, which

gives rise to the bent Fe3 unit. The central iron atom has a rare four-coordinate,

pseudo-tetrahedral coordination environment with only O-atom donors, that has

not been previously been reported for triiron complexes. Other examples of

triiron(ll) complexes with carboxylate-bridges have been reported previously, but

they adopt a linear or nearly linear geometry for the iron atoms.42 -4 5 The

formation of 5 may be driven by the tendency of the phenoxide ligand to bridge

metal ions, as commonly encountered for polynuclear complexes containing

phenolic units.46
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0(1A)

Figure 3.2. ORTEP diagrams of [Fe2(-02CArTol)2(O2CArTo) 2(2-(o-HOPhO)Py)2]
(4) and [Fe3( 2-O2CArTo) 2 (O 2CArTo) 2(2-(o-2-O-PhO)Py)2 ] (5), showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. The tolyl groups of the
-0 2CArTo ligands are omitted for clarity.

Table 3.3. Selected Bond Distances and Angles for 5.

Fe(1)-Fe(2)
Fe(1)-N(1)
Fe(1 )-O(1)

Fe(1)-O(2)

Fe(1)-0(3)

Fe(1)-O(5A)

Fe(2)-O(4)

Fe(2)-O(5A)

Bond Length (A)
3.4127(6)

2.1133(19)
2.0505(16)
2.2931(17)

1.9715(16)

2.0596(16)

2.0306(16)

1.9856(15)

Fe(1)-Fe(2)-Fe(2)Fe(A)
Fe(1)-O(5)-Fe(2)
O(4)-Fe(2)-O(4A)

O(4)-Fe(2)-O(5)

O(5A)-Fe(2)-O(4)

O(5)-Fe(2)-O(5A)

Bond Angle (deg)
133.98

115.04(7)
104.85(9)
113.00(6)
98.18(6)

128.17(10)

Numbers in parentheses are estimated standard deviations of the last significant figures.

i~i i .
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M6ssbauer Spectroscopy. Zero-field M6ssbauer spectra of 4 and 5 were

acquired at 4.2 K and are displayed in Figure 3.3. For both compounds the

M6ssbauer isomer shift and quadrupole splitting parameters fall in the ranges 6 =

1.17 - 1.23 mm/s and AEQ = 2.91 - 3.08 mm/s, values typical for high-spin

diiron(ll) complexes.4 8 50 The spectra of powdered solid and benzene solution

samples of 4 were acquired and fit to a single quadrupole doublet with essentially

identical isomer shifts (6 = 1.23(2) and 1.22(2) mm/s) and quadrupole splitting

parameters (AEQ = 3.08(2) and 3.07(2) mm/s). The spectra of the solid displayed

a somewhat broader linewidth of F = 0.38 mm/s (vs F = 0.30 mm/s for the

solution sample). These values correspond to those generally observed in

carboxylate-rich diiron compounds with an NO 4 coordination environment.47 This

experiment also confirms that the dinuclear complex 4 stays intact in solution and

that there is no formation of the trinuclear species 5. The M6ssbauer spectrum of

a powdered sample of 5 was fit to a single, rather broad quadrupole doublet with

a linewidth of F = 0.45(2) mm/s, an isomer shift of 6 = 1.18(2) mm/s and a

quadrupole splitting parameter of AEQ = 2.92(2) mm/s (Figure 3B). Despite the

significantly different coordination environments of the two different iron sites in

this complex - four-coordinate for the central atom and five-coordinate for the

outer two iron atoms - their M6ssbauer parameters were nearly identical and the

two quadrupole doublets could not be resolved. This result is not surprising,

considering that the isomer shifts and the quadrupole splitting parameters fall

within a narrow range for high spin iron(ll) sites.4 7 An attempt to deconvolute the

overlapping signals by increasing the temperature stepwise from 4.2 K to 200 K,
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did not resolve the spectra. The temperature-dependent M6ssbauer parameters

of the samples are listed in Table 3.4. A frozen sample of 5 in a solution of

benzene was also measured and, like the solid sample, it revealed only a single,

broad quadrupole doublet (F = 0.49(2) mm/s) with Mgssbauer parameters of 6 =

1.24(2) mm/s and AEQ = 2.80(2).

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
Velocity (mm/s) Velocity (mm/s)

Figure 3.3. Zero-field Messbauer spectra [experimental data (+), calculated fit
(-)] of solid samples of 4 (A) and 5 (C) and solution samples of 4 (B) and 5 (D) in
benzene. All samples were recorded at 4.2 K, except sample D, which was
acquired at 90 K.
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Table 3.4. Mcssbauer Parameters for a Solid Sample of 5, Acquired at Different
Temperatures.

Temperature (K) 6 (mm/s) AEQ (mm/s) F (mm/s)

4.2 1.18(2) 2.92(2) 0.41

77 1.16(2) 2.88(2) 0.38

150 1.13(2) 2.76(2) 0.34

200 1.10(2) 2.67(2) 0.34

Dioxygen Reactivity Studies. Solutions of 1-3 in CH 2012 were exposed

to dioxygen at -78 OC and examined by UV-vis spectroscopy. Broad visible

absorption bands at Xnax = 700 and 710 nm (e = 500-600 M- 1 cm-1) for

compounds 2 and 3, respectively, grew in over 20 min. The spectra (Figure 3.4)

have features nearly identical to those previously reported for oxygenated

intermediates of related diiron complexes of m-terphenyl carboxylate ligands. 28 48-

50 The optical transitions can be assigned to an intervalence charge transfer

originating from a mixed-valent tetracarboxylate-bridged diiron(ll,lll) complex.4 8'4 9

1.5

a,
oC-)
Cu
Co 1.0

0.5

n

300 400 500 600 700 800 900

Wavelength (nm)

1.0

0.8

0.6

after
04 20 min

0.2

0
300 400 500 600 700 800 900

Wavelength (nm)

Figure 3.4. UV-vis spectra of 02 reactions, recorded at -78 OC in CH2C12, of
[Fe2(i-O2CAr4-FPh)2(2CAr4-FPh )2(2-PhOPy)2] (1, left), [Fe 2(t-O 2CAr4-FPh) 2(O2C
Ar4-FPh) 2(2-(m-OMePhO)Py) 2] (2, center), and [Fe 2(-O 2CAr4-FPh )2( 2CAr4-FPh) 2(2-
(p-OMePhO)Py) 2] (3, right), displaying the spectra of the diiron(ll) compound (---)
and the intermediates (-).

\ L after1

after 10 h

.-- -- -

Wavelength (nm)

r)
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200 1000 1800 2600 3400 4200 5000

H (Gauss)

Figure 3.5. X-band EPR spectra of frozen solution samples of 2 and oxygenated
2 recorded at 4 K. The spectra represent 1, 2, 5, and 60 min reactions of 2 with
dioxygen at -78 OC. The inset displays the decay of the signal at g = 2.0. The
signal at g = 4.3 arises from a small amount of high-spin Fe(lll) impurity.

The different electronic properties of the 2-PhOPy pyridine donor ligand vs those

in 2 and 3, which both contain methoxy-substituted phenoxypyridines, may

account for the absence of an absorption band around 700 nm in the reaction of

I with 02 at low temperature. EPR spectra of oxygenated solutions of 2,

recorded at 4.2 K, revealed two signals g = 9.1 and g = 2.0, which correspond to

a paramagnetic diiron(ll,lll) species with an S = 9/2 ground state and a

diiron(lll,IV) species with an S = 1/2 ground state, respectively (Figure 3.5). Both

species are present in significant quantities after 1 min of reaction time, but the

diiron(lll,IV) species decays and while the amount of diiron(ll,lll) species

increases over the time course of an hour. These two species form in a

I, ) "' - --i rr -L~ i -- i*-j = ...... __---i;- . -- :-i-
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previously established pathway of intermolecular electron transfer involving an

oxygenated high-valent diiron species and the diiron(ll) starting material.51 This

bimolecular reaction pathway is frequently observed for the oxygenation of

diiron(ll) complexes containing the -O2CArTl carboxylate ligand and has been

thoroughly investigated by resonance Raman, Mossbauer, UV-vis, EPR

spectroscopy, and X-ray crystallography.22,50 -52 The generation of the mixed-

valent diiron species depends on temperature, solvent, and geometry of the

diiron complex, but a detailed mechanism has not been established.

Solutions of 4 and 5 are remarkably air-sensitive and instantaneously turn

deep purple upon exposure to air. When toluene solutions of these complexes

were exposed to an excess of dioxygen at low temperature, the absorption

spectra (Figure 3.6) revealed intense phenoxide-to-iron(lll) charge-transfer bands

at Anax = 515 and 535 nm, respectively, which are characteristic for such

compounds.53,54 The UV-vis spectra of 4 and 5 are identical, displaying an

absorption at 385 nm, which can be assigned to an Fe(ll) - pyridine charge

transfer (MLCT) band.47 An X-band EPR spectrum of a freeze-quenched

oxygenated solution of 4 did not display a characteristic signal for a phenoxy

radical,55 so this species can be excluded. In general, these radicals are only

stable when the ortho and para positions of the phenol ring are blocked.

Phenoxy-substituents were appended to the pyridine ligands of the diiron

compounds in order to incorporate an aryl group close as a potential substrate

for oxygenation. The phenyl linker was chosen to provide additional flexibility and

to avoid a benzylic position that is readily oxidized as previously established for
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these types of compounds. 23 Methoxy- and hydroxy- substituents were included

to activate the phenyl ring toward electrophilic substitution, because

hydroxylation of aromatic substrates occurs by electrophilic attack on the i-

system, as it is observed for peroxo intermediates in sMMOH7 and ToMOH. 56

2.0 2.5

2.0
1.5

0.5 - 0.5

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

Figure 3.6. UV-vis spectra of 02 reactions, recorded at -78 OC in toluene. Left:
[Fe3( 2-O2CArT°l)2(O2CA rToI)2(2-(o-u2-O-PhO)Py)2] (5) (---); the intermediate after
30 min (-) and after 7 h (-.-). Right: [Fe2(p-O2CAr4-FPh) 2( 2CAr4-FPh) 2(2-
PhOPy) 2] (4) (---), the intermediate (-) after 3 h.

Analysis of the reaction mixture by GC-MS following oxygenation of the

diiron(ll) complexes 1-4, however, did not reveal oxidation of the N-donor ligand.

For the oxidation reaction of 3, the pyridine ligand was recovered quantitatively.

The reason for the failed oxidation may be explained by an inherent inability of

the intermediate to hydroxylate aromatic substrates. Although benzylic oxidation

was achieved in related diiron systems upon oxygenation,23 the C-H homolytic

bond dissociation energy is much larger in aromatic systems (85 kcal/mol vs ca.

----- -----
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110 kcal/mol, respectively). 57 Alternatively, the substrate moiety may be

unfavorably positioned with respect to the peroxodiiron(lll) unit. Unlike previous

diiron compounds with tethered substrates, the phenyl ring is located farther

away from the diiron center as found by X-ray crystallographic structural analysis

and might be sterically unable to approach the oxygenated diiron center.22 26 The

oxidation of tethered phosphine and sulfide groups in analogous diiron systems

revealed that the extent of oxidation diminishes when the substrate is

systematically moved away from the diiron center.24-26 In order to test this

hypothesis, the tethered substrates would need to be redesigned to bring them

closer to the diiron center. Alternatively, a diiron complex with less bulky

carboxylates could be used to reduce steric crowding at the dimetal center.

Conclusions

The palette of carboxylate-rich diiron(ll) compounds with tethered

substrates was expanded in this work. Previously, oxidation of sulfide,

phosphine, and benzyl-moieties and oxidative N-dealkylation were established

with these systems. A series of doubly bridged diiron(ll) complexes were

prepared with methoxy- and hydroxy-substituted phenoxypyridine ligands to

serve as substrates for aromatic hydroxylation following the introduction of

dioxygen. In the reaction of these diiron(ll) complexes with dioxygen no oxidation

of the aryl substituent was observed, indicating the importance of substrate

proximity to the diiron active site. Interesting coordination chemistry was

observed with the 2-(pyridin-2-yloxy)phenol ligand that led to the formation of two
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complexes of different nuclearity. In one case, the hydroxyl group on the

phenoxypyridine is protonated and a diiron(II) complex is formed. Upon

deprotonation, the phenoxide bridges two iron centers and an unprecedented

triiron(ll) core structure was obtained.
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Chapter 4

Modeling the Syn-Disposition of Nitrogen Donors in

Non-Heme Diiron Enzymes.

Synthesis, Characterization and Hydrogen Peroxide Reactivity of

Diiron(Ill) Complexes with the Syn N-Donor Ligand H2BPG 2DEV

Reproduced with permission from Journal of the American Chemical Society, in
press. Unpublished work copyright 2009 American Chemical Society.
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Introduction

Carboxylate-bridged non-heme diiron centers occur in a variety of

enzymes that activate dioxygen to catalyze key reactions in nature. 1-5 Members

of this class include ribonucleotide reductase (RNR-R2), 6-8 A9-desaturase

(A9D) 9,10 and the hydroxylase components of bacterial multicomponent

monooxygenases (BMMs). 11,12 Soluble methane monooxygenase (sMMOH),5

toluene/o-xylene monooxygenase (ToMOH), 13,14 and phenol hydroxylase (PHH)15

belong to the family of BMMs and function as catalysts for the selective oxidation

of hydrocarbons. Remarkably, despite their diverse roles in biology, the active

sites in these enzymes all share common structural features, a carboxylate-rich

environment with two histidine donors that are bound in a syn fashion with

respect to the diiron vector. 16 Representations of the active sites of some of

these enzymes in their reduced diiron(ll) forms are provided in Chart 4.1.

In these enzymes, dioxygen activation occurs following 2-electron

reduction of their diiron(lll) resting states to generate an 02-reactive diiron(ll)

species. Following reaction of this reduced form with dioxygen, peroxodiiron(lll)

intermediate species are generated that share common spectroscopic features.5

Resonance Raman spectroscopic studies of peroxo intermediates in RNR-R21 7

and A9D10 suggest a 1u-1,2-peroxo binding mode. Theoretical analysis of the

peroxo intermediate in sMMOH, for which no vibrational spectroscopic data are

yet available, find a f-r12: 2-peroxo butterfly structure to be more stable,18 and

pH-dependent studies of the dioxygen activation chemistry indicate that proton

transfer reactions,1 9 most likely involving some kind of hydroperoxo intermediate,

::;;~i~rl ~l-~-i~~L--u~~i^f"C~"~~'l~i~:; I-(_~____j~~i__iii;i~i--.llil i--~--lll-~l?~~l~__l~1
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are involved. Recently, novel peroxodiiron(lll) transient intermediates were

observed in the ToMOH and PHH systems, having no visible or near-IR optical

bands, notably different Mossbauer parameters, and possibly a different

coordination mode.12,20 Peroxodiiron(lll) intermediatess in these enzymes can in

some cases undergo 0-0 bond cleavage to form high-valent species, such as

the mixed-valent (-oxo)diiron(lll,IV) intermediate X in RNR-R26 and the

methane-oxidizing di(y-oxo)diiron(IV) intermediate Q in sMMO. 21'22 Elucidating

the structures of these oxygenated intermediates remains an important

challenge.

0., E243 E209 E229 0 E238 E204

E114 'H20 O O E105 0  - O E196 D84 E204

e.F"e" H246 H146 O-Fe F.-O H232 Fe Fe H241, \"OH 2/''. \ \ /,.N

0 K No N K
H EN N E143 N H E115 NE144 H H H H

sMMOH A9D RNR-R2

Chart 4.1.

Significant effort has been expended to construct model complexes that

mimic the active site structures and functions of non-heme diiron enzymes.23' 24

These studies have predominantly been conducted to probe the mechanism of

02 activation, the influence of structure on reactivity, and the requirements of

iron-based catalysts for hydrocarbon oxidation. Two general ligand motifs have

been extensively employed in the construction of these model complexes,

namely, sterically encumbering 2,6-diarylbenzoate and tris(2-pyridylmethyl)amine

(TPA)-based ligands (Chart 4.2).23-26 Whereas the former group of ligands
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facilitates formation of diiron(ll) complexes with the same composition as the

enzyme active sites, TPA-based constructs afford complexes that react with

dioxygen to generate species more closely resembling intermediates observed

spectroscopically in the reactions of BMMs with dioxygen. A structural feature

that neither of these ligand motifs can rigidly enforce, however, is the syn

orientation of the nitrogen donors with respect to the diiron vector. This feature

may be important and it is likely that nature did not choose such a

stereochemistry arbitrarily. The significance of the syn N-donor disposition of

imidazoles from histidine residues with respect to the diiron vector is still unclear,

although preliminary DFT calculations on intermediate Q of sMMOH suggest that

a stereoelectronic effect derived from this configuration tunes its reactivity.27

Apart from their inability to enforce syn N-donor character, terphenylcarboxylate-

and TPA-based ligands are not pre-organized to stabilize a diiron core, which

can lead to dissociation or aggregation to form monomeric or oligomeric species,

respectively. To address these issues, we have been exploring N-donor ligands

that are covalently tethered by a diethynylbenzene unit.16 ,28-31 Selection of this

moiety as the appropriate linker fixes the nitrogen donor atoms at a distance and

orientation similar to that in the enzymes. Of particular interest is the 1,2-

bis(pyridin-3-ylethynyl)benzene scaffold, because of convenience in

functionalizing the pyridine moiety, as demonstrated in the synthesis of several

ligands based on this platform. 29

In the present chapter the synthesis of the syn N-donor ligand

H2BPG 2DEV (Chart 4.2) and three of its derivatives containing oxo-bridged

~XIlliii~ i il-~?jr -i~l----- iil-I- lll~-R -^-i7- I-~-:-.F- -(- _ . -il;l-;l-LXXi~-_~~~~i--~j~i--~-~l-i-l~- .
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diiron(lll) cores are reported. Two tripodal N,N'-bis(2-pyridylmethyl)-3-

aminoacetate (BPG-) units bridged by diethynylveratrole converge to incorporate

diiron centers and provide carboxylate groups that more accurately represent the

aspartate and glutamate residues of non-heme diiron enzymes than earlier

constructs. We describe how this dinucleating ligand stabilizes the oxo-bridged

diiron(lll) cores and considerably influences the chemical and physical properties

of a peroxodiiron(lll) intermediate generated by addition of hydrogen peroxide.

R R
N

ArToICO2-, R = CH3  " N
Ar4-FPhco02, R = F CO2H
ArMeS 2-, R'= R= CH3

0 CO 2H

N

NN 
N

N ~H
2 BPG 2 DEV

6-Me 3-TPA

Chart 4.2.

Experimental Section

General Procedures and Methods. Reagents were purchased from

commercial sources and used as received. Acetonitrile (CH 3CN),

dichloromethane (CH 2C12), and tetrahydrofuran (THF) were saturated with

nitrogen and purified by passing though activated alumina columns under argon.

Triethylamine (Et3N) was distilled from CaH 2. The compounds (5-bromo-pyridin-
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2-yl)methanol (2b),32 [(pyridin-2-ylmethyl)amino]acetic acid ethyl ester (3),33 4,5-

diethynylveratrole (DEV), 31 and (Et4N)2[Fe2(-O)CI 6]34 ,35 were prepared using

methods described in the literature. The compound 2,6-diisopropoxybenzoic acid

(HO2CArip ro) was synthesized by using a modified literature procedure.36

Caution! The perchlorate salts used in this study are potentially explosive and

should be handled with care!

Physical Measurements. NMR spectra were recorded on a Varian 300

.spectrometer in the Massachusetts Institute of Technology Department of Chem-

istry Instrument Facility (MIT DCIF). All spectra were recorded at ambient probe

temperature, 293 K. IR spectra were taken on a Thermo Nicolet Avatar 360 spec-

trometer with OMNIC software. Mass spectra were recorded in electrospray ioni-

zation mode. ESI-MS data were obtained with an Agilent 1100 series LC/MSD

mass spectrometer. UV-vis experiments were performed on a Cary 50 spectro-

photometer.

[(5-Bromo-pyridin-2-ylmethyl)-pyridin-2-ylmethyl-amino]acetic Acid

Ethyl Ester (4). A solution of (5-bromo-pyridin-2-yl)methanol (2b) (4.69 g, 24.9

mmol) and Et3N (4.53 mL, 32.4 mmol) in THF (95 mL) was cooled to 0 oC and

treated dropwise with methanesulfonyl chloride (MsCI; 2.32 mL, 29.9 mmol). The

mixture was warmed to room temperature, stirred for 2 h, and then combined

with aqueous NH 4CI (200 mL). The aqueous phase was extracted with CH 2CI2 (3

x 200 mL) and the organic layers were dried (Na 2SO4), filtered, and concentrated

to afford a solid (6.78 g, quant) that was used without further purification. This

purple solid, K2C03 (4.12 mg, 29.9 mmol), and [(pyridin-2-ylmethyl)-amino]-acetic

;;l____(_~_____lil/iU~_~l~_~i_~_l___r_; i
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acid ethyl ester (3) (5.80 g, 29.9 mmol) were stirred overnight in CH 3CN (100

mL). During this period the color changed from purple-red to orange. The

reaction mixture was combined with CH 2CI2 (300 mL) and the organics were

washed with aq Na2CO 3 (3 x 100 mL). The organic layer was dried (Na 2SO 4),

filtered, and evaporated to dryness. The crude product was purified by column

chromatography (alumina; EtOAc/hexanes, 1:3) to give 4 as a yellow oil, which

was identical to the compound synthesized previously as judged by 1H NMR

spectroscopy and ESI-MS.2 9 Yield: 7.92 g (87%). 1H NMR (300 MHz, CDC13):

6 = 8.56-8.50 (m, 2H), 7.67-7.61 (dt, J = 1.8, 7.5 Hz, 1H), 7.29 (d, J = 8.1 Hz,

1H), 7.17-7.12 (m, 2H), 4.19-4.11 (q, J= 7.2 Hz, 2H), 3.96 (s, 2H), 3.94 (s, 2H),

3.44 (s, 2H), 1.27-1.22 (t, J = 7.2 Hz, 3H). LRMS (ESI) calcd for

C16H18BrN 30 2Na [M+Na] : 386, found: 386.

Et2BPG2DEV-2HCI (5-2HCI) (Diethyl 2,2'-(5,5'-(4,5-dimethoxy-1,2-

phenylene)bis(ethyne-2,1 -diyl)bis(pyridine-5,2-diyl))bis(methylene)bis((py-

ridin-2-ylmethyl)azane-diyl)diacetate) Hydrochloride. 4,5-Diethynylveratrole

(0.474 g, 2.55 mmol), 4 (1.82 g, 5.03 mmol), [Pd(PPh3)4] (0.250 g, 0.216 mmol),

Et3N (3.6 mL, 26 mmol), and THF (24 mL) were combined in a sealed tube under

an inert atmosphere and stirred for 2.5 d at 60 oC. After the reaction mixture was

cooled to room temperature, it was combined with EtOAc (50 mL) and washed

three times with a solution of Na2CO 3 (aq.), dried over Na2SO 4, filtered, and

evaporated to dryness. The crude material was purified by column

chromatography (alumina; EtOAc/hexanes, 1:1-1:0) to give 5 as thick yellow oil.

"H NMR spectroscopy confirmed complete conversion to the desired product, but
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a phosphine oxide impurity was observed. To purify the material, the

hydrochloride salt of the amine, 5.2HCI, was synthesized. The oil was dissolved

in ca. 100 mL of EtOAc and ca. 4 mL of a solution of HCI in Et20 (2 M) was

added dropwise with stirring until no further precipitation occurred. The yellow

solid was filtered off and dried in vacuum. Yield: 1.20 g (57%). 1H NMR (300

MHz, CD 30D): 6 = 8.92 (m, 2H); 8.89 (m, 2H); 8.54 (dt, J = 1.5; 7.8 Hz, 2H);

8.37 (dd, J = 2.1, 9.0 Hz, 2H); 8.07 (d, J = 7.8 Hz, 2H); 8.00-7.96 (m, 2H); 7.90

(d, J = 8.4 Hz, 2H); 7.25 (s, 2H); 4.58 (s, 4H); 4.56 (s, 4H); 4.18 (q, J = 7.2 Hz,

4H); 3.92 (s, 6H); 3.74 (s, 4H); 1.25 (t, J = 7.2 Hz, 6H). 13C NMR (125 MHz,

CD 30D): 6 = 171.27, 154.21, 153.90, 151.40, 147.44, 146.96, 145.77, 142.35,

127.61, 127.31, 126.77, 122.78, 117.88, 115.47, 94.90, 86.30, 61.68, 56.97,

56.48, 56.24, 54.90, 13.87. HRMS (ESI) calcd for [M+H] : 753.3397, found:

753.3397. IR (KBr, cm- 1): 2979 (m), 2914 (m), 2611 (m), 2214 (m, vc-c), 1731

(s), 1614 (m), 1593 (m)-, 1511 (s), 1464 (m), 1371 (m), 1251 (s), 1215 (s), 1155

(m), 1086 (m), 1024 (m), 987 (m), 858 (w), 772 (w). Mp: 103-105 OC.

H2BPG 2DEV (5a), 2,2'-(5,5'-(4,5-Di methoxy-1,2-phenylene)bis(ethyne-

2,1 -diyl)bis(pyridine-5,2-diyl))bis(methylene)bis((pyridin-2-ylmethyl)azane-

diyl)diacetic Acid. An aqueous solution of 5-2HCI (0.55 g, 0.67 mmol) and KOH

(1.4 g, 25 mmol) were combined to yield a total volume of 100 mL. The resulting

suspension was heated to 60 'C under a nitrogen atmosphere for ca. 4 h. After

cooling down to room temperature, the reaction mixture was acidified with dilute

HCI to pH 5 and the product was extracted with CH2C12. The organic phase was

dried over Na 2SO 4, filtered, and reduced to dryness to yield a yellow-brown solid.

~;'" i- il-i -lli~~~~;-~:-:LO: ----;~-- i iil'-' r~-i:~,~;~:~-ii i:~; _~.- .~~-1- --------- ~-
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Yield: 0.42 g (91%). 1H NMR (300 MHz, CDCI 3): 6 = 13.11 (s, 2H), 8.68 (m, 2H),

8.58 (m, 2H), 7.73 (m, 4H), 7.35 (m, 4H), 7.24 (m, 2H), 7.03 (s, 2H), 4.13 (s, 4H),

4.07 (s, 4H), 3.94 (s, 6H), 3.57 (s, 4H). 13C NMR (125 MHz, d6-DMSO): 6 =

173.44, 160.29, 160.05, 151.76, 150.64, 149.93, 139.86, 137.83, 123.93, 123.65,

123.40, 118.94, 118.40, 115.49, 92.16, 90.19, 60.32, 60.22, 57.00, 55.46. HRMS

(ESI) calcd for [M+H] : 697.2770, found: 697.2770. IR (KBr, cm- 1): 3054 (w),

3002 (w), 2912 (w), 2832 (w), 2206 (w, vc-c), 1714 (m), 1637 (w), 1593 (m),

1551 (w), 1511 (s), 1437 (m), 1401 (m), 1359 (m), 1248 (s), 1215 (s), 1149 (m),

1119 (m), 1085 (m), 1024 (m), 993 (m), 858 (w), 761 (m), 722 (m), 695 (m), 649

(w), 621 (w), 541 (m). Mp: 60-62 OC.

[Fe 2(/p-O)(H 20) 2BPG2DEV](CIO 4)2 (6). To a solution (2 mL; CH 3CN/H 20,

10:1) of Fe(CI0 4)3.9H 20 (77 mg, 150 umol) was added a suspension of 5a (50

mg, 72 ymol) in the same solvent mixture (2 mL). The color instantly changed to

deep-red and the resulting solution was stirred for ca. 5 min. After filtration, the

solution was subjected to vapor diffusion of Et20 to yield crystalline red plates

that were analyzed by X-ray crystallography. The yield of crystalline material was

highly dependent on the H20 content of the solution. Yield: 60 mg (78%). X-ray

diffraction quality crystals were grown from vapor diffusion of Et20 into a solution

of 6 in CH 30H and H20. LRMS (ESI) calcd for [M-H]*: 857.1, found: 875.2. IR

(KBr, cm- 1): 3430 (m), 3073(w), 2921 (w), 2854 (w), 2210 (w, vc-c), 1608 (s),

1590 (s), 1550 (m), 1512 (s), 1492 (m), 1462 (w), 1446 (m), 1402 (w), 1367 (m),

1348 (m), 1301 (w), 1286 (w), 1250 (s), 1212 (m), 1099 (vs), 1086 (vs), 1024 (m),

992 (w), 927 (w), 902 (w), 807 (m, ve-O-Fe), 768 (m), 731 (w), 667 (w), 651 (w),
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622 (m), 570 (w), 476 (w), 423 (w). Anal. Calcd. for 6-2CH 30H

C42H46N60 19C12 Fe2: C, 44.98; H, 4.13; N, 7.49. Found: C, 45.18; H, 4.19; N, 7.12.

UV-vis (CH 3CN:H 20, 10:1) (Omax, nm (e, M- 1 cm- 1)): 480 (440). Mp: 175-180 OC

(dec).

Synthesis of [67Fe 2(P-O)(H 20) 2BPG 2DEV](ClO 4)2 (57Fe-6): A solution of

AgCIO 4 (38 mg, 181 umol) in MeCN/H 20 (10:1, v/v) was added to a solution of

57 Fe-enriched FeCI3-6H20 (16 mg, 60 umol; 50% enriched) prepared by

dissolution of metallic iron with aqueous HCI (37%) and subsequent evaporation

of the solvent to yield an orange solid. After the voluminous precipitate was

filtered off, a solution of 5a (20 mg, 29 umol) was added to the orange filtrate

generating a deep-red reaction mixture, which was subjected to Et20 vapor

diffusion. Dark red crystals of 57Fe-6 formed in one day, were washed with Et20,

and dried at room temperature. Yield: ca. 15 mg (50%).

[Fe 2(/-O)(p-02CAriro)BPG 2DEV](ClO 4) (7). Method A. A red CH 30HI

CH2CI2 (1:1) solution of 6 (63 mg, 60 Mmol) was allowed to react with HO 2CAr ' ro

(21 mg, 90 Mmol) in the presence of NEt 3 (40 uL) to form an intense green

solution. Clusters of green needles were isolated by vapor diffusion of Et20 into

this reaction mixture. Yield: 40 mg (57%). Method B. A CH 30H/CH2CI2 (1:1)

solution of Fe(CIO04)3-9H20 (77 mg, 150 Mmol) was combined with HO 2CArPrO (19

mg, 79 Mmol) and NEt 3 (60 ML). To this reaction mixture, a solution of 5a (50 mg,

72 Mmol) was instantly added and the resulting deep green solution was stirred

for 10 min, filtered, and subjected to vapor diffusion of Et2O. Deep green needle-

shaped crystals, suitable for X-ray crystallographic analysis, were isolated. Yield:
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38 mg (46%). LRMS (ESI) calcd for [M-CIO 4]: 1059.2, found: 1059.5. IR (KBr,

cm- 1): 3076 (w), 2975 (w), 2930 (w), 2211 (w, vc-c), 1645 (s), 1608 (s), 1593 (s),

1530 (s), 1513 (s), 1459 (s), 1422 (s), 1372 (m), 1356 (m), 1332 (m), 1289 (m),

1249 (s), 1087 (vs), 1024 (m), 996 (w), 923 (w), 906 (w), 848 (w), 834 (w), 771

(m, We-O-Fe), 729 (w), 668 (w), 623 (m), 551 (w), 512 (w). Anal. Calcd for

7-0.5CH 2C12, C53.5H53N60 15Cl2Fe 2: C, 53.43; H, 4.44; N, 6.99. Found: C, 53.84; H,

4.87; N, 7.08. UV-vis (CHCI 3:CH 30H, 1:1) (Amax, nm (e, M- 1 cm- 1)): 642 (130);

522 (sh, 218); 490 (730); 475 (sh, 569); 436 (sh, 1171); 413 (1577). Mp: 195-200

OC (dec).

[Fe 2(p-O)(p-CO3)BPG 2DEV] (8). A solution (6 mL, CH 2CI2/CH30H, 1:1) of

5a (100 mg, 144 pmol) and Et3N (40 mL, 290 pmol) was added dropwise to a

solution (7 mL, CH 2C12/CH 30H, 1:1) of (Et4N) 2[Fe 2(t-O)Cl6] (87 mg, 144 umol).

Solid Ag2CO 3 (159 mg, 576 ymol) was then added to the brown solution. The

resulting suspension turned green and was allowed to react for ca. 45 min. The

mixture was filtered and subjected to vapor diffusion of Et20. After 2-3 days,

emerald-green needles of 8 were harvested that were suitable for X-ray

crystallography. Yield: 93 mg (73%). LRMS (ESMS) calcd for (M+H) : 883.1,

found: 883.0; calcd for (M-CO 3+OH) : 839.1, found: 839.2. IR (KBr, cm-1 ): 3065

(w), 2956 (w), 2920 (w), 2846 (w), 2210 (w, vc=c), 1617 (s), 1610 (s), 1571 (w),

1533 (m), 1513 (s), 1495 (m), 1444 (m), 1403 (w), 1383 (w), 1358 (m), 1321 (m),

1304 (m), 1289 (m), 1272 (w), 1248 (m), 1214 (m), 1182 (m), 1158 (w), 1142 (w),

1123 (w), 1102 (w), 1087 (w), 1055 (w), 1040 (w), 1024 (w), 997 (w), 927 (w),

908 (w), 860 (w), 847 (w), 838 (w), 770 (m, VlFe-O-Fe), 742 (w), 695 (w), 663 (w),
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564 (w), 552 (w), 528 (w), 460 (w), 437 (w), 423 (w). UV-vis (CHCI3:CH 30H, 1:1)

(Anax, nm (e, M-1 cm-)): 638 (124); 517 (193); 487 (567); 473 (sh, 342); 411

(1576). Anal. Calcd for 8-0.75CH 2CI2, C41. 75H35.5N60 10CI1.5Fe 2: C, 53.00; H, 3.78;

N, 8.88. Found: C, 52.99; H, 4.27; N, 9.10. Mp: 150-155 OC (dec).

X-ray Crystallographic Studies. Intensity data were collected on a

Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo Ka

radiation (k = 0.71073 A), controlled by a Pentium-based PC running the SMART

software package.37 Single crystals were mounted on the tips of glass fibers,

coated with Paratone-N oil, and cooled to 110 K under a stream of N2 maintained

by a KRYO-FLEX low-temperature apparatus. A total of 2800 frames were

collected for each compound. The structures were solved by direct methods with

the aid of successive difference Fourier maps and refined on F2 by using the

SHELXTL-97 software included in the SHELXTL software package. 38 39 Empirical

absorption corrections were applied by using the SADABS program,40 and the

structures were checked for higher symmetry with the PLATON software. 41 All

non-hydrogen atoms were located and their positions refined with anisotropic

thermal parameters by least-squares cycles. All hydrogen atoms were assigned

to idealized positions and given thermal parameters equivalent to either 1.5

(methyl hydrogen atoms) or 1.2 (all other hydrogen atoms) times the thermal

parameter of the carbon atoms to which they were attached. The hydrogen

atoms of 08 and 09 of the H20 ligands in the diiron(lll) complex 6 and of 01W

were located from the difference map and their bond distances to the

corresponding oxygen atoms restrained using a DFIX command. Crystal data,
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data collection parameters, and structure refinement details for all compounds

are provided in Table 4.4.

Compound 6 crystallizes with three molecules of H20 and one molecule of

CH 30H as solvent. One of the solvent water molecules is hydrogen-bonded to

methoxy groups located on the backbone of the BPG 2DEV 2- ligand and the other

two water molecules were extensively disordered over several positions. These

regions of diffuse solvent were modeled by applying a bulk solvent correction

using the SWAT command in SHELXTL.38 The water ligands on the diiron(lll)

complex 6 form strong hydrogen bonds to neighboring BPG 2DEV 2- ligands in the

crystal. The hydrogen-bonding network is displayed in Figure 4.2. Two

perchlorate anions (CIO4-) are also present in the unit cell. One of them is

disordered over two positions with an occupancy ratio of 71:29. The other anion

is disordered over two positions with an occupancy ratio of 59:41, sharing the

location with a disordered CH 30H molecule. In 7 there are two molecules in the

asymmetric unit. One methyl group of a bridging carboxylate (-O 2CArPrO) is

disordered over two positions in a ratio of 49:51. Three molecules of CH 30H

were located in the crystal structure of 7, each hydrogen-bonded to an oxygen

atom of a carboxylate group of the BPG 2DEV 2- ligand, respectively. Molecules of

CH 2C02 and water, the latter with 50% occupancy, were also located. A molecule

of CH 2CI 2 and CH 30H share a common position with occupancies of 56% and

44%. In the crystal structure of 8, five molecules of CH 30H and one molecule of

water were found. One of the former is disordered over two positions with a ratio

of 53:47. Two of the CH 30H molecules form hydrogen bonds to the carbonate
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ligand on 8. The water molecule is disordered over two positions with 64% and

36% occupancy, respectively.

M6ssbauer Spectroscopy. M6ssbauer spectra were recorded on an MSI

spectrometer (WEB Research Company) with a 57Co source in a Rh matrix

maintained at room temperature. Solid samples of 6, 7, and 8 were prepared by

suspension of 13 to 20 mg of the powdered solids in Apiezon M grease and

placed in a nylon sample holder. Solution samples of reaction intermediates 8a

and 7a were prepared by respectively treating suspensions (ca. 0.8 mL) of the

oxo-bridged diiron complexes 8 (ca. 20 umol, CH 3CN/H 20, 1:1) and 7 (ca. 10

Mmol, CH 30H/H20, 4:1) with Et3N (15 juL) followed by addition of aqueous

solution of H20 2 (50 yL, 30%). After ca. 1 min, the red-brown reaction mixture

was transferred to a sample holder and instantly frozen in liquid N2. A sample of

6a was prepared similarly, but using a more dilute solution (ca. 2 Mmol,

CH 30H/H20, 20:1) of 57Fe-enriched complex 6, 57Fe-6, which was allowed to

react with Et3N (5 yL) and excess H20 2 (10 1 L, 30%) for ca. 40-50 s and then

frozen instantly. Data were acquired at 4.2 K and 90 K, and isomer shift (6)

values are reported relative to the room temperature M6ssbauer spectrum of a

metallic iron foil, which was used for calibration of the velocity scale. The spectra

were fit to Lorentzian lines with the WMOSS plot and fit program. 4 2

Resonance Raman Spectroscopy. Resonance Raman (RR) spectra

were obtained on a custom built McPherson 2061/207 spectrometer equipped

with a Princeton Instrument liquid-N2 cooled CCD detector (LN-1100PB).

Excitation at 647, 568, and 413 nm was provided by a Kr laser (Innova 302,
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Coherent) and 514- and 488-nm excitations by an Ar laser (Innova 90,

Coherent). The laser beam was kept at low power, between 40 and 10 mW, and

was focused with a cylindrical lens onto frozen samples in NMR tubes. Long

wave pass filters (RazorEdge filters, Semrock) or super-notch filters (Kaiser Inc.)

were used to attenuate Rayleigh scattering. Sets of ~ 4 min accumulations were

acquired at 4-cm-1 resolution. Frequency calibrations were performed using

aspirin and are accurate to ±1 cm- 1. The samples were subjected to continuous

spinning at 110 K to prevent adverse effects from laser illumination. Regular

visual inspection of the sample colors during the course of the RR experiments

and comparison of consecutive RR spectra provided a reliable means to evaluate

photobleaching of species of interest.

EPR Spectroscopy. X-band EPR spectra were acquired on a Bruker

EMX EPR spectrometer (9.37 GHz) with WinEPR software at the Department of

Chemistry Instrumentation Facilities at MIT (DCIF). An OXFORD instruments

liquid helium cryostat with an ITC503 controller was used to regulate the

temperature. A 3.0 mM solution of 8 in MeCN/H 20 (2:1; v/v) was prepared. One

aliquot was transferred to an EPR tube and frozen; another was allowed to react

with 10 uL of NEt3 and 175 yL of hydrogen peroxide (30%) until a maroon-

colored solution formed, after which the reaction was freeze-quenched. Standard

solutions of Cu(OTf)2 in H20 at concentrations of 2.0 mM and 5.0 mM were

prepared for spin quantification.

Electrospray Ionization Mass Spectrometry of the Peroxo

Intermediate. Products 6a, 7a, and 8a, which result from reaction of H20 2 and
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NEt3 with 6, 7, or 8, respectively, and the isotope-labeled species 7a, were

identified by ESI-MS using a Finnigan LTQ ion trap mass spectrometer

maintained at the Department of Chemistry, Tufts University. High-resolution

mass spectra of these intermediates were also acquired on a Bruker Daltonics

APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass

Spectrometer (FT-ICR-NS) at the MIT DCIF. The samples were prepared by

addition of a 50-100 fold excess of a 2% aqueous H20 2 solution containing 5

equiv of NEt 3 to solutions of the diiron(lll) complexes (ca. 1-2 mM) in solvent

mixtures of CH 3CN/H 20 (ca. 4:1) or CH 30H/CH2CI2 (ca. 1:1). The peaks of

interest were confirmed by comparison of the observed and calculated m/z

values including isotope patterns.

Reaction of 6, 7, and 8 with H20 2 and Quantification of 02 Evolution.

In order to quantify the amount of dioxygen formed during hydrogen peroxide

decomposition, 2 mL of a 0.4 mM solution of the diiron complex were placed in a

25-mL round-bottom flask equipped with a stir bar. The flask was then tightly

sealed with a rubber septum and electrical tape. The solution was treated with

ca. 5 yL of NEt3 and cooled to 0 oC before H20 2 was added through the septum

with a syringe. The concentration of diiron complex was kept constant by

adjusting the final volume of the reaction mixture. The reaction flask was

connected by a cannula to an inverted graduated cylinder, filled with H20, and

the amount of 02 generated was determined applying the ideal gas law. In the

case of 6, the solution was thoroughly purged with nitrogen to remove any traces
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of C002 that can potentially react with 6 under basic conditions to form the

carbonato-bridged complex 8.

Substrate Oxidation Studies. Oxidation reactions were carried out under

an inert atmosphere of N2 (g). In each experiment, cis-cyclooctene (0.26 mL, 2.0

mmol) and NEt 3 (5 ML) were added to 2.0 mL of a 1.0 M solution of 6 or 7 in

CH 3CN/H 20 (95:5) at 25 oC. To this mixture, H20 2 (97 uL, 10.3 M; diluted with

CH 3CN to a total volume of 400 ML) was added by syringe pump over a period of

one h. After stirring for an additional 2h, the products were determined by GC

analysis. The structures of the products were confirmed by GC-MS spectrometry,

and by comparison with authentic samples.

Results and Discussion

Synthesis of H2BPG 2DEV (5a). Previously we reported an efficient route

to a new family of diethynyltriptycene-linked dipyridyl ligands, including

Et2BPG 2DET (DET = 2,3-diethynyltriptycene), an analog of Et2BPG 2DEV (5). 29

Our initial route started from commercially available 2,5-dibromopyridine (1).

Following a known reaction, we synthesized 2-formyl-5-bromopyridine (2a) by

treatment of 1 with n-BuLi, followed by quenching with DMF.32 With aldehyde 2a

in hand, we prepared the pyridylbromide coupling partner 4 by reductive

amination of 2a with the N-pyridylmethylglycine ethyl ester 3, which is available in

one step from commercially available materials and can be isolated easily by

distillation on a multi-gram scale.33 Although the reaction sequence used to

prepare 4 proceeded with moderate yields of less than a gram, we observed that
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isolated yields of 2a and 4 diminished by roughly 30% for each step upon scale

up. We therefore devised an optimized route to the pyridylbromide 4 from 1,

which is compared to the previous method in Scheme 4.1. In this procedure we

prepared alcohol 2b by reduction of 2a with NaBH 4 in situ. 32 Isolated yields for 2b

ranged between 54-60% starting with 10 g of 1. In addition to the higher yield, 2b

could be readily purified by crystallization, in contrast to the aldehyde 2a, which

was difficult to separate from undesired byproducts. Mesylation of 2b with MsCI

and Et3 N afforded a mesylate that was allowed to react with 3 in the presence of

K2C003 to furnish 4 in 87% yield over two steps. Using this optimized route, we

were able to prepare multi-gram quantities of 4 from I in a three step synthetic

sequence that required only a single alumina column chromatography purification

procedure.

R 1: R = a) n-BuLi, DMF

I 2a:R = CHO toluene, -78 OC

Br R N j b) NaBH4  3= HN
2b:R = CH 20H MeOH 3 COEt

C02Et

initial route:

2a 3, NaBH3CN, SOC 2

(R = CHO) MeOH N9

29-59% Br N CO 2Et

optimized route: 4

2b 1) MsCI, Et3N, THF
(R = CH20H) 2) 3, K2C0 3 , MeCN

87% (2 steps)

Scheme 4.1. Preparation of pyridylbromide 4.

With sufficient amounts of the pyridylbromide 4 available, we were able to

synthesize large quantities of Et2BPG 2DEV (5) via a cross-coupling reaction

i ; _II_~~I~ _____1( I1_I--_---~-_ilil~--L1 ------- iii~~il-i-iii;~lj.---i--~-l-li~i ---~ ---- i-~191-i.ii~~iill:l^-^-ii--~- ii;ii-~:ii -~-~--L -~__-~I__ _-___-_i-I^Il_---I-ll-l-llii

pl~-~~~---~-~~~l I_-tl.l-. I 11- ( ~11---
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between 4 and 4,5-diethynylveratrole (DEV) 31 using 10 mol% of [Pd(PPh3)4]

catalyst in a mixture of Et3N and THF at 600C (Scheme 4.2). We chose the DEV

over the DET backbone due to its greater solubility in organic solvents and more

facile synthesis. The Sonogashira cross-coupling reaction worked remarkably

well upon scale up and the conversion to the reaction product was greater than

90% as determined by 1H NMR spectroscopy. In order to remove residual

phosphine impurities that were present after purification of the crude product by

alumina column chromatography, the HCI salt of the amine was isolated by

treatment of an EtOAc solution of the purified material with an etheral hydrogen

chloride solution. This purification sequence lowered the isolated yield of the

corresponding dihydrochloride salt to 57%. Saponification of the esters with KOH

in H20 proceeded cleanly, affording H2BPG 2DEV in nearly quantitative yield.

N

N CO 2R
o1) [Pd(PPh3)4 , 4,

Et3N, THF, 60 oC

2) HCI (g) CO 2R

DEV N

3) KOH, H20 7 5*2HCI (Et2BPG 2DEV, R = Et)
5a (H2BPG 2DEV, R = H)

Scheme 4.2.

Although the salt of the ester is stable for months under ambient atmospheric

conditions, the dicarboxylic acid decays to form a complex mixture of products
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over time as evidenced by 1H NMR spectroscopy. Therefore, we stored the

ligand as the hydrochloride salt of the diester and prepared the acid freshly for

the following metal complexation studies.

Synthesis of the Oxo-Bridged Diiron(lll) Compounds [Fe 2(/9-

O)(H20) 2BPG 2DEV](CIO 4)2 (6), [Fe 2(p/-O)(p-0 2CAr ro)BPG 2DEV](CIO 4) (7),

[Fe 2(-O)(p-C0 3)BPG 2DEV] (8). Compound 6 crystallizes in good yield as deep

red-colored blocks by vapor diffusion of Et20 into a reaction mixture containing

H2BPG 2DEV and two equiv of Fe(CIO 4)3-9H20 in CH 3CN/H 20 (10:1). The yields

and the crystal quality depended strongly on the ratio of CH 3CN and H20. Only a

few examples of oxo-bridged diiron(lll) compounds with aqua ligands have been

reported because H20 is prone to substitution and tends to form oxo-bridged

polyiron(lll) complexes.43 When excess base, such as NEt3, was added under

aerobic conditions in the synthesis of 6, the color changed from deep red to

intense green. The resulting complex 8 contained a carbonato- and oxo-bridged

diiron(lll) center that forms upon reaction with CO2 from the air. This reaction was

complete in less than a few seconds when C02 gas was introduced directly into

the reaction mixture. With the aforementioned procedure, isolated yields of 8

varied widely. Therefore, an optimized protocol for the synthesis of 8 was

developed. This procedure involved treating H2BPG 2DEV with one equiv of the

pre-formed (-oxo)diiron(lll) complex (Et4N)2[Fe2(M-O)Cl6] dissolved in

CH 30H/CH2CI2, producing a yellow-brown solution. Addition of excess Ag2CO3

resulted in nearly instantaneous formation of a green suspension that was stirred

for 45 min, filtered, and subjected to vapor diffusion of Et20. Emerald-green
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needles were isolated in 73% yield after several days and analyzed by X-ray

crystallography. Compound 8 belongs to a rather rare group of carbonato-

bridged diiron complexes.4 4-5 0

As with the synthesis of the carbonate complex 8, the carboxylato-bridged

complex 7 could be prepared in a variety of ways in moderate yields, either in a

reaction between the ligand H2BPG 2DEV and two equivalents of Fe(CIO04)3.9H 20

in the presence of base and excess HO2CArPrO, or by addition of the carboxylic

acid to a CH 3CN solution of 6 in the presence of base. Scheme 4.3 summarizes

the pathways for the synthesis of compounds 6, 7, and 8.

C02
H

N N N 2+

O . - N Fe(CIO4 )3.(H 20)9  NO F O

H2BPG 2DEV N N N N OO

[Fe2(/-O)(H20) 2(BPG 2DEV)] 2+ (6)
Fe(C eCIO4)(H 2 0) 9  F+

NEt3 , HO 2CAr N O
0 ,O

\N O0

Io >o0C02H

[Fe 2(-O)(pCO[Fe)(BPG2DEV)] (8) NO(6)
NEt,, HCAr 2CO N0 Fe,

N.

Scheme 4.3.

Structural Characterization. An ORTEP diagram of 6 is displayed in

Figure 4.1 and selected bond lengths and angles are reported in Table 4.3.
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Compound 6 is a dication and crystallizes with two perchlorate anions in the

lattice. A packing diagram (Figure 4.2) reveals strong hydrogen-bonding

interactions between the H20 ligands and carboxylate groups of neighboring

molecules (Table 4.2) as well as stacking of the diethynyl veratrole units. The two

iron atoms are separated by 3.4837(9) A with an Fe-O-Fe angle of 155.37(16)0.

The two H20 molecules bind in a syn fashion with respect to the diiron vector,

similar to stoichiometrically analogous complexes that contain either two unlinked

BPG- or two BPP- (bis(2-pyridylmethyl)aminopropionate) ligands. 51 ,52 In contrast

to these two compounds, the pyridine nitrogen atoms of the BPG- moieties in 6

are bound syn instead of anti to each other, which is a consequence of the linker.

Furthermore, the values for the Fe-Fe distance and the Fe-O-Fe angle in 6 are

significantly smaller in comparison to these two complexes (Table 4.1). In a

similar complex with the ligand 6-HPA, where the two neutral TPA units are

linked to one another by an ethylene bridge, the distances between the two iron

atoms are even longer than 3.56 A and the Fe-O-Fe angles close to linear.51-53

The shorter distance and angle in 6 are most likely a consequence of more rigid

DEV linker, which draws the iron atoms to be closer together.

Table 4.1. Comparison of Fe-Fe Distances (A) and Fe-O-Fe Angles (deg) of
Diiron Compounds with a [Fe2(-O)(H20)2] Core.

Compound Fe-Fe (A) Fe-O-Fe (deg) Ref.

6 3.4837(9) 155.37(16) a

[Fe 2(P-O)(H 20)2BPG 2] 2+ 3.56 169.8(2) 51

[Fe 2(Y-O)(H 20) 2BPP2]2+  3.564(2) 168.8(3) 52

[Fe 2(h-O)(H20) 2(6-HPA)2]4+ 3.607(3) 179.2 53
a = This work. Abbreviations: BPP = bis(2-pyridylmethyl)aminopropionate;
6-HPA = 1,2-bis[2-{bis(2-pyridylmethyl)aminomethyl}-6-pyridyl]ethane.

___iXr__ll lllrLj_~~=~~-~--(-T_ ~-FI ~;=;_T~-~--? tF -~~~--ll--i-tiT ili~----- --i(ll-_iiLiii~~iiiiL__-~-?i~ -ii-?-~ --l~--i~il-S-ll~___l~~~---__IX~~ll- l~i riii-;-~ --ii--i-;li
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Figure 4.1. ORTEP diagram of 6 displaying thermal ellipsoids (40%). For clarity,
the C104 anions are not shown.

Figure 4.2. Ball and stick diagram of [Fe 2(-O)(H 20) 2BPG 2DEV](CIO 4)2 (6)
displaying intermolecular hydrogen bonds. For clarity, the C10 4 anions and
solvent molecules not involved in hydrogen bonding are omitted and arbitrary
isotropic thermal parameters are used.

--
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Table 4.2. Summary of Distances (A) between Hydrogen Bond Donor and
Acceptor Atoms in the X-ray Crystal Structure of 6.

Bond Lengths A
01WA-H1WA...01B 2.954(4)
01WA-H1WB... 02B 2.820(4)
08B-H8AB... 04C 2.664(4)
08B-H8AB.. O01W 2.675(4)
09C-H9AC... 06A 2.576(3)
09C-H9AC... 04C 2.652(4)

Compounds 7 and 8 have very similar structural parameters. They differ

only in the presence of an additional bridging ligand, a carboxylate in the case of

7 and a carbonate ligand in 8. Accordingly, compound 7 is positively charged and

8 is neutral. Both diiron cores are displayed in Figure 4.3 and selected bond

distances and angles are summarized in Table 4.3. The BPG 2DEV 2- ligand

stabilizes the dinuclear structures by bridging the diiron centers. The carbonato

and carboxylato bridges in 7 and 8 lie approximately in the plane defined by the

Fe-O-Fe unit, a feature generally observed in these types of compounds.47' 54

For compound 7 there are two crystallographically independent molecules in the

unit cell and geometric comparisons are reported for averaged values. In 7, the

Fe-Fe distance is 3.218 A and the Fe-O-Fe angle 128.50. Compound 8 contains

a (-oxo)(-carbonato)diiron(lll) core in which the two iron atoms are separated

by 3.1142(18) A and related by a pseudo-C 2 axis. The Fe-O-Fe angle is

125.97(15)0 and the distance to the bridging oxygen atom is 1.740(3) A, which is

consistent with values for other oxo-bridged diiron(lll) complexes.5 5,56
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Table 4.3. Selected Bond Lengths (A) and Angles (deg) for 6, 7 and 8.

6 7 8

Fe(1)-Fe(2)

Fe(1)-O(3)

Fe(1)-O(7)

Fe(1)-O(8)

Fe(1)-N(1)

Fe(1)-N(2)

Fe(1)-N(3)

Fe(2)-O(5)

Fe(2)-O(7)

Fe(2)-O(9)

Fe(2)-N(4)

Fe(2)-N(5)

Fe(2)-N(6)

O(8)-C(21)-O(9)

Fe(1)-O(7)-Fe(2)

3.4837(9)

2.007(3)

1.780(2)

2.092(3)

2.148(3)

2.265(3)

2.125(3)

2.012(3)

1.785(3)

2.047(3)

2.174(3)

2.239(3)

2.136(3)

155.37(16)

3.2192(12)b
3.2171(12)c

1.975(4) b

2.001(3)c

1.787(3) b

1.787(3)c

2.041( 3 )b
2.006(3)c
2.1 5 6 (4 )b
2.142(4)c
2.251( 4 )b
2.231(4)c

2.140(4 )b
2.178(4)c

2.005 (4 )b
2.007(4)c

1.787(3)b

1.785(3)c

2.039(3) b

2.041(4)c
2.1 5 2 (5 )b
2.150(4)c

2.227(4) b

2.229(4) c

2.1 5 2 (5 )b
2.165(4)c

125.6(4) b

125.3(4) c

128.51(18)b

128.49(18) c

3.1139(17)

1.9515(13)

1.7365(11)

1.9281(12)

2.1156(14)

2.1922(14)

2.0900(17)

1.9654(13)

1.7578(14)

1.8915(13)

2.0764(15)

2.2224(17)

2.1024(15)

121.59(10)

126.03(5)

a Numbers in parentheses are estimated standard deviations of the last significant figures. b
Molecule 1 in the asymmetric unit. C Molecule 2 in the asymmetric unit.
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Figure 4.3. ORTEP diagram of 7 (left) and 8 (right) displaying thermal ellipsoids
(50%). For clarity, the diethynylveratrole backbones, the Ar' ro group, and the
C104 anion are not shown.

Table 4.4 Crystal Data and Details of Data Collection for 6-8.

6-CH3OH3H20 7-1.7CH30H0.3H20- 8-5CH30H-H20
0.8CH 2C12

Empirical formula Fe2C12021 N6C41 H44  Fe2C 55 .5H5 9.40 17 N6C12.6 Fe2016N6C46H54

Formula weight 1139.42 1270.84 1058.65

Crystal System Monoclinic Orthorhombic Monoclinic

Space group C2/c Pbca C2/c

a (A) 37.310(7) 33.486(11) 29.39(2)

b (A) 22.077(4) 17.521(6) 19.541(13)

c (A) 13.469(3) 38.950(13) 16.328(11)

,6 (deg) 96.178(3) 103.023(12)

V (A3 ) 11030(4) 22825(13) 9137(11)

Z 8 16 8

Pcalc (g/cm3) 1.372 1.493 1.539

Temperature (K) 110 110 110

p (Mo Ka), (mm-') 0.699 0.704 0.716

8 range (deg) 2.31 - 24.41 2.04 - 25.03 2.08 - 27.10

Crystal size (mm) 0.10 x 0.22 x 0.28 0.25 x 0.28 x 0.40 0.06 x 0.10 x 0.40

Completeness to 6 (%) 98.4 99.9 99.9

Max, min peaks (e/A3) 0.741 and -0.450 1.650 and -1.062 0.997 and -0.621

Goodness-of-fit on F2  1.028 1.037 1.081

Total no. of data 66835 308521 58818

No. unique data 8949 20167 10082

R1 (%)a 6.74 7.02 6.21

wR 2 (%)b 17.20 18.17 14.11

a R, = zllFol-Foli/lFol, b wR2 = (I[w(Fo2-F2)]/[W(Fo2)2]}1/2

llli
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Despite an extensive literature on diiron complexes having tripodal amine

ligands, especially TPA derivatives, little has been reported for more carboxylate-

rich systems.24'25 In a CSD search, only three crystal structures with the simple

BPG- ligand bound to iron are listed.57 The first has a structure similar to that of

7, but with a bridging benzoate.54 No reactivity studies of this compound were

reported. The second is a hydroxo-bridged diiron compound58 and the third

structure contains two H20 ligands bound to an oxo-bridged diiron core (vide

infra).51 Although we observed evidence for a hydroxo-bridged BPG 2DEV 2-

diiron(lll) complex by mass spectrometry (vide infra), we were not able to isolate

such a species.

Spectroscopic Characterization of 6, 7, and 8. The UV-vis spectrum of

6, which contains only oxo as a bridging ligand, differs dramatically from those of

the oxo/carboxylato- and oxo/carbonato-bridged compounds 7 and 8. Figure 4.4

reveals that 6 has a maximum in its optical absorption spectrum around 490 nm,

whereas more bands appeared in the spectra of 7 and 8, which are similar to one

another. Despite this spectral similarity, the solubilities of the two latter

complexes differ significantly. Compound 7 has excellent solubility in CH 3CN and

other organic solvents, presumably owing to the lipophilic carboxylate ligand, but

8 is only significantly soluble in mixtures of CH 30H/CH2CI2 or CH 3CN/H 20.

Zero-field Mossbauer spectra of solid samples of 6, 7, and 8 were

acquired at 4.2 K and/or 90 K. Table 4.5 summarizes the derived Mssbauer

parameters from these experiments and the spectra are displayed in Figure 4.5.

The isomer shifts acquired at 90 K lie between 6 = 0.45 and 0.47 mm/s and
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quadrupole splitting parameters, between AEQ = 1.35 and 1.59 mm/s for

three compounds. These values are characteristic of 6-coordinate high-spin

oxo)diiron(Ill) complexes, which generally have quadrupole splitting values of

mm/s.5 5

the

U>1

> 1

400 450 500 550 600 650 700 750 800
X (nm)

Figure 4.4. UV-vis absorption spectra of 1 mM solutions of 7 (black) and 8
(green) in CH 30H/CHCI3 (1:1) and of 6 (red) in CH 3CN/H 20 (10:1).

-6 -4 -2 0 2 4 6
Velocity (mm/s)

Figure 4.5. Zero-field MOssbauer spectrum of 8 (A), 7 (B), and 6 (C) acquired at
90 K [experimental data (*) and calculated fits (-)].

I - -
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Table 4.5. Zero-Field M6ssbauer Parameters of Solid 6, 7, and 8,
Acquired at 90 K.

Compound 6 (mm/s) AEQ (mm/s) F (mm/s)

6 0.47(2) 1.59(2) 0.29

7 0.46(2) 1.47(2) 0.31

8 0.47(2)a 1.35(2)a 0.28a
0.45(2) 1.36(2) 0.31

a acquired at 4.2 K.

Fixation of CO 2 to Form the Carbonato-Bridged Complex 8. Complex

6 reacts with atmospheric CO2 in organic solvents containing triethylamine to

form the carbonato-bridged diiron(lll) complex 8. When this reaction was

monitored by UV-vis spectroscopy, rapid and quantitative formation of a species

having the spectral properties of 8 was apparent (Figure 4.6). Even at low

temperatures (-78 OC), the reaction occurred in a few seconds following

introduction of excess CO 2 (g). Fixation of CO 2 by hydroxo-bridged diiron(ll)

complexes has been observed previously,59 but only three examples exist in

which oxo-bridged diiron(lll) complexes react with CO 2 to form carbonato-bridged

species.47,48,60

We propose that 8 forms in stepwise manner via formation of a metal

hydroxo species. An analogous mechanism was established for the enzyme

carbonic anhydrase, which catalyzes the physiologically essential hydration of

CO 2 to form bicarbonate. 61' 62 Deprotonation of a water ligand in 6 could produce

a bridging hydroxo ion, which is a reasonable supposition because a diiron

species with this composition is observed in the electrospray mass spectrum of 6

under basic conditions (vide infra) and because base is required to promote the
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reaction in organic solvents. In a second step, nucleophilic attack of the hydroxo

ligand on the carbon atom of CO2 would form bicarbonate. The latter is readily

deprotonated to produce the observed carbonato-bridged diiron(lll) complex.

0 -I I I .

400 450 500 550 600 650 700

Wavelength (nm)
750 800

Figure 4.6. UV-vis spectra of 6 before (- - -) and after
a basic CH30H/CH2CI2 (1:1) solution.

reaction with C02 (--) in

Mass Spectrometry - Stability of the Dinuclear Core. The coordination

chemistry of complexes 6, 7, and 8 is also reflected in ESI mass spectrometry

experiments. Mass spectra of the dinuclear complexes dissolved in neutral

solution revealed the parent compounds, but in basic aqueous solutions, several

new ion clusters are detected. Chart 4.3 displays the core structures of the

resulting diiron species. Two new prominent peaks at m/z = 839 and 883

correspond to positively charged hydroxo- and carbonato-bridged complexes

having the formula [Fe2(M1-O)(-OH)(BPG 2DEV)]+ and {[Fe2(M-O)(M-
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CO 3)(BPG 2DEV)]+H} + (8), respectively. The hydroxo-bridged complex can form

either by substitution of a bridging ligand by OH- or by deprotonation of a ligated

H20 molecule in 6. Although no crystal structure was obtained that revealed this

particular unit, it is reasonable to propose that the core can readily form, by

analogy to related diiron(lll) complexes with a BPG- ligand and derivatives

thereof.5 ',5 8 The carbonato-bridged species most likely derives from a reaction in

basic solution of the diiron complex with atmospheric C02, as occurs during the

synthesis of 8. Since complex 6 contains weakly bound H20 ligands, it is not

surprising that a peak corresponding to the parent ion is not observed in the

mass spectrum. When excess carboxylic or carbamic acid was added to

solutions of 6, 7, and 8, a dominant peak for the corresponding carboxylate- or

carbamate-bridged species was observed. Interestingly, very bulky carboxylates

could also be introduced this manner, suggesting that even sterically hindered

bridging ligands are accommodated by the platform.63 In contrast to the

described systems, analogous Fe-O-Fe complexes containing non-covalently

linked BPG- units and derivatives thereof readily dissociate or oligomerize to give

mononuclear or trinuclear complexes, respectively. 51'58

R O

O O O 0 0
Fe Fe Fe Fe Fe- Fe

HFe /
H

Chart 4.3.
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Reaction of 6, 7, and 8 with H20 2 - Characterization of a Common

Peroxo Intermediate. (a) UV-vis Spectroscopy. When 6, 7, and 8 were treated

with excess H20 2 in the presence of a small amount of NEt3, the solutions turned

to a more intense, maroon color, concomitant with evolution of a gaseous

product. A test with an alkaline pyrogallol-solution confirmed the formation of

dioxygen.64 '65 The intermediate products from reactions with H20 2, 6a, 7a, and

8a, in solutions of CH 3CN/H 20 were monitored by UV-vis spectroscopy. Buildup

of a broad visible absorption band at 490 nm (e = 1500 M- 1 cm- 1) was observed

in all three cases. The corresponding spectra are presented in Figure 4.7 and in

Figures A2.4 and A2.5 (Appendix 2). When the reactions were repeated without

the addition of NEt 3, the solutions turned yellow and no spectra analogous to

those for 6a, 7a, or 8a were observed. The formation rate of 6a, 7a, and 8a was

strongly dependent on the amount of H20 2 used. An excess of ca. 1000 equiv of

H20 2 was required to achieve the maximum absorption intensity at 490 nm for

the carbonato-bridged complex 8 over a period of more than an hour. With

compound 7, which has a bridging carboxylate ligand, the band maximized more

rapidly (ca. 10-15 min) in the presence of a smaller amount of H20 2 (ca. 50-100

equiv). In contrast, only 5-10 equiv of H20 2 and less than a minute reaction time

were required to form 6a. These observations are consistent with loss of a H20

ligand occurring more readily than a monoanionic carboxylate or more strongly

coordinating dianionic carbonate ligand. Intermediates 6a, 7a, and 8a were also

observed in other solvent mixtures, including CH 30H/H20 (ca. 9:1) and

CH 2C12/CH 30H (ca. 1:1). When 6a was generated in a solution of aqueous
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methanol, an absorbance with essentially the same features as found for 6a in

CH 3CN/H 20 was observed, but the peak maximum shifted from 490 nm to 470

nm (Figure A2.6 in Appendix).

1.0 .

0.8

8 0.6
o

0.4

0.2

0'
400 450 500 550 600 650 700 750 800

Wavelength (nm)

Figure 4.7. UV-vis spectra, recorded at 0 OC, of a reaction mixture of 8 (0.37 mM,
green trace) in CH 3CN/H 20 (2:1), NEt 3, and H20 2 to form the peroxo intermediate
8a (red trace). The grey trace corresponds to the product from the reaction.

Reaction of 8 with 1000-fold excess H20 2 and a catalytic amount of base,

were monitored by UV-vis spectroscopy. Early in the time course of the reaction

(ca. 90 min), the intermediate builds up but it subsequently decays to a species

having a similar absorbance spectrum as the starting material. Upon addition of a

second equivalent of H20 2, the band at 490 nm reappears. These experiments,

together with mass spectral evidence, reveal that the oxo-bridged diiron core

remains largely intact and is most likely bridged by a carbonate ligand because of

the similarity of the final spectrum to that of the starting material.

A ............ - -olo
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(b) Mdssbauer Spectroscopy. Zero-field Mcssbauer spectra of frozen

solution samples of 6a, 7a, and 8a were acquired at 90 K. The spectrum of 6a is

shown in Figure 4.8, and those for 7a and 8a are displayed in Figures A2.7 and

A2.8 (Appendix 2). Mssbauer parameters for the three compounds are listed in

Table 4.6. A sample of 8a (in CH 3CN/H 20) was measured at 4.2 K and fit to two

quadrupole doublets with an area ratio of 78/22. Because of limited solubility, the

sample contains nearly 80% of starting material 8, which can be assigned to one

of the doublets. The second doublet, however, belongs to the reaction

intermediate 8a with an isomer shift of 8 = 0.63(6) mm/s and quadrupole splitting

parameter of AEQ = 0.64(6) mm/s. Similarly, in the 90 K spectrum of 7a (in

CH 30H/H20), there is evidence for a population of the starting material 7 in the

spectrum, together with another quadrupole doublet assigned to a species

having 6 = 0.58(2) mm/s and AEQ - 0.56(2) mm/s. The best conversion to the

intermediate was achieved in a reaction of a dilute (ca. 2 mM) solution of 57Fe-

enriched 6 with H20 2 and base. Here, 66% of 6a was generated with Missbauer

parameters of 6 = 0.58(2) mm/s and AEQ = 0.58(2) mm/s, identical within error

limits to those for 7a. Taking into account that the spectrum of 8a was acquired at

temperatures and from solvents different than those of 6a and 7a, the data

strongly suggest that 6a, 7a, and 8a are the same species.

Table 4.6. Zero-Field M6ssbauer Parameters of Intermediates 6a, 7a, and 8a,
Acquired at 90 K.

8 (mm/s) AEQ (mm/s) F (mm/s)
6a 0.58(2) 0.58(2) 0.35
7a 0.58(2) 0.56(2) 0.29
8a 0.63(6) 0.64(6) 0.32
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Figure 4.8. Zero-field Missbauer spectrum [experimental data (*) and calculated
fits (-)] recorded at 90 K for a frozen solution sample of the product of the reac-
tion of 6 with excess H20 2 and a trace of NEt 3. The sample contained 66% of 6a
(B) and 34% of a diiron(lll) species (A; 8 = 0.45 mm/s and AEQ = 1.41 mm/s) with
M6ssbauer parameters similar to those of the starting material.

We were interested to learn whether the starting diiron complex reforms

upon completion of reactions with H20 2, as implied by the UV-vis spectroscopic

experiments. We therefore measured a frozen solution sample [CH 3OH/H 20

(20:1)] of the decomposition product from a reaction of 6 with ca. 50 equiv of

H20 2 and a trace of NEt 3. The Mssbauer parameters of 8 = 0.46(3) mm/s and

AEQ = 1.39(3) mm/s were very similar to those for the starting material 6

(8 = 0.45(3) mm/s; AEQ = 1.51(3) mm/s) in the same basic solution mixture. We

conclude that this species is most likely a (I-oxo)( 1-hydroxo)diiron(lll) complex

and that no decomposition occurred (vide supra and Chart 4.3).
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The spectroscopic and mass spectrometric (vide infra) data determined for

the common intermediate formed in the H20 2 reactions of 6, 7, and 8 are

characteristic of a (y-oxo)(y-peroxo)diiron(lll) complex. Table 4.7 lists some

examples of transient peroxo species observed in pre-steady-state studies of

non-heme diiron enzymes and of oxo-bridged diiron(lll) model systems. Well-

defined peroxodiiron(lll) intermediates are observed in sMMOH, RNR-R2, and

A9D5 and in the T201S variant of ToMOH 20 that display characteristic peroxo

ligand-to-metal charge transfer (LMCT) bands between 650 to 750 nm and

Mdssbauer parameters of 8 = 0.62-0.68 mm/s and AEQ > 1.0 mm/s.5 In contrast,

recently characterized, putative peroxodiiron(llII) intermediates of ToMOH and

PHH have M6ssbauer quadrupole splitting parameters significantly less than

1 mm/s (AEQ = 0.66 mm/s and 0.63 mm/s, respectively) and lack an optical band

in their absorption spectra.66' 67 These significant differences can be rationalized

by a different peroxo coordination mode and/or protonation state. Synthetically

prepared peroxodiiron(lll) complexes have the peroxo ligand generally bound in

a -1,2-fashion with spectroscopic properties very similar to those of peroxo

intermediates in the former group of enzymes.4 The UV-vis and M6ssbauer

spectroscopic properties of the peroxodiiron(lll) intermediate reported here,

however, differ significantly from these prior complexes. To our knowledge, of all

the synthetic examples of (-oxo)(-peroxo)diiron(lll) species, only the

intermediates reported here, 6a, 7a, and 8a, have a M6ssbauer quadrupole

splitting parameter that is nearly identical to the values for colorless peroxo

intermediates in ToMOH and PHH. In addition to their unique Missbauer
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spectroscopic properties, intermediates 6a, 7a, and 8a display a considerably

blue-shifted LMCT band, assigned by RR spectroscopy (see below), in their UV-

vis spectra compared to other peroxodiiron(lll) species (Table 4.7). A comparison

with two (y-oxo)(-peroxo)diiron(lll) complexes providing an N4 (6-Me 3-TPA) 68

and a closely related N30 (6-Me 2-BPP) coordination environment on each iron

atom, 6 9 similar to that supplied by the BPG- unit, display LMCT bands at 648 nm

and 577 nm, respectively, consistent with the carboxylate being a stronger donor.

This observation might explain the hypsochromic shift in intermediates containing

the BPG 2DEV 2- ligand.

Table 4.7. Spectroscopic Parameters for Peroxo Intermediates in Non-Heme
Diiron Enzymes and Synthetic Oxo-Bridged Diiron(lll) Compounds.

4max (nm) E (M-lcm- 1) 6 (mm/s) AEQ (mm/s) Ref
sMMOH (M. caps. (Bath)) 700 1800 0.66 1.51 a
ToMOH (Pseudomonas sp. OX1) - - 0.54 0.66 66
ToMOH T201S (Pseudomonas sp. OX1) 675 1500 0.67 1.51 20
PHH (Pseudomonas sp. OX1) - - 0.59 0.63 67
RNR-R2 D84E 700 1500 0.63 1.58 a
A9-desaturase 700 1200 0.68 1.90 a
[Fe2(Y-O)(Y-02)(6-Me3-TPA)2] 2+ 494; 648 1100; 1200 0.54 1.68 68
[Fe2(p-O)( -02)(-02CR)(hexpy)2] 510; 605 1300; 1310 0.53 1.67 70
[Fe2(Y-O)(-O02)(6-Me2-BPP)2] 577 1500 0.50 1.46 69
[Fe2(Y-O)(Y-02)BPG2DEV] 490 1500 0.58 0.58 b
a = Parameters were taken from ref. 1. b = This work.

(c) EPR Spectroscopy. EPR spectroscopic analysis of 8a reveals an axial

signal with g values of 2.062 and 2.004, which we attribute to a mixed-valent

diiron(ll,lll) (S = 1/2) species. Spin quantitation indicated only 2.6% abundance,

however. The bulk of the sample is EPR-silent, which we assign to two iron(lll)

centers antiferromagnetically coupled to one another. This result is consistent
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with a peroxo-bridged diiron(lll) complex.4 The absence of an EPR signal

centered at g = 4.3, characteristic of mononuclear high-spin iron(Ill) complexes,

is also in agreement with these findings. The EPR spectrum is displayed as

Figure A2.11 in Appendix 2.

(d) Resonance Raman Spectroscopy. RR spectra of intermediate 6a,

prepared with either H2
160 2 (or H2

180 2) and obtained with 568 nm excitation,

revealed two features at 819 and 845 (772 and 797) cm- 1, respectively (Figure

4.9). These RR signals are not observed in samples that were allowed to

proceed in time beyond decay of intermediate 6a (Figure 4.9B). The intensities of

the RR doublets also decrease after prolonged laser exposure and

photobleaching of the samples from dark brown to light yellow. Relative to

solvent bands, these intensities also vary with excitation wavelength, revealing a

significant decrease at 647 nm and at 413 nm, where intra-pyridine vibrations

enter into resonance (Figure 4.10). Because of the complexity of these RR

signals and the photosensitivity of intermediate 6a, extracting excitation profiles

would be an overinterpretation of the data. Nevertheless, the excitation

wavelength dependence of the isotope-sensitive signals qualitatively matches

expectation based on the absorption spectra of intermediate 6a (Figure A2.6 in

Appendix 2).

The observed RR frequencies and 180-shifts (-47/-48 cm- 1) are consistent

with metal-peroxo vibrations. The v(O-O) frequencies in symmetrically bridged

(-l ,2-peroxo)diiron(lll) complexes range from 830 to 908 cm-' and low

frequency 0-0 stretching bands are generally correlated with short Fe-Fe
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distances.71 The RR bands associated with v(O-O) in intermediate 6a are at the

lower end of this range and a comparison to these systems indicates that the Fe-

Fe distance in intermediate 6a may be as short as 3.1-3.2 A.71- 73 Short Fe-Fe

distances require stabilization from bridging ligands in addition to the peroxo

group, with a -oxo group providing the shortest such distance. Although Fe-O-

Fe modes were not identified in the RR spectra of intermediate 6a, it is

reasonable to assume that the oxo bridge, present in the starting material,

remains in intermediate 6a. This assignment is strongly supported by mass

spectrometric analysis (vide infra). The covalent linkage between the two iron

sites supplied by the syn N-donor ligand BPG 2DEV 2- may also play an important

role in promoting a short Fe-Fe distance. In a similar peroxodiiron(lll) peroxo

species, with a dinucleating ligand having two covalently linked tris(2-

pyridyl)methane moieties, the 0-0 mode of the bound peroxide appears at very

low value of 830 cm-1 , which is consistent with this hypothesis. 71,74

From spectroscopic studies we can conclude that the peroxo ligand

bridges the two iron centers in 6a, but we cannot definitively assign its binding

mode. Detailed experimental and theoretical studies on (-oxo)(,I-1,2-

peroxo)diiron(lll) intermediates having unlinked tetradentate capping ligands,

related to those in BPG 2DEV 2- , confirmed the 1,2-peroxo bridging mode.

Furthermore, a crystal structure of [Fe2([L-O)(M-1 ,2-0 2)6-Me 2-BPP] (see Table

4.7), which has an identical ligand set to that of 6a, reveals a 1,2-bridging peroxo

ligand lying approximately in the plane defined by the Fe-O-Fe unit.69 The

spectroscopic properties and the 0-0 stretching frequencies of the
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peroxodiiron(Ill) compound described here, however, differ significantly from

those reported for these species and we cannot rule out an alternative peroxo

binding mode. Because the mass spectra of 6a-8a reveal the presence of an

added proton as well as the peroxo ligand (vide infra), the structure might contain

a i-l ,1-hydroperoxodiiron(Ill) unit in which the dangling O-atom is protonated, a

unit that is consistent with all of the data.

400 500 600 700 800 900 600 700 800 900

Raman Shift / cm -' Raman Shift I cm -1

Figure 4.9: RR spectra of Figure 4.10: RR spectra of
intermediate 6a (A) and its decay intermediate 6a obtained with
product (B) obtained with 568 nm different laser excitations at 110 K.
excitation at 110 K. Sharp Raman All traces are normalized on the
bands below 400 and above 900 921 cm- 1 solvent band.
cm- 1 correspond to solvent vibrations.

-~I
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The presence of a doublet rather than a single peak for the isotope-

sensitive RR bands may result either from two different conformations of the

peroxodiiron complex or Fermi splitting of a fundamental 0-0 stretch

corresponding to the doublet average of 832 cm - 1. Fermi coupling of the v(O-O)

with underlying non-resonant vibrations has been invoked for several

peroxodiiron complexes.10,17,68,73 On the other hand, the possible occurrence of

two distinct peroxodiiron species must also be taken into consideration, perhaps

reflecting different protonation states. Optical spectroscopic and kinetic studies

indicate the presence of two peroxo intermediates in the oxygenation chemistry

of sMMOH 75'76 and ToMOH. 20 In the low-frequency region, the [160-intermediate-

180-intermediate] RR difference spectrum isolates a positive feature at 479 cm -1

that may correspond to the expected v(Fe-1 60 2) mode, even though its negative

180-counterpart does not emerge from the broad and nearly featureless

background signal that occurs in this region (Figure 4.9).

(e) Mass Spectrometry. ESI-MS of 6a, 7a, and 8a were acquired using

solutions of CH 3CN/H 20 (3:1) or CH 2CI2/CH 3OH (1:1) in low and high resolution

modes. In each high-resolution mass spectrum of 6a, 7a, and 8a there was an

ion cluster having a mass and isotope pattern identical to that calculated for the

M+H (peroxo)diiron(lll) species {[Fe 2(-O)(Y-O 2)BPG 2DEV]+H} with a theoretical

m/z = 855.1195. The recorded values were m/z = 855.1205, 855.1189, and

855.1161 for 6a, 7a, and 8a, respectively. A comparison between the theoretical

and observed spectra is presented in Figure A2.12 (Appendix 2). Isotope-labeling

experiments carried out with H2
180 2 (2% in H20) revealed a peak shift of four
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units from m/z = 855 to 859, demonstrating that the peroxide is bound to the

diiron center. A comparison of the two mass spectra is shown in Figure 4.11.

839

_ 855

883

840 850 860 870 880 890
mIz

100. 859

WE 885

883

839
0 841

0" .- .,... ... ........ ...... , ......... "....... " "...... '" " '.............. 1'" ."
840 850 860 870 880 800

mfz

Figure 4.11. ESI mass spectrum of 7a at 295 K in CH3CN displaying the isotope
patterns for ions at m/z 855 for {[Fe2(-O)(M.-1602)BPG2DEV]+H+} (top) and m/z
859 for for {[Fe 2(-O)(- 18O2)BPG 2DEV]+H } (bottom). The peak m/z = 867 in the
upper spectrum can be assigned to a formate-bridged diiron complex [Fe2(M-
O)(-O2CH)BPG2DEV] , which is due to the presence of residual formic acid im-
purities.

Singly-charged ion clusters of [Fe 2(Mk-O)(-OH)(BPG2DEV)] (m/z = 839)

and {[Fe2(-O)(M-CO)(-CO3)(BPG 2DEV)]+H} (m/z = 883) were also observed in these

mass spectra, which derive from the reaction of the diiron complex with
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hydroxide and C02 from the air (vide supra). Interestingly, two additional peaks

at m/z = 841 and 885 were detected in the 18 0-labeled sample. These values are

shifted by two mass units from the peaks for these two diiron complexes,

indicating that an 180 atom is incorporated into the hydroxo- and carbonato-

bridged compounds, respectively. This result suggests that the 0-0 bond of the

bound peroxide is indeed cleaved and, presumably, that H20 is formed. An 0-0

bond scission is reasonable, because this reaction has been investigated

extensively in related (-oxo)(-l ,2-peroxo)diiron(lll) complexes, which form

high-valent diiron centers, and has been proposed for a similar compound in a

dinucleating ligand system.77 The intermediate could react with another

equivalent of H20 2 to form H20 and 02. We propose that the newly formed H20

molecule stays bound to the diiron center and can readily be deprotonated under

basic conditions to form a bridging hydroxide ion. Such an intermediate could

additionally react with CO02 from air to form the carbonato-bridged species. By

mass spectrometry, we were also able to establish that the peroxo species is

regenerated upon additional treatment with H20 2 (data not shown).

Catalase Activity. When H20 2 was added to a basic solution of the diiron

compounds 6, 7, or 8, 02 formation was observed, as confirmed by a test with an

alkaline pyrogallol solution.64,65 The catalase-like activity of the carbonato

complex 8 was investigated in more detail and the 02 formed in the reactions

was quantified. To a fixed concentration of diiron(lll) complex 8 and NEt3 in a

solution of CH 3CN/H 20 (2:1) at 0 0C were added various amounts of H20 2 . The

quantity of 02 produced was measured volumetrically. The yield of 02 depends
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linearly on the amount of H20 2 , with a slope of 0.53 (R2 = 0.99), which

corresponds to catalase-like reaction stoichiometry (Figure 4.12 and eq 1).

2H20 2 -- 02 + 2H20 (1)

The diiron catalyst is very efficient and achieves ~ 10,000 turnovers. Experiments

with compounds 6 and 7 under the same conditions revealed them to be as

efficient as 8 with respect to catalase function.

5

4-

E

O 2-

0 1 2 3 4 5 6 7 8
H202 (mmol)

Figure 4.12. 02 formation from 0.078 to 7.8 mmol H20 2 at 0 OC as catalyzed by 8
(2 mL of 0.4 mM solution in CH 3CN/H 20, 2:1) and 10 pL of NEt 3.

Catalase activity has been reported in reactions of a relatively small

number of oxo-bridged diiron(lll) compounds with H202.78-83 In all cases,

intermediates with spectroscopic properties characteristic for peroxo-bridged

diiron(lll) complexes were observed. Some common features of these H202-

disproportionation catalysts include complex decomposition, TON (turn-over

number) dependence on the exchangeability of the bridging ligand, and
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increasing 02 formation rates at higher pH values. In contrast, to these previously

reported systems, decomposition of the complexes 6, 7, and 8 upon treatment

with H20 2 does not occur. The increased stability of the complexes is attributed to

the BPG 2DEV 2- ligand. Remarkably, quantitative 02 production is observed for all

three complexes 6-8, with TONs significantly higher than those reported for other

systems (the ratio of [Fe 2]:H 20 2 never exceeded 1:500) and only when base was

added to the reaction mixture. In samples that were lacking additional base,

quantitative 02 production was not observed.

Catalase activity is important for protecting the cell from oxidative damage

by excess H20 2 . A ubiquitous family of metalloenzymes disproportionate H20 2 in

an exothermic reaction to form H20 and dioxygen. One of the two most abundant

classes of catalases contains an iron protoporphyrin IX cofactor with an axial

tyrosinate ligand.84 The second most common catalase enzyme contains a

dimanganese active site. 85 For non-heme diiron enzymes, catalase activity has

been reported for ToMOH, 86 toluene-2-monooxygenase from Burkholderia

cepacia G4,87 and PHH.76 By comparison with previous studies of diiron model

compounds, the present findings are important for our general understanding of

catalase activity in BMMs and the decomposition pathway of H20 2 catalyzed by

diiron centers.

Substrate Oxidation. We also investigated whether the peroxo

intermediates 6a, 7a, and 8a might function as oxidases. The common

intermediate quantitatively oxidizes PPh 3 to Ph30, a very easy conversion, but

are poor catalysts for epoxidation of cis-cyclooctene, unlike some related
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systems.53 '88 '8 9 Quantitation of the epoxide revealed yields with < 1% and TONs

of ca. 8 and 3, for 6a and 7a, respectively (Table 4.8). The production of 02 was

strongly diminished by addition of phosphine to the reaction, but was not

significantly affected when cyclooctene was present, which is consistent with

competitive catalase and substrate oxidation reactions.

Table 4.8. Studies of the Oxidation of cis-Cyclooctene to Cyclooctene Epoxide
with 6 and 7.

Complex Yield (%) TON
6 0.93 8.8a
7 0.35 3.5a

a Average values from two trials.

Summary and Perspective

This study describes the successful application of the dinucleating ligand

H2BPG 2DEV to specifically model the syn coordination of histidine residues in

non-heme diiron enzymes. This scaffold is more biologically relevant than

previous versions due to its greater carboxylate content. Three (4 -oxo)diiron(lll)

derivatives were characterized, one with a terminal water molecule on each iron

atom and two with additional bridging ligands, either carbonate or carboxylate.

Reactivity studies with H20 2 show that the dinucleating ligand conveys an

inherent stability to all three oxo-bridged diiron complexes, which serve as

catalases in multi-turnover reactions with large excesses of H20 2. These

characteristics distinguish these complexes from the broader class of diiron(lll)

complexes that do not have covalently linked tripodal ligands. The present

system belongs to a small group of non-heme diiron model complexes having
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catalase activity that dominates over its oxygenating properties. Similar catalase

activity has been observed in ToMOH and PHH, suggesting additional relevance

of the present model complexes to biological counterparts. Spectroscopic

analysis of a transient (u-oxo)(y-peroxo)diiron(lll) species generated in this

chemistry reveals properties that deviate from the characteristic parameters for

peroxo-bridged intermediates in most model complexes and non-heme diiron

enzymes. The M6ssbauer spectroscopic properties closely resemble those for a

peroxo intermediate in ToMOH, with AEQ values less than 1 mm/s. Raman

studies reveal an 0-0 stretching frequency that is atypically low, suggesting a

short iron-iron distance in the peroxo intermediate, presumably facilitated by the

dinucleating ligand and possibly reflecting a previously unknown Y-1,1 bridging

mode. These physical properties of these complexes differentiate them from

compounds with mononucleating ligands. Further studies of related complexes

are warranted in pursuit of information to understand the origin of the

spectroscopic properties and reactivity of non-heme diiron sites in biology.
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Appendix 1

Supporting Tables and Figures for Chapter 2.

9-Triptycenecarboxylate-Bridged Diiron(ll) Complexes:

Capture of the Paddlewheel Geometric Isomer



Table A1.1. Summary

Empirical formula
Formula weight
Crystal System
Space group
a (A)
b (A)
c (A)
a (deg)
fl (deg)
y (deg)
v (A3)
Z

Pcaec (g/cm3)
Temperature (K)
M (Mo Ka), (mm 1 )
O range (deg)
Crystal size (mm)
Total no. of data
No. unique data
No. of parameters
Completeness to 0 (%)
max, min peaks (el A3 )

Goodness-of-fit on F2

R, (%)a
wR2 (%)b

Absolute structure

of X-ray Crystallographic Data.
la-7CH2 ClI 2-3.4DME*0.6EtO

Fe2 C99H82010C11 4  Fe 4C 110 10 2N2 015.34
2039.65 1809.08
Orthorhombic Triclinic
Pca21  Pi
20.350(4) 10.4599(8)

15.931(3) 14.8604(12)
28.153(5) 15.6187(12)

9127(3)
4

1.484
110
0.788
2.13 - 25.02
0.09 x 0.25 x 0.25
123186
16102
1127
99.9
0.752 and -0.706
1.039
4.57
10.38
0.031(13)

89.1410(10)
73.3000(10)
79.0440(10)
2280.9(3)
1

1.317
110
0.388
1.91 - 25.03
0.10 x 0.20 x 0.30
17029
8029
660
99.3
0.775 and -0.5466
1.053
4.999
13.45

aR, = IjIF0o-IFolIjIF ol, b wR 2 = {I[w(Fo-Fc2)]/,I[W(Fo)2]}1/2

3*4DME
Fe 2C 108 H104 N 4 016
1825.65
Triclinic
P1
10.4458(8)
14.8800(11)
15.6469(11)
88.3290(10)
71.9590(10)
78.8180(10)
2267.3(3)
1
1.337
110
0.392

1.37 - 25.03
0.20 x 0.15 x 0.10
17036
7974
588
99.3
0.977 and -0.430
1.052
5.55
13.83

4*5.2DME*0.8EtO

Fe 2C 116H121.92N40 19.25
1991.80
Triclinic
Pi
12.856(2)
14.640(2)
16.029(3)
112.594(3)
107.033(3)
101.096(3)
2499.1(7)
1
1.323
110
0.364
2.34 - 25.03
0.08 x 0.08 x 0.20
35193
8814
772
99.7
0.795 and -0.337
1.037
4.49
10.50



Table A1.1. Continued.

Empirical formula
Formula weight
Crystal System
Space group

a (A)
b (A)

c (A)
a (deg)
/~ (deg)

y (deg)
v (A3)
Z

Pcalc (g/cm3 )
Temperature (K)

1p (Mo Ka), (mm-)
orange (deg)

Crystal size (mm)
Total no. of data
No. of unique data

No. of parameters
Completeness to 0 (%)

Max, min peaks (e/ A3 )
Goodness-of-fit on F2

R, (%)a

wR 2 (%)b

5*3.2DME*1.8Et 20
Fe 2C 1 16H 12 1 .8 7N 4 0 16 .1 2 Bro.,

1952.05
Triclinic
Pi

13.448(4)
13.769(4)

15.973(5)
102.805(6)
109.766(5)

104.810(6)
2532.2(14)
1

1.280
110

0.406
2.46 - 27.88

0.08 x 0.15 x 0.20
43656
11966

713
99.8

0.839 and -0.529
1.020
6.80

14.26

aR = IIFol-IFOll/IFoI, b wR 2 = {T[w(Fo -Fc2)]/ [w(Fo2)21 1 2, c Compounds 5, 7, and 8 contained an impurity of brominated O2CTrp.

6*2.4DME*3.6Et20
Fe 2C 1 2 6H1 2 8 N4 0 1 6 .38

2072.10
Monoclinic
P2/c

15.005(10)
14.506(9)

25.767(18)

106.588(11)

5375(6)
2

1.280
110

0.339
2.31 - 25.06

0.10 x 0.20 x 0.21
57176
9515

825
99.8

1.062 and - 0.457
1.035
5.38

12.26

7*4PhCI
Fe 2C 12 4 H9 7 .9 7 N408C I4 Bro.03

2027.93
Triclinic
PI

13.924(4)
16.620(5)
21.344(7)

94.959(6)

4921(3)
2

1.369
110
0.480
1.37 - 25.03

0.20 x 0.15 x 0.10
75643
10064

660
99.9

0.758 and -0.664
1.115
6.08

12.59

8*4PhCI

Fe 2C126H 103.92N4 OsCI4Bro.08
2061.94
Monoclinic
P211n

13.841(5)
16.648(6)

21.474(7)

94.563(5)

4933(3)
2

1.388
110

0.501
2.45 - 25.03
0.08 x 0.12 x 0.20

67239
8717

669
99.9

0.694 and -0.563
1.037
4.43

10.81



Table A1.1. Continued.

Empirical formula
Formula weight
Crystal System
Space group

a (A)
b (A)

c(A)
a (deg)
/3 (deg)

y (deg)
v (A3)
Z

PcaeC (g/cm)
Temperature (K)
y (Mo Ka), (mm 1')
a range (deg)

Crystal size (mm)
Total no. of data
No. of unique data

No. of parameters

Completeness to 0 (%)

Max, min peaks (e/ A3)
Goodness-of-fit on F2

R, (%)a

wR 2 (%)b

9*4C 2H4C 2
Fe2 C 1 16H 95 .9 0 N 40CIBro.1 0

2077.17
Triclinic
PI
13.1689(16)
13.4564(17)

16.343(2)
87.559(2)
68.652(2)
74.568(2)
2595.4(6)

1
1.329
110

0.583
2.54 - 25.03

0.06 x 0.12 x 0.20
36262
9155

754
99.8

1.433 and -0.697
1.074
7.09

17.53

104CH2CI2
Fe 2C1 0o2H70 N201oCl8
1878.90
Monoclinic
P21ln

16.048(3)
12.553(3)

22.553(5)

11-5CH2C 2
Fe2Co0 H7oN40 8CI11
1933.81
Tetragonal
P4/n

26.708(12)
26.708(12)

12.347(8)

101.82(3)

4446.9(15)

2
1.403
110

0.629
2.08 - 25.02

0.06 x 0.16 x 0.21

56457
7684

588
99.9

1.057 and -0.652
1.120
7.62

18.15

8807(8)
4

1.458
110

0.695
2.16 - 25.68

0.11 x 0.20 x 0.37

126391
8359

716
99.9

1.327 and -0.497
1.068
6.69
17.24

a R, = ZIIFojI-FojIFIo, b wR2 = {[W(Fo2-Fc2)]/~X[w(Fo2)2]} 2, c Compounds 9 and 12 contained an impurity of brominated -O2CTrp.

__
12*3.3CH2C12*0.6C 5sH 2

Fe 2C10 8.68H79.87N4 8CI16.66Bro.13
1939.25
Triclinic

P1

12.688(8)
14.013(9)

14.136(9)
97.679(11)
103.262(10)

108.932(10)
2254(2)
1
1.429
110

0.642
2.32 - 25.03

0.08 x 0.10 x 0.12
30833
7942

691
99.8

0.622 and -0.742
1.086
7.18

16.04



Table A1.1. Continued.

Empirical formula
Formula weight
Crystal System
Space group

a (A)
b (A)

c (A)
a (deg)
/1 (deg)

y (deg)
v (A3)

13*2CH 2C 2
FeC49H43.92N20 4C12Br0o.o
857.73
Monoclinic
P211n

16.286(3)
8.6906(14)

30.177(5)

104.079(3)

4142.8(12)

4

FeC 7 6H 9 7.88 N 4 0 4 S 2Bro.12

1261.42
Tetragonal
P4 1212

15.397(2)
15.397(2)

30.880(9)

7320(3)

15*Et 20
FeC 54H47.98 N4O5Bro.02
890.00
Triclinic
Pi
8.975(2)
15.942(4)

17.159(5)
65.714(4)
89.066(4)

86.579(4)
2233.7(10)

Pcac (g/cm') 1.375 1.145 1.323
Temperature (K) 183 110 110

p (Mo Kcx), (mm 1 ) 0.619 0.380 0.406
0 range (deg) 2.17 - 25.03 1.98 - 25.03 2.27 - 26.37

Crystal size (mm) 0.10 x 0.15 x 0.20 0.10 x 0.15 x 0.25 0.15 x 0.30 x 0.40
Total no. of data 55907 102976 34568
No. of unique data 7324 6457 9092

No. of parameters 543 403 596
Completeness to 0 (%) 100.0 99.9 99.5

max, min peaks (el A3 ) 0.846 and -0.698 0.333 and -0.274 0.672 and -0.689
Goodness-of-fit on F2  1.048 1.168 1.050
R, (%)a 5.04 6.90 5.33

wR 2 (%)b 12.86 13.84 13.22

a R, = IIFoI-IFclI/Fol , b wR 2 = {([w(Fo2-Fc2 )]/f[w(F2)2]}11 2, c Compounds 13-15 contained an impurity of
brominated -O2CTrp.
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Table A1.2. Selected Bond Lengths (A) and Angles (deg) for 2-12.

Trp ClA

01 A 02 Trp

L1-Fel FelA-L1A

OL 04
Trp O O

C1B
Trp

2 3 4 5 6 7

Fel-FelA 2.8460(6) 2.8604(8) 2.9033(7) 2.912(1) 3.007(2) 2.9215(10)

Fel-L 2.1184(19) 2.080(3) 2.0837(19) 2.084(2) 2.133(2) 2.094(2)

Fel-Ol1 2.0958(16) 2.059(2) 2.0573(16) 2.065(2) 2.072(2) 2.052(2)

FelA-02 2.0597(17) 2.089(2) 2.0577(16) 2.151(2) 2.130(2) 2.131(2)

Fel-03 2.0889(16) 2.068(2) 2.0713(16) 2.062(2) 2.081(2) 2.046(2)

FelA-04 2.0607(18) 2.091(2) 2.1133(16) 2.042(2) 2.071(2) 2.078(2)

Fel-01-C1A 137.66(16) 114.60(19) 130.71(16) 123.54(19) 127.67(18) 121.73(18)

FelA-02-C1A 115.78(15) 140.0(2) 123.60(14) 129.9(2) 128.53(18) 131.43(18)

Fel-03-C1B 131.03(16) 121.6(2) 124.38(15) 131.00(19) 129.40(18) 121.88(18)

FelA-04-C1B 121.72(17) 131.0(2) 129.04(15) 124.26(19) 127.53(17) 133.27(19)

8 9 10 11 12

Fel-FelA 2.906(1) 2.9639(11) 2.8692(15) 2.7716(14) 2.8214(17)

Fel-L 2.087(2) 2.109(3) 2.126(4) 2.086(3) 2.083(3)

Fel-Ol1 2.0567(18) 2.072(3) 2.087(4) 2.039(3) 2.091(3)

FelA-02 2.1371(18) 2.035(3) 2.068(4) 2.043(3) 2.077(3)

Fel-03 2.0585(18) 2.069(3) 2.067(3) 2.062(3) 2.065(3)

FelA-04 2.0928(18) 2.139(3) 2.046(3) 2.071(3) 2.076(3)

Fel-01-C1A 121.94(16) 133.8(3) 130.3(4) 118.6(3) 127.5(3)

FelA-02-CIA 130.97(16) 122.9(3) 124.1(4) 131.9(6) 123.9(3)

Fel-03-C1B 121.97(16) 125.9(3) 130.4(3) 125.4(2) 115.9(4)

FelA-04-C1B 132.56(17) 130.1(3) 121.9(3) 126.2(2) 137.9(3)

Numbers in parentheses are estimated standard deviations of the last significant figure.
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0(4)

0(2A)

0(2)

Figure AI.1. ORTEP diagrams of [Fe 2(-O 2CTrp)4(py) 2] (2) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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0(3A)

0(1)

0(3)

Figure A1.2. ORTEP diagrams of [Fe2(Y-O2CTrp)4(1-Melm) 2] (3) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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N(2A) 0(1)

O(1A)
N(2)

Figure A1.3. ORTEP diagrams of [Fe 2(/-O 2CTrp)4(2-Melm)2] (4) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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N(2)

0(3) N(2A)

1430(4)

Figure A1.4. ORTEP diagrams of [Fe2(i-O 2CTrp) 4(2-'Prlm) 2] (5) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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N(21 N) 0(4A)

0(3) Fe(1) (3A

0(4) N N2e(AA)
0(2A)

0(1A)

Figure AI.5. ORTEP diagrams of [Fe 2(Y-O2CTrp)4(2-Phlm) 2] (6) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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0(4A)

Figure AI.6. ORTEP diagrams of [Fe2(p-O 2CTrp)4(1-Et-2-'Prm) 2] (7) showing
50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing
in which the triptycene units are omitted for clarity.

__ _~;~_~~_CI~___XiCI~jiill~;~~il--~=--~~ ~~-~~I1--1_^__-_(11IIX/---- -~tii~~i-~li--.l;-ii~-~-~;--~-lii ---~i-~l~-~XI--lli----iC-li--l_ i ii; ii~i-ii--- i-i-i;li-ii;r r-~iii:ji--~-^--~---I- -;r--_il-_liilf---~-m-_- ll ----i-- --1;-~ il~--~- _ ----;--_
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0(2A)

0(3)

Figure A1.7. ORTEP diagrams of [Fe 2(-O 2CTrp)4(1-Pr-2-'Prlm)2] (8) showing
50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing
in which the triptycene units are omitted for clarity.
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Figure A1.8. ORTEP diagrams of [Fe2(p-O2CTrp) 4(1-Pr-2-Phlm) 2] (9) showing
50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing
in which the triptycene units are omitted for clarity.
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0(5)) 0(4A)

0(3A)
N(1)

Fe(l) 00(1)

0(2A) 0(2)

0(1A) Fe(MA)
N(1A)

0(3)

0(4)

0(5A)

Figure A1.9. ORTEP-diagrams of [Fe2(Y-O2CTrp)4(4-AcPy)2] (10) showing 50%

probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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0(4)

0(4A)

S(// N(2A)

Figure A1.10. ORTEP-diagrams of [Fe2(-O 2CTrp)4(4-CNPy) 2] (11) showing
50% probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing
in which the triptycene units are omitted for clarity.
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0(2)

0(2A)

Figure A1.11. ORTEP-diagrams of [Fe 2(-O 2CTrp)4(4-PPy) 2] (12) showing 50%
probability thermal ellipsoids for all non-hydrogen atoms. Bottom: Drawing in
which the triptycene units are omitted for clarity.
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R

HO
0

R L
R_ I"1 Fe111O

\ F F

Fe, Fe O H 2

00O

L = THF R
R = Trp

Figure AI.12. Diagram of the proposed structure of 1 b.
Unit cell parameters: monoclinic, P21/n; a = 16.279(12) A, b = 27.48(2) A,
c = 26.564(19) A, /3= 103.129(13) ° , V = 11571(15) A3, Z = 4, T = 110 K.
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Figure A1.13. Zero-Field
calculated fit (-)) recorded at

O

- 0.4

o

0.8

1.2

M6ssbauer spectrum (experimental data (,),
4.2 K for I (mixture of la and Ib).
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4 6

Figure A1.14. Zero-Field
calculated fit (-)) recorded at

M6ssbauer spectrum (experimental data (*),
4.2 K for [Fe 2(Y-O2CTrp)4(1-Pr-2-'Prlm)2 (8).
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-6 -4 -2 0 2 4 6
Velocity (mm/s)

Figure A1.15. Zero-Field M6ssbauer spectrum (experimental data (*),
calculated fit (-)) recorded at 4.2 K for [Fe2(Y-O2CTrp) 4(1-Pr-2-Phlm) 2] (9).

-6 -4 -2 0 2 4 6
Velocity (mm/s)

Figure A1.16. Zero-Field M6ssbauer spectrum (experimental data
calculated fit (-)) recorded at 4.2 K for [Fe(O 2CTrp)2(TMEDA)] (13).
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Modeling the Syn-Disposition of Nitrogen Donors in

Non-Heme Diiron Enzymes. Synthesis, Characterization and

Hydrogen Peroxide Reactivity of Diiron(III) Complexes

with the Syn N-Donor Ligand H2BPG2DEV
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1. X-ray Crystallography.

Figure A2.1. ORTEP diagram of [Fe 2(M-O)(p-0 2CArPro)BPG 2DEV](CIO 4) (7)
displaying 40% thermal ellipsoids. For clarity, the CI04 anions are not shown.

I -~
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0(1) 0(2)

Figure A2.2. ORTEP diagram of [Fe 2([-O)(Y-CO3)BPG 2DEV] (8) displaying 50%
thermal ellipsoids.

Figure A2.3. Space-filling diagrams of 6, 7, and 8 (from left to right). Solvent
molecules and CI0 4 anions are omitted for clarity.
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2. UV-vis Spectra of 6a and 7a.

01 1 I 1 1 1 U N U r Ors
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Figure A2.4. UV-vis spectra, recorded at 0 OC, of a reaction mixture of 7 (green
trace) in MeCN/H 20 (4:1), NEt 3, and H20 2 to form peroxo intermediate 7a
(orange-red). The black trace corresponds to the reaction product.
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Figure A2.5. UV-vis spectra, recorded at 4 OC, of a reaction mixture of 6 (black
trace) in MeCN/H 20 (4:1), NEt 3, and H20 2 to form peroxo intermediate 6a (red
trace). The solution of 6 was purged with N2 (g) before addition of base to
prevent formation of 8.
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Figure A2.6. UV-vis spectrum of peroxo-intermediate 6a in CH 30H/H20.
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3. M6ssbauer Spectroscopy.

-4 -3 -2 -1 0 1
Velocity (mm/s)

2 3 4

Figure A2.7. Zero-field M6ssbauer spectrum [experimental data (,), calculated
fits (-)] recorded at 90 K for a frozen solution sample of the product from a
reaction of 7 with excess hydrogen peroxide in the presence of NEt3. The sample
contained 56% of 7a and 44% of a diiron(lll) (b = 0.45 mm/s and AEQ = 1.46
mm/s) species with M6ssbauer parameters similar to those of the starting
material.

-4 -3 -2 -1 0 1
Velocity (mm/s)

2 3 4

Figure A2.8. Zero-field M6ssbauer spectrum [experimental data (*), calculated
fits (-)] recorded at 90 K for a frozen solution sample of the product from the
reaction of 8 with excess hydrogen peroxide in the presence of NEt 3. The sample
contained 22% of 8a and 78% of a diiron(Ill) species (8 = 0.47 mm/s and AEQ =
1.44 mm/s) with M6ssbauer parameters similar to those of the starting material.
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Figure A2.9. Zero-field Mssbauer spectrum [experimental data (*), calculated
fit (-)] recorded at 90 K for a frozen solution sample (CH 30H/H20) of the
decomposition product from a reaction of 6 with ca. 50 equiv of hydrogen
peroxide in the presence of NEt3. The sample contained a species with
M6ssbauer parameters (8 = 0.46(3) mm/s; AEQ = 1.39(3) mm/s; F = 0.38 mm/s)
similar to those of the starting material (6).
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Figure A2.10. Zero-field Missbauer spectrum [experimental data (,), calculated
fit (-)] recorded at 90 K for a frozen solution sample of 6 in a solution of
CH 30H/H20 (ca. 15:1; v/v) with Mossbauer parameters 8 = 0.45(2) mm/s; AEQ =
1.51(2) mm/s; F = 0.45 mm/s.
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4. EPR Spectroscopy.
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Figure A2.11. X-band EPR spectrum from a reaction of 8 with 10 equiv of Et3N
in MeCN/H 20 (2:1) solution at 0 'C and 1000 equiv of H20 2 , frozen in liquid N2

after 3 min. Experimental conditions: temperature: 4 K, power: 0.2 mW at 9.3810
GHz; modulation amplitude: 10 G, receiver gain: 5000.
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5. Mass Spectrometry.

855.1195

848 853
__858 863 m
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Figure A2.12. High-resolution ESI mass spectrum of 8a -
the observed (left) and theoretical (right) isotope pattern.

comparison between

855.1189

848 853 858 863 m/z

Figure A2.13 High-resolution ESI mass spectrum of
species at m/z = 861 is due to an diiron(lll) impurity.
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7a (left) and 6a (right). The
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Appendix 3

Synthesis of Triptycene Carboxylate-Bridged Dimetallic

Complexes with First Row Transition Metals
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Introduction

Since the structural characterization of the classic paddlewheel "copper

acetate" core, 1,2 tetracarboxylate-bridged complexes have been synthesized with

nearly every transition metal and a wide assortment of different carboxylates

(RCO2-) and neutral ligands (L). Motivation for the synthesis of these complexes

is to study structural, electronic, and magnetic properties of the two metal atoms

constricted by the carboxylate bridges. Among late first row transition metals,

over 500 dicopper paddlewheel structures alone have been published, owing to

the interest sparked by the interesting magnetic properties of these complexes.3

The first paddlewheel complexes containing divalent iron, cobalt, nickel, and zinc

were reported relatively soon after the characterization of the cupric acetate

structure.

In particular, carboxylate-bridged diiron(ll) complexes have been

synthesized as part of the study of small molecule models of the diiron active site

of soluble methane monooxygenase (sMMOH).4,5 Recent research has focused

the coordination chemistry of triptycene carboxylate (TrpCO2-), which facilitates

the formation of tetracarboxylate-bridged diiron(ll) complexes with the general

formula [Fe2(f-O2CTrp) 4(L) 2].6 These complexes have very stable paddlewheel

cores and unusually long Fe-Fe distances, which are supported by "tongue in

groove" binding of the four triptycene units. In this study, the coordination

chemistry of this carboxylate with other divalent first-row transition metals was

explored.

.~~~~~w ~~r; ;~; ~~~;_,~~,,~,~~~,~-,.;. .. ;~~
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Experimental Section

General Procedures and Methods. Diethylether (Et20), pentane and

dichloromethane (CH2CI 2) were saturated with nitrogen and purified by passage

through activated alumina columns under an argon atmosphere. The syntheses

of TrpCO 2H' 8 and TrpCO 2Na have been reported. 6 Mn(OTf) 2-2MeCN was

prepared following a literature procedure. 9 All other reagents were obtained from

commercial sources and used as received. Air sensitive manipulations were

performed by using Schlenk techniques or under nitrogen atmosphere in an

MBraun glovebox.

Physical measurements. FT-IR spectra were recorded on a Thermo

Nicolet Avatar 360 spectrometer with OMNIC software.

[Mn 2(/-O 2CTrp)4(THF) 2] (1). To a solution of Mn(OTf)2-2MeCN (47.6 mg,

110 ymol) in THF (4 mL) was added a solution of NaO 2CTrp (70 mg, 219 ymol)

in THF (4 mL) and the colorless suspension was stirred overnight. The solvent

was removed from the reaction mixture and the white residue was extracted with

CH 2CI 2 (3 mL). The mixture was filtered and the clear filtrate layered with THF

(ca. 0.1 mL). Vapor diffusion of pentane afforded colorless blocks suitable for X-

ray structural analysis. Yield: 15 mg (17%).

[Co 2(/p-0 2CTrp)4(THF) 2] (2). To a solution of CoCI 2 (15.9 mg, 122 Mmol)

in THF (3 mL) was added AgOTf (70.4 mg, 274 umol) and a solution of

NaO 2CTrp (80 mg, 250 Mmol) in THF (3 mL), and the light purple-gray solution

was stirred overnight. The solvent was removed and CH 2CI 2 (3 mL) added to the

purple-gray residue. After stirring for 30 min, the mixture was filtered and the
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filtrate layered with THF (ca. 0.1 mL). Vapor diffusion of pentane yielded 2 as

blue-green dichroic blocks suitable for X-ray crystallography after two

recrystallizations. Yield: 27.3 mg (31%). FTIR (KBr, cm- 1) 3058 (w), 2957 (w),

2902 (w), 1619 (s), 1459 (s), 1446 (s), 1408 (s), 1292 (m), 1265 (m), 1175 (m),

1031 (m), 870 (m), 789 (m), 748 (s), 721 (s), 687 (m), 648 (m), 625 (s), 482 (m),

463 (m).

[Ni2(/U-0 2CTrp)4(THF)2] (3). To a solution of NiBr2 (29.0 mg, 133 Mmol) in

THF (4 mL) was added AgOTf (70.4 mg, 274 Mmol) and a solution of NaO2CTrp

(80 mg, 250 [tmol) in THF (4 mL). The light yellow-green suspension was stirred

overnight, during which time it turned to a dark gray suspension. The solvent was

removed from the reaction mixture, and the gray residue was extracted with

CH 2C12 (2.5 mL). The mixture was filtered and the green filtrate layered with THF

(ca. 0.1 mL). Vapor diffusion of pentane yielded 3 as green blocks suitable for X-

ray crystallography after two recrystallizations. Yield: 12.1 mg (13%). FTIR (KBr,

cm- 1): 3059 (w), 2957 (w), 2873 (w), 1624 (s), 1458 (m), 1447 (m), 1406 (m),

1311 (m), 1291 (m), 1217 (m), 1177 (m), 1031 (m), 872 (w), 751 (s), 721 (w), 635

(m), 625 (w), 483 (w).

[Cu 2(p-0 2CTrp) 4(THF)2] (4). To a solution of Cu(OTf) 2 (23 mg, 64 Mmol) in

THF (2 mL) was added a solution of NaO2CTrp (40 mg, 125 Mmol) THF (3 mL).

The reaction mixture was stirred overnight, during which time a white precipitate

formed. The solvent was removed from the mixture, and the turquoise residue

was extracted with CHC13 (ca. 8 mL). Vapor diffusion of Et20 into a solution

mixture of CH2CI2/CHCI 3 (1:4) afforded 4 as turquoise blocks suitable for X-ray
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crystallography. Yield: 23.5 mg (52%). FTIR (KBr, cm-'): 3060 (w), 2956 (w),

2923 (w), 2868 (w), 1620 (s), 1459 (m), 1447 (m), 1407 (s), 1292 (w), 1177 (w),

1036 (m), 1015 (w), 875 (m), 795 (m), 760 (m), 747 (m), 723 (m), 688 (w), 650

(w), 626 (s), 611 (w), 482 (w).

[Zn 2(P/-02CTrp)4(THF)21 (5). To a solution of Zn(OTf)2 (85.5 mg, 236

umol) in THF (5 mL) was added a solution of NaO 2CTrp (150 mg, 469 umol) in

THF (5 mL), and the pale yellow suspension was stirred overnight. The solvent

was removed from the reaction mixture and the white residue was extracted with

CH2 012 (7 mL). The mixture was filtered and the pale yellow filtrate was layered

with THF (ca. 0.1 mL). Vapor diffusion of pentane yielded 5 as colorless blocks

suitable for X-ray crystallography after two recrystallizations. Yield: 97.3 mg

(56%). FTIR (KBr, cm-'): 3059 (w), 2973 (w), 2955 (w), 2862 (w), 1638 (s), 1603

(m), 1459 (m), 1447 (s), 1410 (s), 1291 (m), 1188 (w), 1119 (w), 1031 (m), 875

(m), 789 (m), 763 (m), 746 (s), 722 (m), 686 (m), 648 (m), 626 (s), 606 (m), 480

(m), 451 (m).

X-ray Crystallographic Studies. Single crystals were coated with

Paratone-N oil, mounted at room temperature on the tip of a glass fiber (Oxford

magnetic mounting system), and cooled under a stream of cold N2 maintained by

a KRYO-FLEX low-temperature apparatus. Intensity data were collected on a

Bruker (formerly Siemens) APEX CCD diffractometer with graphite-

monochromated Mo Ka radiation (A = 0.71073 A) controlled by a Pentium-based

PC running the SMART software package.10 A total of 2800 frames were

acquired for each measurement. The structures were solved by direct or
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Patterson methods and refined on F2 by using the SHELXTL software. 11'12

Empirical absorption corrections were applied with SADABS 13 and the structures

were checked for higher symmetry with PLATON. 14 All non-hydrogen atoms were

refined anisotropically. In general, hydrogen atoms were assigned idealized

positions and given thermal parameters equivalent to either 1.5 (methyl hydrogen

atoms) or 1.2 (all other hydrogen atoms) times the thermal parameter of the atom

to which they were attached. Each structure contained 7 molecules of CH2CI 2;

two of them were disordered in the crystal structures of 1, 2, 3, and 5.

Results and Discussion

The reaction of triptycene carboxylate and a divalent metal triflate (M =

Mn, Co, Ni, Cu, Zn) in a 2:1 ratio afforded tetracarboxylate dimetallic complexes

1-5 in a self-assembly process. The yields varied from poor to moderate, due to

the low solubility of the complexes, depending on the metal. The structures of 1-

5 were determined by X-ray crystallographic analysis and all were isomorphous

with the previously characterized diiron analog, [Fe 2(Mt-O 2CTrp)4(THF)2] [Fe-Fe

2.7307(8)].6 The coordination sphere for each metal ion is square pyramidal and

consists of an apical THF molecule and the four carboxylates, which form the

base of the pyramid. The structures of the paddlewheel complexes are displayed

in Figure A3.1, crystallographic information is given in Table A3.1, and selected

bond distances and angles are listed in Table A3.2. The metal-metal distance

decreases from the dimanganese(ll) (2.998 A) to the dicopper(ll) (2.602 A)

system and increases again with the dizinc(ll) complex (2.889 A). This trend

^ -x_;.- ._rr ir;;,--;- i-~.;nl*-~r-i;; ;-;;;;; 1.-l(---1-:1~T-

~----- -~--- ---
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corresponds to the Irving-Williams series, which predicts the order of stability of a

high-spin M(II) compound: Mn < Fe < Co < Ni < Cu > Zn. 15 Tetracarboxylate

complexes with Mn(ll), Fe(ll), Co(ll), Ni(ll), Cu(ll), and Zn(ll) have been reported

previously and the separation between the metal atoms in 1-5 fall into the range

of the corresponding compounds. Metal-metal distances in dizinc(ll) compounds

range between 2.9-3.0 A, 16 in dicopper(ll) between 2.5 to 2.9 A,17 in dinickel(ll)

compounds around 2.7 A,2 in dicobalt(ll) compounds around 2.8 A.18 The first

dimanganese(ll) paddlewheel complex was reported only six years ago 19 and I

belongs to the class of these rather rare complexes.
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Figure A3.1. ORTEP diagram of 1-5 displaying thermal ellipsoids (50%). For
clarity, the hydrogen atoms are not shown.



Table A3.1. Crystallographic information for compounds 1-5.

Formula
FW
Crystal System
Space Group
a(A)
b (A)
c (A)
v (A 3)
Z

Pcalc (g/cm3)

Temperature (K)
p(Mo Ka) (mm 1')
e limits (deg)
Completeness to e (%)
Total no. of data
No. of unique data
Goodness of fit on F2

R, (%)a

wR 2 (%)b

Absolute struct. param.
Max, min peaks (e/A3)

1 -7CH2CI2
Mn2C99H82010C114
2058.69
Orthorhombic
Pca2 1

20.398(1)
16.0062(11)
28.085(2)
9169.6(11)
4
1.395
110
0.626
2.12, 27.05
99.9
124665
15082
1.071
4.97
12.19
0.407(14)
0.935, -0.628

2-7CH 2CI2

Co 2C 99H 82 10C11 4

2045.81
Orthorhombic
Pca2
20.3016(15)
15.9860(12)
28.087(2)
9115.6(12)
4
1.491
110
0.835
2.18, 27.88
99.9
152100
21703
1.075
5.64
12.52
0.010(11)
0.866, -0.697

a R, = llFol-IF llIIFol, b wR 2 = {([w(Fo2-Fc2)]l/[W(Fo2)2 ]}12

Table A3.1. Crystallographic information for compounds 1-5.
3-7CH2CI2

Ni2C99H820 10 C114
2045.37
Orthorhombic
Pca21

20.285(5)
15.947(4)
27.944(7)
9040(4)
4
1.503
110
0.891
2.14, 25.03
99.9
98713
15953
1.049
4.93
11.15
0.014(12)
0.505, -0.714

4-7CH2CI2

Cu 2C99H82 10 C114
2055.05
Orthorhombic
Pca2
20.224(3)
16.042(2)
27.977(4)
9077(2)
4
1.504
110
0.942
2.14, 27.12
99.9
84414
19872
1.008
7.23
13.76
0.161(15)
0.586, -0.717

5-7CH2CI2

Zn 2C 99H8 2010C11 4

2058.69
Orthorhombic
Pca21

20.256(19)
16.011(15)
28.06(3)
9101(15)
4
1.503
110
0.999
2.14, 27.00
99.7
111344
18824
1.031
4.09
9.37
0.056(7)
0.915, -0.684
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Table A3.2. Selected Bond Lengths (A) and Bond Angles (deg) for Compounds
1-5.

Trp C1A

01 N02 Trp

-

,C1 ": 8

0 9 -M 1  M2-O 1 0

0<1 04

TrP) 5 O06

Trp c

1 2 3 4 5
M(1)-M(2) 2.9986(7) 2.7405(6) 2.6015(8) 2.6016(10) 2.889(2)
M(1)-O(1) 2.106(3) 2.021(3) 2.005(3) 1.961(5) 2.069(3)
M(1)-0(3) 2.116(3) 2.043(2) 2.004(3) 1.966(4) 2.030(3)
M(1)-O(5) 2.122(3) 2.043(3) 2.011(3) 1.970(5) 2.033(3)
M(l)-0(7) 2.127(3) 2.030(2) 2.009(3) 1.967(5) 2.031(3)
M(1)-O(9) 2.099(3) 2.026(3) 1.988(3) 2.167(5) 2.013(3)
M(2)-0(2) 2.111(3) 2.062(3) 1.993(3) 1.968(5) 2.037(3)
M(2)-O(4) 2.109(3) 2.016(2) 2.008(3) 1.973(4) 2.039(3)
M(2)-O(6) 2.125(3) 2.017(3) 1.996(3) 1.962(5) 2.050(3)
M(2)-O(8) 2.105(3) 2.028(2) 2.012(3) 1.990(4) 2.036(3)

M(2)-O(10) 2.101(3) 2.036(3) 1.988(3) 2.155(5) 2.006(3)
M(1)-O(1)-C(1A) 136.9(3)) 134.3(3) 131.6(3) 127.7(5) 136.1(2)
M(1)-O(3)-C(1B) 133.2(3) 126.5(2) 124.9(3) 121.5(4) 127.7(2)
M(1)-O(5)-C(1C) 116.5(3) 117.1(2) 115.5(3) 119.1(5) 118.8(2)
M(1)-O(7)-C(1D) 125.9(3) 123.3(2) 122.3(3) 123.8(4) 123.8(2)
M(2)-O(2)-C(1A) 119.5(3) 115.8(3) 115.9(3) 118.1(5) 117.4(2)
M(2)-0(4)-C(1 B) 122.9(2) 123.1(2) 121.7(3) 123.6(4) 125.2(2)
M(2)-0(6)-C(1C) 140.2(3) 133.6(3) 131.4(3) 127.5(5) 134.7(2)
M(2)-0(8)-C(1D) 130.3(3) 127.0(2) 124.2(3) 121.8(5) 129.6(2)
Numbers in parentheses are estimated standard
M = Mn (1), Co (2), Ni (3), Cu (4), Zn (5).

deviations of the last significant figures.
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Appendix 4

Synthesis and Structure of a Molecular Ferrous

Wheel, [Fe(O 2CH)(O 2CArPrO)(1 ,4-dioxane)]6
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Introduction

Sterically hindered benzoates, such as m-terphenyl carboxylates allow the

assembly of discrete diiron species, which serve as model complexes for

carboxylate-bridged non-heme diiron enzymes. 1,' 2 From these studies it was

established that the geometry of the carboxylate influences the nuclearity of the

diiron cluster and its reactivity. Here, we report the coordination chemistry of the

carboxylate AriPrCO2- with ferrous iron (Scheme A4.1).

00 0

ArTO'CO 2  biphCO 2-  AriPrOCO2

Chart A4.1.

Experimental

General Procedures and Methods. Pentanes, diethylether (Et20),

tetrahydrofuran (THF) and dichloromethane (CH2CI2) were saturated with

nitrogen and purified by passage through activated alumina columns under an

argon atmosphere. Dry 1,4-dioxane was purchased from Aldrich. The synthesis

and characterization of NaO 2CArPhO and Fe(OTf)2-2MeCN have been reported.3 ,4

All other reagents were obtained from commercial sources and used as received.

Air sensitive manipulations were performed by using Schlenk techniques or

under a nitrogen atmosphere in an MBraun glovebox.

i:_ wi _~_~_liiYi~ Ii __ L _L_ __ I _ _ __ ;_;_ ~
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2,6-Diisopropoxybenzoic Acid (HO 2CAr'ro). A solution of dry pentane

(15 mL) containing 1,3-diisopropoxybenzene (1.03 mL, 5.15 mmol) and

N,N,N',N'-tetramethylethylenediamine (TMEDA, 1.01 mL, 6.70 mmol) in a

Schlenk flask was cooled to -5 OC. To this solution, n-butyllithium (1.6 M in

hexanes, 4.85 mL, 7.73 mmol) was added dropwise over a period of 15 min. The

resulting white suspension was stirred at ambient temperature for 30 min and

then allowed to react with gaseous, dry carbon dioxide for another 30 min. The

precipitate was filtered off, washed with hexanes (1 x 10 mL), and subsequently

dissolved in CH 2CI2 (30 mL) and aqueous HCI (5%, 30 mL). The aqueous phase

was extracted with CH2C12 (3 x 15 mL) and the organic phase washed with water

(3 x 15 mL). The organic phases were combined and dried with Na2SO 4 to yield a

white solid of HO2CAr PrO. Yield: 764 mg (62%). 1H-NMR (300 MHz, CDCI3) 6:

7.25 (m, 1H), 6.56 (d, 2H), 4.57 (m, 2H), 1.34 (d, 12H).

Sodium 2,6-Diisopropoxybenzoate (NaO 2CArro). To a solution of

HO2CAriPrO (0.744 g, 2.50 mmol) in MeOH (15 mL) was added NaOH (0.105 g,

2.62 mmol) and stirred for 2 h at 55 OC. The solvent was removed and the white

residue thoroughly dried in vaccum at 100 OC overnight before being brought into

the glove box. Yield: Quantitative.

[Fe 6(4 -0 2CH)s(p-O 2CAriPrO )6(1,4-dioxane)s] (1). To a THF (2 mL) solution

of Fe(OTf)2-2MeCN (43.1 mg, 0.100 mmol) was added NaO 2CArPrO (52.1 mg,

0.200 mmol) and the resulting suspension was stirred overnight. The next day,

the solvent was removed and the residue extracted with CH 2 CI2. The yellow

extract was dissolved in 1,4-dioxane (1 mL). Vapor diffusion of pentanes into the



226

yellow solution yielded a small amount of colorless needles of 1 after ca. two

weeks, suitable for X-ray crystallography.

X-ray Crystallographic Studies. A single crystal of I was coated with

Paratone-N oil, mounted at room temperature on the tips of quartz fibers or nylon

loops (OXFORD magnetic mounting system), and cooled to 110 K under a

stream of cold dinitrogen maintained by a KRYO-FLEX low-temperature

apparatus. Intensity data were collected on a Bruker (formerly Siemens) APEX

CCD diffractometer with graphite-monochromated Mo Ka radiation (X = 0.71073

A) controlled by a Pentium-based PC running the SMART software package.5

Data collection and reduction protocols are described elsewhere. The structures

were solved by direct methods and refined on F2 by using the SHELXTL-97

software.67 Empirical absorption corrections were applied with SADABS8 and the

structures were checked for higher symmetry with PLATON. 9 All non-hydrogen

atoms were refined anisotropically. In general, hydrogen atoms were assigned

idealized positions and given thermal parameters equivalent to either 1.5 (methyl

hydrogen atoms) or 1.2 (all other hydrogen atoms) times the thermal parameter

of the carbon to which they were attached. One molecule of 1,4-dioxane was

located in the structure of 1, which is positioned on a 3-fold improper axis and is

disordered over two positions in a ratio of 76:34.

Results and Discussion

The reaction between -O 2CArPrO and iron(ll) triflate in a 2:1 ratio did not

lead to the desired dinuclear species. Instead, the hexanuclear complex I
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crystallized from this reaction mixture as colorless blocks in small yields. The

crystal structure reveals a Fe6 wheel with S6 symmetry. The structure of 1 is

displayed in Figure A4.1; selected bond distances and angles for 1 are listed in

Table A4.1 and crystallographic information provided in Table A4.2. Six

-O2CArP rO carboxylates bridge a pair of Fe atoms, respectively, and six formate

ligands each connect three neighboring iron atoms. The latter ligand has an

unusual binding mode - one oxygen atom bridges two iron atoms in a syn,anti-

u2-fashion whereas the "dangling" oxygen atom binds syn to a third iron

atom. 10' 11 Six 1,4-dioxane molecules complete the coordination sphere around

the ferrous iron atoms. The #3-1,1,3-bridging of a carboxylate in multinuclear iron

compounds has been reported in a few cases previously.12 -14 The origin of the

formate ligand is unknown, but it is suggested that it forms from in a

decomposition reaction of the -O2CArPrO carboxylate.

Table A4.1. Selected Bond Lengths (A) and Bond Angles (deg) for Compound 1.

Fe(1)-Fe(1A) 3.543 Fe(1)-O(8) 2.1934(15)

Fe(l)-O(1) 2.0324(15) Fe(1)-O(4)-C(1 4) 121.60(13)

Fe(1)-O(2A) 2.0926(15) Fe(1)-O(3)-C(14) 153.35(14)

Fe(1)-O(3) 2.1680(15) Fe(1)-O(4)-Fe(1 C) 113.40(6)

Fe(1)-O(4) 2.1055(14) Fe(1)-O(2)-C(1) 136.05(14)

Fe(1)-O(4A) 2.1330(14) Fe(1)-O(1)-C(1A) 130.90(14)
Numbers in parentheses are estimated standard deviations of the last significant figure.
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0(1)

0(2) C(14)

C(1)

Figure A4.1. ORTEP diagram of [Fe6(M-02CH)6(M-02CAIPro)6(1 ,4-dioxane)6] (1)
illustrating 50% probability thermal ellipsoids for all non-hydrogen atoms. The
hydrogen atoms and the Ar'" unit of the -O2CAr' ligands are omitted for
clarity.
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Table A4.2. Summary of X-ray Crystallographic Data for 1.

Empirical formula
Formula weight

Crystal System

Space group

a (A)

c (A)
v (A3)
Z

1-1,4-dioxane

Fe 60 50 C 112H 164

2645.53
Trigonal (Rhombohedral)

R3
30.0684(17)

12.3469(14)
9667.4(13)
3

pcalc (g/cm3) 1.363

Temperature (K) 110

yz Mo Kca (mm-') 0.743

6 range (deg) 2.27 - 27.88

Crystal size (mm) 0.08 x 0.10 x 0.15

Completeness to 8 (%) 100.0

Max, min peaks (e/A 3) 0.326 and -0.361

Goodness-of-fit on F2  1.071

Total no. of data 55549

No. unique data 5136

R1 (%)a 4.44

wR 2 (%)b 8.32
a R1 = IIFol-IFII/ZIFol, b wR2 = ([w(Fo-FC)]/[w(Fo ) ]}1/2
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