Algorithms Incorporating Concurrency and Caching
by
Jeremy T. Fineman

Submitted to the Department of Electrical Engineering and Computer Science ARCHIVES
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy MASSACHUSETTS INSTITUTE]
OF TECHNOLOGY
at the ‘
SEP 3 0 2009
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009 LIBRARIES

(© Massachusetts Institute of Technology 2009. All rights reserved.

Author

September 4, 2009

Certified by , T
Charles E. Leiserso
Professor

Thesis Supervisor

Accepted by , ,
/ Professor Terry P. Orlando

Chairman, Department Committee on Graduate Students
Electrical Engineering and Computer Science

Algorithms Incorporating Concurrency and Caching
by
Jeremy T. Fineman

Submitted to the Department of Electrical Engineering and Computer Science
on September 4, 2009, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

This thesis describes provably good algorithms for modem large-scale computer systems, including
today’s multicores. Designing efficient algorithms for these systems involves overcoming many
challenges, including concurrency (dealing with parallel accesses to the same data) and caching
(achieving good memory performance.)

This thesis includes two parallel algorithms that focus on testing for atomicity violations in
a parallel fork-join program. These algorithms augment a parallel program with a data structure
that answers queries about the program’s structure, on the fly. Specifically, one data structure,
called SP-ordered-bags, maintains the series-parallel relationships among threads, which is vital
for uncovering race conditions (bugs) in the program. Another data structure, called XConflict,
aids in detecting conflicts in a transactional-memory system with nested parallel transactions. For a
program with work T} and span T, maintaining either data structure adds an overhead of PT to
the running time of the parallel program when executed on P processors using an efficient scheduler,
yielding a total runtime of O(T1/P + PTy). For each of these data structures, queries can be
answered in O(1) time.

This thesis also introduces the compressed sparse rows (CSB) storage format for sparse matri-
ces, which allows both Az and ATz to be computed efficiently in parallel, where A is an n X n
sparse matrix with nnz > n nonzeros and z is a dense n-vector. The parallel multiplication al-
gorithm uses ©(nnz) work and ©(y/n/ logn) span, yielding a parallelism of ©(nnz /\/nlogn),
which is amply high for virtually any large matrix.

Also addressing concurrency, this thesis considers two scheduling problems. The first schedul-
ing problem, motivated by transactional memory, considers randomized backoff when jobs have
different lengths. I give an analysis showing that binary exponential backoff achieves makespan
v20(Vlogn) yith high probability, where V' is the total length of all n contending jobs. This
bound is significantly larger than when jobs are all the same size. A variant of exponential backoff,
however, achieves makespan of O(V log V') with high probability. I also present the size-hashed
backoff protocol, specifically designed for jobs having different lengths, that achieves makespan
O(V log® log V) with high probability.

The second scheduling problem considers scheduling n unit-length jobs on m unrelated ma-
chines, where each job may fail probabilistically. Specifically, an input consists of a set of n jobs,
a directed acyclic graph G describing the precedence constraints among jobs, and a failure proba-
bility g;; for each job j and machine 7. The goal is to find a schedule that minimizes the expected
makespan. I give an O(loglog(min {m, n}))-approximation for the case of independent jobs (when
there are no precedence constraints) and an O(log(n + m) log log(min {m, n}))-approximation al-
gorithm when precedence constraints form disjoint chains. This chain algorithm can be extended
into one that supports precedence constraints that are trees, which worsens the approximation by
another log(n) factor.

iii

To address caching, this thesis includes several new variants of cache-oblivious dynamic dic-
tionaries. A cache-oblivious dictionary fills the same niche as a classic B-tree, but it does so with-
out tuning for particular memory parameters. Thus, cache-oblivious dictionaries optimize for all
levels of a multilevel hierarchy and are more portable than traditional B-trees. I describe how
to add concurrency to several previously existing cache-oblivious dictionaries. I also describe
two new data structures that achieve significantly cheaper insertions with a small overhead on
searches. The cache-oblivious lookahead array (COLA) supports insertions/deletions and searches
in O((1/B)log N) and O(log N) memory transfers, respectively, where B is the block size, M
is the memory size, and N is the number of elements in the data structure. The xDict supports
these operations in O((1/eB'~¢)logg(N/M)) and O((1/¢) logg(N/M)) memory transfers, re-
spectively, where 0 < € < 1 is a tunable parameter.

Also on caching, this thesis answers the question: what is the worst possible page-replacement
strategy? The goal of this whimsical chapter is to devise an online strategy that achieves the highest
possible fraction of page faults / cache misses as compared to the worst offline strategy. I show that
there is no deterministic strategy that is competitive with the worst offline. I also give a randomized
strategy based on the most recently used heuristic and show that it is the worst possible page-
replacement policy. On a more serious note, I also show that direct mapping is, in some sense, a
worst possible page-replacement policy.

Finally, this thesis includes a new algorithm, following a new approach, for the problem of
maintaining a topological ordering of a dag as edges are dynamically inserted. The main result
included here is an O(n?logn) algorithm for maintaining a topological ordering in the presence
of up to m < n(n — 1)/2 edge insertions. In contrast, the previously best algorithm has a total
running time of O(min {m3/2,n%2}). Although these algorithms are not parallel and do not exhibit
particularly good locality, some of the data structural techniques employed in my solution are similar
to others in this thesis.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

iv

Acknowledgments

I would first like to thank Charles E. Leiserson, my advisor. When Charles announced to my entire
group that I would be graduating this year, that was the first I had heard of it. At that point, I
thought he had tired of having me around. Now that we’re nearing the end, however, and Charles is
requesting changes to this document, I realize that he must still want me around. In all seriousness,
though, I would like to thank Charles for putting up with me for all these years and for providing
guidance in both research and my career. And for putting his signature on the cover sheet.

I would like to thank all of my collaborators, including Kunal Agrawal, Michael A. Bender,
Gerth Stglting Brodal, Aydin Bulug, Martin Farach-Colton, Christopher Y. Crutchfield, Erik D.
Demaine, Zoran Dzunic, Yonatan Fogel, Matteo Frigo, John R. Gilbert, Seth Gilbert, John Iacono,
David R. Karger, Bradley C. Kuszmaul, Stefan Langerman, Charles E. Leiserson, J. Ian Munro,
Jelani Nelson, Jacob H. Scott, Jim Sukha, and Robert E. Tarjan. They were invaluable in developing
the solutions described later in this thesis.

Michael deserves particular attention and gratitude. He worked with me on a large fraction of
the research that went into this thesis, and he has been a good friend and mentor throughout.

I would also like to thank all the other members of the SuperTech group not already mentioned,
including Angelina Lee and Edya Ladan Mozes, as well as the members of the theory group. I
would also like to thank all my friends for contributing to many dinner parties, dessert parties, game
nights, and other activities that kept me sane.

I extend particular gratitude to the delicious pig who became the pulled pork that got cooked in
the pot that burned me. Were it not for you, pig, I would not have had those wonderful blisters on
my fingers for a few weeks of peak thesis-typing time.

Last but not least, I would like to thank Artessa for doing her best to curtail my thesis efforts.
Without her, perhaps I would have finished months earlier.

This work was supported in part by NSF Grants ACI-0324974, CCF-0541209, CCF-0621511,
CNS-0305606, CNS-0540248, CNS-0615215, CSR-AES 0615215, OCI-0324974, the Singapore
MIT Alliance, Google Inc., and the Intel Corporation. Any opinions, findings, conclusions or rec-
ommendations expressed in this thesis are those of the author and do not necessarily reflect the
views of these funding organizations.

vi

Contents

Introduction

Series-Parallel Maintenance

2.1 The SP-order algorithm
2.2 The SP-fast-bagsalgorithm L L.
23 Amodelof parallel programs L
2.4 The SP-ordered-bags algorithm
2.5 The global tier of SP-ordered-bags
2.6 Thelocal tier of SP-ordered-bags
2.7 Correctness of SP-ordered-bags
2.8 Performance analysiso
2.9 Related work on SP-maintenance Lo
2.10 Concludingremarks Lo

Nested Parallelism in Transactional Memory

3.1 CWSTMframework @ i e
3.2 CWSTMSEmantiCs v v v i i e e e e e e e e e e e e e e e e e e e
33 Amnaive TM e e e e e e e e e e e e e e
34 CWSTMOVEIVIEW i i i e e e e e e e e e e e e e e e e e
3.5 CWSTMeconflictdetection it
3.6 TracemaintenancCe i e e e e e e e e e e
3.7 Highest active transactiono
3.8 Supertraces e e e e e e e e e e e
3.9 ADCESIOr QUETIES v i it e e e e e e e e e e e e
3.10 Performanceclaims e e e e e e e e e e
3.11 Concludingremarks L e

Scheduling Under Uncertainty

4.1 Preliminaries e e e e e e e e
42 Independentjobs
4.3 Jobs with chain-like precedence constraints
4.4 Jobs with tree-like precedence constraintso L.
4.5 Stochasticscheduling
4.6 Concludingremarks L e

vil

10

11

12

13

Contention Resolution with Heterogeneous Job Sizes 89

5.1 Traditional backoff with variable-sized jobs 91
5.2 Size-hashedbackoff L. 94
53 Concludingremarks e 101
Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Com-

pressed Sparse Blocks 103
6.1 Conventional storageformats 105
6.2 The CSBstorageformat 107
6.3 Matrix-vector multiplicationusing CSB 109
6.4 Analysis e e e e e e e 113
6.5 Experimentaldesign oo 115
6.6 Experimentalresults, 119
6.7 CSBDiscussion e e e 122
Introduction to Cache-Oblivious Dictionaries 127
7.1 Previous cache-oblivious dictionaries 129
Concurrent Cache-Oblivious B-Trees 131
8.1 The concurrent-cachemodel 132
8.2 Exponential COB-tree, 133
8.3 Packed-memoryCOB-tree 137
84 Lock-freeCOB-tree« o i i i i i it i e e e e e e 143
8.5 Concurrent COB-tree discussion« . o v o vt vttt e e 146
The Lookahead Array: A Cache-Oblivious Dictionary With Faster Insertions 147
9.1 Cache-oblivious lookahead array (COLA) 148
9.2 COLA:experimentalresults 153
The xDict: A CO B-Tree With Optimal Update/Query Tradeoff 157
10.1 Introducingthe ®-box 157
10.2 Sizingana®-box e e e 160
10.3 Operatingan -boxX e e 160
10.4 Building a dictionaryoutof z-boxes 165
105 Finalmotes o o o i i e e e e e e e e e e e e e e 166
The Worst Page-Replacement Policy 167
11.1 Lowerbounds e e e 169
11.2 Most-recentlyused e 170
11.3 Direct mapping ¢ v v v v i e e e e e e e e e e e e 173
114 Concludingremarks o e e 174
Incremental Topological Ordering 175
12.1 BasicCStrategy v o i e e e e e e e e e e e e e e e e 177
12.2 Algorithmfordensegraphs 178
123 Analysis o o e e e e e e e e 182
124 Concludingremarks e e 184
Conclusions 187

viii

List of Figures

1-1 Themachinemodel.. 1
1-2 A chart showing the locality and parallelism exhibited by algorithms in each chapter

ofthisthesis. 2
2-1 A dag representing a multithreaded computation. 10
2-2 The parse tree for the computationdag. 10
2-3 Comparison of serial, SP-maintenance algorithms 12
2-4 AnEnglish and Hebrew ordering. 14
2-5 The SP-order algorithm written in serial pseudocode. 16
2-6 An illustration of how SP-order operates atan S-node. 17
2-7 An illustration of how SP-order operatesataP-node. 17
2-8 Acanonical Cilkparsetree. 19
2-9 The SP-bags algorithm described in terms of procedures. 20
2-10 The SP-bags algorithm written in serial pseudocode. 21
2-11 The SP-ordered-bags algorithm written in parallel pseudocode. 28
2-12 The SP-Precedes procedure for the SP-ordered-bags algorithm. 29
2-13 The split of a trace around a P-node in terms of a canonical Cilk parse tree. 31
2-14 An ordering of the new traces resulting fromasteal. 32
2-15 The local-tier SP-fast-bags algorithm written in parallel pseudocode. 34
3-1 A simple fork-join program that does several parallel increments. 44
3-2 The series-parallel dag for the sample program. 44
3-3 The same program with the addition of transactions. 45
3-4 A legend for computation-tree figures., 47
3-5 A computation tree for the program given by Figure 3-1. 48
3-6 Pseudocode for a conflict-detectionquery. 52
3-7 Pseudocode instrumenting a memory access.o.a e 54
3-8 Code for cleanup up an aborted transaction. 55
3-9 Traces of a computation tree (a) before and (b) after a steal action. 56
3-10 Pseudocode for the XConflict algorithm. 57
3-11 The definition of arrows used to represent paths in Figures 3-12, 3-13 and 3-14. . . 58
3-12 The three possible scenarios in which X is the nearest transactional ancestor of B

that belongs to an activetrace. 58
3-13 The possible scenarios in which the highest active transaction Y in U, is an ancestor

of X. o e 59

3-14 The scenario in which the highest active transaction Y in U, is not an ancestor of X. 59

4-1 Approximationratiosfor SUU. 71

ix

5-1 Pseudocode for size-hashed backoff. e e e e e e e e e e e e e e e 97

6-1 Average performance of Az and ATz operations on our benchmark suite. 104
6-2 Parallel matrix-vector multiplication using CSR. 105
6-3 Serial matrix-transpose-vector multiplicationfor CSR. 106
6-4 Pseudocode for CSB matrix-vector multiplication. 110
6-5 Pseudocode for subblockrow-vector multiplication used for CSB. 111
6-6 Pseudocode for the subblock-vector productused for CSB. 112
6-7 The effect of CSB block size on SpMv performance. 117
6-8 Structural information on the sparse matrices used in our experiments. 118
6-9 CSB_SPMYV performance on Opteron (smaller matrices). 120
6-10 CSB_SPMV _T performance on Opteron (smaller matrices). 121
6-11 CSB_SPMYV performance on Opteron (larger matrices). 122
6-12 CSB_SPMV._T performance on Opteron (larger matrices). 123
6-13 Average speedup of CSB on smaller test matrices. 123
6-14 Parallelismtestfor CSB.SPMV. o o oo 124
6-15 CSB_SPMYV performance on Harpertown. 124
6-16 CSB_SPMYV performance on Nehalem. 125
6-17 Serial performance comparison of SpMV for CSBand CSR. 125
6-18 Serial performance comparison of SpMV_T for CSBandCSR. 126
6-19 Performance comparison of parallel CSB_SPMV with Star-P. 126
7-1 Summary of known cache-oblivious dictionaries. 129
7-2 ThevanEmde Boaslayout. 129
8-1 Anexponential COB-tree. o 133
8-2 An example of an insert into an exponential COB-tree. 134
8-3 The modified van Emde Boas layout of a node in the exponential CO B-tree. 134
8-4 A packed-memory COB-tree., 138
8-5 An insertion into the packed-memory array. 140
9-1 Comparison of the COLA and B-tree for random insertions. 154
9-2 Comparison of the COLA and B-tree for sorted insertions. 154
9-3 - Comparison of the COLA and B-tree for random searches. 155
9-4 Comparison of various insertion patterns intothe COLA. 155
10-1 The recursive structure of an z-box. e e e e e e e e 158
10-2 Buffersizesforan z-box. oo e e 158
12-1 An example of a clique, for which the simple algorithm performs ©(k?) work. . . : 178
12-2 Pseudocode forupdating labels. 180

Chapter 1

Introduction

This thesis explores algorithms and data structures motivated by and designed for modern large-
scale computer systems, such as multicore computers. Achieving good performance on these ma-
chines entails designing algorithms that achieve good parallelism, thereby utilizing multiple pro-
cessors effectively, and that have good locality, exploiting the cache to attain good memory per-
formance. The goal of this thesis is to study various techniques for parallel and cache-efficient
(specifically, so-called cache-oblivious) algorithms. Many of the solutions described in this thesis
are data structural in nature, and many of the solutions exploit amortization in the analysis. Much
of this thesis is really a study of amortized data structures in the context of practical problems
motivated by modern computers.

Recently, most hardware vendors have abandoned their singlecore chips in favor of multicore
designs. Intel, for example, announced in 2005 that their focus would be on multicore chips. Al-
though most common machines today have between 2 and 8 cores, a general belief is that the num-
ber of cores will double every silicon generation (see, for example, [28]). Hence, highly parallel
algorithms are necessary to exploit the full power of these machines.

Network

Figure 1-1: The machine model used for most of the algorithms in this thesis. Each processor is connected
to a private fast memory, called the cache. Processors communicate through the shared main memory.

Throughout most of this thesis, I consider algorithms designed for a shared-memory machine,
such as the one shown in Figure 1-1 (see also [117, Chapter 4]). As shown, each identical processor
is connected to a private fast memory, called the cache. Processors are connected to main memory

Parallelism

Locality

Figure 1-2: A chart showing how much locality and parallelism are expressed by each of the chapters in
this thesis. The points here are subjective and should be taken as a guideline only. The z-axis here plots
locality, with points towards the right exploiting the cache more effectively. The y-axis indicates concurrency
or parallelism with higher points representing algorithms with more parallelism.

through some network, which is abstracted away throughout this thesis. Accessing the cache is
much cheaper than accessing the shared memory, and thus good algorithms should exhibit locality
to exploit the cache. In general, my algorithms are designed for a symmetric multiprocessor (SMP),
in which all memory locations (not currently residing in a cache) have the same access cost by each
processor. My performance analyses depend on the uniform access cost, but algorithmic correctness
does not. These algorithms thus apply to nonuniform access machines (NUMA), and the presence
of locality in the algorithms suggests good performance there as well. Moreover, although Figure 1-
1 shows only a single level of cache and a slow memory, many of the algorithms presented in this
thesis generalize effectively to multilevel memory or cache hierarchies. In fact, one of the reasons I
consider cache-oblivious algorithms is that cache-oblivious algorithms automatically generalize to
multilevel memory hierarchies.

Figure 1-1 is consistent with common multicore processors today, such as all present Intel and
AMD chips. Other types of multicores exist, such as the Sony-Toshiba-IBM Cell Broadband Engine
with heterogeneous processors, or the Cray MTA with no caches. Although the algorithms in this
thesis are not specifically designed for those types of machines, many of the techniques presented
here may still be applicable.

Figure 1-2 shows a subjective chart of the locality and parallelism expressed by the algorithms
within this thesis. The goal is to achieve algorithms in the upper-right, like those in Chapters 6
and 8, achieving both good locality and parallelism. As a step in this direction, I also consider
algorithms that achieve either parallelism or locality. Chapters 2—6 and Chapter 8 address concur-
rency, whereas Chapters 7-11 address caching and locality. Chapters 2-5 are more infrastructural
in nature, whereas Chapters 6 and 12 address algorithms at the library or application level.

Contributions

One of the key difficulties in designing parallel algorithms is coping with concurrent accesses to
shared data. In some cases (e.g., the algorithm in Chapter 6), parallel tasks may be scheduled such
that no two contending tasks execute at the same time. In this case, however, the parallel algorithm

must be structured to facilitate this scheduling, which is not a trivial task.

Much of this thesis focuses on more complex interactions among processors. When two parallel
tasks operate on the same data, some mechanism for handling critical sections is required, in the
form of semaphores [83] (or locks), or, more recently, transactional memory [119]. Dealing with
critical sections adds more difficulty to the implementation of parallel codes. If the critical sections
are too large, then parallelism decreases. If the critical sections are smaller, then the program be-
comes more complex. Complex parallel codes are prone to bugs like race conditions and deadlock.
Moreover, it is not generally well-understood how to design algorithms that achieve provably good
performance bounds while using locks or transactions.

This thesis makes two major contributions with respect to concurrency control. First, I pro-
vide algorithms that help the programmer to write correct parallel codes using locks or transactions,
either by uncovering race bugs in programs with locks (Chapter 2) or by supporting conflict detec-
tion in a highly parallel transactional-memory system (Chapter 3). Second, these are themselves
examples of parallel algorithms that achieve provably good performance despite their use of locks
internally. Moreover, the solutions here include a novel approach for amortizing the cost of locking
against the span of the computation.

Another goal of this thesis is to construct algorithms with good locality, thereby efficiently using
memory caches on the machine. For large data sets, the cost of memory accesses may dominate the
total runtime of an algorithm. Fortunately, memory is transferred in large chunks, and so by orga-
nizing data cleverly (to introduce locality), we can exploit the cache and drive down the total cost of
the memory accesses. Most notably, my work on caching focuses on cache-oblivious dictionaries in
Chapters 7-10. Many of the parallel algorithms included in this thesis, moreover, are structured to
achieve some level of locality (notably, the algorithm in Chapter 6, but also to a lesser degree those
algorithms in Chapters 2 and 3).

As a whole, this thesis aims to study many techniques for designing provably good parallel
algorithms, also including some that use locks, and cache-oblivious algorithms.

Chapters 2 and 3 addresses mutual exclusion for fork-join programs', providing tools that make
it easier to guarantee program correctness. Both of these chapters describe solutions that are in-
tended to be integrated into a parallel runtime system, essentially augmenting a parallel program
with additional data structures to answer questions about the program as it is running. These algo-
rithms essentially operate on input fork-join programs and augment them to address certain prob-
lems. Both of the parallel algorithms described in these chapters maintain a shared data structure that
is accessed concurrently using locks for mutual exclusion. The analysis includes a novel technique
for amortizing the cost of locking against the “span” of the underlying program. For a program with
work (serial running time) T} and span (also called critical-path length or depth) T, maintaining
the centralized data structures in either of these chapters adds an overhead of O(PT) to the run-
ning time of the parallel program when executed on P processors using an efficient scheduler. In
contrast, the program without augmentation can be executed in O(T1/P + Ty,) time. For both of
these data structures, relevant queries can be answered in O(1) time without acquiring any locks.

Chapter 2 address the problem of series-parallel maintenance, determining whether the struc-
ture of the program allows for two particular tasks to execute in parallel. Specifically, are tasks u
and v logically serial or parallel? Answering this question is a key component of race detectors
tools for uncovering race bugs in the program. Chapter 2 describes three algorithms, the serial SP-
order and SP-fast bags algorithms, and the parallel SP-ordered-bags algorithm. Consider a parallel
program with Ty work and T, span. When augmented with SP-order or SP-fast-bags, the program

!Fork-join programs are a restricted class of parallel programs with well-structured parallelism. Languages such as
Cilk [54], NESL [53], and libraries such as TBB [174] all provide fork-join parallelism.

can be executed in O(T7) time on a single processor while supporting queries in O(1) time. Both
of these algorithms can be combined to form the SP-ordered-bags algorithm. When that program
is augmented with SP-ordered-bags, it can be executed in O(T; /P + PT.,) worst-case time on P
processors. Here, queries can be answered in O(1) time, in parallel, without acquiring any locks.
Chapter 2 represents joint work with Michael A. Bender, Seth Gilbert, and Charles E. Leiserson.

Chapter 3 considers conflict detection in a transactional-memory system that contains nested
parallel transactions. Previous work on transactional memory (e.g., [119]) focuses on transactions
that represent serial computation. In contrast, Chapter 3 considers adding transactions that contain
parallel code blocks (that in turn contain nested parallel transactions) to fork-join programs. Allow-
ing nesting within transactions exacerbates the problem of discovering conflicts among transactions
and determining when one transaction must abort. Chapter 3 presents an algorithm for conflict de-
tection in this complex setting. The key data structure, called XConflict, supports these queries and
achieves the same performance bounds as SP-ordered-bags. That is, a program with T} work and
Too span can be executed in O(T1/P + PTy,) worst-case time on P processors while augmented
to maintain the XConflict data structure. Moreover, queries about conflicts among transactions can
be answered in O(1) time without acquiring any locks. Chapter 3 represents joint work with Kunal
Agrawal and Jim Sukha.

Chapters 4 and 5 consider scheduling problems. Specifically, Chapter-4 deals with a distributed
scheduling problem, whereas Chapter 5 studies various backoff protocols in the presence of tasks
that have different sizes.

Chapter 4 addresses scheduling under uncertainty, first introduced in [146], where each job has
a stochastic failure rate. Specifically, an input consists of n unit-length jobs and m machines, where
each job-machine pair has an independent failure probability when executing the job for unit time.
This failure probability models machines crashing or taking too long to complete. There may be
precedence constraints among jobs modeled by a directed acyclic graph (dag). The problem is to as-
sign jobs to machines so as to minimize the expected makespan, which is the completion time of the
last job to complete. A single job may be executed on multiple machines at the same time, thereby
decreasing its aggregate failure probability. This thesis includes an O(log log p)-approximation
when all jobs are independent (no precedence constraints), O(log(n + m) log log p)-approximation
when precedence constraints form chains, and O(log(n+m) log(n) log log 1)-approximation when
constraints form trees, where y = min {m, n}. These results beat the previously best approxima-
tion ratios by at least an O((log n)/ log log) factor. The solutions I present use many classic tools
like LP rounding and competitive analysis. Chapter 4 represents joint work with Christopher Y.
Crutchfield, Zoran Dzunic, David R. Karger, and Jacob H. Scott.

Chapter 5 considers randomized backoff, where processes/jobs make competing attempts to
access a shared resource, but only one can gain control of the resource at a time. Here, I consider
jobs that have nonuniform size. If an access attempt fails due to contention, then that process
waits for a random amount of time (determined by the backoff protocol) before trying again. In the
context of this thesis, backoff with jobs having different sizes is primarily motivated by transactional
memory, where the “jobs” correspond to transactions in a program, all of which access the same
memory location. This thesis presents the first theoretical analysis of randomized backoff when
jobs have different sizes. I consider the case here when all jobs enter the system at the same time.
Chapter 5 includes several contributions. First, the analyses show that binary exponential backoff
achieves a makespan of V20(VIogn) ijth high probability for n jobs with total length V. This
bound for jobs having different sizes is significantly worse than the ©(nlogn) bound achieved
when all jobs have unit size [43]. This bound also suggests that binary exponential backoff is not
a good choice for some transactional-memory systems. I also show that exponential backoff with
a slower rate of backoff achieves O(V log V') makespan. Finally, I improve the bounds further

4

by providing the size-hashed backoff scheme that is designed to work with a particular class of
functions. I show constructively a class of functions allowing size-hashed backoff to complete with
makespan O(V /log V (loglog V')?) and prove the existence of functions that would allow size-
hashed backoff to complete with makespan O(V (loglogV')3). Chapter 5 represents joint work
with Michael A. Bender and Seth Gilbert.

Chapter 6 returns to a fork-join parallel algorithm, but now at the application level instead
of the runtime-system level. This chapter introduces a storage format for sparse matrices, called
compressed sparse blocks (CSB), which allows both Az and ATz to be computed efficiently in
parallel, where A is an n x n sparse matrix with nnz > n nonzeros and z is a dense n-vector. The
parallel multiplication algorithms use ©(nnz) work and ©(y/nlgn) span, yielding a parallelism
of ©(nnz /\/nlgn), which is amply high for virtually an large matrix. The storage requirement
for CSB is essentially the same as that for the more-standard compresses-sparse-rows (CSR) [175]
format, for which computing Az in parallel is easy but ATz is difficult. Benchmark results indicate
that on one processor, the CSB algorithm for Az and ATz run just as fast as the CSR algorithm for
Az, but the CSB algorithm also scales up linearly with processors until limited by offchip memory
bandwidth. Chapter 6 represents joint work with Aydin Bulug, Matteo Frigo, John R. Gilbert, and
Charles E. Leiserson

One interesting aspect CSB is that it uses a recursive layout. Typically recursive layouts are used
to exploit locality, but here the recursive layout allows for parallelism. Moreover, the multiplica-
tion algorithm introduces parallelism by duplicating shared-memory locations, thereby reducing the
need for concurrency control on these locations. The analyses amortizes the cost of creating these
extra memory locations against the cost of the actual multiplication, yielding a low overhead. Al-
though I do not analyze the cache efficiency of CSB, the experimental study as well as the recursive
layout suggest that CSB does achieve good spatial locality.

Chapters 8-11 address cache performance, including various cache-oblivious dynamic dictio-
naries in Chapters 8-10. A dynamic dictionary is a data structure that supports insertions, deletions,
and predecessor queries on keyed data. Dynamic dictionaries that achieve good memory perfor-
mance are the key data structures for filesystems and databases. The most famous memory-efficient
dynamic dictionary is the B-tree [30, 70], which supports all three operations with O(logg N)
memory transfers, where B is the block size, or number of records moved in each memory trans-
fer. A cache-oblivious dynamic dictionary is a dictionary that achieves good performance with-
out using the parameter B in the data structure. Several cache-oblivious dynamic dictionaries
(e.g., [34,35,37,41]), also called cache-oblivious B-trees, already exist. These previous cache-
oblivious dictionaries, however, are all serial in nature. Chapter 7 provides a more detailed intro-
duction to cache-oblivious dictionaries as well related work.

Chapter 8 provides cache-oblivious B-trees that support concurrent operations. These data struc-
tures build on previous versions of cache-oblivious B-tree and obtain similar performance bounds
to the original data structures when operating serially. This chapter uses two main types of tools
to facilitate concurrent operations. First, introducing randomization into the underlying data struc-
tures reduces the likelihood of overlapping expensive update operations. Second, the concurrent
data structures make use of monotonic data movement. That is to say, the typical cache-oblivious
B-trees move data in memory on update operations. The concurrent versions described in Chapter 8
aim to restrict this movement so that the address of a particular record can only increase over time,
thereby facilitating concurrent operations. Chapter 8 represents joint work with Michael A. Bender,
Seth Gilbert, and Bradley C. Kuszmaul.

Although the concurrent cache-oblivious B-trees are not the only parallel cache-oblivious algo-
rithms in the literature, to my knowledge, these are the only ones that directly cope with multiple
processors concurrently accessing the same data. Blelloch, Gibbons, and Simhadri [52], for exam-

ple, provide general theorems stating that if an algorithm has low span and achieves good serial
cache performance, then it achieves good parallel cache performance. Their results, however, as-
sume that caches are noninterfering. There are also many examples of parallel cache-oblivious
algorithms [51, 52, 67, 68, 100], but these typically also deal with computations where the data can
be partitioned across processors, and there is little contention on shared locations.

Chapters 9 and 10 include dynamic cache-oblivious dictionaries that support a better insertion
bound at a small cost to searches. The cache-oblivious lookahead array, described in Chapter 9,
achieves inserts in O((log N)/B) amortized memory accesses while still supporting searches in
O(log N) worst-case memory transfers. That is, insertions are improved by an O(B/ log B) factor
whereas searches are worsened by only a O(log B) factor. The xDict, described in Chapter 10,
achieves the optimal tradeoff bound (proved in [59]), namely inserts in O((1/eB'~¢)log g(N/M))
and searches in O((1/¢) log g(N/M)) memory transfers. These data structures are the first to incor-
porate the technique of fractional cascading [64] into cache-oblivious data structures. The cache-
oblivious lookahead array represents joint work with Michael A. Bender, Martin Farach-Colton,
Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nelson, and the xDict represents joint work
with Gerth Stglting Brodal, Erik D. Demaine, John Iacono, Stefan Langerman, and J. Ian Munro.

Chapter 11 also addresses caching, but with a paradoxical goal. In particular, this chapter aims to
devise an online page-replacement strategy that achieves the highest possible fraction of page faults
(or cache misses) as compared to the (worst) offline strategy. The goal here is not entirely serious,
but the analyses may still be interesting in their own right. Since the aim is to reduce locality, and
this chapter does not address parallelism, Figure 1-2 shows this chapter in the lower-left of the chart.
I show that randomization is required to have a strategy that is competitive with the worst offline
strategy. I also give a randomized strategy based on the most recently used heuristic and prove that
it is the worst possible replacement policy. I also show that direct mapping is, in some sense, the
worst page-replacement policy. This last result suggests that caches should use at least some degree
of associativity. Chapter 11 represents joint work with Kunal Agrawal and Michael A. Bender.

Finally, Chapter 12 addresses dynamically maintaining a topological ordering in a dag. In par-
ticular, let G = (V, E) be adag, and let n = |V| and m = |E|. We say that a total ordering on
vertices is a topological ordering if for every edge (u,v) € E, we have u appearing before v in the
total ordering. This chapter considers the problem of maintaining a topological ordering dynami-
cally as the underlying graph changes. Specifically, I address the incremental problem, in which we
begin with an empty n-node graph G = (V,) and edges are added one at a time. Throughout this
process, a data structure maintains a topological ordering of the graph G, allowing for queries about
relationships among vertices. Chapter 12 presents a new algorithm that has total cost O(n?logn)
for maintaining the ordering across m edge insertions. At the heart of the algorithm is a new ap-
proach for maintaining the ordering. Rather than attempting to place nodes in an ordered list (as
in previous approaches), we assign each node a label that induces the ordering and can be updated
efficiently. When the graph is dense, this algorithm is more efficient than existing algorithms. By
way of contrast, the best prior algorithms achieve only O(min {m!%,n%3}) cost. These algorithms
are all serial, and there is likely little locality. Chapter 12 represents joint work with Michael A.
Bender and Seth Gilbert.

With the exception of the scheduling algorithms in Chapters 4 and 5 and the page-replacement
problem in Chapter 11, all of the algorithms in this thesis incorporate data structures and amortiza-
tion. These data structures have many similar themes that unify the topic areas. Some of the cache-
oblivious data structures, particular the concurrent B-trees (Chapter 8) and the xDict (Chapter 10)
use recursive layouts. A recursive layout also occurs in the parallel CSB algorithm in Chapter 6, but
the goal in CSB is to provide parallelism, not locality.

Another theme is maintaining a total order. SP-ordered-bags (Chapter 2) as well as XConflict

6

(Chapter 3) have components that maintain total orders of nodes in the underlying dag. Similarly,
a topological order (Chapter 12) is a total ordering. In fact, SP-order maintains two topological
orderings of the underlying computation dag. The cache-oblivious dictionaries also maintain total
orders by keeping data in sorted order in components of the concurrent CO B-trees (Chapter 8)
and the COLA (Chapter 9) and xDict (Chapter 10). Moreover, the underlying order-maintenance
data structure [79,81] used in SP-ordered-bags and XConflict is reminiscent of the packed-memory
array [41, 123] employed by many cache-oblivious dictionaries including those in Chapter 8. Both
data structures aim to order data, and analysis of each uses a similar amortization argument (al-
though the latter is more complicated). Also common to these orderings is labels. The order-
maintenance data structure dynamically labels objects to permit efficient queries. In the same vein,
the incremental topological ordering algorithm (Chapter 12) labels nodes in the dag to infer the
topological ordering.

Chapter 2

Series-Parallel Maintenance

This chapter shows how to maintain the series-parallel (SP) relationships between logical strands in
a multithreaded program “on the fly.” That is, given two logical strands, I show how to answer the
question of whether the strands may run in parallel, and I show how to answer this question while
the muitithreaded program is running (rather than by after-the-fact or static analysis). This problem
arises as the principal data-structuring issue in dynamic race detectors [65,84,91,153,163], as a
race can only occur when two strands may access the same memory in parallel. In this chapter, I
show that for fork-join programming models, such as MIT’s Cilk system [54, 99, 185], this data-
structuring problem can be solved asymptotically optimally. I also give the first provably efficient
parallel algorithm for the problem. This chapter represents joint work with Michael A. Bender, Seth
Gilbert, and Charles E. Leiserson, previously appearing in [48].

Both this chapter and the next discuss algorithms that are intended to be integrated into a par-
allel runtime system, essentially augmenting a parallel program with additional data structures to
answer questions about the program as it is running. The goal of these algorithms is to improve
the parallel-programming platform, thereby moving some complexities away from the programmer.
Specifically, these chapters discusses algorithms that help the programmer to deal with atomicity,
coping with concurrent accesses to shared data. These algorithms are designed to take input parallel
programs and augment them to address certain problems. The “series-parallel maintenance” prob-
lem addressed in this chapter is relevant to race-detection tools for verifying program correctness
under concurrent accesses to data. The “conflict-detection” problem in Chapter 3 is a component
for guaranteeing atomicity in a transactional-memory system.

This chapter considers programs written in dynamic multithreaded languages such as Cilk [54]
or NESL [53] or multithreaded libraries like Hood [56]. In such languages, a programmer specifies
dynamic parallelism using linguistic constructs such as “fork” and “join,” “spawn” and “sync,” or
“parallel” blocks. Dynamic multithreaded languages allow the programmer to specify a program’s
parallel structure abstractly, that is, permitting (but not requiring) parallel in specific locations of the
program. We restrict our attention further to programs that have only properly nested parallelism,
i.e., one that can be represented by a series-parallel dag or parse tree, to be described shortly.

Following [91] we model the execution of a multithreaded program as a directed acyclic graph,
or computation dag, where nodes are either forks or joins and edges are strands. Such a dag is
illustrated in Figure 2-1. A fork node has a single incoming edge and multiple outgoing edges.
A join node has multiple incoming edges and (at most) a single outgoing edge. Strands (edges)
represent blocks of serial execution. We model the performance of our parallel algorithms in terms
of work and span [72, Ch. 27]:

e The work of a computation, denoted by T3, is the total running time of all its individual

9

Figure 2-1: A dag representing a multithreaded computation. The edges represent strands, labeled
uy,Usg, .. . ug. The diamonds represent forks, and the squares indicate joins.

/\
/\ /\
/\ /\

Uy ug

/\ /\

Uy Uy Ug Uy

Figure 2-2: The parse tree for the computation dag shown in Figure 2-1. The leaves are the strands in the
dag. The S-nodes indicate series relationships, and the P-nodes indicate parallel relationships.

strands, or equivalently, the running time on 1 processor.

e The span' of a computation, denoted by T, is the length of the longest chain of depen-
dencies, or equivalently, its running time on an infinite number of processors assuming no
scheduling overhead.

The parallelism of a computation is the ratio 7 /7.

For fork-join programming models, where every fork has a corresponding join that unites the
forked strands, the computation dag has a structure that can be represented efficiently by a series-
parallel (SP) parse tree [91]. In the parse tree each internal node is either an S-node or a P-node and
each leaf is a strand of the dag.? Figure 2-2 shows the parse tree corresponding to the computation
dag from Figure 2-1. If two subtrees are children of the same S-node, then the parse tree indicates
that (the subcomputation represented by) the left subtree must execute before (that of) the right
subtree, and we say that strands in the left subtree logically precede strands in the right subtree. If
two subtrees are children of the same P-node, then the parse tree indicates that the two subtrees may
execute in parallel, and we say that the strands in the left subtree operate logically in parallel with
those in the right subtree.

An SP parse tree can be viewed as an a posteriori execution of the corresponding computation
dag, but our algorithms must operate while the dag, and hence the parse tree, is unfolding dynami-
cally. The way that the parse tree unfolds depends on a scheduler, which determines which strands
execute where and when on a finite number of processors. A partial execution corresponds to a
subtree of the parse tree that obeys the series-parallel relationships, namely, that a right subtree of
an S-node cannot be present unless the corresponding left subtree has been fully elaborated, or
unfolded with all leaf strands executed. Both subtrees of a P-node, however, can be partially elabo-

!The literature also uses the terms depth [50] and critical-path length [54].
2We assume without loss of generality that all SP parse trees are full binary trees, that is, each internal node has
exactly two children.

10

rated. In a language like Cilk, a serial execution unfolds the parse tree in the manner of a left-to-right
walk. For example, in Figure 2-2 a serial execution executes the strands in the order of their indices.

A typical serial on-the-fly determinacy-race detector simulates the execution of the program as
a left-to-right walk of the parse tree while maintaining various data structures for determining the
existence of races. The type of race detector we are discussing considers a single a posteriori SP
parse tree (as generated from the simulated execution) and reports a race whenever there exists a
valid scheduling of this parse tree that contains a race condition.

The core data structure of the race detector maintains the series-parallel relationships between
the currently executing strand and previously executed strands. Specifically, the race detector must
determine whether the current strand is operating logically in series or in parallel with certain pre-
viously executed strands. We call a dynamic data structure that maintains the series-parallel rela-
tionship between strands an SP-maintenance data structure. The data structure supports insertion,
deletion, and SP queries: queries as to whether two nodes are logically in series or in parallel.

The Nondeterminator [65, 91] race detectors use a variant of Tarjan’s [187] least-common-
ancestor algorithm, called the SP-bags algorithm, as the basis of their SP-maintenance data struc-
ture. To determine whether a strand u; logically precedes a strand u;, denoted u; < uj, the SP-
bags algorithm can be viewed intuitively as inspecting their least common ancestor Ica(u;, u;) in
the parse tree to see whether it is an S-node with u; in its left subtree. Similarly, to determine
whether a strand u; operates logically in parallel with a strand u;, denoted u; || u;, the SP-bags
algorithm checks whether lca(u;, u;) is a P-node. Observe that an SP relationship exists between
any two nodes in the parse tree, not just between strands (leaves). For example, in Figure 2-2 we
have u; < wuy4, because S; = lca(uj,uq) is an S-node and w; appears in S;’s left subtree. We
also have u; || us, because P; = lca(u1, ug) is a P-node. The (serially executing) Nondetermi-
nator race detectors perform SP-maintenance operations whenever the program being tested forks,
joins, or accesses a shared-memory location. The amortized cost for each of these operations is
O(a(v,v)), where « is Tarjan’s functional inverse of Ackermann’s function and v is the number
of shared-memory locations used by the program. As a consequence, the asymptotic running time
of performing determinacy-race detection is O(T1a(v,v)), where Ti is the work of the original
computation.

The SP-bags algorithm has two shortcomings. The first is that it slows the asymptotic running
time by a factor of a(v,v). This factor is nonconstant in theory but is nevertheless close enough
to constant in practice that this deficiency is minor. The second, more important, shortcoming is
that the SP-bags algorithm relies heavily on the serial nature of its execution, and hence it appears
difficult to parallelize.

Some early SP-maintenance algorithms use labeling schemes without centralized data struc-
tures. These labeling schemes are easy to parallelize but unfortunately are much less efficient
than the SP-bags algorithm. Examples of such labeling schemes include the English-Hebrew
scheme [163] and the offset-span scheme [153]. These algorithms generate labels for each strand
on the fly, but once generated, the labels remain static. By comparing labels, these SP-maintenance
algorithms can determine whether two strands operate logically in series or in parallel. One of
the reasons for the inefficiency of these algorithms is that label lengths increase linearly with the
number of forks (English-Hebrew) or with the depth of fork nesting (offset-span).

Contributions

This chapter presents two serial SP-maintenance algorithm that improve on the original SP-bags
algorithm. The SP-order algorithm, which is inspired by the English-Hebrew scheme, removes
the inverse Ackermann’s a(v,v) factor from the amortized running time of SP-bags operations,

11

Algorithm Space Time per
' per node Strand Query
creation
English-Hebrew [163] | ©O(f) o(1) o(f)
Offset-Span [153] O(d) o(1) O(d)
SP-Bags [91] (1) | O(a(v,v))* | O(a(v,v))*
SP-Fast-Bags o(1) e(1)* o(1)
SP-Order o(1) o(1) O(1)
f = number of forks in the program
d = maximum depth of nested parallelism
v = number of shared locations being monitored

Figure 2-3: Comparison of serial, SP-maintenance algorithms. An asterisk (*) indicates an amortized bound.
The function « is Tarjan’s functional inverse of Ackermann’s function.

making all operations O(1) time in the worst case. Rather than using static labels, SP-order main-
tains labels with an order-maintenance data structure [33,79, 81, 192]. The SP-fast-bags algorithm
also achieves O(1) time for SP-maintenance operations, but the bound is amortized. SP-fast-bags
directly improves the SP-bags algorithm using data-structuring techniques from Gabow and Tar-
jan [101]. Figure 2-3 compares the serial space and running times of SP-order and the SP-fast-bags
with the other algorithms. Although SP-fast-bags only achieves an amortized bound, and hence is
qualitatively dominated by SP-order, its data structure allows its bags to be “split” (which turns out
to be useful in the context of our parallel algorithm).

Our parallel SP-maintenance algorithm SP-ordered-bags, which is designed to run with a Cilk-
like work-stealing scheduler [55,99], is the first of its kind which is provably efficient. SP-ordered-
bags consists of two tiers: a global tier based on parallelizing SP-order, and a local tier based on
SP-fast-bags. Suppose that a fork-join program has 77 work and T, span. Whereas an efficient
Cilk-like scheduler executes this computation in asymptotically optimal Tp = O(Ti/P + Tw)
expected time on P processors, SP-ordered-bags executes the computation in O(T}/P + PTy)
worst-case time on P processors while maintaining SP relationships. Thus, whereas the underly-
ing computation achieves linear speedup when P = O(T}/T) — the parallelism dominates the
number of processors — SP-ordered-bags achieves linear speedup when P = O(+/T1/T~) — the
square root of the parallelism dominates the number of processors.

These results represent joint work with Michael A. Bender, Seth Gilbert, and Charles E. Leiser-
son, some of which appeared earlier in a conference paper [48]. The conference paper described the
SP-order and a less-efficient variant of the parallel SP-ordered-bags algorithm, called SP-hybrid.
This thesis describes the new SP-fast-bags algorithm, as well as the improved parallel algorithm
SP-ordered-bags. In particular, for a program with T; work, span T, and n strands, the SP-hybrid
algorithm runs in O((T1/P + PT)lgn) time in expectation, whereas SP-ordered-bags trims the
lg n factor and makes the bound worst case. These improved results are also given in my Master’s
thesis [93].

Chapter outline

The remainder of this chapter is organized as follows. I present the SP-order algorithm in Sec-
tion 2.1 and the SP-fast-bags algorithm in Section 2.2. Section 2.3 describes the performance model

12

in the presence of locks and features of the scheduler necessary to achieve good performance for
SP-ordered-bags. Section 2.4 presents an overview of the parallel SP-ordered-bags algorithm. Sec-
tion 2.5 describes the organization of the global tier of SP-ordered-bags in more detail, and Sec-
tion 2.6 describes the local tier. Section 2.7 provides a proof of correctness, and Section 2.8 analyzes
the performance of SP-ordered-bags. Finally, Section 2.9 reviews related work.

2.1 The SP-order algorithm

This section presents the serial SP-order algorithm. I begin by discussing how an SP parse tree,
provided as input to SP-order, is created. I then review the concept of an English-Hebrew ordering
[163], showing that two linear orders are sufficient to capture SP relationships. I show how to
maintain these linear orders on the fly using order-maintenance data structures [33,79, 81, 192].
Finally, I give the SP-order algorithm itself and show that each SP-maintenance operation takes
O(1) time in the worst case. I conclude that any fork-join program running in 73 time on a single
processor can be checked on the fly for determinacy races in O(77) time.

The input to SP-order

SP-order takes as input a fork-join multithreaded program expressed as an SP parse tree. In a
real implementation, such as a race detector, the parse tree unfolds dynamically and implicitly as
the multithreaded program executes, and the particular unfolding depends on how the program is
scheduled on the multiprocessor computer. For ease of presentation, however, we assume that the
program’s SP parse tree unfolds according to a left-to-right tree walk. During this tree walk, SP-
order maintains SP relationships “on the fly” in the sense that it can immediately respond to SP
queries between any two executed strands. At the end of the section, we relax the assumption of
left-to-right unfolding and argue that no matter how the parse tree unfolds, SP-order can maintain
SP relationships on the fly.

English and Hebrew orderings

SP-order uses two total orders to determine whether strands are logically parallel, an English order
and a Hebrew order. In the English order, the nodes in the left subtree of a P-node precede those
in the right subtree of the P-node. In the Hebrew order, the order is reversed: the nodes in the right
subtree of a P-node precede those in the left. In both orders, the nodes in the left subtree of an
S-node precede those in the right subtree of the S-node.

Figure 2-4 shows English and Hebrew orderings for the strands in the parse tree from Figure 2-
2. Notice that if u; belongs to the left subtree of an S-node and u; belongs to the right subtree of
the same S-node, then we have Efu;] < E[u;] and H[u;] < H[u;]. In contrast, if u; belongs to the
left subtree of a P-node and u; belongs to the right subtree of the same P-node, then E[u;] < Efu;]
and H[u;] > Hlu,).

The English and Hebrew orderings capture the SP relationships in the parse tree. Specifically,
if one strand u; precedes another strand u; in both orders, then we have u; < u; in the parse tree
(or multithreaded dag). If u; precedes u; in one order but u; follows u; in the other, then we have
u; || u;. For example, in Figure 2-4, we have u; < ug, because 1 = Efu)] < Efug] =4 and 5 =
H[u;] < Hlug] = 8. Similarly, we can deduce that u; || ug, because 1 = Efu1] < Efug] = 6 and
5 = H[uj] > H[us] = 3. The following lemma, originally proved by Nudler and Rudolph [163],
shows that this property always holds.

13

/T / \
(1,5) / \ (5 1) / \
/ \) / \ &)

(2 7) (3 6) (6 3) (7 2)

Figure 2-4: An English ordering E and a Hebrew ordering H for the strands in the parse tree from Figure 2-2.
Under each strand u is an ordered pair (E[u}, H[u]) giving its index in each of the two orders.

Lemma 2.1 Let E be an English ordering of the strands of an SP-parse tree, and let H be a Hebrew

ordering. Then, for any two strands u; and u; in the parse tree, we have u; < u; in the parse tree if
and only if Efu;] < Elu;] and Hlu;] < Hlu;}.

Proof. (=) Suppose that u; < u;, and let X = lca(u;, u;). Then, X is an S-node in the parse
tree, the strand u; resides in X’s left subtree, and u; resides in X’s right subtree. In both orders, the
strands in the X s left subtree precede those in X s right subtree, and hence, we have Eu;] < Elu;]
and Hlu;) < Hu;].

(<) Suppose that Efu;] < Ffu;] and H(u;] < Hlu;], and let X = lca(u;,u;). Since we have
Elu;] < Elu;], strand u; must appear in X"s left subtree, and u; must appear in X s right subtree.
By definition of a Hebrew ordering, X must be an S-node, and hence we have u; < u;. O

We can restate Lemma 2.1 as follows.

Corollary 2.2 Let E be an English ordering of the strands of an SP-parse tree, and let H be a
Hebrew ordering. Then, for any two strands u; and u; in the parse tree with E[u;] < Elu;], we
have u; || u; if and only if H{u;] > H[u;].

Labeling a static SP parse tree with an English-Hebrew ordering is easy enough. To compute
the English ordering, perform a depth-first traversal visiting left children of both P-nodes and S-
nodes before visiting right children (an English walk). Assign label i to the ith strand visited.
To compute the Hebrew ordering, perform a depth-first traversal visiting right children of P-nodes
before visiting left children but left children of S-nodes before visiting right children (a Hebrew
walk). Assign labels to strands as before.

In race-detection applications, however, one must generate “on-the-fly” orderings as the parse
tree unfolds. If the parse tree unfolds according to an English walk, then computing an English
ordering is easy. Unfortunately, computing a Hebrew ordering on the fly during an English walk is
problematic. In the Hebrew ordering the label of a strand in the left subtree of a P-node depends on
the number of strands in the right subtree. In an English walk, however, this number is unknown
until the right subtree has unfolded.

Nudler and Rudolph [163], who introduced English-Hebrew labeling for race detection, ad-
dressed this problem by using large strand labels. Unfortunately, the number of bits in a label in
their scheme can grow linearly in the number of P-nodes in the SP parse tree. Although they give a
heuristic for reducing the size of labels, manipulating large labels is the performance bottleneck in
their algorithm.

14

The SP-order data structure

Rather than using static labels, one can employ order-maintenance data structures [33,79,81,192] to
maintain the English and Hebrew orders . In order-maintenance data structures, the labels inducing
the order change during the execution of the program. An order-maintenance data structure is an
abstract data type that supports the following operations:

e OM-PRECEDES(L, X,Y): Return TRUE if X precedes Y in the ordering L. Both X and Y
must already exist in the ordering L.

e OM-INSERT(L, X,Y1,Y2,...,Y;): Inthe ordering L, insert new elements Y1, Y3, ..., Yk, in
that order, immediately after the existing element X .

The OM-PRECEDES operation can be supported in O(1) worst-case time. The OM-INSERT oper-
ation can be supported in O(k) worst-case time, where k is the number of elements being inserted.

The SP-order data structure consists of two order-maintenance data structures to maintain En-
glish and Hebrew orderings.> With the SP-order data structure, the implementation of an SP-
maintenance algorithm is remarkably simple.

Pseudocode for SP-order

Figure 2-5 gives serial pseudocode for SP-order. The code performs a left-to-right tree walk of
the input SP parse tree, executing strands on the fly as the parse tree unfolds. In lines 1-3, the
code handles a leaf in the SP parse tree. In a race-detection application, queries of the two order-
maintenance data structures are performed in the EXECUTESTRAND function, which represents the
computation of the program under test. Typically, a determinacy-race detector [91] performs O(1)
queries for each memory access of the program under test.

As the tree walk encounters each internal node of the SP parse tree, it performs OM-INSERT
operations into the English and Hebrew orderings. In line 4, we update the English ordering for the
children of the node X and insert X s (left and right) children after X with X’s left child appearing
first. Similarly, we update the Hebrew ordering in lines 5—-7. For the Hebrew ordering, we insert X’s
children in different orders depending on whether X is an S-node or a P-node. If X is an S-node,
handled in line 6, we insert X’s left child and then X’s right child after X in the Hebrew order.
Figure 2-6 illustrates the insertions at an S-node. If X is a P-node, on the other hand, X’’s left child
follows X’s right child. Figure 2-7 illustrates these insertions. In lines 8-9, the code continues to
perform the left-to-right tree walk. We determine whether X precedes Y, shown in lines 10-11, by
querying the two order-maintenance structures using the order-maintenance query OM-PRECEDES.

Correctness of SP-order

The following lemma demonstrates that SP-ORDER produces English and Hebrew orderings cor-
rectly.

Lemma 2.3 At any point during the execution of SP-ORDER on an SP parse tree, the order-
maintenance data structures Eng and Heb maintain English and Hebrew, respectively, orderings of
the nodes of the parse tree that have been visited thus far.

Proof. Consider an internal node Y in the SP parse tree. We focus first on the Heb data structure.
Assume that Y is an S-node. We must prove that all the nodes in Y’s left subtree precede all the

3In fact, the English ordering can be maintained implicitly during a left-to-right tree walk. For conceptual simplicity,
however, we use explicit order-maintenance data structures for both orderings.

15

SP-ORDER(X)
1 if ISLEAF(X)

2 then EXECUTESTRAND(X)
3 return

> X is an internal node
4 OM-INSERT(Eng, X, left[X], right[X])

5 if ISSNODE(X)
then OM-INSERT(Heb, X, left[X], right[X])
7 else OM-INSERT(Heb, X, right[X], left| X])

=)

8 SP-ORDER(left[X])
9 SP-ORDER(right[X])

SP-PRECEDES (X,Y)

10 if OM-PRECEDES(Eng, X,Y) and OM-PRECEDES(Heb, X,Y)
11 then return TRUE
12 return FALSE

Figure 2-5: The SP-order algorithm written in serial pseudocode. The SP-ORDER procedure maintains
the relationships between strand nodes in an SP parse tree, which can be queried using the SP-PRECEDES
procedure. Each internal node X in the parse tree contains pointers to a left child left[X] and a right child
right[X]. The query ISSNODE determines whether a node is an S-node or a P-node, and the query ISLEAF
determines whether the node is a leaf. The order-maintenance data structures Eng and Heb represent the
English and Hebrew, respectively, orderings being constructed. The EXECUTESTRAND procedure executes
the strand. We assume that the root of the SP parse tree is added when the data structure is initialized.

nodes in Y’s right subtree in the Heb ordering. We do so by showing that this property is maintained
as an invariant during the execution of the code. The only place that the Heb data structure is
modified is in lines 6-7. Suppose that the invariant is maintained before SP-ORDER is invoked on
anode X. There are four cases:

1. X =Y Trivial.

2. X resides in the left subtree of Y: We already assume (inductively) that X precedes all the
nodes in Y’s right subtree. Regardless of whether X is an S-node or a P-node, X’s children
are inserted immediately after X in Heb. (Only their order of insertion varies.) Hence, left[X]
and right[X] also precede all the nodes in Y’s right subtree.

3. X resides in the right subtree of Y': The same argument applies as in Case 2.

4. X lies outside of the subtree rooted at Y: Inserting X ’s children anywhere in the data structure
cannot affect the invariant.

If, instead, Y is a P-node, the argument is analogous, except that the order is reversed. That is,
we must prove that all the nodes in Y’s right subtree precede all the nodes in Y’s left subtree in the
Heb ordering. Again, we do so by showing that this property is maintained as an invariant during
the execution of the code. Suppose that the invariant is maintained before SP-ORDER is invoked on
anode X. There are again four cases, similar to the ones above.

16

Figure 2-6: An illustration of how SP-order operates at an S-node. (a) A simple parse tree with an S-node S
and two children L and R. (b) The order structures before traversing to S. The clouds represent the rest of
the order structure, which does not change when traversing to S. (c) The result of the inserts after traversing
to S. The left child L and then the right child R are inserted after S in both lists.

Figure 2-7: An illustration of how SP-order operates at a P-node. (a) A simple parse tree with a P-node P
and two children L and R. (b) The order structures before traversing to P. The clouds are the rest of the
order structure, which does not change when traversing to P. (c) The result of the inserts after traversing to
P. The left child L then the right child R are inserted after P in the English order, and R then L are inserted
after P in the Hebrew order.

1. X =Y Trivial.

2. X resides in the left subtree of Y: We already assume (inductively) that X comes after all the
nodes in Y’s right subtree. Regardless of whether X is an S-node or a P-node, X’s children
are inserted immediately after X in Heb. (Only their order of insertion varies.) Hence, left[X|
and right[X] also come after all the nodes in Y’s right subtree.

3. X resides in the right subtree of Y: The same argument applies as in Case 2.

4. X lies outside of the subtree rooted at Y: Inserting X s children anywhere in the data structure
cannot affect the invariant.

The argument for the Eng data structure is analogous, except that there is no need to distinguish
whether Y is a P-node or S-node separately. O

The next theorem shows that SP-PRECEDES works correctly.

Theorem 2.4 Consider any point during the execution of the SP-ORDER procedure on an SP
parse tree, and let u; and uj be two strands that have already been visited. Then, the procedure
SP-PRECEDES(u;, uj) correctly returns TRUE if we have u; < u;j and FALSE otherwise.

Proof. The SP-ORDER procedure inserts a node X into the Eng and Heb linear orders when it
visits Xs parent and before executing SP-ORDER(X). Thus, any strand is already in the order-

17

maintenance data structures by the time it is visited. Combining Lemma 2.1 and Lemma 2.3 com-
pletes the proof. O

Performance of SP-order

We now analyze the running time of the SP-order algorithm.

Theorem 2.5 Consider a fork-join multithreaded program having a parse tree with n leaves. Then,
each SP-operation costs O(1) time in the worst case, and the total time for on-the-fly construction
of the SP-order data structure is O(n).

Proof. Each SP-maintenance operation runs in O(1) worst-case time, because it performs at most
two order-maintenance operations and constant other work. Since a parse tree with n leaves has at
most O(n) nodes, the theorem follows. U

The following corollary explains that SP-order can be used to make an efficient, on-the-fly race
detector. A “determinacy race” occurs whenever two logically parallel strands access the same
memory location, and at least one of those memory accesses is a write.

Corollary 2.6 A fork-join multithreaded program with running time T on a single processor can
be checked for determinacy races using SP-order in O(Ty) time.

Proof. Implement Feng and Leiserson’s algorithm [91] using SP-order instead of SP-bags. [

SP-order may trivially be incorporated into more complicated race detectors, in particular those that
recognize mutual exclusion (i.e., locks) within the code. This chapter, however, focuses only on the
SP-maintenance algorithm. For more details on incorporating SP-order (and SP-ordered bags) into
a race detector that supports locks, see Fineman’s Master’s thesis [93].

To conclude this section, observe that SP-order can be made to work on the fly no matter how
the input SP parse tree unfolds. Not only can lines 8-9 of Figure 2-5 be executed in either order,
the basic recursive call can be executed on nodes in any order that respects the parent-child and SP
relationships. For example, one can unfold the parse tree in essentially breadth-first fashion at P-
nodes as long as the left subtree of an S-node is fully expanded before its right subtree is processed.
An examination of the proof of Lemma 2.3 shows why we have this flexibility. The invariant in the
proof considers only a node and its children. If we expand any single node, its children are inserted
into the order-maintenance data structures in the proper place independent of what other nodes have
been expanded.

2.2 The SP-fast-bags algorithm

This section describes SP-fast-bags, our improved version of Feng and Leiserson’s serial SP-bags
algorithm [91]. The SP-bags algorithm is most easily described on parse trees having a canonical
structure, and we begin by describing this structure. I then describe Feng and Leiserson’s SP-bags
algorithm. Next, I present an improvement to the underlying data structure of SP-bags, which yields
our SP-fast-bags algorithm. The improved data structure allows PRECEDES queries to be supported
in worst-case constant time and INSERT operations in amortized constant time. Although the SP-
order algorithm from Section 2.1 achieves constant-time operations in the worst case, rather than
just amortized bounds, we shall see in Section 2.4 how SP-fast-bags can be used together with
SP-order to implement the parallel SP-ordered-bags algorithm.

18

Figure 2-8: A Cilk parse tree for a generic Cilk procedure. The notation F' represents the parse tree of
a spawned procedure, and u represents a strand. All the nodes in the shaded area belong to the generic
procedure, while all the nodes in the ovals belong to a single sync block.

Figure 2-8 shows the canonical “Cilk parse tree” as given by Feng and Leiserson [91]. A Cilk
parse tree can be partitioned into truncated subtrees called procedures. A procedure is either a
single strand (not shown), or it includes a right chain, called the spine, of one or more S-nodes
whose left children are “sync blocks.” In the figure, the spine nodes are those S-nodes in the light-
gray region. For convenience, we omit the right child of the rightmost S-node in the spine — this
child may be thought of as a strand containing no work. A sync block (the dark-gray region) consists
of either a single strand (not shown) or a right chain of alternating S- and P-nodes, beginning with an
S-node and ending with a P-node. The left children of all S-nodes in the sync block are strands. The
left children of all P-nodes in the sync block are procedures. We call these (left-child) procedures
the child procedures or children of the procedure containing the parental P-nodes. When some (but
not all) nodes in a procedure have been traversed, we say that the procedure is active. When all
nodes in a procedure (and hence all descendant nodes) have been traversed, we call the procedure
completed.

The form of the Cilk parse tree is slightly more restrictive than that of a generic fork-join pro-
gram in Figure 2-2: at any given time, all the active children of a procedure (which are children of
the same sync block) share the same join point — the next S-node in the spine. Any SP parse tree,
however, can be represented as a Cilk parse tree by adding additional S- and P-nodes and empty
strands. This transformation does not increase the size of the parse tree, and hence the work, by
more than a constant factor. The span also increases by at most a constant factor assuming that the
original computation has two-way (or constant-way) forks or, equivalently, assuming the children
of P-nodes in the original SP parse tree are either S-nodes or strands. This constant-factor increase
to span also holds for k-way fork (for nonconstant k), under the reasonable assumption that a k-way
fork requires ©(k) steps of setup (i.e., adds ©(k) to the span).

We use the term “Cilk parse tree” because programs written in the Cilk multithreaded program-
ming language [54,99, 185] have this structure. Moreover, the terms “‘sync block™ and “procedure”
are consistent with Cilk terminology and linguistic constructs. It is not necessary, however, to under-
stand these terms in the context of Cilk; our algorithms operate on the parse tree and are applicable
to programs written in other languages.

19

start a procedure F' (on a fork):
SF «— MAKE-SET(F)
Pr 10

complete a procedure F’ with parent F':
Pr < UNION(PF, Sgr)
S Fr < @

traverse a spine node in a procedure F' (on a join):
SF «— UNION(SF, Pr)
Pr 0

Figure 2-9: The SP-bags algorithm described in terms of procedures, as taken from [91]. Whenever one of
three actions occurs during the serial, depth-first execution of a Cilk parse tree, the operations in the figure
are performed.

The SP-bags algorithm

Feng and Leiserson’s SP-bags algorithm [91] uses the classical disjoint-set data structure with
“union by rank” and “path compression” heuristics [71, 186, 188]. The data structure maintains
a collection of disjoint sets and provides three operations:

1. MAKE-SET(z) creates a new set whose only member is z.
2. UNION(z, y) unites the sets containing = and y.
3. FIND(z) returns a representative for the set containing z.

On a single processor, this data structure supports m operations on n elements in O(ma(m,n))
time, where « is Tarjan’s functional inverse of Ackermann’s function. [71,188]

Whereas the SP-order algorithm builds an SP-maintenance data structure on parse-tree nodes
(specifically, on strands), the SP-bags algorithm builds a dynamic data structure on procedures.
For each active procedure, the SP-bags algorithm maintains two bags (sets) of procedures with the
following contents at any given time:

e The S-bag Sr of a procedure F’ contains the descendant procedures of F that logically pre-
cede the currently executing strand. (The descendant procedures of F' include F itself.)

e The P-bag Pr of a procedure F' contains the completed descendant procedures of F' that
operate logically in parallel with the currently executing strand.

Note that since these bags are defined on procedures, not nodes, the right child of a P-node and both
children of an S-node essentially “inherit” the bags used by their parent node.

As SP-bags performs a left-to-right tree walk, it inserts procedures into the bags, unions the
bags, and queries as to what type of bag a procedure belongs to. Figures 2-9 and 2-10 give the
SP-bags algorithm in terms of the procedures [91] and the parse tree, respectively. Whenever a new
procedure F' (entering the left subtree of a P-node) is started, new bags are created. The bag Sg is
initially set to contain F', and P is set to be empty. Whenever a procedure F” with parent procedure
F completes (going from the left subtree to the right subtree of a P-node in F'), the contents of S
are unioned into Pr, since the descendents of F’ can execute in parallel with the remainder of the
sync block in F'. When traversing a spine node (completing a sync block, or, equivalently, returning
from any internal S-node) in F', the bag Pr is emptied into Sr, since all of F’s executed descendents
precede any future strands in F'.

20

SP-BAGS(X, F)

> X is an SP-parse-tree node, and F’ is a procedure.

1 if ISLEAF(X)

2 then > X is a strand

3 F — FU{X}

4 EXECUTESTRAND(X, F')
5 return

6 if ISSNODE(X)

7 then SP-BAGs(left[X], F)
8 SP-BAGS(right(X], F')
9 Sp — UNION(SF, PF)

10 Pr —0

11 else > X is a P-node

12 F’ «— NEWPROCEDURE()
13 SP-BAGs(left| X], F')

14 Pr < UNION(Prp, SFr)
15 SF/ — @

16 SP-BAGS(right[X], F)

Figure 2-10: The SP-bags algorithm written in serial pseudocode which operates on a Cilk parse trees, such
as that in Figure 2-8. SP-BAGS accepts as arguments a parse-tree node X and the procedure F' to which X
belongs. Every internal node X in the parse tree contains a pointer to its left child left[X] and its right child
right[X]. Whether a node is an S-node or a P-node can be queried with ISSNODE. Whether the node is a
leaf can be queried with ISLEAF. NEWPROCEDURE[F”] creates a new procedure object F” with associated
S-bag S and P-bag Pp, initialized as Spr «+ MAKE-SET[F'] and Pps « (), respectively.

21

SP-bags supports SP-PRECEDES on two strands provided that one of the strands is the currently
executing strand. To query the relationship of a previously executed strand u; and the currently
executing strand u;, simply find whether u; is contained in an S- or P-bag. An S-bag indicates that
u; < uj, and a P-bag indicates that u; || u;. The “currently executing” restriction on u; does not
exist in the SP-order algorithm, but it arises here due to the way in which bags merge dynamically.

The correctness of SP-bags is captured by the following lemma. Since Feng and Leiserson [91]
prove a similar lemma, we omit the proof. Note that although the algorithm given in Figure 2-10 is
presented in terms of a general SP parse tree, it is only guaranteed to be correct on Cilk parse trees.

Lemma 2.7 Consider any point during the execution of SP-bags on a Cilk parse tree. Let u; be an
already visited strand, and let u; be the currently executing strand. Then, we have u; || u; if and
only if u; belongs to some P-bag. Conversely, we have u; < u; if and only if u; belongs to some
S-bag. : O

When run on a parse tree with 77 work and n P-nodes (or procedures), Feng and Leiserson’s SP-
bags performs O(T7) SP queries in the worst case. Since each query takes amortized O (a(T1,n))
amortized time, SP-bags runs in O(a(71,)T}) time.

Improving the SP-bags algorithm

The SP-fast-bags algorithm improves on the SP-bags algorithm by using a more efficient underlying
disjoint-sets data structure. Gabow and Tarjan [101] describe a disjoint-sets data structure that runs
in amortized-constant time per operation when the n elements being unioned are ordered a priori
from 0,1,...,n — 1 and unions are of the form UNION(? — 1,4).* We show that SP-bags adheres
to this structure. A slight variant of Gabow and Tarjan’s data structure has worst-case constant-time
FIND set-membership queries and amortized constant-time UNION and MAKE-SET operations.>

Gabow and Tarjan’s disjoint-sets data structure essentially divides the n elements into groups of
size ©(lgn) and uses a bit-vector to represent set membership for that group. In a machine model
where a word containing O(lgn) bits can be operated on in constant-time [71, Section 2.2], clever
bit arithmetic can be used to perform UNION and FIND operations for elements belonging to the
same group in constant time. Set membership among the O(n/lgn) groups is maintained with
the simple linked-list implementation from [71, Section 21.2] with the “weighted-union heuristic,”
where each element maintains a pointer to the set representative. Since the linked-list data structure
takes amortized O(lgn) time per UNION operations, operation on O(n/lgn) groups gives a total
of O(n) time.

We now show that SP-bags has the union structure required by Gabow and Tarjan’s data struc-
ture. Consider the English ordering of procedures in the parse tree (corresponding to the left-to-right
tree walk performed by SP-bags), where a procedure is listed when it first becomes active. We index
these procedures F, Fy, ..., F,, according to the English ordering.® The following lemma shows
that at any point, all S- and P-bags contain contiguous procedures. Thus, all union operations effec-
tively have the form UNION(F;_1, F;), and we can employ Gabow and Tarjan’s data structure.

Lemma 2.8 All UNIONs performed by SP-bags effectively have the form UNION(F;_1, F).

Proof. We claim that the S- and P-bags corresponding to a procedure F; contain the procedures
Sp, = A{F;, Fiq1, ..., Fj} and P, = {F}j1, Fjt2,..., F}, for some j and k satisfying ¢ < j < k.

“In fact, their algorithm is more general, but SP-bags follows this special case.
SFor more details, we refer the reader to [93].
®Since the procedures are indexed by execution order, numbering the procedures on the fly is trivial.

22

As long as this property holds across the execution of the algorithm, the lemma follows. We prove
this claim by induction on UNION operations.

As a base case, consider the bags Sr, and Pr, on creation. We have Sg, = {F;} and P, = 0,
which satisfies the claim. Next, consider a UNION. There are two cases.

Case 1. Suppose that a UNION occurs while traversing a spine node in a procedure F;. Then, by
assumption we have Sg, = {F;, Fiy1,..., Fj} and P, = {Fjy1, Fj12,. .., Fi }. Thus, the result
of the UNION is Sg. = {F}, Fi41, ..., Fx} and Pp, = 0.

Case 2. Suppose that a UNION occurs because a child procedure Fr of F; completes. Then,
we must have Fyy = Fj,, because Fy is the first procedure to follow F} in the English ordering
of procedures. Moreover, since we assume that Sp, = {Fy,Fy41,...,Fi}, we end with P, =
{Fj+1,Fj+2,...,Fk,Fk+1,...,Fkl}. O

Given Lemma 2.8, we could apply Gabow and Tarjan’s [101] data structure as a black box to
achieve a serial SP-fast-bags algorithm that runs in amortized constant-time per operation. For SP-
ordered-bags analysis in Section 2.8, however, where the amortization occurs in the data structure
matters. In particular, we require a variant [93] that achieves worst-case constant-time FIND and
MAKE-SET operations, and amortized constant-time UNION operations.

2.3 A model of parallel programs

This section first describes the performance model for parallel programs with locks and next de-
scribes features of the scheduler necessary for correctness and performance.

Our performance model assumes that the parallel algorithms execute on a shared-memory ma-
chine, as discussed in Chapter 1. The machine supports the sequential consistency [137] memory
model, which is to say, for any execution of the program, there is some sequential order of memory
accesses that is consistent with the program order and the values observed by the program execu-
tion. Read operations always complete in constant time, even if there are many reads to the same
location. (Thus, we do not model memory congestion in the underlying machine.) We assume that
concurrent-write operations on memory must queue and complete in arrival order. In the case of a
tie, an adversary chooses which write operation proceeds. If a read is concurrent with many writes,
then the read succeeds in constant time and gets a valid value (the value before or after the write
that completes on the same step).

Since the SP-ordered-bags algorithm presented in this chapter and the XConflict algorithm pre-
sented in Chapter 3 use locks to enforce mutual exclusion, we must model how locking affects
performance. In particular, whenever a processor holds a lock, other processors may be stalled
waiting for that same lock. We call this idle time spent waiting for the lock waifing time. During
any step in which the lock is held by a processor, our model assumes the worst case: thatall P — 1
other processors are waiting for the lock. For example, if a processor acquires the lock, performs 5
steps of real work, and then releases the lock, we assume that P — 1 other processors were waiting
for the lock during these steps, and hence these 5 steps induce a waiting time of 5(P — 1). Once the
other processors acquire the lock, they also cause waiting time proportional to the number of steps
they hold the lock. Thus, if the lock is held for L steps in total (summing across all processors),
there may be ©(PL) waiting time. To see how such a large waiting time can occur, consider a
program in which P parallel strands all simultaneously try to acquire a lock, perform k steps of real
work while holding the lock, and then release the lock. When the first processor acquires the lock,
there are P — 1 other processors waiting, inducing a waiting time of k(P — 1). When the second
processor acquires the lock, there are P — 2 processors waiting for a waiting time of k(P —2). Sum-
ming across the waiting time introduced by all processors, we get a total waiting time of O(kP?).

23

In this example, each of the P processors holds the lock for & steps, so the lock is held for a total
of L = kP steps.

Locks also serialize operations. If a single lock is held for L steps in total over the entire
program (again, summing across all the processors), then the running time of the program must be
at least L. This bound is straightforward, because none of the work performed while holding the
lock can occur in parallel.

Consider a multithreaded program with work 73 and span T, in which a single lock is held for
L steps across the course of the computation. By introducing ©(PL) waiting time, we induce an
apparent work, the real work plus waiting time, of 77 + ©(PL). Similarly, the serialization length
L induces an apparent span of ©(T, + L). '

The scheduler

SP-ordered-bags and XConflict accept as input fork-join multithreaded programs expressed SP
parse trees. The parse tree unfolds dynamically as the program executes, and a particular unfold-
ing depends on how the program is scheduled. These algorithms can only operate correctly for
schedulers that unfold the parse tree in a “Cilk-like” manner. Specifically, we exploit properties
of an efficient “work-stealing” scheduler (such as the one used by Cilk) both for correctness and
efficiency.

Our algorithms are designed for a “work-stealing” scheduler, which executes any multithreaded
computation having work T and span T, in the asymptotically optimal O(T7 /P + Tw,) expected
time on P processors. The idea behind work stealing is that when a processor runs out of its own
work to do, it becomes a thief and “steals” work from another processor. The steals occurring during
an execution by a work-stealing scheduler break the computation, and hence the computation’s SP
parse tree, into a set of truncated subtrees called “traces,” where each trace consists of a set of
instructions all executed by the same processor.

More specifically, Cilk-like work stealing operates as follows. A processor initially “owns”
some subtree of the parse tree, which it unfolds in a left-to-right order. When a processor first
traverses a P-node and begins walking its left subtree, the (unvisited) right child of that P-node be-
comes stealable. Only the right children of P-nodes are ever stealable, and they are only stealable
while the left subtree is partially elaborated and the right subtree is unvisited. When any processor
first visits a stealable node, that node ceases to be stealable. When a processor has no work re-
maining in its subtree, it selects a victim processor and steals the subtree rooted at oldest (highest)
stealable node from that victim processor. This step essentially partitions the parse tree ¢ of the
victim processor into three pieces: the subtree ¢ rooted at the stealable node, the subtree ¢, rooted
at left sibling of the stolen node, and the truncated tree ¢’ resulting from removing ¢, and ¢ from
t. The subtree tr and t;, are owned by the thief and victim, respectively. The remaining subtree ¢/,
which includes those nodes that logically follow both ¢g and ¢z, is awarded to the processor that
traverses the last node in ¢tr U ¢t7,. Whereas our conflict-detection algorithm in Chapter 3 maintains
these subtrees, our series-parallel maintenance algorithm in Chapter 2 divides the computation into
five subtrees.

Our algorithms rely on Cilk-like work stealing for correctness (and performance). Specifically,
such schedulers obey the following property.

Property 2.9

e A processor expands the subtree it is working on in a depth-first, left-to-right manner, and
steals only when its subtree has been fully expanded.

24

e Whenever a thief processor steals work from a victim processor, the work stolen corresponds
to the subtree rooted at a stealable node (i.e., the right subtree of a P-node whose left subtree
is partially elaborated). Moreover, it selects a highest stealable node. That is, if the thief
steals the right subtree of a P-node X, then X has no ancestor P-node with an unvisited (i.e.,
stealable) right child.

For performance, we also require the mechanism for selecting a victim to be efficient. In partic-
ular, the number of steals must be bounded by O(PT,), which is true for a work-stealing scheduler
that selects a random victim [27], such as the one used by the Cilk runtime system. We say that a
work-stealing scheduler is a Cilk-like work-stealing scheduler if it satisfies Property 2.9, and that
it is an efficient (Cilk-like) work-stealing scheduler if the number of steals is bounded by O(PT).
The Cilk scheduler (which matches Arora, Blumofe, and Plaxton’s scheduler [27]) and the Intel
Thread Building Blocks (TBB) scheduler [174] are both examples of Cilk-like work-stealing sched-
ulers. Not all work-stealing schedulers, however, are Cilk-like — the Hood scheduler [56], for
example, is a work-stealing scheduler that is not Cilk-like. We guarantee correctness on Cilk and
TBB, but not on Hood. Moreover, not all Cilk-like work-stealing schedulers are what we term
efficient — the Cilk scheduler is, but the TBB scheduler is not [184].

2.4 The SP-ordered-bags algorithm

This section provides an overview of the parallel SP-maintenance algorithm SP-ordered-bags. I
first give a lower bound on the performance of a naive parallelization of the SP-order algorithm.
I discuss how a Cilk parse tree is provided as input to SP-ordered-bags and explain some of the
properties of an efficient scheduler that SP-ordered-bags exploits. I then sketch the two-tier structure
of the algorithm, which combines elements of SP-order from Section 2.1 and SP-fast-bags from
Section 2.2. (Details of these two tiers are presented in Sections 2.5 and 2.6.) Finally, I outline the
SP-ordered-bags algorithm itself and present pseudocode for its implementation.

The SP-ordered-bags algorithm provides weaker query semantics than the serial SP-order al-
gorithm. These semantics are exactly what are provided by SP-bags and what are required for
on-the-fly determinacy-race detection. Whereas SP-order allows precedence queries between any
two strands that have been unfolded in the parse tree, SP-ordered-bags requires that one of the
strands be a currently executing strand.

A naive parallelization of SP-order

A straightforward way to parallelize the SP-order algorithm is to share the SP-order data structure
among the processors that are executing the input fork-join program. In Section 2.1, we showed
that the algorithm’s correctness does not depend on the order of the parse tree’s execution. Unfor-
tunately, processors may interfere with each other as they modify the data structure, and thus some
method of synchronization must be employed to provide mutual exclusion.

Suppose that we handle mutual exclusion through the use of locks. Specifically, suppose that
each processor obtains a global lock prior to every OM-INSERT or OM-PRECEDES operation on
the shared SP-order data structure, releasing the lock when the operation is complete. Although this
parallel version of SP-order is correct, the locking can introduce significant performance penalties.

Since there can be as many as ©(T}) SP-order operations, and each operation causes a processor
to hold the lock for ©(1) amortized steps, the lock might be held for L = ©(T}) steps. (Recall the
performance model in Section 2.3.) Thus, the apparent work becomes ©(PT1), and the apparent
span length becomes ©(T}). Consequently, in this worst-case scenario, the program executes in

25

Q(Ty) time on P processors, which shows no asymptotic improvement over the serial SP-order
algorithm.

Of course, common programs may not realize such a pessimistic bound. Nevertheless, locking
can significantly inhibit the scalability of a parallel algorithm, and we would like provable guaran-
tees on scalability.

Overview of SP-ordered-bags

The SP-ordered-bags algorithm uses a two-tiered hierarchy with a global tier and a local tier in order
to overcome the scalability problems with lock synchronization. The computation is dynamically
divided into “traces,” where each trace encapsulates a part of the computation that is performed by
a single process. The global tier maintains the ordering among traces, while the local tier maintains
the ordering within a trace. Thus, the global tier is subject to concurrent accesses, while (essen-
tially), the local tier is accessed only sequentially. As a result, we use a variant of SP-Order, with
locking, for the global tier, and a variant of SP-fast-bags for the local tier. (An advantage of using
SP-fast-bags at the local tier is that it facilitates the dynamic management of traces.)

In more detail, the SP-ordered-bags performs a parallel walk of the input SP parse tree, parti-
tioning the strands into traces on the fly, where each trace consists of strands that execute on the
same processor. The task of maintaining the ordering is then divided among the two tiers. The goal
of this two-tier structure is to reduce the synchronization delays for shared data structures, that is,
processors wasting their time by waiting on locks. SP-ordered-bags’s shared global tier minimizes
synchronization delays in two ways. First, a lock-free scheme is employed so that OM-PRECEDES
can execute on the shared data structure without waiting for operations that modify the data struc-
ture to complete. Second, the number of insertions is reduced to O(PT,), thereby reducing the
maximum apparent work for insertions to O(P?T,,), since at most P — 1 processors need to wait
during the work of any insertion.

For the purposes of explaining how SP-ordered-bags works, we maintain traces explicitly. For-
mally, we define a frace U to be a (dynamic) set of strands that have been executed on a single
processor. The computation C is a dynamic collection of disjoint traces, C = {Uy,Us, ..., Ux}.
Initially, the computation consists of a single empty trace. As the computation unfolds, each strand
is inserted into a trace.

Whenever the work-stealing scheduler causes a steal from a victim processor that is executing
a trace U, SP-ordered-bags splits U into five subtraces (UM, U, UG U@, U®)), which Sec-
tion 2.6 explains in detail, modifying the computation C as follows:

C—C-Uu{uM,u® ud® g gty

Consequently, if the work-stealing scheduler performs s steals, |C| = 4s + 1. Since an efficient
work-stealing scheduler provides a bound of O(PT,) steals with high probability, the expected
size of C is O(PTs,). The principal use of the SP-bags algorlthm from [91] is that it enables
efficient splitting, as will be explained in Section 2.6.

Details of the two tiers of SP-ordered-bags will be presented in Sections 2.5 and 2.6. For now, it
is sufficient to understand the operations each tier supports. The global tier supports the operations
OM-INSERT and OM-PRECEDES on English and Hebrew orderings. In addition, the global tier
supports an OM-MULTI-INSERT operation, which inserts several items into an order-maintenance
data structure. The local tier supports LOCAL-INSERT and LOCAL-PRECEDES on a local (SP-bags)
data structure. It supports an operation SPLIT, which partitions the strands in a trace when a steal
occurs. It also supports an operation FIND-TRACE, which returns the current trace to which a strand

26

belongs. The implementation of all the local-tier operations must be such that many FIND-TRACE
operations can execute concurrently.

Figure 2-11 presents parallel pseudocode for the SP-ordered-bags algorithm, with details of the
local-tier operations omitted. As in the SP-order algorithm, SP-ordered-bags performs a left-to-right
walk of the SP parse tree, executing strands as the parse tree unfolds. Each strand is inserted into a
trace, which is local to the processor executing the strand. The structure of the trace forms the local
tier of the SP-ordered-bags algorithm and is described further in Section 2.6. The full SP-ordered-
bags algorithm can be obtained by merging Figure 2-11 with the SP-parse-tree walk performed by
the local-tier algorithm.

SP-ordered-bags associates each node in the SP parse tree with a single trace by accepting a
trace U as a parameter in addition to a node X, indicating that the descendant strands of X should
be inserted into the trace U. When SP-ORDERED-BAGS(X, U) completes, it returns the trace with
which to associate the next node in the walk of the parse tree. In particular, for an S-node X, the
trace U’ returned from the walk of the left subtree in line 8 is passed to the walk of X’s right subtree
in line 9. The same is true for P-nodes, unless the right subtree has been stolen; see lines 13 and 16.

Lines 1-5 deal with the case where X is a leaf and therefore a strand. As in SP-ORDER,
the queries to the SP-maintenance data structure occur in the EXECUTESTRAND procedure. In
our analysis in Section 2.8, we shall assume that the number of queries is at most the number of
instructions in the strand. The strand is inserted into the provided trace U in line 3 before executing
the strand in line 4. Lines 6-10 and lines 12-28 handle the cases where X is an S- or P-Node,
respectively. For both P-nodes and S-nodes, the procedure walks to X’s left then right subtree. For
an S-node, however, the left subtree must be fully expanded before walking to the right subtree.

During the time that a P-node is being expanded, a steal may occur. Specifically, while the
current processor walks the left subtree of the P-node, another processor may steal (the walking of)
the right subtree. When a steal is detected (line 14 — EXECUTINGSERIALLY () returns FALSE),’
the current trace is split into five traces — U M, y®@, y®, y®, and UG — with a call to the
SPLIT procedure. This SPLIT procedure, and the partitioning into subtraces, is described further
in Section 2.6. The SP-ordered-bags algorithm proceeds to order the traces, inserting the five new
traces into the global SP-maintenance data structures. The Eng order maintains the English ordering
of the traces, as follows:

(D, U@, ud® y® ysd)y.

Similarly, the Heb order maintains the Hebrew ordering of the traces:
(U(l)’ U u® @, U(5)> .

We use a global lock to serialize these trace constructions and insertions into the shared order-
maintenance data structure. For correctness, we require not only that a stolen node have no ancestors
with stealable children (see Property 2.9), but we also require that all work associated with ancestral
steals (such as splitting traces) complete before performing the work for the newly stolen node.
Whereas the scheduler guarantees that steals occur in the proper order, our algorithm must enforce
the property for the work occurring on steals. To enforce this condition, we introduce two fields for
each P-node in the parse tree. The field stolen|[X] is initially set to FALSE; when the work associated
with stealing X’s right has completed, stolen[X] « TRUE (line 25). The field PNodeParent{X]
stores the nearest P-node ancestor Y of X for which X is in Y’s left subtree.® In particular, our

7 Although the function EXECUTINGSERIALLY may be provided by the runtime system, as it is in Cilk with the
“SYNCHED” function, runtime-system support is not required. In particular, one need simply check whether U” has been
written. If it has, then the first do block has executed completely.

8Maintaining PNodeParent is omitted from the pseudocode for compactness, but it is easily maintained by passing

27

SP-ORDERED-BAGS (X, U)

> X is a SP-parse-tree node, and U is a trace
1 if ISLEAF(X)

2 then > X is a strand

3 U—UU{X}

4 EXECUTESTRAND(X)

5 return U

6 if ISSNODE(X)

7 then > X is an S-node

8 U’ — SP-ORDERED-BAGs(left[X],U)

9 U"” «— SP-ORDERED-BAGS(right[X], U”)
0 return U”

> X is a P-node

11 stolen[X] = FALSE

12 in parallel

13 do U’ « SP-ORDERED-BAGS(left[X],U)

14 do if EXECUTINGSERIALLY()

15 then 0> the recursive call on line 12 has completed

16 U” «— SP-ORDERED-BAGS(right[X], U’)

17 return U"”

18 else > A steal has occurred

19 wait until stolen[PNodeParent[X]] = TRUE

20 ACQUIRE(lock)

21 ‘create new traces U, U, U™, and UG)

22 OM-MULTI-INSERT(Eng, UMD U®) U, U®, U ®))
23 OM-MULTI-INSERT(Heb, UV, UW, U, U2, 7 ®))

24 seLIT(U, X, UM, U?)

25 stolen[X] < TRUE

26 RELEASE (lock)

27 SP-ORDERED-BAGS(right[X], U)

28 return U®)

Figure 2-11: The SP-ordered-bags algorithm written in paralle]l pseudocode, with the local-tier. operations
omitted. SP-ORDERED-BAGS accepts as arguments an SP-parse-tree node X and a trace U, and it returns a
trace. The algorithm is essentially a tree walk that carries with it a trace U into which new strands are inserted.
The in parallel keyword indicates that each of the following do blocks may execute in parallel; all subsequent
code (line 28) does not execute until both parallel do blocks complete. The EXECUTINGSERIALLY function
(line 14) returns TRUE if the first do block (i.e., the recursive call in line 16) has executed completely; when it
returns FALSE, a steal has occurred. The PNodeParent|X)] attribute gives the nearest P-node ancestor of X,
and the stolen|X] attribute is updated by the algorithm to indicate whether the work occurring on a steal of
Xs right child has completed. An OM-MULTI-INSERT(L, A, B,U, C, D) inserts the objects A, B, C, and
D before and after U in the order-maintenance data structure L. The Eng and Heb data structures maintain
the English and Hebrew orderings of traces. The SPLIT procedure uses node X to partition the existing
strands in trace U into three sets, leaving one of the sets in U and placing the other two into U") and U,

28

SP-PRECEDES (u;, u;)

29 U; « FINDTRACE(u;)

30 U; « FINDTRACE(u;)

31 ifU; =U;

32 then return LOCAL-PRECEDES (u;, u;)

33 if OM-PRECEDES(Eng, U;, U;) and
OM-PRECEDES(Heb, U;, Uj)

34 then return TRUE

35 return FALSE

Figure 2-12: The SP-Precedes procedure for the SP-ordered-bags algorithm given in Figure 2-11. SP-
PRECEDES accepts two strands u; and u;, where u; must be a currently executing strand, and returns TRUE
if u; < u;. FINDTRACE and LOCAL-PRECEDES are local-tier operations to determine what trace a strand
belongs to and the relationship between strands in the same trace, respectively.

algorithm simply checks that the trace splitting for X (in lines 21-25) occurs only after Y (and,
inductively, all ancestors of X)) has been dealt with.

If a steal does not occur, we execute lines 16—-17. Notice that if a steal does not occur anywhere
in the subtree rooted at some node X, then we execute only lines 1-17 for the walk of this subtree.
Thus, all descendant strands of X belong to the same trace, thereby satisfying the requirement that
a trace be a set of strands that execute on the same processor.

The pseudocode for SP-PRECEDES is shown in Figure 2-12. A SP-PRECEDES query for strands
u; and u; first examines the order of their respective traces. If the two strands belong to the same
trace, the local-tier (SP-bags) data structure determines whether u; precedes u;. If the two strands
belong to different traces, the global-tier SP-order data structure determines the order of the two
traces.

2.5 The global tier of SP-ordered-bags

As introduced in Section 2.4, the global tier is essentially a shared SP-order data structure with lock-
ing mediating concurrent operations. This section describes the global tier in more detail. We show
how to support concurrent queries without locking, leaving only insertions as requiring locking.

We focus on making OM-PRECEDES operations on the global tier run efficiently without lock-
ing, because the number of concurrent queries may be large. If we were to lock the data struc-
ture for each of () queries, each query might be forced to wait for insertions and other queries,
thereby increasing the apparent work by as much as ©(QP) and nullifying the advantages of P-
way parallelism. Thus, we lock the entire global tier when an insertion occurs, but use a lock-free
implementation for the queries, which are likely to be more numerous.

The global tier is implemented using an O(1)-amortized-time order-maintenance data structure
such as those described in [33,81, 192]. The data structure keeps a doubly linked list? of items and
assigns an integer label to each inserted item. The labels are used to implement OM-PRECEDES:

an extra parameter, identifying the relevant P-node, into the SP-ORDERED-BAGS calls.

? Actually, a two-level hierarchy of lists is maintained, but this detail is unnecessary to understand the basic workings
of lock-free queries, and the one-level scheme we describe can be readily extended. A one-level scheme yields the same
correctness guarantees, but inserts have an amortized cost of O(log n) for an n-element list instead of the desired O(1).

29

to compare two items in the linear order, we compare their labels. When OM-INSERT adds a new |
item to the dynamic set, it assigns the item a label that places the item into its proper place in the
linear order.

Sometimes, however, an item must be placed between two items labeled ¢ and ¢ + 1, in which
case this simple scheme does not work. At this point, the data structure relabels some items so
that room can be made for the new item. We refer to the dynamic relabeling that occurs during
an insertion as a rebalance. Depending on how “bunched up” the labels of existing items are, the
algorithm may need to relabel a different number of items during one rebalance than another. In the
worst case, nearly all of the items may need to be relabeled.

When implementing a rebalance, therefore, the data structure may stay locked for an extended
period of time. The goal of the lock-free implementation of OM-PRECEDES is to allow these
operations to execute quickly and correctly even in the midst of rebalancing. We modify the
order-maintenance data structure to contain two sets of labels—an item x has labels label; [z] and
labels[z]. Implementation of a rebalance maintains the following three properties:

e When no rebalance is in progress, label;[z] = labelz[x] for all items « in the list, and the

labels respect the total order (i.e., label;[z] < label;[y] if and only if = < y).

e At any instant in time (during a rebalance), at least one set of labels is consistent with the total
order.

e A concurrent query can detect whether a rebalance in progress has corrupted its view of the
linear order. '

We use a counter (which starts at 1) to support the third property. When the counter is odd,
the set of label; respects the total order. When the counter is even, the set of labels is valid. The
algorithm actually proceeds in five phases, two of which implement the normal rebalance:

1. Determine the range of items to rebalance.

Assign the desired label to each item’s labels.
. Increment the counter indicating that a concurrent query should read the labels’s.
Assign the desired label to each item’s label;.

Increment the global counter indicating that the rebalance has completed and that a concurrent
query should read the label;.

RTINS

This rebalancing strategy modifies each item twice while guaranteeing that a concurrent read obtains
a consistent view of the linear order.

OM-PRECEDES query checks the counter to determine whether a rebalance is in progress. To
compare items X and Y, it first determines the parity of the counter, then examines the appropriate
labels of X and Y, and finally checks the counter again. If the counter has not changed between
readings, then the query attempt succeeds, and the order of labels determines the order of X. Oth-
erwise, the query attempt fails and is repeatedly retried until it succeeds.

Since queries attempts can fail, the repeated attempts may increase the apparent work and the
apparent span of the computation. Section 2.8 bounds these increases.

2.6 The local tier of SP-ordered-bags

This section describes the local tier of the SP-ordered-bags algorithm. I show how a trace running
locally on a processor can be split when a steal occurs. By using the SP-fast-bags algorithm to
implement the trace data structure, a split can be implemented in O(1) time. Finally, I show that
these data structures allow the series-parallel relationship to be determined between a currently
running strand and any other previously executed or currently executing strand.

30

v

Figure 2-13: The split of a trace U around a P-node X in terms of a canonical Cilk parse tree (see Figure 2-
8). The notation F' represents the parse tree of a spawned procedure, and u represents a strand. The tree
walk of U is executing in left[X] when the subtree rooted at right[X] is stolen by a thief processor. The
shaded regions contain the nodes belonging to each of the subtraces produced by the split. The two circles
not enclosing any text indicate portions of the parse tree that have not yet been visited by the tree walk of U.

Splitting traces

Besides maintaining the SP relationships within a single trace, the local tier of the SP-ordered-bags
algorithm supports the splitting of a trace into subtraces. A split of a trace U occurs when the
processor executing U becomes the victim of a steal. The work stolen corresponds to the right
subtree of the P-node X that is highest in the SP-parse tree walked by the victim. When a trace U
is split around a P-node X, the local tier creates five subtraces:'?

1. UM = {u € U : w < X}, the strands that precede X.

2.U® = {ueU:ul|l X and u ¢ descendants(X)}, the strands parallel to X that do not
belong to a subtree of X.
3. U®) = {u € U : u € descendants(left[X])}, the strands in X’s left subtree.
4. UW = {u € U:ue descendants(right[X])}, the strands in X’s (stolen) right subtree.
This set is initially empty.
5. UG) = {u € U : X < u}, the strands that follow X This set is also initially empty.
We call these properties the subtrace properties of U.

The SPLIT procedure from Figure 2-11 implements the split. Since U and U®) are initially
empty, they are not provided as parameters to the SPLIT procedure in line 24 of the SP-ORDERED-
BAGS pseudocode from Figure 2-11. The set U®) is simply those strands that remain in U after
those from U() and U(2) have been split off.

Let us look at these subtraces in terms of the parse tree. (Recall that Figure 2-8 shows the
canonical Cilk parse tree.) Figure 2-13 shows the subtraces formed when a processor steals the
tree walk rooted at right[X]. Since all the strands contained in U(!) have been executed, no more
changes to this subtrace will occur. Similarly, the strands contained in U(? have already been
executed. The subtrace U(®) is partially populated, and the processor executing the walk of U will

"°In fact, the subtraces U® and U can be combined, but we keep them separate to simplify the proof of correctness.

31

English {

Hebrew

Figure 2-14: An ordering of the new traces resulting from a steal as shown in Figure 2-13. Each circle
represents a trace.

continue to put strands into U (3). The subtrace U™, which is initially empty, corresponds to the
strands encountered during the thief processor’s tree walk. The subtrace U®), which is also initially
empty, represents the next spine node / the start of the next sync block in the procedure.

When the subtraces are created, they are placed into the global tier using the concurrent SP-order
algorithm. The ordering of the traces resulting from the steal in Figure 2-13 is shown in Figure 2-14.
All the strands in U} precede those in U®), U®), and /(). Similarly, all the strands (to be visited)
in U®) serially follow those in UM, U®), U®), and U®. Thus, we place U first and U®) last in
both the English and Hebrew orders. Since any pair of strands drawn from distinct subtraces U,
U®), and UM operate logically in parallel, we place U®), U®), and U® in that order into the
English ordering and U, U®), and U®) in that order into the Hebrew ordering. Although there is
no clear relationship among all the strands in UM and U(z), since neither of these traces contains
unexecuted strands, SP-ordered-bags never compares them.

The SP-fast-bags algorithm can be adapted to implement the local-tier operations required by
SP-ordered-bags, namely LOCAL-INSERT, LOCAL-PRECEDES, FIND-TRACE, and SPLIT. All
these operations, except FIND-TRACE, are executed only by the single processor working on a
trace. The FIND-TRACE operation, however, may be executed by any processor, and thus the im-
plementation must operate correctly in the face of multiple FIND-TRACE operations.

The SP-fast-bags implementation used by SP-ordered-bags follows that of Section 2.2, except
we must additionally support the SPLIT operation. At the time of a split, the subtraces U M), y@,
and U(®) may all contain many strands. Thus, splitting them off from the trace U may take substan-
tial work. Fortunately, SP-fast-bags overcomes this difficulty by allowing a split to be performed in
O(1) time.

Consider the S- and P-bags at the time a strand (i.e., the right subtree of the P-node X in
Figure 2-13) in the top-level procedure F is stolen and the five subtraces UM, U, UG), U®),
and U®) are created. The S-bag of F" contains exactly the strands in the subtrace UM Similarly,
the P-bag of F' contains exactly the strands in the subtrace U®). The SP-fast-bags data structure
supports moving these two bags to the appropriate subtrace using only O(1) pointer updates. The
subtrace U(®) owns all the other S- and P-bags that belonged to the original trace U, and thus
nothing more need be done, since U®) directly inherits U’s strands. The subtraces U*) and U®)
are created with empty S- and P-bags. (Although U and U®) belong to the same procedure as
U we modify SP-fast-bags to treat them as new procedures.) Thus, the split can be performed in
O(1) time, since only O(1) bookkeeping needs to be done including updating pointers.

We must make one additional change to SP-fast-bags to get an efficient SP-ordered-bags algo-
rithm. The analysis in Section 2.8 bounds the number of steals by arguing that each time a steal
occurs, we make headway in the critical path of the computation. Since a UNION is amortized, we
may increase the critical path of the computation. In particular, the linked-list disjoint-set compo-
nent of a UNION may take up to ©(n/lg n) time, where n is the number of strands. To compensate
for this amortization, we also provide a FAST-UNION(z, y) operation that simply points the repre-

32

sentative of the set containing y at the representative of the set containing z. This operation takes
constant time. The FIND operation, however, must now follow more than one pointer to find the set
representative. In Section 2.8, we argue that FIND operations are still O(1) in the worst case.

We call the FAST-UNION instead of the UNION operation whenever the procedure making the
call is ready to be stolen. Specifically, when SP-fast-bags performs a union of two sets with a call
to ADAPTABLE-UNION, we repeatedly perform a constant number of steps from the slow UNION
operation and test whether the current procedure is ready to be stolen. If the procedure is ready to
be stolen, we instead perform a FAST-UNION.

Figure 2-15 gives parallel pseudocode for the local-tier SP-fast-bags algorithm. This version
of SP-fast-bags returns a procedure ID into which future strands should be inserted, which is con-
ceptually similar to SP-ordered-bags from Figure 2-11. Whenever a steal occurs, as shown in lines
20-24, we create new “procedures” to handle the traces U (1) and U®). The new procedure, corre-
sponding to trace U (%), is returned to be handled by the appropriate ancestor S-node. This version
of SP-fast-bags also uses the FAST-UNION operations where appropriate. Whenever the parent of
a procedure F’ has been stolen, F is available to be stolen, and a FAST-UNION is preferred. We
use the field parentstolen[F"] to indicate this fact. If we call an ADAPTABLE-UNION(F’, z,y),
then the UNION periodically checks against parentstolen[F'] to see whether it should switch to the
FAST-UNION.

Even though Figure 2-15 gives a parallel implementation of SP-fast-bags, the code still reflects a
serial algorithm. That is, SP-fast-bags is still only correct if run on a single processor — this version
of SP-fast-bags allows parallelization only when run in the context of the local tier of SP-ordered-
bags. Also, as with the SP-fast-bags from Figure 2-10, we do not require any locking. Since any
particular bag or set is modified by only a single processor, there is no contention to worry about.

To attain the full SP-ordered-bags algorithm, the two parse-tree walks from Figures 2-11 and 2-
15 must be merged together.

2.7 Correctness of SP-ordered-bags

This section proves the correctness of the SP-ordered-bags algorithm. I begin by showing that
the traces maintained by SP-ordered-bags are consistent with the subtrace properties defined in
Section 2.6. I then prove that the traces are ordered correctly to determine SP relationships. Finally,
I conclude that SP-ordered-bags properly responds to SP queries.

Due to the way the splits work, we can no longer prove a theorem as general as Lemma 2.1.
That is to say, we can only accurately derive the relationship between two strands if one of them is a
currently executing strand.!! Although this result is weaker than for the serial algorithm, we do not
need anything stronger for a race detector. Furthermore, these are exactly the semantics provided
by the lower-tier SP-bags algorithm.

Correctness for SP-bags is established in [91]. The only significant difference between our
version of SP-fast-bags from Section 2.6 and the version in [91] is that we may spawn new instances
of the SP-fast-bags algorithm when a steal occurs. The new instances result from the creation of new
bags given in lines 20-24 of Figure 2-15. These instances correspond to the subtraces U (4) and U®)
from Figure 2-13, which are subtrees of the parse tree. Since SP-fast-bags operates correctly on a
Cilk parse tree, it operates correctly on a subtree as well, and we do not give a new correctness proof
here. Instead, we concentrate on correctness of the global tier and the SP-ordered-bags algorithm
as a whole.

HSpecifically, we cannot determine the relationship between strands in U and U®, but we can determine the
relationship between any other two traces.

33

SP-FAST-BAGS(X, F)

1
2
3
4
5

[y
— O 0 003

[um—

12
13
14
15
16
17
18
19
20
21
22
23
24

> X is an SP-parse-tree node, and F' is a procedure ID.
if ISLEAF(X)
then > X is a strand
F —FuU{X}
EXECUTESTRAND(X, F))
return F'

if ISSNODE(X)
then F' + SP-FAST-BAGS(left|X], F)
Freturn < SP-FAST-BAGS(right[X], F)
SF < ADAPTABLE-UNION(F, SF, Pr)
Pr 0
return Ficiyrn

> X is a P-node
F’ «— NEWPROCEDURE()
parentstolen|[F’] «— FALSE
in parallel
do spawn SP-FAST-BAGS(left[X], F”)
do if EXECUTINGSERIALLY()
then Pr < ADAPTABLE-UNION(F, Pr, Sp)
Spr — 0
return SP-FAST-BAGS(right[X], F')
else > A steal occurred.
parentstolen[F’] « TRUE
F « NEWPROCEDURE()
SP-FAST-BAGS(right[X], F)
return NEWPROCEDURE()

Figure 2-15: The local-tier SP-fast-bags algorithm written in parallel pseudocode to operate on the canonical
Cilk parse tree from Figure 2-8. This implementation is similar to Figure 2-10 except for the implicit addition
of a FAST-UNION where necessary. The boolean parentstolen|F’] indicates whether the parent procedure
of F’ has been stolen (meaning that F’ is available to be stolen). As with SP-ordered-bags, this version of
SP-fast-bags returns a function into which future strands should be inserted.

34

The following lemma shows that when a split occurs, the subtraces are consistent with the
subtraces properties given in Section 2.6.

Lemma 2.10 Let U; be a trace that is split around a P-node X. Then, the subtrace properties of U;
are maintained as invariants by SP-ORDERED-BAGS.

Proof The subtrace properties of U; hold at the time of the split around the P-node X, when the
subtraces were created, by definition. If a subtrace is destroyed by splitting, the property holds for
that subtrace vacuously.

Consider any strand « at the time it is inserted into some trace U. Either U is a subtrace of U;
or not. If not, then the properties hold for the subtrace U; vacuously. Otherwise, we have five cases.

Case 1: U = U;(D. This case cannot occur. Since U;(") is mentioned only in lines 19-28 of
Figure 2-11, it follows that U; (M is never passed to any call of SP-ORDERED-BAGS. Thus, no
strands are ever inserted into Ui(l).

Case2: U = U,-(z). Like Case 1, this case cannot occur.

Case 3: U = U;(®. We must show that U;(®) = {u : u € descendants(left[X])}. The difficulty
in this case is that when the trace Uj is split, we have U; = U;3, that is, U; and U; are aliases
for the same set. Thus, we must show that the invariant holds for all the already forked instances of
SP-ORDERED-BAGS that took U; as a parameter, as well as those new instances that take Ui(3) asa
parameter. As it turns out, however, no new instances take U;® as a parameter, because (like Cases
1 and 2) U;®) is neither passed to SP-ORDERED-BAGS nor returned.

Thus, we are left to consider the already forked instances of SP-ORDERED-BAGS that took
U; as a parameter. One such instance is the outstanding SP-ORDERED-BAGS(left[X], U;) in
line 13. If u € descendants(left[X]), then we are done, and thus, we only need consider the forks
SP-ORDERED-BAGS(Y, U;), where Y is an ancestor of the P-node X. We use induction on the an-
cestors of X, starting at Y = parent(X) to show that SP-ORDERED-BAGS(Y, U;) does not pass U;
to any other calls, nor does it return U;. For the base case, we see that SP-ORDERED-BAGS(X, U;)
returns U;® #£ U;®).

For the inductive case, consider SP-ORDERED-BAGS(Y, U;). We examine the locations in the
pseudocode where this procedure can resume execution. If Y is an S-node, then this procedure
can be waiting for the return from SP-ORDERED-BAGS(left[Y], U;) in line 8 or the return from
SP-ORDERED-BAGS(right[Y],U;) in line 9. In the first situation, our inductive hypothesis states
that SP-ORDERED-BAGS (left[Y'], U;) does not return U, and hence, we neither pass Uj to the right
child nor do we return it. The second situation is similar.

Instead, suppose that Y is a P-node. Since steals occur from the top of the tree, we cannot
resume execution at line 16, or else SP-ORDERED-BAGS(right[Y], U;) would have already been
stolen. We can be only at either line 17 or line 28. If we are at line 17, our inductive assumption
states that SP-ORDERED-BAGS(right[Y], U;) does not return U;, and thus we do not return U;
either. Otherwise, we are at line 28, and we return the U(®) resulting from some split.

Cased: U = U;®. We must show that U;*) = {u:u € descendants(right[X])}. The
only place where U;™ is passed to another SP-ORDERED-BAGS call, and hence used to insert
a strand, is line 27. No matter what SP-ORDERED-BAGS(right[X], U;) returns, the call to
SP-ORDERED-BAGS(X, U;) does not return U;); it returns U;®®. Thus, the only strands that
can be inserted into U;(4) are descendants of right[X], which matches the semantics of U (4),

Case5: U = U;®. We must show that U;®® = {u € U;: X < u}. The subtrace U;® is
used only in the return from SP-ORDERED-BAGS(X,U;) on line 28. As seen in lines 6-10 and
lines 16-17, SP-ORDERED-BAGS passes the trace returned from a left subtree to a right subtree.
Thus, the only SP-ORDERED-BAGS calls that have any possibility of inserting into U; () are the
right descendants of X’s ancestors. When a split occurs (and hence when a steal occurs), by the

35

properties (Property 2.9) of the work-stealing scheduler, it occurs at the topmost P-node of a trace.
Thus, the only ancestors of X with unelaborated right subtrees are S-nodes. It follows that Ica(u, X)
is an S-node, and hence X < u. [

The following lemma shows that the Eng and Heb orderings maintained by SP-ordered-bags
are sufficient to determine the relationship between traces.

Lemma 2.11 Let Eng and Heb be the English and Hebrew orderings, respectively, maintained by
the global tier of SP-ordered-bags. Let u; be a currently executing strand in the trace Uj, and let u;
be any strand in a different trace U; # Uj. Then, we have u; < u; ifand only if Eng[U;] < Eng[Uj]
and Heb[U;| < Heb[U;).

Proof. The proof is by induction on the number of splits during the execution of SP-ordered-bags.
Consider the time that a trace U is split into its five subtraces. If neither U; nor Uj is one of the
resulting subtraces U(), U®?), ... U®), then the split does not affect U; or U ;» and the lemma holds
holds trivially.

Suppose that U; € {UM, U@, ... UG}, but U; ¢ {UD, U, ..., U}, Then, U; and U;
have the same relationship they did before the split, because we insert the subtraces UV, (), 74,
and U®) contiguously with U = U3 in the English and Hebrew orderings. Similarly, if we have
U ¢{UW, ..., U} butU; € {UD, U@, .. UG}, then the lemma holds symmetrically.

Thus, we are left with the situation where U; € {U W3, .. U(5)} can be any trace, but the
other trace is restricted to U; € {U®), U® U®)}. We can ignore the case when U; = Uj;, because
the lemma assumes that U; # Uj, as well as the cases when U; € {U(l), U(2)}, because u; is a
currently executing strand. We consider the remaining twelve cases in turn.

Case (1,3): U; = UM and U; = U®). We apply Lemma 2.10 to conclude that u; < X for
some P-node X and u; € descendents(left[X]), which implies that u; < u;. We also have that
Eng[UW] < Eng[U®)] and Heb[UV] < Heb[U®)], which matches the claim.

Case(1,4): Similar to case (1,3).

Case(1,5): U; = UM and Uj=U). We apply Lemma 2.10 to conclude that u; < X for some
P-node X and that X < uj;, and hence u; < u;. We also have that Eng[U(V)] < Eng[U®)] and
Heb[UM] < Heb[U®)], which matches the claim.

Case (2,3): U; = U® and U; = U®). Lemma 2.10 allows us to conclude that u; € {ueU:
u || X and u ¢ descendants(X)} for some P-node X and that strand u; € descendants(left[X]),
which means that u; || u;. We also have that Eng[U?)] < Eng[U®)] and Heb[U®)] > Heb[U®)],
which matches the claim.

Case(2,4): Similar to case (2,3).

Case(2,5): U; = U and U; = U®). As Eng[UP] < Eng[U®)] and Heb[U®)] < Heb[U®),
we must show that u; < u;. The simple fact here is that U/ (5) logically follows all other strands in U
(as shown pictorially in Figure 2-13), but that is not directly stated in the subtrace properties, so we
will prove it more formally here. Lemma 2.10 implies that X < u;, and hence S = lca(X, u;) is an
S-node such that X and u; are contained in S’s left and right subtrees, respectively. If u; is in S’s left
subtree, then u; < u;, and we have shown what we need to show. We also infer that u; cannot be in
S’s right subtree (specifically, lca(X, u;) #), since Lemma 2.10 states that lca(X, ;) is a P-node.
The remaining option to consider is that u; not be a descendant of S. We will show by contradiction
that this case canmot occur. We therefore consider lca(u;,.S). As lca(u;, S) = lca(u;, X), and
ui || X, we conclude that Ica(u;, S) must be a P-node. Note that by the structure of the Cilk parse
tree, S is a spine node (as spine nodes are the only S-nodes with P-nodes in their left subtrees).
Moreover, also by the structure of the Cilk parse tree, the nearest P-node ancestor of a spine node

is a right parent. Let X' be the nearest P-node ancestor of S. Then either X’ = lca(u;, S), or X’

36

is a descendant of lca(u;, S). Given the left-to-right execution of Property 2.9 and the fact that u;
(located in the left subtree of X”) is currently executing, we have two possibilities. If the right child
of X' is stealable, then Property 2.9 implies that the current split is not around X, which generates a
contradiction. If the right child of X’ has already been stolen, then the right subtree of X' does not
belong to the trace U, which is also a contradiction. As all other possibilities have been eliminated,
we thus conclude that lca(u;, u;) = S, and hence u; < u;.

Case(3,4): U; = U®) and U; = U® . Lemma 2.10 states that u; € descendants(left[X]) and
u; € descendants(right[X]) for some P-node X, and hence lca(u;, u;) = X and u; || u;. We also
have that Eng[U®)] < Eng[U®)] and Heb[U (3)] > Heb[U™], which matches the claim.

Case(3,5): U; = U® and U; = U®. Lemma 2.10 states that u; € descendants(left[X]) and
X < uy. It follows that lca(X, u;) is an S-node with X belonging to the left subtree, and hence
lca(u;, u;) is an S node with u; belonging to the left subtree. We conclude that u; < uj, which
matches the ordering Eng[U®)] < Eng[U® and Heb[U®)] < Heb[U®)).

Case(4,3): Symmetric with case (3,4).

Case(4,5): Similar to case (3,5).

Case(5,3): Symmetric with case (3,5).

Case(5,4): Symmetric with case (4,5). O

We are now ready to prove that SP-ordered-bags returns the correct result for an SP-PRECEDES
operation run on a currently executing strand and any other strand.

Theorem 2.12 Consider any point during the execution of SP-ORDERED-BAGS on an SP parse
tree. Let u; be a strand that has been visited, and let uj be a strand that is currently executing. Then,
the procedure SP-PRECEDES(u;, u;) correctly returns TRUE if u; < u; and FALSE otherwise.

Proof. The SP-ORDERED-BAGS procedure inserts a strand u into a trace U before executing
u, and therefore when a strand executes, it belongs to some trace. Furthermore, the English and
Hebrew orderings Eng and Heb, respectively, contain ail traces that contain any strands.

First, consider the case in which u; and u; do not change traces during the execution of SP-
PRECEDES. If u; and u; belong to the same trace, then SP-PRECEDES returns the correct result
as the result of a query on the local tier. If u; and u; belong to different traces, then Lemma 2.11
shows that the correct result is returned.

We must also show that SP-PRECEDES returns the correct result if the traces for either u; or u;
are split during the execution of the SP-PRECEDES query. Only a single SPLIT may be in progress at
a time because of the global lock used by SP-ORDERED-BAGS. We consider the state of the traces
at the instant in time at which the last SPLIT completed before the start of SP-PRECEDES. That
is, if there is no SPLIT in progress, then we consider the state of traces at the time SP-PRECEDES
begins. If there is a SPLIT in progress when SP-PRECEDES begins, then we consider the state of
traces just before that SPLIT began.

Suppose that we have u; and u; belong to different traces at this time. Consider the code given
in Figure 2-12. There is no way to get U; = Uj in the test in line 31. Moreover, we have that
Lemma 2.11 applies to give us the correct result.

Suppose instead that at the start of the SPLIT, we have u; and u; belong to the same trace U.A
SPLIT may be in progress. Since u; is still executing, and it belongs to some trace already, it follows
from the subtrace properties that u; can only be a part of a U () = U resulting from a SPLIT. Thus,
the trace for u; cannot change across the execution of SP-PRECEDES. Similarly, u; can belong to
one of {UM, U@, U®)}, but it cannot belong to U™ or UG), since it already exists at the time of
the SPLIT. Given these facts, it does not matter whether we get U; = Uj in line 31. If U; = U;
and u;,u; € U®), then LOCAL-PRECEDES returns the correct result. If U; = Uj and u; € v,

37

then LOCAL-PRECEDES still returns the correct result, since u; belongs to an S-Bag: Similarly, if
Uy =Ujandu; € U (2), then LOCAL-PRECEDES returns the correct result, since wu; belongs to
a P-Bag. From Lemma 2.11, the OM-PRECEDES returns the correct result in either of these two
cases. O

2.8 Performance analysis

This section analyzes the SP-ordered-bags algorithm run on a fork-join program. Suppose that the
program has 77 work and a span of T,,. When executed on P processors using a round-robin work-
stealing scheduler (that satisfies Property 2.9), SP-ordered-bags runs in O(T} /P + PTy,) time in
the worst case.

First, I show that the local-tier operations LOCAL-PRECEDES (implemented as a FIND in the
disjoint-sets data structure) takes O(1) time in the worst case. Recall that we modify SP-fast-bags
and the disjoint-sets data structure for SP-ordered-bags in Section 2.6 by introducing this notion
of a FAST-UNION. Whereas the Gabow and Tarjan data structure has all elements pointing at the
representative, a set resulting from a FAST-UNION does not. As a result, it is not immediately
obvious that a FIND takes O(1) time in the worst case. To prove this fact, we exploit the structure
of the unions performed by the local tier of SP-ordered-bags. If a set has all elements pointing at
the representative, then we say that the depth of the set is 1. When the FAST-UNION is performed,
the depth may increase, but we bound this increase.

Lemma 2.13 For a procedure F that is ready to be stolen in an execution of SP-ordered-bags, the
depth of the sets for Sr and Pr are at most 2 and 3, respectively.

Proof. Proof by induction on the unions involving these bags.

Any child procedure F” is not ready to be stolen, because Property 2.9 (see Section 2.4) requires
parents to be stolen before their children. Thus, since no FAST-UNIONS are performed on F’, the
depth of S is 1 when F” returns to F.

The ADAPTABLE-UNION(F, Pr, Sg-) is only performed in line 18 of Figure 2-15. Since the
modified ADAPTABLE-UNION points the representative of Sg+ to the representative for Pp, this
union does not increase the depth of Py past 2.

The only point at which we union with S is line 9. Since the representative for Pr is pointed
to the representative of Sz, and the depth of Pp is at most 2 by the inductive assumption, we have
that the depth of Sz does not increase past 3. O

Given Lemma 2.13, we have that each FIND takes O(1) worst-case time, which gives us the
following corollary.

Corollary 2.14 A LOCAL-PRECEDES performed by SP-ordered-bags takes O(1) worst-case time.
(]

To prove the desired bound on the entire SP-ordered-bags execution, we must first bound the
number of steals performed. The following theorem, similar to Theorem 9 from [27], applies to our
environment when using an efficient work-stealing scheduler, such as the Cilk scheduler. We focus
specifically on the case where the work stealing occurs, and show that this is still efficient in our
context. We assume that processors are moving at roughly the same speed. That is, all processors
execute ©(1) instructions per unit time.

38

Theorem 2.15 Consider any fork-join program with T\ work and span Tw.. When executed on P
processors using a Cilk-like work-stealing scheduler that chooses victims to steal from at random,
SP-ordered-bags has O(PTy,) steal attempts in expectation. Moreover, for any € > 0, the number
of steal attempts is O(P(To + 1g(1/€))) with probability at least 1 — &.

Proof. Since the proof is virtually identical to one given by Arora, Blumofe, and Plaxton [27],
only a sketch of the proof is given here. We assign potentials to each ready strand — those strands
that are ready to be executed. In particular, let d(u) be the depth of a strand u, or the distance of u
from the start of the computation. Then

() = 32(To—d(u))~1 if 4 is assigned to some processor;
T\ 3%T=—d®) otherwise.

The potential only decreases over time. Whenever a strand is stolen, it is assigned to a processor.
Whenever a processor completes an assigned strand, it enables up to two children which are deeper
in the computation. Either of these actions decreases the total potential.

To bound the number of steals, group potentials by processors owning the strands. The crux of
the argument is that whenever a thief processor tries to steal from a victim processor g, the victim
loses a constant factor of its potential. It turns out that the next strand stolen from a particular
processor ¢ contributes a constant fraction of that processor’s potential. Thus, if a successful steal
occurs, the potential decreases by a constant fraction of ¢’s potential. Similarly, if ¢ does not have
any strands ready to be stolen, then completing the current strand also decreases g’s potential by a
constant fraction. Therefore, even if the steal attempt is not successful, we know that the potential
decreases.

Following the argument by Aurora et al., we apply a balls-in-bins argument to argue that each
contiguous round of P steals reduces the total potential by a constant factor with constant proba-
bility. A Chernoff bound across the rounds gives a high-probability result.

In our case, the work completed during any step may not be real work towards the original fork-
join program. To compensate, we blow up each instruction by a factor of r, where r is the worst-
case cost of the O(1) SP-PRECEDES (without retrying the OM-PRECEDES) queries performed at
each instruction and the cost of the local-tier SP-maintenance operation when the strand is ready
to be stolen. Since the balls-in-bins argument relies on the fact that we make progress towards
the critical path when a strand is being worked on or stolen, we care only about the blowup from
SP-maintenance that occurs at this time.

The two SP-maintenance operations that pose the greatest challenge are the UNION, which may
need to make a lot of updates, and the OM-PRECEDES operations, which may retry several times.
For the former, observe that since FAST-UNION is performed when the strand is ready to be stolen,
the blowup (at steal-attempt time) from this operation is at most O(1). As for OM-PRECEDES,
recall that we assume processors are moving at the same speed. We assume that the updates per-
formed on a steal take a sufficiently long (constant) amount of time that an OM-PRECEDES only
needs to abort once. (If not, we can make SP-ordered-bags wait for a constant amount of time while
holding the global lock, without impacting the asymptotic performance.) We, therefore, effectively
have a new computation with span T, < rT, with 7 = O(1), and the potential and balls-in-bins
arguments from Arora et al. still apply. O

Next, I show that the entire SP-ordered-bags algorithm performs well.

Theorem 2.16 Suppose that a fork-join program has Ty work and span Ti,. When executed on P
processors using a Cilk-like work-stealing scheduler that chooses victims to steal from at random,

39

SP-ordered-bags runs in O(T1/P + PT,) expected time. Moreover, for any € > 0, SP-ordered-
bags runsin O(T1/P + P(Tw + 1g(1/€))) time with probability at least 1 — .

Proof. We use an accounting argument similar to [55], except with seven buckets, instead of
three. Each bucket corresponds to a type of task that a processor can be doing during a step of
the algorithm. For each time step, each processor places one dollar in exactly one bucket. If the
execution takes time Tp, then at the end the total number of dollars in all of the buckets is PTp.
Thus, if we sum up all the dollars in all the buckets and divide by P, we obtain the running time.

The analysis depends on the number s of successful steals during the execution of the SP-
ordered-bags algorithm. Theorem 2.15 shows that the expected value of s. The seven buckets are
as follows:

B;: The work of the original computation excluding costs added by SP-ordered-bags. We have
that | By| = T, because a processor places one dollar in the work bucket whenever it performs work
on the input program.

B;: The work for global-tier insertions, including the cost for splits. SP-ordered-bags performs
an OM-INSERT operation, serially, for each steal. The amortized time required to perform s opera-
tions in the order-maintenance data structure is O(s). Thus, |Bz| = O(s).

Bg: The work for the local-tier SP-maintenance operations. Since there are O(1) SP-fast-bags
operations for each instruction in the computation, and each SP-fast-bags operation costs O(1)
amortized time, we have | B3| = O(T}).

By: The waiting time for the global lock on global-tier OM-INSERT operations. When one
processor holds the lock, at most O(P) processors can be waiting. Since O(1) msertlons occurs for
each steal, we have | B4| = O(Ps).

Bys: The work wasted on failed and retried global-tier queries. Since a single insertion into
the order-maintenance structure can cause at most O(1) queries to fail on each processor and the
number of insertions is O(s), we conclude that |Bs| = O(Ps).

Bg: Steal attempts while the global lock is not held by any processors. We use Theorem 2.15
to conclude that |Bg| = O(PTy,) in expectation, or | Bg| = O(P(Tw + 1g(1/¢))) with probability
atleast 1 —e.

By: Steal attempts while the global lock is held by some processor. The global lock is held for
O(s) time in total, and in the worst case, all processors try to steal during this time. Thus, we have
|B7| = O(Ps).

To conclude the proof, observe that s < |Bg|, because the number of successful steals is less
than the number of steal attempts. Summing up all the buckets yields O(T; -+ P | Bg|) at the end of
the computation, and hence, dividing by P, we obtain an expected running time of O(T} / P+ PTy,)
and the corresponding high probability bound. O

It turns out that we can modify the work-stealing scheduler to improve the worst-case perfor-
mance of SP-ordered-bags. In particular, we modify the scheduler to perform steal attempts in a
round-robin order instead of randomly. To perform round-robin steal attempts, we lock a global
list of processors on each steal attempt. Since we lock on successful steals for SP-ordered-bags
anyway, this additional locking does not hurt us. (Randomized stealing makes sense in the context
of an arbitrary multithreaded program, because ordinarily steals are not serialized.)

Given the round-robin stealing policy, we can state a worst case bound on the number of steals,
similar to Theorem 2.15.

Theorem 2.17 Consider any fork-join program with Ty work and span Ts,. When executed on P

processors using the round-robin, Cilk-like work-stealing scheduler (i.e., one obeying Property 2.9),
SP-ordered-bags has O(PTy,) steal attempts in the worst case.

40

Proof. We use the same potential function as in Theorem 2.15. We group P contiguous steal
attempts into rounds. In a round, a steal attempt occurs on each processor. When attempting to
steal from a particular processor, its potential decreases by a constant factor. Thus, in a round, the
potential of the entire system decreases by a constant factor. There can be O(T%,) such rounds, for
a total of O(PT) steal attempts in the worst case. O

Applying Theorem 2.17 to bound the number s of successful steals in Theorem 2. 16, we achieve
the following worst-case bound.

Theorem 2.18 Consider any fork-join program with Ty work and span Tw,. When executed on
P processors using the round-robin, Cilk-like work-stealing scheduler, SP-ordered-bags runs in
O(T\/P + PT) time in the worst case. (]

Finally, I show that SP-ordered-bags is scalable. In particular, the following corollary states
that SP-ordered-bags achieves linear speedup when P = O(4/T1/Tw)- In contrast, the underlying
fork-join program achieves linear speedup on a work-stealing scheduler when P = O(Th/Tw),
which is optimal. Although 1/T} /T is not optimal, it is reasonably large.

Corollary 2.19 SP-ordered-bags achieves linear speedup when P = O(\/T1 /Too)-

Proof ~When P = O(y/T1/Ts), Theorems 2.16 and 2.18 state that SP-ordered-bags runs in
0 (T1/P + \/Ti/Teo Too) -0 (Tl/P +T1/\/T1/Too) = O(T1/P). O

2.9 Related work on SP-maintenance

This section summarizes related work on SP-maintenance and order-maintenance data structures.

Nudler and Rudolph [163] introduced the English-Hebrew labeling scheme for SP-maintenance.
Each strand is assigned two labels, similar to the labeling in this paper. They do not, however,
use a centralized data structure to reassign labels. Instead, label sizes grow proportionally to the
maximum concurrency of the program. Mellor-Crummey [153] proposed an “offset-span labeling”
scheme, which has label lengths proportional to the maximum nesting depth of forks. Although
it uses shorter label lengths than the English-Hebrew scheme, the size of offset-span labels is not
bounded by a constant as it is in our scheme.

The first order-maintenance data structure was published by Dietz two decades ago [79]. It
supports insertions and deletions in O(lg n) amortized time and queries in O(1) time. Tarjan ob-
served [81] that updates could be supported in O(1) amortized time, and the same result was ob-
tained independently by Tsakalidis [192]. Dietz and Sleator [81] proposed two data structures, one
that supports insertions and deletions in O(1) amortized time and queries in O(1) worst-case time
and another that supports all operations in O(1) worst-case time. Bender, Cole, Demaine, Farach-
Colton, and Zito [33] gave two simplified data structures whose asymptotic performance matches
the data structures from [81]. Their paper also presents an implementation study of the amortized
data structure.

A special case of the order-maintenance problem is the the online list-labeling problem (22,80,
82,1231, also called the file maintenance problem [197-200]. In online list labeling, we maintain
a mapping from a dynamic set of n elements to the integers in the range from 1 to u (tags), such
that the order of the elements matches the order of the corresponding tags. Any solution to the
online list-labeling problem yields an order-maintenance data structure. The reverse is not true,
however, because there exists an Q(lgn) lower bound on the list-labeling problem {80, 82]. In

41

file maintenance, we require that u = O(n), since this restriction corresponds to the ‘problem of
maintaining a file densely packed and defragmented on disk.

Labeling schemes have been used for other combinatorial problems such as answering least-
common-ancestor queries [1,15,17,126] and distance queries used for routing [14,16,26,102, 132,
189]. Although these problems are reminiscent of the order-maintenance problem, most solutions
focus on reducing the number of bits necessary to represent the labels in a static (offline) setting.

Anderson and Woll [20] discuss concurrent union-find operations using path compression (with
path halving) and union by rank. Whereas they consider multiple finds and multiple unions occur-
ring concurrently, however, our problem is confined to single unions and multiple finds occurring
concurrently.

2.10 Concluding remarks

This chapter has focused on provably efficient parallel algorithms for SP-maintenance. As a practi-
cal matter, the algorithms are likely to perform faster than the worst-case bounds indicate, because it
is rare that every lock access sees contention proportional to the number of processors. This obser-
vation can be used in practical implementations to simplify the coding of the algorithms and yield
somewhat better performance in the common case. Nevertheless, we contend that the predictability
of provably efficient software gives users less frustrating experiences. Giving up on provable per-
formance is an engineering decision that should not be taken lightly. We also believe that provably
efficient algorithms are scientifically interesting in their own right.

As we were writing the earlier conference version of the SP-ordered-bags paper [48], we re-
peatedly confronted the issue of how an amortized data structure interacts with a parallel scheduler.
Standard amortized analysis could be applied to analyze the work of a computation, but we could not
use amortization to analyze the critical path and had to settle for worst-case bounds. Luckily, since
the conference version, we discovered that we could remove the amortized difficulties from the SP-
ordered-bags algorithm. The issue of dealing with amortization in a parallel setting, however, has
not been solved. Moreover, we were surprised that we needed to reprise the elaborate work-stealing
analysis from [55] (with seven buckets, no less!) in order show that SP-ordered-bags is efficient. Are
there general techniques that can allow us to develop provably good parallel algorithms without re-
peatedly subjecting ourselves (and readers) to such intricate and difficult mathematical arguments?

We were also surprised to see that using a round-robin work-stealing scheduler resulted in a bet-
ter worst-case running time than the randomized work-stealing scheduler. When running a program
that does not serialize steals as SP-ordered-bags or XConflict do, the randomized work stealer per-
forms better. Is there some balance that can be achieved here? A Cilk program (that does not contain
locks) with 77 work and span T, runs on the randomized work-stealing scheduler in O(T /P+Tw)
time in expectation. Is there a scheduler that results in a running time like O(T} /P + P*T}) in the
worst case?

42

Chapter 3

Nested Parallelism in Transactional
Memory

This chapter investigates adding transactions with nested parallelism and nested transactions to a
dynamically multithreaded parallel programming language that generates only series-parallel pro-
grams. I describe XConflict, a data structure that facilitates conflict detection for a software transac-
tional memory system which supports transactions with nested parallelism and unbounded nesting
depth. For languages that use a Cilk-like work-stealing scheduler, XConflict answers concurrent
conflict queries in O(1) time and can be maintained efficiently. In particular, for a program with 7
work and span T, the running time on P processors of the program augmented with XConflict is
only O(T1/P + PTy). In addition, we use XConflict as the basis for the CWSTM runtime-system
design for software transactional memory, supporting unbounded nesting of parallelism and trans-
actions. This chapter represent joint work with Kunal Agrawal and Jim Sukha, previously appearing
in [8].

Using XConflict, I describe CWSTM, a runtime-system design for software transactional mem-
ory which supports transactions with nested parallelism and unbounded nesting depth of transac-
tions. The CWSTM design provides transactional memory with eager updates, eager conflict detec-
tion, strong atomicity, and lazy cleanup on aborts. In the restricted case when no transactions abort
and there are no concurrent readers, CWSTM executes a transactional computation on P processors
also in time O(T}/P + PTy,). Although this bound holds only under rather optimistic assump-
tions, to our knowledge, this result is the first theoretical performance bound on a TM system that
supports transactions with nested parallelism which is independent of the maximum nesting depth
of transactions.

Transactional memory (TM) [119] represents a collection of hardware and software mechanisms
that help provide a transactional interface for accessing memory to programmers writing parallel
code. Recently, TM has been an active area of study; for example, researchers have proposed many
designs for transactional memory systems, with support for TM in hardware (e.g. [18, 115, 156]),
in software (e.g., {5, 118, 147]), or hybrids of hardware and software (e.g., [75, 135]). A typical
TM runtime system executes transactions optimistically, aborting and rolling back transactions that
“conflict” to guarantee that transactions appear to execute atomically.

Most work on transactional memory focuses exclusively on supporting transactions in programs
that use persistent threads (e.g., pthreads). TM systems for such an environment are designed as-
suming that transactions execute serially, since the overhead of creating or destroying a pthread
naturally discourages programmers from having nested parallelism inside a transaction. Further-
more, the special case of serial transactions greatly simplifies conflict detection for TM; typically,

43

PARALLELINCREMENT()

Il 0
2 in parallel

3 dor —x+1

4 dozx — x4+ 10

5 in parallel

6 doz «— x4+ 100
7 do z « x + 1000
8 printx

Figure 3-1: A simple fork-join program that does several parallel increment of a shared variable.
The in parallel keyword indicates that each of the following do blocks may execute in parallel; all
subsequent code (line 8) does not execute until both parallel do blocks (line 3 and lines 4-7) com-
plete. This program contains several races — assuming sequential consistency, valid outputs are = €
{1,11,101, 110,111, 1001, 1010, 1011,1101,1110,1111}.

x<0 xex+1 print x

x<—x+10 A _ (no instruction)

x<—x+1000

Figure 3-2: The series-parallel dag for the sample program given in Figure 3-1. Edges correspond to in-
structions in the program. Diamonds and squares correspond to the start and end, respectively, of parallel
constructs.

the TM runtime detects a conflict between two distinct active transactions if they both access the
same object £, at least one transaction tries to write to £, and both transactions are executed on differ-
ent threads. This last condition is relevant for TM systems that support nested transactions, where
transactions may contain other transactions. Conceptually, when transactions execute serially, two
active transactions executing on the same thread are allowed to access the same object because one
must be nested inside the other.

Another way to write parallel programs, however, is to use dynamic multithreaded languages
such as Cilk [54, 185] or NESL [53] or multithreaded libraries like Hood [56], as discussed in
Chapter 2. A natural question arises: how can transactions be added to a dynamic multithreaded
language such as Cilk?

To pose the problem more concretely, consider the series-parallel program shown in Figure 3-1,
which performs parallel increments to a shared variable. Figure 3-2 gives the corresponding series-
parallel dag for the program. One natural way to add transactions to a series-parallel program is by
wrapping segments of the program in atomic blocks, as illustrated by Figure 3-3. As shown, it is
easy to generate transactions (e.g., X3) with nested parallelism and nested transactions (e.g., X4).
How does a TM system execute the program in Figure 3-37

This chapter investigates adding transactions to a dynamic multithreaded language that gener-
ates only series-parallel programs. I focus on a provably efficient TM system that supports un-

44

XPARALLELINCREMENT()

1 atomic { > Transaction X

2 z+—0

3 in parallel

4 do atomic {r «— z + 1} > X,

5 do atomic { > X3

6 x+—x+10

7 in parallel

8 doz «— z + 100

9 do atomic {z «— z + 1000} > Xy
10 } > End X3
11 } > End X,
12 printzx

Figure 3-3: The program from Figure 3-1 with the addition of some transactions, denoted by atomic{.}
blocks. The triangle denotes a comment. Since atomic blocks are not placed around all increments, this
program still permits multiple outputs — valid outputs are 111 and 1111. The (symmetric) 1011 is excluded
due to strong atomicity.

bounded nesting and parallelism. That is, we want a TM system with a bound on a program’s
completion time that is independent of the maximum nesting depth of transactions. It turns out that
TMs that perform work on every transaction commit proportional to the size of the transaction’s
“readset” or “writeset” cannot support an unbounded nesting depth efficiently. Generally, TM with
lazy conflict detection requires work proportional to the size of the transactions readset, and TM
with lazy updates require work proportional to the size of the transaction’s writeset. Thus, we focus
on TM with eager conflict detection and eager updates, since both require only a constant amount
of work on every commit.

Contributions

A key component of a TM system with nested parallelism is the conflict-detection scheme. I de-
scribe the semantics for TM with eager conflict detection for series-parallel computations with trans-
actions. I present XConflict, a data structure that a software TM system can use to query for conflicts
when implementing these semantics. For Cilk-like work-stealing schedulers, the XConflict answers
concurrent queries in O(1) time and can be maintained efficiently. In particular, consider a program
with T} work and a span of T, Then, the running time on P processors of the program augmented
with XConflict is only O(T} /P + PT,). In comparison, with high probability, Cilk executes the
program without XConflict in the asymptotically optimal time O(T /P + To). These two bounds
imply that maintaining the XConflict data structure does not asymptotically increase the running
time of the program, compared to Cilk, when /11 /T > P.

This chapter also describe CWSTM, a design for a software TM system with eager updates that
uses the XConflict data structure. CWSTM provides strong atomicity and supports lazy cleanup on
aborts (i.e., when a transaction X aborts, other transactions can help roll back the objects modified
by X). The XConflict bounds translate to CWSTM in a restricted case when there are no concurrent
readers (all memory accesses are treated as writes) and there are no transaction abort. If the underly-
ing transaction-free program has 77 work and T, span, then the CWSTM executes the transactional

45

program in time O(7T1/P + PT,) when run on P processors. At first glance, these bounds might
seem uninteresting due to the restrictions. It is difficult, however, for any TM system to provide any
nontrivial bounds on completion time in the presence of aborts, since the system might redo an arbi-
trary amount of work. Moreover, TM with eager conflict detection that allows more than a constant
number of shared readers to an object can potentially lead to memory contention; thus, even if there
are no conflicts on that object, it seems difficult to provide efficient worst-case theoretical bounds.

XConflict and CWSTM represent joint work with Kunal Agrawal and Jim Sukha, previously
appearing in [8]. :

The remainder of this chapter is organized as follows. We use a computation tree to model
a computation with nested parallel transactions; Section 3.1 describes the computation tree and
how the CWSTM runtime system maintains this computation tree online. Section 3.2 defines our
CWSTM semantics. I show in Section 3.3 that a naive conflict-detection algorithm has poor worst-
case performance. Section 3.4 describes the high-level design of CWSTM and its use of XConflict
for conflict-detection. Section 3.5 gives an overview of the XConflict algorithm. Sections 3.6-3.9
provide details on data structures used by XConflict. Finally, Section 3.10 claims that XConflict,
and hence CWSTM, is efficient for programs that experience no conflicts or contention.

3.1 CWSTM framework

This section presents the computation-tree framework that we use to model CWSTM program exe-
cutions. A program execution is modeled as an ordered tree, called the computation tree (as in [9]).
This computation tree is similar to the SP parse tree of Chapter 2, except there are some modifica-
tions to accommodate transactions. The computation tree is not given a priori (i.e., from a static
analysis of the program); rather, it unfolds dynamically as the program executes. Moreover, nonde-
terminism in the program may result in different computation trees. Constructing the computation
tree on the fly as the program executes is not difficult and thus not described in full in this thesis. A
partial program execution corresponds to partial traversal of the computation tree.

A computation tree has two types of nodes: leaf nodes correspond to single memory operations,
while internal nodes model the nested parallel control structure of the program as well as the struc-
ture of nested transactions. As in the SP parse tree (Chapter 2), an internal node is either an S-node
or a P-node. An S-node denotes series composition of the subtrees (i.e., the subtrees must execute
in left-to-right order), whereas a P-node denotes parallel composition. Transactions are specified
in a computation tree by marking a subset of S-nodes as transactions. A computation-tree node B
is a descendant of a particular transaction node X if and only if B is contained in X’s transac-
tion. Consequently, a transaction Y is nested inside a transaction X if X is an ancestor of Y in the
computation tree. We consider only computations that have closed-nested transactions.

In our canonical computation tree, all P-nodes have exactly 2 nontransactional S-nodes as chil-
dren, while S-nodes can have an arbitrary number of children. In contrast, for the SP parse tree in
Chapter 2, all nonleaf nodes have 2 children. This modification allows for simpler presentation in
this chapter. In addition, we require that no nontransactional S-node has a child nontransactional
S-node. Thus, it follows that all nontransactional S-nodes are children of P-nodes (or the root of
the tree). For convenience, we treat the root of the computation tree as both a transactional and a
nontransactional S-node. ‘

We define several notations for the computation tree C. Let root(C) denote the tree’s root node.
For any node B # root(C), parent[B] denotes B’s parent in C. If B is an internal node of C, then
children(B) is the ordered set of B’s children, ances(B) is the set of B’s ancestors and desc(B)
is B’s descendants. In this chapter, whenever we refer to the set of ancestors or descendants of a

46

Border (status)

l:l Xaction

Active
O Nontransactional S-node

Complete
O P-node

D Active or complete
O Trace N
* Waiting

Figure 3-4: A legend for computation-tree figures.

node B, we include B in this set.

For any node B # root(C), we define the transactional parent xparent[B] as Z = parent|B]
if Z is a transaction or root(C), and as xparent[Z] otherwise. Similarly, we define nontransac-
tional S-node parent nsParent[B] as Z = parent[B] if Z is a nontransactional S-node or root(C),
or nsParent|Z] otherwise.

At any point during the computation-tree traversal, each node B in the computation tree has a
status, denoted by status|B]. The status can be one of PENDING, PENDING.ABORT, COMMITTED,
or ABORTED. A leaf is complete if the corresponding operation has been executed. An internal node
can complete only if all nodes in its subtree are complete. Thus, a complete node corresponds to the
root of a subtree that will not unfold further, and hence a node is complete if and only if its status is
COMMITTED or ABORTED. A node is active (having status PENDING or PENDING_ABORT) if it
has any unexecuted descendants. Once a node is complete, it can never become active again.

Any execution of the computation tree has the invariant that at any time, the set of active nodes
in the computation tree also forms a tree, with the leaves of this active tree being the set of ready
nodes. Only a node that is ready can be traversed to “discover” a new child node. (Discovering a
new child node corresponds to executing an instruction in the program: a read or write creates new
leaf below the current S-node, a transactional begin creates a new transactional S-node, and a fork
statement creates a new P-node along with its two S-node children.) When a ready transactional
S-node completes, its parent becomes ready. When a ready nontransactional S-node Z completes,
if Z’s sibling nontransactional S-node is already complete, then Z’s parent (which is a P-node)
completes, and Z’s grandparent becomes ready.

Figure 3-5 shows the structure of the computation tree after an execution of the code from
Figure 3-1 in which transaction X7 aborts once. If other aborts (and retries) occur, the computation
tree would have additional subtrees.

3.2 CWSTM semantics

This section describes CWSTM semantics, a semantics for a generic transactional memory system
with nested parallel transactions and eager conflict detection. I describe these semantics opera-
tionally, in terms of a “readset” and “writeset” for each transaction. In particular, I define conflicts
and describe transaction commits and aborts abstractly using readsets and writesets. Later, in Sec-
tion 3.3, I give a simple design for a TM that provides these semantics. In Section 3.4, we improve
the simple TM and present the the CWSTM design.

At any point during the program execution, the readset of a transaction X is the set of objects
£ that X has “accessed”. Similarly, the writeset is a set of objects £ that X has written to. Opera-
tionally, readsets and writesets change as follows. A transaction begins with an empty readset and
empty writeset. Whenever a successful read of ¢; occurs in a memory-operation (leaf) node u,

47

vp Uy V4 Uy vy ug Ve ug vy Uy Vg up

' G0 e

SR

xe0 el Fert ey

Figure 3-5: A computation tree for an execution of the program given by Figure 3-1, in which transaction
X, aborted once and was retried as the transaction XJ. The root X does not correspond to any transaction in
the program — it is just the S-node root of the tree. Each increment to = on line j of the program decomposes
into two atomic memory operations: a read u;, and a write v;. The corresponding code is shown in a
gray oval under the accesses.

£7 is added to xparent|[u]’s readset. Similarly, whenever a successful write of {3 occurs in a
memory-operation node u, £5 is added to xparent|u|’s readset and writeset. A read orawrite
to £ by an operation u “observes” the value associated with the write stored in the writeset of Z,
where Z is the nearest transactional ancestor of « that contains £ in its writeset. For consistency,
the writeset of the computation-tree’s root contains all objects. When a transaction X commits, its
readset and writeset are merged into xparent[X]’s readset and writeset, respectively.

A transactional memory with eager conflict detection must test for conflict before perform-
ing each read or write. An access is unsuccessful if it generates a transactional conflict. TM
systems with serial, closed-nested transactions report conflicts when two active transactions on dif-
ferent threads are accessing the same object £, and one of those accesses is a write. Thus, only a
single active transaction is allowed to contain £ in its writeset at one time. For CWSTM seman-
tics, we generalize this definition of conflict in a straightforward manner. At any point in time, let
readers(£) and writers(£) be the sets of active transactions that have object £ in their readsets or
writesets, respectively. Then, we define conflicts as follows:

Definition 3.1 At any point in time, a memory operation v generates a conflict if
1. v reads object ¢, and 3X € writers(¥) such that X ¢ ances(v), or
2. v writes to object £, and 3X € readers(£) such that X ¢ ances(v).

If there is such a transaction X, then we say that v conflicts with X. If v belongs to the transaction
X', then we say that X and X' conflict with each other.

If a memory operation v would cause a conflict between X = xparent|v] and another trans-
action X', then v triggers an abort of either X or X’ (or both). Say X is aborted. An abort of
a transaction X changes status[X] from PENDING to PENDING_ABORT, and also changes the

48

status of any PENDING (nested) transaction Y in the subtree of X to PENDING.ABORT. In gen-
eral, a PENDING_ABORT transaction X that is also ready can only complete by changing its status
to ABORTED. Conceptually, when a transaction X is ABORTED, CWSTM semantics discards X’s
writeset and readset. Since X is no longer active after this action occurs, the action also concep-
tually removes X from readers(¢) and writers(¥) for all objects £. Note that in CWSTM, if v
causes a conflict, and the runtime chooses to abort X’ # xparent[v], then the conflict is not fully
resolved until status|[X'] has changed to ABORTED.

Consider a computation subtree rooted at a transaction X with status[X] = PENDING. Since
we allow only closed-nested transactions, if every child of X has completed, CWSTM can commit
X, i.e., change X’s status from PENDING to COMMITTED, and merge X’s readset and writeset
into those of xparent{X].

Code example

We can now discuss how the CWSTM semantics constrain the possible outputs of the program in
Figure 3-3. Since parallelism is allowed in transactions, we must consider the scoping of atomicity.
In particular, the z «— z + 1 in line 4 and the code block in lines 6-9 must appear as though
one executes entirely before the other. If the atomic statements in lines 4 and 5 were removed,
then these two blocks could interleave arbitrarily, even though the entire procedure is protected by
an atomic statement in line 1. Basically, the atomicity applies only when comparing two blocks
of code belonging to different transactions (protected by different atomic statements), not parallel
blocks within the same transaction (protected by the same atomic statement).

Conflict as stated in Definition 3.1 naturally enforces strong atomicity [57]. Strong atomicity
implies that although line 8 is not atomic, it cannot perform its write between line 9’s read and
write. In terms of the computation tree in Figure 3-5, after ug performs a read of z, it adds z to the
readset of X4; thus, after ug occurs but before X4 commits, if vg tries to write to z, it will cause a
conflict with X4. We can, however, have line 8 read z, line 9 read and write z and commit, and then
line 8 write z. This interleaving can occur because when ug happens, it adds x to the readset of X3,
and ug and vg can subsequently happen because they are both descendants of X3 in the computation
tree. This behavior means that the increment of 1000 can be “lost” (by being overwritten) but the
increment of 100 cannot. Another way of describing strong atomicity is that each memory operation
is viewed as a transaction.

Semantic guarantees

The CWSTM semantics maintains the invariant that a program execution is always conflict-free,
according to Definition 3.1. One can show that when transactions have nested parallel transactions,
TM with eager conflict detection according to Definition 3.1 satisfies the transactional-memory
model of prefix race-freedom defined in [9].1 As shown in [9], prefix race-freedom and serial-
izability are equivalent if one can safely “ignore” the effects aborted transactions. Note that this
equivalence may not hold in TM systems with explicit retry constructs that are visible to the
programmer.
Definition 3.1 directly implies the following lemma about a conflict-free execution.

Lemma 3.2 For a conflict-free execution, the following invariants hold for any object ¢:

The proof is a special case of the proof for the operational model described in [9], without any open-nested transac-
tions.

49

1. All transactions X € writers({) fall along a single root-to-leaf path in C. There is
thus a unique transaction Y € writers({), denoted by lowest(writers(f)), such that
writers({) C ances(Y).

2. All transactions X € readers(l) are either along the root-to-leaf path induced by the
writers or are descendants of the lowest(writers(f)). O

We use Lemma 3.2 to argue that one can check for conflicts for a memory operation u by looking
at one writer and only a small number of readers. Since all the transactions fall on a single root-to-
leaf path, by Lemma 3.2, Invariant 1, the transaction lowest(writers({)) belongs to writers(¥)
and is a descendant of all transactions in writers(¢). Similarly, let Q = lastReaders(f) C
desc(lowest(writers(£))) denote the set of readers implied by Invariant 2. If a memory operation
u tries to read £, abstractly, there is no conflict exactly if and only if lowest(writers(¢)) is an
ancestor of u. Similarly, when u tries to write to £, by Invariant 2, there is no conflict if for all
Z € lastReaders({), Z is an ancestor of .

3.3 A naive TM

The CWSTM semantics described in Section 3.2 suggest a design for a TM system that supports
transactions with nested parallelism. In particular, Lemma 3.2 suggests that for each object 4, the
TM can maintain an active writing transaction lowest(writers(f)) and some active reading trans-
actions lastReaders(/). This scheme allows transactions accessing £ to test for conflicts against
these transactions. This section focuses on a straightforward data structure, called an “access stack,”
used to maintain these values. I show that an access stack yields a TM with poor worst-case perfor-
mance, even assuming the rest of the TM system incurs no overhead. The CWSTM design uses a
lazy variant of the access stack, described in Section 3.4, that has much better performance.

The access stack for an object £ is a stack containing the active transactions that have written
to £ and sets of active transactions that have read from ¢. The order of transactions on the stack
is consistent with the ancestry of transactions in the computation tree. The writing transaction
lowest(writers({)) is either on top (first item to pop) of the stack, or is the next element on the
stack. If the writer is not on the top of the stack, then lastReaders(¥) is. No two consecutive
elements are sets of readers.

The access stack is maintained as follows, locking the relevant stack on all memory access to
guarantee atomicity. Consider (a memory operation whose transactional parent is) a transaction X
that successfully reads ¢. If the top of the stack contains a set of readers, then X is added to that set,
assuming it is not already there. If the top of the stack is a writer other than X, then { X} is added
to the top of the stack. Similarly, if X successfully writes /, then X is pushed onto the top of the
stack if it not already there.

Whenever a transaction X commits, for each ¢ in X’s readset, X is removed from the top of
£’s access stack and replaced with xparent[X] (in a fashion that ensures there are no duplicated
transactions). This action mimics the commit semantics from Section 3.2: when a transaction X
commits, the objects in its readset and writeset are moved to xparent[X]’s readset and writeset,
respectively. If instead X aborts, then X is popped from each relevant object’s access stack. To
facilitate rollback on aborts, every access-stack entry corresponding to a write stores the old value
before the write.?

Maintaining the access stack has poor worst-case performance because the work required on the
commit of transaction X is proportional to the size X’s readset. If the original program (without

2This value can either be stored in the stack itself, or in a log per transaction.

50

transactions) had work 77, then this implementation might require work Q(dT}), where d is the
maximum nesting depth of transactions. In particular, consider the following code snippet:

void f(int i) {
if (i >= 1) { atomic { x[i]++; £(i-1); } }

}

A call of £ (d) generates a serial chain of nested transactions, each incrementing a different place
in the array x. When the transaction at nesting depth j commits, it updates d — j access stacks
for a total of ©(d?) access-stack updates. The work of the original program (without transactions),
however, is only ©(d).

In general, this asymptotic blowup can occur if a TM system with nested transactions must
perform work proportional to the size of a transaction’s readset or writeset on every commit. For
example, a TM system that validates every transaction due to lazy conflict detection for reads ex-
hibits this problem. Similarly, a TM system that copies data on commit due to lazy object updates
also has this issue.

3.4 CWSTM overview

This section describes our CWSTM design for a transactional-memory system with nested parallel
transactions and eager updates and eager conflict detection. We first describe how CWSTM updates
the computation-tree-node statuses on commits and aborts. We then give an overview of the conflict-
detection mechanism, deferring details of the XConflict data structure to later sections. The conflict-
detection mechanism includes a “lazy access stack,” improving on the shortcoming of the access
stack from Section 3.3. Finally, we describe properties of the Cilk-like work-stealing scheduler
that CWSTM uses. The XConflict data structure requires such a scheduler for its performance and
correctness.

CWSTM explicitly builds the internal nodes of the computation tree (i.e., leaf nodes for memory
operations are omitted). Each node maintains a status field which in most cases, explicitly represents
the node’s status (PENDING.ABORT, PENDING, COMMITTED, or ABORTED), and changes in a
straightforward fashion. For example, when a transaction X commits, CWSTM atomically changes
status[X] from PENDING to COMMITTED.

Since a transaction may signal an abort of a transaction running on a (possibly different) pro-
cessor whose descendants have not yet completed, aborting transactions is more involved. When
an active transaction X aborts itself (possibly because of a conflict), it simply atomically updates
status[X] <« ABORTED. We refer to this type of update as an xabort. Alternatively, suppose
a processor p; wishes to abort X even though p; is not currently executing X. First, p; atomi-
cally changes status[X] from PENDING to PENDING_ABORT. Then p; walks X’s active subtree,
changing status[Y] « PENDING_ABORT atomically for each active Y € desc(X). Notice that
p; never changes any status to ABORTED— only the processor running a transaction Y is allowed to
perform that update. When X “discovers” that its status has changed to PENDING_ABORT, it has
no active descendants (otherwise, X cannot be ready, and hence X cannot be executing). Then, X
simply performs an xabort on itself.

For reasons specific to XConflict, the data structure the CWSTM design uses for conflict de-
tection, during an abort of X, some of X’s COMMITTED descendants Y also have their status
field changed to ABORTED. Our conflict-detection algorithm uses these updates to more quickly
determine that a memory operation does not conflict with Y, since Y has an ABORTED ancestor X.
Section 3.8 describes when these updates occur.

51

XCONFLICT-ORACLE(X, u)

> For any node X and active memory operation u
1 if 37 € ances(X) such that status[Z] = ABORTED
2 then return “no conflict: X aborted”

3 Y « closest active transactional ancestor of X

4 ifY € ances(u)

5 then return “no conflict: X committed to «’s ancestor”

6 else pick a transaction B in (ances(Y') — ances(lca(Y, u)))
7 return “conflict with B”

Figure 3-6: Pseudocode for a conflict-detection query suggested by Definition 3.3. Many subroutine (e.g.,
line 3) details are omitted (and in fact do not have efficient implementations). The lca function returns the -
least common ancestor of two nodes in the computation tree.

In CWSTM, the rollback of objects on abort occur lazily, and thus is decoupled from an xabort
operation. Once the status of a transaction X changes to ABORTED, other transactions that try to
access an object modified by X help with cleanup for that object.

Conflict detection and the lazy access stack

'We now discuss conflict detection. The key observation that allows us to avoid explicit maintenance
of active readers and writers (or transaction readsets and writesets) is the following alternate conflict
definition.

Definition 3.3 Consider a (possibly inactive) transaction X that has written to £ and a new memory
operation v that reads from or writes to £. Then v conflicts with X if

1. not transactional ancestor X has aborted, and
2. X'’s nearest active transactional ancestor is not an ancestor of v.

The case when X has read from £ and v writes to £ is analogous.

This definition is equivalent to Definition 3.1 because X’s nearest active transactional ancestor
logically belongs to writers({) if X doesn’t have an aborted ancestor.

Definition 3.3 suggests a conflict-detection algorithm that does not require explicitly maintain-
ing lowest(writers(?)) and the normal access stack. In particular, let X be the last node that has
successfully written to £. Then, when u accesses /, test for conflict by finding X’s nearest active
transactional ancestor Y and determine whether Y is an ancestor of u. Figure 3-6 gives pseudocode
for this test. Note that CWSTM does not actually implement this query as given — instead, it uses
an equivalent, but more efficient query, described in Section 3.5.

To maintain the most recent successful write (and reads), facilitating the necessary conflict
queries, CWSTM uses a lazy access stack. The structure of the lazy access stack is somewhat
different from the simple access stack given in Section 3.3. An object £’s lazy stack stores (possibly
complete) transactions that have written to ¢ and sets of transactions that have read from ¢, but now
these stack entries are ordered chronologically by access. The top of the stack holds the last writer
or the last readers. We have the invariant that if a transaction X on the stack has aborted, then all
transactions located above X on the stack (later chronologically) also have aborted ancestors, and

52

thus represent deprecated values. The main difference in maintenance is that the lazy access stack is
not updated on transactional commit (thus ignoring the merge of a transaction’s readset and writeset
into its parent’s). On memory operations, new transactions are added to the access stack in the same
way as described in Section 3.3.

Figure 3-7 gives pseudocode for an instrumentation of each memory access, assuming for sim-
plicity that all memory accesses behave as write instructions.’ Incorporating readers into the
access stacks is more complicated, but conceptually similar. If a memory access u does not belong
to an aborting transaction, then it is allowed to proceed. First, we test for conflict with the last
writer in lines 4-5. If the last writer has aborted (or has an aborted ancestor), handled in lines 6-9,
then the access stack should be cleaned up by calling CLEANUP. (This auxiliary procedure, given
in Figure 3-8, rolls back the value of the topmost aborted transaction on £’s access stack.) Since
there is no new conflict, after CLEANUP, the access should be retried. If, on the other hand, there
is a conflict between u and an active transaction (lines 10-16), then either xparent|u] must abort
or the conflicting transaction (B) must abort. Finally, if there are no conflicts, then the access is
successful. The access stack is updated as necessary (lines 18-20), and the access is performed.

Note that while u is running the ACCESS method, concurrent transactions (that access £) can
continue to commit or abort. The commit or abort of such a transaction can eliminate a conflict with
u, but never create a new conflict with u. Thus, concurrent changes may introduce spurious aborts,
but do not affect correctness.

The CWSTM scheduler

As with SP-ordered-bags in Chapter 2, XConflict relies on an efficient Cilk-like work-stealing
scheduler of Section 2.3 for efficiency and correctness.

3.5 CWSTM conflict detection

This section describes the high-level XConflict scheme for conflict detection in CWSTM. As the
computation tree dynamically unfolds during an execution, our algorithm dynamically divides the
computation tree into “traces,” where each trace consists of memory operations (and internal nodes)
that execute on the same processor. These traces are slightly simpler than those introduced in Sec-
tion 2.5, but the main idea is the same. Our algorithm uses several data structures that organize
either traces (analogous to the global tier for SP-ordered-bags in Section 2.5), or nodes and transac-
tions contained in a single trace (analogous to the local tier of SP-ordered bags in Section 2.6). This
section describes traces and gives a high-level algorithm for conflict detection.

By dividing the computation tree into traces, we reduce the cost of locking on shared data
structures. Updates and queries on a data structure whose elements belong to a single trace are also
performed without locks because these updates are performed by a single processor. Data structures
whose elements are traces also support queries in constant time without locks. These data structures
are, however, shared among all processors, and therefore require a global lock on updates. Since the
traces are created only on steals, however, we can bound the number of traces by O(PTw,) — the
number of steals performed by the Cilk-like work-stealing runtime system. Therefore, the number
of updates on these data structure can be bounded similarly.

The technique of splitting the computation into traces and having two types of data structures
— global data structures whose elements are traces and local data structures whose elements belong
to a single trace — is similar to the one used for SP-maintenance in Chapter 2. Although the trace

*It is possible to reduce locking on the access stack, but I do not describe that optimization in this chapter.

53

ACCESS(u, £)
1 Z < xparent[u]
2 if status[Z] = PENDING_ABORT return XABORT
> Otherwise Z is active
3 accessStack(¥).LOCK()

> Set X to be the last writer.
4 X « accessStack(¥).TOP()

5 result «— XCONFLICT-ORACLE(X, u)

6 if result is “no conflict: X aborted”

7 then accessStack(£).UNLOCK()

8 CLEANUP(Y) > Rollback some values
9 return RETRY > The access should be retried

10 if result indicates a conflict with transaction B
11 then if choose to abort self

12 then accessStack(£).UNLOCK()
13 return XABORT

14 else accessStack(f).UNLOCK()
15 signal an abort of B

16 return RETRY

> Otherwise, there is no conflict: X is an ancestor of Z

17 fZ+#X B> Z’s first access to £
18 then > Log the access

19 LOGVALUE(Z, £)

20 accessStack(f).PUSH(Z)

> Actually perform the write operation
21 Perform the write
22 accessStack(#).UNLOCK()
23 return SUCCESS

Figure 3-7: Pseudocode instrumenting an access by u to an object ¢, assuming that all accesses are writes.
ACCESS(u, £) returns XABORT if Z should abort, RETRY if the access should be retried, or SUCCESS if the
memory operation succeeded.

54

CLEANUP(?) 4

1 accessStack({).LOCK()

2 X « accessStack({).TOP()

3 if3Z € ances(X) such that status[Z] = ABORTED

4 then RESTOREVALUE(X, £) > Restore ¢ from X’s log
5 accessStack(f).Pop()

6 accessStack(£).UNLOCK()

Figure 3-8: Code for cleaning up an aborted transaction from the top of accessStack(¢), assuming all
accesses are writes. If the last writer has an aborted ancestor, it should be rolled back.

structure for conflict detection is simpler, the other data structures used for conflict detection are
more complicated. The analysis technique, however, is virtually identical, and hence much of the
analysis is not repeated here.

Trace definition and properties

XConflict assigns computation-tree nodes to fraces in the essentially the same fashion as the SP-
ordered-bags data structure described in Chapter 2. I briefly describe the structure of traces here.
Since the computation tree has a slightly different canonical form from the canonical Cilk parse tree
used for SP-ordered-bags, XConflict simplifies the trace structure slightly by merging some traces
together.

Formally, each trace U is a disjoint subset of nodes of the (a posteriori) computation tree. We
let Q denote the set of all traces. Q partitions the nodes of the computation tree C. Initially, the
entire computation belongs to a single trace. As the program executes, traces dynamically split into
multiple traces whenever steals occur.

A trace itself executes on a single processor in a depth-first manner. Whenever a steal occurs
and a processor steals the right subtree of a P-node P € U, the trace U splits into three traces Uy,
Uy, and Us (ie., @ — QU {Up, U1, Uz} — {U}). Each of the left and right subtrees of P become
traces U and Uy, respectively. The trace Uy consists of those nodes remaining after P’s subtrees
are removed from U. Notice that although the processor performing the steal begins work on only
the right subtree of P, both subtrees become new traces. Figure 3-9 gives an example of traces
resulting from a steal. The left and right children of the highest uncompleted P-node P; (both these
nodes are nontransactional S-nodes in our canonical tree) are the roots of two new traces, U; and
U,.

Traces in CWSTM satisfy the following properties.

Property 3.4 Everytrace U € Q has awell-defined head nontransactional S-node S = head[U] €
U such that for all nodes B € U, we have S € ances(B).

For atrace U € Q, we use xparent[U] as a shorthand for xparent head[U]]. We similarly define
nsParent|[U].

Property 3.5 The computation-tree nodes of a trace U € Q form a tree rooted at S = head[U].

Property 3.6 Trace boundaries occur at P-nodes; either both children of the P-node and the node
itself belong to different traces, or all three nodes belong to the same trace. All children of an
S-node, however, belong to the same trace.

55

a)

Figure 3-9: Traces of a computation tree (a) before and (b) after a steal action. Before the steal, only
one processor is executing the subtree, but Sy and Sg are ready. After the steal, the subtree rooted at the
highest ready S-node (S2) is executed by the thief. The subtree rooted at Sy, on the other hand, is still owned
and executed by the victim processor.

Property 3.7 Trace boundaries occur at “highest” P-nodes. That is, suppose a P-node P has a
stolen child (i.e., P and its children belong to different traces). Consider all ancestor P-nodes P’ of
P such that P is in the left subtree of P'. Then P’ must have a stolen child (i.e., P and ancestor P’
belong to different traces).

The last property follows from the Cilk-like work stealing and Property 2.9.

The partition Q of nodes in the computation tree C induces a tree of traces J(C) as follows. For
any traces U, U’ € Q, there is an edge (U,U’) € J(C) if and only if parent[head[U’]] € U.* The
properties of traces and the fact that traces partition C into disjoint subtrees together imply that J(C)
is also a tree.

We say that a trace U is active if and only if head[U] is active. The following lemma states that
if a descendant trace U’ is active, then U’ is a descendant of all active nodes in U. The proof relies
on the fact that traces execute serially in a depth-first (or equivalently, left-to-right) manner.

Lemma 3.8 Consider active traces U, U’ € Q, with U # U’. Let D € U’ be an active node, and
suppose D € desc(head[U]) (i.e., U’ is a descendant trace of U). Then for any active node B € U,
we have B € ances(D).

Proof. Since traces execute on a single processor in a depth-first manner, only a single head-
to-leaf path of each trace can be active. Thus, if a descendant trace U’ is active, it must be the
descendant of some node along that path. In particular, we claim that U’ is a descendant of the
leaf, and hence it is a descendant of all active nodes as the lemma states. This claim follows from
Property 3.6, because both children of the active P-node on the trace boundary must belong to
different traces. O

“The function parent|[] refers to the parent in the computation tree C, not in the trace tree J(C).

56

XCONFLICT(3, u)

> For any computation-tree node B and any
active memory-operation u

> Test for simple base cases

if trace(B) = trace(u)
then return “no conflict”

if some ancestor transaction of B is aborted
then return “no conflict: B aborted”

BN -

5 Let X be the nearest transactional ancestor of B
belonging to an active trace.
6 if X =null > committed at top level
7 then return “no conflict: B committed to root”
8 Ux « trace(X)

9 LetY be the highest active transaction in Ux

10 ifY # null and Y is an ancestor of X

11 then if Uy is an ancestor of u
12 then return “no conflict: B committed
to u’s ancestor”’
13 else return “conflict with Y’
14 else Z — xparent[Ux]
15 if Z = null or trace(Z) is an ancestor of u
16 then return “no conflict: B committed
to u’s ancestor”’
17 else return “conflict with Z2”

Figure 3-10: Pseudocode for the XConflict algorithm.

X Conflict algorithm

Recall that CWSTM instruments memory accesses, testing for conflicts on each memory access
by performing queries of XConflict data structures. In particular, XConflict must test whether a
recorded access by node B conflicts with the current access by node u. Suppose that B does not
have an aborted ancestor. Then recall Definition 3.3 states that a conflict occurs if only if the nearest
uncommitted transactional ancestor of B is not an ancestor of u.

A straightforward algorithm (given in Figure 3-6) for conflict detection finds the nearest uncom-
mitted transactional ancestor of B and determines whether this node is an ancestor of u. Maintaining
such a data structure subject to parallel updates is costly (in terms of locking overheads).

XConflict performs a slightly simpler query that takes advantages of traces. XConflict does not
explicitly find the nearest uncommitted transactional ancestor of B; it does, however, still determine
whether that transaction is an ancestor of u. In particular, let Z be the nearest uncommitted trans-
actional ancestor of B, and let Uz be the trace that contains Z. Then XConflict finds Uz (without
necessarily finding Z). Testing whether U is an ancestor of u is sufficient to determine whether

57

Edge shape Edge svle

. . No traces on path
i No active xaction on path l o frac P

]
¥ Active traces only
Active xactions on path

n
W Complete traces only

Figure 3-11: The definition of arrows used to represent paths in Figures 3-12, 3-13 and 3-14.

a) [Ux b) o |Ux
- K
0 y
o U

Figure 3-12: The three possible scenarios in which X is the nearest transactional ancestor of B that belongs
to an active trace. Arrows represent paths between nodes (i.e., many nodes are omitted): see Figures 3-4
and 3-11 for definitions. In both (a) and (b), B belongs to an active trace. In (a), xparent [B] belongs to the
same active trace as B. In (b), xparent[B] belongs to an ancestor trace of trace(B). In (c), B belongs to a
complete trace, U is the highest completed ancestor trace of B, and X is the xparent|U].

7 is an ancestor of u. Note that XConflict does not lock on any queries. Many of the subroutines
(described in later sections) need only perform simple ABA tests to see if anything changed between
the start and end of the query.

The XCONFLICT algorithm is given by pseudocode in Figure 3-10. Lines 1-4 handle the simple
base cases. If B and u belong to the same trace, they are executed by a single processor, so there is
no conflict. If B is aborted, there is also no conflict.

Suppose B is not aborted and that B and u belong to different traces. XCONFLICT first finds
X, the nearest transactional ancestor of A that belongs to an active trace, in line 5. The possible
locations of X in the computation tree are shown in Figure 3-12. Let Ux = trace(X). Notice
that Uy is active, but X may be active or inactive. For cases (a) or (b), we find X with a simple
lookup of xparent[B]. Case (c) involves first finding U, the highest completed ancestor trace of
trace(B), then performing a simple lookup of xparent[U]. Section 3.8 describes how to find the
highest completed ancestor trace.

Line 9 finds Y, the highest active transaction in Ux. If Y exists and is an ancestor of X, as
shown in the left of Figure 3-13, then XCONFLICT is in the case given by lines 11-13. If Ux isan
ancestor of u, we conclude that A has committed to an ancestor of u. Figure 3-13 (a) and (b) show
the possible scenarios where Ux is an ancestor of u: either X is an ancestor u, or X has committed
to some transaction Z that is an ancestor of u.

Suppose instead that Y is not an ancestor of X (or that Y does not exist), as shown in the left
of Figure 3-14. Then XCONFLICT follows the case given in lines 15-17. Let Z be the transactional
parent of Ux. Since X has no active transactional ancestor in Uk, it follows that X has committed

58

ST
UX
X
A
’
,

Figure 3-13: The possible scenarios in which the highest active transaction Y in Ux is an ancestor of X, and
Uy is an ancestor of (i.e., line 11 of Figure 3-10 returns true). Arrows represent paths between nodes (i.e.,
many nodes are omitted): see Figures 3-4 and 3-11 for definitions. The block arrow shows implication from
the left side to either (a) or (b).

Figure 3-14: The scenario in which the highest active transaction Y in Ux is not an ancestor of X, and
Z = xparent[Uy] is an ancestor of u (i.e., line 15 of Figure 3-10 returns true). The block arrow shows
implication from the left side to the situation on the right.

59

to Z. Thus, if trace(Z) is an ancestor of u, we conclude that A has committed to an ancestor of v,
as shown in Figure 3-14.

Section 3.6 describes how to find the trace containing a particular computation-tree node (i.e.,
computing trace(B)). Section 3.7 describes how to maintain the highest active transaction of any
trace (used in line 9). Section 3.8 describes how to find the highest completed ancestor trace of a
trace (used for line 5), or find an aborted ancestor trace (line 3). Computing the transactional parent
of any node in the computation tree (xparent[B]) is trivial. Section 3.9 describes a data structure
for performing ancestor queries within a trace (line 10), and a data structure for performing ancestor
queries between traces (lines 11 and 15).

The following theorem states that XConflict is correct.

Theorem 3.9 Let B be a node in the computation tree, and let u be a currently executing memory
access. Suppose that B does not have an aborted ancestor. Then XCONFLICT(B,u) reports a
conflict if and only if the nearest (deepest) active transactional ancestor of B is an ancestor of u.

Proof. If B has an aborted ancestor, then lines 1-2 of XCONFLICT properly returns no conflict.

Let Z be the nearest active transactional ancestor of B. Let Uz be the trace containing Z; since
Z is active, Uz is active. Lemma 3.8 states that Uz is an ancestor of u if and only if Z is an ancestor
of u. It remains to show that XConflict finds U.

XConflict first finds X, the nearest transactional ancestor of B belonging to an active trace
(line 5). The nearest active ancestor of B must be X or an ancestor of X. Let Ux be the trace
containing X, and let Y be the highest active transaction in Ux. If Y is an ancestor of X, then
either Z = X, or Z is an ancestor of X and a descendant of Y (as shown in Figure 3-13). Thus,
XConflict performs the correct test in lines 11-~13.

Suppose instead that Y, the highest active transaction in Uy, is not an ancestor of X. Then no
active transaction in Ux is an ancestor of X. Let Z be the transactional ancestor of Ux. Since Ux
is active, Z must be active. Thus, Z is the nearest uncommitted transactional ancestor of B, and
XConflict performs the correct test in lines 15-17.

In the above explanation, we assume that no XConflict data-structural changes occur concur-
rently with a query. The case of concurrent updates is a bit more complicated and omitted from
this proof. The main idea for proving correctness subject to concurrent updates is as follows. Even
when trace splits occur, if a conflict exists, XCONFLICT has pointers to traces that exhibit the con-
flict. Similarly, if XCONFLICT acquires pointers to a transaction (Y or Z) deemed to be active, that
transaction was active at the start of the XCONFLICT execution. O

Note that XCONFLICT may return some spurious conflicts if transactions complete during the
course of a query.

3.6 Trace maintenance

This section describes how to maintain trace membership for each node B in the computation tree,
subject to queries trace(B). The queries take O(1) time in the worst case. I give the main idea
of the scheme here for completeness, but I omit details as they are similar to the local-tier of SP-
ordered-bags in Section 2.6.

To support trace membership queries, XConflict organizes computation-tree nodes belonging to
a single trace as follows. Nodes are associated with their nearest nontransactional S-node ancestor.
These S-nodes are grouped into sets, called “trace bags.” Each bag b has a pointer to a trace, denoted
traceField[b], which must be maintained efficiently. A trace may contain many trace bags.

60

Bags are merged dynamically in a way similar to the SP-fast-bags (Section 2.2) in the local tier
of SP-ordered-bags using a particular disjoint-sets data structure {93, 101]. Since traces execute on
a single processor, we do not lock the data structure on update (UNION) operations. The difference
in the conflict-detection setting is that we only need to use only one kind of bag (instead of two in
SP-fast-bags).>

When steals occur, a global lock is acquired, and then a trace is split into multiple traces, as in
SP-ordered-bags. The difference in the conflict-detection setting is that traces split into three traces
(instead of five in SP-ordered-bags). As before, trace splits can be performed in O(1) worst-case
time by simply moving a constant number of bags. When the trace constant-time split completes
(including the split work in Sections 3.7 and 3.9), the global lock is released.

The other details are similar to SP-ordered-bags. To query what trace a node B belongs to,
we perform the operations traceField[FIND-BAG(nsParent[B])]. These queries (in particular,
FIND-BAG) take O(1) worst-case time as in SP-ordered-bags. Merging bags uses a UNION op-
eration and takes O(1) amortized time, but the same FAST-UNION optimization from Section 2.6
improves UNIONSs to worst-case O(1) time whenever the amortization might adversely increase the
program’s span.

Why do traces differ between SP-ordered-bags and XConflict? There are two primary differ-
ences: the number of subtraces resulting from a steal, and the use of S- and P-bags (in SP-ordered-
bags) vs. just one kind of bag (for XConflict). SP-ordered-bags splits a trace into more pieces
because of the use of the SP-order global tier and the type of query being performed. For XConflict,
the query among traces can be answered without splitting a trace into as many pieces. Similarly,
the use of S- and P-bags in SP-ordered-bags arises from the type of query being performed. In
particular, the bags are serving two purposes — they are maintaining trace-membership information
and answering local queries about series-parallel relationships. For conflict detection, the bags are
used only for trace-membership information. In fact, this difference can be removed in two ways.
We could modify XConflict to maintain S- and P-bags, but ignore the extra information provided
by the S and P labels. Alternatively, we could modify SP-ordered-bags to use a single bag as with
XConflict. The bags, however, would then only answer trace-membership queries; to query the
series-parallel relationships among strands within the same trace, SP-ordered-bags would then need
an additional local-tier data structure.

3.7 Highest active transaction

This section describes how XConflict finds the highest active transaction in a trace, used in line 9 of
Figure 3-10 in O(1) time.

For each nontransactional S-node .S, we have a field neztz[S] that stores a pointer to the nearest
active descendant transaction of S. Maintaining this field for all S-nodes is expensive, so instead
we maintain it only for some S-nodes as follows. Let S € U be an active nontransactional S-node
such that either S = head[U], or S is the left child of a P-node and S’s nearest S-node ancestor
(which is always a grandparent) is a transaction. Then neztz[S] is defined to be the nearest, active
descendant transaction of S in U. Otherwise, nextz[S] = null.

Finding the highest active transaction simply entails a call to neztz[head[U]], which takes O(1)
time. The complication is in maintaining the neztz values, especially when dynamic trace splits
occur.

5The use of one bag here is merely a simplification. Using the SP-fast-bags algorithm as is would suffice for correct-
ness. The only necessary modification is to make the obvious changes to deal with 3 subtraces instead of 5.

61

To maintain neztzr, we keep a stack of those S-nodes in U for which neztz is‘defined. Initially
push head[U] onto the stack. For each of the following scenarios, let S be the S-node on the top of
the stack. Whenever encountering a transactional S-node X, check neztz[S]. If neztz[S] = null,
then set neztz[S] «— X. Otherwise, do nothing. Whenever completing a transaction X, check
nextz[S]. If nextz[S] = X, then set nextz[S] « null. Otherwise, do nothing. Whenever
encountering a nontransactional S-node S, if neztz[S] = null, do nothing. Otherwise, push S’
onto the stack. Whenever completing a nontransactional S-node .S’, pop S’ from the stack if it is on
top of the stack.

Finally, XConflict maintains these neztz values even subject to trace splits. Consider a split
of trace U into three traces U;, Uy, and Us, rooted at S, 51, and S, respectively. Since CWSTM
steals from a highest P-node in the computation tree (Property 2.9), S; must be the highest, active,
nontransactional S-node descendant of S that is the left child of a P-node. Recall that the structure
of our computation tree is such that the only nontransactional S-nodes are children of P-nodes (or
the root). Thus, either S is the second S-node on U’s stack, or .57 is not on U’s stack.

If S; is on U’s stack, then neztz[S] is defined to be an ancestor of S, and we leave it as such.
Moreover, since S is on the stack, neztz[S] is defined appropriately. Simply split the stack into
two just below .S to adjust the data structure to the new traces. Suppose instead that S; is not on U’s
stack. Then the neztz[S] may be a descendant of .S (or it is undefined). Set nextz[S;] — nextz[S]
and neztz[S] < null. Then split the stack below .S, and prepend S at the top of its stack. The
necessary stack splitting takes O(1) worst-case time. This splitting occurs while holding the global
lock acquired during the steal (as in Section 3.6).

3.8 Supertraces

This section describes XConflict’s data structure to find the highest completed ancestor trace of a
given trace (used as a subprocedure for line 5 in Figure 3-10, illustrated by U in Figure 3-12 (¢)).
To facilitate these queries, XConflict groups traces together into “supertraces.” Grouping traces into
supertraces also facilitates faster aborts — when aborting a transaction in trace U, we need only
abort some of the supertrace children of U, not the entire subtree in C. This section also provides
some details on performing the abort.

All update operations on supertraces take place while holding the same global lock acquired
during the steal (as in Sections 3.6, 3.7, and 3.9). Unlike the data structures in Sections 3.6, 3.7,
and 3.9, the updates to supertraces do not occur when steals occur. To prove good performance
(in Section 3.10), we use the fact that the number of supertrace-update operations is asymptotically
identical to the number of steals. This amortization is similar to the global tier of SP-ordered-bags.

At any point during program execution, a completed trace U € Q belongs to a supertrace
K = strace(U) C Q. In particular, the traces in K form a tree rooted at some representative
trace rep[K], which is an ancestor of all traces in K. Our structure of supertraces is such that either
rep|[strace(U)] is the highest completed ancestor trace of U (i.e., as used by line 5 in Figure 3-10),
or U has an aborted ancestor. We prove this claim in Lemma 3.10 after describing how to maintain
supertraces.

Supertraces are implemented using a disjoint-sets data structure [71, Chapter 21]. In partic-
ular, we use Gabow and Tarjan’s data structure that supports MAKE-SET, FIND (implementing
strace(U)), and UNION operations, all in O(1) amortized time when unions are restricted to a tree
structure (as they are in our case).

When a trace U is created, we create an empty supertrace for U (so strace(U) = 0). When
the trace completes (i.e., at a join operation), we acquire the global lock. We then add U to U’s

62

supertrace (giving strace(U) = {U}). Next, we consider all child traces U’ of U (in the tree of
traces J(C)).® If head[U’] is ABORTED, then we skip U’. If head[U'] is COMMITTED, we merge the
two supertraces with UNION(strace(U), strace(U’)). Thus, for U’ (and all relevant descendants),
rep[strace(U’)] = rep|strace(U)] = U. Once these updates complete, the global lock is released.
Later, U’s supertrace may be merged with its parents, thereby updating rep[strace(U)).

A naive algorithm to abort a transaction X must walk the entire computation subtree rooted
at X, changing all of X’s COMMITTED descendants to ABORTED. Instead, we only walk the sub-
tree rooted at X in U, not C. Whenever hitting a trace boundary (i.e., B € U, D € children(B),
D € U’ # U), we set that root of the child trace (D) to be aborted and do not continue into its de-
scendants. Thus, we enforce all descendants of B have a supertrace with an aborted representative.

The following lemma states that either the representative of U’s supertrace is the highest com-
pleted ancestor trace of U, or U has an aborted ancestor.

Lemma 3.10 For any completed trace U € Q, let K = strace(U), and let U' = rep[K]. Exactly
one of the following cases holds.

1. Either head[U’] is ABORTED, or

2. head[U'] is COMMITTED, trace(parenthead[U’]]) is active, and there is no ABORTED
transaction between head[U] and head[U’].

Proof. We claim also that U’ is an ancestor of all traces in K. We prove this claim and the lemma
inductively on the (tree of traces) height of the highest committed ancestor of U.

For a base case, consider the moment when U completes. Then K contains only descendants of
U, and rep{K| = U satisfying our claims.

Suppose that U’s highest committed ancestor occurs at height A in the tree of traces, and assume
that U’ = rep|K]| satisfies the lemma. Let V' be height-(h + 1) ancestor of U. Then we show that
the lemma is maintained when V' commits. We divide the proof into the two cases.

Suppose head[U’] is ABORTED. Since U’ is an ancestor of all traces in K, the only time U’ can
be merged with another trace is when its parent completes. ABORTED children, however, are not
unioned. Thus, once the representative U’ of a supertrace is aborted, the supertrace does not change.

Suppose instead that head[U’] is COMMITTED. Then, when V' commits, XConflict unions
the two supertraces for U’ and V/, and then updates that supertrace’s representative to V. Thus,
rep[strace(U)] is the highest completed ancestor trace of U. This trace may be COMMITTED or
ABORTED, but either satisfies the claim. O

3.9 Ancestor queries

This section describes how XConflict performs ancestor queries. XConflict performs a “local”
ancestor query of two nodes belonging to the same trace (line 10 of Figure 3-10) and a “global”
ancestor query of two different traces (lines 11 and 15 of Figure 3-10). Both of these queries can be
performed in O(1) worst-case time. The global lock is acquired only on updates to the global data
structure, which occurs on trace splits (i.e., steals).

®Maintaining a list of all child traces is not difficult. We keep a linked list for each node in the trace tree and add to it
whenever a trace splits.

63

Local ancestor queries

CWSTM executes a trace on a single processor, and each trace is executed in depth-first, left-to-
right order (as stated in Property 2.9). We thus view a trace execution as a depth-first execution of a
computation (sub)tree (or a depth-first tree walk).

To perform ancestor queries on a depth-first walk of a tree, we associate with each tree node u
the discovery time d[u], indicating when u is first visited (i.e., before visiting any of u’s children),
and the finish time f[u], indicating when v is last visited (i.e., when all of u’s descendants have
finished). (This same labeling appears in depth-first search in [71, Section 22.3].) These timestamps
are sufficient to perform ancestor queries in constant time.

In the context of XConflict, we simply need associate a “time” counter with each trace. When-
ever a trace splits, this counter’s value is copied to the new traces.

Global ancestor queries

Since the computation tree does not execute in a depth-first manner, the same discovery/finish time
approach does not work for ancestor queries between traces. Instead, we keep two total orders on
the traces dynamically using order-maintenance data structures [33, 81]. These two orders give us
enough information to query the ancestor-descendant relationship between two nodes in the tree of
traces. These total orders are updated while holding the global lock acquired during the steal, as in
Sections 3.6 and 3.7.

This global ancestor-query data structure resembles the SP-order data structure for the SP-
maintenance problem (Section 2.1) and the global tier of SP-ordered-bags (Section 2.5). In particu-
lar, we maintain a left-to-right order and a right-to-left order of the tree of traces. In our left-to-right
order, a node U precedes (all the nodes in) the left subtree of U, which precedes (all the nodes in)
the right subtree of U. In other words, we order the nodes (traces) in the order they are output in a
preorder tree walk that visits the children of a node in left-to-right order. In our right-to-left order, a
node U precedes its descendants, but now U’s right subtree precedes U’s left subtree. This ordering
corresponds to a preorder tree walk that visits the children of a node in right-to-left order. These
orderings are analogous to English and Hebrew orderings, respectively, except that there is notion
of P- or S-nodes here.

Let <, denote precedence in the left-to-right order. That is, v <; v means that u precedes
v in the left-to-right order. Similarly, >pg denotes precedence in the right-to-left order. Then the
following lemma states how to perform ancestor queries.

Lemma 3.11 Let U and V be two nodes in a tree. Then, U is an ancestor of V ifandonly U <p V
andU <gp V.]

XConlflict uses order-maintenance data structures Oy, and O to maintain the left-to-right and
right-to-left orderings, respectively, subject to dynamically created traces. Since these traces can
be created in parallel by multiple processors during steals, we obtain a global lock during steals.
Whenever a trace U splits into three traces Uy, U;, and Uy, we obtain the lock and perform insert
operations into each ordering. (The traces Uy and U, are added, whereas U; holds everything
else that used to be part of U.) Notice that the traces Uy and Us are the parent and right sibling,
respectively, of the existing trace U = Uj. The ordering of these nodes is Uy, U1, Us in Of, and
U(), UQ, U1 in OR.

One added difficulty is that at the time of the split, the resulting U; may already have several

64

descendant traces.” At the time a trace is U is created, we insert both U and a placeholder U(")
in both lists such that U and U(") surround all of U’s descendants.® The placeholders increase the
number of inserted elements by a constant factor (2), and hence have no affect on the asymptotic
analysis. Consider a split of U. At the time of the split, Oy, and Og each contain U followed
immediately by all of U’s descendants followed by U ("), These existing nodes serve the purpose of
the new U; resulting from the split, and we need to insert the nodes for the parent Uy and the right
sibling Us. In the left-to-right ordering Oy, insert U before U and Us, UQ(T), ér) after U™, so
the order reads Uy, U, ..., U, Uy, Uér), Uér). In the right-to-left ordering Og, insert Uy, Us, UZ(T)
before U and Uér) after U("), so the ordering reads Uy, Uz, Uz(r), U,...,Um, U(gr).

Since the global ancestor-query data structure resembles the global tier of SP-ordered-bags (Sec-

tion 2.5), I omit further details of the data structure here. As in SP-ordered-bags, each query has a
worst-case cost of O(1), and trace splits have an amortized cost of O(1).

3.10 Performance claims

The section bounds the running time of an CWSTM program in the absence of conflicts. The
bound includes the time to check for conflicts assuming that all accesses are writes and to maintain
the relevant data structures. Checking for conflicts with multiple readers, however, increases the
runtime. Additionally, aborts add more work to the computation. Those slowdowns are not included
in the analysis.

The following theorem states the running time of an CWSTM program under nice conditions.
We give bounds for both Cilk’s normal randomized work-stealing scheduler, and for a round-robin
work-stealing scheduler (as in Section 2.8). The proof technique here is similar to the proof of
performance of SP-ordered-bags in Section 2.8, and hence we omit the details of the proof.

Theorem 3.12 Consider an CWSTM program with Ty work and span T, in which all memory
accesses are writes. Suppose the program, augmented with XConflict, is executed on P processors
and that no transaction aborts occur.

1. When using a randomized Cilk-like work-stealing scheduler, the program runs in O(T1 /P+
P(Tw +1g(1/€))) time with probability at least 1 — &, for any € > 0,

2. When using a round-robin Cilk-like work-stealing scheduler, the program runs in O(T; /| P+
PT,) worst-case time.

One way of viewing these bounds is as the overhead of XConflict algorithm itself. These bounds
nearly match those of a Cilk program without XConflict’s conflict detection. The only difference is
that the Tt term is multiplied by a factor of P. In most cases, we expect PTo, < T1/P, so these
bound represents only constant-factor overheads beyond optimal. We would also expect the first
bound (using the randomized scheduler) to have better constants hidden in the big-O.

These XConflict bounds translate to bounds on completion time of an CWSTM program under
optimistic conditions. For illustration, consider a program where all concurrent paths access disjoint
sets of memory. The overhead of maintaining the XConflict data structures is O(T1/P + PT).

"In contrast, the SP-ordered-bags algorithm essentially splits traces only at leaves in the tree of traces, so there are no
descendant traces to worry about. The main reason for this difference is our different definition of traces.

8The use of an explicit placeholder describes an Euler tour of the tree. A single Euler tour is sufficient for performing
the desired ancestor queries — we do not need a left-to-right and right-to-left Euler tour. Thus, there are two equivalent
approaches here. At first glance, using a single Euler tour appears more space efficient; the U () nodes, however, need
not be explicitly maintained when maintaining two orderings, so both approaches are identical in terms of space. We
consider the two-ordering approach here as it is more similar to SP-order earlier in this thesis.

65

Each memory access queries the XConflict data structure at most once. Since each query requires
only O(1) time, the entire program runs in O(T /P + PT) time.

The CWSTM design we describe does not provide any reasonable performance guarantees when
we allow multiple readers. There are two reasons for this problem. First, concurrent reads to an
object may contend on the access stack to that object. Second, even in the case where concurrent
read operations never wait to acquire an access stack lock, it appears that write operation may need
to check for conflicts against potentially many readers in a reader list (some of which may have
already committed). Therefore, a write operation is no longer a constant time operation, and it
seems the work of the computation might increase proportional to the number of parallel readers to
an object. It is part of future work to improve the CWSTM design and analysis in the presence of
multiple readers.

3.11 Concluding remarks

The CWSTM model describes one approach for implementing a software transactional memory
system that supports transactions with nested fork-join parallelism. CWSTM design was guided by
a few major goals.

o Supporting nested transactions of unbounded depth.
e Small overhead when there are no aborts.
e Avoid asymptotically increasing the work or the critical path of the computation too much.

I believe that we have achieved these goals to some extent, since the CWSTM guarantees provably
good completion time in the case when there are no aborts, and there are no concurrent readers (or
all accesses are treated as writes).

I believe that supporting unbounded nesting depth in transactions is important for composability
of programs. If a function is called from inside a transaction, the caller should not have to worry
about how many transactions are nested inside the function call. It may be true, however, that the
common case is transactions of small depth. In this case, a simpler design like the one described
in Section 3.3 might be sufficient in the common case, at the expense of a slowdown in the case
when the nesting depth is large. It is difficult, however, to conclude what the common case is, since
there are currently few examples of programs with nested parallel transactions. An important part
of future research would be to write series-parallel programs with nested transactions to understand
what the common case is, and what one should optimize for.

CWSTM is a TM system design and has not been implemented yet. As described in this chapter,
each memory access may potentially require multiple data structure queries. CWSTM also may
have a large memory footprint. Due to lazy cleanup on aborts, and fast commits, the access stack for
an object may grow and require space proportional to the number of accesses to that object. Also,
access stacks may contain pointers to transaction logs that persist long after the transactions are
committed or aborted. Thus, a computation’s memory footprint can become quite large. In practice,
implementing a separate, concurrent thread for “garbage-collection” of metadata may help. As part
of future work, we would like to implement the system in the Cilk runtime system to evaluate its
practical performance and explore ways to optimize the implementation.

It would be interesting to see if CWSTM-like mechanisms are useful for high-performance
languages like Fortress [12] and X10 [88]. Both these languages support transactions and fork-join
parallelism. The language specification for Fortress also permits nested parallel transactions. These
are richer languages than Cilk, however, and may require more complicated mechanisms to support
nested parallel transactions.

66

Chapters 2-3 considered SP-ordered-bags and XConflict as algorithms that take an input fork-
join program (in a canonical form such as the parse tree or computation tree). When implement-
ing these algorithms in practice. one would instead modify the runtime system to incorporate SP-
ordered-bag or XConflict. Fortunately, only a handful of places in the runtime system need to call
into the SP-ordered-bag (or XConflict) data structures. In particular, the runtime system should be

modified on memory accesses, steals, forks, joins, transaction begin and ends, etc. The bulk of the
remainder of the runtime system remains unchanged.

67

68

Chapter 4

Scheduling Under Uncertainty

This chapter concerns approximation algorithms for multiprocessor scheduling under uncertainty,
first introduced in [146]. This chapter represents joint work with Christopher Y. Crutchfield, Zoran
Dzunic, David R. Karger, and Jacob H. Scott, previously appearing in [73].

The model for multiprocessor scheduling under uncertainty extends the classical construction
of machine scheduling to handle cases where machines run jobs for discrete timesteps and succeed
in processing them only probabilistically. The motivation for studying this problem stems from the
increasing use of distributed computing to handle large, computationally intensive tasks. Projects
like Seti@Home [19] divide computations into smaller jobs of relatively uniform length, which are
then executed on unreliable machines (e.g., of volunteers).

Scheduling multiple machines to process the same job at once can help overcome the problem
of unreliable machines, but too many machines processing a single job can also slow down over-
all throughput. The situation is exacerbated when precedence constraints among jobs are present,
which is often the case for sophisticated computations. Here, a single job failing may delay the start
of many others. Note that the special case of having no precedence constraints retains practical sig-
nificance. Google’s MapReduce architecture [78], for example, generates jobs whose dependencies
form a complete bipartite graph, which is equivalent to two phases of independent jobs.

Motivated by these examples, this chapter studies the multiprocessor scheduling under uncer-
tainty (SUU) problem. An SUU instance is comprised of a set of n unit-time jobs and a set of
m machines. For each machine 7 and job j, we are given a failure probability g;;, which is the
chance that job j does not complete when run on machine for a single timestep. Any precedence
constraints are modeled as a directed acyclic graph (dag). The objective is to construct a schedule
assigning machines to eligible jobs at each timestep, minimizing the expected time until all jobs
have successfully completed. In contrast to many other scheduling problems, SUU allows multiple
machines to execute the same job in a single timestep.

When SUU is properly reformulated (in Section 4.1), it is strikingly similar to the problem of
minimizing makespan on unrelated machines in a stochastic setting, where job lengths set according
to random variables. Indeed, the algorithms presented in this chapter can apply to this family of
problems, attaining similar asymptotic approximation ratios.

Related work

Malewicz’s initial presentation of SUU [146] includes a polynomial-time dynamic-programming
solution for instances where both the number of machines and the width of the precedence dag
are constant. If either of these constraints is relaxed, he proves that the problem becomes NP-
hard. Furthermore, when both constraints are removed, there is no polynomial-time approximation

69

algorithm for the problem achieving an approximation ratio lower than 5/4, unless P = N P. This
work does not include approximation algorithms for the general (NP-hard) problem.

Lin and Rajaraman present the first (and, to date, only other) approximation algorithms for
SUU [141]. Using a greedy algorithm to maximize the chance of success across all jobs, they
give an O(log n)-approximation when all jobs are independent. More sophisticated techniques,
including LP-rounding and random delay [139, 180], yield a variety of O(poly log(n + m)) ap-
proximations when precedence graphs are constrained to form only disjoint chains, collections of
in- or out-trees, and directed forests. For these settings, our algorithms improve their approximation
ratios by a (log n/ log log n)? factor, when n = m®(1). See Figure 4-1 for a complete comparison.

The wider field of machine scheduling is an established and well-studied area of research with
a large number of variations on its core theme (see [127] for a survey). There are three main
differences between SUU and problems studied in the literature. First, in SUU, jobs may run on
multiple machines in the same timestep. Second, each job has a chance of failing to complete on
any machine that processes it. Third, jobs must be scheduled at unit granularity.

I am not aware of many scheduling problems in which jobs may run on multiple machines at the
same time. Interestingly, Serafini, motivated by scheduling looms in the textile industry, provides
a polynomial-time algorithm [178] for scheduling independent jobs on unrelated machines, given
that jobs can be split arbitrarily and run independently on different machines. This problem is quite
close to a deterministic analog of our model (with independent jobs), but allows arbitrarily small
splits (as opposed to unit-step allocations), yielding a simpler linear-programming solution that is
not applicable to our problem.

Of deterministic scheduling problems, SUU most closely resembles the problem of preemp-
tively scheduling jobs with precedence constraints on unrelated paraliel machines so as to minimize
makespan. In Graham’s notation [109], this problem is written as R| prec, pmitn |Cpax. Instead
of failure probabilities g;;, there is a deterministic processing time p;;, denoting how long it takes
for machine 7 to complete job j. In contrast to SUU, however, machines never fail, and jobs may
only run on one machine at a time. As in [141], techniques for this problem [136, 139, 180] play
an important role in the approximations this chapter. Solutions here also borrow techniques from
“job-shop scheduling” [96] for our SUU algorithms for precedence constraints, but the particulars
of that setting are not very similar to the ones considered here. In the case of R| prec, pmin |Crax.
I am only aware of approximations for precedence constraints forming disjoint chains or trees.

There is also a large body of work on stochastic scheduling (see [168, Part 2] for a represen-
tative sample). The majority of the work in this area considers how to schedule jobs whose input
lengths are not known, but instead given as random variables distributed according to some proba-
bility distribution. In this problem, there are no failure probabilities. Particular attention has been
paid to the case when these distributions are restricted to exponential families. Section 4.1 shows
that SUU is closely related to the problem of preemptively scheduling precedence-constrained
jobs whose processing times are given by exponential distributions, on unrelated parallel machines
so as to minimize their expected makespan. In stochastic scheduling, this problem is known as
R| pmin, prec,p; ~ stoch |E[Cmax]- I know of no previous nontrivial approximation algorithms
for this problem, although an optimal algorithm exists when the machines are related and jobs are
independent {196].

Contributions

This chapter describes improved approximation algorithms for SUU when jobs are independent
(there are no precedence constraints) and when the precedence constraints form disjoint chains.
All of these algorithm represent joint work with Christopher Y. Crutchfield, Zoran Dzunic, David

70

Precedence Constraints Lin and Rajaraman [141] This work
Independent O(log(n)) O(log log(min {m, n}))
Disjoint Chains 0 (Iog("}g;ﬂi(g'zlli%wm)) O(log(n + m)loglog(min {m, n}))
Directed Forests O (log(m]);gfjg(?rzfi()"*"m)) O(log(n + m) log(n) log log(min {m, n}))

Figure 4-1: Improved approximation ratios

R. Karger, and Jacob H. Scott, previously appearing in [73]. For independent jobs, I describe an
O(log log(min {m, n}))-approximation algorithm. One component of this algorithm is based on an
LP relaxation.

The analysis for independent jobs relies on a competitive analysis as defined in [181]. Essen-
tially, I show that our algorithm is O(10g(Pmax/Pmin))-competitive for a deterministic scheduling
problem (similar to R| pmin |Cmax) in Which each machine has a deterministic speed, but process-
ing times for jobs are chosen arbitrarily by an adversary, with minimum and maximum values pmin
and pmax. This competitive result is interesting in its own right.

When the precedence constraints on jobs form a collection of disjoint chains, Section 4.3 gives
an O(log(n + m) loglog(min {m, n}))-approximation algorithm. This disjoint-chains algorithm
uses an LP relaxation similar to the one used for independent jobs and also utilizes techniques from
network-flow theory and prior work on the SUU problem for chains [141]. The log log(min {m, n})
factor arises from the independent-jobs algorithm — improving that independent-jobs algorithm,
therefore, immediately yields a better algorithm for chains.

The algorithm for disjoint chains can be extended to handle directed forests using the chain-
decomposition techniques of [136, 141], yielding an O(log(n + m) log(n)loglog(min {m,n}))-
approximation.

I also show how to apply these algorithms to similar variants in the problem of stochastic
scheduling, where jobs have stochastic processing times. To the best of my knowledge, these are
the first approximation algorithms for stochastic scheduling with the expected-completion-time ob-
jective and unrelated machines.

Chapter outline

Section 4.1 gives formal definitions of the SUU problem, scheduling algorithms, and an equivalent
formulation of SUU that plays an important role in the approximation algorithms provided later
in the chapter. Section 4.2 presents an algorithms for independent jobs, and Section 4.3 shows
how to extend the algorithm to handle precedence constraints forming chains. I address tree-like
precedence constraints and stochastic scheduling in Sections 4.4 and 4.5, respectively.

4.1 Preliminaries

This section gives of a formal statement of the scheduling problem and defines a schedule. Most
of the notation is consistent with that of Malewicz [146] or Lin and Rajaraman [141]. One minor
difference is that I use “failure probabilities” ¢;; in lieu of “success probabilities” p;;, for ease
of notation. This section next includes a reformulation of the SUU, which is used in subsequent
sections to simplify both the algorithms and the analyses involved.

71

The SUU problem

An instance I = (J, M, {g;;},G) of the SUU problem includes a set J of unit-step jobs and a
set M of machines. Throughout this chapter, let n = |J| be the number of jobs and m = |M|
be the number of machines. For each machine 7 and job j, we are given a failure probability q;;,
which is the probability that job j does not complete when run on machine ¢ for one unit step; these
probabilities are independent. In addition, without loss of generality, assume that for each job j,
there exists a machine ¢ such that ¢;; < 1.

An SUU instance also includes a set of precedence constraints comprising a directed acyclic
graph (dag) G with jobs as vertices. A job j is eligible for execution at time ¢ if all jobs preceding 7
(i.e, jobs having a directed path to 7) in the dag have successfully completed before time ¢. If a job j
is eligible at time ¢, a schedule may assign multiple machines M;; C M to execute j in parallel. As
all machine/job failures are independent, the probability that j does not complete in that timestep is
HiGM it Qij-

Failure probabilities are difficult to work with because they multiply. Instead, the log failure of
job j on machine 4, denoted by ¢;;, is defined by 4;; = —1g¢;;. By definition, ¢;; = 1/ 244, and
hence [J;c s, 917 = 1/ giem, b

This chapter focuses on finding scheduling algorithms that minimize expected makespans for
restricted classes of precedence constraints. If there are no precedence constraints, then the jobs
are independent, and we refer to the problem as SUU-I. When the precedence constraints form a
collection of disjoint chains, we call the problem SUU-C. When the constraints form a collection of
disjoint trees, we call the problem SUU-T. A sans-serif fonts to refer to problem variants, whereas
serif fonts refer to algorithms/schedules for the problem.

Schedules

A schedule ¥ is a policy for assigning machines to (uncompleted) jobs. Jobs must be scheduled
at a unit granularity, but the schedule may assign multiple machines to the same job. A schedule
may base its decisions on any of its history, but this chapter considers only schedules that can be
computed in polynomial time. More formally, a schedule is a function ¥ : (H x N) — (M —
J U {L1}) that, given a history! » € H and time ¢ € IN, returns a function assigning machines to
jobs. The symbol L to indicate that the machine remains idle. To allow for more concise schedules,
the assignment function returned by (%,) may map a machine to a job that has already completed.

An execution of ¥ is defined as follows. Suppose that i € H is the history of the execution up
to time ¢. Then ¥ assigns machine % to job j = 3(h,t)(7) at step ¢. If j has been completed when
it is scheduled to run, % is assigned to L. Since J, M, {g;;}, and G are invariant over a problem
instance, we allow ¥ to reference those implicitly.

‘Whenever the schedule ¥ is such that it assigns machines to jobs depending only on the current
time and the initial set of jobs, not the jobs that have completed (i.e., for all ¢, ¥(h, t) = X(h/, t) for
all h, b’ € H), then the schedule is said to be oblivious. An oblivious schedule has finite length if it
is only defined for t < ¢, for some ¢,.

A schedule is semioblivious if it can be decomposed into “rounds” such that the assignments
within each round are characterized by finite oblivious schedules. Thus, while executing a step
contained in a particular round, the assignment of machines to jobs depends only on the initial set

' A full history for a deterministic schedule can be captured by the sets of remaining jobs at each timestep prior to the
current timestep ¢. More formally, let Hy = {(S1,52,...,St)|J = 81 2 Sz 2 --- D S;} denote the set of all feasible
ordered sets of remaining jobs at timesteps 1,2, . . ., ¢. Then valid histories are given by the set H = | J;=, H:. Note that
compact representations of the history exist, so a polynomially computable schedule may consider the entire history.

72

of jobs when the round began and the number of steps the round has been running. All oblivious
schedules are naturally semioblivious, whereas the converse is not necessarily true. The schedule
given later in this chapter for SUU-I is semioblivious.

Malewicz [146] also defines regimens as schedules having assignment of machines to jobs
dependent only on the subset of jobs remaining. Although regimens appear to be the most intuitive
form of schedules for the SUU problem, none of the schedules given in this chapter are regimens.

Let Tx; be a random variable denoting the length of the execution of schedule ¥, which is the
number of steps before all jobs have completed. The objective is to minimize E [Tx] (denoted by
E [Crax] in much of the scheduling literature). Throughout this chapter, Zopr denotes a schedule
that has minimum expected makespan, and its expected makespan, which is finite [146], is denoted
by E [Topr). For any SUU instance, ¥opr exists, and can be computed (inefficiently) by selecting
the assignment of jobs to machines on a particular timestep that minimizes the expected makespan
of the remaining jobs.

This chapter considers schedules that are polynomial-time computable (in the variables n, m,
and log E [Topr]) and whose expected makespans approximate E [Topr]. We say that ¥ is an
a-approximation if E [Tx] < oE [Topr]| for all choices of probabilities {g;; }.

Throughout the remainder of this chapter, the terms algorithm and schedule are interchangeable.
Moreover, I generally do not give the schedule explicitly as a function assigning machines to jobs.
Instead, I describe it algorithmically.

Problem reformulation

I now describe a new, and equivalent formulation of the SUU problem, which I refer to as SUU”.
Because of their equivalence, I refer to both problems as SUU later in the chapter.

An SUU” instance I = (J, M, {qi;j},G) has the same structure as an SUU instance. The
difference is that rather than considering the success or failure of a job as it runs on machines
in each timestep, use the Principle of Deferred Decisions [158] to view the problem as one of
deterministically scheduling jobs with randomly distributed lengths.

Instead of failure probability, in SUU*, view ¢4;; = —logg;; as an amount of work that a
machine does towards a job completion in each unit timestep. As in SUU, machines must be sched-
uled at a unit granularity. At the start of a schedule’s execution, draw for each job j a single random
variable p; chosen from an exponential distribution with rate parameter A; = In2; specifically,
Pr{p; < c} =1—27¢ A job j completes when the total work accrued by j exceeds p;. In other
words, j completes at the first step ¢ in which 3} _; 3. My big Z Py

A schedule is oblivious to the random values p;. Instead, it is only aware of whether a job
completes in each timestep. Thus, a schedule must make its decisions for assignments in step ¢
based only on the surviving set of jobs at each previous timestep. Hence, the same schedule may be
applied to both SUU and SUU*. In fact, a particular schedule has the same distribution of remaining
jobs at each timestep in both SUU and SUU", and hence both problem formulations are equivalent.

Proof of equivalence

Here, I prove that SUU and SUU* are equivalent. First, we define a history of an execution. Then, I
prove the main theorem, which shows that SUU and SUU™ have the same distribution over histories.

Consider an execution of a schedule ¥ on SUU or SUU”. Define the history of the execution
after ¢t — 1 steps by a sequence of job subsets (S;, S2,...,5t), withJ = 5 2 Sp 2 --- 2 5,
where Sy is the set of jobs remaining at the start of step £.

73

Theorem 4.1 Consider the (t — 1)-step execution histories hy, and h} of schedule 3 on SUU-
instance I = (J, M, {qi;} , G) and corresponding SUU"-instance I* = (J, M, {qi;},G), respec-
tively. For any particular (t — 1)-step history x;, we have Pr {h; = z;} = Pr{h} = z;}.

Proof. By induction on time ¢. Initially, Pr {h; = (J)} = Pr{h} = (J)} =

Suppose that both executions have the same (¢ — 1)-step history z, and let Mj; be the set of
machines assigned to job j at step ¢ by the schedule ¥ given the history x;. We need only show that
both SUU and SUU™ have the same distribution over remaining jobs after step t.

Let S¢y1 and S}, | be the random variables denoting the set of remaining jobs at the start of step
t, for SUU and SUU* executions, respectively. For the SUU execution, the probability that job j
fails to complete in step ¢ is given by Pr{j € Spy1]2:} =[], M;, G-

Consider now the probability that the SUU* execution fails to complete a remaining _]Ob j in step
t. Forjob j, let zj, = > ;¢ M £;; be the amount of work j receives at step k. By definition, j fails
to complete if mel zjk < pj. By assumption, since j remains at step ¢, we have 22;11 Zjk < Pj-
Moreover, since the exponential distribution of p; is memoryless, we have

t t—1
Pr{sz,j < pj sz,j <pj} = Pr Z Lij < pj
k=1 k=1

1€EMj

Thus, we have

Pr{jESf_l_llfL't} = Pr Z Eij <pj
iEM]t

2 E'LEM i.

€My

i

and hence Pr{j € Sgy1|z:} = Pr{j € Sf |z}

Since all jobs have the same distribution given the history, we conclude Pr {S;1; = S|z:} =
- Pr{S;., = Slz:}. Applying the inductive hypothesis (i.e., Pr{h; = z;} = Pr{h} = z;}) com-
pletes the proof. O

4.2 Independent jobs

This section describes an O(log log n)-approximation algorithm for SUU-I, the SUU problem with
independent jobs. I first give an oblivious O(log n)-approximation algorithm for SUU-I, based on
scheduling an (approximation of an) integer linear program. I then modify this algorithm into a
semioblivious solution consisting of O(log log n) nearly optimal rounds.

An oblivious O (log n)-approximation

I now describe an O(log n)-approximation for SUU-I, called SUU-I-OBL. The main approach is to
construct a schedule of length O(E [TopT]), based on an integer linear program, such that each job
has no more than a constant probability of failure upon completion. This finite oblivious schedule
is repeated until all jobs have completed. Using Chernoff bounds, we conclude that the expected
number of repetitions is O(log n), yielding an O(log n)-approximation.

74

Use the following integer linear program for SUU-I-OBL. Let z;; denote the number of steps
during which machine ¢ is assigned to job j. Recall {;; = —log g;; is the log failure of job j on
machine 7. Let L; be a nonnegative real, representing a target work for each job. To understand the
integer program, think of L; as being fixed at L; = 1 for all jobs j. The better algorithm, SUU-I,
will assign L; = 0 to jobs that do not need to be scheduled, and increasing values to L; for the
semioblivious O(log log n)-approximation.

(LP1) min ¢

st. >tz > L; VjeJ (4.1)
iEM
Yoz <t VieM (4.2)
jeJ
z; € NU{0} VieM,jeJ. (4.3)

Here Equation (4.1) enforces that every job in J has a failure probability no greater than 27Li (or
1/2 when L; = 1), and Equation (4.3) guarantees that all jobs are scheduled for an integral number
of steps on each machine. The notation (LP1) refers to this integer linear program generically, and
LP1(J',L) refers to it with L; = Lif j € J', and L; = 0 otherwise. The optimal value for
LP1(J', L) is denoted by t1,p1(,1)-

A solution for LP1(J’, L) naturally generalizes to a finite oblivious schedule, denoted by
¥ 1p1(sr,L)> With length t;py (v 1) as follows. Consider a machine ¢, and consider each job j in
arbitrary order. Assign machine ¢ to job j for z;; timesteps. To finish my description of this sched-
ule, I first claim that ¢7 py (1) approximates E [Topt)- Then, I show how to approximate (LP1) in
polynomial time.

Lemma 4.2 Let t7py(s1) denote the optimal value for LP1(J,1). Then, we have typ1(j1) =
O(E [Toprt))

Proof. Consider any subset U C .J, and its complement U. Then t LPiUY) T i) 2
t1p1(J,1)> Since we can construct a solution to LP1(J,1) by adding a solution to LP1(U, 1) and a
solution to LP1(U, 1).

Recall our view of the problem in terms of SUU™: there is a p; chosen from an exponential
distribution for each job j such that job j completes only if 3,/ £ijzi; > p;. For any sample
from the event space, let U be the set of jobs j for which p; > 1, and let U be the complement set
of jobs j for which p; < 1 (note p; = 1 with probability O so can be ignored). By definition, each
job belongs to U independently with probability 1/2. Next, observe that whatever Lopr is, it must
allocate at least 1 unit of work to each job in U in other words, Equation (4.1) of (LP1) must hold
for every j € U. Thus, the optimum schedule contains a feasible solution to LP1(U, 1).

By construction, U is a uniformly random subset of J, meaning all subsets are equally likely.

75

Thus,

E[Topr] = 2™ E[Topr | U]
U

= 27 2(3 Elforr | U]+ Y. Elfopr |)
U U

v

1
2 "5 Z(tLPl(U,I) +trp1@.))
U

1
275 D trpiy
U

v

= =t
StLP1(J1) 5

where the second line of this derivation follows from the first paragraph of this proof. U

The following lemma states that, in polynomial time, we can find an integral assignment that
approximates (LP1) to within a constant factor. Some aspects of the proof are similar to [141,
Theorem 4.1], which solves a slightly different problem useful for precedence constraints that form
disjoint chains, but the proof here adds several steps that improve the approximation ratio. The
tighter approximation does apply to the more general disjoint-chains variant, which we revisit in
Section 4.3.

Lemma 4.3 There exists a polynomial-time algorithm that computes a feasible solution to the lin-
ear program LP1(J’, L), having value O(typ1(1))-

Proof. We relax the integer linear program to a linear program, and then show that the relaxed LP

can be rounded to yield an integral {Z;;} solution with value O(Tzp1(y,1))-

First, let zgj = min {¢;;, L}. Then, replace each ¢;; in Equation (4.1) with E’ij, yielding the
constraint) ;. ps £i;%ij > L,Vj € J'. Since assignments are restricted to be integral, this change
has no effect on either the feasibility or the value of an assignment. Next, remove Equation (4.3)
and solve the relaxed linear program. Letting {:c;*j, *} be an optimal solution, we have that t* <
t1.p1(J,L)> because integral solutions are feasible.

Our goal now is to round the LP solution to an integral solution, while not increasing its value
by very much. This rounding proceeds in three steps, outlined as follows. First, group machines
having similar egj for a job 7, yielding a single assignment for the whole group. Then, round those
assignments to integers. Finally, show that the rounded assignments satisfy (LP1), using an integral
flow network. :

For each job j, group machines having Egj'values within a factor of 2, and determine the total
assignment to that group. More formally, for each j and integer k, let

* *
ik = Z Tid

i Llogfng =k
be the total assignment of machines with £;; € [2%, 2F+1) to job j. It follows that for all j € J', we

have
Dtz > DRk > L2
€M k

76

We next round the value of D7, up to {6 ;kJ We claim that for all j € J', we have

> 6D5]2F > L.
k

Since £;; < L, the maximum value of k having nonzero Dj; is |log L]. Thus, the claim follows
because

> |6Dj]2F > 3(2ZD;k2k> - > 2
k k k<log L
> 3(L) - (iL/Q’“)

k=0
> 3L-2L=0L.

In other words, rounding the group assignments down to integers only causes a loss of at most 2L
work. We therefore need an assignment giving 3L work to the job.

To complete the integral assignment, construct a network-flow instance as follows. For each
job j and integer k, create a node u;i. For each machine i, create a node v;. Also add a source-

node s and a sink-node w. For each u;i, add a directed edge (s, ujx) with capacity [GD;,CJ . For
each v;, add a directed edge (v;, w) with capacity [6t*]. Finally, add a directed edge (u;, v;) with
infinite capacity, for any j, k, ¢ such that '.log Eng = k. Note that for a given 7 and ¢, there is exactly

one k such that (u;x, v;) exists. Refer to this edge as edge (j, 7).
If we set the capacity of edges (s, u;x) to be 6D}, instead, then a flow of demand >k 6D
exists in this network, and it can be constructed by setting the flow along edge (j, ¢) to be 61:;;. (and

flow along edge (v;, w) tobe 6, ; x};). Thus, a flow of capacity > ik {GD;.‘,CJ exists when we
lower the capacity of edge (s, u;i) to tGD;ka .
Ford-Fulkerson’s theorem [71,95] states that an integral max flow exists whenever the capacities

are integral, as they are here. We therefore take the flow across the edges (j,%) as our integral
assignments Z;;. Moreover, by construction, z;; satisfy

Vie M, > i < [6t"],

jeJ
Vied, Y f;z; >y |6D5]2" > L.
ieM k

We thus have an integral feasible solution {Z;;,6t*}. Noting that 6t < 6T py(,) completes the
proof.

Since Lemma 4.2 shows that ¢;,p1(1) = O(E [Topr]), Lemmas 4.2 and 4.3 in concert state that
in polynomial time, we can find a schedule X of length O(E [Topr]) such that every job fails with
at most constant probability. Repeating 3 until all jobs complete produces the oblivious schedule
SUU-I-OBL.

Theorem 4.4 Let Tsyuy.1.0BL denote the random variable corresponding to the time it takes for an
execution of SUU-1-OBL to complete all jobs. Then, we have E [Tsyu.1-opr] = O(E [Topt] log n).

7

Proof. From Lemmas 4.2 and 4.3, we have a schedule ¥ of length O(E [Topr]|) that gives
each job a constant probability of success. Applying a Chernoff bound gives us that a particular
job completes in O(log n) repetitions of ¥ with probability at least 1 — 1/ n®(), where the con-
stant exponent appears as a constant factor in the number of repetitions. Taking a union bound
over all jobs gives that with probability atleast 1 — 1/2°(1), all jobs complete in O(logn) repeti-
tions. Since this probability drops off dramatically as the number of repetitions increases, we have
E [Tsuurosr] = O(E [Topr]log). O

An O(log log(min {m, n}))-approximation

Construct the semioblivious schedule SUU-I as follows. The schedule is divided into “rounds.”
The first round corresponds to an execution of the schedule suggested by the (rounded) solution to
LP1(J,1). In each following round, (LP1) is applied to all remaining jobs with doubling target
work. If J, C Jr_1 C J are the set of jobs left at the start of round &, then for that round find an
approximate solution to LP1(Jx, 25¥~1), and schedule obliviously according to it.

SUU-I runs at most K = loglog(min {m,n}) 4+ O(1) of these rounds. If uncompleted jobs
remain after the K'th round, one of two things is done. If n < m, SUU-I runs each job one at a
time on all machines, until all jobs are completed. If m < n, SUU-I simply repeats the schedule
2 1,P1(J,,2+-1) given by the Kth round until all jobs complete.

I will prove that SUU-I achieves an approximation factor of O(loglogmin {m,n}). A key
aspect of the analysis is viewing SUU-I as an “online algorithm” to solve the SUU* problem over
the hidden input {p; }. Essentially, SUU-I “discovers” the values of p; as jobs complete.

In the proof of the following lemma, I compare the length of rounds 2,3, ..., K against the
makespan of an optimal offline algorithm, called OFF, which knows the values {p;}. In particular,
I show that if OFF takes total time ¢ on input {p;}, then each round of SUU-I takes time O(t) on
the same input. This part of our proof is essentially a competitive analysis [181]. In subsequent
lemmas, I bound the time of SUU-I for the later rounds.

Lemma 4.5 The total expected time of rounds 2,3, ..., K of SUU-1is O(K - E[Topr)).

Proof. First, I show that for any fixed set of random values {p; }, each round of SUU-I takes time
proportional to that of the optimal offline strategy OFF. I then combine all these rounds, taking an
expectation over {p; }, to get that rounds 2, 3, . .., K take total expected time O(K - E [TopT])-

Consider an optimal offline strategy OFF, which knows the random values of {p;}, and let
Torr({p;}) denote OFF’s makespan given the values {p;} (i.., Torr({p;}) is the minimum over
all strategies for a fixed {p;}). Foreach k € {2,3,..., K}, let Jp C J be the subset of jobs such
that p; > 22, Thus, OFF must assign machines to job j € Jj such that 3", ,, zi;€i; > 272
And hence we have Torr({p;}) > Tpp1(y, 25-2)-

Now consider an execution of SUU-I for the same {p; }. If a job j remains uncompleted at the
start of the kth round, for k£ € {2,3,... K}, then p; > 2k=2_ This inequality follows from the fact
that in the (k — 1)th round, every job receives work that exceeds 2%~2. Hence, the jobs executed in
the kth round are a subset of those defined by Ji above. By Lemma 4.3, the kth round takes time
O(Ty p1(Jy,25-1))- Observing that Ty py(j, ox-1) < 277, py(g, o%-2), We conclude that SUU-I’s kth
round takes time O(ZTorr({p;}))- _

Thus, for any particular {p;}, rounds 2,3, . .., K of SUU-I take total time O(K - Torr({p;}))-
Since OFF is the optimal offline strategy, it follows that Topr({p;}) > Torr({p;}) on the same
{pj}. Thus, SUU-I takes time at most O(k - Topr({p;}))- Taking the expectation over all {p;}, we

78

conclude that these rounds take in expectation total time

O(K - Egy,y[Torr({p;})]) = O(K - E[Topr)) - O

In fact, Lemma 4.5 shows that this doubling technique yields a deterministic O(10g(Pmax/Pmin))-
competitive algorithm for the problem of hidden but arbitrarily chosen p; € [Pmin, Pmax]- SUU-L
however, changes strategies after K rounds. Since pmax is chosen from an exponential distribution,
the probability that pmax exceeds ©(log n) is small.

The following two lemmas bound the expected time of the late rounds of SUU-I when m > n
or n > m, respectively.

Lemma 4.6 Suppose m > n. Then rounds K + 1, K + 2, ... of SUU-I take total expected time
O(E[Topt))-

Proof. Recall that after the K'th round, SUU-I runs jobs one after the other. Running jobs one at
a time on all machines is trivially an O(n)-approximation. It remains to bound the probability that
SUU-I proceeds to the Kth round.

Recall also that jobs remaining after round K must have p; > oK ~1 > ologlogn+0(1) > 9]ogn
(for appropriate choice of constant in O(1)), which occurs with probability at most 2-2logn — 1 /p2,
Applying a union bound over all j, we get probability at most 1/n that any job survives to round
K + 1. Hence, the expected time for rounds K + 1, K + 2,... is at most (1/n)O(nE [Topt]) =
O(E [Toprt))- O

Lemma 4.7 Suppose n > m. Then rounds K + 1, K + 2,... of SUU-I take total expected time
O(E[Topt)).

Proof. Let Xk = Xppj(j,,2+-1) be the schedule computed for the the Kth round. Here,
SUU-I repeats X until all jobs complete. Define the load H of a finite schedule to be the max-
imum number of timesteps during which any machine is assigned to an uncompleted job (i.e.,
H = max;), . z;5); the schedule Xk can be easily “compressed” to run in exactly a number of
a timesteps equal to its load. We will analyze how long it takes for the load of our instance to drop
from its initial expected value O(E [Topr]) (at the end of the Kth round) to O (when all jobs have
completed).

Let Tk be the random variable denoting the length of Y. Let X; be the random variable
representing a number of repetitions of Ty, necessary to drop the load from Tk /2 to T /2F1.
Define X to be the random variable denoting the number of timesteps until the compressed load of
Yk drops below 1 (and hence reaches 0). Then, we have

log Tk log Tk
XiTk X;
X T =Tk L 5
=0

1=0

By construction, a single execution of L ensures that each job remains with probability at most
1/m?, and thus the expected load of each machine shrinks by at least a (multiplicative) factor of m2.
Markov’s inequality implies that each machines load decreases by a factor of m /2 with probability
at least 1 — 1/(2m). Taking a union bound over all machines gives us that the load of all machines
decreases by a factor of m /2 with probability at least 1/2.

For m > 4, we now have that each repetition of ¥ g decreases the remaining load by a factor of
2 with probability at least 1/2, and hence E [X;] < 2 for all i—requiring only an expected constant

79

number of repetitions to reduce the load by a constant factor. We now have that

log Tk oo
X; E [Xi]
B35 < 25

=0

o@1

i=0
).

<

Since T}, and each X; are independent,? it follows that

E[X] < E[TK]iE[;—i]
i=0

= O(E[Tk])-

Having E [Tx] < O(E [Topt]) (as exhibited by Lemma 4.5) completes the proof. O

Theorem 4.8 Let K = loglog(min {m,n})+ O(1) and let the random variable Tsyy.1 be defined
as the time it takes for an execution of SUU-I to complete all of the jobs. Then, we have E [Tgyu.1] =
O(K -E[Topr])-

Proof. Apply Lemma 4.2 to bound the expected length of the first round, Lemma 4.5 to bound the
expected length of rounds 2,3, ..., K, and Lemma 4.6 or Lemma 4.7 as appropriate to bound the
expected length of rounds K + 1, K + 2,. ... It follows that makespan is bounded by E [Tsyu.1] =
O(E [Topt]| + K -E [Topt] + E [Topr]) = O(K - E [Toprt])- O

4.3 Jobs with chain-like precedence constraints

This section describes an O(log(n + m) log log(min {m, n}))-approximation for SUU-C, the case
when precedence constraints form a collection of disjoint chains, called SUU-C. SUU-C may be
used as a subroutine for SUU-T, the more general case where precedence constraints form disjoint
trees (see Section 4.4). ,

In SUU-C, the dependency graph G is a collection disjoint chains G = {Ci,Cs,...,C,},
where each C}, gives a total order on a subset of jobs.

SUU-C is similar to Lin and Rajaraman’s algorithm [141], but SUU-C achieves a better ap-
proximation ration through various improvements. I first give an overview of the algorithm. I then
provide more details later in the section.

To construct the schedule, first find an assignment {%} of machines to jobs, where z;; is an
integral number of steps for which machine 7 is assigned to job j7), giving each job one unit of work
such that the “length” and “load” of the assignment are bounded by O(E [Topr]). The load of a
machine is the number of timesteps for which any job is assigned to it (i.e, > ; Zij), and the load of
the assignment is the maximum across all machines. The length of a chain is the sum of the length
of the jobs in the chain. The length of a job j, denoted by d;, is the maximum number of steps for
which j is assigned to a single machines (i.e., d; = max; x;;). Clearly, a schedule taking time T
must have a length and load no more than 7'.

?Independence follows from the fact that the exponential distribution is memoryless. The variable T} is only a function
of which jobs remain at the start of the Kth round, i.e., those jobs j for which p; > 25-1. In contrast, given a set of
remaining jobs, X; depends only on the degree to which the p;s exceed 2% . Since the exponential distribution is
memoryless, we have independence.

80

SUU-C uses an LP relaxation (similar to (LP1) in Section 4.2) to generate our assignment. De-
tails appear later in the section. As in Section 4.2, the LP relaxation achieves an O(1)-approximation.
This assignment does not immediately yield a schedule, because it does not take into account the
precedence constraints.

To transform the assignment into an adaptive schedule, SUU-C treats long and short jobs differ-
ently. A job is short if the length of its assignment is at most some value v, to be defined later, and
the job is long otherwise. To simplify presentation, suppose for now that all jobs are short. I later
describe how to deal with long jobs.

Next, transform the assignment into an adaptive schedule ¥ for each chain C. The schedule
¥, considers the next eligible (uncompleted) job j in Cy, and (obliviously) schedules the next d;
timesteps according to the assignment {x;;}. Specifically, if £, begins executing job j at time ¢,
then it schedules j from time ¢ to ¢ + x;; on machine 7. (Machine 7 remains idle from time ¢ + z;; to
t + d;.) After the d; timesteps, X, again considers the next eligible job in the chain (which may be
the same job if it failed). Since each time job j is obliviously scheduled, it has a constant probability
of success.

All the ¥;s can be combined in a straightforward manner, yielding a *“pseudoschedule” for
the SUU-C instance, denoted by {¥;}. In particular, a pseudoschedule runs all ¥, “in parallel,”
possibly assigning multiple jobs to the same machine in each timestep. To avoid confusion, we call
each of the timesteps of a pseudoschedule a superstep, and we call the number of jobs assigned to a
single machine during a superstep ¢ the congestion at that superstep, denoted by c(t). We “flatten”
each superstep to c(t) timesteps by arbitrarily ordering the jobs assigned to each machine, thus
yielding a schedule called SUU-C. If cpax is the maximum congestion over all supersteps, and Z is
the maximum length of any chain, then SUU-C comprises O(cmaxZ) timesteps.

To reduce congestion, apply a random-delay technique [139,180], also used by Lin and Rajara-
man [141]. To prove the main bound, I will utilize (and prove) the fact that when chains consist of
sufficiently many (short) jobs, the number of supersteps spanned by X is near the expected length
of ¥, with high probability. To deal with long jobs, run SUU-I O(log(n + m)) times, which
dominates the runtime, yielding the O(log(n + m) log log(min {m, n}))-approximation.

Finding an assignment with low load and length.

As in Section 4.2, SUU-C uses an integer linear program to optimize for the constraints. This integer
linear program for chains matches that used in [141, LP1].

(LP2) min t
S.t. zeijxi]’ > 1 Vj eJ 44
iEM

dx; <t VieM 4.5)

jeJ
Y dj <t VCeG (4.6)

JECK
OSCB,’J' < dj VieM,jeJ 4.7)
4 > 1 VjelJ 48)
Tij €]NU{O} Vie M,je J. 4.9)

Equations (4.4), (4.5), and (4.9) correspond to Equations (4.1), (4.2), and (4.3), respectively, in
(LP1). Equation (4.5) bounds the load of each machine. Equation (4.6) bounds the length of each

81

chain, and Equations (4.7) and (4.8) determines the length of each job.
The following lemma, proven in [141, Lemma 4.2], states that the optimal value for (LP2) is a
lower bound on E [Topt].

Lemma 4.9 Let t(1 po) be the optimal value for (LP2). Then t(;,psy = O(E [Topr)). O

The next lemma exhibits an O(1)-approximation to (LP2). Lemmas 4.9 and 4.10 together imply
a polynomial-time algorithm giving an integral assignment {z;;} of machines to jobs such that the
load and length are both O(E [Topt])-

Lemma 4.10 Let t1,poy be the optimal value for (LP2). There exists a polynomial-time algorithm
that computes a feasible solution to (LP2) having value O (t(LP2))

Proof. The rounding proceeds as in Lemma 4.3, starting by removing Equation (4.9) and re-
placing Equation (4.4) by >, 5/ £i;%i; > 1 for £;; = min {£;;,1}. The only major difference is
in the capacity of some edges in the flow network. Instead of giving edge (j,%) an infinite capac-
ity, restrict the capacity of edge (4,1) to [Gdﬂ , Where d7 is the assignment given by the optimal
solution to the relaxed linear program. Here, the length of a chain Cj may increase by at most
6> jcc, 45 +1Ckl < 73 jec, d;- Since the capacity of edges (v;, w) from machine nodes to the
sink node remains [6¢*], machine loads are also bounded. (]

Reducing congestion of SUU-C

As described thus far, SUU-C may have ©(n) congestion. We take advantage of a random-delay
technique [139,180] to reduce congestion to O(log(n+m)/ log log(n+m)), with high probability.
Essentially, modify SUU-C to simply delay the start time of each chain by a value chosen uniformly
at random from {0, 1, ..., H}, where H is the load of SUU-C.

The delay technique is summed up by the following theorem, proof omitted (as similar theorems
appear elsewhere). It originates in [139], and Lin and Rajaraman [141, Section 4.1] outline the
necessary proof as applied to SUU-C.

Theorem 4.11 Consider a pseudoschedule {¥y} with total load H, where H is polynomially
bounded in n and m. Consider the pseudoschedule {3} generated by randomly shifting, or “de-
laying,” the start time of each chain schedule ¥y by a value chosen uniformly at random from
{0,1,...,H}. Then, {3y} has congestion at most O(log(n + m)/loglog(n + m)), with high
probability with respect to n and m. O

Notice that whenever the load of and length of {¥;} are bounded by O(E [TopT]), it follows that
the length of {¥;} is at most O(E [TopT]) supersteps, with high probability.

Since X repeats the assignment for some jobs, the load and length of the pseudoschedules
{Z)} are random variables. The random successes and failures of jobs (and hence load and length),
however, are independent of the initial random delay selected. Suppose that a random execution
yields a load and length of at most O(E [Topr]). Suppose also that Topr is polynomially bounded
in n and m. Then, apply Theorem 4.11 to conclude that each superstep has low congestion, and thus
the makespan is O (cmaxE [TopT]) = O((log(n + m)/ loglog(n + m))E [Topr]) steps. It remains
only to bound the random load and length of the pseudoschedule.

The following lemma implies that most executions of SUU-C result in low load and length. (I
address the fact that Topr may not be polynomially bounded later in the section.) In this lemma, y;

82

is the random variable indicating the number of repetitions of job j’s assignment used to complete
j.and d; denotes the length of job j’s assignment. In the SUU-C context, we have 7 = n +m. The
value W here represents the load or the length of the assignment. The lemma states that whenever
a job has length (or causes load) that is logarithmically smaller than the total, then the length of the
chain or (load on a machine) is close to the expectation, with high probability. Union bounding over
all O(n) chains (or m machines) implies that the total length (and load) of SUU-C schedule is close
to the expectation, with high probability.

Lemma 4.12 For each j € {1,2,...,n}, let y; be a positive integer drawn from the geometric
distribution Pr {y; = k} = (1/2)* (for k a positive integer), and let d; > 1 be a weight associated
with each j. Let W and 1 be chosen such that W/logn > d; for all j, W > Zj 2d;, and
logn < W. Then, we have Zj djyj < O(cW) with probability at least 1 — 1/n°, for any positive
constant c.

Proof. First, round all the d; up to the next power of 2, grouping the d; by value. Specifically, let
Zy, be the set of j such that d; is bounded in the following way

W/(2*logn) < d; < W/(28logn),

fork € {1,2,..., [log(W/logn)]}. Since
|14
DAy <D e D Y
j v 2 logn j€Z

our goal is first to bound > jez, Yj near its expectation.

To bound) ez, Yir view each y; as the length of a sequence of fair-coin flips that terminates
when flipping the first “head.” Thus, their sum exceeds some value by (to be assigned later) when
by, fair-coin flips do not yield | Z; | heads. Let By, be the sum of b; Bernoulli random variables with
expectation 1/2 (i.e., By, is the number of “heads” in a size-b, set of fair-coin flips). Then, we have

Pr{By, < |Zy|} = Pr {Zjezk y; > bk}.

We will bound Pr {3k s.t. By < |Zk|} < n~¢ by taking a union bound over all k. Since k
ranges over roughly log W values and W is not a function of 7, we need a stronger bound than
Pr{By, < |Zx|} < n~°. Instead, set by, such that Pr { By < |Zx|} < n=°27*. Then taking a union
bound over all k gives probability at most

log(W/ logn))
Z ,',,—02-16 S n—-C Z 2—k
k=1 k=1
< ¢

that there exists a k such that 3>, - y; > bi. Thus, setting by = O(c(|Zk| + logn + k)) and
applying a Chernoff bound for Pr { B, < |Z|} achieves the desired probability bound.

83

Thus, with probability at least 1 — 1/, we are left with

> diy; < szl O(c(|Ze] +logn + k)
J

W | Zg| logn+k
(ZQ’“I) (WZ 2klogn

1+ k&
< o[+0<CWZ +)
= (cW) ;
where the third line of the derivation follows from the restriction that W > 3 j 2d;. O

To conclude, if jobs are short, where short jobs have length at most v = ¢, pa/ log(n+m), and if
trp2 is polynomial in n and m, then SUU-C takes time O((log(n + m)/ loglog(n + m))E [Topt])
with high probability. To get this bound in expectation, simply modify SUU-C to run the O(n)-
approximation (as for SUU-I) whenever congestion, load, or length exceed the desired bounds,
which occurs with probability at most 1/n.

Handling long jobs

I now extend SUU-C to handle jobs having length greater than t7py/log(n + m). In the chain
schedule ¥z, replace each longer job by a “pause” of length t;,ps/log(n + m). Specifically, no
job from the chain is scheduled until ¢7,p3/ log(n + m) supersteps later. Next, divide the schedule
for SUU-C into O(log(n + m)) segments of length ¢1,p2/ log(n + m) supersteps. By construction,
there is at most one pause per chain per segment. After executing each segment, SUU-C executes
SUU-I on the jobs corresponding to the pauses starting in that segment (suspending the rest of the
chains until completion). Once those long jobs complete, SUU-I continues to the next segment.

All of the previous analyses (that assume jobs are short) still hold. In particular, this construction
satisfies the requirement that all relevant long jobs complete before the short jobs are scheduled
again. Since there are O(log(n + m)) executions of SUU-L, it follows that the total expected time
increases to

O(log(n + m) loglog(min {m, n}) - E [Topt]),

giving an O(log(n + m) loglog(min {m, n}))-approximation.

Extending to nonpolynomial ¢ p»

I now address the requirement in Theorem 4.11 that load and length be polynomially bounded in n
and m.

'We make use of a trick from [180, Section 3.1], also used in [141]. Consider the chain schedule
Xy (baving length O(¢1p2), with high probability) before the random delay is applied. Round
each assignment x;; down to the nearest multiple of ¢7pa/nm. We thus treat the assignments as
integers in the range {0,1,...,0(nm)}. We can then apply the random-delay technique (from
Theorem 4.11) to these rounded assignments.

The issue now is that the rounding may have decreased many assignments, and so we reinsert
steps into the schedule. In particular, whenever executing job j, we reinsert the steps (not supersteps)
removed from rounding into the execution, executing only job j during those steps.

84

Theorem 4.13 Let Tsyu.c be the random variable denoting the time at which an execution of
SUU-C completes all jobs. Then E [Tsyu.c] = O(log(n + m)log log(min {m, n})E [Topt])-

Proof. Ignoring the reinserted steps, Theorem 4.11 along with Lemma 4.12 scale appropriately to
imply that all short jobs are accounted for by O((log(n+m)/ loglog(n+m))E [Topr]) makespan.
Similarly, since there are log(n + m) segments, and long jobs are executed using SUU-I between
segments, the long jobs add O(log(n + m) - E [Tsyu.1]) to the makespan, which is bounded by
O(log(n + m) log log(min {m, n})E [Topt]) in Theorem 4.8.

It remains to consider the steps that must be reinserted after rounding down each z;; to the
nearest multiple of ¢7,po/nm. The execution of job j may result in reinserting at most an expected
2t1 po/nm steps for each machine, and hence 2¢1 pg /n steps in total. Summing across all n jobs
gives an expected 2t po steps, thereby increasing the total length of SUU-C by O(E [Topt]). U

4.4 Jobs with tree-like precedence constraints

Algorithms for tree-like precedence constraints can be obtained by trivially applying techniques
from [136], as done in [141]. I state the bound here without proof.

When precedence constraints form a directed forest, the technique from [136] decomposes the
graph into O(log n) blocks, each consisting of disjoint chains. Then, apply SUU-C O(log n) times.

Theorem 4.14 If precedence constraints form a directed forest, there exists a polynomially com-
putable schedule with expected makespan O(log(n) log(n + m) log log(min {m, n})E [Topr]). U

4.5 Stochastic scheduling

This section shows how the algorithms from Sections 4.2 and 4.3 apply to the problem of preemp-
tively scheduling, on unrelated parallel machines, jobs whose lengths are given by exponentially
distributed random variables. In the now commonplace Graham’s notation [109], these problems
are of the form R| pmtn, prec, pj~stoch |E [Ciax], and we refer to the group as STOCH. In gen-
eral, Graham’s notation takes the form «|3|y, where o denotes the machine environment (here, R
indicates unrelated machines), 3 denotes various constraints on jobs and the environment (pmtn is
often used as a shorthand for preemption and prec as a shorthand for precedence constraints), and
~ denotes the objective function (Crpax denotes makespan). I show an O(log log n)-approximation
for the special case of STOCH-I, when all jobs are independent. Then, I discuss briefly how the rest
of our algorithms for SUU generalize to the STOCH context.

Preliminaries

An instance Isoen = (J, M, {;},{vij}, G) of STOCH contains a set of jobs J, a set of machines
M, and a dependency graph G just as in SUU. The length p; of each job j, instead of identically 1, is
set randomly according to the exponential distribution with rate parameter \;, thatis, Pr {p; < c} =
1 —e~N. The actual value of p; is not revealed until the job completes. Finally, for each machine ¢
and job 7, v;; specifies the speed with which machine ¢ processes job j. Thus, if z;; is the amount of
time during which machine i processes job j, then j completes once Y, xijvi; > pj. For STOCH,
z;; need not be integral, but we do require that every job be processed by at most one machine at
any point in time.

85

An O(log log n)-approximation for STOCH-I

I now show how to provide a O(loglogn)-approximation for STOCH-I. The techniques here are
analogous to those in Section 4.2, and the algorithm STC-I operates similarly to SUU-I.

STC-I runs in K = loglogn + O(1) rounds, each corresponding to an oblivious schedule .
Construct the oblivious ¥, such that any job having p; < 2k—2 /A; completes by the end of the
round. Specifically, ¥, corresponds to solving the deterministic problem R| pmitn |Cax, with the
length each job j fixed as 2¥72/ Aj. Jobs remaining after the end of the Kth round are run one
at a time on the fastest possible machine. Use the algorithm from Lawler and Labetoulle [138] to
compute a schedule for R| pmin |Cpax in polynomial time, giving us each of our X;.

The following theorem states that STC-I approximates STOCH-I. The proof sketch is similar
to Theorem 4.4 and Lemma 4.2

Theorem 4.15 Let Tstc.1 be the random variable denoting the time it takes for an execution of
STC-1 to complete all jobs. Then, we have E [Tgrc.1] = O(loglogn - E [Toprt)).

Proof. ~ We show that the length of the first round approximates E [Topt] using a slight modifi-
cation to Lemma 4.2, where L; are set according to 1/(2);). Then, we use a competitive-analysis
argument to prove that the K — 1 subsequent rounds take expected time O(E [Toprt] - K), along the
lines of Lemma 4.5.

To complete the proof, we note that when max; p; is bounded above by 2logn/\;, all jobs
complete by the end of round K. Since the p; are exponentially distributed, we have

Pr{3jst p; > 2logn/\} <1/n

Thus, running jobs sequentially trivially induces an n-approximation, but we see that it occurs only
with probability at most 1/n. The expected completion time is thus dominated by the first K rounds,
which take O(E [Topt] - K) = O(loglogn - E [Topt]). O

A slight modification to this algorithm gives an O(loglog(n))-approximation to the slightly
weaker setting of STOCH-R-I. Here, restarts are premitted instead of preemption. In this setting,
a job may be moved from one machine to another, but it loses all previous progress when this
migration occurs. In contrast, recall that with preemption a job accrues work from all machines that
process it. The only necessary change to Theorem 4.15 is setting X5, according to R||Ciax instead
of R| pmitn |Crmax-

Other results

One can apply the remaining algorithms from Sections 4.2 and 4.3 to STOCH, with identical ap-
proximation ratios. Thus, we have algorithms achieving an O(log log(min {m, n}))-approximation
for STOCH-1, an O(log(n + m)loglog(min {m,n}))-approximation for STOCH-C, and also
an O(log(n) log(n + m) log log(min {m, n}))-approximation for STOCH-T. Here problems have
been named according to their SUU analogs.

4.6 Concluding remarks

In this chapter, I have presented improved approximation algorithms for multiprocessor scheduling
under uncertainty. I believe that these bounds are not tight. In particular, I believe that a fully
adaptive schedule should be able to trim an O(loglog(min {m,n})) factor from the bounds. It
would also be interesting if a greedy heuristic could achieve the same bounds. Finally, I would be

86

interested in developing nontrivial approximations for more general precedence constraints. At first
glance, however, it seems like any technique for SUU and arbitrary precedence constraints may
generalize to R| pmtn, prec |Cimax, which remains unsolved.

87

88

Chapter 5

Contention Resolution with
Heterogeneous Job Sizes

Randomized backoff is a common mechanism for reducing contention on a shared resource. Pro-
cesses/jobs make competing attempts to access the resource, but only one can gain control of the
resource at a time. If an access attempt fails due to contention, then that process waits for a ran-
dom amount of time before trying again. On subsequent failed attempts, the waiting time increases,
thereby reducing the probability of a collision and increasing the chance of successful resource
acquisition.

Backoff is used in many contexts, for example, network access (e.g., an Ethernet bus [154]),
wireless communication [2], transactional memory [119], and speculative-lock elision [171]. In
these and other applications of randomized backoff, the lengths of jobs fluctuate substantially. Most
theoretical analyses, however, assume unit-length jobs. In a transactional shared-memory system,
for example, jobs (transactions) can vary by four to five orders of magnitude [18]. In a wireless
network, jobs (packet transmissions) can vary by over three orders of magnitude. The job length
is proportional to both transmission length (in bits) and the transmission speed; the speed of the
transmitters alone varies considerably (e.g., from roughly 10Kb/s to 10Mb/s).

This chapter, representing joint work with Michael A. Bender and Seth Gilbert previously ap-
pearing in [45], gives the first theoretical analysis of randomized backoff when jobs have variable
sizes. This chapter analyzes a system consisting of jobs 1,...,n. Job i has size t; > 1, which
indicates that ¢ must run for ¢; consecutive units of time in order to complete. Define the volume
of the jobs as V = >_©_, t;. Each job knows its own size, but does not know any other job size
or the number of other jobs. For simplicity, assume that ¢; is integral and that time is divided into
unit-sized time slots, but the analyses extend to the case of nonintegral sizes.

The jobs compete for access to a simple channel and have no other means of communication.
Whenever a job of size t; makes a run attempt, it must execute for the full ¢; consecutive timeslots.
If a job’s run is uncontested, then the job completes successfully. If multiple jobs make overlapping
run attempts, then all attempts fail and the jobs must retry. A job i learns whether its run attempt
is successful only after the full ¢; time slots, not instantly when the collision occurs. A job gains
information only by making run attempts—there is no “listening” on the channel. No other infor-
mation (e.g., the number of jobs that made attempts in a time slot) is available to the job. (These
assumptions are roughly the worst case, in terms of information learned when a collision occurs.)

This chapter considers the batch problem (also called the control-tower problem [145] or
shopping-cart problem [94, 125]), where all jobs arrive at time 0. I present analyses of the worst-
case makespan, or maximum completion time among all jobs, of the protocols considered.

&9

This chapter discusses windowed backoff protocols in which time is divided into a sequence of
windows (W7, Wa, W3, ...). A job makes at most one run attempt in any window. A job can make
arun attempt only if the window is larger than the job size. Even if a job does fit in a window, it may
choose not to make a run attempt. If the job does choose to execute, it randomly chooses a position
in the window such that there is sufficient time left for the job to execute fully within the window.

Contributions

Binary exponential backoff and generalizations. I begin by presenting results on binary ex-
ponential backoff. Since a single large job can slow down many small jobs, the performance for
heterogeneous job sizes is significantly worse than for unit-sized jobs. I show that it achieves a
makespan of V20(VIogn) with error probability polynomially small in n. I next give a variant of
exponential backoff that backs off more slowly and yields a makespan of ©(V log V') also with
error probability small in n. A key tool is a tight analysis of “fixed-window backoff,” where all
windows have size ©(V'). These protocols achieve the specified makespan with error probability
polynomially small in the number of jobs.

Size-hashed backoff. The principal result in this chapter is a backoff protocol that achieves
makespan O(V log® log V). The main technique is to group jobs by size. Roughly speaking, size-
hashed backoff “hashes” jobs based on their size to specific windows in which they can make run
attempts. An explicit construction, based on the modulo hash function results in a makespan of
O(V+/Tog Vlog?log V). Grouping the job sizes using specially designed “good” hash functions
yields a makespan of O(V log® log V). I use the probabilistic method to show that such hash func-
tions exist. These protocols achieve the specified makespans with error probability polynomially
small in log V..

These results represent joint work with Michael A. Bender and Seth Gilbert, previously appear-
ing in [45].

Related work

The most closely related work is that of Gereb-Graus and Tsantilas [104] (see also [112]) and
Bender et al. [43]. Gereb-Graus and Tsantilas [104] show that for unit-size jobs in the batch set-
ting, there is a backoff-backon protocol (which is sometimes called “sawtooth”) that achieves an
optimal makespan of O(n); a similar backoff-backon approach also appears in Greenberg and Leis-
erson [112] in the context of routing. Bender et al. [43] analyze fixed backoff, exponential backoff,
polynomial backoff, and optimal monotone backoff in the batch setting; they analyze exponential
backoff in an adversarial queuing-theory setting. For binary exponential backoff (W; = 2') with
unit-size jobs, they prove a makespan of ©(nlogn). (With variable-length jobs the situation is
quite different; see Theorems 5.3 and 5.4.) Batch arrivals have been considered by several other
authors [107,108,110, 111] with the goal of routing h-relations, involving multiple channels.

In the wireless-networking literature, this batch problem is known as the shopping-cart prob-
lem [94,125] and models a shopping cart full of items with RFID tags passing through a sensor

all at the same time. Currently implemented protocols are far from achieving the linear makespan
described in [104,112].

90

5.1 Traditional backoff with variable-sized jobs

This section analyzes classic backoff protocols. I first consider fixed backoff, where the window
size is fixed at ©(V'). (This models the case where an estimate of the volume 1is known in advance.)
I then turn to binary exponential backoff, where the window size repeatedly doubles, i.e., W41 =
2W;. If a job fits in window, it makes a random run attempt. In both cases the makespan of these
strategies is worse for variable-size jobs than for unit-size jobs, with binary exponential backoff
significantly worse. I end by giving a faster monotone backoff strategy, whose performance matches
fixed backoff to within constant factors, even when the volume V' is not known in advance.

Fixed-volume backoff

I first analyze the protocol FIXED-BACKOFFy, where the volume V' of the jobs is known in ad-
vance. FIXED-BACKOFFyy is the windowed protocol in which W; = W = ©(V'), where W is the
(unchanging) window size throughout the protocol. I first show that FIXED-BACKOFFgy) has the
following lower bound:

Theorem 5.1 Let W = (1 + €)V for any constant ¢ € R*. There exists n sufficiently large such
that the makespan of FIXED-BACKOFFy is Q(W log n) with error probability polynomially small
inn.

Proof Suppose there is one large job of size n + 1 and n — 1 small jobs of size 1. Hence, the
total volume is V' = 2n. This proof proceeds by calculating a lower bound on the number of rounds
it takes for all but ©(log® n) of the small jobs to complete, which is clearly a lower bound on the
number of rounds for all jobs to complete.

First, observe that as long as the big job is still around, the probability of a small job colliding
with the big jobis (n+1)/W = (n+1)/(1+¢)V > 1/2(1+€), which is constant. Let b = 2(1+¢),
simplifying this expression to 1/b. As long as the number of small jobs is larger than Q(log n), we
can apply a Chernoff bound to conclude that the number of small jobs does not decrease by more
than a constant factor in a round, with high probability.

Specifically, suppose that a round begins with X jobs and that X' jobs survive that round.
Then, we have E[X’] > X/b. Using Chemoff bounds, we have that Pr[X’ < (1 — §)X/b] is
superpolynomially small. Specifically, let 6 = 1/ In% n. The error probability is largest when X
is smallest, which occurs at X = In®n. Thus, we obtain Pr[X’ < (1 — 8§)X/b] < e=X8*/20 =
e~ In®n(1/1n%n)2/2b _ n— Inn/2b

We want a lower bound on the number of rounds before we have fewer than In® n jobs remain-
ing. Let d = b/(1 — §). The number of rounds is therefore at least loggn — log(In® n). Since
log; n > log, n — 1, the number of rounds is at least log;, n — log;, (In® n) — 1, as promised. O

I now give a matching upper bound for FIXED-BACKOFFy, when W > 3V.

Theorem 5.2 Let W = oV, for o > 3. Then the makespan of FIXED-BACKOFFy is O(W logn)
with error probability polynomially small in n.

Proof. This proof shows that in each round, a constant fraction of the jobs complete. Consider a
given round r. Let n’ be the number and V' be the volume of the jobs remaining in round r. Divide
these jobs into two classes: “large jobs™ that are larger than twice the average remaining volume,
2V’ /n/, and “small jobs” that are at most size 2V’ /n/.

By a simple counting argument at least half of the jobs are small. The goal now is to show that a
constant fraction of these small jobs complete in round r, and hence a constant fraction of all jobs.

91

Without loss of generality, assume that each of these small jobs has size exactly 2V’ /n/, increasing
the total volume by at most a factor of 3. This modification can only increase the makespan.

There are at most n’/2 big jobs. Each big job can cause conflicts while it is executing and for a
duration 2V’ /n/ prior to starting. Therefore, the total time during which big jobs can cause conflicts
is V! + (n'/2)(2V’/n’) = 2V’. The probability, then, that a particular small job does not collide
with any big job is at least V/W > 1/3. The probability that a small job does not collide with
another small job is at least 2V’//W > 2/3. Therefore, each small jobs completes with probability
at least 2/9. By a Chernoff bound, in each round a constant fraction of jobs complete with high
probability. Therefore, after O(log n) rounds, all jobs have completed. O

There is a vast difference between fixed backoff in the variable-size and the unit-size case. If
all jobs are unit size, then the makespan is nlgn + O(n) with high probability [43]. Moreover,
the makespan improves when the window size dips slightly below the volume V' = n, say to W =
3n/ 1glglgn. Atthis point the makespan attains its optimal value of ©(n log log n/ log log log n) [43].
With variable-length jobs, the makespan grows arbitrarily large if W = V.

Exponential backoff

I next analyze binary exponential backoff with variable-size jobs. In binary exponential backoff,
W; = 2%, fori = 1,2,..., and for any job j in the system, j must make a run attempt in window
Wi, aslong as t; < W;.

Theorem 5.3 Consider n jobs having total volume V running binary exponential backoff. The
makespan is V20V1oen) wish error probability polynomially small in n (for sufficiently large n).

Proof. The proof will proceed as follows. First, divide the jobs into classes of “small” and
“large” jobs. Next, argue that as the rounds increase, an increasingly larger fraction of the small
jobs complete with high probability. As the rounds increase, the small jobs will also make up
an increasingly large fraction of the total number of jobs, meaning that as the rounds increase an
increasing large fraction of the total jobs complete with high probability. Next, show that O(,/n)
rounds after the window size is W, there are only O(log n) remaining jobs. Then, switch to an
alternative argument to show that all these O(log n) stragglers complete in the next O(,/n) rounds
with high probability.

Start considering windows when they are larger than the total volume V. Consider the ith
window of size W; > 2'V. Let n; and V; be the number of and total volume of the remaining jobs,
respectively. Consider all the jobs of size at most 2%/2V; /n;, that is, jobs of size at most 2/2 times
the average. By a simple counting argument, there are at least n;(1 — 1/ 21/ 2 such jobs. The total
volume of the larger jobs is at most V; < V. '

Consider first the probability of a given small job colliding with a big job. Each big job can
cause a conflict with a small job while it is executing and for a duration of 2¢/2V; /m; prior to starting.
Thus, the total time that the big jobs can cause conflicts is at most V; +n;(1/2¢/2)(2¢/2V; /n;) < 2V.
Consequently, the probability that a small job collides with a large job is 1/2¢L.

Consider next the probability of a given small job colliding with other small jobs. Each small
job has size at most 2%/2V;/n;, so a given small job can collide with a second small job if the first
small job begins during a time interval of at most 2¢/2+1V; /ni positions relative to the first. Thus,
the probability of two particular small jobs colliding is less than (2¥/2+1V; /n;)/W; < 1/n;24/27 1,
Consequently, a particular small job has probability at most 1/ 2i/2=1 of colliding with a small job.

Thus, the total probably that a small job collides is at most 1/2!1 4 1/2%/2-1 < 1/2i/2-2,
Hence, in expectation, at mosta 1/ 2i/2-2 fraction of small jobs do not complete in the sth window.

92

Since at most a 1/2%/2 fraction of jobs can be large, we can bound n;4; < 5 -274/2 n; in expectation.
As long as E [n;+1] = Q(logn), applying Chemoff bounds implies that n;,, is at most a constant
factor larger than its expectation, say n;y1 < n;/2%/273 with high probability, which means that
n; < n2¥im1 ~9/2+3,

Once j = O(y/logn), there are at most O(log n) jobs remaining, and we switch to a different
strategy. At this point the window has size v 20(Vlogn) Now, the probability that any job survives
a round is at most V lgn/(V20(VEn) = Ig n2-©(V18n) (This is the case even if we blow up
each remaining job to size V, which is an upper bound.) The probability that a packet survives
an additional ©(+/Ign) rounds, is O (2~©(8™), which is polynomially small in n. Therefore, the
probability that any remaining job survives that next ©(+/Ig n) rounds is also polynomially small in
n. The bounds on the makespan follow. 0

I now give a lower bound on the performance of binary exponential backoff.

Theorem 5.4 There exists an instance of (¢ + 3)mInm + 1 jobs for which the makespan of expo-
nential backoff is Q(V2V'8V/2) rounds with probability (1 — 1/m€), for any ¢ > 1.

Proof. Consider an instance in which there is one large job of size n and (¢ + 3)n Inn small jobs
of size 1, resulting in a total volume of V = (¢ + 3)nlnn + n. There are two regimes, which we
analyze separately. While W; < n, the small-window regime, only small jobs attempt to execute.
When W; > n, the large-window regime, the large job also attempts to execute. We first show
that no job completes in the small-window regime with high probability, and then show that no job
completes during the first (1/log n) windows of the large-window regime with high probability.

First, consider some window W; in the small-window regime. For some job j, the probability
of collision with some other job k is at least 1/n, since the windows are of size < n. Therefore, the
probability that j runs successfully is at most (1— 1/n)(¢+3)nInn < 1 /nc+3 Hence, the probability
of any job completing in window W is 1/n°*2. By a union bound over the first lg n windows, the
probability of even one job completing is at most lgn/nt2 < 1/nc*L.

Next, consider the first window W; > n in the large-window regime, and assume that no small
jobs completed during the small-window regime. The goal now is to calculate the probability that a
small job j does not complete prior to window W, for some r > 0. Whenn < W; < 2n, the big
job occupies at least half of the window. Therefore, the probability that job j fails to complete in W;
is at least 1/2. Similarly, the probability that job j fails to complete in window W;., given that job
4 has not completed in any smaller window, is at least 1/2" 1 . We thus conclude that the probability
that job j does not complete prior to window W; .. is at least [[_] 1/2* = 27"("=1/2 > 2-%,

Choose r = 1/Ign. Then the probability that job j does not survive until window W;_..- is at least
1/n. Finally, let us calculate the probability that at least one of the (¢ + 3)n Inn small jobs survives
for r rounds in the large-window regime: 1 — (1 — 1/n)*3ImI0" > 1 _ (1/¢)°™ > (1 — 1/n°).
Thus, with high probability, the makespan is at least n2vien,

Finally, express n2V8" in terms of V. We have V = (c+ 3)nlnn +n < (c+4)nlnn <
(c+ 4)nInV, implying that n > V/(c + 4) In V. With approximations, we obtain that n2visn <
v2VBV/2 Thus, in the small-job regime, the probability that even one small job completes is
smaller than 1/n°*1; in the large job regime, the probability that all jobs complete before yavieV/2
is smaller than 1/n°*1. Hence, with probability at least 1 —1/n¢, the makespan is at least vavieV/2,
with probability at least 1 — 1/n¢, as promised. O

93

Optimized exponential backoff

The following theorem states that a variant of exponential backoff chieves better performance by
backing off more slowly, nearly matching the performance of fixed backoff.

Theorem 5.5 There exists a parameter choice for exponential backoff achieving a makespan of
O(V log V') with error probability polynomially small in n.

Proof. The idea is to double window sizes (as in exponential backoff) but only after repeating a
window of size W ©(log W) times, allowing all jobs to complete when W is an accurate guess of
V. Thus, we effectively backoff by a factor of only 1 + O(1/log V') (instead of a factor of 2 as
with binary exponential backoff). This algorithm matches the asymptotic performance of FIXED-
BACKOFFg(v)- O

5.2 Size-hashed backoff

This section describes more efficient backoff protocols that improve on the traditional ones analyzed
in Section 5.1. The main difficulty in dealing with different-sized jobs is that larger jobs are not
likely to succeed until enough of the smaller jobs complete. This fact is exploited in Theorem 5.1’s
proof, where just one large job interferes with all the other jobs. The approach in this section
groups jobs by size so that jobs with different sizes cannot interfere with each other for too long.
In particular, we divide jobs into [lg V'] job classes based on size. Jobs of size ¢; belong to the
([lgts] + 1)th job class.

I first review a “backon” protocol for constant-sized jobs, which forms a subcomponent of our
new strategy. I then overview the general strategy for size-hashed backoff. Next, I discuss the
mapping “hash” functions (for which the protocol is named). I present the detailed protocol, called
size-hashed backoff , and two specific mapping functions resulting in specific instantiations of size-
hashed backoff. The first mapping yields a protocol with makespan O(V +/Iog V log? log V). I then
show the existence of a mapping that achieves O(V log®log V') makespan. Both of these versions
achieve the specified makespan with probability 1 — 1/log®V for any constant ¢ > 1 with a linear
dependence on ¢ in the makespan.

Backon protocol for constant-sized jobs

A key component of size-hashed backoff is the DESCEND “backon” subprotocol. This DESCEND
protocol (i.e., the participating jobs) takes three parameters: (1) jclass, the job class, (2) W, the
window size, and (3) r, a number of repetitions. The DESCEND(jclass, W, r) subprotocol consists
of roughly O(r(loglog W + log W)) windows, having total size O(rW). Specifically, it begins
with a window of size /. DESCEND then “backs on,” reducing the size of each subsequent window
by a constant fraction, until reaching a window of size W/ log W. The size-W/ log W window is
then repeated © (log W) times. Thus, the total size of all windows is ©(W) while decreasing by
a constant fraction, and ©(log W - W/log W) = ©(W') when repeating the smallest window, for
total size ©(W). To achieve higher probability of success, this entire process is repeated r times.
Suppose there are m jobs, all having the same size, with total volume V' < aW for some
constant «, and that these jobs all begin DESCEND at the same time with window size . Then, all
jobs finish during the DESCEND subprotocol with probability at least 1 — 1/2". The main idea of
the analysis here is that once the window has size {2(V"), then a constant fraction of the jobs should
complete. At this point, the protocol backs on, using windows that have smaller and smaller sizes.

94

A constant fraction of the jobs should complete in each of these smaller windows until reaching
the last window of size W/log W. At this point, the remaining jobs should have total volume
O(W/log W). The DESCEND protocol then essentially performs a FIXED-BACKOFFyy g w for
log W windows, giving all the remaining jobs a good chance of completing. In particular, there is a
constant probability that all jobs complete. Repeating 7 times drives the probability up to 1 —1/2".

Since a close variant of DESCEND has been previously analyzed by Gereb-Graus and Tsanti-
las [104], I omit the proof here.

Overview of size-hashed backoff

As in exponential backoff, size-hashed backoff proceeds by repeated doubling on the estimated
volume. We refer to each iteration as a round. The algorithm completes in (or before) the first
round in which the estimated volume is sufficiently large (V' > V). Each round of the protocol
proceeds in phases. When the estimated volume is sufficiently large, in each phase the number of
nonempty job classes — those with jobs remaining — is reduced by a constant fraction.

In the first phase, each job class runs separately. That is, take a time interval of size ©(rV),
where 7 = ©(loglog V) is a number of repetitions for the DESCEND protocol, and divide it into
lg V size-©(rV/log V') “buckets,” one for each job class. Specifically, bucket 7 is designated for
the jobs in job class i (i.e., those jobs j with size 2:=2 < t; < 2'~1). During the ith bucket, each
job in the ith job class runs the DESCEND subprotocol for time ©(rV/log V). If the volume in
the job class is small enough — specifically, O(V/log V) — then that job class completes, i.c.,
becomes empty. Since the volume is distributed among various job classes, a constant fraction of
the job classes have small enough volume to complete. In particular, a simple counting argument
shows that at least 1/2 of the Ig V' job classes have volume at most 2V/ 1g V. We conclude that after
O(rV) = O(V loglog V) time, at least half the job classes are empty.

It would be ideal if, during a second phase, we could allocate buckets for only the nonempty
job classes. Since at least half the job classes are empty, we can, in principle, allocate half as many
buckets of twice the size and run DESCEND for each bucket. Once again, at least half of the job
classes have a small enough volume to complete. After g lg V' phases following this process, there
is a single nonempty job class in a ©(r'V')-size bucket, and hence this last job class completes. Since
each of the phases takes time ©(V log log V'), the resulting makespan is O(V log®log V).

The problem with this approach is that jobs have no a priori knowledge as to which job classes
become empty during a given phase, and they cannot observe this information. Surprisingly, we can
still resurrect the spirit of this idea.

Consider again the situation after the first phase, when an unknown half of the Ig V" job classes
are empty. If we randomly choose two job classes from the entire set of 1g V, there is a 1/2 prob-
ability that exactly one of the two job classes is empty. Thus, if we assign two randomly chosen
job classes to each of the buckets, we expect half the buckets to contain exactly one non-empty job
class. Moreover, some fraction of these classes (in expectation) contain a volume that is now small
enough to complete (by a counting argument). Hence, in O(log log V') phases, all the job classes
complete.

This approach is also not feasible, as it involves coordination across entire job classes to choose
the same random bucket. The approach is, however, closer to the size-hashed protocol that we
describe later in the section.

To generalize, size-hashed backoff creates a deterministic mapping from lg V' job classes to a
set of fewer than lg V buckets. Given any small set of nonempty job classes, the mapping has the
property that a constant fraction are assigned to their own bucket,! thus allowing them to complete

"This property is similar to the collision property of a hash function. It also appears to have close connections to

95

using DESCEND. To ensure this property, size-hashed backoff uses extra buckets, resulting in a
makespan of O(V log® log V) for the fastest variant.

Mapping job classes to buckets

Here, I define the mapping problem more formally. We are given 7 objects X = {z1,x9,...,2n}
and some integer m < 7). Consider a mapping Fp,, : X — §(B) of objects to subsets of buckets
B = {Bi, By,...}. For example, Fp,,(x1) = {B1, By, Bio} indicates that object z; maps to
buckets By, By, and Bjp.

A mapping is an c-good mapping, with 0 < o < 1, if for each size-m subsets Y C X, there
exists a size-[am| subset of Y in which each object is assigned its own bucket. More formally, a
mapping is a-good if for any size-m subset Y, there exists a size-[am] subset Z C Y such that for
all elements z € Z, there exists some bucket b € F,,(z) such that no other objecty € Y — {z}
maps to the same bucket b.

This “good mapping” property is exactly what we need for size-hashed backoff. In the backoff
setting, 7 = [lg V] is the number of job classes. In any phase, we have an estimate (specifically, an
upper bound) of the number m of nonempty job classes; we do not know, however, which classes
are nonempty. We want at least a constant fraction of them to end up assigned to their own buckets.
We can then ensure that a constant fraction of job classes complete. For example, if a phase has
buckets of size 2rV/m (i.e., at most m /2 job classes are “too big” to complete) and the mapping
is a 3/4-good mapping, then at least m /4 of the nonempty job classes must be small enough to
complete in a bucket and be mapped to a unique bucket.

The size-hashed backoff algorithm considers good mappings of a simplified form, making the
functions (slightly) easier to think about. Rather than having arbitrary functions from objects to
bucket sets, split the buckets into “collections” of consecutive buckets. Each object is mapped
to exactly one bucket in each collection. Construct the mapping .y, as a sequence of functions
Fny = {From1, Frmn2s - - -, Fmnsmy } SUCh that frpm; : X — B maps an object to a single bucket in
the sth collection. Define s,y = |Fmy| to be the cardinality of the set of functions in the mapping
Fmny- Adding more functions to F,, increases the chance of achieving a-goodness. Define 7y, to
be the range of, or the number of buckets used by, the function f,;.

Size-hashed protocol

I now give the protocol for size-hashed backoff in more detail, assuming an a-good mapping
Fmn = {fmni}. Figure 5-1 gives pseudocode for the size-hashed protocol. I will argue that all
jobs eventually make successful run attempts with probability at least 1 — 1/1gV for any constant
¢ > 1. Since the makespan depends on the size and range of the mapping, however, I defer that
discussion to the particular variants later in the section.

Recall that size-hashed backoff executes in rounds (lines 3—-18), and we repeatedly double the
estimated volume in each round (line 4). Each round is divided into phases (lines 7-17), and phases
are constructed so that a constant fraction of job classes should complete using the a-good mapping
Fmn- Each phase is subdivided into subphases (lines 10-15) which correspond to each function
fmni in the mapping F7,,, so each job class maps to exactly one bucket in each subphase. The
a-goodness property guarantees that at least am of the m nonempty job classes are assigned to
unique buckets. The buckets use the geometrically-decreasing DESCEND protocol to ensure that
jobs complete when (1) the buckets are large enough, and (2) F,,, assigns a unique bucket (line 14).

expanders, specifically lossless, bipartite expanders.

96

S1ZE-HASHED-BACKOFF(t;) t> t; is the job size of process i.

1 Vi1

2 jclass « [lgti] +1

3 repeat > Each iteration is a round.

4 Ve 2V’

5 n—lgV’

6 m « n > m bounds the number of nonempty job classes.

7 repeat > Each iteration is a phase.

8 wsize «— ¢1V'/m > Window size for DESCEND.

9 bsize — c3 wsize lglg V' 1> Bucket for DESCEND iteration.

> Sy is the number of functions in the mapping.
> Iterate over subphases/functions.
10 for i < 1to sy
11 do > 7y, is the number of buckets used by fry;-
> Iterate over buckets.

12 for bucket « 1 to Ty,
13 do if fryi(jclass) = bucket
14 then DESCEND (jclass, wsize, c31glg V')
15 else Wait bsize time.
16 m «— |m/cz]
17 until m = 0> End loop over phases.

18 until job 7 executes > Ends the loop over rounds.

Figure 5-1: Pseudocode for the size-hashed backoff protocol, described form the perspective of a single job
with size t;.

Consider the ith phase, during which there should be (at most) m nonempty job classes remain-
ing. During this phase, the protocol creates sy, subphases, where subphase j uses 7.,,; buckets of
size bsize = O(rV/m) (lines 8-9). Thus, the total length of the 7th phase is Z;Z’l’ Tmni©(rV/m).
To understand what these numbers mean, consider the “ideal” mapping in which each job knows
exactly which job classes are empty; in this case Spy, = 1 and 7, = m, giving a total phase
length of ©(rV) = O(V log log V).

The following theorem states that SIZE-HASHED-BACKOFF completes all the jobs in lgV +
O(1) rounds (i.e., when the window size is ©(V')). I later analyze the length of each round — and
hence the makespan — in the context of the specific family of mappings F, which determines the

number of buckets.

Theorem 5.6 Suppose n jobs with volume V execute SIZE-HASHED-BACKOFF, beginning at the
same time. Suppose also that F is an a-good mapping for some constant o If we set c; = 2/a,
c2 = 2/(2 — a), and c3 = ¢ + 2, where c1, ¢y, c3 are the constants from the pseudocode, then all n
jobs complete before the (g V + O(1))th round with probability at least 1—1/1g°V, for any ¢ > 1.

Proof. This body of this proof proves the invariant that during the round with V. < V! < 2V, m
is an upper bound on the number of nonempty job classes. There are initially at most 7 job classes
(since V! > V). Thus, setting m — Ig V"’ in line 6 satisfies the invariant at the start of the round.
We use induction over the phases to show that the invariant holds.

97

Since the total volume of jobs is V' < V”, there can be at most |m/c; | job classes with volume
exceeding c; V' /m. These “large” job classes do not (necessarily) complete during the phase. Since
F is an a-good mapping, at most m — [am] of the nonempty job classes do not end up in their
own bucket in any subphase in lines 10-15. These “colliding” job classes also do not (necessarily)
complete during the phase.

There are at most m — [am] + [m/c1] < |m(1 — a + 1/c1)] large or colliding job classes.
Aslongasa > 1/ci,then0<1—a+1/cy <1.Ifwesetl/c; =1~ 1/ca = /2, then we have
1/ca =1 —a+ 1/c1, with ¢ > 1. Thus, at most |m/c2] job classes are large or colliding.

Consider a noncolliding, nonlarge job class. The DESCEND protocol guarantees that all jobs
in this job class complete during line 14 with probability at least 1 — 1/1g®V’/ > 1 —-1/1g® V.
Taking a union bound across all [Ig V] job classes gives probability at least 1 — 1/1g®~* V. Thus,
with this probability, at most [m/cy] job classes survive the phase.

Taking a union bound across all ©(lglg V') phases gives a success probability that is at least
1—1/1g%~2V. We conclude by setting c3 = ¢ + 2. O

We now provide two a-good mappings and analyze the resulting performance.

Analysis of a 1-good mapping

This section presents a l-good mapping based on a simple modulo function, wh1ch results in a
makespan of ©(V v/Iog V log? log V') for size-hashed backoff.

Let grmn; be the identity function: gpmyi(x;) = j. (That is, the jth object maps to bucket j.)
Recall that each function g;,,,; maps objects to exactly one bucket in collection 7. By construction,
each collection contains 7 buckets. Let fy,i(z;) = j (mod 7). Here, the ith collection contains ¢
buckets. I now define a 1-good mapping, parameterized by a variable ¢ (defined later), as follows:

o= { {gmm } : %fm> n/t
g {fmnla fmn2a ceey fmn@(mlogn)} :oifm < U/t .

Lemma 5.7 The functions Fy,, form a 1-good mapping.

Proof. If m > n/t, then F is the identity mapping, which is 1-good. Assume that m < 7/t.
Consider any two objects z; # x € X. Consider C prime numbers p1, pa, .. ., pc, each of which is
at least mlg 7, and suppose by contradiction they collide everywhere, i.e., frnp, (T;) = frnp, (Tk)
forall £ € 1,2,...,C. Then, the difference between j and k& must be divisble by each of these
prime numbers, and hence at least (mlgn)©. Choosing C > Ign/lg(mlgn), which implies that
(mlgn)€ > 7, yields a contradiction, since |j — k| can be at most 5. Thus, z; and xy, can collide
in at most C — 1 of the functions { fryp, }-

Recall that there are ©(m logn) functions f, ;. Thus for a sufficiently large constant in the
©-notation, there are at least mC = mlgn/lg(mlgn) functions fr,,; in which ¢ is prime and
© > mlgn. For a given set Y of size < m and a given object x; € Y, there must be one of the mC
functions in which z; does not collide with any of the < m objects in Y, implying that F is 1-good.

(N

The following lemma calculates the running time of each round.

Lemma 5.8 The running time for a single round of size-hashed backoff, with 1-good mapping F is
O(V'/log V' log?log V).

Proof. First, consider a phase corresponding to m > 7/t nonempty job classes. Recall that in this
case, the number s, of collections 1 and the number 7,,,,; of buckets in a collection is 7. Thus, the

98

running time of the phase is 7, 1 bsize = ©(nV'loglog V'/m) (lines 8-9). Since m decreases
geometrically (by ¢ in each phase), the sum of running times of all phases with m > 7/t can be
bounded by the phase with minimum m, which is thus O(tV” loglog V).

Consider next a phase where m < n/t. Then, the number s, of collections is ©(m logn)
and the number r,,,,; of buckets per collection is ¢. Thus, a phase completes in bsize Zf':"f Tmp =
bsize O(m?log? n) time. Substituting for bsize and 7, we have O(V' loglog V'm? log®n/m) =
O(mV'log® log V). Since m decreases geometrically, the sum of running times of all phases with
m < n/t can be bounded by the phase with maximum m, which is thus O(V'log V' log> V' /t).

Thus, the total duration of a round is ©(tV’loglog V' 4+ V'log V' log3 V'/t). Setting t =
VIog V' log log V' yields a time of ©(V’/Tog V" log? log V'). O
Theorem 5.6 shows that size-hashed backoff, when using this 1-good function, terminates in Ig V' +
O(1) rounds. Together with Lemma 5.8, we can conclude:

Corollary 5.9 Suppose that n jobs having total volume V begin executing size-hashed backoff,
using the 1-good mapping F, at the same time. Then, all n jobs make a successful run attempt in
time O(V \/log V log? log V') with probability at least 1 — 1/1g°V, for any ¢ > 1 and sufficiently
large V. O

Analysis of a 1/2-good mapping

The final version of size-hashed backoff achieves a makespan of O(V log®log V). This algorithm
relies on a more efficient a-good mapping, which I show exists using the probabilistic method. The
goal of this section is to prove the existence of a 1/2-good mapping where s, = ©(loglog V') and
Tmni = ©(m), yielding as corollary of Theorem 5.6 a makespan of O(V log®log V).

There are three log log V factors in the makespan. Two of these come from the general structure
of size-hashed backoff: there are ©(log log V') phases reducing the number of nonempty job classes,
and DESCEND runs for ©(log log V') windows. The third loglog V factor arises from the number
Smn of functions.

I first present a preliminary “balls and bins” lemma, which will be used later to existence of an
appropriate 1/2-good mapping.

Lemma 5.10 Suppose there are m balls thrown uniformly at random into cm bins, for ¢ > 15.
Then for some 0 < § < 1, the probability that fewer than m /2 bins have exactly one ball is < §™.

Proof. Let p be the number of bins with at least one ball. We first show that Pr[p < 3m/4] < §°™.
First, we calculate the probability that p < 4, for some particular 0 < ¢ < m. Specifically, for each
subset of 7 bins, we calculate the probability that all m balls land in one of those ¢ bins:

owsas (&) (7))

In particular, for ¢ = 3m/4, we conclude that:

m/4 3\ 1/4c\ €™
Prlp < 3m/4] < (?:71/3) S((ﬁ_)) |
cm 4c

1/4c
Choose § = (%—f;) , and notice that for ¢ > 15, § < 1, as required.

99

Next, when p bins have at least one ball, it is clear that at most m — p bins have at least two
balls. From this it follows that at least p — (m — p) = 2p — m bins have exactly one ball. Therefore,
with probability at least 1 — 6™, p > 3m/4, implying that m /2 bins have exactly one ball. O

I next show that there exist appropriate 1/2-good functions. This proof is merely existential, not
constructive.

Theorem 5.11 There exists a set of 1/2-good functions Fry = { fmny:i } with range rpyq; = ©(m)
and a number Spyy of subphases of ©(logn).

Proof. Show the existence of the functions {fy,,;} using the probabilistic method. For each 7
and m <), and for each i € [1, spy], choose finy; at random: choose fryi(7), j < 7, uniformly at
random from the range [1, 7y;]. The goal is to show that with probability strictly larger than 0, the
resulting family of functions is 1/2-good.

First, let us calculate for a fixed set Y of size at most m and a fixed ¢ € [1... sm,n], the
probability that fr,; is 1/2-good. Think of each of the m values fmyi(j), j € Y, as a ball that is
thrown uniformly at random into 7,,; = ©(m) bins. By Lemma 5.10, there exists some ¢ < 1 such
that the probability that fewer than 1/2 the “balls” are in their own bin is at most (™).

The probability that for all i € [1, syy] 1/2-goodness is violated is, therefore, at most §O(™smn <
§©(mlgn) since each function i is selected independently. ,

Finally, let us compute the number of possible sets Y of size m. In particular, there are (m;; ") <
(fr’;’) ways to distribute m possible jobs over 7 job classes. This expression reduces to:

(=)

< emomlen

(=)

Applying a union bound over the possible sets Y gives

Pr[Fpmy is not 1/2-good] §0(mlgn) gmomlgn
2—@(mlgnlg 1/8)+mige+mlgn

2—@(m Ign)+mlge
1

AN IN A

We conclude that with strictly positive probability, the randomly chosen F,,, is 1/2-good, and thus
a 1/2-good mapping with the desired properties exists. O

I conclude this section by calculating the makespan as a corollary of Theorem 5.6:

Corollary 5.12 Suppose that n jobs having total volume V begin executing size-hashed backoff
at the same time. Suppose also that size-hashed backoff uses a 1/2-good mapping F with sizes
Smy = ©O(logn) and ranges Timp; = ©(m). Then, all n jobs make successful run attempts in time
O(V log® log V) with probability at least 1 — 1/1g°V for any constant ¢ > 1 and sufficiently large
V.

Proof. By Theorem 5.6, all jobs complete by round lg V' + O(1) with appropriate probability.
Each phase in the round takes time bsize 3 ;7 Ty = bsize ©(m logn). Substituting for bsize and
n yields phase length ©(V log? log V). Summing over ©(log log V') phases completes the proof. [

100

5.3 Concluding remarks

This chapter studied randomized backoff protocols when jobs differ in size. I analyzed binary expo-
nential backoff and showed that it performs poorly, yielding makespan V20(VIen) A slower rate
of backoff achieves makespan ©(V log V'). The main result is the size-hashed backoff protocols,
where the backoff strategy depends on the job lengths. Size-hashed backoff (potentially) reduces
the makespan to only O(V log®log V).

These results raise many questions. First, what are the lower bounds? Is a linear makespan
possible? Next, on a simple channel jobs learn about contention only by making run attempts; what
if jobs can listen on the channel without running? Also, a job ¢ learns that a run attempt has failed
only after the full ¢; time steps. What if jobs learn of failure as soon as a collision occurs, enabling
them to abort early? Can exponential backoff and its variants perform better?

This chapter considers the batch problem, where jobs arrive at time 0. Ultimately I hope to
understand the online problem, where jobs arrive over time. What can be proved for queuing-theory
arrivals? Are there reasonable worst-case models, similar to those in [43], that apply to backoff with
different-size jobs?

101

102

Chapter 6

Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication
Using Compressed Sparse Blocks

When multiplying a large n x n sparse matrix A having nnz nonzeros by a dense n-vector z, the
memory bandwidth for reading A can limit overall performance. Consequently, most algorithms to
compute Az store A in a compressed format. One simple “tuple” representation stores each nonzero
of A as a triple consisting of its row index, its column index, and the nonzero value itself. This
representation, however, requires storing 2 nnz row and column indices, in addition to the nonzeros.
The current standard storage format for sparse matrices in scientific computing, compressed sparse
rows (CSR) [175], is more efficient, because it stores only n + nnz indices or pointers. This
reduction in storage of CSR compared with the tuple representation tends to result in faster serial
algorithms.

In the domain of parallel algorithms, however, CSR has its limitations. Although CSR lends
itself to a simple parallel algorithm for computing the matrix-vector product Az, this storage format
does not admit an efficient parallel algorithm for computing the product ATz, where AT denotes
the transpose of the matrix A — or equivalently, for computing the product xT A of a row vector "
by A. Although one could use compressed sparse columns (CSC) to compute ATz, many appli-
cations, including iterative linear system solvers such as biconjugate gradients and quasi-minimal
residual [175], require both Az and ATz. One could transpose A explicitly, but computing the trans-
pose for either CSR or CSC formats is expensive. Moreover, since matrix-vector multiplication for
sparse matrices is generally limited by memory bandwidth, it is desirable to find a storage format
for which both Az and ATz can be computed in parallel without performing more than nnz fetches
of nonzeros from the memory to compute either product.

This chapter presents a new storage format called compressed sparse blocks (CSB) for repre-
senting sparse matrices. Like CSR and CSC, the CSB format requires only n+ nnz words of storage
for indices. Because CSB does not favor rows over columns or vice versa, it admits efficient parallel
algorithms for computing either Az or ATz, as well as for computing Az when A is symmetric and
only half the matrix is actually stored. This chapter represents joint work with Aydin Bulug, Matteo
Frigo, John R. Gilbert, and Charles E. Leiserson, previously appearing in [160].

Previous work on parallel sparse matrix-vector multiplication has focused on reducing commu-
nication volume in a distributed-memory setting, often by using graph or hypergraph partitioning
techniques to find good data distributions for particular matrices ([63, 193], for example). Good
partitions generally exist for matrices whose structures arise from numerical discretizations of par-

103

T T T T T T
CSB_SpMV —+—
CSB_SpMV_T ---%---
CSR_SpMV(Serial) - e |
500 CSR_SpMV_T(Serial) --&-- g " 1
Star-P(y=Ax) --=-- aifpmemost St
Star-P(y'=x'A) --©-- /,,./""”
400 | L i
e 7 e
= <
@~ R
207 e g e -]
& & et = -'— =@ . __________ P sananspan: c |
2 _,,«I'&" Semiggemtt
100 & |
0 1 1 1 1 1 1
1 2 3 4 5 6 7 8
Processors

Figure 6-1: Average performance of Ar and ATz operations on 13 different matrices from our benchmark

test suite. CSB_SpMV and CSB_SpMV _T use compressed sparse blocks to perform Az and ATz, respec-
tively. CSR_SpMYV (Serial) and CSR_SpMV _T (Serial) use OSKI [195] and compressed sparse rows without
any matrix-specific optimizations. Star-P (y=Ax) and Star-P (y’=x’A) use Star-P [179], a parallel code based
on CSR. The experiments were run on a ccNUMA architecture powered by AMD Opteron 8214 (Santa Rosa)
Processors.

tial differential equations in two or three spatial dimensions. Our work, by contrast, is motivated
by multicore and manycore architectures, in which parallelism and memory bandwidth are key re-
sources. Our algorithms are efficient in these measures for matrices with arbitrary nonzero structure.

Figure 6-1 presents an overall summary of achieved performance. The serial CSR implementa-
tion uses plain OSKI [195] without any matrix-specific optimizations. The graph shows the average
performance over all our test matrices except for the largest, which failed to run on Star-P [179]
due to memory constraints. The performance is measured in Mflops (Millions of FLoating-point
OPerationS) per second. Both Az and ATz take 2 nnz flops. To measure performance, we di-
vide this value by the time it takes for the computation to complete. Section 6.6 provides detailed
performance results.

The remainder of this chapter is organized as follows. Section 6.1 discusses the limitations of the
CSR/CSC formats for parallelizing Az and ATz calculations. Section 6.2 describes the CSB format
for sparse matrices. Section 6.3 presents the algorithms for computing Az and A"z using the CSB
format, and Section 6.4 provides a theoretical analysis of their parallel performance. Section 6.5
describes the experimental setup we used, and Section 6.6 presents the results. Section 6.7 offers
some concluding remarks.

104

CSR_SPMV (4, z,y)

1 n« A rows
2 fori «— Oton — 1in parallel

3 do y[i] — 0O
4 for k — A.row_ptr[i] to A. row_ptrji + 1] — 1
5 do y[z] — y[i] + A. val[k] - z[A. col_ind[k]]

Figure 6-2: Parallel procedure for computing y < Az, where the n x n matrix A is stored in CSR format.

6.1 Conventional storage formats

This section describes the CSR and CSC sparse-matrix storage formats and explores their limitations
when it comes to computing both Az and ATz in parallel. We review the work/span formulation
of parallelism and show that performing Az with CSR (or equivalently ATz with CSC) yields
ample parallelism. We consider various strategies for performing A"z in parallel with CSR (or
equivalently Az with CSC) and why they are problematic.

The compressed sparse row (CSR) format stores the nonzeros (and ideally only the nonzeros) of
each matrix row in consecutive memory locations, and it stores an index to the first stored element
of each row. In one popular variant [85], CSR maintains one floating-point array val[nnz] and two
integer arrays, col_ind[nnz] and row_ptr[n| to store the matrix A = (a;;). The row_ptr array
stores the index of each row in wval. That is, if val[k] stores matrix element a;;, then row_ptr[i] <
k < row_ptr[i + 1]|. The col_ind array stores the column indices of the elements in the val array.
That is, if val[k] stores matrix element a;j, then col_ind[k] = j.

The compressed sparse column (CSC) format is analogous to CSR, except that the nonzeros of
each column, instead of row, are stored in contiguous memory locations. In other words, the CSC
format for A is obtained by storing AT in CSR format.

The earliest written description of CSR that we have been able to divine from the literature
is an unnamed “scheme” presented in Table 1 of the 1967 article [190] by Tinney and Walker,
although in 1963 Sato and Tinney [176] allude to what is probably CSR. Markowitz’s seminal
paper [150] on sparse Gaussian elimination does not discuss data structures, but it is likely that
Markowitz used such a format as well. CSR and CSC have since become ubiquitous in sparse
matrix computation [77,87,89,103, 106, 175].

The following lemma states the well-known bound on space used by the index data in the CSR
format (and hence the CSC format as well). By index data, we mean all data other than the nonzeros
— that is, the row_ptr and col_ind arrays.

Lemma 6.1 The CSR format uses nlg nnz + nnz lg n bits of index data for an n X n matrix.

For a CSR matrix A, computing y < Az in parallel is straightforward, as shown in Figure 6-2.
Procedure CSR_SPMYV in the figure computes each element of the output array in parallel, and it
does not suffer from race conditions, because each parallel iteration ¢ writes to a single location y[z]
which is not updated by any other iteration.

As in Chapters 2-3, we measure the complexity of this code, and other codes in this chapter, in
terms of work and span [72, Ch. 27]. The definitions are repeated again here for clarity:

o The work, denoted by 71, is the running time on 1 processor.
e The span, denoted by T',, is running time on an infinite number of processors.

105

CSR_SPMV_T(A, z,y)

n « A. cols
fori —O0ton —1
do y[i] — 0
fori: —Oton—1
do for k — A. row_ptr[i] to A. row_ptr[i +1] — 1
do y[A. col_ind[k]] «— y[A. col_ind[k]] + A. val[k] - z[5]

AN W -

Figure 6-3: Serial procedure for computing y «+ ATz, where the n x n matrix A is stored in CSR format.

The parallelism of the algorithm is 7} /T, which corresponds to the maximum possible speedup
on any number of processors. Generally, if a machine has somewhat fewer processors than the
parallelism of an application, a good scheduler should be able to achieve linear speedup. Thus, for a
fixed amount of work, our goal is to achieve a sufficiently small span so that the parallelism exceeds
the number of processors by a reasonable margin.

The work of CSR_SPMV is ©(nnz), assuming, as we shall, that nnz > n, because the body of
the outer loop starting in line 2 executes for n iterations, and the body of the inner loop starting in
line 4 executes for the number of nonzeros in the ith row, for a total of nnz times.

The span of CSR_SPMYV depends on the maximum number nr of nonzeros in any row of the
matrix A, since that number determines the worst-case time of any iteration of the loop in line 4.
The n iterations of the parallel loop in line 2 contribute ©(lg n) to the span, assuming that loops are
implemented as binary recursion. Thus, the total span is ©(nr +1gn).

The parallelism is therefore ©(nnz /(nr + lgn)). In many common situations, we have nnz =
©(n), which we will assume for estimation purposes. The maximum number nr of nonzeros in
any row can vary considerably, however, from a constant, if all rows have an average number of
nonzeros, to n, if the matrix has a dense row. If nr = O(1), then the parallelism is ©(nnz /lgn),
which is quite high for a matrix with a billion nonzeros. In particular, if we ignore constants for
the purpose of making a ballpark estimate, we have nnz /lgn =~ 10°/(1g 10°) > 3 x 107, which
is much larger than any number of processors one is likely to encounter in the near future. If
nr = ©(n), however, as is the case when there is even a single dense row, we have parallelism
O(nnz /n) = ©(1), which limits scalability dramatically. Fortunately, we can parallelize the inner
loop (line 4) using divide-and-conquer recursion to compute the sparse inner product in lg(nr) span
without affecting the asymptotic work, thereby achieving parallelism ©(nnz /1gn) in all cases.

Computing ATz serially can be accomplished by simply interchanging the row and column
indices [86], yielding the pseudocode shown in Figure 6-3. The work of procedure CSR_SPMV_T
is ©(nnz), the same as CSR_SPMV.

Parallelizing CSR_SPMV _T is not straightforward, however. We shall review several strategies
to see why it is problematic.

One idea is to parallelize the loops in lines 2 and 5, but this strategy yields minimal scalability.
First, the span of the procedure is ©(n), due to the loop in line 4. Thus, the parallelism can be at
most O(nnz /n), which is a small constant in most common situations. Second, in any practical
system, the communication and synchronization overhead for executing a small loop in parallel is
much larger than the execution time of the few operations executed in line 6.

Another idea is to execute the loop in line 4 in parallel. Unfortunately, this strategy introduces

106

race conditions in the read/modify/write to y[A. col_ind[k]] in line 6.! These races can be addressed
in two ways, neither of which is satisfactory.

The first solution involves locking column col_ind k] or using some other form of atomic up-
date.? This solution is unsatisfactory because of the high overhead of the lock compared to the cost
of the update. Moreover, if A contains a dense column, then the contention on the lock is ©(n),
which completely destroys any parallelism in the common case where nnz = ©(n).

The second solution involves splitting the output array y into multiple arrays y, in a way that
avoids races, and then accumulating y < X,y, at the end of the computation. For example, in
a system with P processors (or threads), one could postulate that processor p only operates on
array yp, thereby avoiding any races. This solution is unsatisfactory because the work becomes
©(nnz +Pn), where the last term comes from the need to initialize and accumulate P (dense)
length-n arrays. Thus, the parallel execution time is ©((nnz +Pn)/P) = (n) no matter how
many processors are available.

A third idea for parallelizing ATz is to explicitly transpose the matrix and then CSR_SPMV.
Unfortunately, parallel transposition of a sparse matrix in CSR format is costly and encounters
exactly the same problems we are trying to avoid. Moreover, every element is accessed at least
twice: once for the transpose, and once for the multiplication. Since the calculation of a matrix-
vector product tends to be memory-bandwidth limited, this strategy is generally inferior to any
strategy that accesses each element only once.

Finally, of course, we could store the matrix AT in CSR format, that is, storing A in CSC format,
but then computing Az becomes difficult.

To close this section, we should mention that if the matrix A is symmetric, so that only about
half the nonzeros need be stored — for example, those on or above the diagonal — then computing
Az in parallel for CSR is also problematic. For this example, the elements below the diagonal are
visited in an inconvenient order, as if they were stored in CSC format.

6.2 The CSB storage format

This section describes the CSB storage format for sparse matrices and shows that it uses the same
amount of storage space as the CSR and CSC formats. We also compare CSB to other blocking
schemes.

For a given block-size parameter 3, CSB partitions the n x n matrix A into n?/3? equal-sized
B x 3 square blocks?

Aoo Aoy o Agn/p-1
Ao A.IO A.u - Al,n./B-—l ’
An/B—I,O An/ﬂ——l,l e An/ﬂ——l,n/ﬂ-—l

where the block A;; is the 8 x 3 submatrix of A containing elements falling in rows i3,:0 +
1,...,(¢+1)B—1and columns j3,jB+1,...,(5 + 1)3 — 1 of A. For simplicity of presentation,
we shall assume that 3 is an exact power of 2 and that it divides n; relaxing these assumptions is
straightforward.

'In fact, if nnz > n, then the “pigeonhole principle” guarantees that the program has at least one race condition.

No mainstream hardware supports atomic update of floating-point quantities, however.

3The CSB format may be easily extended to nonsquare n X 7 matrices. In this case, the blocks remain as square
3 x (3 matrices, and there are nm /3% blocks.

107

Many or most of the individual blocks A;; are hypersparse [62], meaning that the ratio of
nonzeros to matrix dimension is asymptotically 0. For example, if 3 = /n and nnz = cn, the
average block has dimension /n and only ¢ nonzeros. The space to store a block should therefore
depend only on its nonzero count, not on its dimension.

CSB represents a block A;; by compactly storing a triple for each nonzero, associating with
the nonzero data element a row and column index. In contrast to the column index stored for each
nonzero in CSR, the row and column indices lie within the submatrix A;;, and hence require fewer
bits. In particular, if 3 = /n, then each index into A;; requires only half the bits of an index into A.
Since these blocks are stored contiguously in memory, CSB uses an auxiliary array of pointers to
locate the beginning of each block.

Specifically, CSB maintains a floating-point array val[nnz] and additionally three integer arrays
row_ind[nnz), col_ind[nnz], and blk_ptr[n?/3?). We describe each of these arrays in turn.

The wal array stores all the nonzeros of the matrix and is analogous to CSR’s array of the same
name. The difference is that CSR stores rows contiguously, whereas CSB stores blocks contigu-
ously. Although each block must be contiguous, the ordering among blocks is flexible. Let f(z, j)
be the bijection from pairs of block indices to integers in the range 0, 1, . . ., n2 /32 —1 that describes
the ordering among blocks. That is, f(%,§) < f(¢', j/) if and only if A;; appears before Ay ; in val.
We discuss choices of ordering later in this section.

The row_ind and col_ind arrays store the row and column indices, respectively, of the elements
in the val array. These indices are relative to the block containing the particular element, not the
entire matrix, and hence they range from 0 to # — 1. That is, if val[k| stores the matrix element
@iB+4r,jB-+c» Which is located in the rth row and cth column of the block A;;, then row_ind = r
and col_ind = c. As a practical matter, we can pack a corresponding pair of elements of row_ind
and col_ind into a single integer word of 2 1g 3 bits so that they make a single array of length nnz,
which is comparable to the storage needed by CSR for the col_ind array.

The blk_ptr array stores the index of each block in the val array, which is analogous to the
row_ptr array for CSR. If val k] stores a matrix element falling in block A;;, then blk_ptr(f (%, 5)] <
k < blk_ptr[f(i,7) +1].

The following lemma states the storage used for indices in the CSB format.

Lemma 6.2 The CSB format uses (n?/32) lg nnz +2 nnz g 8 bits of index data.

Proof. Since the val array contains nnz elements, referencing an element requires lg nnz bits,
and hence the blk_ptr array uses (n2/(3?) Ig nnz bits of storage.

For each element in val, we use lg 8 bits to represent the row index and lg g bits to represent
the column index, requiring a total of nnz lg 3 bits for each of row_ind and col_ind. Adding the
space used by all three indexing arrays completes the proof. O

To better understand the storage requirements of CSB, we present the following corollary for
B = y/n. In this case, both CSR (Lemma 6.1) and CSB use the same storage.

Corollary 6.3 The CSB format uses nlg nnz + nnz lgn bits of index data when 8 = /n. O

Thus far, we have not addressed the ordering of elements within each block or the ordering of
blocks. Within a block, we use a Z-Morton ordering [157], storing first all those elements in the
top-left quadrant, then the top-right, bottom-left, and finally bottom-right quadrants, using the same
layout recursively within each quadrant. In fact, these quadrants may be stored in any order, but the
recursive ordering is necessary for our algorithm to achieve good parallelism within a block.

The choice of storing the nonzeros within blocks in a recursive layout is opposite to the common
wisdom for storing dense matrices [90]. Although most compilers and architectures favor conven-
tional row/column ordering for optimal prefetching, the choice of layout within the block becomes

108

less significant for sparse blocks as they already do not take full advantage of such features. More
importantly, a recursive ordering allows us to efficiently determine the four quadrants of a block
using binary search, which is crucial for parallelizing individual blocks.

Our algorithm and analysis do not, however, require any particular ordering among blocks. A
Z-Morton ordering (or any recursive ordering) seems desirable as it should get better performance
in practice by providing spatial locality, and it matches the ordering within a block. Computing the
function f(z, j), however, is simpler for a row-major or column-major ordering among blocks.

Comparison with other blocking methods

A blocked variant of CSR, called BCSR, has been used for improving register reuse [121]. In
BCSR, the sparse matrix is divided into small dense blocks that are stored in consecutive memory
locations. The pointers are maintained to the first block on each row of blocks. BCSR storage is
converse to CSB storage, because BCSR stores a sparse collection of dense blocks, whereas CSB
stores a dense collection of sparse blocks. We conjecture that it would be advantageous to apply
BCSR-style register blocking to each individual sparse block of CSB.

Nishtala et al. [162] have proposed a data structure similar to CSB in the context of cache
blocking. Our work differs from theirs in two ways. First, CSB is symmetric without favoring rows
over columns. Second, our algorithms and analysis for CSB are designed for parallelism instead
of cache performance. As shown in Section 6.4, CSB supports ample parallelism for algorithms
computing Az and ATz, even on sparse and irregular matrices.

Blocking is also used in dense matrices. The Morton-hybrid layout [4, 143], for example,
uses a parameter equivalent to our parameter (3 for selecting the block size. Whereas in CSB we
store elements in a Morton ordering within blocks and an arbitrary ordering among blocks, the
Morton-hybrid layout stores elements in row-major order within blocks and a Morton ordering
among blocks. The Morton-hybrid layout is designed to take advantage of hardware and compiler
optimizations (within a block) while still exploiting the cache benefits of a recursive layout. Typi-
cally the block size is chosen to be 32 x 32, which is significantly smaller than the ©(,/n) block size
we propose for CSB. The Morton-hybrid layout, however, considers only dense matrices, for which
designing a matrix-vector multiplication algorithm with good parallelism is significantly easier.

6.3 Matrix-vector multiplication using CSB

This section describes a parallel algorithm for computing the sparse-matrix dense-vector product
y «— Az, where A is stored in CSB format. This algorithm can be used equally well for computing
y «— ATz by switching the roles of row and column. We first give an overview of the algorithm and
then describe it in detail.

At a high level, the CSB_SPMV multiplication algorithm simply multiplies each “blockrow”
by the vector z in parallel, where the ith blockrow is the row of blocks (AjpAi1---A;ip /3_1).
Since each blockrow multiplication writes to a different portion of the output vector, this part of the
algorithm contains no races due to write conflicts.

If the nonzeros were guaranteed to be distributed evenly among block rows, then the simple
blockrow parallelism would yield an efficient algorithm with n/3-way parallelism by simply per-
forming a serial multiplication for each blockrow. One cannot, in general, guarantee that distribution
of nonzeros will be so nice, however. In fact, sparse matrices in practice often include at least one
dense row containing roughly n nonzeros, whereas the number of nonzeros is only nnz ~ cn for
some small constant c. Thus, performing a serial multiplication for each blockrow yields no better

109

CSB_SPMV (4, z,y)

1 fori« Oton/B3 —1inparallel > For each blockrow.
2 do Initialize a dynamic array R;
3 R;[0] <O
4 count «— 0 o> Count nonzeroes in chunk.
5 forj —O0ton/B—2
6 do count «+ count + nnz(A;;)
7 if count + 'TL’I’LZ(A,'J'_H) > @(,3)
8 then > End the chunk, since the next block
> makes it too large.
9 append j to R; > Last block in chunk.
10 count «— 0
11 append n/3 — 1to R;
12 CSB_BLOCKROWV(A, %, R;, z,ylif.. (i +1)8 — 1])

Figure 6-4: Pseudocode for the matrix-vector multiplication y + Az. The procedure CSB_BLOCKROWV
(pseudocode for which can be found in Figure 6-5) as called here multiplies the blockrow by the vector z and
writes the output into the appropriate region of the output vector y. The notation z|a . . b] means the subarray
of z starting at index a and ending at index b. The function nnz(A;;) is a shorthand for A. blk_ptr{f(4,) +
1] — A. blk_ptr[f (i, j)], which calculates the number of nonzeros in the block A;;. For conciseness, we have
overloaded the ©(/3) notation (in line 7) to mean “a constant times 3”; any constant suffices for the analysis,
and we use the constant 3 in our implementation.

than c-way parallelism.

To make the algorithm robust to matrices of arbitrary nonzero structure, we must parallelize the
blockrow multiplication when a blockrow contains “too many” nonzeros. This level of paralleliza-
tion requires care to avoid races, however, because two blocks in the same blockrow write to the
same region within the output vector. Specifically, when a blockrow contains §2() nonzeros, we re-
cursively divide it “in half,” yielding two subblockrows, each containing roughly half the nonzeros.
Although each of these subblockrows can be multiplied in parallel, they may need to write to the
same region of the output vector. To avoid the races that might arise due to write conflicts between
the subblockrows, we allocate a temporary vector to store the result of one of the subblockrows
and allow the other subblockrow to use the output vector. After both subblockrow multiplications
complete, we serially add the temporary vector into the output vector.

To facilitate fast subblockrow divisions, we first partition the blockrow into “chunks” of con-
secutive blocks, each containing at most O(() nonzeros (when possible) and §2(/3) nonzeros on
average. The lower bound of ©(3) will allow us to amortize the cost of writing to the length-/3
temporary vector against the nonzeros in the chunk. By dividing a blockrow “in half,” we mean
assigning to each subblockrow roughly half the chunks.

Figure 6-4 gives the top-level algorithm, performing each blockrow vector multiplication in
parallel. The “for...in parallel do” construct means that each iteration of the for loop may be
executed in parallel with the others. For each loop iteration, we partition the blockrow into chunks
in lines 2-11 and then call the blockrow multiplication in line 12. The array R; stores the in-
dices of the last block in each chunk; specifically, the kth chunk, for £ > 0, includes blocks
(A Rife—11+1 44, Ryk—1+2 * - Ai ry[x)- A chunk consists of either a single block containing 2(3)
nonzeros, or it consists of many blocks containing O() nonzeros in total. To compute chunk

110

CSB_BLOCKROWV (4,1, R, z,y)

13 if R.length = 2 &> The subblockrow is a single chunk.
14 then ¢ — R[0] + 1 > Leftmost block in chunk.
15 T — R[1] > Rightmost block in chunk.
16 ifl=r
17 then > The chunk is a single (dense) block.
18 start «— A. blk_ptr(f(z,¢)]
19 end — A. blk_ptr[f(i,£) +1] -1
20 CSB_BLOCKV(A, start, end, 3, z,y)
21 else > The chunk is sparse.
22 multiply y < (AipAiey1 - -+ Air)x serially
23 return
> Since the block row is “dense,” split it in half.
24 mid — [R.length /2] — 1 > Divide chunks in half.

> Calculate the dividing point in the input vector z.
25 zmid «— B - (R[mid] — R|0])
26 allocate a length-{ temporary vector z, initialized to 0
27 in parallel
28 do CSB_BLOCKROWV(A, %, R[0..mid],z[0..zmid —1],y)
29 do CSB_BLOCKROWV (A, i, R[mid .. R. length —1],
z[zmid . . z. length —1], z)
30 fork—0tog—1
31 do ylk] « ylk] + z[k]

Figure 6-5: Pseudocode for the subblockrow vector product y <« (A;pdAipq1---Air)x. The
in parallel do . . .do . . . construct indicates that all of the do code blocks may execute in parallel. The proce-
dure CSB_BLOCKYV (pseudocode for which can be found in Figure 6-6) calculates the product of the block
and the vector in parallel.

boundaries, just iterate over blocks (in lines 5-10) until enough nonzeros are accrued.

Figure 6-5 gives the parallel algorithm CSB_BLOCKROWYV for multiplying a blockrow by a
vector, writing the result into the length- vector y. In lines 24-31, the algorithm recursively di-
vides the blockrow such that each half receives roughly the same number of chunks. We find the
appropriate middles of the chunk array R and the input vector z in lines 24 and 25, respectively.
We then allocate a length-(3 temporary vector z (line 26) and perform the recursive multiplications
on each subblockrow in parallel (lines 27-29), having one of the recursive multiplications write its
output to z. When these recursive multiplications complete, we merge the outputs into the vector y
(lines 30-31).

The recursion bottoms out when the blockrow consists of a single chunk (lines 14-23). If this
chunk contains many blocks, it is guaranteed to contain at most ©(/3) nonzeros, which is sufficiently
sparse to perform the serial multiplication in line 22. If, on the other hand, the chunk is a single
block, it may contain as many as 32 & n nonzeros. A serial multiplication here, therefore, would
be the bottleneck in the algorithm. Instead, we perform the parallel block-vector multiplication
CSB_BLOCKYV in line 20.

If the blockrow recursion reaches a single block, we perform a parallel multiplication of the
block by the vector, given in Figure 6-6. The block-vector multiplication proceeds by recursively

111

CSB_BLOCKV (A4, start, end, dim, x,y)

> A. val[start . . end] is a dim x dim matrix M.
32 if end — start < ©(dim)
33 then o> Perform the serial computation y «— y + Mz.
34 for k — start to end
35 do y[A. row_ind[k]] — y[A. row_ind[k]]
+A. vallk] - z[A. col_ind[k]]
36 return
37 > Recurse. Find the indices of the quadrants.
38 binary search start, start +1, ..., end for the smallest so
such that (A. row_ind|[s2] & dim /2) # 0
39 binary search start, start +1, ..., s2 — 1 for the smallest s;
such that (A. col_ind[s1] & dim /2) # 0
40 Dbinary search sg, 59 + 1,. .., end for the smallest s3
such that (A. col_ind[s3] & dim /2) # 0
41 in parallel

42 do CSB_BLOCKV(A, start, sy — 1, dim /2,z,y) > Moo.
43 do CSB_BLOCKV (4, s3, end, dim /2, x,y) v > Mys.
44 in parallel

45 do CSB_BLOCKV(A4, s1,s2 — 1,dim /2,z,y) > Mp;.
46 do CSB_BLOCKV(A4, s9,53 — 1, dim /2, z,y) > Mio.

Figure 6-6: Pseudocode for the subblock-vector product y «— Mz, where M is the list of tuples stored
in A. val[start .. end], A. row_ind[start . . end], and A. col_ind[start . . end), in recursive Z-Morton order.
The & operator is a bitwise AND of the two operands.

dividing the (sub)block M into quadrants Mg, Mo1, Mo, and M7, each of which is conveniently
stored contiguously in the Z-Morton-ordered val, row_ind, and col_ind arrays between indices
start and end. We perform binary searches to find the appropriate dividing points in the array in
lines 38-40.

To understand the pseudocode, consider the search for the dividing point so between Moo Mo1
and My9Mj;. For any recursively chosen dim x dim matrix M, the column indices and row indices
of all elements have the same leading lg 3 — lg dim bits. Moreover, for those elements in MooMo,
the next bit in the row index is a 0, whereas for those in elements in M;gM 1, the next bit in the
row index is 1. The algorithm does a binary search for the point at which this bit flips. The cases
for the dividing point between My and My; or Mo and My, are similar, except that we focus on
the column index instead of the row index.

After dividing the matrix into quadrants, we execute the matrix products involving matrices
Moo and M7 in parallel (lines 41-43), as they do not conflict on any outputs. After completing
these products, we execute the other two matrix products in parallel (lines 44-46).* This procedure
resembles a standard parallel divide-and-conquer matrix multiplication, except that our base case
of serial multiplication starts at a matrix containing ©(dim) nonzeros (lines 33-36). Note that
although we pass the full length-3 arrays x and y to each recursive call, the effective length of each

“The algorithm may instead do Moo and Mo in parallel followed by Mo1 and M1 in parallel without affecting the
performance analysis. Presenting the algorithm with two choices may yield better load balance.

112

array is halved implicitly by partitioning M into quadrants. Passing the full arrays is a technical
detail required to properly compute array indices, as the indices A. row_ind and A. col_ind store
offsets within the block.

The CSB_SPMV _T algorithm is identical to CSB_SPMYV, except that we operate over block-
columns rather than blockrows.

6.4 Analysis

In this section, we prove that for an n x n matrix with nnz nonzeros, CSB_SPMV operates with
work ©(nnz) and span O(y/nlgn) when 8 = \/n, yielding a parallelism of Q(nnz /\/nlgn). We
also provide bounds in terms of 3 and analyze the space usage.

We begin by analyzing block-vector multiplication.

Lemma 6.4 On a 3 x (3 block containing r nonzeros, CSB_BLOCKV runs with work O(r) and
span O(f3).

Proof. The span for multiplying a dim x dim matrix can be described by the recurrence S(dim) =
25(dim /2) + O(lg dim) = O(dim). The Ig dim term represents a loose upper bound on the cost
of the binary searches. In particular, the binary-search cost is O(lg z) for a submatrix containing z
nonzeros, and we have z < dim?, and hence O(lg z) = O(lg dim), for a dim X dim matrix.

To calculate the work, consider the degree-4 tree of recursive procedure calls, and associate with
each node the work done by that procedure call. We say that a node in the tree has height h if it
corresponds to a 2 x 2" subblock, i.e., if dim = 2" is the parameter passed into the corresponding
CSB_BLOCKYV call. Node heights are integers ranging from 0 to Ig 3. Observe that each height-A
node corresponds to a distinct 2% x 2" subblock (although subblocks may overlap for nodes having
different heights). A height-h leaf node (serial base case) corresponds to a subblock containing at
most z = O(2") nonzeros and has work linear in this number z of nonzeros. Summing across all
leaves, therefore, gives ©(r) work. A height-h internal node, on the other hand, corresponds to a
subblock containing at least 2’ = Q(2") nonzeros (or else it would not recurse further and be a
leaf) and has work O(lg2") = O(h) arising from the binary searches. There can thus be at most
O(r/2") height-h internal nodes having total work O((r/2")h). Summing across all heights gives
total work of E}ngo O((r/2Mh) = rzf =ﬂo O(h/2") = O(r) for internal nodes. Combining the
work at internal nodes and leaf nodes gives total work ©(r). O

The next lemma analyzes blockrow-vector multiplication.

Lemma 6.5 On a blockrow containing n/3 blocks and r nonzeros, CSB_BLOCKROWV runs with
work ©(r) and span O(B1g(n/B)).

Proof. Consider a call to CSB_BLOCKROWYV on a row that is partitioned into C chunks, and let
W (C) denote the work. The work per recursive call on a multichunk subblockrow is dominated by
the ©(3) work of initializing a temporary vector z and adding the vector z into the output vector y.
The work for a CSB_BLOCKROWV on a single-chunk subblockrow is linear in the number of
nonzeros in the chunk. (We perform linear work either in line 22 or in line 20 — see Lemma 6.4 for
the work of line 20.) We can thus describe the work by the recurrence W (C) < 2W([C/21)+0O(B)
with a base case of work linear in the nonzeros, which solves to W(C) = ©(C8 +r) for C > 1.
When C = 1, we have W(C) = ©(r), as we do not operate on the temporary vector z.

To bound work, it remains to bound the maximum number of chunks in a row. Notice that any
two consecutive chunks contain at least () nonzeros. This fact follows from the way chunks
are chosen in lines 2-11: a chunk is terminated only if adding the next block to the chunk would

113

increase the number of nonzeros to more than ©(3). Thus, a blockrow consists of a single chunk
whenever r = O(f) and at most O(r/(3) chunks whenever » = Q(3). Hence, the total work is
O(r).

We can describe the span of CSB_BLOCKROWV by the recurrence S(C) = S([C/2]) +
O(B) = O(BlgC) + S(1). The base case involves either serially multiplying a single chunk
containing at most O(3) nonzeros in line 22, which has span O(3), or multiplying a single block
in parallel in line 20, which also has span O(3) from Lemma 6.4. We have, therefore, a span of
O(BlgC) = O(Blg(n/pB)), since C < n/L. O

We are now ready to analyze matrix-vector multiplication itself.

Theorem 6.6 On annxn matrix containing nnz nonzeros, CSB_SPMV runs with work ©(n?/ 3%+
nnz) and span O(Blg(n/B) + n/B).

Proof. For each blockrow, we add ©(n/3) work and span for computing the chunks, which arise
from a serial scan of the n/3 blocks in the blockrow. Thus, the total work is O(n?/(3?) in addition to
the work for multiplying the blockrows, which is linear in the number of nonzeros from Lemma 6.5.

The total span is O(Ig(n/3)) to parallelize all the rows, plus O(n/f3) per row to partition the
row into chunks, plus the O(51g(n/B3)) span per blockrow from Lemma 6.5. O

The following corollary gives the work and span bounds when we choose 3 to yield the same
space for the CSB storage format as for the CSR or CSC formats.

Corollary 6.7 On an n x n matrix containing nnz > n nonzeros, when choosing 8 = ©(\/n),
CSB_SPMV runs with work ©(nnz) and span O(\/nlgn). CSB_SPMV thus achieves a paral-
lelism of Q(nnz /y/nlgn). 0

Since CSB_SPMV_T is isomorphic to CSB_SPMYV, we obtain the following corollary.

Corollary 6.8 On an n x n matrix containing nnz > n nonzeros, when choosing 8 = ©(\/n),
CSB_SPMV_T runs with work ©(nnz) and span O(y/nlgn). CSB_SPMV_T thus achieves a
parallelism of Q(nnz /\/nign). (]

The work of our algorithm is dominated by the space of the temporary vectors z, and thus the
space usage on an infinite number of processors matches the work bound. When run on fewer
processors however, the space usage reduces drastically. We can analyze the space in terms of the
serialization of the program, which corresponds to the program obtained by removing all parallel
keywords.

Lemma 6.9 On an n x n matrix, by choosing 3 = ©(+/n), the serialization of CSB_SPMV re-
quires O(y/nlgn) space (not counting the storage for the matrix itself).

Proof. The serialization executes one blockrow multiplication at a time. There are two space
overheads. First, we use O(n/3) = O(y/n) space for the chunk array. Second, we use (3 space to
store the temporary vector z for each outstanding recursive call to CSB_BLOCKROWV. Since the
recursion depth is O(lgn), the total space becomes O(Blgn) = O(y/nlgn). O

A typical work-stealing scheduler executes the program in a depth-first (serial) manner on each
processor. When a processor completes all its work, it “steals” work from a different processor,
beginning a depth-first execution from some unexecuted parallel branch. Although not all work-
stealing schedulers are space efficient, those maintaining the busy-leaves property [55] (e.g., as used
in the Cilk work-stealing scheduler [54]) are space efficient. The “busy-leaves” property roughly
says that if a procedure has begun (but not completed) executing, then there exists a processor
currently working on that procedure or one of its descendants procedures.

114

Corollary 6.10 Suppose that a work-stealing scheduler with the busy-leaves property schedules an
execution of CSB_SPMV on an n X n matrix with the choice 3 = \/n. Then, the execution requires

O(P\/nlgn) space.

Proof. Combine Lemma 6.9 and Theorem 1 from [54]. O

The work overhead of our algorithm may be reduced by increasing the constants in the ©(8)
threshold in line 7. Specifically, increasing this threshold by a constant factor reduces the number
of reads and writes to temporaries by the same constant factor. As these temporaries constitute the
majority of the work overhead of the algorithm, doubling the threshold nearly halves the overhead.
Increasing the threshold, however, also increases the span by a constant factor, and so there is a
trade-off.

6.5 Experimental design

This section describes our implementation of the CSB_SPMYV and CSB_SPMV _T algorithms, the
benchmark matrices we used to test the algorithms, the machines on which we ran our tests, and the
other codes with which we compared our algorithms.

Implementation

We parallelized our code using Cilk++ [69], which is a faithful extension of C++ for multicore and
shared-memory parallel programming. Cilk++ is based on the earlier MIT Cilk system [99], and it
employs dynamic load balancing and provably optimal task scheduling. The CSB code used for the
experiments is freely available for academic use at http://gauss.cs.ucsb.edu/~aydin/
software.html.

The row_ind and col.ind arrays of CSB, which store the row and column indices of each
nonzero within a block (i.e., the lower-order bits of the row and column indices within the matrix
A), are implemented as a single index array by concatenating the two values together. The higher-
order bits of row_ind and col_ind are stored only implicitly, and are retrieved by referencing the
blk_pir array.

The CSB blocks themselves are stored in row-major order, while the nonzeros within blocks are
in Z-Morton order. The row-major ordering among blocks may seem to break the overall symmetry
of CSB, but in practice it yields efficient handling of block indices for look-up in A. blk_ptr by
permitting an easily computed look-up function f(%, 7). The row-major ordering also allowed us to
count the nonzeros in a subblockrow more easily when computing y < Ax. This optimization is not
symmetric, but interestingly, we achieved similar performance when computing y < A"z, where
we must still aggregate the nonzeros in each block. In fact, in almost half the cases, computing ATz
was faster than Az, depending on the matrix structure.

The Z-Morton ordering on nonzeros in each block is equivalent to first interleaving the bits of
row_ind and col_ind, and then sorting the nonzeros using these bit-interleaved values as the keys.
Thus, it is tempting to store the index array in a bit-interleaved fashion, thereby simplifying the bi-
nary searches in lines 38—40. Converting to and from bit-interleaved integers, however, is expensive
with current hardware support,> which would be necessary for the serial base case in lines 33-36.
Instead, the kth element of the index array is the concatenation of row_ind[k] and col_ind[k], as
indicated earlier. This design choice of storing concatenated, instead of bit-interleaved, indices re-
quires either some care when performing the binary search (as presented in Figure 6-6) or implicitly

SRecent research [173] addresses these conversions.

115

converting from the concatenated to interleaved format when making a binary-search comparison.
Our preliminary implementation does the latter, using a C++ function object for comparisons [183].
In practice, the overhead of performing these conversions is small, since the number of binary-search
steps is small.

Performing the actual address calculation and determining the pointers to z and y vectors are
done by masking and bit-shifting. The bitmasks are determined dynamically by the CSB constructor
depending on the input matrix and the data type used for storing matrix indices. Our library allows
any data type to be used for matrix indices and handles any type of matrix dynamically. For the
results presented in Section 6.6, nonzero values are represented as double-precision floating-point
numbers, and indices are represented as 32-bit unsigned integers. Finally, as our library aims to
be general instead of matrix specific, we did not employ speculative low-level optimizations such
as software prefetching, pipelining, or matrix-specific optimizations such as index and/or value
compression [134,201], but we believe that CSB and our algorithms should not adversely affect
incorporation of these approaches.

Choosing the block size 3

We investigated different strategies to choose the block size that achieves the best performance. For
the types of loads we ran, we found that a block size slightly larger than /n delivers reasonable
performance. Figure 6-7 shows the effect of different blocksizes on the performance of the y «+ Az
operation with the representative matrix Kkt_power. The closest exact power of 2 to /n is 1024,
which turns out to be slightly suboptimal. In our experiments, the overall best performance was
achieved when [3 satisfies the equation [lg/n] <lg 8 < 3 + [lg v/n].

Merely setting 3 to a hard-coded value, however, is not robust for various reasons. First, the
elements stored in the index array should use the same data type as that used for matrix indices.
Specifically, the integer 8 — 1 should fit in 2 bytes so that a concatenated row_ind and col_ind
fit into 4 bytes. Second, the length-8 regions of the input vector and output vector y (which are
accessed when multiplying a single block) should comfortably fit into L2 cache. Finally, to ensure
speedup on matrices with evenly distributed nonzeros, there should be enough parallel slackness for
the parallelization across blockrows (i.e., the highest level parallelism). Specifically, when 3 grows
large, the parallelism is roughly bounded by O(nnz /(81g(n/B))) (by dividing the work and span
from Theorem 6.6). Thus, we want nnz /(G1g(n/f3)) to be “large enough,” which means limiting
the maximum magnitude of 3.

We adjusted our CSB constructor, therefore, to automatically select a reasonable block-size
parameter 3. It starts with 8 = 3 + [lg+/n| and keeps decreasing it until the aforementioned
constraints are satisfied. Although a research opportunity may exist to autotune the optimal block
size with respect to a specific matrix and architecture, in most test matrices, choosing 8 = /n
degraded performance by at most 10%—-15%. The optimal 3 value barely shifts along the z-axis
when running on different numbers of processors and is quite stable overall.

An optimization heuristic for structured matrices

Even though CSB_SPMV and CSB_SPMV_T are robust and exhibit plenty of parallelism on
most matrices, their practical performance can be improved on some sparse matrices having reg-
ular structure. In particular, a block diagonal matrix with equally sized blocks has nonzeros that
are evenly distributed across blockrows. In this case, a simple algorithm based on blockrow par-
allelism would suffice in place of the more complicated recursive method from CSB_BLOCKV.
This divide-and-conquer within blockrows incurs overhead that might unnecessarily degrade per-

116

500 T T T T T T T T T
p=8 '
400 | p=4 —w— S R
p= - e T b 4
2] ."" ! ’
g 300 < T
P ;
=% /
©
$ 200 EF & i
/ fx"
100 | 7 1
_'x/
0 --e-’?_- 1 1 1 1 1 1 1 1
@ G N % S L B 6 @
<) 3 ©. () 7,
T T e Y % B e 6“%, 9)639
Block size

Figure 6-7: The effect of block size parameter 3 on SpMV performance using the Kkt_power matrix. For
values # > 32768 and 3 < 32, the experiment failed to finish due to memory limitations. The experiment
was conducted on the AMD Opteron.

formance. Thus, when the nonzeros are evenly distributed across the blockrows, our implementation
of the top-level algorithm (given in Figure 6-4) calls the serial multiplication in line 12 instead of
the CSB_BLOCKROWYV procedure.

To see whether a given matrix is amenable to the optimization, we apply the following “balance”
heuristic. We calculate the imbalance among blockrows (or blockcolumns in the case of y «—
ATz) and apply the optimization only when no blocks have more than twice the average number of
nonzeros per blockrow. In other words, if max(nnz(4;)) < 2 - mean(nnz(A4;)), then the matrix is
considered to have balanced blockrows and the optimization is applied. Of course, this optimization
is not the only way to achieve a performance boost on structured matrices.

Optimization of temporary vectors

One of the most significant overheads of our algorithm is the use of temporary vectors to store inter-
mediate results when parallelizing a blockrow multiplication in CSB_BLOCKROWYV . The “balance”
heuristic above is one way of reducing this overhead when the nonzeros in the matrix are evenly dis-
tributed. For arbitrary matrices, however, we can still reduce the overhead in practice. In particular,
we only need to allocate the temporary vector z (in line 26) if both of the subsequent multiplica-
tions (lines 27-29) are scheduled in parallel. If the first recursive call completes before the second
recursive call begins, then we instead write directly into the output vector for both recursive calls.
In other words, when a blockrow multiplication is scheduled serially, the multiplication procedure
detects this fact and mimics a normal serial execution, without the use of temporary vectors. Our
implementation exploits an undocumented feature of Cilk++ to test whether the first call has com-
pleted before making the second recursive call, and we allocate the temporary as appropriate. This
test may also be implemented using Cilk++ reducers [97].

Sparse-matrix test suite

We conducted experiments on a diverse set of sparse matrices from real applications including
circuit simulation, finite-element computations, linear programming, and web-connectivity analysis.

117

Name Dimensions CSC (mean/max) || Name Dimensions CSC (mean/max)
Description Nonzeros CSB (mean/max) || Description Spy Plot Nonzeros CSB (mean/max)
Asic_320k 321K x 321K 6.0/ 157K Rajat31 4.69M x 4.69M 4.3/1.2K
circuit simulation 1,931K 4.9/2.3K circuit simulation 20.31M 3.9/8.7TK
Sme3Dc 42K x 42K 73.31405 Ldoor 952K x 952K 44.6/77
3D structural 3,148K 111.6/1368 || structural prob. 42.49M .49.1/43,872
mechanics
Parabolic_fem K‘” ¥ 525K x 525K 7.0/7 Bone010 986K x 986K 48.5/63
diff-convection j\ }_‘\\ 3,674K 3.5/1,534 3D trabecular bone 47.85M 51.5/18,670
reaction)
Mittelmann 1,468K x 1,961K 2717 Grid3D200 N 8M x 8M 6.97/7
LP problem i 5,382K 2.0/3,713 3D 7-point "\\;:\ 55.7M 3.7/9,818
finite-diff mesh
Rueci 1,977K x 109K 70.9/108 RMat23 8.4M x 8.4M 9.4/70.3K
Ill-conditioned 7,791K 9.4/36 Real-world 78.TM 4.771222.1K
least-squares graph model
Torso A 116K x 116K 73.3/1.2K Cagel5 5.15M x 5.16M 19.2/47
Finite diff, Sl 8,516K 41.3/36.6K || DNA electrophoresis 99.2M 15.6/39,712
2D model of torso
Kkt_power \\ N 2.06M x 2.06M 6.2/90 Webbase2001 118M x 118M 8.6/ 816K
optimal power flow, = . 12.77TM 3.1/1,840 ‘Web connectivity 1,019M 4.9/2,375K

nonlinear opt.

Figure 6-8: Structural information on the sparse matrices used in our experiments, ordered by increasing
number of nonzeros. The first ten matrices and Cagel5 are from the University of Florida sparse matrix
collection [76]. Grid3D200 is a 7-point finite difference mesh generated using the Matlab Mesh Partitioning
and Graph Separator Toolbox [105]. The RMat23 matrix [140], which models scale-free graphs, is generated
by using repeated Kronecker products [29]. We chose parameters A = 0.7, B = C = D = 0.1 for RMat23 in
order to generate skewed matrices. Webbase2001 is a crawl of the World Wide Web from the year 2001 [66].

118

These matrices not only cover a wide range of applications, but they also greatly vary in size, density,
and structure. The test suite contains both rectangular and square matrices. Almost half of the square
matrices are asymmetric. Figure 6-8 summarizes the 14 test matrices.

Included in Figure 6-8 is the load imbalance that is likely to occur for an SpMV algorithm
parallelized with respect to columns (CSC) and blocks (CSB). In the last column, the average (mean)
and the maximum number of nonzeros among columns (first line) and blocks (second line) are
shown for each matrix. The sparsity of matrices can be quantified by the average number of nonzeros
per column, which is equivalent to the mean of CSC. The sparsest matrix (Rajat31) has 4.3 nonzeros
per column on the average while the densest matrix has about 73 nonzeros per column (Sme3Dc
and Torso). For CSB, the reported mean/max values are obtained by setting the block dimension 3
to be approximately \/n, so that they are comparable with statistics from CSC.

Architectures and comparisons

We ran our experiments on three multicore superscalar architectures. Opteron is a ccNUMA archi-
tecture powered by AMD Opteron 8214 (Santa Rosa) processors clocked at 2.2 GHz. Each core of
Opteron has a private 1 MB L2 cache, and each socket has its own integrated memory controller.
Although it is an 8-socket dual-core system, we only experimented with up to 8 processors. Harper-
town is a dual-socket quad-core system running two Intel Xeon X5460’s, each clocked at 3.16 GHz.
Each socket has 12MB of L2 cache, shared among four cores, and a front-side bus (FSB) running
at 1333 MHz. Nehalem is a single-socket quad-core Intel Core i7 920 processor. Like Opteron,
Nehalem has an integrated memory controller. Each core is clocked at 2.66 GHz and has a private
256 KB L2 cache. The four cores share an 8 MB L3 cache.

While Opteron has 64 GB of RAM, Harpertown and Nehalem have only 8 GB and 6 GB, re-
spectively, which forced us to exclude our biggest test matrix (Webbase2001) from our runs on Intel
architectures. We compiled our code using gcc 4.1 on Opteron and Harpertown and with gcc
4.3 on Nehalem, all with optimization flags -02 -fno-rtti -fno-exceptions.

To evaluate our code on a single core, we compared its performance with “pure” OSKI matrix-
vector multiplication [195] running on one processor of Opteron. We did not enable OSKI’s pre-
processing step, which chooses blockings for cache and register usage that are tuned to a specific
matrix. We conjecture that such matrix-specific tuning techniques can be combined advantageously
with our CSB data structure and parallel algorithms.

To compare with a parallel code, we used the matrix-vector multiplication of Star-P [179] run-
ning on Opteron. Star-P is a distributed-memory code that uses CSR to represent sparse matrices
and distributes matrices to processor memories by equal-sized blocks of rows.

6.6 Experimental results

Figures 6-9 and 6-10 show how CSB_SPMV and CSB_SPMV _T, respectively, scale for the seven
smaller matrices on Opteron, and Figures 6-11 and 6-12 show similar results for the seven larger
matrices. In most cases, the two codes show virtually identical performance, confirming that the
CSB data structure and algorithms are equally suitable for both operations. In all the parallel scaling
graphs, only the values p = 1,2,4,8 are reported. They should be interpreted as performance
achievable by doubling the number of cores instead of as the exact performance on p threads (e.g.,
p = 8 is the best performance achieved for 5 < p < 8).

In general, we observed better speedups for larger problems. For example, the average speedup
of CSB_SPMV for the first seven matrices was 2.75 on 8 processors, whereas it was 3.03 for the sec-

119

700

600

500

400

MFlops/sec

300

200

100

2 _ A
‘z""é %o@ %, 43% ‘9‘5:&}, % %
RS %y,

Figure 6-9: CSB_SPMYV performance on Opteron (smaller matrices).

ond set of seven matrices with more nonzeros. Figure 6-13 summarizes these results. The speedups
are relative to the CSB code running on a single processor, which Figure 6-1 shows is competitive
with serial CSR codes. In another study [202] on the same Opteron architecture, multicore-specific
parallelization of the CSR code for 4 cores achieved comparable speedup to what we report here,
albeit on a slightly different sparse-matrix test suite. That study does not consider the y « ATz
operation, however, which is difficult to parallelize with CSR but which achieves the same perfor-
mance as y « Az when using CSB.

For CSB_SPMYV on 4 processors, CSB reached its highest speedup of 2.80 on the RMat23 ma-
trix, showing that this algorithm is robust even on a matrix with highly irregular nonzero structure.
On 8 processors, CSB_SPMYV reached its maximum speedup of 3.93 on the Webbase2001 matrix,
indicating the code’s ability to handle very large matrices without sacrificing parallel scalability.

Sublinear speedup occurs only after the memory-system bandwidth becomes the bottleneck.
This bottleneck occurs at different numbers of cores for different matrices. In most cases, we
observed nearly linear speedup up to 4 cores. Although the speedup is sublinear beyond 4 cores,
in every case (except CSB_SPMV on Mittelmann), we see some performance improvement going
from 4 to 8 cores on Opteron. Sublinear speedup of SpMV on superscalar multicore architectures
has been noted by others as well [202].

We conducted an additional experiment to verify that performance was limited by the memory-
system bandwidth, not by lack of parallelism. We repeated each scalar multiply-add operation of the
form y; < y; + A;jz; a fixed number ¢ of times. Although the resulting code computes y « tAz,
we ensured that the compiler did not optimize away any multiply-add operations. Setting £ = 10
did not affect the timings significantly—flops are indeed essentially free—but, for ¢ = 100, we
saw almost perfect linear speedup up to 16 cores, as shown in Figure 6-14. We performed this
experiment with Asic_320k, the smallest matrix in the test suite, which should exhibit the least
parallelism. Asic_320k is also irregular in structure, which means that our balance heuristic does
not apply. Nevertheless, CSB_SPMV scaled almost perfectly given enough flops per byte.

120

700

600

500

400

MFlops/sec

300

200

100

Figure 6-10: CSB_SPMV _T performance on Opteron (smaller matrices).

The parallel performance of CSB_SPMV and CSB_S PMV _T is generally not affected by highly
uneven row and column nonzero counts. The highly skewed matrices RMat23 and Webbase2001
achieved speedups as good as for matrices with flat row and column counts. An unusual case is the
Torso matrix. where both CSB_SPMV and CSB_SPMV_T were actually slower on 2 processors
than serially. This slowdown does not, however, mark a plateau in performance, since Torso speeds
up as we add more than 2 processors. We believe this behavior occurs because the overhead of intra-
block parallelization is not amortized for 2 processors. Torso requires a large number of intrablock
parallelization calls, because it is unusually irregular and dense.

Figure 6-15 shows the performance of CSB_SPMV on Harpertown for a subset of test ma-
trices. We do not report performance for CSB_SPMV T, as it was consistently close to that of
CSB_SPMV. The performance on this platform levels off beyond 4 processors for most matrices.
Indeed, the average Mflops/sec on 8 processors is only 3.5% higher than on 4 processors. We be-
lieve this plateau results from insufficient memory bandwidth. The continued speedup on Opteron
is due to its higher ratio of memory bandwidth (bytes) to peak performance (flops) per second.

Figure 6-16 summarizes the performance results of CSB_SPMV for the same subset of test
matrices on Nehalem. Despite having only 4 physical cores, for most matrices, Nehalem achieved
scaling up to 8 threads thanks to hyperthreading. Running 8 threads was necessary to utilize the
processor fully, because hyperthreading fills the pipeline more effectively. We observed that the
improvement from oversubscribing is not monotonic, however, because running more threads re-
duces the effective cache size available to each thread. Nehalem’s point-to-point interconnect is
faster than Opteron’s (a generation old Hypertransport 1.0), which explains its better speedup val-
ues when comparing the 4-core performance of both architectures. Its raw performance is also
impressive, beating both Opteron and Harpertown by large margins.

To determine CSB’s competitiveness with a conventional CSR code, we compared the per-
formance of the CSB serial code with plain OSKI using no matrix-specific optimizations such as
register or cache blocking. Figures 6-17 and 6-18 present the results of the comparison. As can be

121

700

600

500

400

300

MFlops/sec

200

100

Figure 6-11: CSB_SPMV performance on Opteron (larger matrices).

seen from the figures, CSB achieves similar serial performance to CSR.

In general, CSR seems to perform best on banded matrices, all of whose nonzeros are located
near the main diagonal. (The maximum distance of any nonzero from the diagonal is called the
matrix’s bandwidth, not to be confused with memory bandwidth.) If the matrix is banded, memory
accesses to the input vector x tend to be regular and thus favorable to cacheline reuse and automatic
prefetching. Strategies for reducing the bandwidth of a sparse matrix by permuting its rows and
columns have been studied extensively (see [74,191], for example). Many matrices, however, cannot
be permuted to have low bandwidth. For matrices with scattered nonzeros, CSB outperforms CSR,
because CSR incurs many cache misses when accessing the z vector. An example of this effect
occurs for the RMat23 matrix, where the CSB implementation is almost twice as fast as CSR.

Figure 6-19 compares the parallel performance of the CSB algorithms with Star-P. Star-P’s
blockrow data distribution does not afford any flexibility for load-balancing across processors. Load
balance is not an issue for matrices with nearly flat row counts, including finite-element and finite-
difference matrices, such as Grid3D200. Load balance does become an issue for skewed matrices
such as RMat23, however. Our performance results confirm this effect. CSB_SPMYV is about 500%
faster than Star-P’s SpMV routine for RMat23 on 8 cores. Moreover, for any number of processors,
CSB_SPMV runs faster for all the matrices we tested, including the structured ones.

6.7 CSB Discussion

Compressed sparse blocks allow parallel operations on sparse matrices to proceed either row-wise
or column-wise with equal facility. We have demonstrated the efficacy of the CSB storage format
for SpMV calculations on a sparse matrix or its transpose. It remains to be seen, however, whether
the CSB format is limited to SpMV calculations or if it can also be effective in enabling parallel
algorithms for multiplying two sparse matrices, performing LU-, LUP-, and related decomposi-
tions, linear programming, and a host of other problems for which serial sparse-matrix algorithms

122

800 T T T T T T

BN =

700

jehehohsl
I nmn

600

500

400

MFlops/sec

300

200

100

2. o G.. Q.
9.9{?), OO, % %

Figure 6-12: CSB_SPMV_T performance on Opteron (larger matrices).

CSB_SPMV | CSB_SPMV.T
-7 814 | 17 8-14
P=2 1.65 1.70 | 1.44 1.49
P=4 2.34 249 | 2.07 2.30
P=28 275 3.03 | 2.81 3.16

Processors

Figure 6-13: Average speedup results for relatively smaller (1-7) and larger (8-14) matrices. These experi-
ments were conducted on Opteron.

currently use the CSC and CSR storage formats.

The CSB format readily enables parallel SpMV calculations on a symmetric matrix where only
half the matrix is stored, but we were unable to attain one optimization that serial codes exploit in
this situation. In a typical serial code that computes y «— Az, where A = (a;;) is a symmetric
matrix, when a processor fetches a;; = a;; out of memory to perform the update y; «— y; + a5,
it can also perform the update y; «— y; + a;;; at the same time. This strategy halves the memory
bandwidth compared to executing CSB_SPMV on the matrix, where a;; = aj; is fetched twice. It
remains an open problem whether the 50% savings in storage for sparse matrices can be coupled
with a 50% savings in memory bandwidth, which is an important factor of 2, since it appears that
the bandwidth between multicore chips and DRAM will scale more slowly than core count.

16 T T T T T T T

14 - Asic_320k —— i

Speedup

1 1 1 1 1 1 1

1 2 4 6 8 10 12 14 16
Processors

Figure 6-14: Parallelism test for CSB_SPMV on Asic_320k obtained by artificially increasing the flops per
byte. The test shows that the algorithm exhibits substantial parallelism and scales almost perfectly given

sufficient memory bandwidth.

T

o
1] II1I? 11
AN

1000

oo

800

600

MFlops/sec

400

200

Figure 6-15: CSB_SPMV performance on Harpertown.

124

MFlops/sec

MFlops/sec

2000
1500
1000
500
0
Figure 6-16: CSB_SPMV performance on Nehalem.
300 T T T T T T T T T T T T
CSR mmmm
CSB mmmmm
250 -
200
150
100
50
A, 2
7@606\%@0 r%o/lz&@/o)‘%o@ . o.po ’f'?? %%.9{? (oéo, G’\?%OC:P‘Q@,& 6’@(%0@0 %66
N 7o)) %
éqf_ (a 4(_:6 6% ”’@, 4 @00 s T
7

Figure 6-17: Serial performance comparison of SpMV for CSB and CSR.

125

300 T T T T T T T T T T T

" CSR mmm—

250

200

150

MFlops/sec

100

50

Figure 6-18: Serial performance comparison of SpMV_T for CSB and CSR.

p=1 m—

CSB_SpMV / Star-P (MFlops/sec ratio)
B

Figure 6-19: Performance comparison of parallel CSB_SPMV with Star-P, which is a parallel-dialect of
Matlab. The vertical axis shows the performance ratio of CSB_.SPMV to Star-P. A direct comparison of
CSB_SPMV_T with Star-P was not possible, because Star-P does not natively support multiplying the trans-
pose of a sparse matrix by a vector.

126

Chapter 7

Introduction to Cache-Oblivious
Dictionaries

For over three decades, the B-tree [30,70] has been the data structure of choice for maintaining
searchable, ordered data on disk. Traditional B-trees are effective in a large part because they
minimize the number of blocks accessed during a search. Specifically, for block size B, an N-node
B-tree supports searches, insertions, and deletions in O(logg N) block transfers and scans of L
consecutive elements in O(1 + L/B) transfers. B-trees are designed to achieve good data locality
at only one level of the memory hierarchy and for one fixed block size.

In contrast, cache-oblivious (CO) B-trees attain near-optimal memory performance at all levels
of the memory hierarchy and for all block sizes (e.g., [34,35,37,41, 60]). A CO B-tree performs
a search operation with O(logg V) cache misses for all possible block sizes simultaneously, even
when the block size is unknown. In a complex memory hierarchy consisting of many levels of
cache, the CO B-tree minimizes the number of memory transfers between each adjacent cache
level. Thus CO B-trees perform near optimally in theory, and experiments have shown promise of
outperforming traditional B-trees [38, 128].

Chapters 8-10 describe various cache-oblivious dynamic dictionaries. A dynamic dictionary
is a data structure that supports insertions, deletions, and predecessor queries. When the cache-
oblivious dictionary achieves bounds resembling those of the B-tree, we call it a CO B-tree. Chap-
ter 8 investigates adding concurrency to cache-oblivious B-trees and Chapters 9 and 10 introduce
cache-oblivious dictionaries that have better insertion/deletion cost than CO B-trees.

Model

Most modern computers have a multilevel memory hierarchy, consisting of many levels, each acting
as a cache for the next. For example, a typical architecture may have registers, level 1 cache, level
2 cache, memory, and disk. Each of these levels has an access cost that may be one or more orders
of magnitude less than that of the next. When algorithms operate on large data sets, the cost of
memory accesses may dominate the cost incurred by processor operations, and hence a standard
RAM model [71, Section 2.2] may not accurately model the performance of the algorithm.

To model the cost of memory access more accurately, Aggarwal and Vitter [6] proposed the VO
model, which assumes a two-level memory hierarchy consisting of a fast memory of size M, a slow
memory of infinite size, and transfers from slow to fast memory in chunks or blocks of size B. A
memory access has cost 0 if the location currently resides in the fast memory. If the location being
accessed is not currently stored in fast memory, the relevant block must be brought into fast memory

127

(called a block transfer or /O), incurring a cost of 1, and another block may need to be evicted from
fast memory to make space. In this model, the algorithm designer has full control over which blocks
are evicted from the fast memory when a new block is brought in.

Frigo et al. [98] introduced the notion cache-oblivious algorithms. These algorithms, analyzed
in the ideal-cache model, are oblivious to the block size B and memory size M. The ideal-cache
model is roughly equivalent to the I/O model. The significant difference is that the ideal-cache
model assumes an optimal cache-replacement policy. Thus, although the cache-oblivious algorithms
themselves are not aware of and have no control over evictions, upper-bound analyses may posit any
eviction strategy.

Cache-oblivious algorithms are appealing for several reasons. Since performance analyses hold
for any B and M, an analysis in a two-level model holds for all levels of the memory hierarchy.
Moreover, an algorithm need not be aware of the particular architecture of the machine on which it
is run, allowing for more portable code programs.

To simplify bounds, we assume without loss of generality that at least on block of each data
structure is always in memory. Otherwise, all bounds should include a +1 (e.g., O(logg N + 1)
instead of O(logg N)). Moreover, we assume that B > 2. (To accommodate B = 1, many bounds
should have B replaced by B + 1, e.g., O(logp; IN), which is unnecessarily difficult to read.)

The query/insert tradeoff

In fact, there is a tradeoff between the cost of searching and inserting in external-memory dictio-
naries [59], and B-trees achieve only one point on this tradeoff. Another point is achieved by the
buffered-repository tree (BRT) [61]. The BRT is a cache-aware dictionary with searches and inserts
costing O(log N) and O((log N)/B) transfers, respectively. Thus, searches are slower in the BRT
than in the B-tree, whereas insertions are significantly faster.

More generally, Brodal and Fagerberg’s cache-aware data structure from [59], which we call
the BS-tree , spans a large range of this tradeoff: For 0 < ¢ < 1, the Bé-tree supports insertions
in amortized O((log e (IN/M))/B'~¢) transfers and searches in O(logpe, ;(N/M)) transfers.
Thus, when € = 1 it matches the performance of a B-tree, and when € = 0, it matches the per-
formance of a BRT. An interesting intermediate point is when £ = 1/2, in which case searches

~are slower by a factor of roughly 2, but insertions are faster by a factor of roughly v B/2 when

compared with a B-tree.

When € = 1, the B®-tree has performance matching a B-tree. When £ = 0, it has searches
costing O(logy(N/M)) and inserts costing O((1/B)logy(IN/M)). When € = 1/2, searches are
slower than B-trees by a factor of roughly 2, but insertions are faster than B-trees by a factor of
roughly vB/2.

Contributions

The next three chapters describe two main types of improvements to CO dictionaries: adding con-
currency to CO B-trees and designing dictionaries with lower update costs.

One shortcoming of the previously described CO B-trees is that they do not support concurrent
access by different processes, whereas typical applications, such as databases and file systems, need
to access and modify their data structures concurrently. Chapter 8 describes three variants of a CO
B-tree that supports concurrent accesses, using either lock-based and lock-free techniques. When
accessed serially, these data structures all have performance bounds comparable with serial CO
B-trees.

128

Data Structure Search Insert/Delete

static CO search [169] O(logg N) not supported

CO B-trees [37,41,60] | O(logg N) O(logg N)

lower bound [59] O(Llogp 47) = Q(pt=logp)

COLA [Chapter 9] O(logs 57) O(% logy o)

shuttle tree [42] O(logg N) O (m logz N + 4 log? N)
xDict [Chapter 10] O(Llogp 4F) O (5t==1logp %7)

Figure 7-1: Summary of known cache-oblivious dictionaries. Our xDict uses the tall-cache assumption that

M = Q(B?). For previous data structures, the logz N may well reduce to logg 'NM' but only logg N was
explicitly proven.

Figure 7-2: The van Emde Boas layout from [169]. A tree of height h is cut into subtrees at height near h /2,
so each subtree is ©(v/N) in size. This example shows the layout of a tree with 8 leaves.

Chapters 9 and 10 explore the query/insert tradeoff for cache-oblivious dictionaries, summarized
by the Figure 7-1. Chapter 9 describes a simple cache-oblivious data structure, called the COLA,
that achieves the optimal bounds at one point on the tradeoff curve, namely matching the Bé-tree for
e = 0. Chapter 10 gives a more complicated cache-oblivious data structure, called the xDict, that
achieves the tradeoff for any € > 0. The shuttle tree mentioned in Figure 7-1 is also my work, but
the data structure is more complicated and provides less general bounds than the xDict, and hence
it is not included in this thesis.

7.1 Previous cache-oblivious dictionaries

There are two main approaches to implementing serial CO B-trees. One approach is based on
packed-memory arrays and the other on exponential search trees. Both approaches employ a static
CO search tree [169] as a building block.

A static CO search tree [169] contains a set of N ordered elements in a complete binary tree. It
executes searches using O(logg N) memory transfers. The elements are laid out in an array using
the van Emde Boas layout (see Figure 7-2). Each node in the binary tree is assigned to a position
in a length-IN array. To perform the layout, split the tree at roughly half its height to obtain O(VN)
subtrees each with (—)(\/N) nodes. Each subtree is assigned to a contiguous portion of the array,
within which the subtree is recursively laid out. The array is stored in memory or disk contiguously.

A static CO search tree executes searches in O(logg N) memory transfers [169]. To understand

129

this bound, consider the decomposition of the tree into subtrees of size between v/B and B. The
depth of each subtree is at least Ig v/ B, so any root-to-leaf path encounters at most Ig N/lg VB =
2logp N subtrees. Each of these subtrees can cross at most one block boundary, leading to 4 log g N
memory transfers in the worst case. This analysis is not tight. In particular, [39] proves a bound of

(2 +6/ \/E) logg N + O(1) expected memory transfers, where the expectation is taken over the

random placement of the tree in memory. ‘

The packed-memory array [41, 123] appeared in the earliest serial dynamic CO B-tree [35]
and subsequent simplifications [37,60]. The packed-memory array stores the keys in order while
permitting dynamic insertions and deletions, and uses a static CO search tree to search the array
efficiently. The idea is to store all of the leaves of the tree in order in a single large array. If
all the elements were packed into adjacent slots of the array with no spaces, then each insertion
might require (V) elements to be displaced in the worst case, as in insertion sort. The fix to this
problem is to leave some gaps. In particular,one can arrange the gaps in the array so that insertions
and deletions require amortized O(logg V') memory transfers.! The amortized analysis allows that

_ every once in a while the array can be cleaned up, e.g., when space is running out.

An exponential search tree [21,23] can be used to transform a static CO search tree into a dy-
namic CO B-tree [34,170]. An exponential search tree is similar in structure to a B-tree except that
nodes vary dramatically in size, there are only O(log log N) nodes on any root-to-leaf path, and the
rebalancing scheme (where nodes are split and merged) is based on some weight-balance property,
such as strong weight balance [25,41, 152, 159]. Typically, if a node contains M elements, then
its parent node contains something near M2 elements. Each node in the tree is laid out in mem-
ory using a van Emde Boas layout, and the balancing scheme allows updates to the tree sufficient
flexibility to maintain the efficient layout despite changes in the tree.

Most cache-oblivious dictionaries fall into the class of cache-oblivious B-trees, having bounds
matching the B-tree. The notable exception is a cache-oblivious alternative to the BRT, which
we call here the lazy-search BRT [24]. The lazy-search BRT supports searches and insertions in
O(log N) and O((log N)/B) block transfers, respectively. Although it is useful in some contexts
(such as cache-oblivious graph traversal) the lazy-search BRT is unsatisfactory in two crucial ways:
keys are assumed to be in the range [1, V|, and searches are heavily amortized, so that the whole cost
of searching is charged to the cost of previous insertions. Indeed, any given search might involve
scanning the entire data structure.

!Sometimes the data structures are described with time bounds O(logg N+ (log? N)/B). It usually depends whether
the data structure is intended to support range queries efficiently, returning all elements having keys between two values.
In fact, by using scanning structures such as {40] and amortizing the cost of range queries, the (log® N)}/ B-term can be
reduced or removed. However, the details and resulting structure are not directly pertinent to this thesis.

130

Chapter 8

Concurrent Cache-Oblivious B-Trees

This chapter explores adding concurrency to cache-oblivious B-trees. This chapter represents joint
work with Michael A. Bender, Seth Gilbert, and Bradley C. Kuszmaul, previously appearing in [47].

Concurrency introduces a number of challenges. A naive approach would lock segments of the
data structure during updates. For example, in a traditional B-tree, each block is locked before being
updated. Unfortunately, in the CO model it is difficult to determine the correct granularity at which
to acquire locks because the block size is unknown. Locking too small a region yields complicated
locking protocols. If the locking is not done carefully, deadlocks may be possible. Although locking
larger regions may simplify the locking, locking too large a region may result in poor concurrency.

Second, since searches may be more common than inserts or deletes in database and file-system
applications, it is desirable that searches be nonblocking, meaning that each search can continue
to make progress, even if other operations are stalled. Our solutions in this section do not require
search operations to acquire locks.

Another problem arises with maintaining the “balance” of the data structure. Both main ap-
proaches to designing serial CO B-trees require careful weight balance of the trees to ensure effi-
cient operations. With concurrent updates, the balance can be difficult to maintain. For example,
the amortized analysis of a packed-memory array allows a process to rewrite the data structure
completely once in a while. But if the rewrite acquires locks that prevent other processors from
accessing the data structure, then the average concurrency drops: on average only O(1) processes
can access the data structure concurrently.

Finally, there is a significant asymmetry between reading and writing the memory. We analyze
our data structures under the concurrent read, exclusive write (CREW) model. Two processes can
read a location in memory concurrently, since two caches can simultaneously hold the same block
in a read-only state. In fact, it may be preferable if parts of the data structure, e.g., the root, are
accessed frequently and maintained in cache by all processes. On the other hand, when multiple
processes attempt to write to a block, the memory accesses to the block are effectively serialized,
and all parallelism is lost.

We respond to these challenges by developing new serial data structures that are more amenable
to parallel accesses, and then we apply concurrency techniques to develop concurrent CO B-trees.

Contributions

This section presents three concurrent CO B-tree data structures: (1) an exponential CO B-tree
(lock-based), (2) a packed-memory CO B-tree (lock-based), and (3) a packed-memory CO B-tree
(nonblocking). I show that each data structure is linearizable, meaning that each completed opera-
tion (and a subset of the incomplete operations) can be assigned a serialization point; each operation

131

appears, from an external viewer’s perspective, as if it occurs exactly at the serialization point (see,
e.g., [120,144]). I also show that the lock-based data structures are deadlock free, i.e., that some
operation always eventually completes. I show that the nonblocking B-tree is lock-free; that is, even
if some processes fail, some operation always completes. When only one process is executing, the
trees gain all the performance advantages of optimal cache-obliviousness; for example, they execute
operations with the same asymptotic performance as the nonconcurrent versions and behave well
on a multi-level cache hierarchy without any explicit coding for the cache parameters. When more
than one process is executing, the B-trees still operate correctly and with little interference between
disparate operations.

The remainder of this chapter is organized as follows. Section 8.1 describes the concurrent CO
model. Section 8.2 presents a lock-based exponential CO B-tree. Section 8.3 presents a lock-based
packed-memory CO B-tree, whereas Section 8.4 presents a lock-free packed-memory CO B-tree.
Section 8.5 concludes with a discussion of other ways to build concurrent CO B-trees and of open
problems.

8.1 The concurrent-cache model

This section describes the concurrent-cache model and discusses the concurrency mechanisms used
throughout the remainder of this chapter. '

Recall that the ideal-cache model, as introduced in [98, 169], models a single level of the mem-
ory hierarchy. The model consists of two components: the main memory and a cache of size M.
Both are divided into blocks of size B. The values of M and B are unknown to the algorithm, hence
the term “cache oblivious.”

This section extends the model to a parallel (or distributed) setting consisting of P processors,
which we call the concurrent-cache model. We consider the case where each processor has its own
cache of size M/P. As multiple processors are accessing the same memory locations concurrently,
we also consider how the caches interact. In particular, we assume an interaction among caches that
is consistent with the MSI cache coherency or more complicated variants like MESI or MOESI [116,
Section 4.3]. A block may reside in multiple caches, in which case it is marked in each cache as
shared. A block that is marked exclusive can reside in only a single cache. A processor can perform
write operations only on blocks for which it has obtained exclusive access.

If multiple processors concurrently request shared access to a block, the block is placed in each
of the caches and marked shared. If a processor requests exclusive access to a block, the block is
evicted from all other caches and is marked exclusive; all other concurrent requests for shared or
exclusive access fail. If a cache is full, each successful request results in an old block being evicted;
we assume that the least recently used (LRU) block is evicted!.

Each request for a block costs one memory transfer, regardless of whether the block is requested
shared or exclusive and regardless of whether the request is successful. There is no fairness guaran-
tee that a processor is eventually successful. A single read or write operation may, in fact, be quite
expensive, resulting in a large number of unsuccessful block requests if there are many concurrent
write requests.

This chapter makes use of two different types of support for concurrency. For much of the work,
the algorithms use locks to synchronize access to pieces of memory. The nonblocking algorithms,
on the other hand, use load-linked/store-conditional (LL/SC) operations. An LL operation reads

!The results presented later in this section hold for any reasonable replacement strategy. Unlike in the ideal-cache
model, we do not assume an optimal replacement strategy. One difficulty in the concurrent setting is that it is unclear
what “optimal” means because changes to the replacement policy affect the scheduling of the program.

132

Figure 8-1: An exponential CO B-tree. Nodes grow doubly exponentially in the height of the tree. The
dark-gray keys of internal nodes point to the smallest key in the corresponding subtree. Data is stored in
the leaves. The light-gray keys of internal nodes indicate the right-key. Each node has a right-link pointer,
forming a linked list at each level in the tree.

the memory and sets a link bit. If any other operation modifies the memory, the link bit is cleared.
An SC operation writes the memory only if the link bit is still set; otherwise the memory remains
unchanged. The return value of an SC indicates whether it succeeded. This approach avoids the
well-known ABA problem that arises with compare and swap (CAS). There has been much research
showing how to implement LL/SC with CAS and vice versa, implying that in some senses they are
equivalent (e.g., [124, 155]), and we believe it is not difficult to modify our construction for the
somewhat more common CAS operation.

8.2 Exponential CO B-tree

This section presents a concurrent cache-oblivious B-tree called an exponential cache-oblivious B-
tree. We first describe the data structure. We then prove correctness and give a performance analysis.
We conclude by discussing some interesting aspects of this data structure.

Data-structure description

The data structure uses a strongly weight-balanced exponential tree [21, 23, 34, 170] to support
searches and insertions. Each node in the tree contains child pointers and a pointer to the node’s
right sibling right-link (see Figure 8-1). A node maintains the set of keys that partition its children
and the key right-key of the minimum element in the right-link’s subtree.

I now describe the protocol for searches and insertions. The tree is parameterized by a constant
o, for 1 < o < 2, which affects the height of the tree. A leaf has height 0, and a node has height 1
more than its children.

To search for a key «, begin at the root of the tree and follow child pointers or sibling pointers
until reaching the leaf containing the target element. At each intermediate node, examine right-key.
If right-key is smaller than k, then follow the right-link pointer. Otherwise, proceed to the appro-
priate child. On reaching a leaf, the search continues to follow right-link pointers until either x is
found, in which case the search returns the value, or a key larger than « is found, in which case the
search fails. No locks are acquired during the search.

To insert key &, first search for the leaf where « should be inserted, acquire a lock on the leaf,
perform the insertion at the leaf, and release the lock. Next, determine whether the key should be
promoted, inserting « into the parent node, or whether the insertion is complete. Promote the key x
in the leaf to height 1 with probability 1/2. When promoting «, reacquire the lock and split the leaf
u containing <. Node u keeps all of the keys less than x, and the new leaf acquires all of the keys
greater than or equal to k. We then release the lock and insert the promoted key & into the parent of

133

Figure 8-2: An example of an insert of the key 25 into an exponential CO B-tree. a) The original state of the
tree. b) The resulting structure if 25 is not promoted. c) The resulting structure if 25 is promoted one level.

Figure 8-3: The modified van Emde Boas layout of a node in the exponential CO B-tree. This figure shows
the layout of the node given as the root of (a) in Figure 8-2

u. More generally, when inserting a key « into a node u’ of height h, promote x from height A to
height h + 1 with probability 1/ 22" which entails reacquiring the lock, splitting u’, releasing the
lock, and inserting « into the parent of u'. Figure 8-2 gives an example of an insert and promotion.

In order for nodes to be searched efficiently, the keys in a node are laid out using a modified van
Emde Boas layout so that a node of size k can be traversed with ©(logg k + 1) memory transfers.
An example of the modified layout is depicted in Figure 8-3. The node is divided into two pieces:
a size-[[k]] array? filled from the left holding all the keys in a node, and a complete [[%]]-leaf static
CO search tree used to efficiently search for an array slot. The ith leaf of the search tree points to
the i-th array slot. In particular, a leaf containing in the search tree points to « in the array. This
approach is reminiscent of [36] and reappears in Section 8.3. The static CO search tree consists of
keys laid out in a van Emde Boas layout [169]. This layout consumes (roughly) the first 2/3 of the
memory used by a node. The final 1/3 of the memory contains the keys stored in order as a vector.
A search within a node ends at the location of the key in the vector.

When rewriting a node (either because the key is inserted into the node or because the node is
split), update the modified van Emde Boas layout as follows. First, rewrite the vector of keys (the
right half of the node), proceeding from largest to smallest. Then, update the van Emde Boas layout
in the left half. This layout ensures that we can perform concurrent searches even while the node is
being updated. If an insert is performed when the vector of keys is already full, allocate a new node
of twice the size.

Correctness

I first argue that the data structure is correct, even under concurrent operations. The most common
way of showing that an algorithm implements a linearizable object is to show that in every execution
there exists a total ordering of the operations with the following properties: (1) the ordering is con-
sistent with the desired insert/search semantics, and (2) if one operation completes before another

2The hyperceiling of z, denoted [[z]], is defined to be 2°271 i e., the smallest power of 2 greater than z.

134

begins, then the first operation precedes the second in the ordering. Linearizability follows due to a
straightforward extension of Lemmas 13.10 and 13.16 in [144].

Theorem 8.1 The exponential CO B-tree guarantees linearizable insertions and searches and is
deadlock-free.

Proof In order to show that an appropriate total ordering of the operations exists, we need to
show that if an operation completes, all later operations are consistent with it. If an insert operation
finishes inserting a key « at level 0, or a search finds a key « at level 0, then any later search also
finds key «.

First, notice that at every level of the tree, the keys are stored in order. That is, if the largest key
in node u is k, then the smallest key in node u. right-link is larger than «. This fact follows from
the two ways in which a node is modified. First, a node may be split, say at key «. In this case, the
split operation, protected by a lock, preserves this invariant, moving and all larger elements into
a new node that can be reached by right-link. Second, a key x may be inserted into a node. In this
case, the node is locked during the insertion, and some of the elements in the vector half of the node
move one position to the right to make room for «.

This ordering of keys implies that if key « is in the leaf node of the tree when a search begins,
then throughout the search, a leaf containing key & is reachable by the search. The search begins
at the root, and every leaf is reachable from the root. We proceed by induction: at each step of
the search, a child pointer is chosen with a minimum key no greater than . The only interesting
case is when the child node is concurrently split. Even in this case, however, the child node always
contains a key no greater than , since ever when a node is split it always maintains its minimal key.
We conclude that & is still reachable.

Finally, deadlock-freedom follows immediately, since each process holds only one lock at a
time. 0

Cache-oblivious performance

1 first consider the cost of individual operations when the data structure is accessed sequentially. I
then analyze the concurrent performance for the special case when search and insert operations are
performed uniformly at random. In both cases, we use the cache-oblivious cost model, counting
only cache misses.

Theorem 8.2 Assume that operations occur sequentially. A search in an N-node tree takes
O(logg N+log, Ig B) block transfers, with high probability; an insert takes O(log g N+log, lg B)
block transfers in expectation.

Proof. If a tree contains N keys, then with high probability every node in the tree has height less
than log,, lg N +O(1). Specifically, the probability that any key is promoted to height log,, 1g N +c
is O(n=o"*1). Moreover if u is a node of height h, then the number of keys in u is 0(2"‘) in
expectation and 0(20‘ lg N) with high probability. For h = Q(log, lglg N), that is, when the
expected node size is at least Q(lg V), the number of keys is O(2°‘h) with high probability.

Next, let us calculate the cost of a search operation. Searching a node of helght h, laid out in the
modified van Emde Boas layout, for the correct child pointer takes O(log 3(20‘)+ logglg N + 1)
memory transfers, with high probability. For nodes with expected size at least 2(Ig V), the cost is
O(log B(2ah) + 1) with high probability. We sum the costs for all levels, ranging from ¢ = 0 to

135

log, 1g N + c (with high probability):

log, lg N+c log, lglg N

O(h'
) Z logp(2¢) + Z logglg N
0 0

The right term sums to O(logg N). For the left term, we consider two cases, depending on whether
or not the size of the node is at least B. For all levels where the nodes are of size at least B, the cost
is dominated by the root node (or possibly a node just below the root). For nodes of size less than
B, the block transfer cost is at most 2. Therefore, with high probability, the total cost of a search is
O(aflogg N + log, 1g B).

Next, let us calculate the cost of an insert operation. Consider the expected cost of inserting a
key at helght h of the tree. Recall that we promote a key from level A — 1 to level h with probability
2-°""" Thus, the probability of promoting a given key to height h is 2~ (e*~1)/(a=1)_ The cost of
inserting a key into a node at he1ght h, given that the key reaches height 4, is the cost of rebuilding
the entire node, which is O(1 + 22" g N /B) with high probability.

Therefore, the expected cost at height h is the probability that the insertion reaches
height h times the cost of rewntmg a node at height h. The expected cost is therefore
0(2’6("‘ ~Dlog N/B), where 0 < ¢/ < 1 depends on the value of o. The summation across
all log,, lg N 4+ O(1) levels, then, is O(1g N/B) < O(logg N). Hence, the total expected cost of
an insert is the cost of searching for the right place to do the insertion plus the cost of doing the
insertion. That is, the cost is O(logg NV + log,, lg B). O

If there are a large number of concurrent search operations, but no insert operations, each search
operation incurs a cost of O(logg N + log,, lg B), the same as in the sequential case.

If there are many concurrent searches and insertions, the performance may deteriorate. The
performance of concurrent B-trees is difficult to analyze since it depends significantly on the un-
derlying parallelism of the algorithm using the data structure. For example, if a large number of
processes all try to modify a single key, then the operations are inherently serialized, and there is
no possible parallelism. As a result, for most concurrent B-tree constructions (and in fact, most
concurrent data structures), little is stated about their performance. Here, I analyze the “optimally
parallel” case, where each search and insertion operation targets a randomly chosen key, and I show
that the data structure still yields good performance.

Theorem 8.3 Assume that all processors are synchronous. If there are O(N?/2=1/polylogN)
search and insert operations performed uniformly at random in an N-node tree, then the expected
cost for an operation is O(logg N + log,, lg N) block transfers.

Proof. In the absence of concurrent insert operations, each search operation takes O(logg N +
log, g B) block transfers. If an insert operation delays a search, we charge that cost to the insert
operation.

An insert operation has four costs: finding the insert point, acquiring the lock, performing the
insertion, and delaying other operations. As in the case of searches, finding the appropriate insertion
point costs O(logg N + log,, 1g B) plus any delays caused by other insert operations. Again, this
delay is charged to the operation causing the delay.

The cost of performing the insertion itself is equivalent to the sequential case: O(logg N +
log,, 1g B) block transfers.

It remains to calculate the effects of concurrency: the cost of acquiring the lock and the cost
of delaying other operations. Consider the expected cost incurred by a delaying one particular

136

concurrent operation at some level h. There are three components to the cost: (1) the probability
that the insert reaches level h, (2) the probability that the insert modifies the same node, and (3) the
actual cost incurred by delaying the concurrent operation.

First, as in Theorem 8.2, an insert operation reaches level h with probability 2—(a*-1)/

Next, an insert chooses the same node at level h with probability 2(¢"*'=1/(e=1) /N since
the expected number of nodes at level A is the number of elements promoted to level & + 1. This
probability can vary by at most a log factor, with high probability, which is enough for the proof.

Finally, we consider the real cost of delaying any one operation at level h. The expected size
of a node at level h in the tree is O(2ah). Therefore, the concurrent operation can be delayed by at
most 0(20"') in expecation, which is the cost of performing one memory transfer for each element
in the node. This worst-case analysis makes no use of the cache: in the case of a search operation,
the block may be repeatedly transferred back and forth between the search operation and the insert
operation. Moreover, the search may need to read the entire node since the contents of the node are
changing during the search. The size of the node also bounds how long the insert may need to wait
to acquire the lock.

We now sum over the possible heights in the tree. Consider A < Ay, = log, lg N + log, (a —
1) — 1, which is the point at which the second term (i.e., the probability that the insert occurs at the
same node) reaches 1. Multiplying the three terms results in an expected cost of 92" /N. In the
worst case, where h = hqz, this expression is equal to IV 1-2/a. for smaller h, the cost decreases.
Since there are at most N2/%~1 concurrent operations, the expected cost per level is O(1). Summing
over all levels < hpq, leads to an expected cost of O(log,, 1g V).

Next, consider the case where h > h;,q:. The second term never exceeds 1. The first and third
terms decrease geometrically like O(1/ 2ah), since the tree is unlikely to exceed height hy,q,, and
so the sum is bounded by the term A = A4, as before.

The polylog in the theorem arises since there can be an O(log IV)-factor variation in the size
and number of nodes at a level, with high probability. O

(a-1).

In a concurrent setting, the expected cost is O(logg N + log, lg N), instead of O(logg N +
log, 1g B) as in the sequential case. The additional cost is incurred when two operations interfere.

Exponential CO B-tree discussion

One interesting aspect of this data structure is parameterizing of the tree by a. By skewing the
tree wider (rather than deeper), we reduce the concurrency at the root, thus improving the overall
performance. When « is closer to 1, the concurrent performance is better; when « is closer to 2, the
sequential performance is better.

A second aspect is that the data structure requires relatively minimal memory management,
since it does not support delete operations. The only case in which memory must be deallocated (or
wasted) is when a node in the exponential tree grows too big (before splitting), and a new contiguous
block of memory must be allocated for the node.

8.3 Packed-memory CO B-tree

This section presents a second concurrent, cache-oblivious B-tree, called a packed-memory CO B-
tree. It supports insertions, deletions, searches, and range queries using lock-based concurrency
control. We first describe the lock-based data structure. We then prove the data structure is correct
and analyze its serial performance.

137

Figure 8-4: A packed-memory CO B-tree consists of a static cache-oblivious search tree used to index into
the one-way packed-memory array. Each leaf in the tree points to a ©(log IN)-sized region of the array. The
active region of the array is outlined with a solid border. The active region of the array contains gaps allowing
for insertions, and the array can grow to the right or shrink from the left.

Data-structure description

Here, I describe the lock-based packed-memory CO B-tree. I present a lock-free version of this data
structure in Section 8.4. The data structure is based on the cache-oblivious B-tree presented in [37]
and consists of a static cache-oblivious search tree [169], which is used to index a packed-memory
data structure. Instead of using the packed-memory array from [35], I introduce a new “‘one-way
packed-memory structure,” which is more amenable to concurrent operations. Each leaf in the static
tree points to a ©(log N)-size region in the packed-memory array.

The one-way packed-memory structure maintains N elements in order in an array of size m =
©(N) (with m a power of 2) while permitting dynamic element insertion and deletion (see Figure 8-
4). The array consists of three segments: the leftmost and rightmost segments contain extra empty
space, and the middle segment — the active region — contains the N elements and some gaps
between elements. On an insertion, the active region may grow to the right; on a deletion, the active
region may shrink from the left. If the active region grows or shrinks too much, then we reallocate
the array.

We maintain a near-constant “density” in the active region by rebalancing regions of the array—
that is, evenly spreading out elements within a region—on insertions or deletions. In the one-way
packed-memory structure, the rebalances ensure that elements move only in one direction: to the
right (see Lemma 8.4).

The density of a subarray is the number of filled array positions divided by the size of the
subarray. Consider a subarray of size k with ¢ = [lgk]. The size of a subarray determines its
upper-bound density threshold, 7;, and its lower-bound density threshold, p;. For all i and j,
pi < Pit1>Tj > Tjy1, and p; < 7j.

The density thresholds follow an arithmetic progression defined as follows. Let 0 < ppin <
Prmaz < Tmin < Tmaz = 1 be arbitrary constants. Let § = Tynaz — Tmin and 8’ = praz — Pmin-
Then, define density thresholds 7; and p; to be

S t—1
1 — 'mar 1gm—1 ’
and .1
z_
i = Pmin —5,7
Pi =P +]gm_1

138

foralli with1 < ¢ <lgm.

For example, suppose that m = 16 and fix the threshold 7, = 1/2. There are Ig16 = 4
density thresholds 71 = Timaz, T2, 73, and 74 = Tmin. The thresholds increase linearly with 1, = 1,
Ty = 5/6, T3 = 4/6, and 74 = 1/2. Similarly, if we fix ppmin = p1 = 1/8 and ppez = ps = 1/4,
then po = 4/24 = 1/6 and p3 = 5/24.

Search. To search for a key &, search down the static binary tree as normal, without any locks.
When the search reaches the array, scan right until finding the appropriate array slot. Since the
search proceeds without locks, we need to perform an ABA test (key, value, key) to make sure the
element did not move during the read.

Insertion and deletion. To insert a new element y with key «, first perform a search to find and
then lock the ©(log IV)-sized leaf where key x should be inserted. Next, scan the leaf from left to
right to find the actual slot s for key . (Slot s — 1 should contain the largest key smaller than .)
If the scan advances into the next ©(log IV)-size region (due to a concurrent operation), acquire a
lock on the next tree leaf, give up the lock on the current, and continue.

If the slot s is free, place y in the available slot. Otherwise, we must rebalance a section of
the packed-memory array. Explore right from s in the array, acquiring locks on regions along the
way, until finding the smallest region of any size that is not too dense.? A region of size k, with
[lgk] = 4, is not “too dense” when the density is no greater than 7;. Then, rebalance the elements
evenly within the window by moving elements to the right, starting with the rightmost element and
working to the left. Move the elements such that no suffix of the rebalanced region has density
exceeding the threshold 7;.# Finally, release the locks. Unlike the packed-memory array from [35]
rebalance windows do not have to have sizes that are powers of 2. Figure 8-5 gives an example of
an insert into the one-way packed-memory array.

Deletions are analogous to insertions, except that when an element is deleted, always perform
a rebalance. A deletion-triggered rebalance explores right until finding the first slot preceding an
occupied slot, then explores left until finding a region that is “dense enough.” This exploration
proceeds without locks. Once the region is established, acquire locks on the region from left to right.
As with the insertion-triggered rebalance, next spread elements evenly starting with the rightmost
element and working left. Finally, release all the locks.

Once the insert/delete or rebalance is complete, update the keys in the static search tree. For
each node in the subtree defined by the updated region, if the key at a node in the tree is too small,
we lock the node, write the key, and release the lock. This strategy ensures that concurrent searches
are not blocked.

Resizing the array When the right boundary of the active region hits the array boundary, or the
active region becomes too small, resize the array, copying the elements into a new array, spreading
the elements evenly. The “ideal” density of the active region is (Tmin — Pmaz)/2. If the old array
has N elements, the new array has size [[¢N/(Tmin — Pmaz)/2)]], for a constant ¢ > 0. The active
region starts at the left portion of the new array.

3To attain these one-way rebalances, select the rebalance regions differently than in {35]. Rebalance regions extend
to the right on inserts and to the left on deletions. By not restricting region sizes to powers of 2, it is always possible
to rebalance by moving elements only to the right. In contrast, previous algorithms (such as [33, 129]) employ packed-
memory arrays in which the rebalance region extends entirely to the right of the inserted element, but elements may move
in either direction. Unlike in [35], rebalances require only one pass to read the data and one pass to write the data.

*Thus, every prefix of the Tegion not including the last slot has density at least the threshold 7;. In particular, a prefix
of size k has [k;] elements.

139

Figure 8-5: An insertion of the key 10 into the above packed-memory array of size m = 16 and thresholds
Tmaz = 1 and Tmin = 1/2. The new element 10 should go in the slot containing 12, so explore right until
finding a region that is not too dense, including the new item to insert. Until exploring past a region of size 2
(indicated by the small rounded rectangle in (a)), the density d exceeds the corresponding threshold 7; = 1.
When exploring between a region of size between 3 and 4, indicated by the medium rounded rectangle, the
density is 1 which exceeds the corresponding threshold 72 = 5/6. When exploring regions of size between 5
and 8, we use the threshold 73 = 2/3. The exploration stops at the sixth slot as there are 4 elements (including
the new element 10) to place in 6 slots, giving a density d = 4/6 = 2/3 = 73. (b) gives the state of the
array after the insert and rebalance. Once the rebalance region is established, we begin at the right and move
elements as far right as possible without exceeding the appropriate threshold (i.e., 73 = 2/3).

The packed-memory CO B-tree uses a randomized strategy that allows the resizing to run
quickly and concurrently. The resize proceeds in three phases: (1) Randomly choose leaves of
size O(log N) and count the elements in the leaf. Lock the node, write the count in the node, and
release the lock. If the sibling has been counted, write the sum in the parent and proceed up the tree.
When the root node is counted, the first phase ends. (2) Allocate a new array based on the count in
the root. Note that the count in any node is exact — the randomization in the first phase randomizes
only the order in which nodes are counted. (3) Randomly walk down the original tree to find a leaf,
keeping a count of the number of elements to the left of this leaf. Then, copy the ©(log V) elements
in the leaf to their correct location in the new array (spreading the elements evenly). For phases (1)
and (3), mark nodes to ensure that leaves are not counted or copied multiple times and to discover
when the phases complete.

Correctness

I now show that the packed-memory CO B-tree is correct under concurrent operations: the data
structure guarantees linearizable operations and is deadlock-free.

The first lemma shows that the one-way rebalance does in fact move elements in only one
direction. This lemma directly implies that searches return the correct elements.

Lemma 8.4 The one-way rebalance moves each element only to the right. That is, the rebalance
operation maintains the property that the key at a given memory location is nonincreasing.

Proof. Consider a rebalance region r ranging from array slots s; to s2. Leti = [lg(sa — s1 + 1)].
Then, the elements in r are spread evenly to a density of 7;.

Assume for the sake of contradiction that an element in 7 moves left during the rebalance.
Without loss of generality, let s%, be the slot of the leftmost element that moves left. Consider the
region 7’ ranging from s; to s, — 1. Let d’ be the density of region 7. Since spreading the elements
evenly in 7 moves an element into r’, we have d’ < 7;. Since 7’ is contained in 7, however, we have
j = [lg(sh — s1)] for some j < 4. Thus, 7; > 7; > d’, generating a contradiction as the rebalance
region would be 7.

The proof is similar for deletion-triggered rebalances. O

140

Theorem 8.5 The packed-memory CO B-tree is deadlock-free and guarantees linearizable inser-
tions, deletions, and searches.

Proof. The deadlock-free proof follows directly from the fact that when an operation holds more
than one lock, it always acquires these locks from left to right.

Next, we look at the claim of linearizability. The array of the packed-memory CO B-tree is
similar to a single node in the exponential CO B-tree, except the array is slightly more complicated.
The important property about updates to the array is given in Lemma 8.4. Thus, we can use a similar
proof to Theorem 8.1. 0l

Cache-oblivious performance

I next analyze the cost of sequential operations in the packed-memory CO B-tree in terms of block
transfers. I first bound the cost of the static-search-tree update and of resizing the array. I then apply
an accounting argument to conclude that the packed-memory CO B-tree achieves the same serial
costs as in [35,36,60].

First, let us bound the cost of the static tree update.

Lemma 8.6 If a range of k memory locations are modified during an update in the packed-memory
array, then updating the search tree costs O(logg N + k/B + 1) memory transfers, assuming that
operations occur sequentially.

Proof. We can think of subtrees of the search tree as corresponding to ranges in the packed
memory array. Updating the tree requires updating every node in a set of subtrees that constitute
the range of k memory locations. The combined number of tree nodes in these subtrees is less
than 2k, but it remains to be shown that these nodes fit in O(k/B + 1) blocks. Consider all the
subtrees {71, . .., T} } to update from left to right. Then there exists an % such that the subtree rooted
at parent(T;) contains the subtrees T1, . . ., T, and parent(T;41) contains Ty, ..., T, Thus, the
tree nodes to update are contained in two subtrees, with total size at most 4k. All of these subtrees,
therefore, are laid out in O(k/B + 1) blocks.

Additionally, some nodes, not in these subtrees, along the path to the root must be updated.
Only nodes with a right child that changes are updated. Thus, we update only a single path to the
root, which requires at most O(logg N + 1) blocks. O

The insertion cost includes not only the cost of rebalancing the array and updating the static
tree, but also the cost of resizing the array. The following lemma implies that the array is not resized
frequently.

Lemma 8.7 For a packed-memory array of size m, there must be Q)(m) insertions or deletions
before the array is resized.

Proof. Consider a resizing triggered by an insertion. We use an accounting argument to prove the
lemma. We give 1 dollar to each filled slot in the array at the time of the last resizing. Whenever an
item is inserted into some slot, we give that slot 1 dollar. Whenever an item is deleted, we leave the
dollar in the slot. Whenever we rebalance a region of the array, we move 1 dollar with each item
moved. All excess dollars (i.e., associated with items the have been removed) are moved to the first
slot of the rebalanced region. Consequently, every nonempty slot has at least 1 dollar associated
with it.

Let d = (Tmin — Pmaz)/2—the density to which the array is resized. We claim that any prefix
of the array, starting at the left boundary (slot 0) and ending at a slot s preceding the right boundary

141

of the active region, contains at least sd dollars. This invariant holds at the time of the last resizing.
It also trivially holds across insertions or deletions that do not trigger rebalances. It remains to be
shown that the invariant holds across rebalances.

Consider an insertion-triggered rebalance that ranges from slot s; to so. The invariant is trivially
unaffected for any slot s with s < s; or s > s9 since no money moves into or out of the rebalanced
region. It remains to show that the invariant holds for a slot s with s; < s < sy. By assumption,
we have at least (s; — 1)d dollars preceding slot s1. The rebalance algorithm guarantees that the
density of every prefix of the rebalanced region is at least 73,,;,. Thus, the array contains at least
(s1—1)d+ (s — 81 + 1)Tmin > sd dollars by slot s.

For completeness, we also need to consider a deletion-triggered rebalance that ranges from slot
$1 to sg. Consider a slot s with 51 < s < s2. The rebalance algorithm again guarantees that the
density of every suffix of the rebalanced region is at most ppq, < d. Thus, since the invariant holds
at slot so before the rebalance and all extra dollars are moved to slot s, we have that the invariant
holds for all slots after the rebalance.

Now, we just apply the invariant to complete the proof. When an insertion triggers a rebalance,
the active region includes the entire array. Thus, the array contains at least md dollars. At the last
resizing, there were md/c dollars, where both ¢ > 1 and 0 < d < 1 are constants. Thus, there must
have been €)(m) insertions.

The proof for deletion-triggered resizings is similar. O

Now, let us bound the cost of resizing. The main idea is that ©(/N') random choices is enough
to count ©(N/ log V) leaves.

Lemma 8.8 For a packed-memory CO B-tree containing N elements, the cost of resizing the
packed-memory array is O(N(logg N + 1)) memory transfers, assuming that operations occur
sequentially.

Proof. There are ©(m/logm) leaves. We make only O(m) random leaf selections, with high
probability, before selecting every leaf in phases (1) and (3). In phase (3), finding a leaf follows a
root-to-leaf path in the tree with a cost of O(logg m + 1). The total cost of selecting all the leaves
is, therefore, O(m(logg m + 1)).

Copying or counting a ©(log m)-sized region (corresponding to a tree leaf) of the old array takes
O(logm/B + 1) block transfers. Since each leaf is counted and copied once in phases (1) and (3),
respectively, the total cost of counting and copying the elements is ©((m/logm)(logm/B+1)) =
O(m(logg m + 1)).

Copying a log m-sized region from the old array to the new array takes ©(logm/B) block
transfers (since the array is kept near a constant density), for a total cost of O(m/B) across the
entire resize. .

Updating the tree for the new array costs O(logz m’ + 1) for each element copied where m/ is
the size of the new array, for a total of O(m(logg m’ + 1)) block transfers.

Since m and m' are ©(IV), the lemma follows. O

The following theorem states that we achieve the desired serial performance.

Theorem 8.9 The amortized cost of insertions and deletions in a packed-memory CO B-tree is
O(logg N + log? N/B + 1), assuming that operations occur sequentially.

Proof. This proof is similar to the one in [129] that analyzes the cost of rebalance regions ex-
tending only one direction (but in which elements can move in both directions). This argument uses
the accounting method, placing ©(log? m/B) dollars in an array slot on an insertion/deletion. In
particular, ©(log m/B) dollars are associated with each of Igm accounts, corresponding to lgm

142

density thresholds. Whenever a region of size k > lg m is rebalanced,’ the region contains Q(k/B)
dollars in an appropriate account with which to pay for the rebalance. Our scenario is different be-
cause regions are not necessarily powers of 2, and our resizing algorithm is different. Whereas [129]
uses an accounting argument that charges rebalances against the left half of the region of size k, we
charge against the left subregion of size [Jk]] /2.

Moreover, we incur a cost for updating the static tree on top of the packed-memory data structure
during a rebalance. Since we have ©(k/B) potential saved up at the time of a rebalance of size k
and a tree update costs O(logg N + k/B + 1) (from Lemma 8.6) we can afford the tree update.

Finally, given that there must be (V) insertions between resizings (see Lemma 8.7), and a
resizing costs O(N(logg N + 1)) (see Lemma 8.8), we conclude that the cost of resizing the array
is amortized to O(logg N + 1) per insertion. (]

Packed-memory CO B-tree discussion

Here, we discuss why the packed-memory CO B-tree is amenable to concurrency in contrast to the
cache-oblivious packed-memory B-tree of [36].

e Maintaining Nonblocking Searches — When the packed-memory array from [35, 36] rebal-
ances a region, it may move elements both to the right and the left in the array. A search for
an element in a region that is being rebalanced may not find the element. Moreover, a scan of
the array may miss the element if the element is concurrently moved in the opposite direction
of the scan.

We solved this problem by developing the one-way packed-memory array in which elements
move only to the right. Thus, whenever a search reaches the array, the search is either at or to
the left of the element (see Lemma 8.4 and a similar argument in Section 8.2).

e Concurrent Resizing— A naive algorithm for copying data starts at the left of the active region
and copy each element sequentially. This technique does not allow for concurrent work during
a resize.

We resized by randomly counting then randomly copying. Thus, many processors can work
concurrently towards resizing the array.

8.4 Lock-free CO B-tree

I now discuss how to transform the lock-based data structure in Section 8.3 into a nonblocking,
lock-free CO B-tree. Instead of using locks, I use load-linked/store-conditional (LL/SC) operations.
For the sake of clarity, assume that keys and values are each a single word, and can be read and
written by a single LL/SC operation; the data structure is easily extensible to multiword keys and
values.

Recall that locks are used only in updating the packed-memory array; the static search tree
is already nonblocking. Instead of acquiring locks before modifying the packed-memory array,
Idescribe how to use four basic nonblocking primitives to update the data structure: (1) move,
which moves an element atomically from one slot in the packed-memory array to another, (2) cell-
insertion, which inserts a new key/value pair into a given cell in the packed-memory array, (3)
cell-deletion, which deletes an existing key/value pair from a cell in the packed-memory array, and
(4) read, which returns the key and value of a given cell in the packed-memory array. Each of these

5We can trivially pay for any small rebalances with the cost of inserting the new element.

143

primitives is nonblocking, and may fail when other operations interrupt it. For example, a move
operation may fail if a cell-insertion is simultaneously performing an insertion at the target.

Markers

Each cell in the array is augmented with a marker which indicates whether an ongoing operation
is attempting to modify the cell. The marker contains all the information necessary to complete
the operation. For example, a move marker indicates the source and the destination of the move.
Any processor that is performing an operation and discovers a marked cell helps to complete the
operation indicated by the marker. For example, consider a move operation that is attempting to
move an element from cell 14 to cell 15, while concurrently a cell-insert is attempting insert an
element at cell 15. First, the cell-insert updates the marker at cell 15. Then, the move attempts to
update the marker, and discovers the concurrent insertion. The move operation then performs the
insertion, before proceeding with the move. In this way, the move can eventually complete, even if
the processor performing the cell-insert has failed, or been swapped out of memory.

The primitive operations which modify the data structure (i.e., move, cell-insert, and cell-delete)
are all initiated by marking an appropriate cell. Once a cell has been marked, any processor can
complete the operation by simply processing the marker. In order to begin a move operation, the
source of the move is updated. For a cell-delete operation, the cell containing the element to be
deleted is marked. A cell-insert operation marks the cell immediately preceding the cell where the
new element is being inserted. A requirement of a cell-insert is that this preceding cell not be empty.
By marking the preceding cell, we prevent a concurrent move operation from moving an element
“over” an ongoing cell-insertion. For example, if a cell-insert is happening at cell 15, we must
prevent the element from cell 14 (or any smaller cell) from being moved to cell 16 (or any larger
cell); otherwise, the new element might not be ordered correctly.

I conjecture that it is possible to implement a lock-free packed-memory CO B-tree using
compare-and-swap, instead of LL/SC, by adding version tags to the markers.

Implementing the nonblocking primitives

For a move operation, once the source has been successfully marked, an LL operation is performed
on the following items: (1) the marker, (2) the source key, (3) the source value, (4) the destination
key, and (5) the destination value. Then, an SC is performed on the marker, rewriting the marker.
This technique ensures that no concurrent process has modified the marker in an attempt to help
complete the move. The move then completes by using SC to update the keys and values at the des-
tination, and then at the source. If an SC fails during this final stage, it is ignored; some concurrent
process has already helped to complete the move. Finally, the marker is cleared.

For a cell-insert, once the preceding cell has been marked, the insert performs a LL on the
marker, and then on the keys and values at the new cell. If the key is already in the tree, then an
error is returned. If the cell is not empty, an error is returned. The insert then rewrites the marker
with an SC, ensuring that it has not changed in the interim. Finally, the key and value are updated,
and the marker is cleared. A cell-delete is essentially identical to a cell-insert.

Finally, a read operation simply examines a cell, helps out if the cell is marked, and returns the
appropriate values.

144

Insertions and deletions

An insertion proceeds as before, first using the static search tree to find and mark the appropriate
cell in the array, that is, the cell containing the largest key in the tree that is less than or equal to
the key being inserted. Once the cell is marked, a cell-insert begins. If the insertion succeeds, the
element is successfully inserted. If the cell-insertion fails, however, then either the cell is not empty
or a move caused interference. In this case, we need to rebalance the array.

A rebalance begins by exploring to the right, as before. In this case, however, it remembers
which cells were filled and which were empty. It performs a load-link (LL) operation on each
nonempty cell; each of these marked cells may need to be moved, and the move is initiated by
performing an SC on the marker. In this way, the rebalance operation can detect when the array has
changed during the rebalance.

When an appropriately sparse region is found, the operation can calculate the appropriate spac-
ing of the elements in the array, as before. The rebalance then proceeds from right to left using
move operations to spread elements evenly. (Elements are only moved from left to right, as before.)
If any move fails, then the rebalance restarts. In particular, a move may fail if any of the markers has
changed since they were initially linked during the scanning phase of the rebalance. If at any time
during the rebalance, we otherwise detect that the array has changed, then the rebalance restarts.

Deletions are similar to insertions. We first search for the item to be deleted, and then perform
a cell-deletion. Finally, we scan to the right until discovering a non-empty cell, and then perform a
rebalance. Unlike the rebalance on insertions, however, this operation scans to the left, looking for
a dense region (as is described in Section 8.3).

All other data structure operations proceed as before; after the array has been updated using the
nonblocking primitives, the search tree is updated to reflect the changes. When resizing the array,
load-link/store-conditional is used to atomically write the count of a leaf, instead of a lock.

Correctness

Theorem 8.10 The packed-memory CO B-tree guarantees linearizable search, insert, and delete
operations.

Proof. If akey is in the data structure and the data structure remains in sorted order, then a search
will find it: the static tree is updated after the packed-memory array, and elements are only moved
to the right in the packed-memory array. Thus, a search always exits the static tree to the left of the
key in question.

The key property, then, is that the elements in the array remain in sorted order. If they always
remain in sorted order, then a search correctly finds any previously inserted element or any element
returned by a prior search and it fails to find a previously deleted element, as is required.

In order to show that elements remain in order, we examine how elements are inserted. An
important invariant is that if a cell is marked for a cell-insert, then the cell contains the largest key
that is less than or equal to the key being inserted. Initially, on acquiring a marker, this invariant is
ensured by the correctness of the search which locates the insertion cell, as well as the use of LL/SC
to acquire the marker atomically.

Throughout the insertion, this invariant is maintained by the way in which a rebalance moves
elements. In particular, a rebalance never moves an element from one side of a marked cell to
another. In particular, whenever a rebalance moves an element, all the intervening cells are empty.
This property is checked while the rebalance scans to the right, determining the region to rebalance
and simultaneously performing a load-link (LL) on each non-empty cell in the region. The only way
this property of a rebalance can be violated is if an element is inserted or moved between when the

145

region is scanned and the rebalance moves an element. In this case, however, the SC which acquires
the move marker fails.

As a result, elements are always inserted in order, and rebalances never move elements out of
order. Combined with the fact that searches terminate correctly, we have the main result. O

Theorem 8.11 The packed-memory CO B-tree is a lock-free data structure.

Proof ~ We need to show that if there is at least one ongoing operation, then eventually some
operation completes. An operation can only be delayed by pausing to help a concurrent operation,
or by working on a rebalance. If an operation is delayed by helping an insertion or deletion to
complete, then some operation has completed, as desired.

Therefore the key requirement is to show that rebalances cannot prevent operations from making
progress. If a rebalance is forced to restart because of a successful insertion or deletion, then some
other operation has completed.

A rebalance may also restart because of interference by a concurrent rebalance. In this case,
however, since elements are moved only to the right, when the rebalance restarts it has (strictly) less
work to do than in the aborted rebalance. In particular, the concurrent rebalance that forced a restart
must have moved at least one of the items in the region to the right, thus reducing the amount of
rabalancing necessary. Since every time a rebalance restarts it has less work to do, eventually the
rebalance completes. O

8.5 Concurrent CO B-tree discussion

This chapter has explored a range of issues for making cache-oblivious search structures concur-
rent. I consider both locking and lock-free solutions. Each of these approaches has practical and
theoretical merits, and I make no judgement about which approach is best. A third approach, which
I do not consider here, is to use transactional memory to support concurrency. This approach may
lead to simpler coding and several new data-locality issues.

Like many previous concurrency studies, the analyses consider uniformly random insertions.
These analyses do not reveal all the design principles that went into the data structures. In particular,
in the exponential trees, the parameter « tunes the tradeoff between low-concurrency and high-
concurrency performance of the tree. When « is larger, serial operations in the tree are faster;
when « is smaller, the tree supports increased concurrency and reduced contention. Moreover, the
randomized nature of the tree reduces contention at high levels in the tree, by temporally spacing
out updates, even when insertions are adversarial.

As a whole, this chapter has focused on correctness issues more than performance issues. In
particular, in order to get performance guarantees, there are different insertion patterns (such as
adversarial), different process models (such as different speeds and changing speeds), and differ-
ent models of memory (such as queuing on memory locations for both reads and writes). Some
techniques from the design of overlay networks may to carry over to these models.

A natural extension of the one-way packed-memory structure from Section 8.3 is to implement
the structure as circular array. Using the circular array may lead to less memory allocation. While
a circular implementation is straightforward for the serial and locking cases, it is more complex in
the lock-free setting.

146

Chapter 9

The Lookahead Array: A
Cache-Oblivious Dictionary With Faster
Insertions

This chapter, along with Chapter 10, explores the insert/search tradeoff for cache-oblivious dictio-
naries, shown in Figure 7-1. This chapter presents the lookahead array and, more significantly,
the cache-oblivious lookahead array (COLA). The COLA achieves the optimal bound for e = 0
(matching the BRT), with searches and insertions costing O(log(N/M)) and O((log(N/M))/B),
respectively. This chapter represents joint work with Michael A. Bender, Martin Farach-Colton,
Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nelson, previously appearing in [42, 161].
Chapter 10 presents a more complicated data structure that achieves the more general tradeoff for
any € > 0.

For disk-based storage systems, range queries are likely to be faster for a lookahead array than
for a BRT because the data is stored contiguously in arrays, taking advantage of inter-block locality,
rather than stored scattered on blocks across disk. This is the same reason why the cache-oblivious
dictionary can support range queries nearly an order of magnitude faster than a traditional B-tree;
see, e.g., [44].

The lookahead array is reminiscent of static-to-dynamic transformations [49] and fractional
cascading [64]. This data structure is parametrized by a “growth factor.” If the growth factor is
chosen to be B¢, then the lookahead array is cache aware and achieves the same amortized bounds
as the Be-tree. If the growth factor is chosen to be a constant such as 2, then the lookahead array is
cache-oblivious and matches the performance of the BRT. This version is called the cache-oblivious
lookahead array (COLA). Unlike the BRT, the COLA is amortized, and any given insertion may
trigger a rearrangement of the entire data structure.

I also show how to deamortize the lookahead array and (hence the COLLA) when M =
Q(log N). This deamortized COLA is the first cache-oblivious alternative to the BRT. There is
no amortization on searches and the worst-case cost for an insert is no more than the cost of a
search.

I next present experimental results, demonstrating how fast the COLA runs in comparison with
a B-tree. I use the B-tree whose performance was described in [44]. For out-of-core data, the COLA
was 790 times faster than the B-tree for random inserts, 3.1 times slower for sorted inserts, and 3.5
times slower for searches.

The remainder of this chapter is organizes as follows. Section 9.1 presents the lookahead array,
the COLA, and their partial deamortizations. Section 9.2 gives results from our implementation

147

study of lookahead arrays.

9.1 Cache-oblivious lookahead array (COLA)

This section describes the lookahead array and the cache-oblivious lookahead array (COLA). 1
begin by describing the structure of the COLA with an amortized analysis. Then, I show how to
deamortize the COLA to provide better worst-case bounds. I present the deamortization incremen-
tally, showing first the basic idea, and then dealing with the full complexity of the data structure. 1
conclude this section with a discussion of the tradeoff between updates and queries.

Lookahead array description

The lookahead array is similar to the binomial list structure [49] of Bentley and Saxe, parameterized
by integer growth factor g. It consists of [logg N] arrays, or levels. The kth array (k > 1) is of size
g* and the arrays are stored contiguously in memory. The kth array always contains some multiple
of g¥—1 elements (or is empty). The lookahead maintains the following invariants:

1. The kth array contains n;g* elements if and only if the kth least significant bit of the base-g
representation of N is ng.

2. Each array contains its items in ascending order by key.

When a new item is inserted, we effectively perform the carries performed by adding a 1 to
the base-g representation of N. That is to say, first put the new element into level 1, the size-g
array. As the elements in each array are stored in sorted order, inserting an element into the first
level requires a scan of the size-g array to make space for the new element. Whenever the kth array
becomes completely full (i.e., adding a 1 to the corresponding bit would cause a carry), remove all
g" elements from the kth array and merge them into the (k+ 1)th array. This merge can be achieved
with a single scan of both the kth and (k + 1)th arrays by merging from largest key down to smallest
key.

Thus far, I have not described searches. I will revisit those shortly.

The cache-oblivious lookahead array (COLA) is a lookahead array for which the growth factor
is chosen to be a constant, like 2 or 4. In contrast, a general (i.e., cache-aware) lookahead array may
choose a growth factor of B¢ to achieve the same bounds as a B®-tree. As the main goal here is to
achieve a cache-oblivious structure, proofs of the general bounds are omitted.

For the remainder of Section 9.1, consider a COLA with growth factor 2 to simplify the discus-
sion. All of the results generalize to other growth factors.

Lemma 9.1 Insertion into the COLA incurs an amortized O((log(N/M)/B) block transfers.

Proof. Once an item has been involved in O(log N) merges, it is in the last array. The smallest
O(log, M) merges incur no cost because these arrays fit into a constant number of blocks, which
we can assume are always kept in memory. For the larger merges, the arrays being merged have
length at least B. Thus, the cost of merging two such arrays of length & is O(k/B). The amortized
cost of one merge is O(1/B) per item, and so the total amortized merge cost is O((log(N/M)/B)
block transfers. O

This proof assumes that portions of the data structure remain in memory between operations,
and that we have already paid for loading certain portions of the data structure. If the COLA is not
in memory, then the insert cost increases to O((log N)/B + 1).

148

Naively, searches can be implemented by binary searching separately in each of the O(log N)
levels for a total complexity of O(log? N). We call this first data structure the basic COLA.

Searches can be accelerated by fractional cascading [64]. Specifically, every eighth element in
the (k + 1)st array also appears in the kth array, with a real lookahead pointer to its location in
the (k + 1)st array. Each fourth cell in the kth array is reserved for a duplicate lookahead pointer,
which holds pointers to the nearest real lookahead pointer to its left and right. Thus, every level uses
half its space for actual items and half for lookahead pointers, so we accommodate the additional
lookahead overhead by doubling the size of all arrays.

Maintaining lookahead pointers does affects only the constant factors in the insertion bounds. In
particular, all real lookahead pointers are added to the kth level whenever elements are moved from
the kth level to the (k + 1)th level. At this time, the kth level becomes empty, so adding lookahead
pointers is easy and requires only a scan. Duplicate pointers are also easily maintained as elements
move around the kth level. A simple implementation of a merge into the kth level would be to
perform the normal insertion process first, except also leaving a vacancy for duplicate lookahead
pointers. Then scan the kth level again from left to right, remembering the last lookahead pointer
scanned, and writing this last pointer to each duplicate-pointer cell passed.

To search for element with key « in the COLA, simply scan the smallest level for the element,
stopping when the scan reaches an element larger than k. If & is not there, find the largest lookahead
pointer smaller than k. Commence the search in the next level from this lookahead pointer, again
scanning from the target of the lookahead pointer until finding & or a key larger than «. If the key is
not found, again follow the largest lookahead pointer not exceeding «, and repeat in the next level.
Note that because duplicate lookahead pointers are located in every fourth array cell, finding the
largest lookahead pointer not exceeding entails considering at most 4 contiguous array locations
and 1 additional location (if a duplicate pointer is followed).

Lemma 9.2 COLA searches incur O(log(N/M)) block transfers.

Proof. To simplify the proof, on each level store —oo and +oo in the first and last cell and give
them real lookahead pointers.

We prove inductively that a search for key « looks at at most 9 items in each level (most of
which are contiguous) and that is greater than or equal to the smallest of these and less than or
equal to the largest of these. This induction will establish both the time bound and correctness of
the search procedure.

The claim is true in the first level, because it has size at most 4. Suppose the claim is true
at the kth level, where k > 1, and the search in this level looked at contiguous items with keys
K1 < Kz <...<kgandthat k; < Kk < 7.

Let £ be such that kg < k < K¢41. If K¢ = K then we have found the target element or lookahead
pointers that leads to the target element. In this case the induction goes through trivially for all
remaining levels. Otherwise, k¢ < . In this case we restrict our search on the next level to those
keys between the elements pointed to by two lookahead pointers, the two lookahead pointers whose
key values are the maximum below x and the minimum above . By construction, this range spans
at most 8 elements in the next array. Moreover, this range spans a duplicate lookahead pointer, so
finding the appropriate lookahead pointer to the next level requires only 1 additional array lookup,
making 9 total.

Since we may assume that the Q(log, M) smallest levels remain in memory, the total number
of levels is O(logy(N/M)) to complete the proof. (]

Lookahead pointers can also be used to achieve O(log(NN/M)) block transfers for predecessor
and successor queries and O(log(IN/M) + L/B) block transfers for range queries, where L is the

149

number of items reported.

Lemma 9.3 Suppose that M > log N. Then a COLA can report, in sorted order, all items having
keys between k1 and kg, k1 < k2, in O(log(N/M) + L/B) block transfers, where L is the number
of items reported.

Proof. The search procedure can easily be modified to return the predecessor of x; in each array.
(Do not terminate the search when discovering the element with key «;, and return the predecessor
within each array.) Since elements are stored in sorted order within each array, we thus need only
perform a log N-way merge to consolidate the elements into a sorted list. If M > log N, then a
block from each level as well as an output block can be kept in memory at the same time, and this
merge can be performed in O(log N + L/B) block transfers. The L/B term pays for all the full
blocks scanned, and the log IV term pays for partial scans of at most 2 blocks in each level. 0

If M < log N, but the elements are not required to be output in sorted order, then we can still
output all the elements within the range in O(log(N/M) + L/B) block transfers.

Deamortization of basic COLA

As a first step, I show how to partially deamortize the basic COLA (which includes no lookahead
pointers) when M = Q(log N). This deamortization improves the worst-case bound from O(N/B)
to O(log(IN/M)). 1 ignore the issue of deamortizing global rebuilding after the data structure
doubles in size because this rebuilding can be handled using standard methods [165, Ch. 5].

The idea is as follows. In level k of the lookahead array maintain two arrays each of size 2*.
Whenever a level contains items in both of its arrays, begin merging those two arrays into an empty
array in the next level. Each level is said to be either safe or unsafe. Informally, a level is unsafe
during merging. More formally, initially all levels are safe, level k£ become unsafe once it contains
exactly 251 items, and an unsafe level becomes safe when both of its arrays become empty.

Place newly inserted items into level 1, as before. Then, scan the levels from left to right,
merging from unsafe levels to the next level, stopping when we have either run out of unsafe levels
or moved a total of m items, whichever comes first (m to be chosen later). To facilitate these partial
merges, maintain three arrays of size [log, N|. One array keeps track of which levels are safe. The
other two arrays’ kth entries hold the indices we are at in the merge of the two arrays at level k.

The bigger m, the more aggressive the merge. We need to make sure merges are aggressive
enough to guarantee that whenever merging from a level there is at least one free array in the next

level, which would be implied by the next level being safe. The insertion worst-case bound is clearly
- O(m), so we want m as small as possible while still keeping us aggressive enough. Lemma 9.4
shows that a fairly low setting of m suffices.

Lemma 9.4 Ifalookahead array contains k levels, setting m = 2k+2 guarantees that two adjacent
levels are never simultaneously unsafe.

Proof. By induction on levels we show that levels 7 and ¢ 4 1 are never simultaneously unsafe.
For ¢ = 0 there are at least 2 levels, so m > 6 and we can afford to perform an entire merge from
level 1 to 2 whenever level 1 becomes unsafe. Thus level 1 never remains unsafe, showing the base
case.

We show that if level £ is unsafe, it becomes safe before level £ — 1 becomes unsafe. When level
£ becomes unsafe, level £ — 1 is empty. Furthermore, for us to have moved items from level £ — 1
to level /Z, all previous levels had to have been safe since we process unsafe levels from left to right.

150

Therefore, levels 0 to £ — 2 hold a total of at most Eﬁ;g 25 = 2¢=1 — 1 items, and for level ¢ — 1

to become unsafe again there must be at least 2¢-1 4 1 inserts. We show that level £ becomes safe
after at most 2~ inserts. After 26! inserts, we have accumulated at least m£2°~! moves, and no
move will go unused as long as level £ is unsafe.

After 2¢~1 insertions there can be at most 2¢ — 1 items in levels £ — 1 and below, and each one
could have used at most £ — 2 moves to get to its level. Thus, items below level £ could have used a
total of at most (£ — 2)(2¢ — 1) moves. We want at least 27! moves available to move all the items
from level £ to the next level, so we want m2¢=1 > (£—2)(2¢ — 1) + 241, which holds for m > 2¢.

O

Theorem 9.5 The basic COLA can be deamortized to perform O(log N) block transfers per inser-
tion in the worst case and O((log(N/M)/B) amortized block transfers per insertion as long as
M = Q(log N).

Proof. The worst-case bound follows immediately from Lemma 9.4 since k£ = O(log N).

For the amortized bound, the argument is similar to that for the amortized COLA. The difference
is that now when we incur a block transfer at a level beyond the (log, M)th level, that block may
be evicted due to previous levels becoming unsafe before we get a chance to move B items. We
charge such an eviction to the block that is brought in. Since unsafe levels are processed from left to
right, there can be no cycles in blocks charging one another for evictions. Furthermore, if a block C
evicts a block D from a later level then is evicted itself before completing the merge it was brought
in for, when C is later brought back into memory it must be because a block at an earlier level
finished participation in its merge; C can take that block’s space in memory. Thus, a block brought
into memory during a merge is only charged for evicting at most one other block. This charging
guarantees that the amortized cost of moving one item is still 1/B.

Furthermore, since M = Q(log N), we can assume the three arrays keeping track of merge
information are always in memory, so the insertion algorithm can determine which merges need to
take place without incurring extra transfers. l

Deamortization of COLA

The introduction of lookahead pointers complicates COLA deamortization as we must maintain
the pointers in the middle of merges to keep queries fast. Since the deamortized structure is only
allowed to perform a small amount of work per update, it is not clear how the lookahead pointers
can be updated. Here, I show how to extend the deamortization technique for the basic COLA to the
COLA in such a way as to completely hide the details of the deamortization from the queries; from
the viewpoint of a query, no level will appear to be in the middle of a merge. The precise description
and proofs follow.

At level k, now maintain three arrays, each of size 2. At least one array is a shadow array and
at least one is a visible array (unless level k is beyond the levels being used by the data structure
yet, in which case all three arrays are considered shadow). The search algorithm ignore the shadow
arrays. This labeling of shadow versus visible is not static throughout time; during updates a shadow
array may become visible, and vice versa. Items in visible arrays never appear to be in the middle
of a merge from a search’s viewpoint, so the data structure induced by only looking at visible arrays
appears almost exactly as the amortized COLA with lookahead pointers. The key difference from
the deamortization method of the previous section is that when level k£ becomes unsafe, we do not
move items from level & to k + 1; we instead copy them to a shadow array of level k£ + 1. Thus,
from the point of view of a query, no arrays appear to be in the middle of a merge.

151

All levels start as being safe and all arrays start as being shadow arrays. Level & becomes
unsafe once two of its arrays become full. Two full arrays at an unsafe level must be merged into
any shadow array A of level £+ 1. If there is more than one shadow array in level k+ 1, preference is
given to one already containing lookahead pointers. After the merge, lookahead pointers are copied
from A into an empty shadow array at level k. We restrict ourselves to having a total combined
number of copied lookahead pointers and merged items to being at most m during each insertion,
m to be chosen later. Level k£ becomes safe once both the merge into A and the placement of
lookahead pointers from A into level k are complete. At this point we say the array in level k that
received lookahead pointers from A becomes linked to A.

I now discuss the transition from shadow to visible and vice versa. Level O only contains two
arrays, both of which are always visible. A shadow array becomes visible when there is a sequence
of linked arrays beginning at level 0 to that array. When a shadow array becomes visible there
are two cases. If there are two other visible arrays in that level, their statuses are both changed
to shadow and both arrays are then considered empty. Otherwise, if there are 0 or 1 other visible
arrays, they remain visible.

Lemma 9.6 Suppose level k becomes unsafe and merges into a shadow array A at level k + 1.
Then, A becomes visible before another merge into level k + 1 occurs.

Proof. Prove the claim by induction on level. If we merge from level O to an array A at level 1,
the array A becomes immediately visible since an array at level O then becomes linked to A. Now,
suppose we just merged two arrays from level & into array A at level k£ + 1. At the end of the merge,
level k has two arrays with items (the arrays that engaged in the merge) and one shadow array B
that is linked to A. Since there are never two adjacent unsafe levels, B has received all its lookahead
pointers from A before a merge into level £ can occur. When a merge into level k& does occur, it is
into B, and the other two arrays at level k then become shadow. For another merge into level k£ + 1
to occur, there must be another merge into level k after the merge into B in order to make level &
unsafe. By our induction hypothesis, B becomes visible by this time, and thus so does A since B is
linked to A. - O

Theorem 9.7 The COLA with lookahead pointers can be deamortized to perform O(log N) block

transfers per insertion in the worst case and O((log(N/M))/B) amortized block transfers per
insertion as long as M = Q(log N).

Proof. Safeness of a level is similar to safeness in the basic COLA. In both scenarios, if level
k is unsafe then we must scan ©(2*) items before level k becomes safe again (note that placing
lookahead pointers in the previous level after a merge can be done by two simultaneous scans).
Thus, we can use the proof idea of Lemma 9.4 to state that two adjacent levels are never unsafe if
we choose to move ©(log V) items per insertion. By Lemma 9.6, three arrays per level suffice to
guarantee that for any unsafe level there is at least one shadow array in the next level to merge into.
The rest of the argument follows that of the proof of Theorem 9.5. O

Now let us discuss how to slightly modify the query algorithms to work when the COLA has
two arrays at each level. As with the basic COLA deamortization, each level k& has at most two
arrays in use at any given time. One of these arrays is the main array. Should there only be one
array in use at level k£, we consider that array to be the main array. Otherwise, the array merged into
least recently is the main array and the other is secondary.

The main array contains lookahead pointers into both the main and secondary arrays of the next
level, and the secondary array, if it exists, contains no lookahead pointers. We only use half the

152

space of the secondary array to maintain that every array is exactly half-full with real items. When
merging into what will become the main array of level k£ + 1, every eighth element in this main
array appears as a lookahead pointer in an array of level k. When merging into what will become
the secondary array of level k + 1, every sixteenth element of each of the main and secondary arrays
of level £+ 1 appears as a lookahead pointer in an array at level k. Thus, main arrays always contain
exactly half real items and half lookahead pointers. Duplicate lookahead pointers at level £ point to
the nearest real lookahead pointers to their left and right in each of the main and secondary arrays
of level k£ + 1. Queries then search both arrays at a level in parallel.

Cache-aware update/query tradeoff

With a few changes, it is possible to make the lookahead array cache-aware and achieve
O(logg: +1(N/M)) block transfers per query and O((logg+1 N)/B'~¢) block transfers per in-
sertion for any € € [0, 1], matching the bound of the B*-tree [59]. Instead of using a growth factor
of 2, set a growth factor of ¢ = ©(B°). Here, instead of every eighth element of level k also appear-
ing in level k—1 as lookahead pointers, every O (B¢)th element will appear as a lookahead pointer in
the previous level. During queries we must look through ©(B¢) instead of ©(1) cells of each array,
but ©(B¢) cells still fit in at most 2 blocks implying a constant number of block transfers per level.
When performing an insertion, the level being merged into may not be empty and we thus have to
merge the pre-existing items with the ones from the previous level. Since the sum of the sizes of
the first £ — 1 levels is at least an {2(1/B¢) fraction of the size of the kth level, a level is merged
into at most B¢ times before its items participate in a merge into a future level. This fact, together
with there being at most O(logge,; N) levels, gives the amortized O((logg-,;(N/M))/B'~¢)
insertion bound.

The deamortization technique of the last section can be adjusted to reduce the worst-case inser-
tion complexity of this cache-aware lookahead array to O(logge,; V). The main differences are
that we need to move © (B¢ logg.,, N) items per insertion instead of ©(log IV) items, and that
we need an extra array per level to provide space for holding the result of merges into non-empty
arrays.

9.2 COLA: experimental results

This section presents an experimental evaluation of the COLA. We compared COLAs with B-trees
as well as the impact of insertion order on performance. First I describe our implementation, then
the experiments, and present our results showing that the COLA can be orders of magnitude faster
than traditional B-trees without sacrificing much performance on searches.

Implementation

Here I describe the implementation details of the amortized COLA. As discussed in Section 9.1, the
growth factor is one parameter that can be varied for COLAs. In addition, one can also vary the
density of lookahead pointers. There is some tradeoff between space used and performance, which
I attempt to explore to some degree here.

One further optimization in our implementation is that we reduce the size of each array slightly.
That is to say, my description in Section 9.1 suggests that the level-k array have size g* (plus the
space for lookahead pointers). Whenever the array reaches capacity, however, we immediately move
its elements into the next level. Thus, we really only require (g — 1)g*~! space for the kth array.

153

107 . . COII_A \'5) ll3-tree sRandom Inserts) 107 . . CQLA vsIB-tree (Sorted Inserts)
L 2-COLA ——
4-COLA ———
s 2 Mins 8COLA -~
SOF Ty 1aMins] ree
S T b= 61 Mins 5 .
g . :8 Mins 2
E 10° ¢ H 2’
p 2106
@10% 4 ©
g g
3|]
g ~~
8-COLA --- - 14 Days
102 B-"n’ee “T"" 1 1 1 1 L i 1 105 1 1 1 1 1 1 1 1 -l
220 921 922 528 524 525 526 527 52 529 530 220 521 o2 924 925 526 527 528 529 530

Number of Inserts (N) Number of Inserts (N)

Figure 9-1: Data is inserted in random order. The Figure 9-2: Data is inserted in sorted order, which

4-COLA is 790 times faster than the B-tree for V = gives best-case performance for the B-tree. The 4-
(256 x 220) — 1 (the largest N tested). Structuresno ~ COLA is 3.1 times slower than the B-tree for N =
longer fit in main memory when N = 227 230 1,

The pointer density controls the number of lookahead pointers in each level. For pointer density
p, the kth level includes an additional [2p(g -1) gl‘IJ array cells to accommodate real lookahead
pointers. In Section 9.1, the pointer density was p = 1/8. For our experiments, we reduced the
pointer density to p = 0.1 to reduce the space overhead of lookahead pointers.

When a level is not completely full (e.g., when it contains only redundant elements or has
received fewer than g — 1 merges) we maintain the elements right justified in their array. Elements
comprise key/value pairs, where keys and values each are of size 64 bits. We pad the elements to a
total size of 32 bytes. Instead using of duplicate lookahead pointers, each real element uses 64 of
~ its padding bits to hold a copy of the closest real lookahead pointer to its left. Redundant elements
use 64 of their padding bits to hold the real lookahead pointer.

When performing merges, we merge the 2 smallest levels at a time. We alternate placing the
result of the merge at the beginning of the target level and at the newly freed space at the beginning
of the data structure, thus requiring space for only 1 additional element during merges. This merge
pattern requires O(k) CPU time and O(k/B) memory transfers to merge a total of k items across
any number of levels. When distributing lookahead pointers after a merge we proceed level by level.
The target level is scanned to copy pointers down one level, the next largest level is scanned to copy
pointers down to the next level, and so on. We perform searches as in Section 9.1, except that we
compute right-hand lookahead pointers on the fly by scanning subsequent levels.

Our B-tree implementation employs blocks of size 4KiB. Key and value sizes were each 64 bits
to match our COLA implementation. Both data structures access external memory via memory
mapping. As a sanity check, we compared the performance of our traditional B-Tree to the Berke-
ley DB [182], a high-quality commercially available B-tree. Berkeley DB supports variable-sized
keys, crash recovery, and very large databases, none of which our implementation supports. The
Berkeley DB with the default buffer-pool allocation is much slower than our implementation, but
is comparable once the parameters are tuned, and logging is turned off, suggesting that we did a
reasonable job implementing our B-tree.

All experiments were performed on a dual Xeon 3.2GHz machine with 2MiB of L2 Cache,
4GiB RAM and two 250GB Maxtor 7L25050 SATA drives using software RAID-0 with 64KiB
stripe width, running Linux 2.6.12-10-amd64-xeon in 64-bit mode.

154

-
(=1
N

i COILA vs B-Itree {Random Searches) 107 Ascending vs Descending vs Random Inserts
2-COLA ——— 4-COLA (Ascending) ——
4-COLA —=—-- 4-COLA (Descending) ~——-
8-COLA ---- 4-COLA (Random) - - - -

Average Searches / second
3,
Average Inserts / second
_o:n

100 1 1 1 1 L 1 1 105 1 1 1) 1 1 1 1 1
20 22 24 26 28 210 212 214 220 21 92 528 924 525 526 521 528 20 5%
Number of Searches Number of Inserts (N)

Figure 9-3: When N = 230 — 1, the 4-COLA Figure 9-4: We measured the time to insert into CO-
performs 21° searches 3.5 times slower than the B- LAs for ascending, descending, and random keys.
tree. Initial searches are slow due to the cache being Inserting 23° — 1 keys sorted in descending order
empty. The source data was created from the test in is 1.1 times faster than inserting in ascending order,
Figure 9-2. and 1.1 times faster than inserting in random order.

Experiments

When performing the experiments we measured the time once every 220 inserts. We measured user
CPU time u, kernel CPU time k, and elapsed time since start of test w. We estimated disk time
das d = w — u — k. The RAID array contains only the memory-mapped file. Before measuring
any times, we first created a large enough file to hold the entire experiment. We measured raw disk
bandwidth of 120MiB/s by timing the write of 237 bytes to the RAID array. We remounted the
RAID array’s file system before every insertion test to clear the file cache.

In all figures resulting from experiments, insert performance of the COLA appears to be periodic
when plotted on a logarithmic scale because there is a merge of 2k elements after every 2* inserts.

We compared the B-tree to the COLA as follows. For N = 230 — 1 we inserted keys [N —
1,...,0] into a B-tree. We next attempted to insert (256 x 220) — 1 random elements into a new B-
tree, stopping after 87 hours at about 228 insertions. We repeated the tests for a 2-, 4-, and 8-COLA,
and completed the random insertion test of N elements. We were able to complete the insertions
for the COLAs. After remounting the RAID array, we next searched in the g-COLAs and B-tree for
215 random elements, measuring the time after search number 2%, 0 < z < 15. (To construct the
complete B-tree we first sorted the N random elements then inserted them, since directly inserting
the elements would have taken too long.)

As shown in Figure 9-1, the 4-COLA is 790 times faster than the B-tree for random inserts.
Figure 9-2 shows that the 4-cola is 3.1 times slower for insertions where the insertions are performed
in descending, rather than random, order. Figure 9-3 shows that the 4-cola is 3.5 times slower for
searches.

We believe that the B-tree performs faster for sorted data because it only uses the leftmost
root-to-leaf path, which can stay in memory. For random inserts, the B-tree loses the advantage of
keeping its insertion path in memory. For random inserts, sequential prefetching of more than one
block does not significantly help B-trees, but significantly helps COLAs. The 4-COLA is 1.1 times
faster than the 2-COLA for random inserts, 1.1 times faster for sorted inserts, and 1.4 times faster
for searches. The 4-COLA is 1.4 times faster than the 8-COLA for random inserts, 1.5 times faster
for sorted inserts, and 1.2 times slower for searches. Given the superior tradeoff of the 4-COLAs,
we use them for all subsequent experiments.

155

‘We next performed an experiment to measure COLA performance for different insertion pat-
terns. For N = 239 — 1 we inserted [N — 1,...,0] into a COLA, [0, ..., N — 1] into a second
COLA, and N random elements into a third COLA. Figure 9-4 shows that inserting keys sorted
in descending order is 1.1 times faster than inserting keys sorted in ascending order, and 1.1 times
faster than inserting random keys. Inserting keys sorted in ascending order was 1.02 times faster
than inserting random keys.

We believe inserting keys in descending order is faster due to the final merge. The number
of elements we merge at each level grows geometrically. The last merge, into the target level, is
the largest. When inserting in descending order, elements already in the target level do not move,
whereas when inserting in ascending order, all elements in the target level move to make room for
elements from smaller levels.

156

Chapter 10

The xDict: A CO B-Tree With Optimal
Update/Query Tradeoff

This chapter continues the thread from Chapter 9, exploring the tradeoff between queries and up-
dates in cache-oblivious dictionaries. In particular, this section presents a new cache-oblivious
dictionary, called the xDict, the implements searches in O((1/¢) logz(NN/M)) worst-case memory
transfers and insertions and deletions in O ((1/eB'~¢)logg(N/M)) amortized memory transfers,
for any constant € with 0 < £ < 1. For example, the xDict achieves subconstant amortized update
cost when N = M B(B'™%) whereas the B-tree’s ©(log g (N/M)) is always superconstant, and the

previously best © ((1 /BO1/(lglog BY)y 165 - N + (1/B) log? N) [42] is subconstant only when

N = 0(2\/§). The xDict attains a provably optimal tradeoff between insertions and queries in the
cache-oblivious model.

The xDict represents joint work with Gerth Stglting Brodal, Erik D. Demaine, John Iacono,
Stefan Langerman, and J. Ian Munro.

10.1 Introducing the z-box

The xDict dynamic-dictionary data structure is built in terms of another structure called the z-box.
For any positive integer x, an x-box supports a batched version of the dynamic-dictionary problem
(defined precisely later) in which elements are inserted in batches of ©(x). Each z-box will be
defined recursively in terms of y-boxes for y < x, and later we build the overall xDict data structure
in terms of z-boxes for z increasing doubly exponentially. Every z-box uses a global parameter, a
real number o > 0, affecting the insertion cost, with lower values of « yielding cheaper insertions.
This parameter is chosen globally and remains fixed throughout.

As shown in Figure 10-1, an z-box is composed of three buffers (arrays) and many +/z-boxes,
called subboxes. The three buffers of an z-box are the input buffer of size x, the middle buffer of
size 17®/2, and the output buffer of size z'*. The /z-subboxes of an 2z-box are divided into
two levels: the upper level consists of at most (1/4)z'/2 subboxes, and the lower level consists of
at most (1/4)z'/2+2/2 subboxes. Thus, in total, there are fewer than (1/2)z'/2+2/2 subboxes. See
Table 10-2 for a table of buffer counts and sizes.

Logically, the upper-level subboxes are children of the input buffer and parents of the middle
buffer. Similarly, the lower-level subboxes are children of the middle buffer and parents of the output
buffer. However, the buffers and subboxes do not necessarily form a tree structure. Specifically, for

!This data structure, the shuttle tree, is also my work but is omitted from this thesis.

157

v/z-box
} upper level: at most 1z'/2 \/z-boxes

it .kA: o5l ;i
/ } lower level: at most Jz/2+2/2 \/z-boxes

Figure 10-1: The recursive structure of an z-box. The arrows represent lookahead pointers. These lookahead
pointers are evenly distributed in the target buffer, but not necessarily in the source buffer. Additional pointers
(not shown) allow us to find the nearest lookahead pointer(s) in O(1) memory transfers. The white space at
the right of the buffers indicates empty space, allowing for future insertions.

an z-box D, there are pointers from D’s input buffer to the input buffers of its upper-level subboxes.
Moreover, there may be many pointers from D’s input buffers to a single subbox. There are also
pointers from the output buffers of the upper-level subboxes to D’s middle buffer. Again, there may
be many pointers originating from a single subbox. Similarly, there are pointers from D’s middle
buffer to its lower-level subboxes’ input buffers, and from the lower-level subboxes’ output buffers
to D’s output buffers.

The number of subboxes in each level has been chosen to match the buffer sizes. Specifically, the
total size of the input buffers of all subboxes in the upper level is at most (1/4)z'/2.z/2 = (1/4)x,
which is a constant factor of the size of the z-box’s input buffer. Similarly, the total size of the upper-
level subboxes’ output buffers is at most (1/4)z!/2 - (z'/2)1+> = (1/4)z1+/2, which matches the
size of the z-box’s middle buffer. The total size of the lower-level subboxes’ input and output buffers
are at most (1/4)z/2+e/2 . g1/2 = (1/4)z11/2 and (1/4)z'/2+/2 . (g1/2)1+e = (1/4)z1+e,
which match the sizes of the z-box’s middle and output buffers, respectively, to within a constant
factor.

An z-box D organizes elements as follows. Suppose that the keys of elements contained in D
range from [Kmin, Kmax). The elements located in the input buffer occur in sorted order, as do the
elements located in the middle buffer and the elements located in the output buffer. All three of these
buffers may contain elements having any keys between Kpin and £max. The upper-level subboxes,
however, partition the key space. More precisely, suppose that there are r upper-level subboxes.
Then there exist keys kmin = kp < K1 < -+ < Ky = Kmax such that each subbox contains
elements in a distinct range [k, £i+1). Similarly, the lower-level subboxes partition the key space.

Buffer Size per buffer Number of buffers Total size
Top buffer x 1 -
Top buffer z1/? 1172 lg
Middle buffer ~ (z/2)1+e/2 17172 1z1+a/4
Bottom buffer (z1/2)1+a L1/ Lgt+a/2
Middle buffer plte/2 1 plta/2
Top buffer zl/2 1z1/2+e/2 1,14a/2
Middle buffer ~ (z!/2)!+o/2 1,1/2+a/2 Ly1+3a/4
Bottom buffer (z1/2)1+a %$1/2+0/2 lglta
Bottom buffer glta 1 rl+a

Figure 10-2: Sizes of buffers in an z-box. This table lists the sizes of the three buffers in an z-box and the

1/2

sizes and number of buffers in its recursive ="/ “-boxes, expanding just one level of recursion.

158

There is, however, no relationship between the partition imposed by the upper-level subboxes and
that of the lower-level subboxes; the subranges are entirely unrelated. What this setup means is that
an element with a particular key may be located in the input buffer or the middle buffer or the output
buffer or a particular upper-level subbox or a particular lower-level subbox. Our search procedure
will thus look in all five of these locations to locate the element in question.

Before delving into more detail about the z-boxes, let us first give a rough sketch of insertions
into the data structure. When an element is inserted into an z-box D, it is first inserted into D’s
input buffer. As the input buffer stores elements in sorted order, elements in the input buffer must
move to the right to accommodate newly inserted elements. When D’s input buffer becomes full (or
nearly full), the elements are inserted recursively into D’s upper-level subboxes. When an upper-
level subbox becomes full enough, it is “split” into two subboxes, with one subbox taking the half
of the elements with smaller keys and the other taking the elements with larger keys. When the
maximum number of upper-level subboxes is reached, all elements are moved from the upper-level
subboxes to D’s middle buffer (which stores all elements in sorted order). When the middle buffer
becomes full enough, elements are moved the lower-level subboxes in a similar fashion. When the
maximum number of lower-level subboxes is reached, all elements are moved from the lower-level
subboxes to D’s output buffer.

To aid in pushing elements down to the appropriate subboxes, we embed in the input (and
middle) buffers a pointer to each of the upper-level (and lower-level) subboxes. These subbox
pointers are embedded into the buffers by associating with them the minimum key stored in the
corresponding subbox, and then storing them along with the buffer’s elements in sorted order by
key.

To facilitate searches, we use lookahead pointers as in Chapter 9, employing the technique
of fractional cascading [64]. That is to say, we give an z-box’s input buffer (and middle buffer)
a sample of the elements of the upper-level subboxes’ (and lower-level subboxes’) input buffers.
Specifically, let U be an upper-level subbox of the z-box D. Then a constant fraction of the keys
stored in U’s input buffer are also stored in D’s input buffer. This sampling is performed determin-
istically by placing every sixteenth element in U’s input buffer into D’s input buffer. The sampled
element (in D’s input buffer) has a pointer to the corresponding element in U’s input buffer. This
sampling also occurs on the output buffers. Specifically, the output buffers of the upper-level (and
lower-level) subboxes contain a similar sample of the elements in D’s middle buffer (and output
buffer).?

The advantage of lookahead pointers is the same as in Chapter 9, and is roughly as follows.
Suppose we are looking for a key « in some buffer A. Let s be the multiple of 16 (i.e., a sampled
element) such that A[s] < k < A[s + 16]. Then our search procedure will scan slots s to s + 16 in
the buffer A. If is not located in any of these slots, then it is not in the buffer. Ideally, this scan
would also provide us with a good starting point to search within the next buffer.

As the lookahead pointers may be irregularly distributed in D’s input (or middle) buffer, a stretch
of sixteen elements in D’s input (or middle) buffer may not contain a lookahead pointer to an upper
(or lower)-level subboxes. To remedy this problem, we use duplicate lookahead pointers, again as
in Chapter 9, associating with each element in D’s input (or middle) buffer a pointer to the nearest
lookahead or subbox pointers preceding and following it.

2 Any sufficiently large sampling constant suffices here. We chose 16 as an example of one such constant for concrete-
ness. The constant must be large enough that, when sampling D’s output buffer, the resulting lookahead pointers occupy
only a constant fraction of the lower-level subboxes’ output buffers. To make the description more concise, the constant
fraction we allow is 1/4, but in fact any constant would work. As the lower-level subboxes’ output buffers account for
only 1/4 of the space of D’s output buffer, these two constants are multiplied to get that only 1/16 of the elements in
D’s output buffer may be sampled.

159

Techniques. Not only does this dictionary employ the fractional cascading technique of Chapter 9,
but it is also recursive. We are not aware of any previous cache-oblivious data structures that are
both recursive and that use fractional cascading. Another subtler difference between the z-box and
previous cache-oblivious structures involves the sizing of subboxes and our use of the middle buffer.
If the z-box matched typical structures, then an z-box with an input buffer of size = and an output
buffer of size 1™ would have a middle buffer of size V17, not the z!+*/2 that we use. That is
to say, it natural natural to size the buffers such that a size-z input buffer is followed by a size-z°
middle buffer for some §, and a size-y = z° middle buffer is followed by a size-y® = z°" output
buffer. Our choice of sizes causes the data structure to be more topheavy than usual, a feature which
facilitates obtaining an optimal query/update tradeoff.

10.2 Sizing an x-box

An z-box stores the following fields, in order, in a fixed contiguous region of memory.
1. A counter of the number of elements stored in the z-box.
The top buffer.
Array of booleans indicating which upper-level subboxes are being used.
Array of upper-level subboxes, in an arbitrary order.
The middle buffer.
Array of booleans indicating which lower-level subboxes are being used.
Array of lower-level subboxes, in an arbitrary order.
8. The bottom buffer.
In particular, the entire contents of each \/z-subbox are stored within the z-box itself. In order for

an z-box to occupy a fixed contiguous region of memory, we need a upper bound on the maximum
possible space usage of a box.

NSV A RN

Lemma 10.1 The total space usage of an x-box is at most c x'+® for some constant ¢ > 0.

Proof. The proof is by induction. An z-box contains three buffers of total size ¢/(z + glte/2 4
1) < 321+, where ¢ is the constant necessary for each array entry (including information
about lookahead pointers, etc.). The boolean arrays use a total of at most (1/4)x!/2t%/2 < ¢/gl+e
space, giving us a running total of 4c/z!*® space. Finally, the subboxes by assumption use a total of
at most c(z1/2)1te . (1/2)x/2+/2 = (¢/2)x1te space. Setting ¢ > 8¢ yields a total space usage
of at most cx!*, O

10.3 Operating an xz-box

An z-box D supports two operations:

1. BATCH-INSERT(D, ey, €3, ..., €g(z)): Insert ©(z) keyed elements e1, ez, . . ., €g(y) given as
a sorted array. BATCH-INSERT maintains lookahead pointers as previously described.

2. SEARCH(D, s, k): Return a pointer to an element with key « in the z-box D if such an
element exists. If no such element exists, return a pointer to x’s predecessor in D’s output
buffer, that is, the element located in D’s output buffer with the largest key smaller than .
We assume that we are given the nearest lookahead pointer s preceding « pointing into D’s
input buffer: that is, s points to the sampled element (i.c., having an index that is a multiple
of 16) in D’s input buffer that has the largest key not exceeding «.

160

SEARCH

Searches are easiest. The operation SEARCH(D, s, k) starts by scanning D’s input buffer at slot
s and continues until reaching an element with key « or until reaching slot s’ where the key at
s’ is larger than . By assumption on lookahead pointers, this scan considers O(1) array slots.
If the scan finds an element with key x, then we are done. Otherwise, we consider the nearest
lookahead or subbox pointer preceding slot s' — 1. We follow this pointer and search recursively in
the corresponding subbox. That recursive search returns a pointer in the subbox’s output buffer. We
again reference the nearest lookahead pointer and jump to a point in the middle buffer. This process
continues, scanning a constant-size region in middle buffer, searching recursively in the lower-level
subbox, and scanning a constant-size region in the output buffer.

Lemma 10.2 For x > B, a SEARCH in an z-box costs O((1 + a) logg x) memory transfers.

Proof. The search considers a constant-size region in the three buffers, for a total of O(1) memory
transfers, and performs two recursive searches. Thus, the cost of a search can be described by the
recurrence S(z) = 25(v/z) + O(1). Once z't® = O(B), or equivalently z = O(BY(1+), an
entire x-box fits in a block, and no further recursions incur any other cost. Thus, we have a base
case of S(O(BY(1+2)) = 0.
The recursion therefore proceeds with a nonzero cost for lglg z—(1/1+a) lg Ig O(B) levels, for
a total of 218182~ (1/1+a)1gleO(B) — (1 4) lgx/1g O(B) = O((1 + @) logg =) memory transfers.
O

BATCH-INSERT overview

For clarity, we decompose BATCH-INSERT into several operations, including two new auxiliary
operations:

1. FLUSH(D): After this operation, all k elements in the z-box D are located in the first ©(k)
slots of D’s output buffer. These elements occur in sorted order. The O() arises because of
the presence of lookahead pointers directed from the output buffer. The FLUSH operation is
an auxiliary operation used by the BATCH-INSERT.

2. SAMPLE-UP(D): This operation may only be invoked on an z-box that is entirely empty
except for its output buffer (as with one that has just been FLUSHed). The sampling process
is employed from the bottom up, creating subboxes as necessary, and placing the appropriate
lookahead pointers. The SAMPLE-UP operation is an auxiliary operations used by BATCH-
INSERT.

FLUSH

To FLUSH an z-box, first flush all the subboxes. Now consider the result. Elements can live in only
five possible places: the input buffer, the middle buffer, the output buffer, the upper-level subboxes’
output buffers, and the lower-level subboxes’ output buffers. The elements are in sorted order in all
of the buffers. Moreover, as the upper-level (and lower-level) subboxes partition the key space, the
collection of upper-level subboxes’ output buffers form a fragmented sorted list of elements. Thus,
after flushing all subboxes, moving all elements to the output buffer requires just a 5-way merge into
the output buffer. A constant-way merge can be performed in a linear number of memory transfers
in general, but here we have to deal with fragmentation.

When merging all the elements into the output buffer, we merge only real elements, not looka-
head pointers (except for the lookahead pointers that already occur in the output buffer). This step

161

breaks the sampling structure of the data structure, which we will later resolve with the SAMPLE-UP
procedure.

When the flush completes, the input and middle buffers are entirely empty, and all subboxes are
deleted.’

Lemma 10.3 For z'*® > B, a FLUSH in an z-box costs O(x' T/ B) memory transfers.

Proof. We can describe the flush by the recurrence
F(:L‘) — O(:L‘l+a/B) + O($1/2+a/2) + —;—:l:l/2+a/2F(\/5) ,

where the first term arises due to scanning all the buffers (i.e., the 5-way merge), the second term
arises from the random accesses both to load the first block of any of the subboxes and to jump
when scanning the concatenated list of output buffers, and the third term arises due to the recursive
flushing. When z1+® = O(M), the second term disappears as the entire z-box fits in memory, and
we thus need only pay for loading each block once. When applying a tall-cache assumption that
M = Q(B?), it follows that the second term only occurs when z'/2+®/2 = Q(B), and hence when
gl/2He/2 = glie jp1/2+a/2 = glte /O(B) = O(z1+®/B). We thus have a total cost of

F(.’IJ) < clxl-f-a/B + %x1/2+a/2F(\/§) ,

where c; is a constant hidden by the order notation.

We next prove that F(z) < cz'*®/B by induction. As a base case, when y'* fits in memory,
the cost is F(y) = cy'*®/B as already noted, to load each block into memory once. Applying the
inductive hypothesis that F(y) < cy'*®/B for some sufficiently large constant ¢ and y < x, we
have F(z) < ciz!t®/B + (1/2)z1/2+*/2(cxl/2/B) = ciz't®/B + (1/2)calt®/2/B. Setting
¢ > 2c¢; completes the proof. O

SAMPLE-UP

When invoking a SAMPLE-UP, we assume that the only elements in the z-box live in the output
buffer. In this state, there are no lookahead pointers to facilitate searches. The SAMPLE-UP recom-
putes the lookahead pointers, allowing future searches to be performed efficiently.

The SAMPLE-UP operates as follows. Suppose that the output buffer contains k& < z'*¢ el-
ements. Then we create (k/16)/(x'/27/2/2) = k/8z1/?t/2 < g1/2+2/2/8 new lower-level
subboxes. Recall that this is half the number of available lower-level subboxes. We then assign
to each of these subboxes z1/2+2/2 /2 of contiguous sampled pointers (thus filling half of their re-
spective output buffers), and recursively call SAMPLE-UP in the subboxes. Then, we sample from
the lower-level subboxes’ input buffers to the middle buffer, and we sample the middle-buffer to
upper-level subboxes in a similar fashion. Finally, we sample the upper-level subboxes up to the
input buffer.

Lemma 10.4 A SAMPLE-UP in an z-box, for z*® > B, costs O(z'+*/B).

Proof. The proof is virtually identical to the proof for FLUSH. The recurrence is the same (in
fact, it is better here because we can guarantee that the subboxes are, in fact, contiguous). O

3n fact, the subboxes use a fixed memory footprint, so they are simply marked as deleted.

162

BATCH-INSERT

The BATCH-INSERT operation takes as input a sorted array of elements to insert. In particular,
when inserting into an z-box D, a BATCH-INSERT inserts ©(z) elements. For conciseness, let us
say that the constant hidden by the theta notation is 1/2. First, merge the inserted elements into D’s
input buffer, and increment the counter of elements contained in D by (1/2)z. For simplicity, also
remove the lookahead pointers during this step. We will readd them later.

Then, (implicitly) partition the input buffer according to the ranges owned by each of the upper-
level subboxes. If any partition contains at least (1/2)+/z elements remove those elements from
D’s input buffer and insert them recursively into the appropriate subbox. If performing a recursive
insert would cause the number of elements in the subbox to exceed (1/2)/z' 1, first “split” the
subbox. A “split” entails first FLUSHing the subbox, creating a new subbox, moving the larger half
of the elements from the old subbox’s output buffer to the new subbox’s output buffer (involving two
scans), and calling SAMPLE-UP on both subboxes, and updating the counter recording the number
of elements in each subbox to reflect the number of real elements in each.

Observe that after all the recursions occur, the number of elements in D’s input buffer is at most
(1/2)y/z - (1/4)y/z = (1/8)z, as otherwise more elements would have moved down to a subbox.

After moving element from the input buffer to the upper-level subboxes, resample from the
upper-level subboxes’ input buffers into D’s input buffer. Note that the number of lookahead point-
ers introduced into the input buffer is at most (1/16)+/z - (1/4)+/z. When combining the number
of lookahead pointers with the number of real elements, we see that D’s input buffer is far less than
half full, and hence it can accommodate the next insertion.

When a split causes the last available subbox to be allocated, we merge all input and upper-level
elements into the middle buffer. We do so by first FLUSHing all the upper-level subboxes, and then
merging into the middle buffer (similarly to how is done in the full FLUSH). We then perform a
similar movement from the middie buffer to the lower-level subboxes as we did for the input buffer
to upper-level subboxes. When the last lower-level subbox is allocated, we move elements to the
output buffer and perform a similar sampling. After the lower-level recursive insertions complete,
we sample into output buffers of the upper-level subboxes and call SAMPLE-UP on each of these
subboxes. We then sample from the input buffers of the upper-level subboxes to D’s input buffer.

Observe that the upper-level subboxes’ output buffers collectively contain at most (1/ 16)x1+°‘/ 2
lookahead pointers. Moreover, after elements are moved into the middle buffer, these are the only
elements in the upper-level subboxes. Because all subboxes remain at least half full, and these
subboxes can accommodate (1/4)x1+%/2 elements in total, there must be at least (1/8)x!+%/2 —
(1/16)z!t*/2 = Q(z!+*/2) insertions into D between moves into the middle buffer. A similar
argument shows that there must be at least Q(z!7%) insertions into D between insertions into the
output buffer.

Theorem 10.5 A BATCH-INSERT into an z-box, with x > B, costs an amortized O((1 +
o) logg(z) /B 2+ memory transfers per element.

Proof. An insert has several costs per element. First, there is the cost of merging into the input
array, which is simply O(1/B) per element. Next, each element is inserted recursively into a top-
level subbox. These recursive insertions entail random accesses to load the first block of each
of the subboxes. Then these subboxes must be sampled, which is dominated by the cost of the
aforementioned random accesses and scans. An element may also contribute to a split of a subbox,
but each split may be amortized against Q(z!/2+/2) insertions. Then we must also consider the
cost of moving elements from the upper-level subboxes to the middle buffer, but this movement may

163

be amortized against the Q(w“’a/ 2) elements being moved. Finally, there are similar costs among
the lower-level subboxes.

Let us consider the cost of the random accesses more closely. If all of the upper-level sub-
boxes fit into memory, then the cost of random accesses is actually the minimum of performing
the random accesses or loading the entire upper-level into memory. For the upper-level, we denote
this value by UpperRA(z). We thus have UpperRA(z) = O((1/4)x'/?) if z'1t%/2 = Q(M),
and UpperRA(z) = O(min {(1/4)z'/2,z1+%/2/B}) if 2!%*/2 = O(M). In fact, we are re-
ally concerned with UpperRA(z)/z, as the random accesses can be amortized against the z ele-
ments inserted. We analyze the two cases separately, and we assume the tall-cache assumption that
M > B2

1. Suppose that z't/2 = Q(M). Then we have z!t%/2 = Q(B?) by the tall-cache as-

sumption, and hence z'/2 = Q(B%(2+®), It follows that UpperRA(z)/xz = O(1//Z) =
O(I/Bz/(2+a)_

2. Suppose that '7*/2 = O(M). We have two subcases here. If x > B%/(1+) then we
have a cost of at most UpperRA(z)/x = O(z'/?/z) = O(1/BY/(1+®), If, on the other
hand, z < B2%/(1+) then we have UpperRA(z)/z = O(z't%/2/Bz) = O(z*/?/B) =
O(Ba/(1+a)/B) — O(I/Bl/(1+°‘)).

Because 1/B%(2+2) > 1/B1/(1+2) we conclude that UpperRA(z) /z = O(1/B/(+a),

We must also consider the cost of random accesses into the lower-level subboxes, which

can be amortized against the z17*/2 clements moved. A similar case analysis shows that
LowerRA(:16)/31:1"""/2 0(1/31/(1+a))

‘We thus have a total insertion cost of

@ = O<9:/TB>+O(UW+W)+IW‘)+O(F(\/—))+0(—%"”1/2F(ﬁ))

1/240/2 rlta/2
zit/2/B LowerRA(zx) F(\/x)
+0 (ez | 7O (Tita)2) +I(vz)+ 0 (1/2+a/2)

Lo (%$1/2+a/2F(\/5/:)) ‘o (m“‘a/B)

glte Zito
= oym)+ o (LTIAD) o (LowerhA@)) o (FCDY Lo rim

gl/2+a/2 /B
—_ O(]./B) -+ 0(1/32/(2+a)) + O(l/Bl/(1+a)) + 0 (Wﬂé—— -+ 2](\/:;)

= O(1/B¥®*)) +21(/z)

As we charge loading the first block of a subbox to an insert into the parent, we have a base case
of I(O(BY/(1+)) = 0, i.e., when the z-box fits into a single block. Solving the recurrence, we get
a per element cost of O(1/B% 2+ at lglg 2 — (1/1+a) Iglg O(B) levels of recursion, and hence
a total cost of O(2!882~(1/1+2)IglgO(B) /p2/(+e)y = O (((1 + a)lgz)/(B¥ ?+*) 1g O(B))) =
O((1 +) logg(x) /B (2+a)), (]

164

10.4 Building a dictionary out of x-boxes

The xDict data structure consists of log; , , logs N + 1 z-boxes of doubly increasing size. Specif-

ically, for 0 < ¢ < log;,, logs IV, the ith box has z = 2(1+2)" The z-boxes are linked together
by incorporating into the 7th box’s output buffer the lookahead pointers corresponding to a sample
from the (7 + 1)th box’s input buffer.

We can define the operations on an xDict in terms of x-box operations. To insert an element
into an xDict, we simply insert it into the smallest z-box (z = 0), which has z = ©(1) so supports
individual element insertions. When the ¢th box reaches capacity (containing 2(1+@)" elements), we
FLUSH it, insert all of its elements (contained in its output buffer) into the (¢ + 1)th box, and empty
the ith box’s output buffer. This process terminates after performing a batch insert into the jth box
if the 7th box is the first box that can accommodate the elements (having not yet reached capacity).
At this point, all boxes preceding the jth box are entirely empty. We next rebuild the lookahead
starting from the (j — 1)th box down to the Oth box by sampling from the (¢ + 1)th box’s input
buffer into the ith box’s output buffer and then calling SAMPLE-UP on the :th box. As elements are
first inserted into the Oth box and eventually move through all boxes, our insertion analysis accounts
for an insertion into each box for each element inserted.

To search in the xDict, we simply search in each of the xz-boxes, and return the closest match.
Specifically, we search the boxes in order from smallest to largest. If the element is not found in the
ith box, we have a pointer into the ith box’s output buffer. We use this pointer to find an appropriate
lookahead pointer into the (¢ + 1)th box’s input buffer, and begin the search from that point.

The performance of the xDict is essentially a geometric series:

Theorem 10.6 The xDict supports searches in O(((1 + &)2c) logg(N/M)) memory transfers and
(single-element) inserts in O(((1 +)2 /a)(logg(N/M))/B* ?+®)) amortized memory transfers.

Proof. A simple upper bound on the search cost is

log o logs NV 14 logy1qloga N
1+ i _ 04 i
> O+ a)logp(2*™)) = O %5 > (+o)
=0 1=0
1+a)lgN
O(lg B Z (1 +a))
2
- 0((1”;0‘) logg N).

The above analysis, however, exploits only a constant number of cache blocks. By preloading
into cache all the smallest z-boxes that fit, the first O(((1 + «)?/a) logg M) of the search cost is
actually free, resulting in a search cost of O(((1 + @)%/a)(logg(N/M))/B%2+2)). The cache-
oblivious model allows us to assume an optimal paging strategy, and caching the top of the structure
is no better than optimal.

The analysis for insertions is identical except that all costs are multiplied by O(1/B% (2+)). 0

Corollary 10.7 For any ¢ with 0 < € < 1, there exists a setting of o such that the
xDict supports searches in O((1/¢) logg(N/M)) memory transfers and supports insertions in

O((1/eB'~¢) logg((N/M))) amortized memory transfers.

Proof. First off, we consider only ¢ < 1/2 (rolling up a particular constant into the big-O
notation), as larger € only hurt the performance of inserts.

165

Choose o = 2¢/(1 — €), which gives B%(2+®) = B1~¢ Because ¢ < 1/2, we have o < 2,50 -
we can eliminate the 1 + o terms from Theorem 10.6. We are thus left with the 1/a term, which
solvesto 1/a = (1 —€)/(2e) = O(1/¢). O

10.5 Final notes

I did not address deletion in detail, but claim that it can be handed using standard techniques. For
example, to delete an element insert an anti-element with the same key value. In the course of
an operation, should a key value and its antivalue be discovered, they annihilate each other while
releasing potential which is used to remove them from the buffers they are in. Rebuilding the whole
structure when the number of deletions since the last rebuild is half of the structure ensures that the
total size does not get out of sync with the number of not-deleted items currently stored.

Another detail is that, to hold n items, an n-box may be created, which occupies up O (n!*¢) of
address space. However, only a linear amount of space is occupied and the layout described ensures
the unused space is at the end, so the amount of space is indeed linear.

166

Chapter 11

The Worst Page-Replacement Policy

Since the early days of computer science, thousands of papers have been written on how to optimize
various components of the memory hierarchy. In these papers a recurrent question (at least four
decades old) is the following: Which page-replacement strategies are the best possible?

The point of this chapter is to address the reverse question: Which page-replacement strategies
are the worst possible? This chapter explores several ways to formulate this question. In some
of these formulations, the worst strategy is a new algorithm that (luckily) has little chance of ever
being implemented in software or silicon. In others, the worst strategy may be disturbingly familiar.
This chapter represents join work with Kunal Agrawal and Michael A. Bender, previously appearing
in [7]. Although this chapter is not entirely serious, the analyses may be interesting, and a theorem
in Section 11.3 roughly states that a direct-mapped cache is provably bad.

Let us proceed by formalizing the paging problem. The machine model for the paging problem
matches that of the I/O model [6] described in Chapter 7. That is, assume a two-level memory hier-
archy consisting of a small fast memory, the cache, and an arbitrarily large slow memory. Memory
is divided into unit-size blocks or pages. Exactly k pages fit in fast memory.! In order for a program
to access a memory location, the page containing that memory location must reside in fast memory.
Thus, as a program runs, it makes page requests. If a requested page is already in fast memory, then
the request is satisfied at no cost. Otherwise, the page must be transferred from slow to fast memory.
When the fast memory already holds &k pages, one page from fast memory must be evicted to make
room for the new page. (The fast memory is initially empty, but once it fills up, it stays full.) The
cost of a program is measured in terms of the number of transfers. Whereas the I/O model assumes
that the eviction choices are optimal, the paging problem considers the page-eviction strategy.

The objective of the paging problem is to minimize the number of page transfers by optimizing
which pages should be evicted on each page requests. When all page requests are known a priori
(the offline problem), then the optimal strategy, proposed by Belady, is to replace the page whose
next request occurs furthest in the future [31].

More recent work has focused on the online problem, in which the paging algorithm must con-
tinually decide which pages to evict without prior knowledge of future page requests. Sleator and
Tarjan introduce competitive analysis [181] to analyze online strategies. Let A(o) represent the cost
incurred by the algorithm A on the request sequence o, and let OPT(¢) be the cost incurred by the
optimal offline strategy on the same sequence. For a minimization problem, we say that an online

'I am using k here instead of the equivalent M /B in Chapter 7 to more closely match the notation in the literature for
this topic area.

167

strategy A is c-competitive if there exists a constant 3 such that for every input sequence o,
A(o) <c-OPT(o)+ (.

Sleator and Tarjan prove that there is no online strategy for page replacement that is better
than k-competitive, where k is the memory size. Moreover, they show that the least-recently-used
(LRU) strategy, in which the page chosen for eviction is always the one requested least recently, is
k-competitive. If the online strategy operates on a memory that is twice the size of that used by the
offline strategy, they show that LRU is 2-competitive. Since this seminal result, many subsequent
papers have analyzed paging algorithms using competitive analysis and its variations. Irani [122]
gives a good study of many of these approaches.

Page-replacement strategies are used at multiple levels of the memory hierarchy. Between main
memory and disk, memory transfers are called page faults, and between cache and main memory,
they are cache misses. There are other differences in between levels besides mere terminology. In
particular, because caches must be fast, a cache memory block, called a cache line, can only be
stored in one or a limited number z of cache locations. The cache is then called direct mapped or
x-way-associative, respectively. There have been several recent algorithmic papers showing how
caches with limited associativity can use hashing techniques to acquire the power of caches with
unlimited associativity [98,177].

I now describe what I mean by the worst page-replacement stategy. First of all, this chapter
considers only “reasonable” paging strategies. A strategy is reasonable if it is only allowed to evict
a page from fast memory when

1. an eviction is necessary to service a new page request, i.e., when the fast memory is full, and
2. the evicted page is replaced by the currently requested page.

Without this reasonableness restriction a paging strategy could perform poorly by preemptively
evicting all pages from fast memory. In contrast, this chapter explores strategies that somehow try
to do the right thing, but just fail miserably.

Thus, the pessimal-cache problem is as follows: identify replacement strategies that maximize
the number of memory transfers, no matter how efficiently code happens to be optimized for the
memory system.

As with traditional paging problems, the pessimal-cache problem is analyzed using competitive
analysis. Since we now have a maximization problem, the definition of competitive is slightly
different: An online algorithm A is c-competitive if there exists a constant 3 such that for every
input sequence o,

Alo) > % .OPT(s) - 8.

An input sequence o consists of a sequence of page requests.”> The objective of the online
algorithm A is to maximize the number of page faults on the input sequence, and OPT is the offline
strategy that maximizes the total number of page faults.

Since the pessimal-cache problem turns the traditional problem on its head, terminology may
now seem backwards. Optimal now means optimally bad from a traditional point of view. The
adversary is trying to give us an input sequence for which we do not have many more page faults
than OPT. Thus, in some sense, the adversary is our friend, who is looking out for our own good,
whereas we are trying to indulge in bad behavior.

2If a page is requested repeatedly without any other page being interleaved, all strategies have no choice, and there is
no page fault on any but the first access. Thus, we consider only sequences in which the same page is repeated only when
another page is accessed in between.

168

Note that the pessimal-cache problem still assigns cost in the same way, and thus counts com-
petitiveness in terms of the number of misses and not the number of hits. We leave the problem
in this form because OPT may have no hits, whereas even the best online strategies have infinitely
many.

The remainder of this chapter is organized as follows. Section 11.1 provides lower bounds for
the pessimal-cache problem. Section 11.1 shows that there is no deterministic, competitive, online
algorithm for the pessimal-cache problem. Moreover, there is no (randomized) algorithm better
than k-competitive. Section 11.2 gives an algorithm that is expected k-competitive, and hence
optimal for the pessimal-cache problem. Since this strategy exhibits a 1/ fraction of the maximum
number of page faults on every input sequence, this strategy is the worst page-replacement strategy.
Finally, Section 11.3 examines page-replacement strategies for caches with limited associativity.
This section roughly states that page-replacement strategy employed by direct-mapped caches is
the worst possible, under the assumption that page locations are random.

11.1 Lower bounds

This section gives lower bounds on the competitiveness of the pessimal-cache problem. There are
two main lemmas in this section. The first lemma states that no deterministic strategy is competitive.
The second lemma, concerning randomized strategies, states that no strategy can be better than k-
competitive, where k is the fast-memory size.

The following lemma states that there is no deterministic online strategy that is competitive with
the offline strategy.

Lemma 11.1 Consider any deterministic strategy A for the pessimal-cache problem with fast-
memory size k > 2. For any ¢ > 0 and constant 3, there exists an input sequence ¢ such that

A(o) < & - OPT(c) — 6.

Proof. Consider a sequence o that begins by requesting pages vy, vz, ..., Vg4+1. While the first
k pages are requested, all strategies have no choice and have a fast-memory containing pages
v1,...,v. At the time vpy; is requested, one of the pages must be evicted from fast memory.
Suppose that the deterministic strategy chooses to evict page v;. Then for any j with 1 < j < k and
i # j, consider the sequence o = vy, v, ..., Ug+1, Vj, Uk+1, Vj, Uk+1, - - - that alternates between
vk+1 and v;. Since the deterministic strategy has vy, . .., vk in fast memory when v is requested,
and v; # vj is evicted, both v; and vy are in fast memory after the request. Thus, all future
requests are to pages already in fast memory, and this strategy does not incur any more page faults
after the first k + 1. The offline strategy OPT, on the other hand, still incurs a page fault on every
request by evicting page v; when vg,; is requested and vice versa. Extending the length of the
sequence proves the lemma. O

Lemma 11.1 also holds even in the presence of resource deaugmentation, where the online
strategy runs with a smaller fast memory of size k,, > 2 and offline optimal strategy runs with a
larger fast memory of size ko5 > kon.> Even so, there is still no competitive deterministic strategy.
The same proof still applies with the same sequence-the proof just relies on the fact that there are
two particular pages in the fast memory of the online algorithm.

Let us now turn our attention to randomized strategies with an oblivious adversary, meaning
that the adversary must choose the entire input sequence before seeing the result of any of the coin

*Note that resource deaugmentation in the pessimal-cache problem is the analog of resource augmentation in the
classical problem, in which the online algorithm has a larger cache than the offline algorithm.

169

tosses used by the randomized algorithm. Note that in the presence of a nonoblivious adversary,
randomization does not provide extra power for pessimal-cache problem.

The following lemma states that no randomized strategy is better than expected k-competitive
when both the online and offline strategies have the same fast-memory size k. Moreover, when the
offline strategy uses a fast memory of size kop and the online strategy has a fast memory of size
kon < kog, no online strategy is better than kog /(Ko — Kon + 1).

Lemma 11.2 Let kog be the fast memory size of the offline strategy and k oy, (with 1 < kop < o)
be the fast memory size of the online strategy. Consider any (randomized) online strategy A. For any
¢ < kog /(Ko —kon+1) and constant B3, there exists an input o such that E[A(c)] < 1-OPT(0)—p.

Proof. The proof is similar to that of Lemma 11.1. After the (kog + 1)st page request vy, G+
the online algorithm A has ko, pages in fast memory. Page v 1 is definitely in fast memory. Of
the remaining k.5 pages requested so far, ko, — 1 are in A’s fast memory.

Now let v; be a randomly selected page from wvi,...,Vk,;- Page v; is in
A’s fast memory with probability (k. — 1)/kog. Now consider the sequence
V1)« + s ko s Vhog+1s Ujis Uk +15 Vs Vkog+1, - - - With probability (kon — 1)/kog, page v; is

still in fast memory after vg,;+1 is requested. In this case, no future page requests cause page
faults, giving the online strategy a total of kg1 page faults. With probability (kof —kon+1)/kof,
vj is not in memory, and the strategy may be able to attain the optimal £ page faults, where £ is the
length of the sequence following the first request for vy, ;1. Thus, the expected number of page
faults is at most (kog + 1) +£(kog — kon + 1)/ ko, Whereas the offline strategy attains (k + 1) + £.
Choosing a long enough sequence proves the lemma. O

11.2 Most-recently used

This section describes two k-competitive strategies for the pessimal-cache problem. The first strat-
egy uses one step of randomization followed by the deterministic “most-recently-used” (MRU)
heuristic. The second strategy uses more randomization to achieve the optimal result even when the
offline and online strategies have different fast-memory sizes.

Since least-recently-used (LRU) is k-competitive and optimally competitive for traditional pag-
ing, it is natural to explore the reverse strategy for the pessimal-cache problem. The most-recently-
used (MRU) heuristic always evicts the page in fast memory that was used most frequently. It might
be reasonable to expect MRU to be k-competitive for the pessimal-cache problem. MRU, however,
is deterministic, and Lemma 11.1 states that no deterministic strategy can be competitive.

Instead, consider a natural variation on MRU, which we call randomized MRU. In randomized
MRU, the first page evicted is chosen at random. (Recall that this first eviction happens when the
(k+1)th distinct page is requested.) All subsequent evictions follow the MRU strategy. Randomized
MRU gets around the alternating-page request sequence used to prove lower bounds in Lemmas
11.1 and 11.2. The following lemma shows that MRU keeps a (slightly) random set of pages in fast
memory.

Lemma 11.3 Let k be the size of fast memory (for both online and offline strategies), and consider
any request sequence o. After the (k+1)st distinct page is requested, randomized MRU guarantees
that there are k pages each having probability exactly 1 — 1/k of being in fast memory, and there
is one page, the most-recently-used page, that has probability 1 of being in fast memory. All other
pages are definitely not in fast memory.

170

Proof. We prove the claim by induction on the requests over time.

The base case occurs when the (k + 1)st distinct page is requested, which causes the first
eviction. Since there are k pages in fast memory at the time that the (k + 1)st distinct page is
requested, and one is chosen to be evicted at random, the claim holds for the base case.

Suppose that the claim holds up until the ¢th request. Assume that the next request is for page
v;. There are several cases.

Case 1. Suppose that v; is definitely not in fast memory. Then the most-recently-used page v;
is evicted, and hence v; is definitely in fast memory and v; is definitely not.

Case 2. Suppose that v; is in fast memory with probability 1. Then none of the probabilities
change.

Case 3. Suppose that v; is in fast memory with probability 1 — 1/k and that v; is the most-
recently-used page. Then with probability 1/k we have v; not in fast memory, and hence the request
for v; evicts v;. Otherwise, v; stays in fast memory. Thus, the probability that v; is in fast memory
is 1 — 1/k, and the probability that the most recently used page v; is in fast memory is 1.

The probability of any other page (other than the ones mentioned in the appropriate case) being
in fast memory is unchanged across the request. O

The following theorem states that randomized MRU is k-competitive, where k is the size of fast
memory.

Theorem 11.4 Randomized MRU is expected k-competitive, where k is the size of fast memory.

Proof. Consider any input sequence o. If sequence o contains requests to fewer than k + 1
distinct pages, then randomized MRU has at the same number of page faults as the offline strategy
OPT (Both strategies have page faults only the first time each distinct page is requested.) Consider
any request after the first (k 4 1)st distinct page is requested. If the request is for the most-recently-
used page, then neither OPT nor randomized MRU have a page fault, since that page must be in fast
memory. Otherwise, OPT causes a page fault. By Lemma 11.3, randomized MRU incurs a page
fault with probability at least 1/k. Specifically, MRU incurs a fault with exactly probability 1/k for
any of k pages and probability 1 for any of the other pages. Thus, in expectation, randomized MRU
incurs at least 1/k page faults for each page fault incurred by OPT. O

This result for randomized MRU is not quite analogous to the result of Sleator and Tarjan’s [181]
result for LRU. It is true that LRU is k-competitive for the traditional paging problem, and random-
ized MRU is k-competitive for the pessimal-cache problem. However, LRU also has good perfor-
mance with resource augmentation. Specifically, if LRU has a fast memory of size k and the offline
strategy has a fast memory size (1 — 1/c)k, then LRU is c-competitive. In particular, if the LRU
has twice the fast memory of offline, then LRU is 2-competitive. The above result for the pessimal-
cache problem does not generalize in the same way-the competitive ratio depends only on the size
of randomized MRU’s fast memory. If randomized MRU has a size-k fast memory and the offline
strategy has a size 2k fast memory, then randomized MRU is still only k-competitive.

A more powerful MRU-based algorithm, which we call reservoir MRU, achieves a better com-
petitive ratio for the case of resource deaugmentation. As before, let ko and kon < kog be the
sizes of the offline and online’s fast memory, respectively.

The main idea of reservoir MRU is to keep a reservoir of k,, — 1 pages, where each previously-
requested page resides in the reservoir with equal probability. (This technique is based on Vitter’s
reservoir sampling [194].) Reservoir MRU works as follows. For the first k,, distinct requests,
the fast memory is not full, and thus there are no evictions. Subsequently, if there is a request for
a previously-requested page v;, and the page is not in memory, then the most-recently requested
page is evicted. Otherwise, when the nth new page is requested, for any n > k,,, with probability

171

1 — (kon — 1)/(n — 1), the most recently requested page is evicted. Otherwise, the page to evict
(other than the most-recently-used page) is chosen uniformly at random.

Reservoir MRU has an invariant that is a generalization of Lemma 11.3. After any request, the
page that was requested most recently has probability 1 of being in fast memory. All other n — 1
pages have probability (kon, — 1)/(n — 1) probability of being in fast memory.

Lemma 11.5 Let ko5 and ko, < ko be the fast memory sizes of the offline strategy and of
reservoir MRU, respectively. Consider any page-request sequence o to reservoir MRU. After the
n > kopth distinct page is requested, there is a single page, the most-recently-used page, that
has probability 1 of being in fast memory. All other previously requested pages have probability
(kon — 1)/(n — 1) of being in fast memory.

Proof. The proof is by induction on the requests, and is reminiscent of the proof of Lemma 11.3.

After the (kon, + 1)th distinct request, the (ko + 1)th page is definitely in fast memory, and one
page randomly chosen has been evicted. Reservoir MRU evicts the most recently used page with
probability 1 — (kon, — 1)/kon = 1/kon and all other page with the same probability. Thus, every
page, except the last one has probability 1 — 1/k,y, of being in fast memory, and the lemma holds
for the base case.

Consider a request for page v; after the nth distinct page has been requested. Assume by induc-
tion that the most-recently-used page v; is definitely in fact memory and that all other n — 1 pages
are in fast memory with probability (kon — 1)/(n — 1). There are several cases.

Case 1. Suppose that page v; = vj, i.€., v; is in fast memory with probability 1. Then none of
the probabilities change.

Case 2. Suppose that page v; has been previously requested, but v; # v;. If v; is already in fast
memory then nothing is evicted. Otherwise, by the properties of reservoir MRU, page v; is evicted.
Since v; was in fast memory with probability (kon, — 1)/(n — 1), page v; is evicted with probability
1— (kon — 1)/(n — 1) and remains in fast memory with probability (kon, — 1)/(n — 1). None of
the probabilities for pages other than v; and v; change.

Case 3. Suppose that page v; has never been requested before, that is, v; is the (n + 1)st distinct
request. By the properties of reservoir MRU, the most-recently-used page v; (which is definitely
in fast memory) is evicted with probability 1 — (kor, — 1)/n and remains in fast memory with
probability (ko — 1)/n. Thus, the probability that v; is in fast memory is at the desired value.

The probability that each additional page is in shared memory now also needs to decrease since
the number of distinct pages has increased by one. Since with probability (kon, — 1)/n, a random
page from the other k,, — 1 pages is evicted from fast memory, each page in fast memory is evicted
with probability 1/n. The probability that any page is in fast memory after this process is the
probability that the page was in a fast memory before the (n + 1)st distinct page request times the
probability that the page was not evicted by this request, which is (kop, — 1)/(n — 1)(1 — 1/n) =
(kon—1)/n. Since the number of distinct pages requested is now n+1, this probability also matches
the lemma statement. (]

The previous lemma is employed by the following theorem to prove a better competitive ration
for reservoir MRU in the case of resource deaugmentation.

Theorem 11.6 Reservoir MRU is expected kg [(kogr — kon + 1)-competitive, where kg is the size
of fast memory of the offline strategy, and ko, < k,j is the size of fast memory for reservoir MRU.

Proof. Before ko distinct requests, reservoir MRU has at least as many page faults as the offline
strategy. And after this point, each time the offline strategy has a page fault, since n > kg, reservoir

172

MRU incurs a page fault with probability at least 1 — (k,, — 1) /kog from Lemma 11.5. O

This theorem means that when the offline strategy and reservoir MRU have the same fast-
memory size k, reservoir MRU is k-competitive. When reservoir MRU has fast-memory size k.,
and the offline strategy has fast-memory size (1 + 1/¢)kon, reservoir MRU is (¢ + 1)-competitive.*

Reservoir MRU requires some additional state — in particular, it needs one bit per page to
indicate whether the page has been requested before. Consequently, if the sequence requests n
distinct pages, then reservoir MRU employs O(n) extra bits of state. In contrast, Achlioptas et.
al.’s [3] optimal randomized algorithm for the page-replacement problem requires only O(k%log k)
extra bits of state. The extra state is unavoidable for reservoir MRU, however, because we must
know when n, the number of distinct pages, increases. Fortunately, these extra bits can be stored
in the slow memory, associated with each page—only the more reasonable O(logn) bits for the
counter storing n need be remembered by the algorithm at any given time.

11.3 Direct mapping

This section considers the page-replacement strategy used in direct-mapped caches. The main result
is that for the pessimal-cache problem, direct mapping is k-competitive under some assumptions
about the mapping strategy or about the layout in slow memory.

In a direct-mapping strategy (see, e.g., [117]) each page v; can be stored in only a single location
L(v;) in fast memory. Thus, in a direct-mapped cache, once the function L(v;) is chosen, there are
no algorithmic decisions to make: whenever a page v; is requested, we must evict the page that is
currently stored in location L(v;) and store v; there instead.

This section shows that if L(v;) is randomly chosen for each v;, then direct mapping is k-
competitive with the optimal offline strategy (with no direct-mapped restrictions).

In fact, typically in real caches, the function L(v;) is determined by the low-order bits in the
address of v; in slow memorys; it is not random. If each page v; is stored in a random memory address
in slow memory, however, then the following theorem still applies. While it is often unrealistic to
assume that each page v; is randomly stored, this approach was also used in [98, 177] to enable
direct-mapped caches to simulate caches with no restrictions on associativity.

A direct mapping is not a reasonable strategy when compared with the optimal offline strategy
with no mapping restrictions. In particular, a direct-mapped fast memory may evict a page before
the rest of the fast memory is full. However, since caches with limited associativity are so common,
it is of interest to explore this special case.

The following theorem states that direct mapping is competitive with the optimal offline strategy
for the pessimal-cache problem.

Theorem 11.7 Direct-mapping is k-competitive, where k is the fast-memory size of the both be the
direct-mapping and offline strategies.

Proof. We claim that if a particular page v; is requested many times and the offline strategy
incurs a page fault on £ of these requests, then direct mapping incurs at least £/k page faults on v;
in expectation. We prove this claim by induction on the number of requests to v;.

The first time that v; is requested, there is a page fault. If v; is requested again immediately
(without any interleaving page requests), then both strategies have the page in fast memory. If v; is
requested again after another page is requested, then the offline strategy may have a page fault. The

“In fact, the offline strategy can have a slightly smaller memory—with size [(1 + 1/c)(kon — 1)]-and we still attain
the (¢ + 1)-competitiveness.

173

direct-mapping strategy incurs a page fault with probability at least 1/k, because at least one page
v; is requested between v; requests, and this page v; has a 1/k probability of evicting v; from fast
memory. O

114 Concluding remarks

For the pessimal-cache problem, randomization is necessary to achieve any competitive ratio, and
the best competitive ratio without resource deaugmentation is k. In contrast, for the original paging
problem, deterministic strategies can be k-competitive [181], and upper [3, 92, 151] and lower [92]
bounds of ©(log k) exist for randomized strategies against oblivious adversaries.

In this chapter, competitive ratios are k or larger; is there some model in which the competitive
ratio is smaller? Essentially, I am trying to get a better definition of reasonable strategies giving the
adversary just the right amount of power. This concept is similar to many approaches for the original
page-replacement problem — for example, the graph-theoretic approach [58] tries to better model
locality. Unfortunately, the traditional approaches seem to have little impact for the pessimal-cache
problem. For example, looking at access patterns matching a graph, little can be said even if the
graph is just a simple line. Adding power like lookahead to the online strategy, on the other hand,
trivializes the problem since the optimal offline strategy can be implemented with a lookahead of 1.
It would be nice to come up with a more accurate model that allows us to beat k-competitiveness.

It is interesting that direct-mapped cache is optimally bad when the program shows no locality
(i.e., as in a multiprogrammed environment). In this model, however, we cannot show anything
about the badness of a 2-way (or, more generally, c-way) set-associative cache using LRU. In par-
ticular, the LRU subcomponent forces the cache to make the “right” choice for eviction, and the
sequence ping-ponging between two pages is sufficient to guarantee no future misses.

One way of weakening the adversary is to restrict the definition of “reasonable” strategies by
disallowing the eviction of the most (or perhaps the ¢ most) recently used pages. This restriction
forces the cache to model some small amount of locality, since, after all, that is the purpose of
the cache. This modification of the problem has the nice property that it allows us to analyze the
pessimal-cache problem for a c-way set-associative cache. In particular, a 2-way set-associative
cache is roughly k2-competitive for the pessimal-cache problem. This result appears to generalize
for c-way set-associative caches as well.

It would nice to see if anything from this chapter applies to other problems, or generalizations
of the paging problem, like the k-servers on a line problem, for example.

174

Chapter 12

Incremental Topological Ordering

Let G = (V, E) be a directed acyclic graph (dag) with n = |V'| and m = |E|. We say that a total
ordering < on vertices V' is a topological ordering if for every edge (u,v) € E, we have u < v.
Given a specific dag G, there are two well-known approaches for finding a topological ordering in
O(n + m), either by depth-first search, or by repeated deletion of vertices with no incoming edges.

This chapter addresses an incremental variant of this problem, which arises in a variety of con-
texts, including compilers [148, 164], deadlock detection [32], pointer analysis [166, 167], and in-
cremental circuit evaluation [13]. This chapter represents joint work with Michael A. Bender, Seth
Gilbert, and Robert E. Tarjan, most of which previously appeared in [46].

In the problem of incremental topological ordering, the goal is to maintain a topological ordering
even as edges are added to the graph. Initially, the graph G is unknown; edges are added one at a
time. After each edge addition, we must recalculate a valid topological ordering. More specifically,
the goal is to maintain a data structure that supports two operations: (1) edge insertions, in which
a new edge is added to the graph G; and (2) queries of the form: “Does u come before v in the
topological ordering?”! In this chapter, as well as in previous work, queries are answered in O(1)
time; the key question is how fast can edge insertions be processed?

Prior work

The simplest solution to the problem of incremental topological ordering is to recalculate a new
ordering after each edge insertion, resulting in O(n(m + n)) time for m edge insertions. In recent
years, there have been several significant improvements. Marchetti-Spaccamela et al. [149] gave
the first nontrivial solution, handling m insertions in a total of O(mn) time. Alpern et al. [13]
gave an algorithm that performs well in a greedy sense: given a topological ordering and an edge
insertion, their algorithm performs (almost) the minimum amount of work possible to find a new
topological ordering. (This form of analysis, however, says little about the total time to perform m
edge insertions.) Katriel and Bodlaender [131] gave a variant of the algorithm introduced by Alpern
et al., which they show to run in O(min {m®?logn, m%/2 + nlogn}) time. They also showed
significantly better bounds for graphs of bounded treewidth. Liu and Chao [142] gave a tighter
analysis of the Katriel-Bodlaender algorithm, showing that it runs in O(m3/2 + mn!/2 log n) time.
Kavitha and Mathew [133] gave a slightly better variant taking O(mg/ 2 + m/?nlogn). Most
recently, Haeupler et al. [113,114] gave a variant of the Alpern et al. / Katriel-Bodlaender algorithm
that runs in time O(m?/2).

! Although there may be many valid topological orderings, all answers given by the data structure after the kth edge
insertion/deletion must be consistent with the same topological ordering.

175

The algorithms mentioned thus far do no better than O(n?) for dense graphs where m = ©(n?).
Ajwani et al. [11] gave the first improvement for dense graphs, exhibiting an algorithm that runs in
O(n?7) time for any number of edge insertions. Haeupler et al. [113,133] improved this algorithm,
resulting in a simpler algorithm requiring only O(n?) time. This bound is not known to be tight,
however, so this algorithm’s true running time could potentially match our own.

Pearce and Kelly [166] gave an algorithm that they showed to be fast in practice on random
sparse graphs, but that is provably worse than that Alpern et al. algorithm in the worst case. Ajwani
and Friedrich [10] proved that the Alpem et al., Katriel and Bodlaender, and Pearce and Kelly
algorithms all take expected time O(n2polylog(n)) for edges forming a complete graph inserted in
a random order.

The only nontrivial general lower bound that I am aware of is an Q(nlogn) lower bound for
n—1 edge insertions due to Ramalingam and Reps [172]. Katriel [130] gives an 2(n?) lower bound
when m = O(n) for algorithms that explicitly maintain the rank of each vertex in the topological
order. Of known algorithms, this lower bound only applies to those algorithms that store the topo-
logical ordering in an array — those of Marchetti-Spaccamela et al., Pearce and Kelly, and Ajwani
et al. It does not apply to the algorithms in this chapter, nor does it apply to any of the sparse-graph
algorithms. Haeupler et al. [114] give an Q(nml/ 2) lower bound for algorithms that only update
the “affected region” of the topological ordering on an edge insertion. This lower bound applies to
all previous algorithms, but it does not apply to the algorithm given in this chapter.

Contributions

This chapter includes a new algorithm that takes O(n2logn) time to support any number of edge
insertions. The analysis is tight in that there exist graphs and edge-insertion sequences causing our
algorithm to run in ©(n?logn) time. This bound beats the O(n?%) bound of Haeupler et al. [113,
133] and beats the O(m3/ 2) bound of Haeupler et al. [113, 114] whenever m > nd/3 log2/ 3n. 1
include an analysis of this algorithm in the RAM model (as is the case for all prior algorithms).

The approach here is quite different from previous algorithms. Typically, a topological ordering
is maintained explicitly as either a linked list or an array. When adding an edge (u, v), the algorithm
first checks whether u appears before or after v in the existing topological ordering; if u appears
after v, then the array or linked list is updated so that u precedes v in the ordering, as is required
by the insertion of edge (u,v). During the insertion, the algorithm modifies only vertices in the
“affected region” of the list/array, i.e., those vertices that lie between v and uw. The key to these
algorithms is to efficiently discover which vertices in the affected region need to be moved.

This chapter’s algorithm, by contrast, does not maintain an array or linked list, but instead
assigns a label to each vertex in the graph, reassigning labels as edges are inserted.? The labels
induce a topological ordering on the dag and are also used to assist in efficient updates during edge
insertions.

Our data structure can be readily extended in various ways. First, it can be augmented to support
additional operations, such as queries of the form: “What is u’s successor (or predecessor) in the
topological ordering?” (Such queries are supported by most previous algorithms.) Second, it can
be augmented to detect cycles in the graph G; we assume throughout this paper that the graph G is
acyclic; however, with a small amount of bookkeeping we can detect anomalous graphs. Finally, our
data structure can readily support edge deletions as well as edge insertions; however, performance

%Previous linked-list-based algorithms implicitly use labels to perform queries as part of an order-maintenance data
structure [33,81]. By contrast, our labels have semantic meaning within the graph itself and play a key role in determining
which vertices to update.

176

guarantees apply only to executions consisting only of insertions. We comment on these extensions
in Section 12.2.

Chapter outline

The remainder of this chapter is organized as follows. First, Section 12.1 presents some preliminary
definitions, along with an overview of our approach for maintaining a topological ordering. As a
simple example of this approach, Section 12.1 provides an algorithm that achieves O(mn) running
time. Next, Section 12.2 presents a new algorithm in more detail that achieves the O(n?logn)
bound for maintaining the data structure. Finally, Section 12.3 includes and analysis of the algo-
rithm, and Section 12.4 contains some concluding remarks.

12.1 Basic strategy

This section describes a basic strategy for maintaining a topological ordering. This strategy can be
applied in a simple fashion to achieve an O(mn) algorithm for n vertices and m edge insertions.
While this bound is not new, it demonstrates a quite different approach. Section 12.2 shows how
this same basic approach can be more carefully applied to develop a more efficient algorithm that
yields running time O(n? logn).

Terminology

Given a dag G = (V, E), we say that a node u is a predecessor of a node v (and that v is a
successor of), if there is a directed path from u to v in G. According to this definition, a node u is
a predecessor (and successor) of itself. When the edge (u, v) exists, we say that u is an immediate
predecessor of v (and v is an immediate successor of u).

Labels and orders

The main idea of the approach described in this chapter is to associate with each vertex u an (integer)
label L(u). These labels imply a total order in the natural way: if L(u) < L(v), then u < v.
If L(u) = L(v), then break the tie in an arbitrary but consistent fashion, say, using the unique
identifiers of the vertices in question.

The ordering induced by the labels is a topological ordering as long as the labels are consistent
with the underlying dag. That is, whenever (u, v) is an edge in E, we have L(u) < L(v).

Labels are updated dynamically as edges are added to the graph. When adding edge (u,v),
update the label at v, if necessary, along with some subset of v’s successors. The first step involves
determining whether the label of v needs to be increased. We refer to this process as visiting v. If
v’s label needs to be increased, a new value of the label is chosen. After visiting a node v, perform
a truncated depth-first search on the dag, starting at v and visiting successors of v in turn. When
traversing an edge in the dag, we say that we are following the edge. Choosing when to follow
edges and how to update labels is at the heart of achieving an efficient algorithm.

A simple algorithm

As an example of how to apply this paradigm, consider a simple algorithm in which the label L(v)
represents the depth of v, where depth is defined as usual: if v has no immediate predecessors, then
L(v) = 0; otherwise, L(v) = max,.(yv)eg L(u) + 1. If each node is labelled with its depth, it is

177

Figure 12-1: When the dotted edge is added, the depth of u increases by 1. The simple algorithm performs
O(k?) work, following edges (v;,w;) forall 1 <i,j < k.

clear that the labelling induces a topological ordering: if u precedes v in the dag G and u # v, then
L(u) < L(v).

Initially, as there are no edges in the graph G, L(u) = 0 for every vertex u. Every time an
edge is added to the dag, the labels on the vertices are updated to reflect the changes in depth
caused by the new edge. Specifically, when adding edge (u,v), compare the labels at u and v: if
L(w) < L(v), then the depth of v remains unchanged. If, however, L(u) > L(v), then update v’s
label: L(v) « L(u) + 1. Then recursively follow all of v’s outgoing edges, recursively performing
the same “update label/follow edges” procedure at each of v’s immediate successors. When this
depth-first traversal terminates, each vertex is labelled with its depth in the graph.

There is a straightforward analysis of this algorithm. For each vertex u, the maximum depth is
n—1, and hence L(u) < n— 1. Since labels/depth are nondecreasing, it follows that L(w) increases
at most n — 1 times, and thus the total cost of updating labels is O(n?). The remaining cost comes
from following edges. (Recall that we may sometimes follow an edge (v,w) but not update the
label at w, as it is already sufficiently large.) Notice that the algorithm follows the edge (v, w) only
when (1) (v, w) is added, or (2) v’s label increases. Since the label at v increases at most n — 1
times, each edge can be followed at most n times. We conclude that the total cost to insert m edges
is O(mn).

12.2 Algorithm for dense graphs

This section describes an O(n? log n) algorithm for incremental topological sort, which is based on
the basic strategy described in Section 12.1. The analysis appears in Section 12.3.

The example in Figure 12-1 demonstrates a shortcoming of the simple O(mn) algorithm. Con-
sider a bipartite clique with vertices vy, vz, ..., v and wy, ws,. .., wy, and an additional source
vertex v that has a directed edge to every v;. Consider an execution of the simple algorithm. When
the depth of u increases, the algorithm follows each outgoing edge (u,v;), and the label of each
v; also increases. Since v;’s label increases, the algorithm also follows each edge (v;, w;). Thus,
whenever the depth of increases, the algorithm follows all of the ©(k?) edges in the clique. Setting
k = ©(n) and increasing the depth of u by one ©(n) times yields a total cost of ©(n?).

The main goal of this section is to reduce the number of times that any particular vertex w is
visited, specifically, to bound the number of visits by O(n log n). (By contrast, the simple algorithm
may visit each node up to Q(n?) times.)

178

Key modifications

In order to achieve better performance, we make two key modifications to the simple algorithm.
First, do not blindly follow all outgoing edges from v whenever v’s label increases. Instead, for
each edge (v, w), cache the value of w’s label at v and only follow the edge (v, w) if the cached
information indicates that w’s label needs to increase. Specifically, associate with each edge (v, w)
the value cache(v, w), which records the label of w as of the last time the algorithm followed edge
(v,w). Since labels are nondecreasing, cache(v, w) < L(w). Thus, do not follow (v,w) unless
L(v) > cache(v, w).

This first improvement alone does not improve the worst-case running time of the simple algo-
rithm, as exhibited again by the bipartite-clique example in Figure 12-1: after each edge insertion
completes, the cache at each edge leaving v; correctly records the depth of each node w;; however,
when v; increases by 1 on the next edge insertion, we must again follow all outgoing edges from v;.

The second modification is to use a more aggressive label-update rule. If we could update the
label of a node by a larger quantity (instead of incrementing it), then we could cache that larger value
and avoid unnecessary visits. However, we want to avoid increasing the label too much, which may
result in labels growing too big.

Thus, we no longer constrain the label of a node to represent its depth, as it is expensive to
maintain a node’s precise depth. Rather, consider the label L(v) to approximate the total number
of predecessors (not just immediate) of v. (Notice that the depth of a node is a very loose lower
bound on the total number of predecessors.) That is, we assign a label L(v) such that 0 < L(v) <
Pred(v) < n, where Pred(v) is the total number of predecessors of v. (Of course, the labels also
must induce a valid topological order.)

When increasing v’s label, the magnitude of the increase depends on the number of immediate
predecessors known to have large labels: the more predecessors of v that have large labels, the
higher the increase in label of v. This strategy captures the intuition that if a vertex has many
immediate predecessors with large labels, then it most likely has a very large number of predecessors
(immediate or otherwise) in the dag. By increasing the label significantly, the number of updates is
reduced.

The dense algorithm

As previously noted, the improved dense-graph algorithm maintains the value L(v) (initially 0),
with 0 < L(v) < n. Associate with each edge (u, v) the value cache(u, v), which stores the (old)
value of L(v) when the algorithm last followed edge (u, v). (Note that the cached value may be out-
of-date, as L(v) may have increased since then). Organize all outgoing edges into a data structure
outgoing(v), which will be described later in this section.

Also associate with v a collection of counters N (v, j) and corresponding labels A(v, j), for
each j : 0 < j < lg(n), all initially 0. The jth counter N (v, j) satisfies the following invariant:
0 < N(v,j) < 29%2. The label A(v, j) stores the value of v’s label when N (v, j) was last reset
to 0. The N (v, §) counter counts the number of incoming edges (u, v) that, when last followed, had
20~ < L(v) — L(u) < 2,

I now describe the algorithm in more detail. When inserting the edge (u, v) into the dag, proceed
as follows: (1) initialize cache(u,v) «— 0; (2) insert (u, v) into outgoing(u);, and (3) follow the
edge (u,v) as described by FOLLOW(u, v) in Figure 12-2. This procedure updates v’s label and
other state, and then (selectively) calls FOLLOW (v, *) recursively on the ongoing edges of v.

When executing FOLLOW (u, v), first check whether L(u) < L(v). If not, increase L(v) by 1in
line 2, thus ensuring that the resulting labelling induces a valid topological ordering.

179

State maintained by each node u € V:

L(u), the label of u.

vj € {0,1,...,1gn} : N(u,j), a counter bounded by 2/+2.
Vi €{0,1,...,lgn} : A(y,), an old label of u.

Vv : (u,v) € E : cache(u,v), an old label of v.
outgoing(u), an array of outgoing edges.

FoLLow (u, v)
1 if L(u) > L(v)
2 then L(v) « L(u) +1
3 else > Check if v has sufficiently many immediate
> predecessors to increase its label.

4 J < g(L(v) = L(w))]

5 N(v,j) < N(v,j) +1

6 if N(v,j) = 27+2

7 then L(v) « max(L(v), A(v,j) + 27)
8 N(v,j) « 0

9 A(v,j) « L(v)

10 if L(v) has increased:
11 then for each (v, w) such that cache(v, w) < L(v)
12 do FOLLOW (v, w)
> Done following the edge.
> Update (v, w) in »’s outgoing edge set.
13 cache(u,v) < L(v)
14 Update (u, v) in outgoing(u).

Figure 12-2: Pseudocode for updating labels, when following an edge in the dag. The triangles denote
comments. Each node v maintains four data structures: a label L(v), a counter N (v, j) and old label A(v, j)
for 0 < j < lg(n), and an outgoing-edge set outgoing(v) organized by cache(v, w) — a cached version of
w’s label.

If, on the other hand, we already have L(u) < L(v), then examine whether v should have its
label increased due to its counts of immediate predecessors. This step is where the label is increased
more aggressively than in Section 12.1.

First, find the magnitude of difference between L(u) and L(v) in line 4 — specifically, find the
smallest j such that L(v) — L(u) < 27. Then, increment the corresponding counter N (v, j). If
the counter N (v, §) reaches its maximum value of 272, then perform the “more aggressive” update
of v’s label, increasing L(v) by up to 29 — 1 in line 7. Next, reset N(v, j) to O and record the
corresponding A(v, 7) in lines 8 and 9.

This label update may seem strange at this point, but Lemma 12.2 will show that when A (v, j)+
27 > L(v), v has at least 27+ distinct immediate predecessors with label at least A (v,) —27. Thus,
v has at least A(v, j) — 27 + 277! predecessors, and the label is updated accordingly.

At this point, if v’s label increases (whether in line 2 or line 7), then follow all outgoing edges
whose targets have cached labels that are < L(v), i.e., targets that may need to have their label
increased. Finally, when the algorithm has finished following outgoing edges, associate v’s new

180

label L(v) with cache(u,v) and update the edge (u, v) in u’s outgoing edge list.
Some comments on implementation details appear next.

Implementing the outgoing-edge set

The outgoing-edge set data structure is straightforward to implement. The variable outgoing(v) is
an n-slot array, each slot containing a linked list of outgoing edges. If cache(v,w) = z, then a
pointer to w is stored in a linked list at slot z in the array. Updating an edge (i.e., in line 14) is easy
in that it simply involves removing it from one linked list and adding it to another.

To determine which edges to follow (in line 11), follow all outgoing edges in array slots between
v’s old label and v’s new label. After following each edge, the target’s label (and hence the edge’s
cached label) has increased beyond v’s current label L(v). Thus, when FOLLOW(u, v) returns, there
are no outgoing edges stored in array slots 0, ..., L(v). As a result, each slot of the array need be
examined only once during the entire execution.

Calculating in the RAM model

Some machine models allow for a constant-time Ig calculation, but this chapter does not require
such an assumption. Since the algorithm only compute this logarithm for at most n different values
(i.e., the difference in the possible labels), these values can be precomputed and stored in a size-n
logarithm table with all the necessary entries. Even a naive algorithm for computing base-2 loga-
rithms of lg n-bit numbers requires only O(log n) time using only additions (repeated doubling) and
comparisons. The O(n log n) time for pre-computing the entire table is dwarfed by the O(n?logn)
time of the topological-ordering algorithm.

Similarly, one could precompute a table for calculating 272 using only additions, thereby not
requiring a bitshift operation in the machine model.

Supporting predecessor/successor queries

As described so far, our data structure supports only queries of the form, “Does u precede v in
the topological ordering?” It does not (efficiently) support queries of the form, “What is the next
vertex in the topological ordering after u?” These queries are easy to support without increasing the
asymptotic running time.

Throughout the execution of the algorithm, maintain a linked list matching the topological or-
dering. To search into the linked list, also maintain a balanced search tree (BST) (see [72, Chapter
12]), ordered/keyed by label, where ties are broken by unique vertex identifiers. Initially the ver-
tices are simply sorted by identifier. Whenever v’s label increases, remove v from the tree and
reinsert it with key equal to its new label. Query the BST for v’s predecessor u, and move v from
its current location in the linked list, instead locating v after its BST-predecessor u. Since labels
have maximum value of n — 1 (shown later in Lemma 12.2), a node v is reinserted at most n — 1
times, resulting in » BST insertions and predecessor queries, as well as n linked-list moves, per
vertex. Each BST operations has cost O(log n) (using a reasonable BST implementation), and each
linked-list operation has constant cost. The total additive cost of O(n? logn) for the O(n?) BST
operations has no effect on the asymptotic running time of our algorithm.

Detecting a cycle

Thus far, we have assumed that no edge insertion introduces a cycle to the graph. It is easy to
modify our algorithm to detect the introduction of a cycle, although the performance bounds only

181

. hold until the first cycle is detected; that is, we provide no mechanism for deleting an edge aside
from rebuilding the entire data structure.

To detect whether the addition of (u,v) introduces a cycle, simply check whether u is ever
visited during the depth-first search performed while following edges. If so, there is a cycle. The
nodes in the cycle can be found by a separate graph search.

12.3 Analysis

This section analyzes the algorithm from Section 12.2. There are three key statements and proofs
here. First, the ordering induced by the labels is, in fact, a topological order. Second, the labels
are bounded by . Lastly, the total cost of inserting m edges is O(n? log n), and this analysis to be
tight. The key observation for this last theorem is that no edge is followed too many times.

Correctness of the topological ordering

This first theorem shows that the data structure maintains a valid topological ordering.
Theorem 12.1 After completely processing each edge insertion, if ((u,v)) € E, then L(u) < L(v).

Proof. Initially, the labels trivially induce a good ordering since there are no edges in the dag. As-
sume, for the sake of contradiction, that after some edge insertion the theorem is violated. Consider
the first edge insertion causing a violation, and let edge (u,v) be an edge for which L(u) > L(v).
During the edge insertion, the label L(u) must have increased, thereby causing the violation. If we
subsequently followed (u, v), then L(v) would have increased beyond L(u) (in line 2).

Suppose, therefore, that we did not follow (u,v) after the last increase to L(u). It follows that
cache(u,v) > L(u), as the edge was not followed in lines 11-12. We know that the cached label
cache(u,v) < L(v), since L(v) is nondecreasing. Hence, L(v) > cache(u,v) > L(u), which is a
contradiction.

Bounded labels

This next lemma shows that the value of each label is bounded by n. (This fact also ensures that
each label can be stored in a single word, which has been implicit thronghout.)

Lemma 12.2 For v € V, let Pred(v) be the total number of predecessors of v. Then at any point
during the algorithm execution, L(v) < Pred(v) < n.

Proof. We proceed by induction over the number of edges that have been followed. Initially,
L(v) = 0, and the claim holds trivially. Assume the lemma is true before following the edge (u, v).
We show that it holds after following the edge. If label L(v) does not increase, then the claim
follows immediately, as L(v) < Pred(v) by inductive hypothesis.

Suppose instead that L(v) increases while following (u, v). There are two places that v’s label
increases: line 2 and line 7 of Figure 12-2. In the first case, L(v) « L(u) + 1. By inductive
hypothesis, L(u) < Pred(u), and we know that Pred(u) < Pred(v) since the predecessors of
v include all the predecessors of u plus the node v itself. (Recall that v is considered to be a
predecessor of itself.) Thus, L(v) = L(u) + 1 < Pred(u) + 1 < Pred(v), and the claim follows.

In the second case, L(v) increases in line 7 as a result of N (v, j) increasing to 20+2, We fix j
for the remainder of this proof. First, we observe that L(v) increasing here implies that (prior to the

182

update) L(v) < A(v,j) + 27. (Otherwise the label L(v) would remain unchanged.) Consider the
27+2 increases to N (v, 5) since the last time it was reset to 0.

We claim that each distinct edge contributed at most 2 such increases to N (v, j). Suppose for the
sake of contradiction that some edge (u, v) contributed 3 or more increases to N (v, j), and consider
the last 3 such increases. For z € {u, v}, let Li(z), L2(z), and L3(x) be the values of z’s label
immediately prior to these 3 increases, respectively. Since the counter increases, L;(v) — L;(u) >
29~1. (Recall that this inequality follows from the choice of j, see line 4.)

Moreover, since cache(u, v) is updated after each edge is followed, and since the edge is only
followed if the label L(u) exceeds the cached value of L(v), we can conclude that La(u) > Li(v)
and L3(u) > La(v). Combining these two facts, we conclude that Ly(v) > La(u)+27"1 > L;(v)+
29~ and L3(v) > L3(u) + 2771 > Lo(v) + 2771, which together imply that L3(v) > L1 (v) + 27.
Finally, since the counter does not reset between these increases, and A(v, j) represents v’s label
at the time of the previous reset, L1 (v) > A(v, 7). It follows that L(v) > L3(v) > A(v,j) + 27,
which is a contradiction.

We therefore conclude that each edge contributes at most 2 increases to N (v, j). Since there
have been 2772 increases when the counter resets (causing the label of v to be increased), we con-
clude that there are at least 2912 /2 distinct edges contributing to N (v, j). Fix some u such that (u, v)
contributes to N (v, 7). Each time edge (u, v) contributes to the count, we have L(u) > L(v) — 27
(again, by the way in which j was chosen on line 4). Thus, since L(v) > A(v, j), we know that
L(u) = A(v,5) — 27

Thus, v has at least 2! distinct immediate predecessors with label at least A(v, j) — 27. We
call these vertices the “contributing predecessors.”

Let = be a topologically earliest contributing predecessor. By inductive hypothesis, we have
Pred(z) > L(z). All of z’s predecessors are predecessors of v. Moreover, none of the other
contributing predecessors, nor v itself, are predecessors of z. Thus, Preds(v) > Preds(z)+2/*! >
L(z) + 271 > (A(v,j) — 27) + 27! = A(v,j) + 2. Noting that the label L(v) is increased to
A(v, j) + 27 completes the proof. O

Complexity analysis of insertions

Let us now consider the total cost of m edge insertions, showing that the total cost is O(n?logn).
The key observation is that no vertex is visited too many times, specifically, more than O(n logn)
times. The main idea of the proof is the amortize the cost of following an edge directed towards v
against the number of times that the label of v is increased.

Lemma 12.3 In every execution, for every v € V, vertex v is visited at most O(nlogn) times.

Proof. Whenever visiting v, either L(v) increases (line 2), or N (v, 7) increases for some j (line 5).
The former occurs at most » — 1 times over the course of the algorithm.

For the latter case, consider the jth counter. Whenever the counter reaches 2712 it resets. Let
A;i(v, j) denote the value of v’s label associated with the ith reset. Observe A;1(v, 7) > A;(v, 5) +
27 due to the update in line 7, or more generally A;(v,j) > 427. Since n > L(v) > A(v, 7), it
follows that the maximum value of 4 here is | (n — 1)/27 |, and hence N (v, j) can be increased at
most

J+2 Vi Y*%n j+2 j+2

22 (|(n—1)/27] +1) < 5 2T <An+2
times. Summing over all O(logn) values of j gives O(nlogn) counter increments and hence
visitations of v. O

Combining Lemma 12.3 with a cost analysis of each call to FOLLOW yields the total running time:

183

Theorem 12.4 The total running time to perform up to m edge insertions is O(n?logn).

Proof. To reach this bound, we calculate the cost of each call to FOLLOW, and multiply by the
total number of times that any node is visited. Ignoring lines 11-12, each step of FOLLOW has
constant cost. The only remaining cost is due to finding edges to follow in the outgoing-edge data
structure. The outgoing-edge data structure is a size-n array of linked lists. We visit each array cell
only once over the entire course of the algorithm, for an aggregate cost of O(n). We charge the
O(1) cost of traversing the linked list against the outgoing edge followed. Multiplying the array-
traversal cost for each outgoing-edge data structure by n vertices yields a total cost for our algorithm
of O(n? + F), where F is the total number of edge followings. Applying Lemma 12.3 completes
the proof. O

Finally, the following theorem shows that the analysis is tight.

Theorem 12.5 For any Suﬁiciently large n, there exists a sequence of ©(n?) edge insertions on an
n-vertex dag that causes our algorithm to follow Q(n?logn) edges.

Proof. Without loss of generality, suppose n = 3k — 4, where k > 23 is a power of 2. The
graph we construct consists of three categories of vertices: (1) vertices uo, u1, . - - , Ug—1, (2) sets of
vertices Sp, S1, - - - , Sig(k)—3 With |Sj| = 272 (so >, 1Sj| = k—4), and (3) a set of vertices T with
|T'| = k. Initially there are no edges in the graph, and all labels are 0.

First, add edges (u;, ui+1) in order for 0 < 7 < k — 1. After these edge addmons, L(u;) = 1.
These labels are invariant over the remainder of the edge insertions — we use these vertices as
anchors to increase the labels of all the other vertices. In fact, the only time the labels of any other
vertex v € ({J; ;) UT will increase is when adding an edge (us, v).

The edge insertions proceed in phases ranging from 1 to k. In phase ¢, first insert edge (u;—1,t)
for all t € T, thereby increasing L(t) such that L(t) = 4. Next, consider each j for which ¢ is a
multiple of 27. There are two cases.

Case 1: If i = 27, add edges (s;, t) forall s; € S; and t € T'. Observe that before the edge addition,
N(t,j) =0, A(t,5) = 0,and L(s;) = 0 = L(t) — 2/. After the 27+?th edge insertion, N (t, j)
reaches 2972, We have, however, that L(t) > A(t, j) + 27, and hence L(¢) does not increase. The
counter N (¢,) is subsequently reset to 0, and A(t, j) « L(t) = 27. Finally, cache(s;,t) « 27 as
well.

Case 2: Otherwise, i > 2-27, and the edges (s;, t) already exist. Instead, insert edges (u;_si_1, 55),

for all s; € S;. This edge insertion causes L(s;) to increase to the next multiple of 27, After the
update, we have L(s;) = cache(s;,t) = A(t,) =i — 27, and hence all edges (s;, t) are followed.

The counter N (t, j) again resets to 0, A(t, j) < L(t) = ¢, and finally cache(s;,t) « i.

In both cases, whenever the phase number 7 is a multiple of 27, we follow all edges (s, t) for all
s; € S;jand t € T. Consider a fixed j. There are |S;| - |T'| = 272k such edges. Summing over all
k/2 phases during which the phase number is a multiple of 27, there are (2/+2k)(k/27) = 4k? =
Q(n?) edge followings from vertices in S; to vertices in T'. Summing over all Ig(k) — 2 = ©(log n)
values of j yields a total of (n?logn) edge followings. O

124 Concluding remarks
This chapter has shown how to solve the problem of incremental topological ordering where the

total cost of inserting m edges into a graph containing n vertices is O(n?logn). It supports order
queries of the form “Does u come before v in the topological ordering?” in O(1) time, and, with

184

minor modifications, it can support successor/predecessor queries in O(1) time. For dense graphs
where m > n*/31og?3 n, this algorithm is the most efficient to date.

As presented, the algorithm requires O(n?) space (in terms of machine words, not bits); using a
priority queue to manage the outgoing edges should reduce the space to O(m +n log n) but increase
the running time to O(n? log? n).

The major open question is whether the new techniques introduced in this paper can yield im-
provements in the sparse case. For our algorithm, there exists an instance of n — 1 edge insertions
that requires {2(n?) work. For example, always adding edges to the front of a chain results in rela-
belling every node in the chain on every edge insertion. It would be interesting, however, if some
variant of our approach leads to a good algorithm for sparse graphs.

185

186

Chapter 13

Conclusions

In this thesis, I have presented many algorithms and techniques for designing provably good parallel
and cache-efficient algorithms. As problem-specific conclusions occurred at the end of each chapter,
this chapter is reserved for more general discussions.

Many of the problems and solutions I presented are motivated by issues that arise in designing
a good parallel-programming infrastructure. The goal in Chapters 2--3, for example, is to make
dealing with concurrent accesses to data a bit easier for the programmer. Similarly, the scheduling
algorithms in Chapters 4 and 5 should be incorporated into a runtime system and ignored by the av-
erage programmer. Even the cache-oblivious dictionaries in Chapters 8-10 and CSB multiplication
algorithm in Chapter 6 can be rolled into libraries that may be incorporated into larger systems.

One of the main problems I addressed is concurrency control. Both Chapters 2 and 3 as well
as Chapter 5 addressed this issue to some degree. Many questions remain. How can we analyze
programs that use locks/transactions in general? Chapters 2, 3, and 8 all gave algorithms that use
locks and attain provably good performance, but what about other algorithms? Is there a general
methodology for locking that guarantees good performance? There are several different approaches
in this thesis. For SP-maintenance and conflict detection, I limited the degree of locking. For CSB
matrix-vector multiplication, I duplicated data to avoid contention. The concurrent CO B-trees,
on the other hand, incorporated randomization. All of these focus on structuring an algorithm to
reduce the cost of the concurrent accesses; what about analyzing an arbitrary class of programs (say
fork-join programs) that use locks?

Another theme throughout this thesis has been amortization, which occurs in many of the al-
gorithms. For both the SP-maintenance and conflict detection problems, I incorporated serial data
structures into a shared, parallel data structure. These serial data structures included some amortized
element, which presented a challenge as it seems that a slow amortized operation occurring at the
wrong time could effectively increase the span of the computation. To compensate, the solutions I
presented were able to bypass the amortization at certain points. I suspect, however, that this bypass
is unnecessary, at least for these types of algorithms. Can we prove that these slow amortized steps
do not, in fact, increase the runtime?

Amortization remains a powerful tool in sequential algorithms, but their effectiveness is still
unclear in parallel programs. Yes, this thesis did include a couple of examples, but I did not solve
the general challenge of parallelizing amortized codes. The first solution we were toying with for
SP-maintenance, for example, was to take the SP-order code and simply parallelize the underly-
ing order-maintenance data structure. This approach proved ineffective as it seemed possible to
construct input computation dags that would cause high contention on a small region in the data
structure. All I can say, however, is that what we tried did not work; we did not prove any lower

187

bounds on parallelizing an order-maintenance data structure. (
Finally, I addressed several variants of cache-oblivious dictionaries in this thesis. The two main

contributions were adding concurrency and exploring the cost tradeoff on operations. I am curious to

see whether any of these techniques can be incorporated into other cache-oblivious data structures.

188

Bibliography

(1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact labeling schemes for ancestor
queries. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 547-556. Society for Industrial and Applied Mathematics, 2001.

N. Abramson. The ALOHA system — another alternative for computer communications. In
Proceedings of AFIPS FJCC, volume 37, pages 281-285, 1970.

Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized
paging algorithms. In Annual European Symposium on Algorithms (ESA), volume 1136 of
Lecture Notes in Computer Science, pages 419-430, Barcelona, Spain, September 25-27
1996.

Michael D. Adams and David S. Wise. Seven at one stroke: results from a cache-oblivious
paradigm for scalable matrix algorithms. In MSPC "06: Proceedings of the 2006 workshop
on Memory system performance and correctness, pages 41-50, New York, NY, USA, 2006.
ACM.

Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy, Bratin Saha, and
Tatiana Shpeisman. Compiler and runtime support for efficient software transactional mem-
ory. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 26-37, Jun 2006.

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, September 1988.

Kunal Agrawal, Michael A. Bender, and Jeremy T. Fineman. The worst page-replacement
policy. Theory of Computing Systems, 44(2):175-185, 2009.

Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 163—174, Salt Lake City, Utah, USA, February 20—
23 2008.

Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models for open-nested trans-
actions. In Proceedings of the ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness (MSPC), October 2006. In conjunction with International Conference on
Architectutal Support for Programming Languages and Operating Systems.

Deepak Ajwani and Tobias Friedrich. Average-case analysis of online topological ordering.
In Takeshi Tokuyama, editor, ISAAC, volume 4835 of Lecture Notes in Computer Science,
pages 464-475. Springer, 2007.

189

[11] Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer. An O(n?*"°) algorithm for online topo-
logical ordering. In Proceedings of the 10th Scandinavian Workshop on Algorithm Theory,
volume 4059 of Lecture Notes in Computer Science, pages 53—64. Springer, 2006.

[12] Eric Allen, David Chase, Joe Hllett, Victor Luchango, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., and Sam Tobin-Hoch stadt. The Fortress language specification, version
1.0 8. Technical report, Sun Microsystems, Inc., March 2007.

[13] Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, and F. Kenneth Zadeck.
Incremental evaluation of computational circuits. In Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 32-42, 1990.

[14] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances in
trees. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 689-698,
2003.

[15] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common ancestors:
a survey and a new distributed algorithm. In Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 258-264. ACM Press, 2002.

[16] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Direct routing on
trees. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 342-349,
1998.

[17] Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor queries. In Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
947-953. Society for Industrial and Applied Mathematics, 2002.

[18] C. Scott Ananian, Krste Asanovic, Bradley q C. Kuszmaul, Charles E. Leiserson, and Sean
Lie. Unbounded transactional memory. IEEE Micro, 26(1):59-69, January 2006.

[19] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: an experiment in public-resource computing. Communications of the ACM,
45(11):56-61, 2002.

[20] Richard J. Anderson and Heather Woll. Wait-free parallel algorithms for the union-find prob-
lem. In Proceedings of the ACM Symposium on the Theory of Computing, pages 370-380,
1991. :

[21] Arne Andersson. Faster deterministic sorting and searching in linear space. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 135-141,
1996.

[22] Ame Andersson and Ola Petersson. Approximate indexed lists. Journal of Algorithms,
29:256-276, 1998.

[23] Arne Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic searching and
priority queues. In Proceedings of the 32nd Annual Symposium on Theory of Computing
(STOC), pages 335-342, Portland, Oregon, May 2000.

[24] Lars Arge, Michael A. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.
Cache-oblivious priority queue and graph algorithm applications. In Proceedings of the

190

34th Annual ACM Symposium on Theory of Computing (STOC), pages 268-276, Montréal,
Canada, Québec. Canada, May 2002.

[25] Lars Arge and Jeffrey Scott Vitter. Optimal dynamic interval management in external mem-
ory. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science
(FOCS), pages 560-569, Burlington, VT, October 1996.

[26] Marta Arias, Lenore J. Cowen, and Kofi A. Laing. Compact roundtrip routing with topology-
independent node names. In Proceedings of the Twenty-Second Annual Symposium on Prin-
ciples of Distributed Computing, pages 43~52. ACM Press, 2003.

[27] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 119-129, New York, NY, USA, June 1998. ACM
Press.

[28] Kirste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb
Williams, and Katherine A. Yelick. The landscape of parallel computering research: A view
from berkeley. Technical Report UCB/EECS-2006-183, University of California at Berkeley,
December 2006.

[29] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K. Madduri, B. Mann, and
T. Meuse. HPCS scalable synthetic compact applications #2. Version 1.1.

[30] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1(3):173-189, February 1972.

[31] Laszlo A. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems Journal, 5(2):78-101, 1966.

[32] F. Belik. An efficient deadlock avoidance technique. IEEE Transactions. on Computers,
39(7), 1990.

[33] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two simplified algorithms
for maintaining order in a list. In Proceedings of the 10th European Symposium on Algorithms
(ESA), pages 152-164, 2002.

[34] M. A. Bender, R. Cole, and R. Raman. Exponential structures for efficient cache-oblivious
algorithms. In Proceedings of the 29th International Colloquium on Aotomata, Languages
and Programming (ICALP), pages 195-207, 2002.

[35] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pages 399-409, 2000.

[36] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic
dictionary. In Proceedings of the 13th Annual Symposium on Discrete Algorithms, pages
29-38, 2002.

[37] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic
dictionary. Journal of Algorithms, 3(2):115-136, 2004.

191

[38] M. A. Bender, M. Farach-Colton, B. C. Kuszmaul, and Jim Sukha. Cache-oblivious B-trees
for optimizing disk performance. Manuscript., 2005.

[39] Michael A. Bender, Gerth Stglting Brodal, Rolf Fagerberg, Dongdong Ge, Simai He,
Haodong Hu, John Iacono, and Alejandro Lépez-Ortiz. The cost of cache-oblivious search-
ing. In Proceedings of the 44th Annual Symposium on Foundations of Computer Science
(FOCS), pages 271-282, Cambridge, Massachusetts, October 2003.

[40] Michael A. Bender, Richard Cole, Erik D. Demaine, and Martin Farach-Colton. Scanning
and traversing: Maintaining data for traversals in a memory hierarchy. In Proceedings of the
10th Annual European Symposium on Algorithms (ESA), volume 2461 of Lecture Notes in
Computer Science, pages 139-151, Rome, Italy, September 2002.

[41] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-trees.
SIAM Journal on Computing, 35(2):341-358, 2005.

[42] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan Fogel, Bradley
Kuszmaul, and Jelani Nelson. Cache-oblivious streaming B-trees. In Proceedings of the
Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
81-92, San Diego, CA, USA, June 9-11 2007.

[43] Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
Leiserson. Adversarial contention resolution for simple channels. In 17th Annual Symposium
on Parallelism in Algorithms and Architectures, pages 325-332, 2005.

[44] Michael A. Bender, Martin Farach-Colton, and Bradley Kuszmaul. Cache-oblivious string B-
trees. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), 2006. To appear.

[45] Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. Contention resolution with hetero-
geneous job sizes. In Proceedings of the 14th Annual European Symposium on Algorith ms
(ESA), pages 112-123, Ziirich, Switzerland, September 2006.

[46] Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. A new approach to incremental
topological ordering. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1108-1115, 2009.

[47]1 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kuszmaul. Concurrent
cache-oblivious B-trees. In Proceedings of the Seventeenth ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 228-237, Las Vegas, NV, USA, July 17-20
2005.

[48] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-the-fly
maintenance of series-parallel relationships in fork-join multithreaded programs. In Pro-
ceedings of the Sixteenth ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 133-144, Barcelona, Spain, June 27-30 2004.

[49] Jon Louis Bentley and James B. Saxe. Decomposable searching problems i: Static-to-
 dynamic transformation. J. Algorithms, 1(4):301-338, 1980.

[S0] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3),
March 1996.

192

[51] Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch. Provably good multicore cache performance for divide-
and-conquer algorithms. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 501-510, San Francisco, California, January 20-22
2008.

[52] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Brief announcement:
Low depth cache-oblivious sorting. In Proceedings of the Twenty-First Annual ACM Sym-

posium on Parallel Algorthms and Architectures (SPAA), pages 121-123, Calgary, Canada,
August 11-13 2009.

[53] Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of
NESL. In ICFP, pages 213-225, 1996.

[54] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Jour-
nal of Parallel and Distributed Computing, 37(1):55-69, August 25 1996.

[55] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720-748, September 1999.

[56] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level threads library for
multiprogrammed multiprocessors. Technical report, University of Texas at Austin, 1999.

[57] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties of transactional
memory atomicity semantics. Computer Architecture Letters, 5(2), Nov 2006.

[58] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive paging
with locality of reference. Journal of Computer and System Sciences, 50(2):244-258, April
1995.

[59] Gerth Stglting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546-554, Baltimore, Maryland, May 2003.

[60] Gerth Stglting Brodal, Rolf Fagerberg, and Riko Jacob. Cache oblivious search trees via
binary trees of small height. In Proceedings of the 13th Annual Symposium on Discrete
Algorithms (SODA), pages 39-48, San Francisco, California, January 2002.

[61] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jeffery R.
Westbrook. On external memory graph traversal. In Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 859-860, San Francisco, Califor-
nia, January 2000.

[62] Aydin Bulug and John R. Gilbert. On the representation and multiplication of hypersparse
matrices. In IEEE International Parallel and Distributed Processing Symposium (IPDPS
2008), pages 1-11, April 2008.

[63] Umit Catalyurek and Cevdet Aykanat. A fine-grain hypergraph model for 2D decomposition
of sparse matrices. In Proceedings of the 15th International Parallel & Distributed Process-
ing Symposium (IPDPS), page 118, Washington, DC, USA, 2001. IEEE Computer Society.

193

[64] Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring tech-
nique. Algorithmica, 1(2):133-162, 1986.

[65] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F.
Stark. Detecting data races in Cilk programs that use locks. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, Puerto Vallarta, Mexico, June 1998.

[66] Junghoo Cho, Hector Garcia-Molina, Taher Haveliwala, Wang Lam, Andreas Paepcke, Sri-
ram Raghavan, and Gary Wesley. Stanford webbase components and applications. ACM
Transactions on Internet Technology, 6(2):153-186, 2006.

[67] Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elim-
ination paradigm: Theoretical framework, parallelization and experimental evaluation. In
Proceedings of the Nineteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 71-80, San Diega, California, June 9-11 2007.

[68] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic program-
ming algorithms for multicores. In Proceedings of the Twentieth Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 207-216, Munich, Germany,
June 14-16 2008.

[69] Cilk Arts, Inc., Burlington, MA. Cilk++ Programmer’s Guide, 2009. Available from http:
//www.cilk.com/. '

[70] D. Comer. The ubiquitous B-Tree. Computing Surveys, 11:121-137, 1979.

[71]1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press and McGraw-Hill, second edition, 2001.

[72] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, third edition, 2009.

[73] Christopher Y. Crutchfield, Zoran Dzunic, Jeremy T. Fineman, David R. Karger, and Jacob
Scott. Improved approximations for multiprocessor scheduling under uncertainty. In SPAA,
pages 246255, 2008.

[74] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceed-
ings of the 24th National Conference, pages 157172, New York, NY, USA, 1969. ACM.

[75] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luch angco, Mark Moir, and Daniel
Nussbaum. Hybrid transactional memory. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
October 2006.

[76] Timothy A. Davis. University of Florida sparse matrix collection. NA Digest, 92, 1994.
[77] Timothy A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelpha, PA, 2006.

[78] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In OSDI, pages 137-150, 2004.

[79] Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the ACM Symposium on
the Theory of Computing, pages 122—-127, May 1982.

194

[80] Paul F. Dietz, Joel I. Seiferas, and J. Zhang. A tight lower bound for on-line monotonic
list labeling. In Algorithm Theory—SWAT ’94: 4th Scandinavian Workshop on Algorithm
Theory, volume 824 of Lecture Notes in Computer Science, pages 131-142. Springer-Verlag,
July 6-8 1994.

[81] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 365-372,
New York City, May 1987.

[82] Paul F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. In SWAT 90, 2nd
Scandinavian Workshop on Algorithm Theory, volume 447 of Lecture Notes in Computer
Science. Springer, July 11-14 1990.

[83] Edsger Wybe Dijkstra. Cooperating sequential processes. Technical Report EWD-123, 1965.

[84] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring algorithms
for access anomaly detection. In Proceedings of the Second ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming (PPoPP), pages 1-10. ACM Press, 1990.

[85] Jack Dongarra. Sparse matrix storage formats. In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe,
and H. van der Vorst, editors, Templates for the Solution of Algebraic Eigenvalue Problems:
a Practical Guide. SIAM, 2000.

[86] Jack Dongarra, P. Koev, and X. Li. Matrix-vector and matrix-matrix multiplication. In Z. Bai,
J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Templates for the Solution
of Algebraic Eigenvalue Problems: a Practical Guide. SIAM, 2000.

[87] 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, New York, 1986. :

[88] Kemal Ebcioglu, Vijay Saraswat, and Vivek Sarkar. X10: an experimental language for high
productivity programming of scalable systems. In Proceedings of Workshop on Productivity
and Performance in High-End Computing (P-PHEC), 2005. In conjunction with Symposium
on High Performance Computer Architecture (HPCA).

[89] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale sparse matrix pack-
age I: The symmetric codes. International Journal for Numerical Methods in Engineering,
18:1145-1151, 1982.

[90] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kédgstrém. Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM Review, 46(1):3—
45, 2004.

[91] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk
programs. In Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1-11, Newport, Rhode Island, June 22-25 1997.

[92] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685-699,
December 1991.

195

193] Jeremy T. Fineman. Provably good race detection that runs in parallel. Master’s thesis,
Massachusetts Institute of Technology Department of Electrica 1 Engineering and Computer
Science, August 2005.

[94] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applications in Contactless Smart
Cards and Identification. John Wiley & Sons, second edition, 2003. E-book at books24x7 .
com.

[95] L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press Princeton, NI,
1962.

[96] Simon French. Sequencing and Scheduling: An Introduction to the Mathematics of the Job-
shop. Ellis Horwood, 1982.

[97] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reducers and
other Cilk++ hyperobjects. In Proceedings of the 21st Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 2009, to appear), Calgary, Canada, August 2009.

[98] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Proceedings of the 40th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 285-297, New York, New York, October 17-19 1999.

[99] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN °98 Conference on Program-
ming Language Design and Implementation, pages 212223, Montreal, Quebec, Canada,
June 1998. Proceedings published ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

[100] Matteo Frigo and Volker Strumpen. The cache complexity of multithreaded cache oblivious
algorithms. In Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 271-280, Cambridge, Massachusetts, July 30 —
August 2 2006.

[101] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of
disjoint set union. Journal of Computer and System Sciences, 30(2):209-221, April 1985.

[102] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance label-
ing in graphs. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 210-219. Society for Industrial and Applied Mathematics, 2001.

[103] Alan George and Joseph W. Liu. Computer Solution of Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[104] Mihély Geréb-Graus and Thanasis Tsantilas. Efficient optical communication in parallel
computers. In Proceedings of the 4th Annual Symposium on Parallel Algorithms and Archi-
tectures (SPAA), pages 41-48, 1992.

[105] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partitioning: Im-
plementation and experiments. SIAM Journal on Scientific Computing, 19(6):2091-2110,
1998.

[106] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: Design
and implementation. SIAM J. Matrix Anal. Appl, 13:333-356, 1991.

196

[107] Leslie Ann Goldberg, Mark Jerrum, Tom Leighton, and Satish Rao. Doubly logarithmic
communication algorithms for optical-communication parallel computers. SIAM Journal on
Computing, 26(4):1100-1119, August 1997.

[108] Leslie Ann Goldberg, Yossi Matias, and Satish Rao. An optical simulation of shared memory.
SIAM Journal on Computing, 28(5):1829-1847, October 1999.

[109] Ronald Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander R. Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287-326, 1979.

[110] Albert G. Greenberg, Philippe Flajolet, and Richard E. Ladner. Estimating the multiplicities
of conflicts to speed their resolution in multiple access channels. JACM, 34(2):289-325,
April 1987.

[111] Albert G. Greenberg and Shmuel Winograd. A lower bound on the time needed in the worst
case to resolve conflicts deterministically in multiple access channels. JACM, 32(3):589-596,
July 1985.

[112] Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. Advances
in Computing Research, 5:345-374, 1989.

[113] Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert E. Tar-
jan. Faster algorithms for incremental topological ordering. In Proceedings of the 35th
International Colloquium on Automata, Languages, and Programming, July 2008.

[114] Bernhard Haeupler, Siddhartha Sen, and Robert Endre Tarjan. Incremental topological or-
dering and strong component maintenance. CoRR, abs/0803.0792, 2008.

[115] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben
Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun.
Transactional memory coherence and consistency. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), page 102, Washington, DC, USA, 2004. IEEE
Computer Society.

[116] Jim Handy. The Cache Memory Book. Academic Press, second edition, 1998.

[117] John L. Hennessy and David A. Patterson. Computer Architecture: a Quantitative Approach.
Morgan Kaufmann, San Francisco, CA, Third edition, 2003.

[118] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, ITI. Software trans-
actional memory for dynamic-sized data structures. In Proceedings of ACM Symposium on
Principles of Distributed Computin g (PODC), pages 92-101, 2003.

[119] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proceedings of the 20th International Symposium on Computer
Architecture (ISCA), pages 289300, San Diego, California, 1993.

[120] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463—
492, 1990.

197

[121] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for
sparse matrix kernels. International Journal of High Performance Computing Applications,
18(1):135-158, 2004.

[122] Sandy Irani. Competitive analysis of paging. In Developments from a June 1996 Seminar
on Online Algorithms, volume 1442 of Lecture Notes in Computer Science, pages 5273,
London, UK, 1998. Springer-Verlag.

[123] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation of priority
queues. In S. Even and O. Kariv, editors, Proceedings of the 8th Colloquium on Automata,

Languages, and Programming, volume 115 of Lecture Notes in Computer Science, pages
417-431, Acre (Akko), Israel, July 13-17 1981.

[124] P.Jayanti. A complete and constant time wait-free implementation of CAS from LL/SC and
vice versa. In Proceedings of the 12th International Symposium on Distributed Computing
(DISC), volume 1499 of LNCS, 1998. '

[125] Ari Juels, Ronald L. Rivest, and Michael Szydlo. The blocker tag: Selective blocking of
RFID tags for consumer privacy. In Conference on Computer and Communications Security,
pages 103-111, 2003.

[126] Haim Kaplan, Tova Milo, and Ronen Shabo. A comparison of labeling schemes for ances-
tor queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 954-963. Society for Industrial and Applied Mathematics, 2002.

[127] David R. Karger, Clifford Stein, and Joel Wein. Scheduling algorithms. CRC Handbook of
Computer Science, 1997.

[128] Zardosht Kasheff. Cache-oblivious dynamic search trees. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, MA, June 2004.

[129] Irit Katriel. Implicit data structures based on local reorganizations. Master’s thesis, Technion
— Isreal Inst. of Tech., Haifa, May 2002.

[130] Irit Katriel. On algorithms for online topological ordering and sorting. Technical Report
MPI-1-2004-1-003, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, 2004.

[131] Irit Katriel and Hans L. Bodlaender. Online topological ordering. In Proceedings of the
16th ACM-SIAM Symposium on Discrete Algorithms, pages 443—450, Vancouver, British
Columbia, Canada, January 2005.

[132] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling schemes for flow and

connectivity. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages
927-936, 2002.

[133] Telikepalli Kavitha and Rogers Mathew. Faster algorithms for online topological ordering.
CoRR, abs/0711.0251, 2007.

[134] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Optimizing sparse matrix-vector
multiplication using index and value compression. In CF ’08: Proceedings of the 2008
conference on Computing frontiers, pages 87-96, New York, NY, USA, 2008. ACM.

198

[135] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and Anthony Nguyen.
Hybrid transactional memory. In Proceedings of the ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), March 2006.

[136] V.S Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan.
Scheduling on unrelated machines under tree-like precedence constraints. Proceedings of
the Eighth International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, 2005.

[137] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690—-691, September 1979.

[138] E.L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel processors by
linear programming. Journal of the ACM (JACM), 25(4):612-619, 1978.

[139] ET. Leighton, Bruce M. Maggs, and Satish B. Rao. Packet routing and job-shop scheduling
in o(Congestion + Dilation) steps. Combinatorica, 14(2):167-186, 1994.

[140] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, and Christos Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using Kronecker multiplication. In
PKDD, pages 133-145, 2005.

[141] Guolong Lin and Rajmohan Rajaraman. Approximation algorithms for multiprocessor
scheduling under uncertainty. In Proceedings of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 2534, San Diego, California, USA,
2007.

[142] Hsiao-Fei Liu and Kun-Mao Chao. A tight analysis of the katriel-bodlaender algorithm for
online topological ordering. Theoretical Computer Science, 389(1-2):182-189, 2007.

[143] K. Patrick Lorton and David S. Wise. Analyzing block locality in Morton-order and Morton-
hybrid matrices. SSIGARCH Computer Architecture News, 35(4):6-12, 2007.

[144] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[145] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman. On contention resolution protocols and
associated probabilistic phenomena. JACM, 45(2):324-378, March 1998.

[146] Grzegorz Malewicz. Parallel scheduling of complex dags under uncertainty. In Proceed-
ings of the Seventeenth Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 66-75, Las Vegas, Nevada, USA, 2005.

[147] Virendra J. Marathe, Michael F. Spear, Christ opher Heriot, Athul Acharya, David Eisenstat,
and Michael L. Scherer III, William N. an d Scott. Lowering the overhead of nonblocking
software transactional m emory. In Proceedings of the Workshop of Languages, Compilers,
and Hard ware Support for Transactional Computing (TRANSACT), June 2006.

[148] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. On-line graph algorithms
for incremental compilation. In Proceedings of the 19th International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 70-86, June 1993.

[149] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Maintaining a topologi-
cal order under edge insertions. Information Processing Letters, 59(1):53-58, 1996.

199

[150] Harry M. Markowitz. The elimination form of the inverse and its application to linear pro-
gramming. Management Science, 3(3):255-269, 1957.

[151] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging algo-
rithm. Algorithmica, 6:816-825, 1991.

[152] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, theorem 5, pages
198-199. Springer-Verlag, Berlin, 1984.

[153] John Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-join
parallelism. In Proceedings of Supercomputing’91, pages 24-33. IEEE Computer Society
Press, 1991. ’

[154] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
computer networks. CACM, 19(7):395-404, July 1976.

[155] M. M. Michael. Practical lock-free and wait-free LL/SC/VL implementations using 64-bit
CAS. In Proceedings of the 18th International Conference on Distributed Computing (DISC),
volume 3274 of LNCS, 2004.

[156] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. LogTM: Log-based
transactional memory. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), Feb 2006.

[157] G.M. Morton. A computer oriented geodetic data base and a new technique in file sequencing.
Technical report, IBM Ltd., Ottawa, Canada, March 1966.

[158] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[159] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. Deterministic skip lists. In Pro-
ceedings of the 3rd Annual Symposium on Discrete Algorithms (SODA), pages 367-375,
Orlando, Florida, January 1992.

[160] Aydm Bulug, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E. Leiserson.
Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks. In Proceedings of the Twenty-First Annual ACM Symposium on Parallel Al-
gorthms and Architectures (SPAA), pages 233-244, Calgary, Canada, August 11-13 2009.

[161] Jelani Nelson. External-memory search trees with fast insertions. Master’s thesis, Mas-
sachusetts Institute of Technology Department of Electrica 1 Engineering and Computer Sci-
ence, June 2006.

[162] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick. When
cache blocking of sparse matrix vector multiply works and why. Applicable Algebra in En-
gineering, Communication and Computing, 18(3):297-311, 2007.

[163] Itzhak Nudler and Larry Rudolph. Tools for the efficient development of efficient parallel

programs. In Proceedings of the First Israeli Conference on Computer Systems Engineering,
May 1986.

[164] S.M. Omohundro, C.Lim, and J. Bilmes. The sather language compiler/debugger implemen-
tation. Technical report, International Computer Science Institute, Berkeley, March 1992.

200

[165] Mark H. Overmars. The Design of Dynamic Data Structures. Springer, 1983.

[166] David J. Pearce and Paul H. J. Kelly. A dynamic algorithm for topologically sorting directed
acyclic graphs. In Proceedings of the 3rd International Workshop on Efficient Experimental
Algorithms, volume 3059 of Lecture Notes in Computer Science, pages 383-398. Springer,
2004.

[167] D.J. Pearce, PH.J. Kelly, and C. Hankin. Online cycle detection and difference propagation
for pointer analysis. In Proceedings of the 3rd International Workshop on Source Code
Analysis and Manipulation, pages 3-12, Sept. 2003.

[168] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall Englewood
Cliffs, NJ, 2002.

[169] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, June 1999.

[170] Naila Rahman, Richard Cole, and Rajeev Raman. Optimised predecessor data structures for
internal memory. In Proceedings of the 5th International Workshop on Algorithm Engineer-
ing, volume 2141 of LNCS, pages 67-78, Aarhus, Denmark, August 2001.

[171] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly concurrent
multithreaded execution. In Proceedings of the 34th Annual International Symposium on
Microarchitecture, pages 294-305, Austin, Texas, December 2001.

[172] G. Ramalingam and Thomas Reps. On competitive on-line algorithms for the dynamic
priority-ordering problem. Information Processing Letters, 51(3):155-161, 1994.

[173] Rajeev Raman and David Stephen Wise. Converting to and from dilated integers. IEEE
Transactions on Computers, 57(4):567-573, 2008.

[174] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor
Parallelism. O’Reilly, 2007.

[175] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelpha, PA, second
edition, 2003.

[176] Nobuo Sato and W. F. Tinney. Techniques for exploiting the sparsity of the network admit-
tance matrix. [EEE Trans. Power Apparatus and Systems, 82(69):944-950, Dec. 1963.

[177] Sandeep Sen and Siddhartha Chatterjee. Towards a theory of cache-efficient algorithms. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 829-838, San Francisco, California, January 2000.

[178] Paolo Serafini. Scheduling jobs on several machines with the job splitting property. Opera-
tions Research, 44(4):617-628, 1996.

[179] Viral Shah and John R. Gilbert. Sparse matrices in Matlab*P: Design and implementation.
In International Conference on High Performance Computing, pages 144155, 2004.

[180] David B. Shmoys, Clifford Stein, and Joel Wein. Improved approximation algorithms for
shop scheduling problems. SIAM Journal on Computing, 23(3):617-632, June 1994.

201

[181] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, February 1985.

[182] Sleepycat Software. The Berkeley Database. http://www.sleepycat .com, 2005.
[183] Bjame Stroustrup. The C++ Programming Language. Addison-Wesley, third edition, 2000.

[184] Jim Sukha. Brief announcement: A lower bound for depth-restricted work stealing. In
Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 124-126, Calgary, Canada, August 11-13 2009.

[185] Supercomputing Technologies Group, Massachusetts Institute of Technology Laboratory for
Computer Science. Cilk 5.4.2.3 Reference Manual, April 2006.

[186] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
Association for Computing Machinery, 22(2):215-225, April 1975.

[187] Robert Endre Tarjan. Applications of path compression on balanced trees. Journal of the
Association for Computing Machinery, 26(4):690-715, October 1979.

[188] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

[189] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 1-10. ACM Press,
2001.

[190] W.E. Tinney and J.W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization. Proceedings of the IEEE, 55(11):1801-1809, Nov. 1967.

[191] Sivan Toledo. Improving the memory-system performance of sparse-matrix vector multipli-
cation. IBM Journal of Research and Development, 41(6):711-726, 1997.

[192] Athanasios K. Tsakalidis. Maintaining order in a generalized linked list. Acta Informatica,
21(1):101-112, May 1984.

[193] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev., 47(1):67-95, 2005.

[194] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37-57, 1985.

[195] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library of automati-
cally tuned sparse matrix kernels. Journal of Physics: Conference Series, 16(1):521+, 2005.

[196] Gideon Weiss and Michael Pinedo. Scheduling tasks with exponential service times on
non-identical processors to minimize various cost functions. Journal of Applied Probabil-
ity, 17(1):187-202, 1980.

[197] Dan E. Willard. Inserting and deleting records in blocked sequential files. Technical Report
TM81-45193-5, Bell Laboratories, 1981.

[198] Dan E. Willard. Good worst-case algorithms for inserting and deleting records in dense se-
quential files. In Carlo Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, pages 251-260, Washington, D.C., May 28-30 1986.

202

[199] Dan E. Willard. A density control algorithm for doing insertions and deletions in a sequen-
tially ordered file in good worst-case time. Information and Computation, 97(2):150-204,
April 1992.

[200] D.E. Willard. Maintaining dense sequential files in a dynamic environment (extended ab-
stract). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
pages 114121, San Francisco, California, May 5-7 1982.

[201] Jeremiah Willcock and Andrew Lumsdaine. Accelerating sparse matrix computations via
data compression. In Proceedings of the 20th Annual International Cconference on Super-
computing (ICS), pages 307-316, New York, NY, USA, 2006. ACM.

[202] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James
Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore plat-
forms. Parallel Computing, 35(3):178-194, 2009.

203

