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ABSTRACT

Embryonic Stem Cells (ESCs) are pluripotent and thus are considered the "cell type of
choice". ESCs exhibit several phenotypic traits (e.g., proliferation, differentiation, apoptosis,
necrosis, etc.) and when differentiated into a particular lineage they can perform an array of
functions (e.g., protein secretion, detoxification, energy production). Typically, these cellular
objectives compete against each other because of thermodynamic, stoichiometric and mass
balance constraints. Analysis of transcriptional regulatory networks and metabolic networks in
ESCs thus requires both a nonequilibrium thermodynamic and mass balance framework for
designing and understanding complex ESC network approach as well as an optimality approach
which can take cellular objectives into account simultaneously. The primary goal of this thesis
was to develop an integrated energy and mass balance-based multiobjective framework for a
transcriptional regulatory network model for ESCs. The secondary goal was to utilize the
developed framework for large-scale metabolic flux profiling of hepatic and ESC metabolic
networks.

Towards the first aim we first developed a complete dynamic pluripotent network model
for ESCs which integrates several different master regulators of pluripotency such as
transcription factors Oct4, Sox2, Nanog, Klf4, Nacl, Rexl, Daxl, cMyc, and Zfp281, and
obtained the dynamic connectivity matrix between various pluripotency related gene promoters
and transcription factors. The developed model fully describes the self-renewal state of
embryonic stem cells. Next, we developed a transcriptional network model framework for ESCs
that incorporates multiobjective optimality-based energy balance analysis. This framework
predicts cofactor occupancy, network architecture and feedback memory of ESCs based on
energetic cost.

The integrated nonequilibrium thermodynamics and multiobjective-optimality network
analysis-based approach was further utilized to explain the significance of transcriptional motifs
defined as small regulatory interaction patterns that regulate biological functions in highly-
interacting cellular networks. Our results yield evidence that dissipative energetics is the
underlying criteria used during evolution for motif selection and that biological systems during
transcription tend towards evolutionary selection of subgraphs which produces minimum specific
heat dissipation, thereby explaining the frequency of some motifs. Significantly, the proposed
energetic hypothesis uncovers a mechanism for environmental selection of motifs, provides
explanation for topological generalization of subgraphs into complex networks and enables
identification of new functionalities for rarely occurring motifs.

Towards the secondary goal, we have developed a multiobjecive optimization-based
approach that couples the normalized constraint with both energy and flux balance-based
metabolic flux analysis to explain certain features of metabolic control of hepatocytes, which is
relevant to the response of hepatocytes and liver to various physiological stimuli and disease
states. We also utilized this approach to obtain an optimal regimen for ESC differentiation into
hepatocytes.

The presented framework may establish multiobjective optimality-based thermodynamic
analysis as a backbone in designing and understanding complex network systems, such as
transcriptional, metabolic and protein interaction networks.
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1 INTRODUCTION

Microorganisms and mammalian cells perform different functions, such as protein

secretion, detoxification, storage and release of sources of energy, etc. Among these metabolic

tasks, transcription of mRNA and further translation into the final proteins play an important role

in determining the cellular state and functionality, and feedback the subsequent metabolic

function of the system. In other words, cells are what they are based on the different proteins that

they can express. For instance, the differentiation process of embryonic stem (ES) cells into

ectoderm, mesoderm or endoderm depends exclusively on the transcription factors that may be

up or down regulated, and thus protein synthesis and their interaction at DNA level forming

transcriptional networks are key mechanisms in determining the cellular fate. In addition to the

multiple metabolic and transcriptional functions that these systems perform, evolution also

requires certain conditions in the time response to these tasks such as stability, robustness, fast or

slow responses, or simply no response to small inputs in order to avoid mutations.

In order to determine the optimal state at which the cellular system is accomplishing all

of these metabolic, transcriptional and dynamic functions, different and multiple objectives need

to be taken into account. Typically, several objectives compete against each other; therefore,

only "Pareto-optimal" solutions can be achieved. A solution is said to be Pareto-optimal if there

are no other solutions that can better satisfy all of the objectives simultaneously (Nagrath, 2005).

Specifically, a Pareto solution is one where any improvement in one objective necessitates the

worsening of at least one other objective. Mass balance constraints (stoichiometry and Flux

Balance Analysis) reduce the feasible space and consequently the Pareto-optimal solution.

Energy Balance Analysis imposes the thermodynamic constraints on reaction fluxes both

explicitly and implicitly for metabolic networks. Essentially, the reaction potentials are

computed based on the chemical potentials and then these are used to obtain thermodynamic

constraints that are based on the first and second laws of thermodynamics. Thermodynamic

constraints further reduce the feasible solution space based on stoichiometric constraints alone.

Available measurements, which bring in environmental constraints such as certain cell culture

conditions, medium supplements, induced stress and extracellular matrices, typically limit the

feasible solution space even further. If a sufficient number of measurements are available, the



analysis may yield a unique solution. Application of these concepts in the hepatocyte metabolic

network has been studied earlier (Beard and Qian, 2005; Nagrath et al., 2007) . However,

transcriptional and dynamical optimality subject to energy constrains is still an unexplored field,

mainly due to the lack of a transcriptional model from which energy can be computed. Current

models (Bolouri and Davidson, 2002) are based on thermodynamic equilibrium and thus the

energy dissipated is always zero.

As mentioned before, a very important example of increasing interest of transcriptional

networks is its application in the differentiation of ES cells. ES cells, derived from the inner cell

mass of mammalian blastocysts, have the ability to grow indefinitely while maintaining

pluripotency (i.e., ability to differentiate into various cell types). These properties have led to

expectations that human ES cells might be useful to understand disease mechanisms, to screen

effective and safe drugs, and to treat patients of various diseases and injuries, such as juvenile

diabetes and spinal cord injury. The therapeutic potential of ES cells is contingent upon

generating functional cells which have identical physiological characteristics as the

damaged/diseased cells sought to be replaced. Because ES cells are pluripotent, they are

considered the "cell type of choice". Recently, a transcriptional network model for differentiation

of ES cells was presented (Chickarmane et al., 2006) in which two proposed networks between

three transcription factors Oct4, Sox2 and Nanog lead to a switch like behavior of the

differentiation and self-renewal of target genes at steady state. However, whether the proposed

interactions occur in nature nobody knows. In addition to the Oct4, Sox2 and Nanog, a set of six

additional transcription factors has been found to play an important role in the maintenance of

ES cells (Kim et al., 2008). This core transcriptional network includes Klf4, Nacl, Rexl, Daxl,

cMyc, and Zfp281 in addition to the Oct4, Sox2 and Nanog.

In order to find the optimal conditions and architectures at which protein transcription

occurs in this work we developed a nonequilibrium transcriptional model that allowed us to

apply Pareto-optimality and energy balance theory in the ES cell network: analysis of the

proposed interactions by (Chickarmane et al., 2006), extension of the transcription factors to the

six addition transcription factors and potentially many others, reprogramming of somatic cells

into the pluripotent state and the differentiation of ES cells into hepatocytes. In addition, this

energy based optimization theory can be applied to the general gene circuits such as the



repressillator system and to the study of any metabolic network, with the fatty liver analysis one

of our goals.



2 SOFT CONSTRAINTS-BASED MULTIOBJECTIVE FRAMEWORK FOR

METABOLIC FLUX ANALYSIS

2.1 OVERVIEW

The current state of the art for linear optimization in Flux Balance Analysis has been

limited to single objective functions. Since mammalian systems perform various functions, a

multiobjective approach is needed when seeking optimal flux distributions in these systems. In

most of the available multiobjective optimization methods, there is a lack of understanding of

when to use a particular objective, and how to combine and/or prioritize mutually competing

objectives to achieve a truly optimal solution. To address these limitations we developed a soft

constraints based linear physical programming-based flux balance analysis (LPPFBA)

framework to obtain a multiobjective optimal solution. The developed framework was first

applied to compute a set of multiobjective optimal solutions for various pairs of objectives

relevant to hepatocyte function (urea secretion, albumin, NADPH, and glutathione syntheses) in

bioartificial liver systems. Next, simultaneous analysis of the optimal solutions for three

objectives was carried out. Further, this framework was utilized to obtain true optimal conditions

to improve the hepatic functions in a simulated bioartificial liver system. The combined

quantitative and visualization framework of LPPFBA is applicable to any large-scale metabolic

network system, including those derived by genomic analyses.

2.2 INTRODUCTION

Metabolic flux analysis (MFA) provides a framework for the estimation of intracellular

metabolic fluxes at steady-state based on stoichiometric constraints of a metabolic pathway

network. This technique, which has been extensively used for studying the metabolism of

microorganisms(Antoniewicz et al., 2007a; Antoniewicz et al., 2007b; Stafford et al., 2002;

Wong et al., 2004; Young et al., 2008), has been recently applied to characterize and compare

different physiological states in mammalian systems (Banta et al., 2004; Chan et al., 2003a; Chan

et al., 2003b; Chan et al., 2002; Chan et al., 2003c; Lee et al., 2004; Vo et al., 2004). In order to

obtain a unique solution for the flux distribution in a particular cell or tissue system, a minimum

number of measurements of rates of uptake and release of extracellular metabolites by the system

13



is needed. In cases where insufficient measurements are available, pathway fluxes have been

predicted using linear optimization for one objective function, such as growth rate for unicellular

organisms (Savinell and Palsson, 1992b). Mammalian systems, such as hepatocytes, typically do

not undergo cell proliferation, but rather perform an array of metabolic functions (protein

secretion, detoxification, energy production), therefore different and multiple objectives need to

be taken into account. Hepatocytes are the major cell type in the liver with multiple functions

including efficient uptake and subsequent metabolic conversion of amino acids, carbohydrates,

lipids, and vitamins. Subsequently, these nutrients are either stored or released after biochemical

transformations. These biochemical processes make hepatocytes the epicenter of the metabolic

modulation of intermediary metabolism in the body, and thus can play an important role in

biotechnological applications that use liver cells, such as bioartificial liver (BAL) devices. A

recent analysis concluded that several objectives were necessary to profile metabolic information

from perfused livers (Lee et al., 2004). Another study (Nagrath et al., 2007), combined both

energy and flux balance based nonlinear multiobjective framework for hepatic systems.

Recently, Bayesian (Knorr et al., 2007) and optimization (Burgard and Maranas, 2003) based

techniques have been developed for selecting objectives.

Multiobjective optimization strategies previously used for MFA, such as weighted

optimization and goal programming, suffer from several limitations. For example, it is often

unclear when to use a particular objective and how to combine and/or prioritize mutually

competing objectives to achieve a true optimal solution. Furthermore, visualization of the results

is not straightforward. Importantly, most of the existing MFA methods employ "hard

constraints" for the estimation/distribution and optimization of intracellular fluxes in metabolic

networks. Burgard and Maranas (Burgard and Maranas, 2003) had developed an optimization-

based framework for testing whether maximization of a weighted combination of fluxes can

explain a set of observed experimental data. Their approach is based on weighted-sum (WS)

based optimization and utilizes weights defined as the coefficients of importance to quantify the

additive contribution of a given flux to a objective function. The limitations of using WS based

approach are: (1) weights are arbitrary and have no physical meaning; (2) the spacing of optimal

solutions is largely dependent on relative scaling of weights thus often leads to ill-conditioned

problems; (3) an even distribution of scalar weights in WS does not yield an even optimal flux

solutions; and (4) WS fails to capture the Pareto optimal solutions where the Pareto frontier is

14



non-convex. Here we introduce a multiobjective optimization based metabolic flux analysis

approach, LPPFBA (Linear Physical Programming-Based Flux Balance Analysis), that employs

Linear Physical Programming (LPP) (Maria et al., 2003; Messac, 2000) (Figure 2.1A), which

enables the formulation of the optimization problem in terms of physically meaningful terms and

parameters, and addresses the problems that exist in the previously used strategies by employing

"soft constraints".

1

Anchor = ns form aximization

p Anchor points for
2 minimization

2 ----------------
Pareto Anchor points for

minimization

T Feasible Extreme Pareto

Region maximization
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Figure 2.1: A). Characteristics of Linear Physical Programming based multiobjective metabolic network. B). Pareto

frontiers and extreme Pareto points shown for a bi-objective maximization and minimization problems. C). Strategy

for Linear Physical Programming based multiobjective optimization. D). LPPFBA visualization window.

Multiobjective optimal solutions are displayed as bar graph in color coded regions, with highly desirable solution

being green and highly undesirable being red.

In LPPFBA approach, first a set of so-called Pareto-optimal solutions is generated. A

solution is said to be Pareto-optimal if there are no other solutions that can better satisfy all of the

objectives simultaneously (Nagrath et al., 2005). In other words, any improvement in one

objective necessitates the worsening of at least one other objective. In our specific application,

we generate Pareto frontiers of optimal metabolic fluxes to identify potential solution regions
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that provide a qualitative framework to assess the situation, and in particular, to determine the

objectives that are conflicting. Second, we employ LPPFBA to prioritize the objectives and

constraints. In LPPFBA, attributes of interest for each objective are defined to delineate degrees

of desirability: unacceptable, highly undesirable, undesirable, tolerable, desirable, and highly

desirable. Thus, LPPFBA completely eliminates the need for iterative weight setting, which is

the object of the typical computational bottleneck in large optimization problems. Two key

advantages of LPPFBA for metabolic flux optimization are: (1) once the preferences are

articulated, obtaining the corresponding optimal fluxes is a non-iterative process - in stark

contrast to conventional weight-based methods; and (2) it provides the means to reliably employ

optimization with minimal prior knowledge thereof.

In this chapter, we present a LPPFBA approach for analyzing the multiobjective flux

analysis of metabolic networks. The developed approach was then utilized for optimizing the

metabolism of liver cells in the context of bioartificial liver (BAL) development. BALs are being

developed to provide hepatic support to patients with fulminant hepatic failure (Chan et al.,

2003a; Chan et al., 2003b; Chan et al., 2002; Chan et al., 2003c). One of the major design goals

of BAL devices is to maintain viable hepatocytes that perform a high level of liver-specific

functions (for example, albumin synthesis, urea secretion, cytochrome p450-mediated

detoxification, etc.) (Berthiaume et al., 1996; Chan et al., 2002; Dunn et al., 1991). Obtained

Pareto optimal metabolite fluxes were computed for various combinations of liver specific

functions. Next, we obtained Pareto optimal solutions for tri-objective combinations of these

hepatic functions. Lastly, we obtained the Pareto solutions for a simulated BAL system where

the main goal was to operate the BAL at the highest possible level during human plasma

exposure. This analysis exhibited that although lipid and carbohydrates fluxes may be similar but

for hepatocytes amino acid synthesis, catabolism, is altered/rerouted in optimality analysis for

maintaining hepatic functions.

2.3 MATERIALS AND METHODS

2.3.1 Metabolic Flux Analysis

The stoichiometric coefficients of the metabolic reactions are collected into a matrix S, where

each element s, is the coefficient of metabolite i in reaction j. S has dimensions of M x N,
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where M is the number of metabolites and N is the number of reactions. In matrix form the mass

balance is written as:

dx = SJ (2.1)
dt

where each element x, of x is the intracellular concentration of metabolite i and element Ji of

J is the net rate of conversion in reactionj. External metabolite fluxes are generally measured

(e.g., uptake of glucose, lactate, amino acids). Because of the very high turnover of the

intracellular pools of most intracellular metabolites, the time scale of the intracellular metabolic

reactions is short compared to other cellular reactions. Hence, the pseudo steady state assumption

is generally applied to the metabolite mass balances, and thus

SJ = 0 (2.2)

When the number of measured quantities is less than the number of measurements

required for the system to be determined, the computation of unknown intracellular fluxes

requires linear optimization (since infinite number of solutions exist) with linear bound

constraints. Mathematically, this can be expressed as:

max cr JU (2.3)
Ju

subject to

SU J, = -Sm m (2.4)

Jlow J Jhigh (2.5)

where the vector c specifies which unknown flux vector elements are to be maximized (or

minimized); vectors Jow, and Jhigh provide the lower and upper bounds for the unknown fluxes;

Jm and JU indicate measured and unmeasured fluxes, respectively; and Sm and Su contain the

stoichiometric coefficients of measured and unknown reactions, respectively.

2.3.2 Hepatocyte Metabolic Network

A previously described hepatic metabolic network (Chan et al., 2003b; Chan et al., 2002)

includes all of the major intracellular pathways to account for the majority of central carbon and

nitrogen metabolism found in hepatocytes, namely the tricarboxylic acid (TCA) and urea cycles,

the gluconeogenic and glycolysis pathways, the pentose phosphate shunt, pathways of entry,
17



transamination, and deamination of amino acids, protein synthesis, and the major components of

lipid metabolism, including triglyceride synthesis and breakdown and P-oxidation of fatty acids,

in addition to amino acid synthesis and apolipoprotein degradation. The current hepatic

metabolic network model (Table 2.1) includes a few additional reactions, namely those of the 3-

phosphoglycerate cycle as it is involved in glycerol production and glutathione synthesis, which

results in a total of 81 reactions (as compared to 76 reactions in the previous model) and 47

metabolites (Table 2.2). Figure 2.2 presents the comprehensive hepatic metabolic network. The

rationale for including glutathione synthesis is that glutathione is involved in several important

detoxification functions of hepatocytes. The model assumes pseudo steady-state with no

metabolic futile cycles. These assumptions are discussed in detail elsewhere (Chan et al., 2003a).

Table 2.1: Hepatic stoichiometric reactions

No Stoichiometry

1 F6P +- G6P
2 F16P2 + H20 - F6P + Pi
3 2 G3P - F16P2
4 3Pglyc + NADH + H+ + ATP +- G3P + Pi + NAD + ADP
5 PEP - 3Pglyc
6 oac + GTP ---+ PEP + GDP + C0 2
7 pyr + CO2 + ATP + H20 --* oac + ADP + Pi + 2 H
8 oac + acCoA + H20 --, ctt+ CoASH
9 ctt + NAD +-+ akgl + CO2 + NADH + H

10 akgl + NAD + CoASH - sucCoA + CO2 + NADH + H
11 sucCoA + Pi + GDP + FAD +- fum + GTP + FADH 2 + CoASH
12 fum + H20* mal
13 mal + NAD +- oac + NADH + H
14 ctr + asp + ATP -> arg + fum + AMP + PPi
15 orn + (CO2 + NH4 + 2 ATP) + H20 --+ ctr+ 2 ADP + 2 Pi + 3 H+
16 arg + H20 -+ urea + orn
17 ala + 0.5 NAD + 0.5 NADP + H20 +- pyr + NH3 + 0.5 NADH + 0.5 NADPH + H+
18 ser -+ pyr + NH3
19 cys + 0.5 NAD + 0.5 NADP + H20 + S 3

2- +- pyr + thiosulfate + NH4  + 0.5 NADPH + 0.5 NADH

20 thr + NAD + ATP + CoASH - gly + acCoA + NADH + H+ AMP + PPi
21 thr + NAD + CoASH -- propCoA + CO2 + NADH + H+ + NH3 + H2

22 2 gly + NAD + THF + H20 -* NTHF + H + CO2 + NH4+ +ser + NADH
23 3Pglyc + NAD + glu + H20 - NADH + H+ + akgl + ser + Pi
24 trp + 3 0 2 + 4 H20 + 2 NAD + FAD + CoASH --, Formate + ala + 2 CO2 + NH3 + 3 NADH + FADH2 +

HC0 3 + acacCoA
25 propCoA + CO 2 + ATP - ADP + Pi + sucCoA
26 lys + 2 (akgl + 2 NAD + CoASH + FAD + 2 H20 + NADP -- CO2 + NH3 + acacCoA + 5 NADH + FADH 2

27 phe + 02 + H4biopterin + H -* tyr + H20 + H2biopterin
28 tyr + akgl + 2 0 2 + H20 - glu + C02 + fum + acac
29 pro + 0.5 02 + 0.5 NAD+ + 0.5 NADP - glu + 0.5 NADH + 0.5 NADPH + H+

30 his + H4folate + 2 H20 --- NH 4 + 5 N,N'-CH2-H4folate + glu
31 met + ATP + ser + NAD + H20 + CoASH -. PPi + Pi + adenosine + cys + NADH + H + CO2 + NH4 +

propCoA



32 val + akgl + 3 NAD + + 2 H20 + FAD + CoA -+ glu + 2CO2 + 3 NADH + 2 H+ + FADH2 + CO 2 + propCoA
33 iso + ckgl + H20 + 2 NAD + FAD + 2 CoASH -- glu + CO2 + 2 NADH + 2H+ + FADH2 + acCoA +

propCoA
34 leu + akgl + H20 + NAD + + FAD + ATP + CoASH + HCO3 - glu + CO2 + NADH + H+ + FADH 2 + acCoA

+ acac + ADP + Pi
35 oac + glu +- akgl + asp
36 asn + H20 -* asp + NH3
37 glu + 0.5 NAD + + 0.5 NADP + H20 - NH4

+ + akgl + 0.5 NADPH + 0.5 NADH + H+

38 orn + NAD + + NADP+ + H20 - glu + NH 4
+ + NADH + NADPH + H +

39 gln + H 20 -+glu + NH4+

40 palm + ATP + 7 FAD + 7 NAD+ -- 8 acCoA + 7 FADH2 + 7 NADH + AMP + PPi
41 2 acCoA ++ acacCoA + CoA
42 acacCoA + H 20 -- acac + CoA
43 NADH + H+ + 0.5 0 2 + 3 ADP -- NAD + H20 + 3 ATP
44 FADH 2 + 0.5 02 + 2 ADP - FAD + H2O + 2 ATP
45 gol + NAD + + ATP +- G3P + NADH + H+ + ADP + Pi
46 G6P + 12 NADP+ + 7 H 20 - 6 CO2 + 12 NADPH + 12 H+ + Pi
47 24 arg + 32 asp + 61 ala + 24 ser + 35 cys + 57 glu + 17 gly + 21 tyr + 33 thr + 53 lys + 26 phe + 25 gln + 30

pro + 15 his + 6 met + 20 asn + trp + 35 val + 13 iso + 56 leu + 2332 ATP --* albumin + 2332 ADP + 2332 Pi
48 glu + 2 ATP + cys + gly + NADPH - GSH + 2 ADP + 2 Pi + NADP+ + H+
49 gol + 3 acCoA + H20 + ATP - 3 CoASH + Pi + TG + ADP + Pi
50 lactate + NAD + - pyr + NADH + H+

51 acac + NADH + H+ ++ P-OH-butyrate + NAD+

52 TG + 3 H20 -+ gol + 3 palm + 3 H
53 G6P release
54 gol uptake
55 palm release
56 cholesterol ester + H20 -- cholesterol + palm
57 TG stored
58 trp uptake
59 02 uptake
60 pro uptake
61 glu secretion
62 asn uptake
63 orn secretion
64 arg uptake
65 NH4+ uptake
66 ala uptake
67 ser uptake
68 gly uptake
69 asp uptake
70 acac production
71 thr uptake
72 lys uptake
73 phe uptake
74 his uptake
75 met uptake
76 val uptake
77 iso uptake
78 leu uptake
79 gln uptake
80 cys uptake
81 tyr uptake
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Table 2.2: List of metabolites

No Symbol Metabolite

1 G6P Glucose-6-phosphate
2 F6P Fructose-6-phosphate
3 F16P2 Fructose-l ,6-biphosphate
4 G3P Glyceraldehyde-3 -phosphate
5 PEP Phosphoenolpyruvate
6 oac Oxaloacetate
7 pyr Pyruvate
8 ctt Citrate
9 akgl a-Ketoglutarate

10 sucCoA Succinyl-CoA
11 fum Fumarate
12 mal Malate
13 arg Arginine
14 orn Ornithine
15 ctr Citrulline
16 NH 4

+  Ammonium
17 asp Aspartate
18 his Histidine
19 glu Glutamate
20 gln Glutamine
21 met Methionine
22 thr Threonine
23 val Valine
24 iso Isoleucine
25 phe Phenylananine
26 trp Tryptophan
27 lys Lysine
28 tyr Tyrosine
29 ala Alanine
30 asn Asparagine
31 pro Proline
32 cys Cysteine
33 ser Serine
34 gly Glycine
35 propCoA Propionyl-CoA
36 acCoA Acetyl-CoA
37 palm Palmitate
38 acacCoA Acetoacetyl-Coa
39 acac Acetoacetate
40 gol Glycerol
41 NADH Nicotinamide adenine dinucleotide, reduced form
42 NADPH Nicotinamide adenine dinucleotide phosphate, reduced form
43 FADH 2  Flavin adenine dinucleotide, reduced form
44 02 Oxygen
45 leu Leucine
46 3Pglyc 3-phosphoglycerate
47 TG Triglyceride



2.3.3 Multiobjective Optimization

Definitions:

Multiobjective Optimization: A multiobjective optimization is a problem involving several

competing objectives and constraints. The solution of this problem is considered the best solution

that satisfies the conflicting objectives. Other commonly used terms in the literature for

multiobjective optimization are multicriteria optimization, multidecision optimization, and vector

optimization.

Pareto Solution: A Pareto solution is one where any improvement in one objective can only take

place at the cost of another objective. A Pareto set is a set of Pareto-optimal solutions.

Design Parameters: A design parameter is a parameter over which the designer has direct

control. Other terms used in the literature for design parameters include decision variables,

design variables or decision parameters.

Design Metric: A design metric refers to an objective measure of a design attribute. Other

commonly used terms are objective functions, design criterion, figure-of-merit, goal and

performance metric. In the current work, the variable g (x) denotes the vector of design metrics.

Design Constraint: A design constraint indicates the lower or upper bounds in the design metrics

or design parameters.

Anchor value: The value obtained for a particular design objective if that design metric alone is

optimized, given the bounds on the design parameters.

Mathematical Formulation of Multiobiective Problem P:

Mathematically, the multiobjective problem can be stated as follows:

g (x)'

g2(X)

minimize g(x )
g(x)= ,(P) (2.6)

xeD

where D = E R Ih(x) = ,f(x) O,a x , h:R" -R, f :R" ->Rs, ae(RU{-O)",

pe (R u {+ oo})", m is the number of objectives, or criteria, m>2, r and s the numbers of equality



and inequality constraints, respectively. For any design parameter x = (xi ,..., x,), a design metric

vector g = (g, ,..., g,) is defined according to the function g :R"--R m .

Z = {z e Rm I z = g(x),x e D} is the set of images of all points in D. D is called the feasible

region in decision space and Z the feasible region in objective space; (g, (x),..., gm (x)) are the

coordinates of the image of x in objective space.

2.3.4 Pareto Concept

For the multiobjective problem P, it is highly improbable to have a single optimal

solution x* which minimizes every g, simultaneously; therefore, the solution is defined in terms

of Pareto optimality in the following sense: a feasible solution for a multiobjective programming

problem is Pareto optimal (noninferior, nondominated) if there exists no other feasible solution

that will yield an improvement in one objective without causing a degradation in at least one

other objective. So, xeD is Pareto optimal if there does not exist yeD, whose criteria vector,

q=g(y), dominates the criteria vector of x, p=g(x), i.e. q<p, pzq. (For any vectors v and w, v < w

implies that v, 5 w, Vi ).

Figure 2.1B presents a scheme of a Pareto set for a bi-objective linear maximization and

minimization problem. If design metric g, alone is optimized (maximized), then the optimal

value is gl (shown as point PI). Similarly, if design metric g 2 alone is optimized then the

optimal value is g2 (shown as point P2). Here gl and g2 are the anchor values for design

objectives g, and g2 , respectively. The ideal or Utopian solution (g ,g2) obtained by the

individual maximization of the objective functions is generally not a feasible solution of the

multiobjective optimization problem. As seen in Figure 2.1B, lines joining points P1 and P2

defining the boundary of the feasible space are the efficient Pareto frontier. That is, for every

point on arc P1-P2, it is not possible to improve both objectives simultaneously. If one objective

is improved, it must be at the expense of the other. Points on the arc are often referred to as

Extreme Pareto points. In view of their stated characteristics, Pareto points are usually the

candidate of choice in the process of multi-objective optimization. Figure 2.1B shows Pareto

frontiers for both maximization and minimization problems. It shows the shape of frontiers and
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tradeoffs involved between two objectives for two separate parameters and conditions of

maximization and minimization.

Often several Pareto optimal points are available in cellular systems, representing

alternative designs, from which one can select the one that offers the best trade-off among

multiple objectives. This optimization generally involves forming an Aggregate Objective

Function (AOF) (or, some functional aggregation of the many conflicting criteria). Implicit in

this process is the assumption that this AOF has the ability to indeed yield all the potentially

useful/desirable optimal solutions. The most common AOF structure is the weighted-sum

approach, which involves forming a linear combination of objectives -- minimized subject to the

problem constraints. The algorithm for the Linear Physical Programming (LPP) based

multiobjective FBA is shown in Figure 2.1C.

2.3.5 Linear Physical Programming Lexicon

The first step in the Linear Physical Programming (LPP) lexicon is to express the

preferences with respect to each objective using four different classes. Each class comprises two

cases, soft and hard, referring to the sharpness of the preference. All soft class functions are

integrated in the AOF (that will be minimized). The desired behavior of an objective function,

during optimization, is described by one of eight sub-classes, four soft (S) and four hard (H).

These classes are defined as follows:

Soft:

Class- S Smaller-Is-Better, i.e. minimization.

Class-2S Larger-Is-Better, i.e. maximization.

Class-3 S Value-Is-Better.

Class-4S Range-Is-Better.

Hard:

Class-1H Must be smaller, i.e., g < ti,max

Class-2H Must be larger, i.e., g, 2 ti,min

Class-3H Must be equal, i.e., g = tival

Class-4H Must be in range, i.e., t i,min - gi < t
i,max
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Figure 2.3: Relative capacity to express preferences using LP, GP and LPP for a given objective function, gi. zi is

the actual quantity minimized in optimization. LP has a single weight wLP and no target value, GP has 2 weights

wGP and WGP, and 1 target value tGp. Soft classes-IS, 2S, 3S and 4S in LPP have 5, 5, 9, and 10 targets,

respectively, and all LPP classes do not have any weights.

Figure 2.3 presents the relative capacity to express preferences using Linear

Programming (LP), Goal Programming (GP), and LPP for a given objective function, gi. The

vertical axis, zi, represents what is minimized in the optimization process. In the LP case, a single

weight, WLp, can be increased or decreased to express preference relative to other criteria. In the

GP case, there are two weights, we, and w;p and a target value, tGP . In the LPP case, there is

flexibility to choose up to ten target values, and it eliminates the need to deal with weights

entirely, as seen in Figures 2.3C (Class-IS), 2.3D (Class-2S), 2.3E (Class-3S) and 2.3F (Class-

4S),. The effectiveness of LPP comes from its ability to shape the class function (i.e. zi) to suite

the typically complex structure of the preference. Compared to choosing weights which can be

difficult and undesirable because they are physically meaningless, choosing target values is

preferable because they are physically meaningful. In both LP and GP, it is usually not clear
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whether the weights should be increased by 10% or 100% in order to achieve the desired optimal

result. This difficulty is compounded when there are several objectives involved. In this regard,

LPP distinguishes itself by operating in a physically meaningful space.

The behavior of the AOF, in the cases of LP, GP, and LPP are shown as a collection of

indifference curves and their three-dimensional view (Figures 2.3A-F). For the LP case, the

weighted sum of two objectives leads to a simple plane. In two-sided-goal criteria for GP, there

are four intersecting planes whose slopes depend on the weight-pair of each criterion. In contrast,

the LPP case depicts a surface that comprises 81 intersecting planes (for class-4 criteria).

Soft Classes: The soft class functions allow ranges of differing levels of preferences for each

objective to be expressed (Figures 2.3C-F). Based on thei r classes, the class functions are

generated for all the objectives. These class functions are then minimized for each objective

using a linear programming algorithm. The qualitative and quantitative depictions of each class

are shown in Figures 2.3C-F. Where, the value of the objective i under consideration, g,, is on

the horizontal axis, and the corresponding class function, z,, is on the vertical axis. A lower

value of the class function is better (i.e., more valuable than) than a higher value, and a class

function of zero is ideal. As would be done in conventional mathematical programming

formalism, preferences for each criterion are required in LPP, compared to using the terms

minimize, maximize, greater than, less than, or equal to. For the soft case, this lexicon comprises

terms that characterize the degree of desirability of up to eleven ranges. The LPP lexicon

comprises terms that characterize the degree of desirability of six ranges for each generic

criterion for classes iS and 2S, ten ranges for classes 3S, and eleven for class 4S. As an

illustration of the LPP lexicon, consider the case of class IS (Figure 2.3C), where the ranges are

defined, in order of decreasing preference in Table 2.3. The parameters/targets t' through t, are

physically meaningful values that are specified to quantify the preference associated with the i-th

objective. These parameters delineate the desirability ranges within each objective. The shape of

the class function depends on the numerical values of the range limits (targets). According to the

definition of the ideal range, any two points of the ideal range are of equal value. The class

function will be minimized only until the target value t' is reached. Below that point, class 1S

expresses explicit indifference. If a smaller value of the objective is better, the ideal range does
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not apply. In this case, should be set to a value outside of the feasible space in order to exclude

solutions in the ideal range. This will preclude the possibility of obtaining (incorrect) dominated

solutions. A similar discussion would apply to the cases of class 2S and class 4S.

Table 2.3: Definition of ranges in their order of decreasing preferences for Class- 1S

Range Preference Values Descriptions
A range over which every value of the
criterion is ideal (the most desirable

Highly Desirable range gi ti4; Range-1 possible). Any two points of that range are
of equal value. (See following pertaining
discussion.)

Desirable range ti +< gi -ti; Range-2 An acceptable range that is desirable
Tolerable range ti+- gi ti; Range-3 An acceptable, tolerable range

A range that, while acceptable, is
Undesirable range ti3 - i -ti4 ; Range-4 undesirable

A range that, while still acceptable, is
Hti4 i gi <ti5; Range-5 highly undesirable

The range of values that the generic
Unacceptable range gi ti ; Range-6 metric may not take

Hard Classes.- Constraints that are hard and have to be met are classified as hard. There are hard

only two ranges defined for a hard objective, acceptable and unacceptable. All the soft class

functions become part of the AOF to be minimized, and all of the hard class functions simply

appear as constraints in the LPP model.

In the next section, the mathematical formulation of the class function for the soft

objectives in a multiobjective setting is presented. The formulation includes implied intra-criteria

and inter-criteria preferences.

2.3.6 Constrained Multiobjective Metabolic Flux Analysis Framework

This section first presents the procedure for forming the LPP problem model. The LPP

application procedure entails four major steps:

1) Determining for each objective the appropriate class, i.e., which one of the four soft and

hard classes applies.



2) Defining the limits of the ranges of differing degrees of desirability for each objective:

the 'target'-values (see Figure 2.3). For classes IS through 4S, there are respectively five, five,

nine, and ten such values. For classes 1H through 4H, these values are respectively ti,max, ti,mi n,

ti,val , and ti,min and ti,max

3) Generate weights based on the optimality requirement of cellular or physiological

systems. Input in the form of range boundaries (or targets) for each objective are used in the

Linear Physical Programming Weights (LPPW) algorithm to generate the weights (Table 2.4).

Table 2.4: Linear Physical Programming Weights algorithm

STEP ACTION

Initialize:
+ N2

1 = 1.1 ; w i = 0, il 0 ;z =small positive number (say, 0.1)

i = 0; s = 1, nsc= # of soft criteria
2 Set i = i + 1

Evaluate, in sequence
3 s " +~ +  ~ -  ~z tis , tis, Wis , w , is , W mis, Wmin

4 Sets = s + 1

5 If Wmin is less than some chosen small positive number (say, 0.01), then increase /, and go
to step 2.

6 Ifs 5, go to step 3.
7 If i # n,,, go to step 2

('i' values correspond to soft criteria)

4) The following linear programming problem is then solved:

Piecewise Archimedean aggregate function:

min

d,,dis,x
(2.7)

J=1 d +s
i=1 s=2

subject to

System Constraints:

Xmi n  - Xmax

g, = g, (x)

Goal Constraints:

(2.8)

(2.9)



g, - d tt,_), d+ > 0, g, 5 t+ (for all i in classes 1S, 3S, 4S, i=1,2,...,n,,, s=2,...,5)

gi +d >t,_), d 2 >0, g, t, (for all i in classes 2S, 3S, 4S, i=1,2,...,nc, s=2,...,5) (2.11)

and

g tj,max (for allj in class 1H, j=1, 2,..., nhc) (2.12)

gj tj,min (for allj in class 2H,j=1, 2,..., nhc) (2.13)

g = tjval (for allj in class 3H, j=1, 2,..., nhc) (2.14)

t j,min < gj < tj,max (for allj in class 4H, j=1, 2,..., nhc) (2.15)

In the above formulation, x is the decision variable vector of the objective function gi (x)

, and nse and nhc denote the number of soft and hard criteria, respectively. Next, we outline a

simple algorithm for evaluating the weights that are used in the LPP model of the class functions.

It is important to note that these weights are related to the class function slopes. The next section

and Table 2.5 show the quantitative aspects of LPP. In the LPP implementation of this section,

the final value of the parameter p was kept constant for all criteria resulting in a more favorable

numerical conditioning. The increase of P in the weight-algorithm loop above was set as 0.01.

Then the weights obtained from the above LPPW algorithm are used to obtain expressions for

the piecewise linear class function of each criterion. To maintain the linear programming

framework, piecewise linear class functions were implemented using deviation variables( d, d+

). In the particular case of class-4S, for example, it can be shown that the LP model of the

piecewise linear function is as follows:

Piecewise Archimedean aggregate function:

(i-z, mn + w d + (2.16)

ds,,dis s=2

subject to

System Constraints:

(2.10)



SJU = -SmJm (2.17)

Jtow JU Jhigh (2.18)

Xmin .<X -X ma x

(2.19)

Goal Constraints:
gi -d+ <t+ d + >0 g, t (s = 2, ...,5) (2.20)

-- tis , - , ....-i 5

gi + d- t,_, , d > 0, g, 2t-, (s = 2,..., 5) (2.21)

g tj,max (for allj in class 1H,j=1, 2,..., nhc) (2.22)

gj tj,min (for allj in class 2H, j=1, 2,..., nhc) (2.23)

g = tj,va (for allj in class 3H,j=1, 2,..., nhc) (2.24)

tj,min g < tj,max (for allj in class 4H,j=1, 2,..., nhc) (2.25)

where Jm and J, indicate measured and unmeasured fluxes, respectively; and Sm and S,

contain the stoichiometric coefficients of measured and unknown reactions, respectively.

As discussed previously, the use of preferences for different degrees of desirability for

each design metric also aids in simultaneous visualization of a large number of objectives. This

facilitates the assessment of the effect of preference specifications on the objectives as well as

the complex interplay of these objectives (Figure 2.1D). Each section is color coded according to

the desirability level and labeled.

2.3.7 Quantitative Aspects of Linear Physical Programming

Intra-Criteria and Inter-Criteria Preference: For a given objective, once the design metric

decides to which class the criterion belongs, and chooses the range targets (i.e. ti, t[- ), the intra-

criterion preference statement is complete. However, since decisions are made in a multi-

objective environment, there must be an implicit or explicit inter-criteria preference. Linear

physical programming operates within an implied inter-criteria heuristic rule that is hereby called



the One vs. Others criteria-rule (OVO rule). The OVO-rule entails the following inter-criteria

preference for each soft criterion, gi. If two options are considered, viz.,

Option 1: "Full improvement of gi across a given range (say, range-3)"; and

Option 2: "Full reduction of all the other criteria across the next better range (i.e., range-

2)"; then option 1 shall be preferred over option 2.

That is, the worst candidate is always helped first. Essentially, this philosophy has a built-

in preemptive nature in which the minimization of the worst criterion is automatically implied.

Say, for example that we are dealing with 15 criteria. The OVO rule states that: it is more

beneficial for a single criterion to improve over the full tolerable range, than it is for the other 14

to improve over the full desirable range. The mathematical implication of the OVO rule is

discussed later.

Development of Class Function: In this section we define and discuss the properties of class

functions (Figures 2.3C-F), and develop the LP model representation of generic class functions.

This model will be used in the statement of the linear physical programming mathematical

model. We also discuss in some detail the structure of a generic class function. We first state the

class function properties; which is followed by a discussion thereof. These properties are as

follows:

1. A lower value of a class function is preferred over a higher value thereof.

2. A class function is strictly positive.

3. A class function is continuous, piecewise linear, and convex.

4. The value of a class function, zi, at a given ranges-intersection (say, desirable-tolerable)

is the same for any class-type.

5. The magnitude of the class-function's vertical excursion across any range must satisfy the

OVO-rule.

Collectively, these properties provide the flexibility required of the linear physical

programming methodology. We make the following observations:

* Since a lower value of the class function is better than a higher value thereof, class

functions and utility functions have distinct structures (while fulfilling the same function).



* The positivity property of the class function allows the DM to define an ideal finite value,

zero.

* The rationale for the convexity requirement is partially rooted in the axioms of utility

theory. In our particular case, it means that the cost of traveling across, say, the

undesirable range is always more than that of traveling across the tolerable range;

regardless of the target values chosen by the design metric. (We note that the OVO rule,

alone, does not guaranty convexity).

* The value of the class function at a given range limit (say, z i (t)) is always constant (see

Figure 2.3). From criterion to criterion, only the location of the limits (say t' ) change,

not the corresponding zi values. As a consequence, as one travels across a given range-

type (say tolerable), the change in the class-function will always be of the same

magnitude, -3, regardless of the criterion in question. This behavior of the class function

values at the boundaries is the critical factor that makes each range-type have the same

numerical cost/value for different criteria. This same behavior also has a normalizing

effect, and results in favorable numerical conditioning properties.

Concept 1: Table 2.5 represents the mathematical representations of some of the Property (4) of

the class function discussed above is expressed by the relation

z s - zi(t ) - zi(ts )  Vi ; (2 s 5) ; z 0 (2.26)

where 's' and 'i' respectively denote a generic range-intersection and criterion number.

Concept 2: The change in zi that takes place as one travels across the s-th range is always given

by

Sz s z s-1 ; (2 s <5);z 0 (2.27)

Concept 3: To enforce the OVO rule, we apply the relationship

, s > (nsc -1)Zs-1 (3< s <5) ; (nsc >1) (2.28)

or, equivalently

S = P (nsc -1)s s-1 (3;s 5); nsc >1 ; >1 (2.29)



where nsc denotes the number of soft criteria, and p will be used as a convexity parameter.

Equation (2.29) does not guaranty convexity of the class function, as the said convexity depends

also on the targets chosen. To apply Equation (2.29), we need to be given a value for Z2. In

practice, a small positive number will be appropriate (say, 0.1).

Table 2.5: Quantitative aspects of Linear Physical Programming

CONCEPT FORMULATION

1 zs-zi(ti+) z i (t is
)  Vi ; (2<s <5); z -0

2 Zs _ Z s_ z s-1 ; (2< s <5) ; z 1' 0

Zs > (nsc-_1)S-1 (3<s <5) ; (nsc>1)
3 (OVO rule or, equivalently,
enforcement) ~s = (nsc -l1) s- 1  (3 s 5) ; nsc >1 ; 6 >1

where n, denotes the number of soft criteria, and / will be used as a convexity parameter.

Define tis = ti+ - ti(s1) ; is = tis - t(s-1) (2 s 5)
The magnitude of the slopes of the class function of the i-th criterion is:

W is i ; wis i

S- + ~ - \ / (2< s _5)
4 (Convexity Wmin = \ Wis >Ois > 0 ;
requirement) ,s i soft criteria

where

~+ + + + ('- s -5)
Wis = is - Wi(s-1) ;Wis =Wis - Wi(s-1) ; W il =0 soft criteria\ i: soft criteria

Concept 4: Turning our attention to the convexity requirement, we define

i+= t ti(s-) ; = tis - t(s-1) ; (25 s 5) (2.30)

which is the length of the s-th range of the i-th criterion. With this quantity, the magnitude of the

slopes of the class function of the generic i-th criterion takes the form

w = 1s /7 ;w " s /t; ; (2 s 5) (2.31)

We emphasize here that the slopes change from range to range and from criterion to

criterion. Once the slopes are known, the convexity requirement can be verified by the

relationship



-+ ~- 0<5) (2.32)
Wmi n = min \Wis ,wis > . (in ,s i: soft criteria

where

--+ + + =+ (2< s <5)
Wis = is -Wi(s-) ; Wis = wis -Wi(s-1) ;il =w =0 i : soft criteria (2.33)

We note here that the quantities i and wis are exactly the weights that will be used in

the LP model of the class functions. In effect, equation (2.32) states that so long as all these

weights are positive, the class function will be piecewise linear and convex. The important point

here is to observe that convexity can always be satisfied by simply increasing the magnitude of

the convexity parameter /.

2.3.8 Generation of Pareto Points Using LPPFBA

This section develops a simple Linear Physical Programming based Pareto frontier

generation method. In LPPFBA approach, preferences regarding each cellular objective can be

expressed by providing numerical values that are associated with ranges of differing desirability.

In order to obtain the Pareto optimal solutions, preference values have to span the objective

space, to generate all the combinations of actual preferences that can result in corresponding

Pareto points. We generate Pareto points in a region where a particular objective function is

small by simply expressing small pseudo-preference values for that objective function. In a

similar fashion, we can generate Pareto points in a region where a certain objective function is

large by simply choosing large pseudo-preference values for that design metric. The steps for

Pareto generation are presented below:

Step 1-Definition of the objective space of interest: First a hypercube that defines the region of

interest in the objective space is generated. In particular, the minimum and maximum values

associated with each design metric are defined. For the i-th objective function, gi,min and g,max

respectively denote the associated minimum and maximum objective function values in the

Pareto frontier, or in the desired region of investigation; where it is to be noted that the region of



investigation must be a subset of the Pareto frontier. For the ith objective function, we also

define

(2.34)di = gi,max - gi,min

Step 2-Tradeoff matrix construction: Define the Tradeoff matrix G, as follows

gi,min g 12  glN ri

G= g 2 1  g 2,min 2N =r2 (2.35)

g N1 gN 2  "' gN,min L

where N is equal to the number of objective functions, nc. In the tradeoff matrix G above, the

ith row, ri , represents the set of objective function values that are obtained when gi= gi,min.

Step 3-Diagonal translation of AOF surface: The generation of the Pareto points involves

translating the AOF surface across the objective space. A pseudo-preference translation vector is

formed as

Si = 7 gi.min + 0 (- ,i )gi,max (2.36)

N

where y' = 1, 0 y: , < 1 (2.37)
i=1

The parameter yv varies between 0 and 1, and the i-th component of the translation vector

varies between the minimum and maximum values of the i-th objective function. The number of

values of y, is dictated by the resolution with which we wish to generate the Pareto frontier. We

let n, the point-density parameter (which represents the resolution of the Pareto frontier), denote

the number of yi values for each objective function. Accordingly, the y, increments are 1/(n -

1). Figure 2.4 depicts the scenarios for two and three soft objective function cases, with n = 6. In

the case of two design metrics, we have a total of 6 translation vectors, which will yield 6 Pareto

solutions. In the case of three objective functions, we have 21 translation vectors yielding 21

Pareto solutions. The AOF surface is shifted through the objective space. With each shift, an

optimization is performed resulting in a Pareto point. In essence, translating the AOF surface in

the objective space generates the entire Pareto frontier.



(a) 2 Design Metrics, n = 6

t1  0 0.2 0.4 0.6 0.8 1

72 1 0.8 0.6 0.4 0.2 0

(b) 3 Design Metrics, n = 6

71 0 0.2 0.4 0.6 0.8 1

72 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0 0.2 0.4 0 0.2 0

73 1 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4 0.2 0 0.6 0.4 0.2 0 0.4 0.2 0 0.2 0 0

Figure 2.4: Non-dimensional parameters used in the generation of the Pareto optimal solutions for translating the
AOF surface across the objective space.

Step 4-Offset in diagonal translation of AOF surface, and its magnification: In Step 3, we

showed how the AOF surface could be translated, with the intent of generating the Pareto

frontier. However, to avoid missing any Pareto solution if hypercube is too small we need

following adjustments. First, we can offset the translation trajectory by replacing it with another

that is parallel to the original. Alternatively, we can magnify the box size so as to overlap all

regions of the objective space. First, we define the box size as

a, = d, /nd (2.38)

where nd is a real positive number that defines the relative size of the hypercube of interest and

the AOF. By letting nd be a number less than or equal to two when there is no offset, we can

ensure that all Pareto points can be generated. Second, we define the offset vector as

Sf = a,d,, - 1 _ a, < 1 (2.39)

which is used to offset the translation trajectory, as discussed above.



Step 5-Formation of pseudo-preference vector: The pseudo-preference vector as follows. As

discussed above, we directly use these values of preference input in the LPP algorithm to

generate Pareto points. We define

Sp = -(n - 1)- , np = 1,...,5 (2.40)

and

P = {0
113

424
1a

which yield the pseudo-preference vector as

(2.41)

T
gil

9i2

P, = gi3

gi4

g5

where

E={1

= (s + S, +Si )E + Po

1 1 1 1}

The variable Sip is utilized to implement an additional offset of the translation trajectory.

Also following constraints have to be satisfied in order for the pseudo-preferences to effectively

impact the solution:

sf + Sp < d (2.44)

which leads to the requirement

1 np -1 1 np -1-+-- < a, -+n (2.45)
2 4 nd 2 4 nd

(2.42)

(2.43)



2.4 RESULTS AND DISCUSSION

Multiobjective optimization is a useful tool with applications to numerous disciplines and

more recently for cellular systems (Nagrath et al., 2007; Vo et al., 2004) where simultaneous

targeting of several objectives is vital. Therefore, we developed this approach to optimize

hepatocellular function in the context of a BAL device, in which case the main goal is for the

hepatocytes to function at the highest possible level. Here we focused on a limited set of critical

representative hepatocellular metabolic processes: urea secretion, albumin synthesis, NADPH

synthesis, and glutathione synthesis. Urea secretion (flux 16 in Table 2.1) is a critical

detoxification reaction, and is primarily derived from ammonia and aspartate generated through

transamination reactions. Albumin synthesis (flux 47) was used as a marker of liver specific

protein secretion. NADPH is produced by the pentose phosphate pathway (PPP), and is primarily

used in nonproliferating hepatocytes as a co-factor for cytochrome p450 dependent oxidation

reactions, de novo synthesis of glutathione, as well as reduction of oxidized glutathione. To

increase NADPH production, the NADPH-generating oxidative branch of the PPP represented in

a lumped fashion as flux 46 was increased. The tripeptide glutathione (GSH, y-Glu-Cys-Gly) is a

free radical scavenger and is involved in many detoxification reactions. The synthesis of

glutathione is represented by flux 48.

Using LPPFBA, we assessed the sensitivity and geometry of the optimal region and

determined the optimal results using various preferences and/or prioritization of the four

objectives (fluxes 16, 46, 47, 48) mentioned above. The constraints for the hepatic metabolic

network are listed in Table 2.6. As described in the Methods, LPPFBA requires characterization

of design metrics into different classes. Here, all four objective functions are maximized and

hence fall in "Class 2S". As part of this analysis, we first obtained Pareto frontiers between

various bi-objective combinations of liver specific functions (albumin synthesis, urea secretion,

NADPH synthesis, and GSH synthesis). Next, we obtained Pareto optimal solutions for tri-

objective combinations of these hepatic functions. Lastly, we obtained the Pareto solutions for a

simulated BAL system where the main goal was to operate the BAL at the highest possible level

during human plasma exposure. The experimentally measured flux data for hepatocytes during

plasma exposure were obtained from Chan et al. (Chan et al., 2002).



Table 2.6: Lower and upper bounds for Table 2.7: Optimal fluxes obtained for the corresponding Pareto optimal
the metabolic network (Table 2.1) points A, B, C, D, E, F, G, H as for Pareto frontiers shown in Figure 2.5.

lower upper Flux AlbuminlUrea NADPH/Albumin NADPH/Urea GSHIAlbumin
Flux bound bound Flux A B C D E F G H

1 0.1 30 1 7.183 10.709 3.983 3.793 3.946 7.543 2.769 2.400
2 0.00001 30 2 7.183 10.709 3.983 3.793 3.946 7.543 2.769 2.400
3 0.00001 30 3 7.183 10.709 3.983 3.793 3.946 7.543 2.769 2.400
4 0.00001 30 4 14.391 21.446 7.968 7.586 7.894 15.161 5.540 4.803
5 0.00001 30 5 14.392 21.476 30.000 30.000 30.000 30.000 12.515 7.888
6 0.00001 30 6 14.392 21.476 30.000 30.000 30.000 30.000 12.515 7.888
7 0.00001 30 7 1.302 9.031 29.506 30.000 25.000 25.000 13.463 14.214
8 5 30 8 5.145 7.555 15.000 20.022 15.000 15.000 10.441 10.950
9 5 30 9 5.145 7.555 15.000 20.022 15.000 15.000 10.441 10.950

10 5 30 10 5.000 5.000 5.000 10.036 5.000 5.000 5.628 5.001
11 5 30 11 5.182 5.031 11.815 17.638 9.967 5.387 10.583 9.586
12 5 30 12 28.235 30.000 25.494 29.987 30.000 30.000 10.724 9.700
13 5 30 13 28.235 30.000 25.494 29.987 30.000 30.000 10.724 9.700
14 0.00001 50 14 22.953 24.869 13.579 12.231 19.933 24.513 0.030 0.004
15 0.00001 50 15 22.953 24.869 13.579 12.231 19.933 24.513 0.030 0.004
16 0.00001 100 16 29.700 34.400 13.115 11.232 25.100 34.400 4.290 3.350
17 -10 50 17 -8.903 -1.330 -1.740 -8.712 -1.054 -0.792 -1.013 -3.254
18 0.1 50 18 0.104 0.167 20.675 19.002 15.954 15.692 0.111 0.100
19 0.1 50 19 0.100 0.192 0.100 0.100 0.100 0.100 0.100 0.100
20 0.01 50 20 0.032 0.014 7.425 4.684 9.704 9.844 7.636 5.548
21 0.001 50 21 0.001 0.001 1.915 0.894 0.001 0.001 0.001 0.014

22 -1 50 22 -1.000 -0.910 -0.997 -1.000 0.009 2.331 -1.000 -0.572
23 0.001 50 23 0.001 0.030 22.032 22.414 22.106 14.839 6.975 3.084
24 0.00001 50 24 0.364 0.510 0.480 0.462 0.491 0.495 0.489 0.375
25 0.00001 50 25 0.182 0.031 6.815 7.602 4.967 0.387 4.955 4.586
26 0.001 50 26 0.022 0.004 0.001 0.027 0.848 2.927 0.001 1.259
27 0.1 50 27 1.411 0.102 0.426 0.100 0.248 0.100 0.100 0.103
28 0.1 50 28 0.100 0.100 0.100 0.118 0.100 0.100 0.111 0.109
29 0.1 50 29 0.109 0.104 0.100 0.100 0.100 0.100 0.165 0.221
30 0.00001 50 30 2.930 4.696 0.357 2.990 4.792 0.000 4.831 2.990
31 0.01 50 31 0.161 0.010 4.880 4.196 4.946 0.366 4.934 4.196
32 0.01 50 32 0.010 0.010 0.010 0.277 0.010 0.010 0.010 0.291
33 0.01 50 33 0.010 0.010 0.010 2.235 0.010 0.010 0.010 0.085
34 0.01 50 34 2.347 0.018 0.010 0.010 0.010 0.010 0.010 0.021

35 -10 50 35 -10.000 -10.000 -10.000 -9.965 -10.000 -10.000 -1.231 -5.076
36 0.00001 50 36 7.289 9.609 0.310 7.320 9.821 9.906 0.019 0.083
37 -10 -0.01 37 -0.145 -2.555 -10.000 -9.985 -10.000 -10.000 -4.813 -5.949

38 0.00001 50 38 2.978 4.713 0.000 0.000 0.167 4.887 0.075 0.256
39 0.1 50 39 6.562 0.307 9.500 6.650 4.984 0.382 4.227 6.628
40 0.01 50 40 0.329 0.959 0.970 1.604 0.408 0.320 0.328 0.322
41 -10 50 41 -0.265 -0.413 -0.378 -0.334 -1.223 -1.564 -0.285 -1.532
42 0.1 50 42 0.121 0.101 0.103 0.155 0.116 1.858 0.205 0.102
43 5 100 43 26.053 28.997 33.527 47.726 52.950 55.606 43.906 49.837
44 5 100 44 5.000 5.000 5.005 5.035 13.197 5.689 13.394 13.866
45 -10 -0.001 45 -0.025 -0.027 -0.001 -0.001 -0.001 -0.074 -0.002 -0.003
46 0.01 10 46 0.439 0.710 2.983 2.793 2.946 1.783 1.766 1.399

47 0.00001 5 47 0.136 0.020 0.020 0.134 0.009 0.005 0.011 0.134

48 0.001 50 48 0.071 6.497 14.080 9.406 14.533 10.102 14.449 9.406
49 0.001 50 49 0.135 0.329 0.319 0.135 0.145 0.184 0.136 0.114
50 10 50 50 10.000 10.001 10.471 19.610 10.000 10.000 14.265 17.268
51 0.15 20 51 2.561 0.211 0.154 0.215 0.204 1.967 0.268 0.180

52 0.1 50 52 0.100 0.291 0.307 0.110 0.123 0.100 0.100 0.100

53 1 10 53 6.744 9.999 1.000 1.000 1.000 5.760 1.003 1.001

54 0.01 5 54 0.010 0.011 0.012 0.024 0.021 0.010 0.034 0.011

55 0.01 5 55 0.014 0.043 0.025 0.637 0.019 0.010 0.014 0.011

56 0.01 5 56 0.014 0.043 0.025 0.637 0.019 0.010 0.014 0.011

57 0.01 2 57 0.035 0.038 0.013 0.025 0.022 0.084 0.036 0.014

58 0.5 2 58 0.500 0.530 0.500 0.596 0.500 0.500 0.500 0.509

59 5 100 59 23.524 26.182 35.490 54.993 36.042 37.873 30.526 33.412
60 0.01 5 60 4.175 0.691 0.700 4.120 0.368 0.241 0.495 4.241

61 -1 5 61 4.928 4.765 4.737 2.681 5.000 5.000 -0.965 -1.000

62 0.0001 10 62 10.000 10.000 0.710 10.000 10.000 10.000 0.239 2.763

63 -1 5 63 3.769 4.818 -0.464 -0.999 5.000 5.000 4.185 3.089

64 0.00001 10 64 10.000 10.000 0.016 2.217 5.382 10.000 4.525 6.561

65 0.1 20 65 20.000 19.342 20.000 20,000 20.000 20.000 0.132 0.174

66 -1 5 66 -1.000 -0.648 -1.000 -1.000 -1.000 -1.000 -0.831 4.545

67 -1 5 67 4.517 1.526 5.000 5.000 -1.000 -1.000 -0.666 5.000

68 -1 5 68 0.343 4.995 5.000 5.000 5.000 5.000 5.000 4.992

69 -1 10 69 10.000 5.885 3.909 -0.766 0.398 4.757 -0.868 -0.867

70 0.001 10 70 0.007 0.008 0.058 0.068 0.023 0.001 0.059 0.053

71 0.01 10 71 4.505 0.660 10.000 10.000 10.000 10.000 8.000 9.984

72 0.01 10 72 7.205 1.040 1.061 7.129 1.322 3.176 0.584 8.361

73 0.01 5 73 4.935 0.611 0.946 3.584 0.480 0.222 0.386 3.587

74 0.01 5 74 4.963 4.989 0.657 5.000 4.926 0.071 4.996 5.000

75 0.01 5 75 0.975 0.127 5.000 5.000 5.000 0.394 5.000 5.000

76 0.01 5 76 4.753 0.694 0.710 4.967 0.323 0.175 0.395 4.981

77 0.01 5 77 1.772 0.264 0.270 3.977 0.126 0.071 0.153 1.827

78 0.00001 10 78 9.937 1.112 1.130 7.514 0.511 0.273 0.626 7.525

79 0.5 10 79 9.950 0.795 10.000 10.000 5.208 0.500 4.502 9.978

80 0.00001 10 80 4.753 7.363 10.000 10.000 10.000 10.000 10.000 10.000

81 0.00001 5 81 1.535 0.408 0.094 2.832 0.040 0.099 0.242 2.820



2.4.1 Analysis of Bi-Objective Hepatic Metabolic Network

Pareto frontiers for various sets of bi-objectives were generated in this section to identify

potential optimal solution regions. These optimal solutions can provide a qualitative framework

to assess the tradeoffs and robustness of the hepatic metabolic network for a quad-objective

scenario (albumin synthesis, NADPH synthesis, urea secretion and GSH synthesis). The

representative results are shown in Figure 2.5. These Pareto optimal solutions were obtained by

changing the preferences from higher desirable values to highly undesirable values.
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Figure 2.5: Pareto frontiers for bi-objective hepatic systems. Four major hepatic functions of albumin synthesis,
urea secretion, NADPH and glutathione synthesis were used for bi-objective optimality in the combinations shown
here: A) Pareto frontier between albumin and urea synthesis. B) Pareto frontier between NADPH and albumin
synthesis. C) Pareto frontier between NADPH synthesis and urea secretion. D) Pareto frontier between glutathione
synthesis and albumin synthesis. The blue circles are the Anchor points, black circles are Pareto optimal solutions
for optimization and red circles are selected Pareto solutions for which complete set of optimal fluxes are shown in
Table 2.7. A, B indicates Pareto points for albumin and urea bi-objective system; C, D indicates Pareto points for
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NADPH and albumin system; E, F indicates Pareto points for NADPH and urea bi-objective system.; and G, H
indicates Pareto points for glutathione and albumin bi-objective system. E) Comparison of Pareto optimal solutions
obtained by LPPFBA weighted-sum and goal programming for a bi-objective problem of maximization of albumin
synthesis and urea secretion.

As seen in Figure 2.5, all of these objectives exhibited a tradeoff with each other; for

example, albumin and urea synthesis could not be at their maximal values at the same time

(Figure 2.5A). Similarly, there was a tradeoff between NADPH and albumin synthesis, NADPH

synthesis and urea secretion, glutathione and albumin synthesis (Figures 2.5B, 2.5C and 2.5D,

respectively). In addition, the impact of changing preferences (for example favoring albumin

synthesis over urea secretion, and vice-versa) varied depending on the objective. In particular,

the tradeoff region or range of Pareto optimal solutions (i.e., how far the optimal value is from

the "anchor value") for albumin synthesis was very high compared to NADPH synthesis and

urea secretion. Several other combinations were also tested and all of them indicated Pareto

optimality between various objectives (data not shown). Figure 2.5E compares the Pareto

optimal solutions obtained between albumin synthesis and urea secretion using weighted-sum,

goal programming and LPPFBA. For all three equal number of simulations were used. As seen

in these figures LPPFBA has significant advantage over both weighted sum and goal

programming. This is because mapping of preferences to form an AOF in LPPFBA results in

piecewise smooth hyper surfaces which leads to an even spread of Pareto optimal solutions for a

given even spread of input preferences without missing any Pareto optimal solution. This

behavior of optimal solution with respect to change in preference is highly desirable in large-

scale mammalian metabolic network analysis (where tradeoffs between objectives are

ubiquitous). In conventional methods, the spacing of points is largely dependent on relative

scaling thus may lead to ill-conditioned problems. Importantly, these methods fail to capture

significant number of optimal solutions resulting in an uneven distribution for even distribution

of weights.

Figure 2.6 presents the distribution of Pareto optimal fluxes throughout the tradeoff

region, which shows the changes required in flux values and direction (i.e. increasing or

decreasing) as the objective preference is changed from one objective to another. The

corresponding flux values are presented in Table 2.7.
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Figure 2.6: Metabolic profiling of percentage change in Pareto optimal fluxes for various solutions of Figure 2.5.
These results are for various combinations of objectives and the corresponding flux values are in Table 2.7. Only
changes up to ±+100% are shown.

Figure 2.6A indicates the necessary change in fluxes when going from Pareto optimal

solutions "A" to "B" in Figure 2.5A, in other words, when going from higher albumin

synthesis/lower urea secretion rates to lower albumin synthesis/higher urea secretion rates. This

change requires increasing gluconeogenic fluxes (1-9), formation of pyruvate from amino acids

(fluxes 17-19, 23-24), aspartate synthesis (36), formation of glutamic acid (37, 39), and

increasing oxidation of triglycerides (52). Noticeably, higher urea secretion/lower albumin

synthesis necessitates decreased uptake of both glucogenic (proline, 60; serine, 67; aspartate, 69;

threonine, 71; phenylalanine, 73; methionine, 75; valine, 76; isoleucine, 77; glutamine, 79;

tyrosine, 81) and ketogenic (lysine, 72; leucine, 78) amino acids over the lower urea

secretion/higher albumin synthesis case. On the contrary, glycine (68) and cysteine (80) uptake

are increased when increasing urea secretion. Asparagine (62) and arginine (64) uptake rates
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were at maximum for both urea and albumin maximizations. Histidine (74) uptake rate was also

increased when increasing urea synthesis since it results in an increase of cu-ketoglutarate.

Essentially, the uptake of pyruvate forming amino acids (alanine, 66; serine, 67; and threonine,

71), fumarate forming amino acids (phenylalanine, 73; and tyrosine, 81), and succinyl CoA

forming amino acids (threonine, 71; methionine , 75; and valine, 76) was decreased in order to

increase urea secretion since these amino acids play a major role in increasing albumin synthesis.

Also, increasing urea synthesis resulted in increased gluconeogenesis, which was associated with

an increased rate of glucose clearance and an increase in glycogen synthesis.

Figure 2.6B indicates the change in optimal fluxes from C to D Pareto solutions for the

case when NADPH production and albumin synthesis are considered to be the main objectives

and whose maximization was studied. Noticeably, TCA cycle fluxes (8, 9, 10 and 11) were

higher for the case when albumin was maximized. Additionally, oxygen uptake and electron

transport system flux (59 and 43) were significantly lower at higher NADPH production and

lower albumin synthesis. Moreover, NADPH use for alanine synthesis in reaction 17 was

significantly reduced for the case of NADPH maximization. NADPH maximization also required

increased aspartate uptake (69). Since the tradeoff region for NADPH synthesis is not large

(2.793 to2.983) there was not much change in gluconeogenic fluxes in this scenario. However,

since the tradeoff region for albumin synthesis flux was high (from 0.02 to 0.134), increasing

albumin synthesis required increasing the uptake rates of fatty acids (54-57), oxygen (59),

proline (60), asparagine (62), arginine (64), lysine (72), phenylalanine (73) and histidine (74).

Interestingly, histidine (30), which produces glutamate, was decreased for increasing NADPH

production because reaction 37 is proceeding in reverse direction, which utilizes NADPH.

Figure 2.6C presents the flux profiles for Pareto optimal solutions E and F for the

NADPH synthesis/urea synthesis bi-objective scenario. There was an increase in the tradeoff

region for NADPH flux (1.783 to 2.946) when compared to the previous bi-objective case of

NADPH/albumin synthesis. As seen in Figure 2.6C and Table 2.7, higher urea flux necessitated

upregulation of gluconeogenic fluxes (1-4), ketogenic amino acid uptake (lysine: 26, 72),

nonessential amino acid uptake (glutamate, 38), ketone body production (acetoacetate, 42; f3-

hydroxybutyrate, 51), glucose release (53), arginine uptake (64), aspartate uptake (69), and

tyrosine uptake (81). On the contrary, increasing NADPH production required upregulation of

the uptake of amino acids that produce succinyl CoA (methionine: 31, 75) to increase electron
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transport chain fluxes (44), and uptake of amino acids that produce glutamate (histidine, 74,

glutamine, 79). The increased glutamate resulted in higher xo-ketoglutarate, which compensates

for an increased fumarate production in TCA cycle through succinyl CoA (11).

Figure 2.6D presents the flux profiles for Pareto optimal solutions G and H for the GSH

synthesis/albumin synthesis bi-objective scenario. Higher glutathione production flux

upregulated the urea cycle fluxes (14, 15 and 16), increased serine production (22, 23), increased

glutamate synthesis (23, 30), increased gluconeogenesis fluxes (5-6). However, the increased 3-

phosphoglycerate flux (4) does not increase glyceraldehyde 3-phosphate flux (3) but instead

result in the increased production of serine (23), which ultimately is used to produce glycine (22)

for reduced glutathione. Also, there is a significantly reduced synthesis of alanine by alanine

aminotransferase through pyruvate (17). Noticeably, higher albumin requires increased

catabolism of lysine (26), valine (32), isoleucine (33), leucine (34), and ornithine (38) with an

increased production of glutamate (38, 39), aspartate (36), pyruvate (50), and decreased ketone

bodies (P-hydroxy butyrate, 51). Higher albumin flux also necessitates the increased uptake of

amino acids (proline, 60; asparagine, 62; arginine, 64; alanine, 66; serine, 67; lysine, 72;

phenylalanine, 73; valine, 76; isoleucine, 77; leucine, 78; glutamine, 79; tyrosine, 81).

As can be seen from the above results there is a significant re-routing of flux directions

and cycle fluxes when switching from one objective to another within system constraints. In

general, up regulation of gluconeogenesis was associated with higher urea secretion, which, in

turn, was associated with higher arginine and aspartate fluxes. Increasing albumin synthesis

required a significant increase in the uptake of various amino acids and the synthesis of some of

the gluconeogenic amino acids. Interestingly, higher glutathione synthesis required an up

regulation in glycine synthesis. It is important to note that the bi-objective cases analyses

discussed in this section had preferences close to (although not exactly at) the anchor points.

2.4.2 Analysis of Tri-Objective Hepatic Metabolic Network

Next, as part of this analysis, we demonstrate the use of LPPFBA to perform tri-objective

optimization. We studied various preferences for two different tri-objective combinations:

NADPH production, albumin synthesis, and GSH synthesis and urea secretion, NADPH

production, and albumin synthesis. The optimal results are presented in Tables 2.8 and 2.9,
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respectively, and the corresponding fluxes are in Table 2.10. For each combination, we examined

three cases, each case favoring one of the three functions. Figures 2.7A-B show the metabolic

profiling for change in fluxes for NADPH synthesis/albumin synthesis/GSH synthesis scenario

and Figures 2.7C-D show the metabolic profiling for change in fluxes for urea secretion/NADPH

synthesis/albumin synthesis when preferences are changed from one objective to another. The

anchor points which are obtained by individual optimization of urea, albumin, glutathione, and

NADPH are 34.869, 0.14257, 14.9 and 2.9986, respectively.

Table 2.8: Linear Physical Programming optimization results for a tri-objective system (NADPH synthesis, albumin
synthesis and glutathione synthesis) for hepatic metabolic network. HUD is highly undesirable, UD is undesirable, T
is tolerable, D is desirable and HD is highly desirable preference values of objective functions.

Case t t2 t3  t4  t O
# Priority Flux (HD) (D) (T) (UD) (HUD) Optimal

High NADPH 3.0000 2.7635 2.5270 2.2905 2.0539 2.8700

1 High albumin 0.1426 0.1313 0.1200 0.1087 0.0975 0.1149

High GSH 14.9000 13.7222 12.5444 11.3665 10.1887 10.1887

High NADPH 3.0000 2.9439 2.8877 2.8316 2.7755 2.7795

2 High albumin 0.1426 0.1399 0.1372 0.1345 0.1319 0.1372

Low GSH 1.1280 0.8485 0.5690 0.2895 0.0100 9.2741

Low NADPH 0.0130 0.0123 0.0115 0.0108 0.0100 2.6729

3 High albumin 0.14257 0.14253 0.14250 0.14246 0.14243 0.14257

Low GSH 0.0249 0.0212 0.0175 0.0137 0.0100 9.0546

High NADPH 3.0000 2.9822 2.9645 2.9467 2.9290 2.9962

4 Low albumin 0.0034 0.0026 0.0017 0.0009 0.0000 0.0034

Low GSH 0.3637 0.2753 0.1869 0.0984 0.0100 14.7607

Low NADPH 0.0226 0.0195 0.0163 0.0132 0.0100 2.8640

5 Low albumin 0.0006 0.0005 0.0003 0.0002 0.0000 0.0006

High GSH 14.9000 14.8843 14.8685 14.8528 14.8370 14.8749

Table 2.8 presents the multiobjective optimal solutions for 5 scenarios for the

NADPH/albumin/GSH tri-objective case. Case 1 indicates the base case where preferences for

all three hepatic objectives were given based on their anchor points, however, none of the

objectives were given any specific priority, i.e., priority for each was set as equal to a high value.

As seen from the Highly Desirable (HD) values for objective functions in Case 1, all objectives'

highly desirable values are close to their anchor points. The preference ranges in the LPP

optimization for this case were selected as 3-2.05 for NADPH production, 0.143-0.098 for

albumin synthesis, and 14.9-10.19 for glutathione synthesis. The optimal values of objective
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functions obtained for this case (Case 1) are 2.87 for NADPH synthesis (between highly

desirable and desirable), 0.11 for albumin synthesis (between tolerable and undesirable) and

10.19 for glutathione synthesis (between undesirable and highly undesirable). Next, we present

Cases 2-3, where higher priority is desired for albumin synthesis over objectives of glutathione

and NADPH synthesis. In Case 2, preferences for albumin synthesis were increased as compared

to Case 1 and preferences for glutathione synthesis were decreased significantly. This provides a

higher priority for albumin synthesis and a lower priority for glutathione synthesis. Note that in

Case 2, both higher albumin synthesis and NADPH synthesis were desired since the highly

undesirable values of albumin and NADPH synthesis were increased closer to the highly

desirable values. In this case, we see that the optimal value of albumin (0.137) lies between

desirable and tolerable as compared to Case 1 where albumin was between tolerable and

undesirable values. Inter-optimality or tradeoff between various objectives is clearly evident in

Case 2 since albumin synthesis increased with a corresponding decrease in NADPH and GSH

synthesis. To further increase the albumin synthesis, in Case 3 preferences for both NADPH and

GSH were decreased and of albumin increased. This sets the priority of albumin high compared

to NADPH and GSH. The obtained Pareto optimal values of albumin synthesis from LPPFBA

are now similar to the highly desirable (HD) preference. As can be seen from the optimal values

of NADPH (2.67) and GSH (9.05), the obtained values of NADPH and GSH decreased when

compared to Cases 1 and 2 at the cost of an increase in optimal value of albumin. In Case 4,

higher NADPH is desired and the priority for albumin and GSH synthesis is very low. To obtain

multiobjective optimal solutions for this scenario, preference ranges were increased significantly

for NADPH as compared to Case 1 and a low preference range was assigned to both albumin and

GSH synthesis. The preference ranges for the undesired objectives need to be lowered in order to

achieve a higher value for the desired objective. This is because highly undesirable values act as

a hard constraint for the objective. Interestingly, optimal values obtained for all three objectives

were close to their highly desirable (HD) preference values; however, when compared to Case 1,

optimal albumin synthesis was significantly decreased at the cost of a marginal increase in

NADPH synthesis and significant increase in GSH synthesis. This shows that albumin synthesis

is highly sensitive as compared to NADPH and requires a significant decrease in its synthesis for

other hepatic functions to increase. In Case 5, higher glutathione synthesis was desired; hence,

preference ranges for GSH were increased significantly towards HD values. As seen in the
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obtained optimal values from Table 2.8, there was a significant decrease in optimal albumin

synthesis (0.0006) to increase GSH synthesis to the optimal value of 14.87. Table 2.10 presents

the flux values for Cases 3, 4 and 5 with their corresponding profiling in Figures 2.7A-B. Cases

3, 4, and 5 present the scenarios where higher albumin is desired with lower preference for

NADPH and GSH synthesis, higher NADPH is desired with lower preference for albumin and

GSH synthesis, and higher GSH synthesis is desired with lower preference for NADPH and

albumin synthesis, respectively. As seen in Figure 2.7A, going from Case 4 (higher NADPH) to

Case 3 (higher albumin) requires up-regulation in the uptake of amino acid fluxes (58, 60, 62, 64,

67, 72, 73, 74, 77-79, 81), and catabolism of threonine (21), phenylalanine (27), and isoleucine

(33). Figure 2.7B presents the re-routing of fluxes from Case 4 to Case 5 (higher GSH). This

requires up-regulation of catabolism of lysine (26), tyrosine (28), proline (29), leucine (34),

production of ketone bodies (51), and uptake of amino acid fluxes (59, 60, 67, 70, 73, 78).

Table 2.9: Linear Physical Programming optimization results for a tri-objective system (NADPH synthesis, albumin
synthesis and urea synthesis) for hepatic metabolic network. HUD is highly undesirable, UD is undesirable, T is
tolerable, D is desirable and HD is highly desirable preference values of objective functions.

Case Priority Flux t t2 t3  t 4  Optimal
# Priority Flux (HD) (D) (T) (UD) (HUD)

High urea 34.8690 33.3175 31.7660 30.2146 28.6631 28.6631

1 High NADPH 3.0000 2.8670 2.7339 2.6009 2.4678 2.4785

High albumin 0.1426 0.1362 0.1299 0.1235 0.1172 0.1299

High urea 34.8690 33.7054 32.5418 31.3782 30.2146 30.2146

2 Low NADPH 0.4091 0.3093 0.2096 0.1098 0.0100 2.1567

High albumin 0.1426 0.1378 0.1331 0.1283 0.1235 0.1288

High urea 34.8690 34.7137 34.5584 34.4030 34.2477 34.8078

3 Low NADPH 0.0633 0.0500 0.0366 0.0233 0.0100 1.5477

Low albumin 0.0026 0.0019 0.0013 0.0006 0.0000 0.0026

Low urea 2.6181 1.9636 1.3091 0.6545 0.0000 19.8383

4 High NADPH 3.0000 2.9439 2.8877 2.8316 2.7755 2.7795

High albumin 0.1426 0.1399 0.1372 0.1345 0.1319 0.1372

Low urea 0.6213 0.4660 0.3106 0.1553 0.0000 22.4754

5 High NADPH 3.0000 2.9867 2.9734 2.9600 2.9467 2.9968

Low albumin 0.0026 0.0019 0.0013 0.0006 0.0000 0.0026

Low urea 0.6213 0.4660 0.3106 0.1553 0.0000 28.3484

6 Low NADPH 0.0633 0.0500 0.0366 0.0233 0.0100 2.4141

High albumin 0.1426 0.1419 0.1413 0.1407 0.1400 0.1426



Table 2.9 presents the multiobjective optimal solutions for 6 scenarios for

urea/NADPH/albumin tri-objective case. Case 1 indicates the base case where preferences for all

three were given based on their anchor points, however, none of the objectives were given any

specific priority. Hence, higher preferences for all three were given in the optimization, and as

seen from the Highly Desirable value for objective functions, all objectives' higher desirability is

close to their anchor points. The preference ranges in the LPPFBA optimization for this case

were selected as 34.87-28.66 for urea secretion, 3-2.46 for NADPH synthesis and 0.143-0.117

for albumin synthesis. The optimal values of objective functions obtained for this case (Case 1)

are 28.66 for urea synthesis (between undesirable and highly undesirable), 2.48 for NADPH

synthesis (between undesirable and highly undesirable), and 0.13 for albumin synthesis (between

tolerable and undesirable). Next, we present Cases 2-3, where higher priority is desired for urea

secretion over objectives of albumin and NADPH synthesis. In Case 2, the desirable preferences

for NADPH synthesis were decreased and urea and albumin synthesis were kept similar to Case

1. The obtained multiobjective optimality results for Case 2 clearly indicate the inter-optimality

or tradeoff and inter-play between objectives, since the optimal value of urea secretion (30.21)

increased from Case 1 solution with a concomitant decrease in NADPH and albumin synthesis to

2.15 and 0.128, respectively. Interestingly, Case 3 shows the case where preference for urea

secretion is much higher and closer to anchor points than both of the other objectives of NADPH

and albumin synthesis. In this case, urea secretion optimal values (between highly desirable and

desirable) are close to the anchor point of urea secretion with a significant decrease in both

NADPH and albumin synthesis. In Cases 4-5, the priority to achieve higher NADPH synthesis is

desired over other objectives. As seen in the table, in Case 4 the preferences of urea were

decreased (2.6-0.0) and both the NADPH and albumin synthesis preference ranges were

increased to 3-2.78 and 0.14-0.13, respectively, resulting in higher optimal values for NADPH

(2.78) and albumin (0.13) synthesis. In Case 5, still higher NADPH synthesis was desired with

low priority for other objectives. All the objectives were similar to their highly desirable

preference values. Case 6 presents the case where higher albumin synthesis was desired with low

preferences for NADPH synthesis and urea secretion. Again, the higher optimal albumin

synthesis was obtained at the cost of both urea and NADPH secretion. Table 2.10 presents the

flux values for Case 3, 5 and 6 with their corresponding profiling in Figures 2.7C and 2.7D.



Table 2.10: Optimal fluxes obtained for tri-objective system for the corresponding Pareto optimal cases 3, 4 and 5
from Table 2.8, and cases 3, 5 and 6 from Table 2.9.

NADPHIAlbumin/GSH Urea/NADPHIAlbumin
Case 3 Case 4 Case 5 Case 3 Case 5 Case 6

1 3.719 3.996 3.947 5.600 3.997 3.414
2 3.719 3.996 3.947 5.600 3.997 3.414
3 3.719 3.996 3.947 5.600 3.997 3.414
4 7.486 7.993 8.616 12.880 7.995 6.829
5 30.000 30.000 30.000 30.000 30.000 30.000
6 30.000 30.000 30.000 30.000 30.000 30.000
7 30.000 29.286 29 963 24.491 27.267 23.827
8 19.652 19.286 20.078 14.491 17.016 14.643
9 19.652 19.286 20.078 14.491 17.016 14.643

10 10.363 9.286 10.078 5.000 7.016 5.000
11 15.996 14.704 15.095 5.031 12.174 8.130
12 29.341 30.000 30.000 30.000 29.749 30.000
13 29.341 30.000 30.000 30.000 29.749 30.000
14 13.245 15.196 14.548 24.869 17.475 21.770
15 13.245 15.196 14.548 24.869 17.475 21.770
16 12.994 15.114 14.533 34.808 22.475 28.348
17 -7.032 -0.711 -0.538 -0.658 -0.658 -7.839
18 18.948 16.952 16.935 15.049 17.825 21.566
19 0.100 0.100 0.100 0.100 0.100 0.100
20 4.478 7.818 7.885 5.772 7.839 5.294
21 0.817 0.418 0.001 0.001 0.153 0.001
22 -1.000 -1.000 -1.000 -1.000 -1.000 -0.074
23 22.514 22.007 21.384 17.120 22.005 23.171
24 0.779 0.497 0.499 0.497 0.497 1.857
25 5.634 5.418 5.017 0.031 5.158 3.130
26 0.001 0.001 0.032 4.813 0.001 2.444
27 1 293 0.171 0.370 0.154 0.154 0.100
28 0.100 0.100 0.357 0.100 0.100 0.100
29 0.100 0.100 0.797 0.100 0.100 0.100
30 2.861 2.703 2.325 0.000 2.982 2.861
31 4.145 4.980 4.996 0.010 4.985 3.109
32 0.010 0.010 0.010 0.010 0.010 0.010
33 0.662 0.010 0.010 0.010 0.010 0.010
34 0.010 0.010 1.515 4.755 0.010 2.016
35 -9.689 -10.000 -9.885 -10.000 -10.000 -9.184
36 7.149 6.304 5.683 8.031 8.325 7 149
37 -9.289 -10.000 -10.000 -9.491 -10 000 -9.643
38 0.750 0.000 0.000 4.939 0.000 1.578
39 6.436 7.151 6.788 0.436 6.859 6.436
40 1.911 2.285 1.942 0.354 1.417 0.320
41 -0.520 0.416 -0.137 -3.260 -0.077 -2.548
42 0.260 0.914 0.394 2.050 0.422 1.753
43 46.102 45.534 46.316 52.766 44.351 46.037
44 5.000 5.000 5.000 5.721 9.346 5.544
45 -0.049 -0.001 -0.722 -1.680 -0.001 -0.001
46 2.673 2.996 2.864 1.548 2.997 2.414
47 0.143 0.003 0.001 0.003 0.003 0.143
48 9.055 14.761 14.875 9.821 14.795 8.019
49 0.608 2.000 1.715 1.800 0.779 0.111
50 17.984 12.945 13.466 10.000 10.000 10.000
51 0.369 0.335 1.403 6.758 0.444 3.868
52 0.549 0.755 0.641 0.111 0.466 0.100
53 1.046 1.000 1.083 4.052 1.000 1.000
54 0.010 1.244 0.352 0.010 0.312 0.010
55 0.131 0.010 0.010 0.011 0.010 0.010
56 0.131 0.010 0.010 0.011 0.010 0.010
57 0.059 1.245 1.074 1.690 0.313 0.011
58 0.922 0.500 0.500 0.500 0.500 2.000
59 55.265 53.406 54.394 43.016 42.023 42.876
60 4.377 0.202 0.815 0.177 0.177 4.377
61 2.255 5.000 5.000 5.000 5 000 4.473
62 10.000 6.372 5.695 8.082 8.376 10.000
63 -1.000 -0.082 -0.015 5.000 5.000 5.000
64 3.172 0.000 0.000 10.000 5.061 10.000
65 20.000 19.676 18.072 19.574 19.281 20.000
66 0.886 -1.000 -1.000 -1.000 -1.000 -1.000
67 5.000 1.006 1.562 -1.000 1.865 5.000
68 5.000 5.000 5.000 2.092 5.000 5.000
69 0.969 -1.000 -1.000 6.920 -0.768 10.000
70 0.001 0.688 0.863 0.148 0.087 0.001
71 10.000 8.349 7.907 5.858 8.076 10.000
72 7.557 0.181 0.064 4.948 0.136 10.000
73 5.000 0.260 0.385 0.220 0.220 3.807

74 5.000 2.754 2.335 0.038 3.020 5.000
75 5.000 5.000 5.000 0.025 5.000 3.964
76 5.000 0.129 0.031 0.099 0.099 5.000
77 2.516 0.054 0.018 0.043 0.043 1.863
78 7.994 0.200 1.549 4.898 0.153 10.000
79 10.000 7.236 6.803 0.500 6.923 10.000
80 10.000 10.000 10.000 10.000 10.000 10.000
81 1.801 0.000 0.000 0.000 0.000 2.994



As seen in Figure 2.7C, going from Case 5 (higher NADPH synthesis) to Case 3 (higher

urea secretion) requires up-regulation of gluconeogenic fluxes (1-4), higher urea cycle flues (14-

16), lower TCA cycle fluxes (10-11), and lower bypass reaction of 3-phosphoglycerate (23).

To further demonstrate the advantages of applying LPPFBA in metabolic systems, we

compare the Pareto surface obtained using LPFFBA with weighted-sum (WS) and goal

programming (GP) based MFA for two separate tri-objective systems: glutathione synthesis, urea

secretion and albumin synthesis (Figure 2.7E); and NADPH synthesis, urea secretion and

albumin synthesis (Figure 2.7F) of primary hepatocytes. We ran 50,000 simulations utilizing

different sets of weights using WS and GP based MFA and only 1,000 simulations utilizing

different set of preferences for LPPFBA. As seen in Figures 2.7E-F, even after using 50,000 set

of weights using WS and GP based MFA very few Pareto optimal solutions could be obtained.

This illustrates that the LPPFBA can predict all possible Pareto optimal solutions for large-scale

metabolic network systems whereas existing methods can capture only limited optimal solutions

on Pareto surface. This is a noteworthy advantage of LPPFBA.

2.4.3 Quad-Objective Hepatic Metabolic Network

In the previous sections we presented the application of LPPFBA for bi-objective and tri-

objective systems. In this section, we present the application of LPPFBA for improving current

hepatic cellular systems using quad-objective (albumin synthesis, glutathione synthesis, NADPH

synthesis and urea secretion) optimization. In BAL systems, when hepatocytes are exposed to

human plasma they become steatotic and exhibit severe loss of hepatic function (albumin and

urea synthesis, (Chan et al., 2002)). The experimental metabolic fluxes for simulated BAL

condition of hepatocytes exposed to human plasma were obtained from the literature (Chan et al.,

2003a; Chan et al., 2002). The goal was to determine optimal fluxes for the hepatic metabolic

network under the simulated BAL condition considering all the objective functions

simultaneously, leading to a quad-objective scenario (albumin, urea, NADPH and GSH). Table

2.11 presents the preferences assigned to the four objectives to create the different scenarios. The

experimentally measured fluxes with their corresponding intracellular fluxes were used in the

"base cases" for all comparisons. Two separate cases were used as "base case" to compare the

changes in current fluxes from these "base cases" to the optimized scenarios where a variety of



Table 2.11: Linear Physical Programming optimization results for a quad-objective system (NADPH synthesis,
albumin synthesis, urea synthesis and glutathione synthesis) for hepatic metabolic network. HUD is highly
undesirable, UD is undesirable, T is tolerable, D is desirable and HD is highly desirable preference values of design
metrics. The base cases consider 10 measurements to each 5 cases: flux 54 = 0.5; flux 56 = 0.38; flux 57 = 0.83; flux
60 = 0.12; flux 66 = 0.24; flux 67 = -0.13; flux 69 = 0.006; flux 70 = 0.13; flux 75 = 0.016; and flux 81 = 0.022.
Base case 1 is obtained by optimizing GSH (flux 48). In addition to the 10 measurements, another 3 values were
imposed as constraints based on experimental data: flux 16 (urea) = 0.57, flux 46 (NADPH) = 0.012, and flux 47
(albumin) = 9.4-10-5 . Base case 2 is obtained by quad-objective optimization of urea, NADPH, albumin, and GSH
using LPPFBA.

Case
#

3

Priority

High

Flux

urea

tl

HD)

34.8690

t 2

(D)

34.8414

t3

(T)

34.8137

t4

(UD

34.7861

t 5

(HUD

34.7585

Optimal

34.8579

Low NADPH 0.0195 0.0171 0.0147 0.0124 0.0100 1.5195

Low albumin 0.0005 0.0003 0.0002 0.0001 0.0000 0.0005

9.89380.02180.03360.0572Low GSH

Low urea 0.1205 0.0929 0.0653 0.0376 0.0100 21.6799

4 High NADPH 3.0000 2.9976 2.9953 2.9929 2.9905 2.9984

Low albumin 0.0005 0.0003 0.0002 0.0001 0.0000 0.0005

Low GSH 0.0572 0.0454 0.0336 0.0218 0.0100 14.8811

Low urea 0.0297 0.0248 0.0198 0.0149 0.0100 26.5255

Low NADPH 0.0117 0.0113 0.0108 0.0104 0.0100 2.3694

High albumin 0.1426 0.1425 0.1425 0.1425 0.1425 0.1426

Low GSH 0.0184 0.0163 0.0142 0.0121 0.0100 9.0546

Low urea 0.0929 0.0722 0.0515 0.0307 0.0100 26.3734

6 Low NADPH 0.0171 0.0153 0.0136 0.0118 0.0100 2.6592

Low albumin 0.00035 0.00026 0.00018 0.00009 0.00001 0.00026

High GSH 14.9000 14.8911 14.8823 14.8734 14.8646 14.8892

High urea 34.8690 32.1116 29.3542 26.5968 23.8394 27.9217

High NADPH 3.0000 2.7635 2.5270 2.2905 2.0539 2.6106

High albumin 0.1426 0.1313 0.1200 0.1087 0.0975 0.1087

High GSH 14.9000 13.7222 12.5444 11.3665 10.1887 10.4417

hepatic objectives were optimized. In one of the "base cases", intracellular fluxes were obtained

after optimizing for glutathione synthesis (in this case the other three hepatic objectives were

used as measured fluxes obtained from (Chan et al., 2003a)). In the second scenario, all four

0.0454 0.0100

- I --- e



hepatic objectives were simultaneously optimized, hence, all four objectives were treated as

unmeasured fluxes and other fluxes were used for optimization to compute the intracellular

fluxes. The corresponding fluxes for these four cases are presented in Table 2.12. These cases

were a subset of 16 different scenarios presented in Table 2.13. Various sets of preferences were

changed for their corresponding objectives and the effect of changing preferences on the fluxes

was investigated in the form of a "heat map". Figures 2.8A-B show the distribution of flux

changes for the cases shown in Table 2.11 in the form of a "heat map". In Table 2.11, the "base

case" is indicated as Case 1. The experimental values of albumin, urea and NADPH secretion are

indicated with GSH synthesis being computed from the available measured data. Case 2 of the

quad-objective system includes all the measured fluxes of Case 1; however, all four hepatic

objectives are unmeasured in this case. Hence, Case 2 is a scenario where we optimized the

current measured hepatic flux data using a quad-objective system. Both Case 1 and Case 2 serve

as base cases or present the fluxes of the current BAL systems. Again, two heat maps are shown

to compare the changes in fluxes from the two "base cases" to the optimized scenarios for

hepatic objectives.

In Case 3 of the quad-objective system, we examined the impact of choosing urea

synthesis as a priority over the other liver specific functions of albumin, GSH and NADPH

synthesis. For this purpose, the preference for urea secretion was increased close to a highly

desirable value, while the preferences for albumin synthesis, GSH synthesis and NADPH

synthesis were kept far lower than their corresponding anchor points. We found that the optimal

value for urea secretion (34.86) increased from Case 1 (0.57) and was close to its anchor point.

There was a concomitant increase in NADPH, albumin and GSH synthesis from Case 1.

However, compared to Case 2 there was an increase in urea secretion (29.3) in Case 3, however,

with a moderate decrease in NADPH synthesis. In Case 4, we prioritized NADPH synthesis.

Hence, the preference for NADPH synthesis was increased closer to the anchor point and all

other preferences were decreased. We found that NADPH synthesis optimal values were close to

the anchor point for NADPH flux (between highly desirable and desirable) concomitant with a

significant decrease in urea synthesis when compared to Case 2.
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Figure 2.8: Metabolic profiling of percentage change in Pareto optimal fluxes for 16 solutions of the quad-objective
optimization. The % change is taken from a referent optimal solution that consider 10 measurements to each 16
cases: flux 54 = 0.5; flux 56 = 0.38; flux 57 = 0.83; flux 60 = 0.12; flux 66 = 0.24; flux 67 = -0.13; flux 69 = 0.006;
flux 70 = 0.13; flux 75 = 0.016; and flux 81 = 0.022. A) The reference is obtained by optimizing GSH (flux 48). In
addition to the 10 measurements, another 3 values were imposed as constraints based on experimental data: flux 16
(urea) = 0.57, flux 46 (NADPH) = 0.012, and flux 47 (albumin) = 9.4-10-" . B) The flux of reference is obtained by
quad-objective optimization of urea, NADPH, albumin, and GSH using LPP. The preferences for each variable
[t5 t47 t3 t2 t-] are [30 20 10 1 0.1] for urea, [2.5 1.5 0.5 0.1 0.01] for NADPH, [0.1 0.05 0.005 0.0005 0.00005]
for albumin, and [10 5 1 0.5 0.1] for GSH. Only changes up to 100% are shown.
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In Case 5, we prioritized albumin synthesis over other objectives. As seen in the table, in

Case 5 the preferences of urea, NADPH and GSH synthesis were decreased and albumin

synthesis preference range was increased to 0.1426, resulting in a higher optimal value of

albumin (0.1426). In Case 6, we favored GSH synthesis over the other objectives. As seen in the

table, preference for albumin synthesis has to be significantly decreased to achieve higher

glutathione synthesis optimal values, whereas decreasing urea and NADPH synthesis is not

necessary since it does not lead to any significant decrease in their optimal values. This is also

confirmed in Figures 2.5D and 2.6D where going from Pareto optimal solution of higher

glutathione synthesis (G) to higher albumin synthesis (H) does not require a significant change in

urea and NADPH synthesis.

In Case 7, preferences for all four objectives were the same (highly desirable) and

therefore none of them was given any specific priority. In this case, all objectives were close to

their anchor points. The preference ranges in the LPP optimization for this case, were selected as

34.87-23.84 for urea secretion, 3-2.05 for NADPH, 0.143-0.09 for albumin, and 14.9-10.19 for

glutathione syntheses. The optimal values of objective functions i.e., desired fluxes obtained for

this case (Case 7) are 27.92 for urea synthesis (between tolerable and undesirable), 2.61 for

NADPH synthesis (between desirable and tolerable), 0.11 for albumin synthesis (between

tolerable and undesirable) and 10.44 for glutathione synthesis (between undesirable and highly

undesirable). All objectives optimal values were less than their individual priority case, thus

clearly illustrating the inter-dependence and tradeoff among the various objectives.

Now, we quantitatively profile the fluxes of various metabolites under various optimal

conditions in several cases based on the relative changes indicated in heat maps. Table 2.12

presents the flux values for Cases 1-7 with their corresponding profiling presented as a heat map

in Figure 2.8A. The plasma exposed hepatic fluxes for the current BAL system are shown in

Column 1 of Table 2.12. If high urea synthesis is desired (Case 3) in the BAL then this

necessitates a significant increase in gluconeogenic fluxes (2-4), with a concomitant increase in

TCA cycle fluxes (8-9, 12), increase in urea cycle fluxes (14-16), and an increase in catabolism

of glucogenic amino acids (serine, 18; threonine, 20; glutamine, 39). Another key observation is

that higher urea secretion in the simulated BAL requires a significant increase in catabolism of

ketogenic amino acids (lysine, 26; leucine, 34). As seen in the table, the increase in fluxes is

much higher when priority is more for urea secretion than the other objectives. Notably, there is
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a significant decrease in glycerol uptake (54) when higher priority is for urea synthesis. The

other evident factor is that uptake of glucogenic amino acids is lower (serine, 67;glycine, 68;

threonine, 71; histidine, 74; methionine, 75; glutamine, 79) when higher priority is to achieve

higher urea synthesis over other objectives. In Case 4 we give higher preference to NADPH

synthesis over other objectives. This is achieved using an increase in fatty acid oxidation, an

increase in glycerol uptake (54), and a decrease in uptake of ketogenic amino acids (lysine, 72;

leucine, 78). The trends or changes in fluxes in moving from "Case 1 to Case 3" and "Case 1 to

Case 4" in this quad-objective case are similar to the trends when moving from Case F to E in

the bi-objective scenario (Figure 2.5C). However, there are some major differences because of

constraints in other objectives (albumin synthesis and glutathione synthesis). In quad-objective

Case 3 and Case 4 the preference of albumin synthesis is low and this results in differences in

actual flux values. The other important differences are the increase in oxygen uptake, lipid

uptake (52), lipid stored (57) and fatty acid oxidation observed in Case 4 which were not

significant in Case E of the bi-objective.

To move from "Case 1" to "Case 5", i.e., to high albumin synthesis, requires glucogenic

fluxes (2-4) and urea cycle fluxes (14-16) to be increased significantly with a concomitant

decrease in ketone body production (51, 70) and triglyceride lipolysis (52). There is also an

increased catabolism of essential amino acids which are both glucogenic and ketogenic

(tryptophan, 24; phenylalanine, 27; and isoleucine, 33) and an increased uptake of glucogenic

(60, 68, 71-77) and ketogenic (lysine, 72; and leucine 78) amino acids. Notably, in Case 5, i.e. of

high albumin synthesis, there is an increased uptake of pyruvate forming amino acid (alanine,

66) and c-ketoglutarate forming amino acids (histidine, 30; proline, 60; arginine, 64) which is

only evident under this condition of high albumin synthesis. In comparing Case 5 with 1-A of the

bi-objective scenario (Figure 2.5A), again there is a decrease in urea secretion in Case 4, because

of higher preferences for NADPH and glutathione synthesis over urea secretion. In Case 1-A, the

values of two optimized objectives, urea secretion and albumin synthesis, were 29.7 and 0.136

respectively, and for the two non-optimized objectives, NADPH and glutathione synthesis, were

0.44 and 0.07, respectively. However, in Case 5, the values of optimized objectives for urea

secretion, NADPH, albumin, and glutathione synthesis were 26.5, 2.37, 0.14 and 9.05,

respectively. This results in decreased urea cycle fluxes, higher fatty acid oxidation (40), and

decreased glucogenic fluxes in Case 5.
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To move from "Case 1" to "Case 6", i.e. to high gluathione synthesis, necessitates higher

glucogenic amino acids (67, 71, 74, 75 and 79) and ketogenic amino acids (72, 78). Also, there is

an increased uptake of amino acids relevant to urea cycle fluxes (arginine, 64; aspartate, 69; and

asparagine, 62) compared to Case 1 but decreased when compared to Case 5 of high albumin

synthesis; but, there is a significant increase in amino acids involved in the synthesis of

glutathione (glycine, 68; and glutamine, 79).

Case 7 presents the results where equal priority was assigned to all four objectives. As

can be seen from the heat map, moving from Case 1 to Case 7 necessitates most of the fluxes to

be increased. Significant increase in fluxes of amino acids forming pyruvate (serine, 18),

acetoacetylCoA (tryptophan, 24, 58), fumarate (phenylalanine, 27), and c-ketogluatrate

(glutamine, 39) is required to simultaneously increase the fluxes of various objectives. In

summary, to increase the hepatic function in BAL from its current state of Case 1 to the Case

where all four major hepatocyte functions are increased necessitates increases in glucogenic

fluxes, TCA cycle fluxes, and increased uptake of both glucogenic and ketogenic amino acid

fluxes. Interestingly, the increase in hepatic function also necessitates decreased lipid synthesis

and storage fluxes. This is in concurrence with the experimental results of stimulated BAL where

lipid storage and synthesis decreased hepatic function. Table 2.14 provides a qualitative overall

summary of the changes in fluxes for various important cases relevant for BAL systems when

compared with the "base cases".

Figure 2.8B presents the profiling if Case 2 is used as the base case and metabolite changes

are computed based on this base case. The difference between Base Cases 1 and 2 is essentially

between the exclusion of measurements for urea, albumin and NADPH syntheses. Base Case 2

optimizes the hepatic function using the existing measurements of amino acids and lipid uptake.

The respective values of equally prioritized optimal hepatic objectives for Case 2 using LPPFBA

are urea synthesis (29.31), NADPH synthesis (1.97), albumin synthesis (0.0005) and GSH

synthesis (9.9).
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As seen in the heat map in Figure 2.8B, the

flux changes to achieve various objectives

when Base Case 2 is used as reference case

both increased and decreased significantly

from their current state. This is in contrast to

Figure 2.8A where most of the changes were

in the direction of increasing uptakes.

Interestingly, to move from Case 2 to Case 7,

i.e. to increase the hepatic functions in

simulated BAL we need to decrease

glucogenic fluxes (1-4) and increase the TCA

cycle fluxes (11-14). Importantly, pyruvate is

required to increase the synthesis of alanine

(17) rather than using it directly as a substrate

in the TCA cycle to compensate for the

increased demand of alanine by other hepatic

functions. Notably, TCA cycle flux from

succinyl CoA to oxaloacetate is increased by

increasing the synthesis of succinylCoA from

methionine (net succinyl CoA flux is 4.37 in

Case 7 compared to 0.034 in Case 2). There is

net increase in uptake of various amino acids

(proline, 60; serine, 67;glycine, 68; aspartate,

69; 72-79) required in Case 7 to increase the

hepatic function in simulate BAL system.



2.5 CONCLUSIONS AND SUMMARY

Mammalian systems perform several different functions in nature and hence, optimization

of such systems may involve more than one objective as the goal. For example, hepatocytes

perform several different functions as the key component of BAL systems, and these functional

objectives are potentially conflicting. As seen above, higher albumin synthesis changes the

uptake of various metabolites in such a manner that necessarily decreases urea secretion. In order

to investigate the trade-offs between these conflicting objectives and to explore available design

options, one needs to formulate the optimization problem with multiple objectives (vector

optimization). Vector optimization obtains a Pareto optimal solution that satisfies the strict

constraints imposed by multiple objectives. However, most of the current algorithms suffer from

several disadvantages, such as: requiring a priori selection of weights or targets for each of the

objective functions which are inadequate in capturing desired preferences; providing a single

Pareto solution; inability to generate proper Pareto points for non-convex problems (e.g., the

weights method); inability to generate sensitivity information for trade-off and decision making;

and no inherent capabilities for design exploration. LPPFBA captures the designer's preferences

a priori in a mathematically consistent manner using preference functions. The application of

LPPFBA does not require specifying weights for each objective function. Rather, the ranges of

differing degrees of desirability for each objective function are specified. A clear advantage of

the LPPFBA approach is that it is a strategy that allows one to obtain conditions where tradeoff

of all the desired objectives could be observed in their physical space.

Another advantage of LPPFBA is its ability to deal with multiple objectives with ease. As

seen in this work, BAL systems have many objectives and as can be seen from the quad-

objective scenario, working in physical space allowed us to analyze optimal conditions easily

and obtain various desired optimal solutions. As seen in Figure 2.3, using linear programming

for this quad-objective problem would have necessitated specifying four weights and no target

values, using goal programming would have necessitated 8 weights and four target values;

however, LPPFBA requires no specification of weights and only requires target values (20).

Specifying the target values is much easier since these are specified in physical space which is

always a known space for the designer. Another significant advantage of LPPFBA is that it

facilitates optimization of poorly scaled problems. An example of such problems in metabolic



networks is the maximization/minimization of two fluxes of different magnitudes, such as the

minimization of albumin (on the order of 10-5 ) and NADPH synthesis (on the order of 101).

In summary, in this section, a constrained multiobjective formulation LPPFBA to analyze

large scale linear metabolic networks is presented. The LPPFBA approach provides a new

effective tool to obtain Pareto optimal solutions. The incorporation of LPP into the standard

Metabolic Flux Analysis method enables an unambiguous formulation of an aggregate objective

function that facilitates effective multiobjective flux balance analysis for large-scale problems.

The presented LPPFBA approach initiates a meaningful step towards infusion of genomic and

proteomics data into metabolite perturbations. Importantly, the presented methodology could be

employed in various metabolic networks that invariably have multiple objectives (ranging from

physiological to design objectives) to be optimized. The combined quantitative and visualization

framework presented in this work sets the stage for the development of true optimal solutions for

large scale genomics based metabolic network systems. In the context of BAL, the results

presented in this section illustrate that BAL design using constraints based multiobjective

optimization can result in an increase in overall hepatic functions by modifying various

metabolite fluxes from its current simulated state during BAL operation. The results presented in

this work have the potential to improve the hepatic function by using optimal pre-conditioning

medium in BAL devices.



3 INTEGRATED ENERGY AND FLUX BALANCE BASED MULTIOBJECTIVE

FRAMEWORK FOR LARGE-SCALE METABOLIC NETWORKS

3.1 OVERVIEW

Flux Balance Analysis (FBA) provides a framework for the estimation of intracellular

fluxes and Energy Balance Analysis (EBA) ensures the thermodynamic feasibility of the

computed optimal fluxes. Previously, these techniques have been used to obtain optimal fluxes

that maximize a single objective. Because mammalian systems perform various functions, a

multi-objective approach is needed when seeking optimal flux distributions in such systems. For

example, hepatocytes perform several metabolic functions at various levels depending on

environmental conditions; furthermore, there is a potential benefit to enhance some of these

functions for applications such as bioartificial liver (BAL) support devices. Herein we developed

a multi-objective optimization approach that couples the normalized Normal Constraint (NC)

with both FBA and EBA to obtain multiobjective Pareto optimal solutions. We investigated the

Pareto frontiers in gluconeogenic and glycolytic hepatocytes for various combinations of liver

specific objectives (albumin synthesis, glutathione synthesis, NADPH synthesis, ATP

generation, and urea secretion). Next, we evaluated the impact of experimental flux

measurements on the Pareto frontiers. We found that measurements induce dramatic changes in

Pareto frontiers and further constrain the network fluxes. This multi-objective optimality analysis

may help explain certain features of the metabolic control of hepatocytes, which is relevant to the

response to hepatocytes and liver to various physiological stimuli and disease states.

3.2 INTRODUCTION

The quantification of intracellular metabolic fluxes is widely used for investigation of the

metabolism in microorganisms (Edwards and Palsson, 2000a; Edwards and Palsson, 2000b;

Papin et al., 2002; Savinell and Palsson, 1992a; Schilling et al., 2002; Segre et al., 2005; Segre et

al., 2002) and mammalian systems (Banta et al., 2004; Chan et al., 2003a; Chan et al., 2003b;

Chan et al., 2002; Chan et al., 2003c; Lee et al., 2000; Lee et al., 2003a; Lee et al., 2003b; Lee et

al., 2004; Yarmush and Banta, 2003; Yokoyama et al., 2005). Flux Balance Analysis (FBA) uses

stoichiometric and mass balance constraints to compute the intracellular fluxes.
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Figure 1: a) Feasible space reduction due to of the imposed stoichiometric, flux balance, energy balance, and
measurement constraints. The Pareto surface of the feasible space is projected onto the gg2, g2g3, and gig3 planes
and their corresponding Pareto frontiers are shown. The mutually orthogonal axes gl, g2, and g3, represent the
individual design objectives. b) Pareto frontiers and Pareto optimal solutions shown are for bi-objective
maximization and minimization problems. c) Normal Constraint method is based on sequence of systematic
objective space reductions. In this case we utilize normal constraints to reduce the objective space as shown (i.e.,
obtain the dot product of a plane with the normal to ensure orthogonality) and then solve the nonlinear optimization
in this reduced space.
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Recently, Energy Balance Analysis (EBA) was developed to ensure the thermodynamic

feasibility of the computed fluxes (Beard et al., 2004; Beard et al., 2002; Beard and Qian, 2005;

Yang et al., 2005). EBA imposes the thermodynamic constraints on reaction fluxes both

explicitly and implicitly. Essentially, the reaction potentials are computed based on the chemical

potentials and then these are used to obtain thermodynamic constraints that are based on the first

and second laws of thermodynamics. Thermodynamic constraints further reduce the feasible

solution space based on stoichiometric constraints alone (Figure 3.1a). Available measurements,

which bring in environmental constraints such as certain cell culture conditions, medium

supplements, induced stress and extracellular matrices, typically limit the feasible solution space

even further. If a sufficient number of measurements is available, the analysis may yield a unique

solution.

Since mammalian systems perform an array of metabolic functions (protein secretion,

detoxification, energy production), several different objectives need to be taken into account

simultaneously when seeking optimal fluxes. Typically, several objectives compete against each

other; therefore, only "Pareto-optimal" solutions can be achieved. A solution is said to be Pareto-

optimal if there are no other solutions that can better satisfy all of the objectives simultaneously

(Nagrath, 2005). Specifically, a Pareto solution is one where any improvement in one objective

necessitates the worsening of at least one other objective. Non-Pareto optimal solutions are sub-

optimal and their performance is inferior to systems operating and designed based on Pareto

optimality of objectives. The class of Generate First-Choose Later (GCFL) multiobjective

optimization approaches entails first generating a representative set of Pareto solutions, and then

choosing the most suitable and appropriate solution within this set. The Normal Constraint (NC)

method (Messac et al., 2003), unlike other popular methods such as the Normal Boundary

Intersection (NBI) method, can generate complete Pareto frontiers for multi-objective problems

from the full range of Pareto bi-objective solutions. The NC method essentially generates an

even distribution of Pareto points throughout the complete Pareto frontier; and it is guaranteed to

yield any Pareto point in the feasible design space. Further, it is insensitive to objective function

scaling, and is valid for any arbitrary number of design objectives.

In the current work, we develop a Normalized Constraint Energy and Flux Balance

Analysis (NCEFBA) based multiobjective framework for characterizing the intermediary

metabolism of large-scale metabolic networks. The implementation is general and could be
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easily modified for other metabolic networks but here it is presented in the context of hepatic

metabolism. In the context of a bioartificial liver (BAL) device, this multiobjective optimal flux

analysis could play an important role in: a) understanding the underlying mechanisms of

perturbing a sub-optimal hepatic cellular system towards an optimal state, b) optimizing

hepatocyte functions in an extracorporeal BAL device, c) studying the intracellular activity of

liver under various physiological and disease states, and d) the preconditioning and preservation

of donor livers. The presented multiobjective optimization platform NCEFBA couples the

normalized NC method with both FBA and EBA to obtain multiobjective Pareto optimal

solutions.

Here the NCEFBA method was implemented to investigate Pareto optimal solutions for the

hepatic metabolic network under both gluconeogenic and glycolytic conditions. We analyzed

various combinations of liver-specific objectives (albumin synthesis, glutathione synthesis,

NADPH synthesis, ATP generation, and urea secretion). Next, the sensitivity to available

measurements of these Pareto frontiers and changes in objective inter-optimality is presented.

Noticeably, measurements induced dramatic changes in Pareto frontiers and further constrained

the network fluxes.

3.3 THEORY

3.3.1 Metabolic Flux Analysis

The stoichiometric coefficients of the metabolic reactions are collected into a matrix S,

where each element s, is the coefficient of metabolite i in reaction j. S has dimensions of M x

N, where M is the number of metabolites and N is the number of reactions. In matrix form the

mass balance is written as:

= SJ (3.1)
dt

where each element xi of x is the intracellular concentration of metabolite i and element J, of

J is the net rate of conversion in reactionj. External metabolite fluxes are generally measured

(e.g., uptake of glucose, lactate, amino acids). Because of the very high turnover of the

intracellular pools of most intracellular metabolites, the time scale of the intracellular metabolic



reactions is short compared to other cellular reactions. Hence, the pseudo steady state assumption

is generally applied to the metabolite mass balances and thus

Stoichiometric Equality Constraints for Unmeasured Fluxes

SJ = 0 (Mass Balance Constraint) (3.2)

Stoichiometric Equality Constraints for Measured Fluxes

S, J u = -Sm m  (Mass Balance Constraint) (3.3)

where Jm and JU indicates measured and unmeasured fluxes, respectively, and Sm and Su

contain the stoichiometric coefficients of measured and unknown reactions, respectively.

A previously described hepatic metabolic network (Chan et al., 2003a; Chan et al.,

2003b; Chan et al., 2002; Chan et al., 2003c) includes all of the major intracellular pathways that

account for the majority of central carbon and nitrogen metabolism found in hepatocytes, namely

the tricarboxylic acid (TCA) and urea cycles, the gluconeogenic and glycolytic pathways, the

pentose phosphate shunt, pathways of entry, transamination, and deamination of amino acids,

protein synthesis, and the major components of lipid metabolism, including triglyceride synthesis

and breakdown and P-oxidation of fatty acids, in addition to amino acid synthesis and

apolipoprotein degradation. The current hepatic metabolic network model (Table 3.1) includes a

few additional reactions, namely those of the 3-phosphoglycerate cycle as it is involved in

glycerol production and glutathione synthesis reaction, which results in a total of 81 reactions (as

compared to 76 reactions in the previous model) and 47 metabolites (Table 2.2). Glutathione is

an important mediator in detoxification reactions of hepatocytes. The model assumes pseudo

steady-state with no metabolic futile cycles. These assumptions are discussed in detail elsewhere

(Chan et al., 2003a; Chan et al., 2003b; Chan et al., 2002; Chan et al., 2003c).



Table 3.1: Hepatic stoichiometric reactions

No  Stoichiometry

1 F6P -- G6P
2 F16P2 + H20 --+F6P + Pi
3 2 G3P - F16P2
4 3Pglyc + NADH + I- + ATP +- G3P + Pi + NAD + ADP Gluconeogenesis
5 PEP - 3Pglyc
6 oac + GTP --+ PEP + GDP + CO 2

7 pyr + C02 + ATP + H 20 --+ oac + ADP + Pi + 2 H_
1 G6P -+ F6P
2 F6P + Pi -- F16P2 + H20
3 F16P2 -- 2 G3P
4 G3P + Pi + NAD + ADP -+ 3Pgyc + NADH + H + ATP Glycolysis
5 3Pgyc -* PEP
6 PEP + ADP -- pyr + ATP
7 pyr + CoA + NAD -* acCoA + CO 2 + NADH
8 oac + acCoA + H20 -* ctt+ CoASH
9 ctt + NAD+ *- akgl + CO2 + NADH + H+

10 ackgl + NAD + CoASH -- sucCoA + CO 2 + NADH + H+
11 sucCoA + Pi + GDP + FAD +-+ fum + GTP + FADH 2 + CoASH
12 fum + H20 +- mal
13 mal + NAD+ *- oac + NADH + H+
14 ctr + asp + ATP -, arg + fum + AMP + PPi
15 orn + (CO 2 + NH 4 + 2 ATP) + H20 --, ctr+ 2 ADP + 2 Pi + 3 H+
16 arg + H20 -- urea +orn
17 ala + 0.5 NAD+ + 0.5 NADP + H20 +-+ pyr + NH3 + 0.5 NADH + 0.5 NADPH + H+

18 ser --4 pyr + NH3
19 cys + 0.5 NAD + 0.5 NADP + H20 + SO32- *- pyr + thiosulfate + NH4  + 0.5 NADPH + 0.5 NADH

20 thr + NAD + ATP + CoASH --* gly + acCoA + NADH + H+ + AMP + PPi

21 thr + NAD + CoASH --+ propCoA + CO 2 + NADH + H+ + NH3 + H 2

22 2 gly + NAD + THF + H20 + NTHF + H + CO2 + NH4 + ser + NADH
23 3Pglyc + NAD + glu + H20 -- NADH + H+ + akgl + ser + Pi

24 trp + 3 02 + 4 H20 + 2 NAD + FAD + CoASH --. Formate + ala + 2 CO2 + NH 3 + 3 NADH + FADH2 +
HC0 3 + acacCoA

25 propCoA + CO 2 + ATP -- ADP + Pi + sucCoA
26 lys + 2 akgl + 2 NAD + CoASH + FAD + 2 H20 + NADP -- CO2 + NH3 + acacCoA + 5 NADH + FADH 2
27 phe + 02 + H4biopterin + H -- tyr + H20 + H 2biopterin
28 tyr + akgl + 2 0 2 + H20 --+ glu + CO2 + fum + acac
29 pro + 0.5 02 + 0.5 NAD+ + 0.5 NADP -- glu + 0.5 NADH + 0.5 NADPH + H+

30 his + H4folate + 2 H20 --* NH4 + N',Nl'-CH 2-H4folate + glu
31 met + ATP + ser + NAD + H20 + CoASH -- PPi + Pi + adenosine + cys + NADH + H + CO2 + NH4+ +

propCoA
32 val + akgl + 3 NAD + 2 H20 + FAD + CoA -- glu + 2 CO2 + 3 NADH + 2 H+ + FADH2 + C02 + propCoA
33 iso + akgl + H20 + 2 NAD + FAD + 2 CoASH -- glu + C02 + 2 NADH + 2H+ + FADH2 + acCoA +

propCoA
34 leu + akgl + H20 + NAD' + FAD + ATP + CoASH + HC0 3 -- glu + CO 2 + NADH + H + FADH 2 + acCoA

+ acac + ADP + Pi
35 oac + glu * akgl + asp
36 asn + H20 -- asp + NH3
37 glu + 0.5 NAD+ + 0.5 NADP + H20 + NH4 + akgl + 0.5 NADPH + 0.5 NADH + H+

38 orn + NAD + NADP + H20 -) glu + NH4 + NADH + NADPH + H+
39 gl n + H20 -- glu + NH4

+

40 palm + ATP + 7 FAD + 7 NAD+ -- 8 acCoA + 7 FADH 2 + 7 NADH + AMP + PPi Gluconeogenesis
40 8 acCoA + 7 ATP + 14 NADPH + 14 H+ --, palm + 8 CoA + 6 H20 + 7 ADP + 7Pi + 14 Glycolysis

NADP



41 2 acCoA -+ acacCoA + CoA
42 acacCoA + H20 - acac + CoA
43 NADH + H+ + 0.5 0 2 + 3 ADP --+NAD + H20 + 3 ATP
44 FADH2 + 0.5 02 + 2 ADP --- FAD + H20 + 2 ATP
45 gol + NAD + + ATP - G3P + NADH + H+ + ADP + Pi
46 G6P + 12 NADP+ + 7 H2 0 -- 6 CO 2 + 12 NADPH + 12 H+ + Pi
47 24 arg + 32 asp + 61 ala + 24 ser + 35 cys + 57 glu + 17 gly + 21 tyr + 33 thr + 53 lys + 26 phe + 25 gln + 30

pro + 15 his + 6 met + 20 asn + trp + 35 val + 13 iso + 56 leu + 2332 ATP --- albumin + 2332 ADP + 2332 Pi

48 glu + 2 ATP + cys + gly + NADPH --- GSH + 2 ADP + 2 Pi + NADP + + H+

49 gol + 3 acCoA + H20 + ATP - 3 CoASH + Pi + TG + ADP + Pi
50 lactate + NAD + +-+ pyr + NADH + H+

51 acac + NADH + H+ + P-OH-butyrate + NAD +

52 TG + 3 H20 - gol + 3 palm + 3 H+

53 G6P release
54 gol uptake
55 palm release
56 cholesterol ester + H20 -+ cholesterol + palm
57 TG stored
58 trp uptake
59 02 uptake
60 pro uptake
61 glu secretion
62 asn uptake
63 orn secretion
64 arg uptake
65 NH4+ uptake
66 ala uptake
67 ser uptake
68 gly uptake
69 asp uptake
70 acac production
71 thr uptake
72 lys uptake
73 phe uptake
74 his uptake
75 met uptake
76 val uptake
77 iso uptake
78 leu uptake
79 gln uptake
80 cys uptake
81 tyr uptake

3.3.2 Energy Balance Analysis

Energy Balance Analysis imposes constraints based on law of thermodynamics on the

cellular reaction networks (Beard et al., 2004; Beard et al., 2002). For any reaction set, if

stoichiometry is represented by matrix S, pu denotes an M-dimensional vector of chemical

potentials, Au denotes the N-dimensional vector of reaction potentials, then these potentials can



be computed as A/ = ST'U . The null space matrix of S (for r linearly independent rows, with

r < N) is denoted by K and forms a basis for the null space of S, so that SK = 0. The product of

the null space K of the stoichiometric S with the chemical potential difference gives the energy

balance equation as K A/ = 0. This balances the global potential energy of the network. The first

law of thermodynamics necessitates energy conservation, which then leads to an equality

constraint as

KT Ap = KTST/' = 0 (First Law of Thermodynamics-Based Energy Equality Constraint)

(3.4)

This constraint requires that the sum of reaction potentials around any cycle of reactions

equals zero, which is similar to Kirchoff's voltage or loop law of electrical circuit theory, and is

known as the energy balance constraint of EBA (Beard et al., 2004; Beard et al., 2002; Beard and

Qian, 2005). The second law of thermodynamics takes the form of an inequality constraint for

each flux as - J, AC, _ 0. However, this equation is written in terms of net fluxes. Beard et al.

(2002) compute the net flux distribution through the reaction network by introducing the concept

of reversibility of each reaction which entails defining the nonnegative forward and reverse

reaction fluxes, J, and J_ respectively, withjth entries representing the one-way fluxes through

the jth reaction. The vector of net flux distribution through the reaction network can be then

computed as J = J_ - J_ , which is then used to compute thejth reaction potential as

Api = RTIn J (3.5)

where R is the ideal gas constant and T is the temperature.

This relationship leads directly to the second law of thermodynamics, i.e.,

-J ' = -RT(i - J 0 (Second Law of Thermodynamics Based Energy In

equality Constraint) (3.6)

which says that the system must dissipate heat, and entropy must increase as a result of the work

being done on the system through the external fluxes. For equilibrium systems, this is an equality

since for these systems J = Ai'J = 0.



The other inequality constraint is obtained for energy balance by ensuring that the total

heat dissipation rate of the living system is always positive as indicated by

hdr = _-JTA > 0 (Inequality Heat Dissipation Constraint) (3.7)

Since, hdr --- 0 in the limit as J_ / J -+ 1 component-wise while maintaining

J = J - J_ so to prevent this physically unrealistic possibility, an additional inequality

constraint

(hdr)b hdr (hdr)ub (Inequality Heat Dissipation Constraint) (3.8)

is also imposed as part of Energy Balance Analysis

3.3.3 Pareto Optimality

Table 3.2 shows some of the definitions and mathematical formulation of the generic

terms involved in multiobjective optimization. The mathematical representation of the generic

multiobjective optimization problem is as follows

Problem P1

min{g 1 (x), .g2 )g, (x)} (n _ 2) (3.9a)

subject to:

fJ(x)O 0 (1 j r) (3.9b)

hk (x)= 0 (1 k_<s) (3.9c)

x/ < x, 5 x, (1 5 i < nx) (3.9d)

where the vector x denotes the design variables and g, denotes the i-th objective function.

Equations (3.9b), (3.9c) and (3.9d) denote the inequality, equality and side constraints,

respectively. Problem P1 does not yield a unique solution on its own, as it requires a preference

or prioritization of objectives to obtain a single optimum solution. The NC method requires

anchor points, g*, or optimum vertices to obtain the desired optimal solutions. The -ith anchor

point (or end point) is obtained when the generic i-th objective is minimized independently.
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Table 3.2: Definitions and mathematical formulations of some of the relevant multiobjective optimization keywords
used in this section.

MATHEMATICAL
TERMS DEFINITION

FORMULATION
Problem P1

min(g, (x), g2 (x),..., gn (x)}, (n > 2)
x

subject to A multiobjective optimization is a problem

Multiobjective fJ (x) < 0 (1 j r) involving several competing objectives and

opti izativeon hconstraints. The solution of this problem is
optimization (x)= 0 (1 k s) considered the best solution that satisfies the

xi < xi < xu  (1 i < nx ) conflicting objectives.

The vector x denotes the design variables and

g, denotes the ith objective function.

A Pareto solution is one where any improvement
Pareto Solutions joining the anchor points and part of in one objective can only take place at the cost of
solution the feasible space. another objective. A Pareto set is a set of Pareto-

optimal solutions.
A design parameter is a parameter over which the

designer has direct control. Other terms used in
Design The vector x denotes the design parameters the literature for design parameters include
parameters decision variables, design variables or decision

parameters.
A design metric refers to an objective measure of

Design The variable g (x) denotes the vector of design a design attribute. Other commonly used terms
metric metrics. are objective functions, design criterion, figure-

of-merit, goal and performance metric.

f,(x)< 0 (1 j r)

Design hk (x)= 0 (1 k < s) A design constraint indicates the lower or upper
constraint - -bounds in the design metrics or design parameters

x i <x i < _ x u  (1li_ nx )

Problem PUi

min{g,(x)} (1 <i n)

subject to

f,(x)<0 (1lj r)
The value obtained for a particular design

Anchor hk (x)= 0 (1 k 5 s) objective if that design metric alone is optimized,
value x < x < x (1 < i < n x ) given the bounds on the design parameters

or

gl* =[g(xi*) g 2(Xi*)-gn (Xi*)]T

where x' * =arg{ming,(x)}

g"=[g gN ... N ]T

Nadir where g is defined as A point in the design space where all the
point is defined as objectives are simultaneously at their worst values

g, = max g,(x)
x



Figure 3.1b presents a schematic of a Pareto set for a bi-objective problem. If the design

metric g, alone is optimized (maximized), then the optimal value is g* (I ). Similarly, if the

design metric g2 alone is optimized, then the optimal value is g2 (P2 ). Here gl and g2 are the

anchor values for design metrics g, and g2 , respectively. The ideal or Utopian solution (g*, g2

) obtained by the individual maximization of the objective functions is generally not a feasible

solution of the multiobjective optimization problem. The arc joining points P and P2 is the

Pareto frontier that represents the optimal tradeoff solutions. Generally, the desired solution can

be chosen from the Pareto set; the line joining two anchor points in bi-objective cases, the utopia

line, and the plane that comprises all anchor points in the multiobjective case, the utopia hyper

plane. The anchor points are obtained by solving Problem PUi, defined as follows

Problem PUi

min{g, (x)}, (1 in) (3.10a)

subject to:

f,(x)O 0 (l j r) (3.10b)

hk(x)= 0 (1lk <s) (3.10c)

x t < x,< x, (1 Mi nx) (3.10d)

3.3.4 Normal Constraint Method

As seen in Figure 3.1c, the NC method is based on the design space reductions using

reduction constraints. The reduction constraint is constructed by ensuring the orthogonality by

constructing the dot product between the normal i' and ro an arbitrary point on a plane. The

vector equation of a plane is expressed as

f.(r - ro)= 0 (3.11)

To solve for multiobjective solutions, a reduced feasible space is constructed using the

above equation as

-r. (r - g) < 0 (3.12)



(b) Normalized Objective Space

0 1 g1

(c) A set of evenly spaced points on the utopia line for
a bi-objective problem

0 -1\ utopia g
line

(d) Graphical representation of the normal constraint
method for bi-objective problems

Figure 3.2: Steps involved for obtaining bi-objective Pareto optimal solutions using the Normalized Normal

Constraint method for minimization. The mutually orthogonal axes gl, and g2, represent the individual design

objectives. a) Pareto frontier for a minimization problem and the anchor points obtained using nonlinear

optimization. b) The usage of anchor points to work in a normalized objective space. c) Drawing the utopia line and

constructing evenly spaced points on the utopia line. d) Constructing the normal on the utopia line and reducing the

feasible space.

where g is any point in the feasible space. Figure 3.2a shows the non-normalized design space

and the Pareto frontier of a bi-objective problem. Figure 3.2b represents the normalized Pareto

frontier in the normalized design space. In the normalized objective space, all anchor points are

one unit away from the utopia point, and the utopia point is at the origin. A bar over a variable

implies that it is normalized. The two anchor points denoted by g* and g;, are obtained by

--- I ~ I I

(a) General Objective Space



successively minimizing the first and second design metrics (Problem PUi) by solving Problem

PU1 and PU2 respectively. The line joining these two points is the utopia line. The actual

optimization takes place in the normalized design metric space. Let g be the normalized form of

g and g , the utopia point defined as

U = [gi (x) g 2 (x2*)] T (3.13)

and £ and £2 be the distances between g 2* and gl, and the Utopia point, g", respectively

(Figure 3.2a). Then

£f = g(x2*)-g (x1*) (3.14)

£2 =g 2(x l* g2(x2 ) (3.15)

The normalized design objectives can then be evaluated as

-r g  l (x ) - g g 2 (2* )gt (3.16)

N, is defined as the direction from g to 2*, yielding

N, = g 2* f1* (3.17)

Next, the utopia line is divided into m, -1 segments, resulting in m, points. A

normalized increment, 5, along the direction N, for a prescribed number of solutions, m,, is

obtained as

S,1 1 (3.18)
m,-1

As seen in Figure 3.2b, the next step involves generating a set of evenly distributed points on the

utopia line as

Xp = azgJ +a2jg* (3.19a)

where

0 a, < 1 (3.19b)

2

-akj =1 (3.19c)
k=1

and az, is incremented by 6 between 0 and 1 (Figure 3.2c), with values ofj as jE {1, 2, ... , m,



Figure 3.2c shows one of the generic points intersecting the segments used to define a

normal to the utopia line. This normal line is used to reduce the feasible space as indicated in

Figure 3.2d. As can be seen, if we minimize g2 the resulting optimum point is g2*. By

translating the normal line, we can see that a corresponding set of solutions will be generated.

This is essentially done by generating a corresponding set of Pareto points by solving a

succession of optimization runs of Problem P2. Each optimization run corresponds to a point on

the utopia line. Specifically, for each generated point on the utopia line, solve for thejth point.

Problem P2 (Forjth point)

min{(g (x)} (3.20a)

subject to:

f,(x)<_O (1l j<r) (3.20b)

hk(x)= 0 (1 < k < s) (3.20c)

x t x,x, (15 i <nx) (3.20d)

N, (- Xj )T _0 (3.20e)

This results in a set of vectors for the design parameters, one vector x for each Pareto

point. Then, design objectives are computed by evaluating the non-normalized design metrics

that correspond to each Pareto point. The non-normalized design objectives can be obtained

through an inverse mapping of Equation (3.16) by using the relation

g = [1g I +g(x) g 2, 2 +g2(x2* )] T  (3.21)

Importantly, we note that the generation of the set of Pareto points is performed in the

normalized objective space, which results in critically beneficial scaling properties. Since some

of the points generated in some pathological cases will be dominated by other points in the set,

we use a Pareto filter (Table 3.3) to finally compute the true Pareto optimal solutions. This filter

compares a point generated on the Pareto frontier with every other generated point. If a point is

not globally Pareto, it is discarded. The steps involved and the essential mathematical

formulation for the NC method for a n-objective case are presented in Table 3.2.
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Table 3.3: Pareto filtering algorithm.

STEPS ACTION
Initialize

Step-i: Initialize the algorithm indices and variables:
i=0, j=0, k= 1 and m = number of generated

solutions; m = f(mk)

Step-2: Set i=i+l; j=O
Eliminate non-global Pareto points

j =j+l
If i = j go to the beginning of Step 3.

Else continue.

If p' i j and (p' - )p 0, Vs

then p' is not a global Pareto point.

Step-3 Go to Step 4.
Else if j = m

Then p' is a global Pareto point.

pk = Pi

k= k+l
Go to Step 4.

Else go to the beginning of Step 3.

Step-4 If i # m , go to Step 2, else end.

3.3.5 Normal Constraint Energy and Flux Balance Analysis (NCEFBA)

This section combines FBA, EBA and NC constraints. In the combined EBA and FBA,

nonlinear thermodynamic constraints analogous to electrical circuit system constraints are

included with the linear FBA constraints. The addition of nonlinear thermodynamic constraints

leads to a nonlinear optimization problem. To avoid repetition in the presented NC method we

will show here only the fluxes that are changed in the previously presented NC. There are

changes in anchor points which lead to a different utopian hyperplane. Further, both FBA and

EBA constraints are added to the NC formulation with the optimized quantity being the desired

fluxes as objectives.

Computation of the Utopia hyperplane: The anchor points for NCEFBA are obtained by

solving the Problem PUi, which is now defined as follows:

Problem PUi

min{g, (x)} (1 < i < n) (3.22a)



subject to:

SUJ = -Sm m (3.22b)

K T Ap = K TS T  = 0 (3.22c)

J = + _ J_ (3.22d)

- JApi = -RT(Jj- Jj)ln( J 0 (3.22e)

hdr = -J T Au > 0 (3.22f)

(hdr)b hdr < (hdr)ub (3.22g)

Jb < J  Jub (3.22h)

0 < J < 0oo (3.22i)

0 J < 00 (3.22j)

Jb J' - J- ' (3.22k)

Ayulb b AU AUb (3.221)

where vector x is defined as

x = [JT APT JT  J] (3.22n)

and the boundary constraints are meant to be satisfied component-wise.

Computation of Pareto points: Once anchor points are obtained, a set of well-distributed Pareto

solutions are generated in the normalized objective space, by solving Problem Pn:

Problem Pn (forjth point)

min g (x)} (3.23a)

subject to:

SuJ = -SmJm (3.23b)

K TAP = K TST p = 0 (3.23c)



J = J+ -J_ (3.23d)

- JApi = -RT(JJ - J )ln jJ 0 (3.23e)

hdr = -J TAp > 0 (3.23f)

(hdr)b  hdr (hdr)ub  (3.23g)

Jb < J  Jub (3.23h)

0 < J+ < oo (3.23i)

0 J < 00 (3.23j)

j xt < jex < Jebx (3.23k)

Apl1b  Au < Aub (3.231)

Nk(g- X )T< 0 ( 1 k n-1) (3.23n)

where vector x is defined as

' =[JT Ap'T J Jr] (3.230)

and the boundary constraints are meant to be satisfied component-wise.

3.3.6 Hepatic Function Specific Fluxes for Pareto Optimization

The main goal that we wish to achieve in the BAL device is for hepatocytes to perform at

the highest level of liver specific functions. Therefore, for hepatic metabolic optimization, the set

of objective functions maximizing urea, albumin, NADPH and glutathione synthesis, ATP

generation are chosen. NADPH, which is produced in the pentose phosphate pathway (PPP), is

primarily used in nonproliferating hepatocytes for cytochrome p450 dependent oxidation

reactions (detoxification reactions) and glutathione synthesis. Hence, to increase the NADPH

flux, the NADPH-generating oxidative branch of the PPP represented in a lumped fashion as

reaction 46 (Table 3.1) is maximized. As a marker of secretory liver specific function, we use

albumin synthesis, which is maximized by modulating flux 47. Urea synthesis is primarily

derived from ammonia and aspartate generated through transamination reactions and is
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maximized by modulating reaction 16. The tripeptide glutathione (GSH, y-Glu-Cys-Gly) is an

important reductant and has many detoxifying and cytoprotective effects. The synthesis of

glutathione is increased by maximizing reaction 48. The ATP generation is maximized by

increasing the TCA cycle fluxes (11, 43, 44). Figure 2.2 presents the comprehensive hepatic

metabolic network with all the cycles shown with each reaction and the constraints for this

metabolic network are listed in Table 2.6.

3.4 RESULTS

Pareto optimal solutions are accepted solutions of multi-objective optimization problems,

and can serve as a useful tool to understand the underlying tradeoffs between conflicting design

objectives and cellular phenotypes. Pareto optimality analysis has been applied to numerous

disciplines and more recently to cellular systems (Vo et al., 2004). As mentioned earlier, usage

of FBA alone can lead to thermodynamically infeasible fluxes. Consequently, we chose to

combine both FBA and EBA constraints with Pareto optimality to optimize hepatocellular

function in the context of a BAL device. As part of this analysis, we first obtained Pareto

frontiers between various bi-objective combinations of liver specific functions (albumin

synthesis, urea secretion, NADPH synthesis, GSH synthesis, and ATP generation). This was

done for hepatocytes in a gluconeogenic state and in a glycolytic state. Next, for a representative

case, i.e. ATP generation vs. urea secretion, we compared the Pareto frontier using NCEBFBA

(i.e. both FBA and EBA) with FBA alone. Lastly, we obtained the Pareto solutions in the

presence of measurement constraints. The experimentally measured flux data for gluconeogenic

and glycolytic state were taken from Chan et al., 2003a and Chan et al., 2003b.

3.4.1 Pareto Frontiers of Liver Specific Functions

Pareto optimality analysis here is carried out first in gluconeogenic hepatocytes (Figure

3.3) and then for glycolytic hepatocytes (Figure 3.5). This distinction was necessary because the

hepatic metabolic network used in each case is different. Note that in both figures, the same

panels analyze the same objectives to facilitate the comparison of results obtained in the

gluconeogenesis and glycolysis modes. For each Pareto curve shown in Figure 3.3 for



gluconeogenic hepatocytes, Figure 3.4 shows the relative flux changes that are necessary when

switching objective priority. This information is summarized in Table 3.4, where important

groups are clustered together. Similarly, for each Pareto curve shown in Figure 3.5 for glycolytic

hepatocytes, Figure 3.6 and Table 3.5 summarize the flux changes that are necessary when

switching objective priority. Tables 3.6 and 3.7 provide the comprehensive set of flux data that

are summarized in Figures 3.3 and 3.5, respectively.
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Figure 3.3: Pareto frontiers for bi-objective problems in hepatocytes operating in a gluconeogenic mode. Five major
hepatic functions were considered: albumin, urea, ATP, NADPH and glutathione synthesis, a) Albumin vs. urea
synthesis. b) Glutathione vs. albumin synthesis. c) NADPH vs. albumin synthesis. d) Glutathione vs. urea synthesis.
e) ATP vs. albumin synthesis. f) ATP vs. urea synthesis. The blue circles are the anchor points, black circles are
Pareto optimal solutions, and red circles labeled A through L are selected Pareto solutions for which flux
distributions are shown in Table 3.6.

The bi-objective Pareto optimal solutions were first obtained using the NCEFBA

approach for various binary combinations of liver-specific objectives in gluconeogenic



hepatocytes (Figure 3.3). The Pareto frontiers for albumin synthesis vs. urea secretion,

glutathione synthesis vs. albumin synthesis, NADPH synthesis vs. albumin synthesis, glutathione

synthesis vs. urea secretion, ATP generation vs. albumin synthesis, and ATP generation vs. urea

secretion are shown in Figures 3.3a, 3.3b, 3.3c, 3.3d, 3.3e, and 3.3f, respectively.
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Figure 3.4: Distribution of flux changes when moving along the Pareto surface in Figure 3.3. a) % Flux changes

from point A to point B in Figure 3.3a. b) % Flux changes from point C to point D in Figure 3.3b. c) % Flux

changes from point E to point F in Figure 3.3c. d) % Flux changes from point G to point H in Figure 3.3d. e) % Flux

changes from point I to point J in Figure 3.3e. f) % Flux changes from point K to point L in Figure 3.3f. The

corresponding flux values are in Table 3.6. Note that the % flux changes for all figures are on y-axis and the

corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the

figure.
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As seen in Figure 3.3, all of these objectives

have a tradeoff region with each other. For

example, we cannot have both albumin and

urea synthesis at their maximal values.

Additionally, there is a tradeoff between

other liver specific functions such as GSH

and albumin synthesis, NADPH and albumin

synthesis, GSH synthesis and urea secretion,

ATP synthesis and albumin synthesis, and

ATP synthesis and urea secretion. As seen in

these figures, the tradeoff region or range of

Pareto optimal solutions (how far the optimal

value is from the "anchor value") for albumin

synthesis is very high compared to NADPH,

GSH and ATP synthesis and urea secretion.

Several other combinations were also tested

and all of them indicated Pareto optimality

between various objectives (data not shown).

Figure 3.4 presents the metabolic flux

profiling of Pareto optimal fluxes throughout

the tradeoff region, which shows the changes

required in flux values and direction (i.e.

increasing or decreasing) as the objective

preference is changed from one objective to

another. The corresponding flux values for

these cases are presented in Table 3.6. The

Pareto frontiers for various binary

combinations of objectives were also

obtained for glycolytic hepatocytes (Figure

3.5). As in the case of gluconeogenic

" I~D~ e i II



hepatocytes, these objectives have a tradeoff region with each other, and some objectives change

over a wide range (e.g., albumin, urea and GSH) while some change only little (NADPH and

ATP). Figure 3.6 presents the metabolic flux profiling of Pareto optimal fluxes throughout the

tradeoff region, which shows the changes required in flux values and direction (i.e. increasing or

decreasing) as the objective preference is changed from one objective to another. The

corresponding flux values for these cases are presented in Table 3.7.
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Figure 3.5: Pareto frontiers for bi-objective problems in hepatocytes operating in a glycolysis mode. Five major
hepatic functions were considered: albumin, urea, ATP, NADPH and glutathione synthesis. a) Albumin vs. urea
synthesis. b) Glutathione vs. albumin synthesis. c) NADPH vs. albumin synthesis. d) Glutathione vs. urea synthesis.
e) ATP vs. albumin synthesis. f) ATP vs. urea synthesis. The blue circles are the anchor points, black circles are
Pareto optimal solutions, and red circles labeled A through L are selected Pareto solutions for which flux
distributions are shown in Table 3.7.
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Figure 3.3a examines the tradeoff between albumin and urea secretion in gluconeogenic

hepatocytes. Many flux changes were required to go from Pareto optimal solutions "A" to "B" in

Figure 3.3a, in other words, when going from a state of high albumin/low urea secretion rate to a

low albumin/high urea secretion rate.
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Figure 3.6: Distribution of flux changes when moving along the Pareto surface in Figure 3.5. a) % Flux changes
from point A to point B in Figure 3.5a. b) % Flux changes from point C to point D in Figure 3.5b. c) % Flux
changes from point E to point F in Figure 3.5c. d) % Flux changes from point G to point H in Figure 3.5d. e) % Flux
changes from point I to point J in Figure 3.5e. f) % Flux changes from point K to point L in Figure 3.5f. The
corresponding flux values are in Table 3.7. Note that the % flux changes for all figures are on y-axis and the
corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the
figure.
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neogenesis and decreased in glycolysis. This is expected because glycolysis is dominant in the

fed state and gluconeogenesis in the fasted state. Further, the production of ketone bodies

through P-oxidation occurs mostly in the fasted state.

Next, we investigated the tradeoff between glutathione and albumin synthesis in

gluconeogenic hepatocytes. The Pareto curve is shown in Figure 3.3b. Going from Pareto

optimal solutions "C" to "D" also required many flux changes, which are reported in Figure 3.4b

and Table 3.4. There was a marginal increase in urea cycle fluxes (14-15), a decrease in lipid

uptake (52) and lipid stored (57), and a significant increase in aspartate uptake (69).

Additionally, the uptake of both gluconeogenic amino acids (60, 67, 69, 71, 73, 76, 77, 79, and

81,) and ketogenic amino acids (72, 78) increased. The corresponding flux values for NADPH

synthesis decreased. There were no significant differences in the results of this analysis when

considering glycolytic hepatocytes (Figures 3.5b and 3.6b, and Table 3.5).

Considering the tradeoff between NADPH synthesis and albumin synthesis (Figures 3.3c

and 3.5c), flux changes required to move from points E to F along the Pareto frontier were

generally similar in both gluconeogenic and glycolytic hepatocytes (Figures 3.4c and 3.6c), with

the exception of P-oxidation, electron transport (43, 44), lipid uptake and lipid storage fluxes.

This is because fatty acid synthesis significantly consumes NADPH (14 molecules of NADPH

per molecule of palmitate).

Considering the tradeoff between glutathione synthesis and urea secretion (Figures 3.3d

and 3.5d), the changes in flux required to move from points G to H along the Pareto frontier were

also generally similar in both gluconeogenic and glycolytic hepatocytes (Figures 3.4d and 3.6d),

with the exception of aspartate uptake (69).

Considering the tradeoff between ATP synthesis and albumin synthesis (Figures 3.3e and

3.5e), the changes in flux required to move from points I to J along the Pareto frontier

significantly differed between gluconeogenic and glycolytic hepatocytes (Figures 3.4e and 3.6e),

mainly with respect to gluconeogenesis fluxes (2-6), and TCA cycle fluxes (8-13). In the

gluconeogenesis mode, TCA cycle fluxes are higher because of increased demand to produce

ATP (gluconeogenesis consumes ATP as well), since glycolysis itself produces ATP (2

molecules of ATP for 1 molecule of glucose consumed).



Table 3.6: Flux values for the selected Pareto solutions shown in Figure 3.3 in gluconeogenesis mode.

Flux # J (at A) J (at B) J (at C) J (at D) J (at E) J (at F) J (at G) J (at H) J (at 1) J (at J) J (at K) J (at L)
1 10.45616 10.53164 2.931751 2.962597 3.985876 3.786608 10.68169 10.75281 5.084417 2.411236 6.023587 10.94565

2 10.45616 10.53164 2.931751 2.962597 3.985876 3.786608 10.68169 10.75281 5.084417 2.411236 6.023587 10.94565

3 10.45616 10.53164 2.931751 2.962597 3.985876 3.786608 10.68169 10.75281 5.084417 2.411236 6.023587 10.94565

4 22.34042 22.81248 7.25294 7.144599 7.972752 7.574215 21.42532 21.97203 12.1883 6.812471 14.03717 23.86665

5 24.49237 24.81512 12.83025 13.00202 30 22.22823 22.16054 30 30 30 23.86765

6 24.49237 24.81512 12.83025 13.00202 30 30 22.22823 22.16054 30 30 30 23.86765

7 9.51886 10.23318 10.06462 9.666193 27.50332 30 9.749638 10.29762 19.2476 20.63132 17.90442 13.5001

8 5.026489 5.418401 7.949764 7.695878 17.05776 13.21547 7.525195 8.14122 11.43791 12.1179 9.897259 15

9 5.026489 5.418401 7.949764 7.695878 17.05776 13.21547 7.525195 8.14122 11.43791 2.1179 9.897259 15

10 5 5 5.005367 5 7.057761 5.000135 5 5 11.42791 12.1079 9.887259 5

11 6.900497 5.031 10.05995 9.483926 13.92636 10.08871 9.168923 5.434227 26.26654 24.96552 25.55738 5.858272

12 30 30 14.35929 14.28768 29.55444 23.1121 30 30 29.5189 26.62793 30 30

13 30 30 14.35929 14.28768 29.55444 23.1121 30 30 29.51789 26.62793 30 30

14 22.9995 24.869 3.98076 4.178844 15.52808 1292339 20.13108 24.46577 3.151353 1.562414 4.342624 24.04173

15 22.9995 24869 3.98076 4.178844 15.52808 12.92339 20.13108 24.46577 3.151353 1.56241 4.342624 24.04173

16 29.7685 34.56632 10.43101 10.59504 19.75209 12.45496 30.13084 34.46553 2.807173 2.601182 11.5165 33.76909

17 -1.631214 -0.536267 -0.528837 -2.006131 -1.539125 -7.981121 -0.497689 -0.S0062 -6.653947 -9.146062 -5.662553 0

18 0.461622 0.284045 0.438175 0.412978 15.697 18.98731 0.1 0.1 15.05454 19.67738 13.46402 3.283547

19 0.330588 0.48115 0.1 0.1 0.1 0.1 0.1 0.1 0.847005 0.1 0.10295 0.216556

20 2.87565 2.707592 8.00082 5.613211 7.497758 4.648697 9.203206 8.907835 0.01 0.01 0.01 2.588962

21 0.001 0.001 0.038607 0.001001 1.949159 0.880762 0.001 0.001 6.714512 5.388064 7.242189 0.001

22 -0.971072 -0.714002 -0.906803 -1 -1 -1 -0.314121 -3.38E-11 -1 -1 -1 -1

23 2.151948 2.002633 5.577312 5.857419 22.02725 22.42578 0.802911 0.188519 17.84117 23.18753 15.96283 0.001

24 1.580908 0.533345 0.524345 1,007869 0.48324 1.282606 0.502921 0.49999 0.400743 0.360547 0.416733 0.48864

25 1.900497 0.031 5.054581 4.483926 6.868599 5.088575 4.768923 0.434227 14.83863 12.85762 15.67012 0.858272

26 0.001 0.754159 0.030353 0.00154 0.001 0.001005 1.077168 1.534977 0.001 0.001 0.001 0.001

27 0.1 0.1 0.213869 0.129024 0.114423 0.168828 0.100009 0.1002 0.1 0.1 0.1 0.12156

28 0.1 0.1 0.318582 0.624913 0.1 0.100001 0.1 0.1 0.1 0.1 0.1 0.1

29 0.864605 3.048025 1.741664 1.088041 0.1 0.1 0.14072 0.105309 0.1 0.1 0.1 0.1

30 2.980626 2.58457 1.144032 2.063769 2.654201 2.967936 1.498649 0.020831 0.985504 2.16986 1.701053 0.00001

31 1.879497 0.01 4.930819 4.222332 4.899439 4.187174 4.747923 0.413227 4.404457 4.163284 4.500398 0.01

32 0.01 0.01 0.032753 0.01 0.01 0.010637 0.01 0.01 0.01 0.119159 0.01 0.837272

33 0.01 0.01 0.052401 0.250593 0.01 0.010002 0.01 0.01 3.709656 3.187116 3.917529 0.01

34 1.870186 2.554259 0.329499 0.010005 0.01 0.01 0.849459 1.142287 0.01 0.01 0.01 0.01

35 -10 -9.999663 -3.64389 -3.25598 -10 -9.89663 -9.996213 -9.995851 -7.327574 -5.141357 -8.007158 -4.632452

36 7.307501 7.499843 0.017841 1E-05 6.765451 7.290581 0.934579 4.470369 0.00001 0.00001 0.00001 9.772798

37 -60.026489 -0.418401 -2.944397 -2.695878 -10 -8.215331 -2.525195 -3.14122 -0.01 -0.01 -0.01 -10

38 6.489144 5.411853 2.499289 3.68853 0.00001 0.00001 7.316898 5.816622 0.00001 0.00001 2.173876 4.727358

39 3.149794 2.111601 5.755599 6,499171 7.413951 6.613227 7.644235 6.203562 3.645606 4.669928 1.244402 0.215998

40 0.449495 0.661466 0.901383 0.920863 1.242776 2.287185 0.0502 0.542191 9.499658 9.784768 9.555281 11.74025

41 -0.658454 -0.632682 -0.335649 -0.396005 0.000194 0.321518 -0.707952 -0.665219 27.12534 29.2863 27.35839 29.40036

42 0.923454 0.654823 0.219049 0.613403 0.484434 1.605129 0.872136 1.369748 27.52708 29.64784 27.77612 29.89

43 40.07639 40.97647 45.94547 45.59571 60.43861 55.72856 52.62026 53.04138 100 100 100 100

44 13.51905 13.52302 17.33898 17.20997 23.14003 27.41325 12.56987 12.42682 96.89554 97.13672 96.7996 89.38694

45 -1.428096 -1.749204 -1.389438 -1.219405 -0.001 -0.001 -0.061944 -0.466409 -1.99 -1.99 -1.99 -1.975352

46 0.471627 0.531642 1.414381 0.980214 2.985876 2.786608 1.091501 0.825673 1.134247 1.411236 1.000814 0.94565

47 0.134625 0.012612 0.01153 0.129611 0.01676 0.135471 0.00001 0.00001 0.099257 0.139453 0.083267 0.01136

48 6.837036 8.791876 14.42727 9.585937 14.21284 9.345691 14.64757 10.31288 0.083459 0.001 1.483113 9.39584

49 1.547404 2.136846 2.771774 2.112282 0.133939 3.035892 1.451669 2.528957 4.679441 3.598256 5.255245 7.57675

50 10.35786 10.00425 10.05528 11.15935 13.24545 18.89381 10.04733 10.59824 10 10 10 10

51 1.3159 1.52952 0.851862 0.860876 0.445374 1.465321 1.259451 1.381499 20 20 20 20

52 0.100346 0.302264 1.296234 0.877215 0.103022 1.749043 0.491578 0.617581 2.679441 1.598256 3.255245 5.57675

53 9.984536 9.999997 1.517371 1.982383 1 1 9.590187 9.927135 3.95017 1 5.022774 10

54 0.018962 0.085378 0.086102 0.015661 0.029918 1.285849 0.898136 1.444967 0.01 0.01 0.01 0.024648

55 4.318612 4.515504 3.504287 2.866019 1.543921 3.49074 2.722895 2.665903 1.774313 0.01 2.610203 5

56 4.46707 4.270178 0.516968 1.155236 2.477633 0.530796 1.298361 1.355353 3.235647 5 2.399749 0.01

57 1.447058 1.834582 1.47554 1.235066 0.030918 1.286849 0.960081 1.911377 2 2 2 2

58 1.715533 0.545957 0.535875 1.13748 0.5 1.418077 0.502931 0.5 0.5 0.5 0.5 0.5

59 32.27275 30.6738 34.93713 36.34932 43.60347 45.83755 34.4742 34.58693 100 1 100 96.53095

60 4.903353 3.426371 2.087567 4.97638 0.602803 4.164128 0.14102 0.105609 3.077716 4.283578 2.59801 0.440803

61 -1 4.063714 -0.999501 -0.938391 5 0.828969 4.477554 4.974097 -1 -1 -1 5

62 10 7.752075 0.248443 2.592236 7.100653 10 0.934779 4.470569 1.985154 2.789062 1.66535 10

63 0.279857 4.28547 3.950962 2.727669 4.224003 -0.468432 2.682862 4.183138 -0.34419 1.038758 5 5

64 10 10 6.726974 9.52687 4.626255 2.78288 10 10 2.037993 4.385631 9,172284 10

65 11.60736 15.43998 1.339349 0.1 20 20 8.297209 16.33414 0.1 0.1 0.1 20

66 5 -0.300308 -0.349845 4.89229 -1 -1 -1 -1 -1 -1 -1 0.204326

67 4.391241 -0.691909 0.975208 2.888563 -0.028565 5 4.359373 0.324949 5 5 5 4.565189

68 4.307866 4.870677 4.808851 4.176118 5 5 4.816294 1.405212 -0.239168 0.361694 0.888652 5

69 10 7.773064 0.687993 5.070415 -0.701049 0.071244 9.200605 9.999872 -1 0.88353 -1 10

70 1.577739 1.779562 0.015269 0.387445 0.14906 0.249809 0.562144 1.230536 7.637083 9.757845 7.886124 10

71 7.319273 3.124773 8.419921 9.891385 10 10 9.204536 8.909165 10 10 10 2.964845

72 7.136122 1.422572 0.641449 6.870939 0.889285 7.180965 1.077698 1.535507 5.261632 7.391988 4.41415 0.603085

73 3.600249 0.427901 0.513652 3.498918 0.550185 3.691073 0.100269 0.10046 2.680687 3.725768 2.264942 0.416922

74 5 2.773744 1.316984 4.007939 2.905602 5 1.498799 0.020981 2.474362 4.26165 2.950058 0.170411

75 2.687247 0.085669 5 5 5 5 4.747983 0.413287 5 5 5 0.078161

76 4.721873 0.451405 0.436307 4.546396 0.596603 4.75212 0.01035 0.01035 3.484002 5 2.924345 1.234876

77 1.760124 0.17395 0.202293 1.935539 0.227881 1.771124 0.01013 0.01013 5 5 5 0.157681

78 9.409182 3.260506 0.975186 7.268237 0.948565 7.596373 0.850019 1.142847 5.568404 7.819346 4.672951 0.646165

79 6.515418 2.42689 6.043852 9.73945 7.832953 10 7.644485 6.203812 6.127037 8.156243 3.326076 0.5

80 10 9.70443 10 1 1 1 10 10 0.00001 0.818557 0.00001 10

81 2.827124 0.264843 0.346846 3.217726 0.337539 2.776062 0.000201 1E-05 2.084401 2.928505 1.748607 0.217002



Table 3.7: Flux values for the selected Pareto solutions shown in Figure 3.5 in glycolysis mode.

Flux # J (at A) J (atB) J(atC) J (atD) J (at E) J (at F) (at G) J (atG J aH) J (at 1) J (at J (at K) J (at L)
1 3.320282 3.33758 7.912406 7.88244 2.556222 2.873484 7.81942 7.224603 0.345462 1.526889 0.543029 0.995505
2 3.320282 3.33758 7.912406 7.88244 2.556222 2.873484 7.81942 7.224603 0.345462 1.526889 0.543029 0.995505
3 3.320282 3.33758 7.912406 7.88244 2.556222 2.873484 7.81942 7.224603 0.345462 1.526889 0.543029 0.995505
4 5.137323 5.075633 14.07575 14.1165 5.111443 5.745967 14.03731 12.48403 0.689924 3.052777 0.335526 0.00101
5 3.418129 3.330969 8.163969 8.130087 0.00001 0.00001 8.203415 9.000354 0.00001 0.00001 1E-05 0.00001
6 3.418129 3.330969 8.163969 8.130087 0.00001 0.00001 8.203415 9.000354 0.00001 0.00001 1E-05 0.00001
7 12.32408 12.77062 17.80928 16.82315 30 30 18.66582 19.77409 10.4446 13.88948 10.73724 12.52604
8 18.60514 18.67631 17.89311 17.69616 12.62882 10.82335 18.77853 19.08346 24.19015 22.79568 23.07392 20
9 18.60514 18.67631 17.89311 17.69616 12.62882 10.82335 18.77853 19.08346 24.19015 22.79568 23.07392 20
10 8.605136 8.676313 11.9678 11.70473 5 8.778528 9.083457 14.19015 15.07521 13.07392 10.69914
11 8.636136 8.707313 17.36348 16.79063 9.94211 11.07681 13.37344 9.518703 25.83536 27.97411 23.97935 11.66512
12 28.60514 28.67631 27.13863 26.86795 22.62882 20.82335 28.77853 29.08346 30 30 30 30
13 28.60514 28.67631 27.13863 26.86795 22.62882 20.82335 28.77853 29.08346 30 30 30 30
14 19.869 19.869 8.973567 9.028741 12.58671 9.64654 15.30508 19.46475 4.064643 1.925887 5.920655 18.23488
15 19.869 19.869 8.973567 9.028741 12.58671 9.64654 15.30508 19.46475 4.064643 1.925887 5.920655 18.23488
16 26.7175 29.36555 14.44119 14.38821 12.3232 9.978069 25.30484 29.36816 8.695292 6.284636 12.26472 28.23464
17 -1.617039 -0.800649 -0.558489 -1.660425 0 -7.501398 -5.24E-05 -0.299137 -1.943861 -3.553949 -0.510528 0
18 0.152018 0.111136 0.1 0.1 3.996811 2.712269 0.164013 0.972871 2.288453 0.105207 1.147754 2.426031
19 0.161049 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 6.772237 0.1 0.1
20 2.682588 2.735775 7.935394 5.584393 9.565107 5.474062 7.915699 6.468561 0.01 0.01 0.01 2.90982
21 0.001 0.001 0.133875 0.001 0.001 0.001 0.001 0.001 2.690735 5.577851 0.001038 0.001
22 -0.264356 -0.95412 -0.949376 -0.6777 -0.877953 -0.566872 -0.779019 -0.999998 -1 -1 -1 -1
23 1.719194 1.744664 5.911782 5.986414 5.111433 5.745957 5.833898 3.483673 0.689914 3.052767 0.335516 0.001
24 1.397487 0.806964 0.538067 1.374724 1.802044 1.862881' 0.977117 0.795465 0.476712 1.866299 0.49983 1.00061
25 0.031 0.031 5.395675 5.085698 4.94211 6.076806 4.594917 0.435246 11.64521 12.8989 10.90542 0.965983
26 2.983685 3.389258 0.025628 0.019927 3.69123 2.732676 0.412554 .401005 0.001 0.001 0.001 5.893824
27 0.117672 0.285134 0.616989 0.427887 0.1 1.149643 0.1002 0.158044 0.19392 0.301728 0.102338 0.1
28 0.1 0.1 0.80158 1.048576 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
29 0.100108 0.1 1.085767 0.864271 b.1 0.753995 0.325084 0.1 0.1 0.1 0.1 0.1
30 0.319822 0.004941 2.497591 2.533106 2.849161 2.94321 0.089 0.00001 0.00001 0.00001 0.007453 0.00985
31 0.01 0.01 4.927451 4.21706 4.92111 4.175953 4.573917 0.414246 1.708434 3.738724 2.784947 0.01
32 0.01 0.01 0. 0.1 001 001 0.01 0.01 2.548784 0.320448 3.121647 0.01
33 0.01 0.01 0.285086 0.718315 0.01 1.889853 0.01 0.01 4.697255 3.261881 4.997792 0.944983
34 2.646489 3.066213 1.863949 1.467829 0.120164 2.321318 3.828026 6.496781 8.695667 2.512717 9.990491 9.99944
35 -10 -10 -9.245516 -9.171791 -10 -10 -10 -10 -5.809852 -7.204324 -6.92607§ -10
36 7.373746 9.495871 0.723824 0.84152 2.837567 3.899447 2.180237 7.267313 0.00001 0.00001 0.00001 0.521579
37 -10 -10 -5.925306 -5.991425 -7.628821 -5.823346 -10 -10 -10 -7.720467 -10 -9.30086
38 5.018684 4.76798 2.021491 2.127802 0.00001 0.00001 5.995824 4.903404 0.00001 0.00001 1.344061 4.99976
39 0.47692 0.252761 5.601236 5.561892 6.783794 6.572017 3.064091 0.399379 0.1 0.1 0.495755 0.49975
40 0.280872 0.063599 0.261434 0.270928 4.69 4.69 0.494189 0.848234 0.01 0.01 0.01 0.01
41 -4.265556 -4.091052 -0.013714 -0.763224 -5.393275 -4.495557 -0.122731 -0.851096 -0.377712 -1.767299 0 0
42 0.115615 0.10517 0.54998 0.631427 0.1 0.1 1.26694 1.345374 0.1 0.1 0.50083 6.894434
43 91.8723 92.14348 93.69348 93.2521 100 100 99.99988 99.99388 100 100 100 100
44 15.6838 15.98975 20.12547 20.52095 15.57555 19.89353 18.61114 18.23195 42.25498 35.93646 42.59011 29.51398
45 -1.503241 -1.599526 -1.749061 -1.64838 -0.001 -0.001 -1.601527 -1.965178 -0.001 -0.001 -0.750533 -1.99
46 1.066859 1.098593 2.063146 1.702992 7.443778 7.126516 2.160044 2.077314 0.654538 0.472312 0.456971 0.510559
47 0.131313 0.020977 0.012091 0.13049 0.013148 0.137119 0.00001 0.004025 0.023288 0.133701 0.00017 0.00001
48 5.226328 9.175799 14.40425 9.549912 14.36092 9.276777 14.47357 10.17338 6.614103 1.29614 7.007113 9.90965
49 1.780721 2.526538 2.645517 2.085518 0.111 0.111 2.644322 2.860764 0.111 0.111 0.860533 2.100093
50 10.20993 10.02917 10.0038 10.15349 25.90318 34.68912 10.19844 10 10 10.56598 10 10
51 0.208388 0.192798 3.214313 3.119414 0.319164 2.473694 2.638503 3.242341 8.894867 2.711717 10.59032 16.99287
52 0.263952 0.586841 0.681379 0.419993 0.1 0.1 1.032793 0.860764 0.1 0.1 0.1 0.100093
53 4.387141 4.436173 9.975552 9.585433 10 10 9.979465 9.301916 1 1.9992 1 1.506064
54 0.013528 0.340172 0.215076 0.017145 0.01 0.01 0.010002 0.034822 0.01 0.01 0.01 0.01
55 1.480581 1.838039 3.341685 2.954351 5 5 3.985182 3.904161 2.66 2.66 2.66 2.660309
56 0.407854 0.013918 1.036112 1.423446 0.01 0.01 0.392615 0.473636 2. 2. 2. 2.35 2.350028
57 1.516769 1.939697 1.964137 1.665526 0.011 0.011 1.611529 2 0.011 0.011 0.760533 2
58 1.528799 0.827942 0.550158 1.505214 1.815193 2 0.977127 0.799489 0. 2 0.5 1.00062
59 58.33824 57.02264 61.28671 63.96787 63.54391 67.26205 62.6996 61.90736 73.00155 74.11885 73.14688 68.10882
60 4.039489 0.729315 1.448512 4.77897 0.494448 4.867575 0.325384 0.220745 0.798642 4.111045 0.105094 0.1003
61 3.204382 4.754184 2.037928 0.090657 2.251413 -1 4.999861 5 2.258497 -0.996638 4.930476 5
62 10 9.915414 0.965654 3.451319 3.100532 6.641834 2.180437 7.347809 0.465772 2.67404 0.003406 0.521779
63 1.829812 4.728567 3.446137 3.231665 -0.263524 0.33152 4.003936 5 4.63069 4.358739 5 5
64 10 10 5.757823 8.491226 0.052044 3.622393 10 10 5.189563 7.567585 6.348136 10
65 19.825 17.85305 11,86937 12.23529 5.290796 7.230804 19.99972 19.97508 0.1 0.1 0.1 6.126085
66 4.995549 -0.328006 -0.358976 4.924739 -1 -1 -0.976559 -0.840086 -1 2.735543 -1 -1
67 1.858686 -0.165957 0.35524 2.140105 5 5 -0.316709 -0.999962 4.865887 5 4.601261 3.435271
68 4.247343 4.888396 4.775659 4.828447 3.263427 6 5 1.773243 5 1.559066 5 5
69 6.697261 1.044399 -0.608845 3.191109 0.169889 0.134911 3.125166 2.326238 -1 -1 -1 7.713618
70 2.653716 3.078586 0.001196 0.028419 0.001 0.047624 2.556462 4.699814 0.001 0.001 0.001 0.001
71 7.016907 3.429022 8.468287 9.891562 10 10 7.917029 6.602381 3.469242 10 0.016642 2.91115
72 9.943258 4.501048 0.666476 6.935894 4.388089 10 0.413084 1.614322 1.235268 7.087179 0.01 5.894354
73 3.531802 0.83054 0.931367 3.820625 0.441855 4.714746 0.10046 0.26269 0.799418 3.777967 0.106753 0.10026
74 2.289513 0.319598 2.678964 4.490455 3.046385 5 0.08915 0.060383 0.349331 2.005532 0.01 0.01
75 0.797876 0.135863 5 5 5 4.998669 4.573977 0.438395 1.848163 4.540933 2.785966 0.01006
76 4.605945 0.744201 0.472465 4.716672 0.470189 4.809176 0.01035 0.150869 3.363867 5 3.12759 0.01035
77 1.717065 0.282703 0.442275 2.414684 0.180927 3.672404 0.01013 0.062323 5 5 5 0.945113
78 10 4.240935 2.541072 8.775266 0.856467 10 3.828586 6.722172 10 10 10 10
79 3.759738 0.77719 5.903523 8.824141 7.112501 10 3.064341 0.5 0.682202 3.442537 0.5 0.5
80 9.973322 1 10 10 10 10 10 10 5.820751 9.009205 4.32811 10
81 2.739895 0.255387 0.438512 3.360978 0.276114 1.829862 1E-05 0.026477 0.395121 2.606003 0.001228 0.00021



Table 3.8: Optimal selected solutions of ATP-urea in glycolysis mode from Figure 3.7.

Point A Point B Point C

Flux FB # FBA + EBA FBA FBA + EBA FBA FBA + EBA

J J Ap J+ J J J J+ J J J zip J+ J-

1 0.496845 0.543029 -3.648108 369.0639 3685208 0.70133 0.995505 -6.703557 368.4273 367.4318 0.501749 0.995505 -6.698737 368.692 367.6965

2 0.496845 0.543029 -3.670871 366.777 366.234 0.70133 0.995505 -6.745699 366.1288 365.1333 0.501749 0.995505 -6.740603 366.4052 365.4097

3 0.496845 0.543029 -3.623763 371.5415 370,9984 0.70133 0.995505 -6.658487 370.9178 369.9223 0.501749 0.995505 -6.653956 371.17 370.1745

4 0.992689 0.335526 -1.287794 645.6821 645.3466 0.00101 0.00101 -0.00388 644.9403 644.9393 1.002497 0.00101 -0.003881 644.7304 644.7294

5 1E-05 1E-05 -72.08323 0.000349 0.000339 0.00001 0.00001 -66.793 0.000376 0.000366 0.00001 1E-05 -69.75755 0.00036 0.00035

6 1E-05 1E-05 -25.32626 0.000983 0.000973 0.00001 0.00001 -19.55836 0.001272 0.001262 6.00001 1E-05 -22.94519 0.001085 0.001075

7 13.71808 10.73724 -15.41062 1731.605 1720.867 15.09015 12.52604 -1i.9712 1732.577 1720.051 14.28603 12.64926 -18.1732 1730.82 1718.171

8 22.29936 23.07392 -84.2784 689.9173 666.8434 20 20 -73.67926 682.5786 662.5786 20 20 -73.43776 684.79 664.79

9 22.29936 23.07392 -83.02457 700.1602 677.0863 20 20 -72.55268 693.0206 673.0206 20 20 -72.32988 695.1243 675.1243

10 12.29936 13.07392 -49.42679 661.9033 648.8293 10.69914 10.69914 -40.63622 657.686 646.9868 10 11.13376 -42.21718 658.9821 647.8484

11 23.20479 23.97935 -112.0429 542.3283 518.3489 11.66512 11.66512 -56.50075 517.3733 506.7081 19.92117 19.92117 -94.37706 532.9912 513.07

12 30 30 -92.03133 822.7217 792.7217 30 30 -92.14675 821.7103 791.7103 30 30 -92.1654 821.5471 791.5471

13 30 30 -03.12278 813.257 783.257 30 30 -93.2443 812.2169 782.2169 30 30 -93.26031 812.0801 782.0801

14 6.695214 5.920655 -24.14858 610.4066 604.4859 18.23488 18.23488 -73.66843 622.427 604.1921 9.978834 9.978834 -40.48745 615.6435 605.6647

15 6.695214 5.920655 -24.64234 598.2355 592.3148 1 18.23488 -75.12945 610.5019 592.267 9.978834 9.978834 -41.3084 603.5081 593.5293

16 12.26472 12.26472 -33.82397 904.5245 892.2598 28.23464 28.23464 -77.48377 917.0037 888.7691 19.97859 19.97859 -54.88287 911.9178 891.9392

17 -0.510528 -0.510528 1611.801 0.556976 1.067504 0.99938 0 1631.194 0 0 0.99938 0 1618.894 0 0

18 4.128594 1.147754 -1.762645 1613.856 1612.708 3.99076 2.426031 -3.725793 1614.472 1612.046 3.186638 2.549252 -3.910883 1616.244 1613.695

19 0.1 0.1 -1315.077 0.2428 0.1428 0.1 0.1 -1329.488 0.240806 0.140806 0.1 0.1 -1318.454 0.242329 0.142329

20 0.01 0.01 -1297.755 0.024526 0.014526 2.90982 2.90982 -122.85 7.474318 4.564498 3.60896 2.475204 -1268.189 6.178357 3.703153

21 0.903575 0.001038-689.2836 0.004273 0.003235 0.001 0.001 -755.9063 0.003803 0.002803 0.001 0.001 -716.3788 0.003983 0.002983

22 -1 -1 804.2452 2.607621 3.607621 -1 -1 831.8429 2.50634 3.50634 -1 -1 381.3141 6.010278 7.010278

23 0.992679 0.335516 -2.268137 366.66 366.329 0.001 0.001 -0.006832 362.6184 362.6174 1.002487 0.001 -0.006776 365.6321 365.6311

24 0.49983 0.49983 -1045.02 1.452448 0.952618 1.99999 1.00064 -1044.71 2.908348 1.90773 1.99999 1.00061 -1043.818 2.910347 1'.909737

25 10.90542 10.90542 -484.5683 61.3892 50.4378 0.965983 0.965983 -513.2221 5.162922 4.196939 9.921166 8.787411 -499.6327 48.11618 39.32876

26 0.001 0.001 -682.9912 0.00415 0.00315 5.736849 5. 93824-666.9043 14.97472 19.08089 0.032669 0.00947 -676.2073 0.039647 0.030177

27 0.103556 0.162338 -861.5948 0.34841 0.246071 0.1002 0.1 -853.4371 0.343171 0.24317 0.1002 0.100083 -857.7435 0.342012 0.241928

28 0.1 0.1 -718.8723 0.397062 0.297062 0.1 0.1 -704.4679 0.40406 0.30406 0.1 0.1 -714.1738 0.399313 0.299313

29 0.1 0.1 -836.0113 0.349163 0.249163 0.1 0.1 -826.9843 0.352368 0.252368 0.1 0.1 -833.3708 0.350093 0.250093

30 0.007453 0.007453 -1032.111 0.021875 0.014422 0.00985 0.00985 -1027.566 0.029014 0.019164 0.00985 0.00985 -1913.028 0.018309 0.008459

31 0.01 2.784947 -1077.01 7.899583 5.114636 0.01 0.01 -1075.093 0.028406 0.018406 0.70914 0.01 -1076.191 0.028383 0.018383

32 4.994057 3.121647 -736.3901 12.14076 9.01911 0.01 0.01 -725.2552 0.039405 0.029405 4.211156 3.776541 -731.6427 14.76962 10.99308

33 4.997792 4.997792 -839.9307 17.38198 12.38419 0.944983 0.944983 -835.4658 3.301341 2.356358 4.99987 4.99987 -837.5958 17.42993 12.43006

34 9.990491 9.990491 -621.4147 45.03579 35.0453 9.99944 9.99944 -604.3868 46.19365 3619421 999944 9.99944 -614.4784 45.52384 35.5244

35 -7.700638 -6.926079 692.956 21.46145 28.38753 -10 -10 638.5789 34.01276 44.01276 -10 -10 393.5788 58.08216 68.08216

36 1E-05 0.00001 -734.1562 3.9E-05 2.9E-05 0.521868 0.521579 -728.1611 2.048222 1.526643 0.00001 0.068314 -731.1543 0.267322 0.199008

37 -10 -10 966.5681 20.95695 30.95695 -9.30086 -9.30086 985.4419 19.04102 28.34188 -10 -8.866244 975.4458 18.37674 27.24298

38 0.569502 1.344061 -972.4947 4.140073 2.796012 4.99976 4.99976 -965.2205 15.4954 10.49564 4.99976 4.99976 -968.8515 15.44791 10.44815

39 0.495755 0.495755 -1089.716 1.393134 0.89738 0.49975 0.49975 -1082.046 1.412288 0.912538 0.49975 0.49975 -1088 1.406126 0.906376

40 0.01 0.01 -353.2098 0.075263 0.065263 0.01 0.01 -331.022 0.079961 0.06996 0.01 0.010436 -342.1699 0.080901 0.070465

41 3.001998 0 569.3062 0 0 2.164721 590.1179 0 6.240649 0 5688523 0 0

42 3.502828 0.50083 -239.9423 5.425878 4.925048 9.90156 6.894434 -213.1516 83.63425 76.73982 8.273307 1.01008 -234.7942 11.17148 10.1614

43 100 100 -514.0888 533.6625 433.6625 100 100 -525.6537 523.0983 423.0983 100 100 -517.1978 530.776 430.776

44 43.68796 42.59011 -620.5908 192.2147 149.6246 30.35638 29.51398 -632.174 131.053 101.539 41.16429 39.7071 -634.1645 175.8284 136.1213

45 -0.001 -0.750533 1020.01 1.473431 7.223964 -1.40165 -1.99 1020.015 3.906706 5.896706 -0.001 -1.99 1020.863 3.902746 5.892746

46 0.503155 0.456971 -1.666165 679.7396 679.2827 0.475458 0.510559 -1.861376 679.831 679.3204 0.498251 0.376028 -0.672528 1385.464 1385.088

47 0.00017 0.00017 -1012.053 0.000506 0.000337 0.00001 0.00001-1012.354 2.98E-05 1.98E-05 0.00001 0.00001 -1012.164 2.98E-05 1.98E-05

48 7.007113 7.007113 -481.211 39.69386 32.68674 9.90965 9.90965 -457.5804 58.76312 48.85347 10.60879 9.475034 -475.6835 54.23923 44.7642

49 0.111 0.860533 -1379.718 2.015263 1.15473 1.51165 2.100093 -1386.98 4.898923 2.79883 0.111 3.346763 -1382.067 7.827759 4.480995

50 10 10 -170.0975 150.7132 140.7132 10 10 -157.4185 162.4405 152.4405 10 10 -164.2995 155.8513 145.8513

51 13.59232 10.59032 -104.3687 256.7323 246.142 20 16.99287 -154.8004 280.5549 263.562 18.37175 11.10852 -107.8014 260.8989 249.7904

52 0.1 0.1 -1298.127 0.245204 0.145204 0.1 0.100093 -1305.328 0.244403 0.14431 0.1 1.346763 -1300.559 3.297618 1.950855

53 1 1 1.176788 1.506064 - 1 1.371533

54 0.01 0.01 0.01 0.01 0.01 0.01

55 0.32 2.66 4.860498 2.660309 4.885641 4.532825

56 0.01 2.35 4.550498 2.350028 4.575641 0.482099

57 0.011 0.760533 1.41165 2 0.011 2

58 0.5 0.5 2 1.00062 2 1.00062

59 73.69702 73.14688 71.52836 68.10882 76.93232 73.20546

60 0.105094 0.105094 0.1003 0.1003 0.1003 0.1003

61 4.155917 4.930476 5 5 5 5

62 0. 0.003406 0.522068 0.521779 0.00021 0.068514

63 5 5 5 5 5 5

64 5.573578 6.348136 10 10 10 10

65 0.1 0.1 2.876259 6.126085 0.1 1.712752

66 -1 -1 -1 -1 -1 -1

67 4.14999 4.601261 5 3.435271 3.89353 3.558492

68 5 5 5 5 5 5

69 -1 -1 7.713329 7.713618 -0.020856 -0.08916

70 0.001 0.001 0.001 0.001 0.001 0.001

71 0.919179 0.016642 2.91115 2.91115 3.61029 2.476534

72 0.01 0.01 5.737379 5.894354 0.033199 0.01

73 0.107971 0.106753 0.10046 0.10026 0.10046 0.100343

74 0.01 0.01 0.01 0.01 . 0.01 0.01

75 0.011019 2.785966 0.01006 0.01006 0.7092 0.01006

76 5 3.12759 0.01035 0.01035 4.211506 3.776891

77 5 5 0.945113 0.945113 5 5

78 10 10 10 10 10 10

79 0.5 0.5 0.5 0.5 0.5 0.5

80 7.103057 4.32811 10 10 10 9.565384

81 1E-05 0.001228 0.00001 0.00021, 0.00001 0.000127



Considering the tradeoff between ATP synthesis and urea synthesis (Figures 3.3f and

3.5f), the changes in flux required to move from points K to L along the Pareto frontier in both

gluconeogenic and glycolytic hepatocytes were mainly lipid uptake (52), TCA cycle (8),

aspartate uptake (69) and the uptake of gluconeogenic and ketogenic amino acids. This is

expected because higher urea secretion could be achieved with increased uptake of arginine or

aspartate under gluconeogenic conditions. Higher urea secretion has been seen to require an

increase in gluconeogenic fluxes and this is coupled with an increase in TCA cycle fluxes, which

necessitates an increase in aspartate uptake.

3.4.2 Effect of FBA+EBA on Pareto Frontier Compared to FBA Alone

We compared Pareto frontiers for the representative case of ATP synthesis vs. urea

secretion considering FBA (i.e., mass balance) constraints only and then both FBA and EBA

(i.e., both mass balance and thermodynamic) constraints. Figure 3.7a shows the Pareto frontiers

when hepatocytes are in a glycolysis mode. The addition of EBA constraints generally reduced

the feasible space of the flux distribution, and changed the Pareto frontiers accordingly. For

example, for the representative case of ATP synthesis vs. urea secretion in glycolytic hepatocytes

(shown in Figure 3.7a), the Pareto frontier obtained using both FBA & EBA constraints was

below that obtained using FBA alone. Furthermore, the fluxes obtained using both approaches

were vastly different throughout the Pareto frontier. Figures 3.7b, 3.7c, and 3.7d show the effect

of adding EBA constraints on the Pareto optimal solutions A, B, and C, respectively, and the

corresponding flux values are presented in Table 3.8. In all cases, EBA reduced the feasible

space. It is to be noted that urea secretion (flux 16 on the abscissa) was kept constant to analyze

these differences. As seen in Figures 3.7b, 3.7c and 3.7d, several glycolytic fluxes (2-6) and

catabolic fluxes that produce pyruvate (17, 18 and 19) were changed at points A, B, and C on the

Pareto frontier when adding EBA constraints. On the other hand, there was a marginal difference

in TCA cycle flux (8) at Pareto solution A, and no difference at points B or C. Similarly, when

going from A to C, there was a decreased difference in the uptake of succinyl CoA forming

amino acids (threonine, 71, methionine, 75, and valine, 76). Notably, the difference at point A in

the aspartate production through asparagine (36) first increases with the increased urea secretion,

then the difference decreases significantly at Pareto solution B. Throughout the Pareto frontier



there was a decreased ketone body production (41) when adding EBA constraints. The change in

lipid uptake and lipid storage fluxes when adding EBA constraints became more prominent when

going from point A to point C.

170 
100 20 30 40 50 60 70 80165 a- --) 75-

.160

0150 0 -5-

B I----------- ------- --- ----I'
0 -0 2 ---- -.... ---- -........

J ---. -
... ..

--- --
... .

--. 
.- . . . . . . 2-50CI, --100130 10 15 20 0 - --0 -0 10 20 30 40 50 60 70 80

Reaction fux number Reaction flux number

2 592-50 -- -

140 10 20 30 40 50 60 70 80 -10- 10 20 30 40 50 60 70 80
Reaction flux number Reaction flux number



lactate (50), glucose (53), and glutamate (61) measurements. The Pareto curve M2 (shown as

blue squares) was obtained after adding to M1 measurements, glutamine (79) and tyrosine (81).

The Pareto curve M3 (shown as yellow triangles) is obtained after adding to M2 measured

fluxes, alanine (66), serine (67), and glycine (68) flux measurments. The Pareto curve M4

(shown as green stars) is obtained after adding to M3 measured fluxes, methionine flux

measurement (75). Experimental data for gluconeogenesis and glycolysis were taken from (14)

and (16), respectively.
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Figure 3.8: Effect of adding flux measurements to Pareto frontiers. Measurements were incorporated as equality
constraints in the stoichiometric matrix. Four different hi-objective cases are shown in panels a-d, respectively:
albumin vs. urea synthesis (gluconeogenesis mode), ATP vs. albumin synthesis (gluconeogenesis mode), glutathione
vs. urea synthesis (gluconeogenesis mode), and ATP vs. urea synthesis (glycolysis mode). The control case has no
measurements (MO in black). The Pareto curve MI (shown as red diamonds) is obtained after adding measured flux
50 (value of 1.0815 and 1.08 for gluconeogenesis and glycolysis, respectively) + flux 53 (value of 1.1472 and 0.15
for gluconeogenesis and glycolysis, respectively) + flux 61 (value of -0.3789 and -0.38 for gluconeogenesis and
glycolysis, respectively). The Pareto curve M2 (shown as blue squares) is obtained after adding to MI measured +
flux 79 (value of 1.8962 and 1.9 for gluconeogenesis and glycolysis, respectively) + flux 81 (value of 0.0319 and
0.032 for gluconeogenesis and glycolysis, respectively). The Pareto curve M3 (shown as yellow triangles) is
obtained after adding to M2 measured flux 66 (value of 0.0316 and 0.032 for gluconeogenesis and glycolysis,
respectively) + flux 67 (value of -0.2292 and -0.23 for gluconeogenesis and glycolysis, respectively) + flux 68

(value of 0.1368 and 0.14 for gluconeogenesis and glycolysis, respectively). The Pareto curve M4 (shown as green
stars) is obtained after adding to M3 measured flux 75 (value of 0.0978 and 0.098 for gluconeogenesis and
glycolysis, respectively). Experimental data for gluconeogenesis and glycolysis were taken from; Chan et al., 2003b;
Chan et al., 2002, respectively.
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Figure 3.9: Distribution of optimal flux changes between the anchor points of the system
(MO) and with the maximum number of constraints (M4) for the bi-objective system
albumin vs. urea (gluconeogenesis mode). c) and d): albumin vs. ATP (gluconeogenesis

solved without constraints
of Figure 3.8. a) and b):
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We looked at four representative bi-objective sets (albumin vs. urea; ATP vs. albumin;

glutathione vs. urea; and ATP vs. urea) to ascertain the changes in Pareto frontiers. The three

first sets are in gluconeogenic mode and the last one is in glycolytic mode.

Figure 3.8a show Pareto frontiers for albumin synthesis vs. urea secretion and Figure 3.8b

shows the Pareto frontiers for ATP synthesis vs. albumin synthesis. In both cases, as more

measured data are included, the anchor points of the Pareto frontiers move towards the center

and eventually become a single point solution. Figure 3.8c shows that Pareto frontiers for

glutathione synthesis vs. urea secretion, in the higher glutathione synthesis range did not change

when including measurement sets Ml and M2, although they did when including measurement

sets M3 and M4. Figure 3.8d shows the Pareto frontiers for ATP synthesis vs. urea secretion.

Pareto frontiers were lowered when adding each measurement set. The corresponding fluxes for

these four cases are presented in Table 3.9. Figures 3.9a-b, 3.9c-d, 3.9e-f, and 3.9g-h show the

distribution of flux changes for the cases shown in Figures 3.8a, 3.8b, 3.8c, and 3.8d,

respectively.

When considering the albumin vs. urea case (Figure 3.8a), the change in Pareto curve at

high urea secretion was associated with many differences in fluxes (Figure 3.9a), including a

moderate decrease in gluconeogenic fluxes (2-4), a moderate increase in TCA cycle flux (8), a

decrease in urea secretion (16) and P-oxidation (40), an increase in electron transport (43, 44),

lipid uptake (52), lipid stored (57), albumin (47), NADPH (46) and GSH (48) synthesis. The

change in Pareto curve at high albumin synthesis also caused flux changes (Figure 3.9b),

including a moderate increase in gluconeogenic fluxes (2-6), TCA cycle fluxes (8, 13), urea

cycle fluxes (14, 15) and urea secretion (16), a significant increase in P-oxidation (40), electron

transport (43, 44), lipid storage (57), NADPH (46) and GSH (48) synthesis, significant decrease

in lipid uptake (52) and albumin synthesis (47). Additionally, there was a decrease in uptake of

both gluconeogenic and ketogenic amino acids.

When considering the ATP vs. albumin case (Figure 3.8b), incorporation of

measurements also changed the Pareto curve. At high albumin secretion, the associated flux

differences (Figure 3.9c) included a significant increase in gluconeogenic fluxes (2-4), TCA

cycle flux (8), and GSH (48) synthesis, a moderate increase in P-oxidation (40), a decrease in

urea cycle fluxes (14, 15), urea secretion (16), lipid uptake (52) and albumin (47), a moderate

decrease in electron transport (44) and NADPH (46) synthesis. At the anchor point of ATP
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generation on the Pareto curve, flux changes caused by introduction of the measurements (Figure

3.9d) significantly increased gluconeogenesis fluxes (2-6), urea cycle fluxes (14, 15), and GSH

(48) synthesis, moderately increased TCA cycle flux (8), urea secretion (16), and P-oxidation

(40), decreased electron transport (44), lipid uptake (52), albumin synthesis (47), and NADPH

(46). Additionally, there was decreased uptake of both gluconeogenic and ketogenic amino acids.

The effect of measurements on the Pareto curve of glutathione vs. urea are shown in Figure 3.8c.

The major differences in fluxes at the anchor point of high urea secretion (Figure 3.9e) included

a significant increase in albumin (47), a moderate increase in TCA cycle flux (8), electron

transport (43, 44), lipid uptake (52), and NADPH (46), a decrease in urea secretion (16), a

moderate decrease in gluconeogenic fluxes (2-6), P-oxidation (40), and glutathione synthesis

(48). As seen earlier, the increased albumin synthesis necessitates significant increase in the

uptake of both gluconeogenic and ketogenic amino acids. The major differences in fluxes at the

anchor point of high glutathione synthesis (Figure 10f) included a moderate increase in TCA

cycle flux (8) and lipid storage, a significant increase in urea cycle fluxes (14, 15), a decrease in

electron transport (43, 44), a moderate decrease in urea secretion (16) and lipid uptake (52), a

significant decrease in P-oxidation (40) and glutathione synthesis (48).

The effect of measurements on the Pareto curve of urea secretion vs. ATP generation (in

glycolysis mode) are shown in Figure 3.8d. The major differences in fluxes at the anchor points

of high urea secretion and ATP generations are shown in Figures 3.9g and 3.9h, respectively. We

found that addition of the measurements did not change glycolysis fluxes (1-5) at either anchor

point. On the other hand, at the anchor point of high urea secretion (Figure 3.9g), there was a

significant decrease in urea cycle fluxes (14, 15), urea secretion (16), NADPH (46) and GSH

synthesis (48), a moderate decrease in electron transport (43), a significant increase in lipid

uptake (52), lipid storage (57), and albumin (47). The increased albumin synthesis necessitates

the increased uptake of gluconeogenic amino acids. The major differences in fluxes at the anchor

point of high ATP generation (Figure 3.9h) included a moderate decrease in TCA cycle flux (8),

a significant increase in urea cycle fluxes (14, 15) and albumin synthesis (47), a moderate

increase in urea secretion (16), a decrease in electron transport (44), and a significant decrease in

NADPH and GSH synthesis. Additionally, there was a significant increase in the uptake of both

gluconeogenic and ketogenic amino acids.



3.5 DISCUssIoN

Mammalian cells exhibit various phenotypic states including proliferation, differentiation,

etc. Metabolic flux distributions in these various states must obey constraints imposed by the

environment, reaction stoichiometry, thermodynamics, and laws of conservation. Mathematically

these constraints translate into a reduction of the feasible space for the flux distribution. Most of

the literature on constraints-based metabolic network optimality deals with unicellular organisms

where the main objective is growth of biomass (Edwards and Palsson, 2000a; Edwards and

Palsson, 2000b). In mammalian systems, various phenotypes are encountered, some of which

exhibit proliferation, and others expression of organ-specific or "differentiated" functions.

Several objectives should be considered before making any conclusions about the optimal states

of such systems. Often times there is a competition between the various objectives because they

are differentially altered by the constraints. This paradigm of conflicting objectives is addressed

herein using a class of multi-objective optimality called Pareto optimality. Furthermore, we used

the Normal Constraint method, which yields any Pareto point in the feasible objective space,

guarantees an even distribution of the Pareto frontier, and is insensitive to design objective

scaling. Combining these concepts with FBA and EBA, we developed a framework called

NCEFBA, which we applied to the specific case of cultured hepatocytes.

Hepatocytes are the key cellular component in BAL devices. The ability to optimize

hepatocellular metabolism is important to maximize the clinical efficacy of the BAL, and

increasing the function per cell may help reduce the number of hepatocytes needed in the device.

Hepatocytes express various liver-specific functions that require common substrates, such as

glucose, amino acids, and so on. Thus, it is expected that increasing one function (for instance,

albumin synthesis) will decrease another (for example, urea secretion). In order to systematically

investigate the tradeoffs between the various hepatocellular functions, we used NCEFBA. More

specifically, we investigated the interactions among five key hepatocyte metabolic functions,

namely albumin synthesis, urea secretion, glutathione synthesis, NADPH synthesis, and ATP

generation. These analyses were carried out first in gluconeogenic hepatocytes (Figure 3.3) and

then glycolytic hepatocytes (Figure 3.5).

Using NCEFBA, we observed the Pareto optimality between various liver specific

functions. Some of the representative bi-objective combinations were shown in this section.

Here, the implementation was done for several biobjective combinations in order to develop a
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suitable framework for designing a compartmental BAL device that can perform all essential

liver-specific functions. This BAL device could have several individual bioreactor modules

interconnected in series and each individual bioreactor could be designed based on the various

combinations of liver specific Pareto optimal solutions. The idea here will be to obtain an

optimal BAL system that can exhibit very high and stable levels of key liver-specific functions

and thus translate into a proportional reduction of required cell mass and total perfusion volume

of the bioreactor required for a given processing capacity. The six combinations of liver-specific

functions for both gluconeogenic hepatocytes and glycolytic hepatocytes were analyzed to obtain

a global Pareto optimal solution with respect to each liver specific function in BAL assembly.

Table 3.10 shows the flux values for these solutions at few representative Pareto optimal

solutions A, B, C, D, E and F for both gluconeogenic and glycolytic hepatocytes of Figure 3.3

and Figure 3.5. Based on the results obtained, to design a BAL assembly system that provides

higher liver specific functions in gluconeogenic mode, one option could be to operate five

different bioreactors in series at H, G, F, E and D points, respectively from Figure 3.3. If the five

reactors are operated at these points then the total fluxes can be calculated by summing up the

individual fluxes at these points. For albumin, urea, glutathione and NADPH synthesis these

values are 0.281, 107.4, 58.31, and 8.67, respectively. On the other hand, if the reactor assembly

is just operated at the equal preference point of E then the total fluxes of albumin, urea,

glutathione and NADPH synthesis will be 0.08, 98.76, 72.1, and 14.93, respectively. This

indicates that the variable operating condition BAL will produce overall higher albumin and urea

synthesis compared to the case where assembly is just operated at point E condition. It is to be

noted that glutathione and NADPH synthesis in variable operating condition reactor is lower

than that if assembly is operated at point E alone. This could be tolerable because of higher

priority to attain high albumin and urea synthesis. However, if there is a situation where there is

a higher demand of ATP (because of stress and mitochondrial dysfunction) BAL system for

gluconeogenic mode could be designed for H, G, J, K and L points, resepectively from Figure 4.

In glycolytic mode of BAL operation the preferred combination of reactor operations could be H,

G, C, D, and F points, resepectively from Figure 3.5. If the five bioreactors are operated at these

points then the total fluxes of albumin, urea, glutathione and NADPH synthesis are 0.283, 93.48,

57.88, and 15.13, respectively. On the other hand, if the reactor assembly is just operated at the

equal preference point of C then the total fluxes of albumin, urea, glutathione and NADPH
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synthesis are 0.06, 72.21, 72.02, and 10.32, respectively. As seen earlier for gluconeogenic

hepatocytes, we see also in glycolytic hepatocytes that the variable operating condition BAL will

produce in overall higher albumin, urea and NADPH synthesis compared to the case where

assembly is operated at point C condition. Again, if there is a situation demanding higher energy

production BAL system for glycolytic mode could be H, G, I, K and L point, respectively from

Figure 3.5.

Table 7: Objective function flux values for Pareto optimal solutions in Figure 3.3 (for gluconeogenic mode) and
Figure 3.5 (for gly colysis mode). The detailed flux values are provided in Table 3.6 and Table 3.7

OBJECTIVES A B C D E F G H I J K L

GLUCONEOGENESIS

UREA 29.7685 34.56 10.431 10.595 19.752 12.454 30.13 34.465 2.8071 2.601 11.516 33.769

NADPH 0.47 0.53 1.414 0.98 2.985 2.786 1.091 0.825 1.134 1.411 1.008 0.945

ALBUMIN 0.136 0.0126 0.011 0.1296 0.016 0.135 0.00001 0.00001 0.0992 0.139 0.0832 0.01136

GSH 6.837 8.79 14.427 9.585 14.4212 9.345 14.647 10.312 0.083 0.001 1.483 9.395

GLYCOLYSIS

UREA 26.717 29.365 14.441 14.388 12.323 9.978 25.304 29.368 8.695 6.28 12.264 28.234

NADPH 1.066 1.098 2.063 1.702 7.443 7.126 2.16 2.077 0.654 0.472 0.456 0.51

ALBUMIN 0.131 0.02 0.012 0.1304 0.0131 0.137 0.00001 0.004 0.0232 0.133 0.0017 0.00001

GSH 5.226 9.175 14.404 9.549 14.36 9.276 14.473 10.173 6.614 1.296 7.007 9.909

In conclusion, the NCEFBA platform is a useful tool for optimality analysis of large scale

metabolic networks that are bound to possess multi-objective Pareto optimal solutions. This

technique enables the systematic identification of tradeoff situations between various metabolic

objectives that characterize a particular cellular phenotype. The addition of FBA to EBA

constraints ensures that thermodynamically feasible solutions are obtained. Furthermore,

experimental flux data can be easily incorporated into the analysis, which further reduces the

feasible space of fluxes. Although the NCEFBA approach described here was applied to the

specific case of hepatocellular metabolism, it can be readily used on any large-scale metabolic

network. This study highlights how Pareto optimal solutions may contribute to operating BAL

devices, alter the metabolic states of hepatocytes, achieve the desired range of objectives and has

relevance for understanding the impact of environmental stress, inducers, hormones and

supplements on cellular metabolism.
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4 REGULATORY TRANSCRIPTIONAL NETWORK IN EMBRYONIC STEM

CELLS

4.1 BACKGROUND

Embryonic stem cells (ESCs) are pluripotent because they can give rise to cells derived from all

three germ layers. ESCs are considered a potential source of cells for human disease therapies due

to their limitless capacity for self-renewal and proliferation, and their ability to differentiate into

all major cell lineages. Octamer-4 (Oct4), Sox2 and Nanog are important markers of

pluripotency, expressed by primitive embryonic cells both in vivo and in vitro. Oct4 and Nanog

expression is downregulated during early differentiation. In embryonic stem cells (ESCs), the

stem cell-ness is determined by the expression of three major transcription factors: Oct4, Sox2

and Nanog (Chickarmane et al., 2006).

Stem Cell Box

Regulation of
TG's Box

Figure 4.1: The core transcriptional network of ES cells (adapted from Chickarmane et al, 2006).

As seen in Figure 4.1, the signals A+ and A. positively and negatively regulate Oct4 and

Sox2, expression, respectively, whereas signals B+ and B. positively and negatively regulate
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Nanog expression. Oct4 and Sox2 are activated by a external signal A+ which are different for

murine (A+ can be LIF or BMP4) and human (A+ can be bFGF, Activin A and Noggin) systems.

In both murine and human ESCs, the wnt pathway is important in upregulating Oct4 and Sox2

expression. As seen in Figure 4.1, the transcriptional network loops involved in pluripotent and

differentiated state of ESCs is divided into two separate hierarchical type networks "stem cell

box" and "target gene regulation box". In stem cell box, because of an external signal A+/A_,

there is a transcription of Oct4 and Sox2 transcription factors which further leads to the

formation of Oct4-Sox2 complex that in turn binds on the promoter regions of both Oct4 and

Sox2 and thus, lead to a positive feedback regulatory network (Figure 4.1). In principle, there is

also a signal A. which represses both Oct4 and Sox2 and the subsequent transcription of Nanog.

The external signal B+/B_ (B. could be BMP4 in human ES cells) acts as an activator/repressor of

Nanog. In addition, the Oct4-Sox2 (OS) complex promotes the transcription of Nanog which

upregulates the transcription of Oct4, Sox2, and itself, thus forming a more complex self-

regulatory and positive feedback network loop defined as the stem cell box. Furthermore, the

activation of Oct4 and Sox2 by binding of Nanog on the promoter region of Oct4 and Sox2

necessitates the initial binding of Oct4-Sox2 on each of their promoters. As seen in the target

gene regulation box, during differentiation, Nanog acts as the repressor on the target genes for

differentiation. However, since the formation of the OS complex is required first, this action is

less effective compared to the direct effect of B_ on Nanog. Additionally, there may also be a

signal B+ which externally upregulates the expression of Nanog. However, since the described

mechanism requires Oct4 and Sox2 binding to recruit Nanog, this mechanism is not very

effective. Then, signal A+ will activate the system and B. will deactivate it.

It is well known that Oct4, Sox2 and Nanog regulate the expression of many other genes,

which in turn are transcription factors responsible for either maintaining the stem cell-ness i.e.

pluripotent cellular state or the differentiation into all the three embryonic germ layers

(endoderm, mesoderm and ectoderm). As seen in Figure 4.1, this network is referred as the

regulation of target genes box. The individual effect of Oct4 and Sox2 on the target genes is here

modeled by the single interaction of the complex Oct4-Sox2. By isolating this box from the

external signals A+ and B-, it can be seen that Oct4-Sox2 regulates Nanog expression and both

regulate the target genes responsible for pluripotency and differentiation. This three-node

architecture is the well known Feed Forward Loop (FFL). The two possible interactions
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(activation or repression) from the three nodes lead to 8 combinations that can be divided into

Coherent and Incoherent. In the Coherent-Type FFL, the direct interaction from the master gene

(in current case Oct4-Sox2) to the target gene is same as the indirect interaction through the

intermediate transcription factor (in current case Nanog). The opposite is true for the Incoherent-

Type FFL. The classification of the FFL is seen in Figure 4.2A (Mangan and Alon, 2003). One

possible interaction between Oct4-Sox2, Nanog and the target genes in the regulation of target

genes box is a Coherent-Type motif. As shown in Figure 4.2B, the stem cell target genes (SC)

are being activated by both Oct4-Sox2 (OS) and Nanog (N) as a Coherent Type-i FFL, and the

differentiation target genes (D) are being repressed by both OS and N as a Coherent Type-3 FFL.

Figure 4.2C shows an Incoherent Type-1 FFL for these transcription factors, Nanog being a

weak repressor for the stem cell-ness target genes. It is not known, which mechanism is

dominating for maintenance of pluripotency or differentiated state. In this study, we propose a

Pareto-optimal transcriptional regulatory network framework to elucidate and predict the most

likely interaction between these transcription factors for maintenance of stem cell-ness and

differentiated state.

A. 1 2 3 4 B. OS S

c X X X X N N
0

E y y y y SCH 1, I I 

H Y Y Y Y N N

E -Z -1 Z --- C3 Z "-Z D
N X XS
T I1 I_

Figure 4.2: The Feed Forward Loop (FFL). A) Classification of the FFL in Coherent-Types 1-4 and Incoherent-
Types 1-4. B) Coherent interaction between Oct4-Sox2 (OS), Nanog (N) and the target genes. For stem cellness

(SC) and differentiation (D), Coherent Type-1 and Coherent Type-3 are assumed. C) Incoherent interaction between

Oct4-Sox2 (OS), Nanog (N) and the target genes. For both stem cellness (SC) and differentiation (D), Incoherent

Type-i is assumed. However, weak repression of Nanog is assumed for the pluripotent state.
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4.1.1 Mathematical Modeling

The presented model (Chickarmane et al., 2006), is based on the Shea-Ackers formalism (Shea

and Ackers, 1985):

General Shea-Ackers Formulation

In general, the Michaelis-Menten approach assumes binding of the TFs in the promoter

region of gene Z at thermodynamic equilibrium and that the total transcription rate is

proportional to the concentration of DNA sites bound by RNA polymerase. Let us assume that

the translation and transcription activity of protein Z is regulated by NA activation TFs (X), NR

repressive TFs (XJ) and RNA polymerase (R), with N = NA + NR. In a competitive binding XfA,

XJR, or R can bind a free DNA site in the promoter region Dz for transcription of protein Z,

forming a transcription factor-DNA site complex XjDz: Xj + Dz <-- XjDz, where Xj represents

either X, XP, or R. Let KzxJ be the association equilibrium constant of this step. Then, at

thermodynamic equilibrium:

K1Zx [Xj][Dz] = [XjDz] (4.1)

If Xj is an activator (Xj = X), then RNA polymerase (R) is recruited by the activator

ZX
XA bound to Dz: R + XfDz <- RX jDz. If Kz2 is the association equilibrium constant of this

reaction, then at thermodynamic equilibrium:

K2 X[R][XDz ] = [RX/ Dz] (4.2)

If Xj is a repressor for the expression of Z (Xj = XP), then RNA polymerase is not bound

and translation does not occur. The total number of sites in the promoter region for transcription

of Z can be expressed as follows:

[Dz]tot =

[Dz] + [RDz] +

+ =[XDzN [RX. Dz] = [Dz] 1+ KfR[R] + ZK' [X]+ KZXJ[R][X])

(4.3)
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As mentioned, the transcription rate (TR) of protein Z is proportional to the total number

of sites bound by RNA polymerase TR = kz([XoDz] + >Li[RXADz]), with kz being the

proportionality constant. Using Equatios (4.1)-(4.3), it can be shown that:

ZRNA ZX ZX
rk[DZ]tot[R] (K1ZR NAK ZX ZX A

TR = [R] KZX ZX + (4.4)

By defining the following variables, 1rZR = kz[Dz]tot[R]Kz R,

J J ZR KZR ,zxj[R] and bZxI=azx1= kz[Dz]tot[R]KLzxZR = K [R], bzxf = Kzx + K2 [], and

ZX
K , the transcription rate of protein of Z can be expressed as:

ZR NA ZX [X ]

TR = j=1 a (4.5)
+zR+NA ZX' A NR ZX

1y ZR b [X bzx [XJ]

The Stem Cell Box

The dynamic equations that model this box are:

d[O] _ i + a, [A,]+ a 2 [OS] + a3 [OS] [N] a,[O]- kcO][S]+ k2OS] (4.6)

dt 1+ y, + b, [A+]+ b2[OS] + b3[OS][N]

d[S] rl2 + [A+]+ c 2 [OS] + c 3 [OS] [N] a 2 [S]- k [0][S]+k 2C[OS] (4.7)

dt 1+7 2 +d,[A+]+d 2 [OS]+d 3[OS][N]

d[OS] = k, [O][S]- k2C [OS] - k3C[OS] (4.8)
dt

d[N]_ 7 3 + e,[OS] + e2[OS][N] a [N] (4.9)
dt 1 +7 3 

+ f,1 [OS] + f 2[OS][N]+ f 3 [B_]

where [O]: concentration of Oct4, [S]: concentration of Sox2, [OS]: concentration of Oct4-Sox2,

[N]: concentration of Nanog. Here, a ,b, , c, d,, e, and f are constants related to the free energies

of binding of transcription factors to the operator regions of Oct4, Sox2, and Nanog. Finally, i,,

y,, denote the basal transcription rates paramters, a, degradation rates, and k,c the kinetic

constants (see Section 4.2.1)
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The Regulation of Target Genes Box

For the Incoherent-Type FFL motif, the equations describing the concentrations of the

target genes for both self-renewal (SC) and differentiation (D) are:

d[TG] 1 + O4 + g h[OS] - a4[TG], with TG = {SC, D} (4.10)
dt 1+74 +h,[OS] + h2[OS][N]

where [TG] is the concentration of the target genes for either self-renewal or differentiation, and

g,, hi, are constants related to the free energies of binding of transcription factors to the operator

regions of Oct4-Sox2, and Nanog.

For the Coherent-Type FFL motif, the equations describing the concentrations of the

target genes for self-renewal (SC) and differentiation (D) are:

d[SC] _ 75 + m, [OS] + m2 [OS][N] _a [SC] (4.11)

dt 1+75 + n,[OS]+ n2[OS][N]

d[D] 6 6- [D ]  (4.12)

dt 1 + 76+ q1 [OS] + q2[OS][N]

where m,, n,, q,, are constants related to the free energies of binding of transcription factors to

the operator regions of Oct4-Sox2, and Nanog.

4.1.2 Steady State Responses

At steady state, Equations (4.6)-(4.12) describe a nonlinear algebraic system which

requires numerical solutions with concentrations of A+ and B as inputs. This concentration

dependence is shown in Figure 4.3. As seen in the figure, the presented model presents a bistable

switch behavior with respect to the input signal A+. With the increase in concentration of A+,

there is an increase in the transcription rates of Oct4 and Sox2, with a subsequent increase in

formation of Oct4-Sox2 complex. The increased transcription of OS complex further accelerates

the transcription of Oct4 and Sox2 and resultantly the formation of Oct4-Sox2 complex.

Concomitantly, the increased binding of Oct4-Sox2 on the promoter region of Oct4 and Sox2,

results in the recruitment of Nanog for further transcription of both Oct4 and Sox2 and itself.

This activation of the positive feedback loops suddenly activates the three transcription factors,

turning the stem cell switch in the ON position at some concentration of A+. Noticeably, at the

106



latter concentration of A+, the target genes for differentiation in both Coherent and Incoherent-

Type FFLs are completely OFF and the target genes for self-renewal are completely ON.

30

25
C0

020

S15

810

Signal A+ Signal A+

50 100 150 0 50 100
Signal A+ Signal A+

Signal A+

50

Signal A+

Figure 4.3: Dependence of the transcription factors and target genes on the concentration of A, and B_. First column
shows the concentration of Oct4-Sox2 and Nanog. Second column shows the target genes for differentiation and
self-renewal given by the Incoherent-Type FFL, and the third column shows these target genes obtained by the
Coherent-Type FFL.

In the Incoherent-Type FFL, both target genes for differentiation and pluripotency initially

increase with the increase in concentration of A+. However, at the threshold concentration of A+

at which the system turns ON, the differentiation target genes falls down to the OFF position of

the switch and the pluripotent target genes remain steady at their maximum value. However, in

the Coherent-Type FFL, the differentiation target genes start at their ON position and as the

levels of the external signal A+ increase, their concentration decreases and differentiation genes

are suddenly switched to the OFF position. As seen in the figure, opposite behavior is observed

for the stem cell target genes. This positive feedback also leads to hysteresis in the system. The

threshold concentration of A+ required to turn ON the system is higher than the one required

turning the system OFF as seen in Figure 4.3. It is important to note that as the concentration of
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external signal B. increases, there is a repression of Nanog resulting in its decreased

transcription, which keeps the system in the OFF position. At higher concentrations of B_ the

threshold concentration of A+ is higher for both turning ON and OFF the target genes. When the

concentration of Nanog goes down, the transcription rate of Oct4 and Sox2 also decreases,

leading to reduced formation of Oct4-Sox2 complex. This results in decreased binding of the OS

complex on the promoter region of Oct4 and Sox2, and reduced Nanog recruitment on the

promoter region of Oct4 and Sox2, decelerating further the transcription of all the three

transcription factors. For a fixed concentration of A+, the dependence of the transcription factors

and target genes follows a bistable switch behavior which tends to turn OFF the system with

increase in B_ concentration.

4.2 APPLICATION OF PARETO OPTIMALITY FOR THE PREDICTION OF THE REGULATION OF

TARGET GENES BOX ARCHITECTURE.

As seen in Section 4.1, the external variables A+ and B. regulate the transcription factors in

the stem cell box which in turn modifies the expression of the target genes in the regulation of

target genes box. Since there is a positive feedback, changes in the regulation of transcription

genes box also modifies the expression in the stem cell box, as described by the non-linear

algebraic system given by Equations (4.6)-(4.12). Based on the developmental cell biology

literature and known concepts in embryonic cell stem cell cultures we know that irrespective of

the nature of interaction between Oct4-Sox2, Nanog and the target genes, there is always a

tradeoff between self-renewal and differentiated state, hence, there must exist a Pareto frontier

between self-renewal and differentiation (Figure 4.4). This stems from the fact that in embryonic

and mature cellular systems it has been noticed that there is trade-off between proliferation and

differentiation. Hence, in a proliferative state cells may not be completely differentiated and

likewise for the differentiation state. Consequently, there is a tradeoff between the external

variables that allow the cell to make the decision to go from a pluripotent state to a fully

specialized cell. As expected from the switch-like behavior, if the cell is in the stem cell mode,

the target genes for self renewal must be completely ON and those for the differentiation must be

fully OFF. The opposite is true for the differentiated state in cells. Here, we hypothesize that

cells work in an optimal state which is thermodynamically favorable for the entire system.

108



Therefore, in addition to the expected switch ON-OFF behavior, most favorable network's

Pareto frontier is expected to have a maximal range and should be closest to the utopian points.

This maximal Pareto frontier between differentiation and stem cell genes may also represent the

thermodynamically favorable energetic state of the cell. Hence, we postulate that the network

which provides maximal Pareto frontiers (obtained by maximization of target genes) is

energetically more favorable because of the efficient utilization of energetic resources.

Reulation Pareto Frontier between
differentiation and

A+ of TG Box D . self-renewalStem
Cell Box OS N

[SC]B-

Figure 4.4: Strategy for determination of the Pareto frontier between differentiation and self-renewal target genes.
Dotted-headed arrows in the regulation of target genes box indicate either activation or repression. OS: Oct4-Sox2,
N: Nanog, D: target genes for differentiation, SC: target genes for self-renewal.

The Pareto problem shown in Figure 4.4 can be mathematically expressed as follows:

For Coherent and Incoherent Type FFLs:

Maximize
([SC],[D])

subject to:

f() = 0 (4.13)

XIb <X ub

where f(5) represents the nonlinear equations at steady state given by (3.24)-(3.30) and

5= [[A+] [B_]]T .

Figure 4.5 shows the Pareto frontiers for both Incoherent (Figure 4.5A) and Coherent

(Figure 4.5B) Type FFLs in the regulation of target genes box. As seen in the figure, the Pareto

frontier obtained from the Incoherent case partially turns the switch ON and OFF when the cell is

allowed to move from the pluripotent state ([SC] = 170 and [D] = 60 [nM]) to the differentiated
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mode ([SC] ; 115 and [D] : 75 [nM]). In addition, the expression of B. is constant along the

Pareto frontier at its maximum value, thus constraining the tradeoff region. The opposite

behavior is seen in the coherent case (Figure 4.5B). When the cell is in the pluripotent state

([SC] ; 195 and [D] ; 5 [nM]), the concentration of the stem cell genes are at higher value than

in the incoherent case, and at the same time the differentiation genes are practically OFF. At the

anchor point, the concentration of B_ is nearly zero. As the cell differentiates, B. increases, and

reaches its maximum value when the cell is fully differentiated. At the anchor point, [SC] - 0

and [D] z 100 [nM]. The target genes for differentiation for Coherent type-FFL relation are at

higher value than that in the Incoherent-Type FFL and at the same time self-renewal genes are

nearly zero. Importantly, through Pareto optimal solutions, we can see the switch-like behavior

only in the Coherent case, and thus the most likely architecture of the Regulation of Target

Genes Box is the Coherent-Type 1 FFL for pluripotency and Coherent-Type 3 for differentiation.

TG for stem cells

Figure 4.5: Feasible region (in blue) and Pareto Frontier (in red)
stem cell. A) Incoherent-Type FFL. B) Coherent-Type FFL.

60 80 100 120 140

TG for stem cells

between the target genes for differentiation and

4.3 EXTENSION OF THE TRANSCRIPTION FACTORS TO FoxD3

In addition to the upregulation of Oct4, Sox2 and Nanog during the embryonic cell state,

it has been reported that FoxD3, a forkhead family member D3 transcription factor, is also highly
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expressed in mouse pluripotent cells (Pan et al., 2006). FoxD3 activates Nanog by binding its

promoter region in vivo and forms a negative feedback loop between Oct4 and Nanog. Oct4 has

been recently shown to directly bind the promoter region of Nanog in a concentration dependent

manner, thus modifying the Stem Cell Box shown in Figure 4.6.

TAA

R

I "- _ T

Figure 4.6: The core transcriptional network of ES, including FoxD3 interactions.

Below the steady state concentration, Oct4 activates Nanog and opposite is seen when the

Oct4 concentration is lower than this threshold. On the other hand, FoxD3 activates Nanog to

reduce the effect of repression due to excess Oct4. Then FoxD3 and Nanog enhance Oct4

expression which in turn represses itself and Nanog, leading to a negative feedback regulation

loop to control its own concentration, keeping the Oct4 values at steady state and maintaining ES

cell pluripotent state. The presence of FoxD3 changes the proposed FFL-like architecture for the

regulation of target genes box, leading to a four-node network between Oct4-Sox2, Nanog,

FoxD3 and the target genes for pluripotency and differentiation. Three different combinations
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between activation and repression are proposed in this work for stem-cellness and specialization,

as shown in Table 4.1.

Table 4.1: Proposed regulation of target genes box with FoxD3. Three different activation (A) - repression (R)

logics from 1 to 3 are presented for both self-renewal (SC) and differentiation (D) genes. OS: Oct4-Sox2, N: Nanog,
F: FoxD3. Notice that in SC2 network, Nanog is proposed as a weak repressor (WR).

SCl SC2 SC3 D1  D2 D3

OS A A A R R A

N A WR A R R R

F A A R R A R

-OS KOS-7 -OS OS -OS]
Network N- N-F N-F N-F N-F N-F

I _LI I -D -1D
-SC- -SCJ -SC I D --I D -D

parameter = 0 ------ m2 m3 01, 03 01 03

In the first logic for stem cell target genes (SC1), all the three transcription factors are

activating the genes required for pluripotency, in contrast to the first logic for the differentiation

genes (Dl), where all of them are repressing these genes. SC2 differs from SC1 because of

Nanog being a weak repressor of the final genes, and SC3 has FoxD3 a strong repressor. D2

differs from Dl because of FoxD3 which acts as an activator of the target differentiation genes,

and D3 considers Oct4-Sox2 as an activator. Whether the mechanism responsible for

pluripotency or differentiation follows any of the three proposed logics or combinations thereof

for each of them is not known. Once again, we propose using a Pareto-optimal transcriptional

regulatory network framework to elucidate and predict the most likely interaction between

transcription factor and target genes.

4.3.1 Mass Balance Equations

The mass balance equations for Oct4 and Nanog now include the interaction of FoxD3,

F:
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d[O]
dt

r, + a, [A+ ] + a[OS]+ a3[OS][N] + a4[F]

1+71 +b,[A+]+b 2[OS] + b3[OS][N] + b4[F] +b[O]

(4.14)

d[N] r3+ e1 [OS] + e2 [OS] [N] + e3 [F]+e 4 [O] a3[N] (4.15)
dt 1+ 73 + f [OS] + f 2[OS][N]+ f 3[B]+ f 4[O] + f5 [F]

As the transcription behavior of Nanog by Oct4 is concentration dependent, here we

propose a Gaussian functionality (Figure 4.7) for the free energy of binding of Oct4 in the

promoter region of Nanog, e4. At [O] required for keeping the system in the self-renewal state, e4

is at its maximum value and at this [O] concentration Oct4 behaves as an activator of Nanog. For

higher or lower concentrations, this parameter approaches to zero, and thus Oct4 represses the

transcription of Nanog.

().
0.Q)0

(I,
0.

0.

Figure 4.7: Concentration
promoter region of Nanog.

d[F]
dt

and the general equations for the self-renewal and differentiation target genes are given by:

d[SC] _ 7 + m [OS] + m2 [OS] [N] + m3 [F] _as [SC]  (4.17)

dt 1 + r5 + n, [OS] + n2[OS][N] + n 3[F]
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dependence on Oct4 of the free binding energy of this transcription factor on the

(4.16)

The mass balance equation for FoxD3, F can be written as:

_ 7 +g 1[O]+ g2 [OS][N] _ [F]

1+77 + h, [OS] + h2 [OS][N]



dt 1+ 76 + p[OS] + p2[OS][N]+ p3[F] -

Notice that depending on the proposed activation-repression logic, parameters mi and oi

are zero in Equations (4.17) and (4.18) (Table 4.1).

4.3.2 Steady State Responses

Numerical solutions of the steady state mass balance are shown in Figures 4.8 and 4.9.

Notice that the addition of FoxD3 in the transcription network does not effect the switch-like

behavior and the observed hysteresis presented by (Chickarmane et al., 2006).
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Figure 4.8: Steady state solutions for Oct4 (0), Oct4-Sox2 (OS), Nanog (N) and FoxD3 (F) in the Stem Cell Box.

With the increase in concentration of A+, there is a rapid increase in the concentration of

Oct4 because of the direct effect of A+ in the transcription of these factors. As both levels of

Oct4 and Sox2 (not shown in the figure, but surface similar to Oct4) increase, Oct4-Sox2

complex formation starts initially at a low rate. The increase in the concentration of O-S complex

further allows the recruitment of Nanog in the promoter regions of Oct4 and Sox2, as well as its
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own transcription, accelerating the positive feedback mechanism. As both Oct4 and Nanog are

produced, they further promote the transcription of FoxD3 which in turn increases the

transcription of Oct4, Sox2 and Nanog because of the feedback. At low [Bj], the activation of the

positive feedback loops suddenly moves the system to another steady state at a threshold

concentration of A+, turning ON the switch for the self-renewal target genes and turning OFF the

switch for the differentiation genes, in all the proposed logics, shown in Figure 4.9. When the

system is at the pluripotent state, decreasing [A+] turns OFF all the transcription factors and the

self-renewal target genes, at the same time the differentiation genes are turned ON. However, the

threshold concentration of A+ is lower than the one required moving the system in the opposite

direction, showing the existence of hysteresis. As the concentration of B. increases, it gets harder

to turn ON-OFF the system. Further, as the transcription of Nanog reduces, the effect of the

positive feedback loops is diminished. By reducing the concentration of Nanog, the levels of

Oct4, Sox2, Oct4-Sox2 and FoxD3 decreases, and thus the system moves towards the

differentiated state.
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Figure 4.9: Steady state solutions for the proposed activation-repression logics in the Regulation of Target Genes

Box.

4.3.3 Pareto Optimality for Prediction of Network Architecture

As explained before, the external inputs A+ and B. regulate the transcription in the stem

cell box which in turn modifies the expression of the target genes in the regulation of target
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genes box. The positive feedback allows the interaction between the regulation of transcription

genes box and the stem cell box, as described by the non-linear algebraic equations of the

system. As explained earlier, we again hypothesize existence of a Pareto frontier between self-

renewal and differentiation, independent of the nature of interaction existing between Oct4-Sox2,

Nanog, FoxD3 and the target genes. We again postulate that the cellar systems work in an

optimal manner that must be thermodynamically favorable for the entire system. Clearly, the

most favorable network should present the maximal Pareto surface, which also represents the

favorable energetic state for the cell. Thus, there is a tradeoff between the external inputs that

allow the cell to make the decision to go from a pluripotent state to a fully matured or

differentiated state of the cell. In addition, as expected from the switch-like behavior, if the cell

is in the stem cell mode, the target genes for self renewal must be completely ON and those for

differentiation must be fully OFF. The opposite is true for the differentiated cell. Then, by

maximizing both target genes we postulate that valuable information can be obtained from the

Pareto frontiers.

250
SC1-DI
SC2-DI

200 - SC2-D2
-SCI-D2
- SC3-D2
SSC3-D3

150 - SCI-D3

- SC2-D3
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[SC]

Figure 4.10: Pareto frontiers between self-renewal and differentiation target genes for the proposed activation-
repression logic between Oct4-Sox2, Nanog, FoxD3, and the target genes in the regulation
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From the proposed activation-repression logics, a total of nine combinations between

target genes for self-renewal and differentiation are possible and they are shown in Figure 4.10.

Among these, only three of them follow the switch-like behavior: SC 1-D1, SC2-D1 and SC3-D1.

Using the above mentioned Pareto optimality paradigm, reveals that D1 is the most favorable

logic for the differentiation target genes. In DI, Oct4-Sox2, Nanog and FoxD3 are repressors for

the differentiation target genes. The combination of Dl with any of the proposed logics for the

stem cell state completely turns the genes ON and OFF at the corresponding anchor points.

However, if we assume that the maximal Pareto frontier represents a better energetic state for the

cell, the maximal Pareto frontier (or optimal energetic state) is given by SC1 (which is the case

where Oct4-Sox2, Nanog and FoxD3 are activators for the differentiation target genes). Then, by

applying Pareto optimality in the stem cell system, we can observe the switch-like behavior in

addition to the maximal Pareto frontier for the combination given by SC1 and Dl. For this

reason, the most likely architecture of the Regulation of Target Genes Box will be SC1-DI

combination. If the switch-like behavior is not taken into account and only the maximal Pareto

frontier is used as criteria, then the two highest tradeoff regions are given by SC 1-D2 and SC 1-

D3. Again, SC1 seems to be the optimal network logic for these transcription factors. Since the

Pareto frontiers in SC1-D2 and SC1-D3 overlap, hence, the network architecture logic may

utilize in this case a combination of D2 and D3.

OS] OS] -OS
I I7 I]

N-FN-F + N-F = N-F

-ID- -D -SC

D2 D3 D23
Figure 4.11: New activation-repression logic for the differentiation target genes

Figure 4.11 shows this new proposed logic which we will define as D23. Since, D2 and

D3 both have Nanog as a repressor, hence, we propose D23 as the one in which Oct4-Sox2 and

FoxD3 will act as activators and Nanog as the repressor of the differentiation target genes. Figure

4.12 shows the Pareto frontier between SC1 and D23. This combination indeed results in the
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maximal Pareto frontier which partially turns ON-OFF the system. In this section we showed

that the Pareto optimality concept as a strategy can predict the most likely activation-repression

logic for a given transcription network. The proposed paradigm is based on the hypothesis that

the cellular systems try to maximize expression of target genes with an underlying

thermodynamic basis (for example, entropy or total work). Although this concept is intuitive and

based on physical principles, it requires validation for variety of systems. Thus, a non-

equilibrium transcription network model was further developed .

0 50 100 150 200

[SC]
Figure 4.12: Pareto frontiers between self-renewal and differentiation target genes for the proposed activation-
repression logic between Oct4-Sox2, Nanog, FoxD3, and the target genes in the regulation of target genes box. The
new proposed logic D23 is shown.
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5 KINETIC MODELING OF TRANSCRIPTIONAL REGULATORY NETWORKS

USING CYCLE CONCEPT

5.1 OVERVIEW

This novel strategy to model the translation and transcription process of any protein Z in a

given network not only allows the calculation of the transcription rate but also the estimation of

the energy associated with it, in particular, the computation of the heat dissipation rate (HDR). In

this approach, each individual transcription factor or the combined set of transcription factors (in

case that cooperativity exists) has a cycle associated to it. On the other hand, each cycle is

composed of three steps rodeled as chemical reactions at nonequilibrium steady state (NESS)

which contrasts the basic thermodynamic equilibrium hypothesis in the existing transcriptional

regulatory network (TRN) models. At thermodynamic equilibrium steady state, the net flow (J)

and chemical potential (Apt) associated to each chemical reaction are null. Since the heat

dissipated by each reaction is given by -]J Ay, then at thermodynamic equilibrium the

translation and transcription of protein Z is energy free. However, at NESS the net reaction flow

is different than zero and its direction is given by the sign of the corresponding chemical

potential. If Ap < 0, then J > 0, and vice versa. Hence, the heat dissipated by each chemical

reaction is always positive, -J • Ag > 0. Notice that -j . Ay = 0 if and only if Ag = 0 and J =

0.

5.2 NONEQUILIBRIUM THERMODYNAMICS

Nonequilibrium processes require an external signal flux or driving force to maintain the

system far away from equilibrium. As seen in Figure 5.1A, for the mass transfer process, an

oxygen concentration gradient between air and water is maintained by wind; in the case of

potential energy (Figure 5.1B), external weights can maintain differential nonequilibrium

position; in the heat transfer (Figure 5.1C) processes, an external heat source can disturb the

equilibrium temperature between the surrounding atmosphere and water; in a chemical reaction

(Figure 5.1D), the external reactant flux can drive the reaction system away from equilibrium;

and finally, in an enzymatic cyclic reaction (Figure 5.1E), an external substrate flux can drive the

cycle in a particular direction. These nonequilibrium processes have their steady states
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maintained away from equilibrium because of an external flux and thus, they reach equilibrium

without this driving force.

Equilibrium Non-equilibrium Equilibrium Non-equilibrium
Process Process Process Process

A. Mass Transfer D. Simple Chemical Reaction
k_ J k

A B A --- B
S= k]J I = k ,IBJ = k,I[] J =k jBj
S= J - J -  J =, + -J > 0

= RTn( = 0 First Law of Ag = RT In <0C+' AThermodynamics

JAP = 0 Second Law of Thermodynamics JAl < 0

B. Potential Energy Transfer E. Cyclic Chemical Reaction

A E B A E B-

+2 2

A EA _ _ EB : EA - EB

.1/J, = J = J = 0 Fluxes ., = J = J3 > 0

C.Heat Transfer A, = = Alp, = 0 Chemical Potentials Ali,5A2, Ai <0

HDR = -JjApi = 0 Heat Dissipation HDR = -.ZJApl > 0

T- = EPR- HDR
dt

Enropy change = Entropy Production Rate - Heat Dissipation Rate

In non-equilibrium steady state (NESS):

=0 -- HDR = EPR ) 0

Figure 5.1: Concept of nonequilibrium explained using various physicochemical processes: A) Mass transfer. B)

Potential energy transfer. C) Heat transfer. D) Simple chemical reaction. E) Cyclic chemical reaction. Under

equilibrium conditions in all processes there is no transport flux and hence work done on the system and the entropy

increase of the system is zero. In contrast, in nonequilibrium processes, there is a driving force which maintains the

corresponding nonequilibrium steady states and dictates how far from equilibrium the inlet and outlet states can be

maintained.

The recent surge of interest in nonequilibrium thermodynamics has strikingly and clearly

exposed its role in small-scale systems. Equilibrium systems are generally governed by classical

thermodynamics and have reversible work equal to the Gibbs free energy change at constant
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temperature and pressure. Nonequilibrium steady-state (NESS) analysis generally is used for

irreversible systems and has Gibbs free energy unequal to the work done on system because of

heat/work dissipation and hysteresis in these processes. Recently, rather than classical

thermodynamics, nonequilibrium thermodynamics has been shown to correlate well in

describing behavior of small-scale systems such as biological molecular machines (2-100 nm)

(Qian, 2004) which convert chemical energy into work and RNA folding/unfolding involved in

biological cells by helicases or ribosomes (Liphardt et al., 2002).

In his seminal work, Jarzynski presented a relation currently defined as Jarzynski's

equality (JE):

exp - j = ex( (5.1)
kT kBT

where AG is the free energy difference on going from a state A to state B, and the right hand side

term is the exponential average of infinitesimal nonequilibrium processes. JE allows an

estimation of free energy differences under nonequilibrium conditions. The above relation can

also be rewritten as:

1 = expr_ W-AG) (5.2)

where W - AG = Wds is the dissipated work and provides an estimate of work dissipated for a

nonequilibrium process.

This brings an extension of the second law of thermodynamics and essentially states that

(W,,) _ 0 for a nonequilibrium process and thus, presents the estimation of the dissipated work

for nonequilibrium states or trajectories moved away from equilibrium in terms of free energy

and work. However, most importantly, JE states that the average dissipated work along any

trajectory between states A and B is always greater than zero i.e. (Wd,,) 2 0. Based on JE, we

hypothesized in current work that because of (a) maintenance requirement, (b) nutrient

limitations, and (c) efficient nutrient utilization, biological systems in nature may tend to

minimize this dissipated work. However, it is to be noted that this dissipated work will be

directly proportional to the mass or raw materials utilized in moving from state A to state B.

Hence, we hypothesized that specific dissipation energy which we define in this current work as
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the dissipation normalized to its input mass may serve as an indicator for choosing a trajectory to

move from state A to state B. This conclusion is similar to the one made in ecosystems

development where, among several possible indicators, specific dissipation energy was believed

to be the primary criterion for ecosystem maturity (Odum and Pinkerton, 1955). Taking a step

forward, we further hypothesized that since structural design or pathways in cellular networks

are energy intensive processes, thus, during evolution these designs were converged based on

optimal energetic dissipation criterion. Specifically, a structural design will be chosen or selected

which has minimal specific dissipation energy. To investigate whether energetic cost criterion is

the primary basis for selection of transcriptional motifs we developed a kinetic cyclic

transcriptional regulatory network modeling framework. This allows estimation of heat

dissipation or energetic cost involved in the transcription-translation process. Similar to the

nonequilibrium steady state (NESS) analysis for biochemical reactions (Qian and Beard, 2005),

we developed a novel nonequilibrium thermodynamic kinetic formulation for gene transcription.

The developed framework was used for estimation of heat dissipation rates for both steady state

and dynamic analysis. NESS analysis in biochemical reactions has revealed that chemical

potential of nonequilibrium processes is equivalent to heat dissipated by the systems or work

done on the system which is equivalent to entropy generated by the system under NESS

condition. To address the question of energetic cost involved during transcription we utilized the

second law of thermodynamics which states that for any reaction:

- J -Au0 (5.3)

where J and Au are the net flux and chemical potential energy of any reaction, respectively.

The first law of thermodynamics establishes that the sum of reaction potentials around any cycle

of reactions equals zero. In terms of forward (J ) and backward (J_) reaction fluxes, the

chemical potential is written as AC = RT ln(J- / J), and thus the second law of

thermodynamics can be expressed as

-J.A= -RT(J+- J_)ln(+ 0 (5.4)

which states that the system must dissipate heat and entropy must increase as a result of the work

being done on the system through the external fluxes. For equilibrium systems, this is an equality

since for these systems J = Ac = 0.
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The total heat dissipation rate (HDR) of a multiple reaction system is always positive as

indicated by

HDR = - J , -A 0 (5.5)

Observe that HDR - 0 in the limit as J_ / J -- 1 component-wise while maintaining

J = J+ - J.

(Qian and Beard, 2005) showed that the time change of the total entropy of the system

equals the difference between the entropy production rate (EPR) and the heat dissipation rate

(HDR):

dS
T = EPR -HDR (5.6)

dt

This equation states that, under isothermal conditions, the change of total entropy is

either due to entropy created in the system (source term) or heat leaving the system (sink term)

(Qian and Beard, 2005). In a nonequilibrium steady state (NESS) dS / dt = 0 and thus

HDR = EPR (5.7)

Equation (5.7) is known as the isothermal Clausius equality. Because HDR > 0 (Second

Law of Thermodynamics), EPR 2 0 .

5.3 ACTIVATION OF Z BY X

5.3.1 Mechanism

The mechanism by which the protein Z is transcribed by the transcription factor X can be divided

in a three step process as is shown in Figure 5.2.

Step 1: The transcription factor X binds a free DNA site of the promoter region of Z (Dz ) to

form an occupied DNA site ( Dz):

Dz + X -> Dzx (Reaction 1 -ZX)

If k, [s-1-nM-] and k_, [s-] are the forward and backward kinetic constants, respectively,

then the net flux for this reaction is given by

J, = k7 [Dz ][X] -ke [D ] (5.8)
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and the reaction chemical potential is

kx _( z kl[DD =]WT [D
A lf k[Dz][X] ( Ku[Z][X ]

(5.9)

where 91 [J-K-'-mol-'] is the gas constant, T [K] is the absolute temperature and Kf'x = kf" / k_

[nM'1] is the association equilibrium constant.

A. 2 Dz)B.
DZB 2 RDZB'-B

Activity

B B
Dz  z ZR X Z

X XZ
Transcriptor X
Activity J X

Dzx RDz
Jzx

Figure 5.2: Representation of the activation pathway of protein Z by transcription factor X. A) Detailed mechanism
showing both basal and transcription activity. B) Simplified representation of the cyclic concept.

Step 2: RNA polymerase (R) binds to the occupied DNA site (Dzx) and forms a complex with

this site (RD):

R + Dzx + RDzu (Reaction 2 - ZX)

Let k2, zx [s-l-nM -'] and kZ [s-'] the forward and backward kinetic constants for this

step, respectively. The net flux for this reaction can be written as follows:

J2z = k°ZX [R][Dzx ]- kf [RDx] = k2[Dzx -kef[RD] (5.10)

where k2~ = k 'ZX[R] [s'] is a pseudo-first order kinetic constant. If K = k2X I/ kf is the

association equilibrium constant for this reaction, then the reaction chemical potential is given by

AX = 91T ln k_[DZ ] Tln( K [ (5.11)
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Step 3: Once RNA polymerase is bound, there is a recruitment of the amino acids (AAz )

required to form the protein Z. As a result of this step, transcription of Z occurs, releasing the

RNA polymerase molecule, the free DNA site and the co-activator necessary for this process

(Xz):

RDz + AAz +- R + Dz + X z + Z (Reaction 3 -ZX)

If k3zx = k 3'x[AAz] [S'] and k 3 =k ix[R] [s 'nM-2] are pseudo-first order kinetic

constants, and K zx = k3' / ke [nM2 ] is the association equilibrium constant for this reaction,

then the reaction flux and reaction chemical potential are given by

J3z = kzX[RDz]-ke [Dz ][Xz ][Z] (5.12)

A4ux = 9IT lnn[Dz ] [RDXzZ] (5.13)

The described steps 1, 2 and 3 are represented as a green triangular cycle in Figure 5.2.

An analogous mechanism describes the basal activity (blue cycle in Figure 5.2), in which a basal

transcription factor B also binds the free promoter region of Z, initiating the cycle and further

transcription of Z. Reactions 1 to 3 and equations (5.8) to (5.13) are identical except for the fact

that X is replaced by B in all of them.

5.3.2 Mass Balance Equations

Let J, and a, the external intake flux (defined positive is the flux enters the system and

negative if exits) in [nM-s-'] and the degradation rate in [s-'] of the species i, respectively. Then,

the mass balance is described by the following differential equations:

d[X] -x - ax [X] (5.14)
dt

d[B] zB -a,[B] (5.15)
dt

d[Z] 3ZB z a, [Z] (5.16)
dt

d[XZ] -J + -ax[Xz] (5.17)

dt
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d[Bz = JzB +J a [B ] (5.18)

d[Dz i ] X + J3ZB J jZ _JZB (5.19)
dt

d[Dz] J 2  (5.20)

dt

d[D] = JZB JZB (5.21)
dt

d[RDzl J2 -J3X (5.22)
dt

d[RDZB] 2 JZB ZB (5.23)

dt

In addition to Equations (5.14) to (5.23), the total concentration of DNA sites must be

constant at any time:

[Dz ],o = [Dz] + [D]+[Dz] + [RDz]+[RDzB] (5.24)

5.3.3 General Steady State Solution

By solving Equations (5.19) to (5.23) at steady state, we have

j1 Z" X = J X2 = JC (5.25)

JZB = JZ = z = JZB (5.26)

being Jcx and JcB [nM-s'] the cyclic fluxes for cycle ZX (shown in green in Figure 5.2) and for

cycle ZB (shown in blue in Figure 5.2), respectively. By solving Equations (5.8), (5.10), (5.11)

(and their analogous ones for the basal activity), (5.24) to (5.26), a solution for the mass balance

of the DNA sites can be found. For I = X, B, and number of transcription factors NTF = 2 (basal

and activator), the following auxiliary variables can be defined:

az = kz kz + kzkzI + kzk z  (5.27)

bz" = kz (kz + k3)[I] + kk [Z] [Iz ] (5.28)

c" = kk [I]+ k _zr k I (k 1 + kz )[Z][I z ] (5.29)
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dz = az + bZ + ca  (5.30)

dz = I =X,B - (NTF -1) -azI (5.31)
I=X,B I=X,B

Then, the fractional site concentrations and the cyclic flux are given by:

[Dz] _ a I=X,B (5.32)
[Dz ]ot dz dz

bzI flazI
[Dzj ] J=X,B (533)
[Dz ]tot az dz

c" d"cZl fI Haz-[RDZI] - J=X,B (5.34)
[ Dz ]o, azdz

HaI
J=XB [Dz, k2zb" -kc") (5.35)
a" dz

Notice that when only one cycle is present (for instance, X transcribes in absence of basal

transcription rate), I = X and NTF = 1, then:

dz I= = dz  (5.36)
I=X,B a

[Dz ]= [DZ ,o,

[Dz], ( k ZX+kkZ +k2k3 )
, kZk +k_, k3 +k2"k3 +(k +k_ +k3)k [X]+(k_ +k2 +k_ )k<[Xz][Z]

(5.37)

[D ] = [Dz ]ot
d x

[Dz ro, k (kf +z k3)[X]+ kkzf[Xz][Z]}
kk +k k3 + k2k3 +(k2Y +k_ +k+)kz[X]+(k +k +k_"2)kx [X][Z]

(5.38)
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ZX

[RDzx] = z[Dz ]io

[D zx]o k"kj[X]+ k3(kx +k)Xz][Z]}
k, k +k_, k3 + kk +(k 2 +k +k3X)kzx[X]+(kx +kz + k_)kef [Xz][Z]

(5.39)

c dZX

[Dz]to,(kkzk3Zx[X]+ , kkk3 [Xz][Z])

kk +k_, k3 + k7 k3 +(k + k +k3Z)kz[X] + (ke +k +ke2e)ku[Xz][Z]

(5.40)

For a given concentration of X and B, the steady state concentrations of Z, X z and Bz

can now be found by solving Equations (5.16) to (5.18), but analytical expressions lack of

simplicity. In order to avoid this problem, an approximate solution is presented in the following

section.

5.3.4 Approximate Steady State Solution

Because protein transcription is a highly irreversible process, one can expect that the rate

of the forward reaction in each of the three steps has to be much higher than the rate of the

corresponding backward reaction. This assumption moves the entire thermodynamic analysis

very far from equilibrium and contrasts many other postulated models which equal these rates

leading to thermodynamic equilibrium and null net fluxes. If we assume that the order of

magnitude of the species concentrations is the same, then by taking k17 >> k_" for i = 1, 2, 3,

the net fluxes given by Equations (5.8), (5.10) and (5.13) can be written as

J x kZx [Dz ][X] (5.41)

J.y k 2z [Dx ] (5.42)

J3x 7 k3[RDz ] (5.43)

Analogous equations can be written for the basal activity, by replacing X by B in the

above equations. Recall that even though these reactions are considered highly irreversible, there

is still a finite chemical potential associated to each one and given by Equations (5.9), (5.11) and
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(5.13). As it is already known, the reaction fluxes are equal at steady state. For I = X, B, the

auxiliary variables given by Equations (5.27) to (5.29) can be redefined as follows:

a z, kZlkZ  (5.44)

bz" kzk 3
z [I] (5.45)

c" , kzl k z [I] (5.46)

Equations (5.30) to (5.35) can be used to find the DNA sites and cyclic fluxes:

dz k kk ,kf3 +kf,"kf"kB"B(k2 +k3)[X]+kzk2k3Z (kfB +k3B)[B] (5.47)

Di] k2k3k2kf + k' k Bk3 (kx + k)[X] + kzB kz k3z (kB + kB)[B] (5.47)

[D] kk3 k k[Dz ' (5.48)
z k3"k2'k3 zBk + ,kxk z (kz2 + k3)[ X ] +k+Bk2k3 (kZB +k3)[B][D 2 2 2k 2  2[ (5.50)

k[Zx kZxkBk3ZB[X][Dz ]rot
[Dz [][Dz(5.49)

k2xk3zk2k3ZB + ° k3 2 k'3 .(k2.'Z + k3)[X]+ kZnk2k3Z (kZB + k3B)[ B ]

Sk 2 k3 ko k 3 5 [XB][D ]tot.50)
S kZX[Dk3kk3ZB + k,kZBk3ZB (k +k3z)[X] + kZBk2 k3X (kfB + kzB)[B]

[Rk[] [Dz (5.51)
k2[k3Jk'k3 +kkBk(k + k3 )[X]+kBk2 k3 (kB +kB)[B]

k2 kz3k kzBkB [B][Dz ]tot
[RDZB] + kXz2 .zzxzxz kZBB (5.52)k 3xk zx kzB+ kzx z k3B(kzx + kz)[X] +, , Bkzk3 ,(kz + k zB)[B]

kzx2 k3 k2kBkB3 [X][Dz]tot (5.53)
JCZ k2Z k k zB B + , zk2Bk3zB(k + kX)[X] +kz ZBk xk (k zB + kzB)[B]5.53)

3 "kzk 1zBkzBkB [B][Dz ]o, (5.54)
JZB kr'kx ZB B kX 'ZkBkZB (kZY + k3x)[X] + kZBZx'k3Zx (kZ B + k3ZB)[B]

It is important to observe that Equations (5.44) to (5.54) are only dependent on the

concentrations of X and B. Then, for a given [X] and [B] the partial distribution of the DNA

sites and cyclic fluxes are fully determined.

Let us define Jz as the total transcription rate of protein Z in [nM-s-'], which is the sum

of the transcription rate of Z due to the activity of X, JT, and the basal activity of B, JZB. As

protein Z is being transcribed in the third reaction of the proposed mechanism, then JW = J3ZX

and JzB = jzB. However, it has been shown that at steady state JcX = J3' and JzB = JB . Thus:
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JZ = JTZX + JB = JZX + JZB X B

For I = X, B, we define :

zI = kkf'[Dz]tot , [nM-s-1]

and

KZ = k ' [nM]
k," (k2' + k3) ' [

(5.55)

(5.56)

(5.57)

Then, the cyclic fluxes of ZX and ZB given by Equations (5.53) and (5.54) can be written

as follows:

k2Z k3 [DzI' [X
(k" + k3)

k zkx ) kZB kzxk z(kZB+kZB)kk3 + [X]+ 1 +2 3 [B]
k,z (kz + k3z) k,'k z kZB(ky +k3zx)

kZBk3ZB[Dz]tot [B]
(k 7B +kfB)

kZB kZBI ZX k ZB 3 ZB (kzX + k ZX )k, kB +[B]+ [X]k1ZB (kfZB + k ZBk 2, Zk3V (k +k3 ZB)
(k +k3ZB) (kZB

B" [X]
K zX

KZ + [X]+ [B]

P zR[B]

+ ZB

KZB + [B]+ -[X]

In principle, Jz is a function of both [X] and [B]. However, if the concentration of the

basal activator does not change in the system, then the transcription rate of Z is only a function of

its main activator X. The basal and maximum transcription rates, JZBasal and JZM,' are defined

as the transcription rates when [X] -- 0 and [X] -+ 0, respectively, and their values are given

by Equations (5.60) and (5.61).

Jz 8 ZB[B] (5.60)
T,Basal /

Z B + [B]

Jz = P"Z (5.61)

Notice that JfBasal is constant for a specified [B]. In addition, from Equation (5.56), 8zx can be

conceptually defined as the maximal transcription rate JTMx of protein Z due to the activity of

its transcription factor X. This parameter includes a cooperativity term, erz which deals with

various input logics. In principle, fzx = zxfz where 8z is a common maximal transcription
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its transcription factor X. This parameter includes a cooperativity term, wz which deals with

various input logics. In principle, flzx = zxflz where flz is a common maximal transcription

rate for all the cycles involved in the transcription of Z. Essentially, different P" are obtained

by incorporation of different cooperativity terms in the cycles, represented by w Z. This effect

was previously described by (Buchler et al., 2003) and in general, rtz is low for OR input logic

and high for AND input logics. Moreover, the concentration of X required to reach half of

(JZMa- J§a) known as the activation coefficient Kx is determined by the following

relationship between KcZ and KZB :

Kx = K [B]+ z (5.62)

0.8

0.6 - ---- -------
[B] = 0.02 [nM]

z zX= " = 1 [nM-s-']

0.4
I c'zx= Kz = 0.08 [nM]

J Z = 7[ B] 0.2TBal Z11 +[B]

10-4  10-3 10-2 10-1  100  101 102

K zx [B]+, K )

Figure 5.3: Transcription rate of Z as a function of its activator X. Curve follows a first order Hill's function, with
maximum transcription rate of 1 [nM-s'] and half concentration of 0.1 [nM].
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Figure 5.3 shows the approximate solution for very irreversible reactions far away from

thermodynamic equilibrium. Notice that the transcription rate of Z follows a first order Hill's

function with basal transcription activity:

z z (JMax - JT,Basa)[X] (5.63)
T JZBasal + (5.63)
"T T,Basal Kx + [X]

which is same as the first order Hill's equation.

Since kZ' contains the concentration of amino acids required to form the protein Z, the

following assumption can be made: kZ' >> k2'. Then, for I = Z, B:

S[Dz= k[Dz (5.64)
kzI + kZ' [Dl],o, , 

5

2 3

K z k= k (5.65)
k Z (k Z + k 31) klZ

Because the cyclic fluxes are only a function of X, the close expression for [Z], [X z ]

and [Bz ] can be obtained by solving Equations (5.16) to (5.18):

[ Z]= z J,,asa + ±( ax - J,Zsa, )[X]1 (5.66)
[ Z KX+[X]

[Xzl I1 x+ PZ[X] (5.67)
axz x + [X]+ [zxB]

[Bz] = JBZ + pz[B] 1 (5.68)

z KZ + [B]+ ZY[X]

Finally, for a given [X], the rate of consumption of X (Jx) is obtained by solving

Equation (5.14):

Jx = P [x]zx + a [X] (5.69)

CzX +[X]+ -ZB[B]
IC
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When X transcribes Z in absence of the basal activity ([B]=0, JZ,=Basa =0), then

KX = Kc and

S Bzx [X ]  (5.70)
K + [X]

5.3.5 Energy of Activation

Because these reactions are very irreversible and thus very far apart from chemical

equilibrium, the energy dissipated is high. As the reaction progresses, the rate at which energy is

being produced is expressed by the product between the flux and chemical potential of such

reaction. As no work is being performed by the system, this energy has to equal the heat

dissipated by each reaction in order to satisfy the First Law of the Thermodynamics. Then, for

this system, the total heat dissipation rate HDRz [J-s-1] is given by the addition of the heat

dissipated by each cycle:

HDRz = HDR" +HDRzB _JLA, ZBAI = ii J 'AB (5.71)
i=1 i=1 I=X,B i=1

However, as expressed by Equations (5.25) and (5.26), at steady state:
HDRz = -(JZI Ap,' Z J ' 4' + JI Au) = -Jrz (Au/-z + u A zI ) = -J' Apf' (5.72)

where

Ap c = Ap4Z + A,/z + A2,3' = KT In [Z K2 Z] (5.73)

is defined as the chemical potential of the cycle for I = X, B.

Equations (5.71) to (5.73) are general expressions which can be simplified by using the

approximations presented in Section 5.3.4. When the analytical solutions for very irreversible

reactions are used and there is no external uptake or intake of Z, X z and Bz , then the following

equations are valid:

F KKZB (KZB[X] + Z [B) ] (5.74)AtZI = 93T In X ZB + ZB[X]+ z [B]) [Dz2 .y" (5.74)z

Saz(c Z'c + iZ '[X] + zx[B]) 2  t

where y" = kI-2 , [nM -3] (5.75)
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For I, J=X,B, I J:

z Z Z/ZI[I] K ZX K ZB (p zX ZB [X] + 8zK B [B]) [ 2  ZI

K/ + Kz [X] + K [B] az (KzKB + zB[X] + czx [B])2

(5.76)

If 7y = yZB = Z , then the total heat dissipation rate of the transcription process can be

simplified as follows:

_ K ZB PZXX]+ Zz[B] r K KZB (z KZB [X]+ fzB ZX[B]) 2 .

HDRZ ZB + KZB [X]+ KZ [B] az (KZXKZB + K[X]+ Kz[B]) 2  to

(5.77)

Here, we introduce the concept of specific dissipation energy (SDE), defined by us as the

ratio between the heat dissipation rate to the input mass flux required to keep the system under

NESS conditions:

SDE z  HDRz  (5.78)
Jx

Far from equilibrium, this magnitude can be approximated as:

SDEZ = -KZBp zx [X] + K zx ZB[B]

[X](Kr z" + ax K Z + aKZ[B[X] + axK [B]) (5.79)

9Tln/C (g ZX C ZB [X] +8 [B][D Zt

a z (I /C+ z [X]+ iz [B]) 2

5.4 REPRESSION OF Z BY X

5.4.1 Mechanism

The mechanism by which the protein Z is repressed by the transcription factor X can be

divided in a three step process, similar to the activation case, as shown in Figure 5.4

Step 1: As in the activation case, the transcription factor X binds a free DNA site of the promoter

region of protein Z (D z ) to form an occupied DNA site (Dzx):

Dz + X 4- Dzx (Reaction 1 - ZX)
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Figure 5.4: Representation of the repression pathway of protein Z by transcription factor X. A) Detailed mechanism
showing both basal and repressor activity. B) Simplified representation of the cyclic concept.

If k1 [s'-nM-1] and k_1 [s-1] are the forward and backward kinetic constants, respectively,

then the net flux for this reaction is given by

Jj = k x [Dz ][X]-- kl[Dz ] (5.80)

and the reaction chemical potential is

A kie[Dj r [DDJ
=9 l [D =Tln( KZX [D,] (5.81)

where 91 [J-K-'.mol-'] is the gas constant, T [K] is the absolute temperature and K, = kZ /ke

[nM-'] is the association equilibrium constant.

Step 2: Since X is a repressor, RNA polymerase (R) can not bind to the occupied DNA site

(Dz). In turn, the X-bound site changes its configuration into another energetic state (D,)

Dzx -> Dux (Reaction 2 -ZX)

Let kz [s-1] and ke [s-'] the forward and backward kinetic constants for this step,

respectively. The net flux for this reaction can be written as follows:

J2 = ke [D,] -kf[Dx]  (5.82)

If K2' = k2' /kZ is the association equilibrium constant for this reaction, then the reaction

chemical potential is given by
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APX Q = Tn kk2"x [Dzx

Step 3: In this last step, the activated X-bound site releases the free DNA site and the co-

repressor necessary for this process (X z ). Because RNA polymerase is not bound, there is no

recruitment of amino acids ( AA z ) and transcription of Z does not proceed.

Dj, -> Dz + Xz

If kz" [s-']

(Reaction 3 - ZX)

and k_ [s-'-nM-'] are the forward and backward kinetic constants,

respectively, and K3zx = k x / kz [nM'] is the association equilibrium constant for this reaction,

then the reaction flux and reaction chemical potential are given by

J3" = k3X[D]-kx[Dz][Xz]

A3x = [Dz ][X9z z
K= [D,x]

(5.84)

(5.85)

The described steps 1, 2 and 3 are represented as a red triangular cycle in Figure 5.4. The

basal activity (blue cycle in Figure 5.4), in which a basal transcription factor B binds the free

promoter region of Z, initiating the cycle and further transcription of Z, is described in Section

5.3.

5.4.2 Mass Balance Equations

Let J, and a, the external intake flux (defined positive is the flux enters the system and

negative if exits) in [nMs-'] and the degradation rate in [s'1] of the species i, respectively. Then,

the mass balance is described by the following differential equations:

d[X] J -J -ax [X] (5.86)
dt

_jz -aB[B]d[B] _ J

dt

d[Z] ZB Z - [Z]
dt
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(5.88)

= Tln [D x ]

K2 [Dzx])
(5.83)



d[X] JJ+ -aX [X ] (5.89)
dt 

3

d[B - + J B - z [Bz] (5.90)

d[Dz] JZX+jZ _ JZX_ JZB (5.91)
dt

d[Dzx ] j z (5.92)
dt

d[DzB jB ZB (5.93)
dt

d[D ] jZX JZX (5.94)
dt

d[RDzB] JZB -_ jB (5.95)
dt

Notice that Equation (5.88) differs from Equation (5.16) by eliminating the J term,

since the transcription of Z is only due to the basal activity. Also, Equation (5.94) is analogous to

Equation (5.23) but conceptually Djx is not the same as RDz since RNA polymerase is not

longer recruited by the transcription factor X. All the other mass balance equations are identical

than in the activation case.

In addition to Equations (5.86) to (5.95), the total concentration of DNA sites must be

constant at any time:

[Dz ]tot = [D ] + [D]+ [Dx + [RDzB]  (5.96)

5.4.3 General Steady State Solution

By solving Equations (5.91) to (5.95) at steady state, we have that

J1Z" =JfX =J = J (5.97)

JZ = JfB = 3B = JZB (5.98)

being Jc and jzB [nMs-1'] the cyclic fluxes for cycle ZX (shown in red in Figure 5.4) and for

cycle ZB (shown in blue in Figure 5.4), respectively. By solving Equations (5.80), (5.81), (5.83)

(and their analogous basal activity equations explained in Section 5.3), (5.96) to (5.98), a
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solution for the mass balance of the DNA sites can be found. For I = X, B, and number of

transcription factors NTF = 2 (basal and activator), the following auxiliary variables can be

defined:

azI = kz'k" + k"kf + k, (5.99)

bZI = kz(k + kf')[I]+kfke [Pz [I

c" = kz, kZ[I]+ k_ (ke + kZ')[Pz][Iz ]

dz = aZI + bz" + cZ

(5.100)

(5.101)

(5.102)

(5.103)- (NTF -1) Haz
I=X,B

where [Pz ] =
[Z], if I = B (or I is an activator)

1 , if I = X (or l is a repressor)

Then, the fractional site concentrations and the cyclic flux are given by:

[Dz] a x a _I=x,B

[Dz ]o, dz dz

bZ' nazi
[Dz ] J=X,B

[ Dz ]to azldz

[DO ] _ X a ZB

[Dz lo, dz

[RDzB] _ c z B a zx

[Dz ]to, dz

Has
J = J=X.B [Dz ]to k b k(k I bz Z, 

aZl dz -

For a given concentration of X and B, the steady state concentrations of Z,

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

Xz and Bz

can now be found by solving Equations (5.88) to (5.90), but analytical expressions lack of

simplicity. In order to avoid this problem, an approximate solution is presented in the following

section.
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5.4.4 Approximate Steady State Solution

The analysis presented in section can be used to find the approximated solutions. In fact,

Equations (5.41) to (5.44) are the same with the exception of the term RDzx which has to be

replaced by Djx in the repression scenario.

When X is a repressor, the total transcription rate of Z, JJ [nM-s-1], equals the basal

cyclic flux at steady state:

JT = Jz = Jz = Jz (5.109)

By defining f and cKZ (for I = X, B) as in Equations (5.56) and (5.57), Equations

(5.58) and (5.59) are still valid:

JCZX [X] (5.110)
ZX

KU + [X]+ ZB[B]

8zB[B]
Jz z[ B ]  (5.111)

ZB + [B]+ [X]
K

As [X] -> 0, the basal transcription rate JTBasa follows the same relationship as in the

activation case (the basal transcription rate is independent of the activator or repressor nature of

X):

Jz z [B] (5.112)
T,Basal iZB + [B]

However, as expected, the basal transcription rate corresponds to the maximum

transcription rate. As [X] -> oo, the transcription rate of Z decreases and tends to zero:

JZMn = 0 (5.113)

Moreover, the concentration of X required to reach half of (Jz ,Basal - M) = zasal, Kx

,is determined by the same relationship between KXz and cz" shown in Equation (5.62):

Kx = zx . [B] + (5.114)
/CZ
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Figure 5.5 shows the approximate solution for very irreversible reactions far away from

thermodynamic equilibrium. Notice that the transcription rate of Z follows a first order Hill's

function with basal transcription activity:

Jz
J;Z,Bsal

JZ a= (5.115)
1+ ]

K x

Equations (5.64) to (5.69) are valid mass balance solutions but (5.66) must be changed as

a response to the new mass balance of Z:

1Kx z
Z]= Jz Jx+ ,asaj (5.116)

az pZ + [X]

0.8
Activation curve

0.6 ------------
[B] = 0.02 [nM]

JT

Sz za = 1 [nM-s-']
0.4

S K= KZ = 0.08 [nM]

z - 3Z[B] P 0.2
rarl KZB +[B]

J--- - -z + ] Repression curve

10-4  10-3  10-2 10 100  101 102

Kx zx [B]+z

Figure 5.5: Transcription rate of Z as a function of its repression X. Curve follows a first order Hill's function, with
maximum transcription rate given by the basal activity of 0.2 [nM-s-] and half concentration of 0.1 [nM].
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5.4.5 Energy of Repression

Equations (5.71) and (5.72) express the general concept of the heat dissipation rate hdrz

[J-s] associated with any transcription process and thus they are valid for the repression

scenario. However, the cyclic chemical potential equation given by (5.73) must be changed since

the overall reactions are different:

A.zu' = Az' + Au' +Az I = 9 Tln1 Z [i j (5.117)

where [Pz1=[Z], if I = B (or I is an activator)

1 , if I = X (or l is a repressor)

When the analytical solutions for very irreversible reactions are used and there is no

external uptake or intake of Z, X z and Bz, then the following equations are valid:

Apcx = TI Z z [D z ]ot . x] (5.118)
(,,zx ,zB + zB [X]+ rzax[B])

(ICZ
X )2 iczB fl z [B ][D z ]2°

(

Atz = 9TIn ZB tZot )2ZB (5.119)
c  az ( a + c zB[X]+ iz [B])2

where yzI is defined by Equation (5.75).

The heat dissipation rate of the cycles can be written as follows:

HDR - ZB X] nT1n KK ZB[Dz] 2ot  I] (5.120)
KZ KZ + KczB[X] + cz [B] + zi zB[X]+ i [B])

K zKx 8 ZB[B] n (KZ ) 2 KZB ZB[B][Dz ]2ZB
HDRB TIn z [X] B]) 2  (5.121)

cZI cz + Z [X] + Kzx [B] az(l czB [X]+c zx [B]

Based on Equations (5.120) and (5.121), an analytical expression for the specific

dissipation energy defined by Equation (5.78) can be obtained.

5.5 TRANSCRIPTIONAL REGULATION OF Z BY Two TRANSCRIPTION FACTORS X AND Y

In this section, we will analyze the transcription (activation and repression) of the protein

Z by two transcription factors X and Y.
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5.5.1 Mechanism

The basic mechanism by which two transcription factors activate or repress certain

protein transcription is the same three step process previously described for activation (Section

5.3) and for repression (Section 5.4). Both X and Y (and basal transcription factor B) compete for

a free DNA site in the promoter region of Z no matter whether X (or Y) is an activator or a

repressor. However, in addition to the individual binding to Dz , there is also a joint interaction

between X and Y, so in principle the complex XY may be considered as an extra transcription

factor whose concentration is given by the product between the concentration of X and Y. In

other words, [XY] = [X][Y]. The activator or repressor nature of this complex depends on two

factors:

1. The independent activation - repression nature of X and Y.

2. The logic used to transcribe Z which can be AND or OR.

In order to explain this last concept, let us assume that both X and Y are activators of Z. In

principle, protein Z should be transcribed at least from the individual binding of X and Y.

However, this is not true. If both X and Y are required to transcribed Z (AND logic), then when X

(or Y) bind by its own, transcription cannot proceed. Then, even though X (or Y) is an activator, it

will bind to the site but without releasing Z, acting as a repressor. Therefore, transcription of Z

can only proceed from the XY cycle (and from the basal cycle ZB which by definition is always

transcribing Z), where both are present. This XY complex will bind, recruit RNA polymerase and

finally transcribe (and translate) Z. On the other hand, if only one of the two transcription factors

is required (OR logic) for further formation of Z, then the joint interaction is not longer necessary

and the individual binding as well as the complex XY binding, will lead to formation of Z, as

shown in Figure 5.6, where a simple representation of the four cycles is presented in a general

way. Notice that the cycles and entering and leaving fluxes for ZX, ZY and ZXY are black. The

activator and repressor behaviors are presented as green and red arrows, respectively, according

to the logic and independent nature of X and Y as shown in the right-side tables. When the cycle

ZI behaves as a repressor (for I = X, Y, XY), the transcription flux Jz' is not present (recall

Figure 5.4), and thus the corresponding arrow is not shown in Figure 5.6.
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5.5.2 Mass Balance Equations

The mass balance equations can be easily derived from Sections 5.3 and 5.4, and these

will depend on the transcription logic showed in Figure 5.6 and on the individual behavior of X

and Y. However, no matter the species mass balance, the total DNA sites must be constant at

steady state. Based on the equations presented in Sections 5.3 and 5.4, the general solution for

the fractional site occupation and cyclic sites is given below for I = B, X, Y and XY, and NTF = 4:

X OR Cycle JI J3
ZX I ZY ZX ZY ZY ZX ZY ZXY

x-z Z <-Y '') I I I I
x->z[Y Q 1 1 I T
x--1z*-YQ 1 I 1

x-z*-¥ 55 1 I _

Cycle if J3
ZX ZY ZXY ZX ZY ZXY ZX ZY ZXY

x-z -Y I

x-z -YI

Figure 5.6: Schematic representation of the three-step transcription process of Z by X and Y. Black arrows become
green (activator behavior) or red (repressor behavior) based on the individual activation or repressor nature of X and
Y, and the transcription logic AND or OR. When a transcription factor acts as a repressor, the corresponding output
flux of Z, J3, is no present and not shown in the right-side tables.

az = kk +ekzI +k k "

bZI = k('(kf + k3')[I]+ k'k[' Pz z ]Iz]

c" = kk [I]+k(k + k')[Pzl[Iz]

dz' = a +b" +c'

where [Pz l [Z], if I is an activator

1 , if I is a repressor

(5.122)

(5.123)

(5.124)

(5.125)
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dz fl a z

I=X,B a I=X,B

a Z

[Dz] _ I=B,XY,XY (5.127)
[ Dz ]tot dz

bz' fa z'
[Dz, _ J=B,x,r,xY (5.128)

[Dz ]tot az dz

Node 3 ZI 
a ZI

[Dzd J=,x,r,X (5.129)

[ Dz ]o, a" dz

wher Node 
3  RDz, if I is an activator

where DZ
S D , if I is a repressor

Ha
z

SJ=B,x,Y,XY [Dz]tot (kb -kczi) (5.130)
aZ dz

If the irreversibility condition is satisfied, and the reaction fluxes and chemical potentials

are very far apart from the thermodynamic equilibrium, the cyclic fluxes can be approximated as

follows:

J = [] +I, I t J (5.131)

K ZI " []+ Zi [J]
J=B,X,Y,XY K

where f' and Kcz are defined by Equations (5.56) and (5.57). If k3' >> kz ', then Equations

(5.64) and (5.65) may be used to define these parameters. Figure 5.7 presents the transcription

rate surface for both logics OR and AND, using the approximated solution.

For Boolean input logic OR, Jz = JB + Jc' + JzY + J r . If both basal activity and the

transcription rate from the combined activity of X and Y are zero (i.e., xy' is very low and -Z x

is very high), the expression for the total transcription rate of Z given by Equation (5.131) equals

the relationship given by (Mangan and Alon, 2003):
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Pz [] ,X [Y]

S [X] [Y] [Y] [X]

K
ZX ZY 

Z Y KZX

(5.132)

In Boolean input logic AND, transcription rate of Z is given by the basal activity and the

combined interaction of X and Y: Jz = Jcz + JCZ . If basal activity is zero and KiZr  = X CZY ,

then the expression for Jz (Equation 5.131) also equals the relationship given by (Mangan and

Alon, 2003):

6X [X]

1+
/ZX

z/ [Y]
CZYKZ Y

[Y]
KZY

(5.133)

It is important to mention that, independently of the activation-repression behavior of X,

its input flux is always given by the same equation:

,"8[X]K Z X  K Z  KZX

KZ + [X]+ [B]+ [Y] [X][Y]
K + KX]

+ ax [X]

KXY + [X][Y] + [
KZxY KZxY

B]+ -l [X] -[Y]
K KZY

5.5.3 Energy of Transcription

In general and at steady state, the total heat dissipation rate for this four-cycle system can

be written as follows:

(5.135)HDRz =-
I=B,X,Y,XY

where

(5.136)Apzc' = 9 Tln KIZIKfIK zI [
K K2 K3 []
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Figure 5.7: Transcription rate of Z when two transcription factors X and Y are present. The transcription surfaces
and plane projections are shown for both OR and AND logics in three different cases: activator-activator, activator-
repressor and repressor-repressor. [B] = 0.02 [nM], f = 1 [nM-s"'] and e = 0.08 [nM], for I = B, X, Y, and XY.
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Analytical solutions for HDRz get more complicated and logic dependent in this

scenario, thus numerical solutions are required to calculate this value and the specific dissipation

energy SDEz defined by Equation (5.78). For the latest meaning, Equations (5.131) to (5.136)

must be used.
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6 GLOBAL THERMODYNAMICS CONTROL THE EVOLUTION OF

TRANSCRIPTIONAL REGULATORY NETWORKS

6.1 OVERVIEW

Transcriptional motifs are small regulatory interaction patterns that regulate biological

functions in highly-interacting cellular networks. Recently, attempts have been made to explain

the significance of transcriptional motifs through dynamic function. However, fundamental

questions remain unanswered. Why are certain transcriptional motifs with similar dynamic

function abundant while others occur rarely? What are the criteria for topological generalization

of these motifs into complex networks? Here, we present a novel paradigm that combines

nonequilibrium thermodynamics with multiobjective-optimality for network analysis. This yields

evidence that dissipative energetics is the underlying criteria used during evolution for motif

selection and that biological systems during transcription tend towards evolutionary selection of

subgraphs which produces minimum specific heat dissipation, thereby explaining the

abundance/rare occurrence of some motifs. Significantly, the proposed energetic hypothesis

uncovers a mechanism for environmental selection of motifs, provides explanation for

topological generalization of subgraphs into complex networks and enables identification of new

functionalities for rarely occurring motifs. The presented insights may establish global

thermodynamic analysis as backbone in designing and understanding complex networks systems,

such as metabolic and protein interaction networks.

6.2 INTRODUCTION

Network motifs are the basic building blocks of complex networks and are the smallest

overrepresented repeated subgraphs occurring commonly in both man-made large-scale networks

(such as the world-wide web) and complex natural networks (such as cellular networks) (Alon,

2007; Balazsi et al., 2005; Barabasi, 2005; Milo et al., 2004; Milo et al., 2002; Oikonomou and

Cluzel, 2006). Motifs in transcriptional regulatory networks (TRNs) have numerous functions

that help maintain phenotypes. The three-node feed-forward loop (FFL) motifs: (1) are among

the most abundant and conserved TRNs; (2) are the smallest repeated interacting unit between

genes/operon and transcription factors, and maintain gene regulation; and (3) have dynamical
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functions such as pulse generation, response delays, and noise filtering (Mangan and Alon, 2003;

Mangan et al., 2006). TRN motifs of various types including FFL, BIFAN, and single input

module (SIM) (Figure 6.1) have been found to occur in real networks in organisms such as

Escherichia coli and Saccharomyces cerevisiae.

There has been a continued struggle in understanding the common basis of occurrence of

these motifs in network biology. Insights about the wiring of these network motifs could explain

their evolutionary selection criteria, could uncover the mechanism behind TRNs evolution, and

could decipher the basis behind the coordination of regulatory processes. Intense interest in

explaining the selection of one motif over another and the frequency of occurrence of these

network motifs in various organisms and TRNs has focused attention on the structural and

dynamical basis of these motifs (Barabasi, 2005; Mangan and Alon, 2003; Mangan et al., 2006;

Vazquez et al., 2004). Despite the advances in the identification of the mechanisms for the

natural occurrence of these motifs, structural and dynamical functional bases have failed to

provide an understanding of the properties and the density of occurrence of these motifs for

various network systems. Thus, there has been the lack of a universal basis which can describe

the underlying mechanisms behind the occurrence of these motifs, as well as the way in which

these motifs encode functional information and the way that both the dynamical function and the

topological generalization may evolve (Vazquez et al., 2004).

Here, we postulate that the abundance of certain motifs in a network can be predicted

based on a conceptual framework that integrates nonequilibrium thermodynamics with Pareto-

optimality of the biological functions to be carried out by the motif. We present an energetic-cost

(defined herein as specific dissipation energy) theory that can explain which network motif has a

higher probability of selection under a given environment, as well as the topological

generalization of the subgraphs compared to other circuit designs. Through the developed

framework, we have tried to answer the questions of why evolution converges to the same

network motifs in TRNs and what advantage these selected network motifs offer as compared to

other subgraphs for both steady state and dynamic analyses. Our study also demonstrates that

network analyses using often-ignored energetics enables identification of new functionalities for

rarely occurring motifs.
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TOPOLOGICAL GENERALIZATION
X1  X2

BIFAN X
X Yi, YZ

X
Y-- >Z

Z, Z, X 2 X X
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1Y Y2( YN
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OF MOTIFS
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Z

3-NODE
LAY (1,

--- Y Y" YNX X X

ZI Z2 .- ZP

ESR LAYER
,1,1) LAY (M,N,P)

Figure 6.1 Description of Network Motifs and nonequilibrium TRNs. Patterns of subgraphs and network motifs
found in E. coli and S. cerevisiae networks. FFL is the common three node subgraph, BIFAN is the common four
node subgraph, SR is the common simple regulation motif. Higher order FFLs (multi-output, 2Z-FFL for four node
TRNs) and diamond motif are other common four node subgraphs in these organisms. Also shown are the
topologically generalized networks obtained from some of the commonly found relatively simple network motifs

6.3 DESCRIPTION OF NONEQUILIBRIUM TRNs.

Nonequilibrium processes require an external signal, flux or driving force to maintain the

system far away from equilibrium (Section 5.2). The recent surge of interest in nonequilibrium

thermodynamics has clearly exposed its role in small-scale systems such as biological molecular

machines (Qian, 2004) and RNA folding/unfolding (Bustamante et al., 2005; Liphardt et al.,

2002; Qian and Beard, 2005; Vilar and Rubi, 2001; Yin et al., 1999). Equilibrium systems are

generally governed by classical thermodynamics and have reversible work equal to the Gibbs

free energy change at constant temperature and pressure. Nonequilibrium steady-state (NESS)
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analysis generally is used for irreversible systems and has Gibbs free energy unequal to the work

done on the system because of heat/work dissipation and hysteresis (Rothschild et al., 1980). It

has been shown earlier that the average work dissipated along any trajectory between different

nonequilibrium states is always positive (Chernyak et al., 2005). This result led to the hypothesis

in the current work that heat dissipation normalized to the input mass flux, defined by us as

specific dissipation energy (SDE), should be minimal for biological systems and systems with

lowest SDE should win out during evolutionary selection. Specifically, the dissipated work will

be directly proportional to the input mass flux or raw materials utilized in moving from state A to

state B, hence, normalized heat dissipation may serve as a criterion for choosing a trajectory to

move from state A to state B. There is a striking parallel between the proposed energetic

hypothesis in our work and the one proposed for ecosystem development where they report that

minimization of specific dissipation is a primary criterion for evolution of ecological systems

(Ludovisi et al., 2005). Recent NESS analysis in biochemical reactions (Qian, 2004; Qian and

Beard, 2005) has revealed that the chemical potential of nonequilibrium processes is equivalent

to heat dissipated by the system or work done on the system which in turn is equivalent to

entropy generated by the system under NESS conditions. To evaluate the energetic cost involved

during transcription, we utilized previous NESS analysis and developed a novel nonequilibrium

thermodynamic kinetic formulation for gene transcription (Chapter 4, Figure 6.2). The developed

nonequilibrium cyclic TRN model (a) explicitly deals with as many interactions as required with

no limit on interactions (activation and repression) (Sections 5.3 and 5.4), (b) uses a competitive

binding scheme for Boolean input logics (Section 5.5), (c) can be easily generalized to complex

networks, and (d) provides estimation of the SDE involved for a gene-transcription factor (TF)

combination during a transcription-translation process. Various mechanisms involved during TF-

based protein synthesis (TF-DNA binding energetic (Darling et al., 2000; Jana et al., 2000;

Scarpulla, 2002; Seredick and Spiegelman, 2004; Shea and Ackers, 1985; Whitson et al., 1986),

mRNA binding effecting translation(Liphardt et al., 2002; Walton et al., 2002), structural

changes (Xia et al., 2003), chromatin conformations (Russo et al., 1995), and post-translational

changes (Dzeja and Terzic, 2003)) may contribute towards energetics of cellular regulation.

However, for the sake of simplicity, heat dissipation obtained from the cyclic TRN model

developed here, lumps these steps into reactions having pseudo rate constants which integrate

these steps by factoring appropriate concentrations.

151



CYCLIC TRANSCRIPTIONAL ACTIVATION MODEL

- X Dz Xz step 3: Transcription

( Z and translation of z

Step 1: TF binds ( R proteinZ

the free DNA ( translation ,'
promoter region D RD co- mRNA

+j ,'transcription

'  Step 2: RNA polymerase i gene Z

binds the TF-DNA complex
D DNA R"7 J 2, AI-2 Dz J3 , A 3

Promoter Gene Z poeaRNA DNA , (_7I .

polymerase

In non-equilibrium steady state (NESS):

Fluxes: Jl = J, = J 3 > 0 Chemical Potentials: Ap,, Ap 2, Ap3 < 0

Heat Dissipation Rate: HDR = - (JtApI + J Ap 2 + J3Ap 3) > 0

HDR
Specific Dissipation Energy: SDE =

Jx

Figure 6.2: Nonequilibrium representation of a cyclic transcriptional activation schematic and estimation of its

dissipative energetic (Chapter 4).

6.4 HYPOTHESIS: SPECIFIC DISSIPATION ENERGY SHOULD BE MINIMAL FOR BIOLOGICAL

SYSTEMS UNDER OPTIMAL CONDITIONS.

We developed a Pareto thermodynamic criterion that couples the nonequilibrium

thermodynamic analysis for TRNs with Pareto-optimal solutions for attaining biological

functions of a motif (see Methods, Section 6.10.1). Cellular systems perform an array of

regulatory, homeostatic, and phenotypic functions thus: they exhibit tradeoff between

proliferation and differentiation (Nagrath et al., 2007), cellular functions and growth (Dekel and

Alon, 2005; Kalisky et al., 2007; Zaslaver et al., 2006), and cellular functions and robustness

(Savageau and Freter, 1979). Therefore, a multiobjective optimal approach (where tradeoff

between several objectives has to be attained simultaneously) is necessary when seeking optimal
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functional analysis of these systems (Nagrath et al., 2007). A multiobjective solution is said to be

Pareto-optimal if there are no other solutions that can better satisfy all of the objectives

simultaneously (Sections 2.3.4 and 3.3.3). Similar to cellular processes, transcription also works

using the Pareto principle, i.e. simultaneous attainment of maximal conditions for higher

transcription occurs at the cost of robustness or a cellular function (Figure 6.3A).

We first wanted to assess whether there is any correlation between Pareto-optimal

transcriptional fluxes and SDE defined as the ratio of total heat dissipated by the system to the

input mass flux. Existing paradigms (Itzkovitz and Alon, 2007; Itzkovitz et al., 2003) indicate

that biological systems operate under optimal environmental conditions with optimal selection

and utilization of existing resources. Using the developed energetic hypothesis, we found that at

Pareto-optimal environmental surface, SDE is always the minimum for both metabolic networks

and TRNs (Figure 6.3B, Section 6.10.1). It is to be noted that in both metabolic and

transcriptional networks production of a metabolite or protein was used as the network objective.

SDE steadily decreased when moving throughout the feasible space along the vector from

minimum transcriptional fluxes to the Pareto-optimal transcriptional fluxes for the one and two-

cycle metabolic network, and the FFL and feedback loop subgraph in TRN systems. From this

analysis we can conclude that maximal feasible transcriptional rates are based on the optimal

utilization of available energetic resources and that at the maximal Pareto-optimal condition the

SDE is minimal therefore, natural systems operating under Pareto-optimal conditions will always

have lowest specific energetic cost. We tried various architectures of TRN motifs and found this

phenomenon to be true in all cases. Although some of the recent studies (Dekel and Alon, 2005;

Zaslaver et al., 2004) have demonstrated that biological systems operate under optimal selection

and utilization of resources, based on our results, we feel that missing the energetics analysis at

the optimal conditions has led to an incomplete understanding of network motif analysis.

Importantly, our optimality framework provides a rationale for how cells integrate optimal

selection and utilization of resources with energetic cost. Paradoxically, our optimality results

elicit that energetic cost is minimal at the maximal/optimal resource utilization conditions

although it was not part of cellular objectives being optimized. Thus, rather than operate at

optimal conditions, cellular regulatory systems simultaneously use energetic cost minimization

as the underlying basis, perhaps to operate under globally optimal conditions.
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A PARETO FRONTIER DESCRIPTION
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Figure 6.3 Optimal SDE serves as the basis for efficient resource utilization in metabolic and transcriptional
networks. A) Pareto frontiers for a bi-objective maximization and minimization problem (Nagrath et al., 2007).
Pareto solution is one where any improvement in one objective can only take place at the cost of another objective.
A Pareto set is a set of Pareto-optimal solutions. If objective functions f, (for instance, robustness) and f2 (for
example, transcriptional rate) alone are individually maximized, then the optimal values are fl" (point PI) and
f 2

m  (point P2), respectively. Here g* and g* are the anchor values for design objectives gl and g2, respectively.
The ideal or Utopian solution (g*, g*) obtained by the individual maximization of the objective functions is
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generally not a feasible solution of the multiobjective optimization problem. The arc PiP 2 is defined as the Pareto
frontier containing multiobjective-optimal or tradeoff solutions. Pareto-optimal and non-Pareto utilization of
available energy and resources are shown as the corresponding circular area in the triangle for three objectives of a
cellular TRN. B) Pareto frontiers for biochemical networks were obtained by considering the maximization of rate
of synthesis of B and C (and D) as the objectives whereas for TRNs the maximization of protein production rates of
Y and Z were considered as the appropriate objectives. Both, biochemical networks and TRNs follow the Pareto
dominance rule. SDE was found to be minimal at the Pareto frontier compared to the non-Pareto feasible solutions.
Following the solutions on the line vector from Pareto frontier of minimization to the Pareto frontier of
maximization there is a constant decrease in the SDE and it is minimal at the Pareto frontier optimal transcriptional
rates.

We further studied the implications of energetic cost on network structure and motifs.

Thus, after establishing SDE as a valid energetic cost concept, we investigated whether natural

biological systems utilize this as a rule of selection and thus lead to high abundance (also defined

as density or occurrence frequency) of certain subgraphs. FFLs can be classified as coherent

(Type-i to 4) or incoherent (Type-1 to 4). Multiple lines of evidence (Kalir et al., 2005; Kashtan

et al., 2004; Ma et al., 2004; Mangan et al., 2006; Mangan et al., 2003) suggest that coherent and

incoherent Type-i FFL motifs are abundant in both prokaryotic E. coli and the eukaryotic S.

cerevisiae TRN systems and other FFL motifs rarely occur in these small organisms irrespective

of whether genes or operons were used as nodes. However, no explanation has yet been provided

for the rare occurrence of certain FFL types and the abundance of a few motifs (Mangan and

Alon, 2003; Mangan et al., 2006; Mangan et al., 2003), and no universal selection parameter has

yet been found that can explain functional representation of these motifs with their network

structure completely. To answer these questions, we hypothesized that SDE itself is the universal

correlate used by biological systems for selection during evolution. To evaluate this, we first

obtained the Pareto-averaged SDE (the average SDE over the maximal Pareto frontier between

transcription rates of proteins Y and Z) for all eight FFL motifs for both AND and OR logics

(Figure 6.4A). Pareto-averaged SDE is found to be the lowest for highly abundant FFL motifs

and highest for rarely occurring network motifs (Section 6.10.2-3). Significantly, we observed

that Pareto-averaged SDE for both input logics (AND and OR) correlates inversely with the

abundance of the network motif as experimentally determined (Mangan and Alon, 2003) for

microorganisms (E. coli and S. cerevisiae) as seen in Figure 6 .4B (S pearman's correlation

coefficient = -0.43; p = 0.007).
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Figure 6.4: Optimal SDE predicts the network motif abundance. A) Optimal SDE of eight coherent and incoherent
FFL motifs at the Pareto frontiers with two input functions OR and AND. The input functions integrate the incoming
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shows the averaged SDE over the Pareto frontier of a FFL motif. The Pareto frontier was obtained between

transcription fluxes Jr and Jz. The symbolic representation of the corresponding cycles involved is shown below

each FFL in the figure and FFL types are marked C and I for coherent and incoherent. B) Correlation of averaged
Pareto-optimal SDE with relative abundance of FFL motifs for E. coli and S. cerevisiae TRNs. Correlation is done

for network motif relative abundance data obtained from experimentally verified E. coli (Shen-Orr et al., 2002) and
S. cerevisiae (Milo et al., 2002) databases by considering gene (Mangan and Alon, 2003) or operon (Ma et al., 2004)

(Supplementary Figs. 10-12) as nodes. A statistically significant negative correlation (Spearman correlation

coefficient = -0.43 and p value = 0.007) between the Pareto-averaged SDE and the published data of relative

abundance of FFL motifs (Mangan and Alon, 2003) was observed.

Notably, similar SDE-network motif abundance correlation is obtained when genes were

used as nodes (Ma et al., 2004) (Section 6.10.3) and for virtually all parameter choices satisfying

energetic constraints. The preceding results show that during evolution minimal SDE may have

been an important criteria used for development of highly organized complex TRNs. The success

of predicting abundance or the regulatory role of network motifs depends on various factors

which may be probably limiting cells in different stages of their life cycle, as well as their

evolutionary history. Our results elicit that although energetics necessarily may not be the rate

limiting factor, at some period of evolution it might have been the "bottleneck".

6.5 SDE LINKS NETWORK TOPOLOGY WITH DYNAMIC FUNCTIONALITY AND

EVOLUTIONARY ADAPTATIONS.

The dynamical function has been used to explain the occurrence frequency of motifs

(Alon, 2007; Mangan and Alon, 2003; Prill et al., 2005); however, it fails to do so for

functionally similar motifs. We hypothesized that SDE can be used as the mapping function

between network topology and dynamic output (Supplementary Text 6). To achieve this goal, we

first estimated SDE for a dynamic scenario where a phenotype exhibited by an incoherent FFL

motif has been shown both theoretically and experimentally (Mangan and Alon, 2003; Mangan

et al., 2006; Mangan et al., 2003; Zaslaver et al., 2006; Zaslaver et al., 2004) in the galactose

system of E. coli to be of pulse generation and response acceleration. Both Type-1 (I1-FFL) and

Type-4 (I4-FFL) incoherent FFLs with AND input logic were found to have similar dynamic

phenotype for an ON-OFF step change in the input signal X (Figure 6.5A, Section 6.10.4). Thus,

the current paradigm of associating dynamic functionality with frequency of occurrence of

motifs does not explain the variations in abundance density since both FFL types had pulse
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generation and response acceleration as function with similar magnitude. However, if energetic

cost SDE is compared for this input perturbation scenario, then a difference of at least one order

of magnitude between time-averaged SDE ((SDE)) of I4-FFL and Il-FFL is seen. The energetic

hypothesis and SDE seems to perform better than dynamical function in explaining

abundance/rare occurrence of incoherent FFLs.

Coherent FFLs have been shown both theoretically (Mangan and Alon, 2003) and

experimentally in the arabinose system of E. coli (Mangan et al., 2003) to have the sign-sensitive

delay as the major dynamic function. Sign-sensitive delay is defined as the response delay when

compared to simple regulation (SR) (recall Figure 6.1) and depends on the sign of the input step

(ON or OFF). For a coherent FFL-AND this delay is expected to be during an ON step but not

during an OFF step where response is similar to SR. Both, coherent Type-1 (C1-FFL) and

coherent Type-4 (C4-FFL) FFLs were seen to have similar sign-sensitive delay functionality

(Figure 6.5A, Section 6.10.4); hence, it cannot clearly establish the rare occurrence of C4-FFL

compared to C1-FFL. For a step input in activator X, as expected, the delay with respect to SR

was marginally pronounced in C1-FFL than C4-FFL (Figure 6.5A). Strikingly, we found that

(SDE) was significantly lower for C1-FFL than C4-FFL with AND logic thus consistent with

their abundance.

We further asked whether SDE can correlate dynamic functionality with abundance for

higher order four-node FFLs. Previous theoretical and experimental analysis(Kashtan et al.,

2004) of the protein synthesis scheme in the flagella system of E. coli revealed that the only

abundant network motif is the multi-output FFL (2Z-FFL) compared to multi-input (2X-FFL)

and multi-Y (2Y-FFL) subgraphs. The preceding results explain the abundance of 2Z-FFL over

other FFL generalizations based on the existence of dynamic function of the temporal order

First-In-First-Out (FIFO) of protein expression. Our model aptly predicted FIFO temporal order

for 2Z-FFL and revealed that SDE for 2Z-FFL was lowest among other possible generalizations,

such as 2X-FFL and 2Y-FFL, throughout the time interval of exponential pulse input (Figure

6.5B, Section 6.10.5). This clearly demonstrates SDE as an underlying basis for classifying

generalized motifs based on environmental perturbations.
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Figure 6.5 Selection of network motifs for dynamic functionality utilizes energetics as the underlying basis. A)

Comparison between I -FFL and 14-FFL; and C -FFL and C4-FFL with AND logic for an input pulse in input X. II-
FFL and I4-FFL with AND logic motifs have pulse generation and response acceleration in ON step as the dynamic
function. t 12 is the time to reach 50% of the steady state and response time, tR is the time to attain the final steady
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state. t12 is slightly lower for I1-FFL than I4-FFL but SDE of I1-FFL is significantly lower (10x) than I4-FFL. C1-
FFL and C4-FFL with AND logic motifs have delay in ON step with marginally higher delay for C1-FFL. SDE is

significantly lower (10x) for C1-FFL than for C4-FFL. B) Comparison of energetics for dynamics in double-input
(2X-FFL), double-Y (2Y-FFL), double-output (2Z-FFL) generalizations of FFLs. First-in-First-Out (FIFO) order in

a 2Z-FFL (with OR logic) is obtained with a specific order of K (KZX < KZ2 X , KZ1 > KZ2Y) and for an exponential

input pulse. SDE for 2Z-FFL is lower than 2X-FFL which in turn is lower than 2Y-FFL. In all (A and B) cases,
similar dynamic and SDE responses were obtained when the kinetic parameters were simultaneously increased or
decreased by two orders of magnitude.

6.6 SDE PREDICTS THE SELECTION OF MOTIFS UNDER VARYING ENVIRONMENTS

We next analyzed whether SDE may predict the environmental selection of motifs and

whether cells can use SDE as the master sensor for optimal and evolutionary tuning of protein

expression. Based on the current understanding in the arabinose sugar catabolism system of E.

coli for AND logic, simple regulation (SR-AND) is never selected over C1-FFL for an input pulse

environment with a high probability of shorter pulse durations (Dekel and Alon, 2005; Dekel et

al., 2005). However, SR-AND is favorably selected over C1-FFL for an input with longer pulse

durations. To investigate the influence of energetic cost on environment selection, we used

similar definitions of objectives and fitness function as identified previously (Dekel and Alon,

2005; Dekel et al., 2005). One of the objectives defined as benefit is of relative increase in

cellular growth rate because of production of protein Z which can be formulated based on

Michaelis-Menten kinetics as cell growth rate = [Z]/(L+[Z]), where 6 [nM/s] is the maximal

growth rate per Z, and L is the Michaelis-Menten constant of Z. The other objective competing to

benefit and is the cost of production of protein Z and is proportional to rate of depletion of

resources used to produce protein Z, thus shown as: cell growth reduction rate = r7JT, where r

is the reduction in growth rate per molecule of Z produced and Jz is the transcription rate of Z.

Using Pareto-optimal paradigm we obtained the Pareto frontier between benefit and inverse of

cost for both C1-FFL AND and SR-AND by having the pulse amplitude, pulse duration tx, and

the Michaelis-Menten constant L as optimizing variables (Figure. 6.6A). This Pareto frontier as

mentioned previously indicates the maximal efficient utilization conditions used in cellular

systems for various input pulse durations and fluctuating environments. Remarkably, we found

that SDE can be a correlate for environmental selection of motifs utilizing the Pareto frontier

condition. For shorter pulse durations, SDE is higher for SR-AND than for Cl-FFL, indicating
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unfavorable selection of SR-AND because of high energetic cost, whereas the reverse is true at

higher pulse durations (Figure 6.6A).

Figure 6.6 Using energetic-cost criterion for environmental selection and predicting motif functionalities. A)
Environmental selection of motifs. Shown are the Pareto frontiers between benefit which is relative increase in
cellular growth rate (6[ZJ/(L+[ZJ), where 6 [nM/s] is the maximal growth rate advantage per Z protein, and L is the
Michaelis-Menten constant), and the inverse of cost (which is cell growth reduction rate = r]Jz , where ]J is the
transcription rate of Z and 7 is the reduction in growth rate per molecule of Z transcribed) for C1-FFL AND and SR-
AND for various pulse durations. Comparison of Cl -FFL AND with SR-AND for various pulse durations along the

cost-benefit Pareto frontier shows an energetic advantage (lower (SDE)) in selecting CI-FFL AND for short pulse
durations and vice versa for SR-AND at longer pulse durations. Comparison of Cl-FFL AND with SR-AND for
various pulse durations along the cost-benefit Pareto frontier shows a normalized benefit (ratio of benefit over SDE)
advantage (higher ratio) in selecting C -FFL for short pulse durations and vice versa for SR AND at longer pulse
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durations. B) Prediction of robustness as functionality in rarely occurring motifs. Tradeoffs between cellular TRN

objectives of transcription rate and robustness were observed for both coherent and incoherent FFLs by obtaining
corresponding Pareto frontiers. Coherent and incoherent FFLs were analyzed for AND and OR input logic,
respectively, for parametric robustness, mutational robustness and combinations of both. For parametric robustness

function, Pareto-averaged SDE for highly abundant C 1-FFL was lower than rarely occurring C4-FFL and similarly

SDE for I1-FFL was lower than 14-FFL. For mutational robustness function, SDE for C3-FFL (another rarely

occurring FFL) was lowest and thus is contrary to the abundance-energetic cost paradigm (higher the abundance

lower the SDE). In overall robustness, both parametric and mutational variations were combined and obtained SDE

data generally follows abundance-energetic cost paradigm. In general, higher span of Pareto frontiers between

cellular TRN objectives of transcription rate and robustness (also defined as benefit function) indicate efficient

resource utilization and lower SDE. Normalized benefit (i.e., benefit / energetic cost) indicate higher benefit function

at low energetic cost. For parametric robustness, C1-FFL has highest normalized benefit function. Rarely occurring
C3-FFL has highest normalized benefit of robustness and transcription rate among coherent FFLs. Similarly, I2-FFL

was found to have highest normalized robustness. Normalized benefit functions for overall robustness environment

mostly followed the abundance-energetic cost paradigm.

Additionally, SDE's variation with pulse duration for SR-AND was remarkably similar to

integrated growth rate variation with pulse duration for SR-AND (Dekel and Alon, 2005; Kalisky

et al., 2007; Zaslaver et al., 2004). This energetic based selection criteria is not only consistent

with recent findings when used as standalone measure but is also holds true when benefit is

normalized with cost to obtain a measure that indicates higher benefit at lower cost. To

investigate whether SDE was the underlying cost, we evaluated the normalized benefit (ratio of

benefit over time-averaged SDE, (SDE)) for various pulse durations along the Pareto frontier. We

found that benefit normalized with energetic cost is higher for FFL at shorter pulse durations and

higher for SR-AND at higher pulse durations thus suggesting that motifs having higher

normalized benefit will be favored under particular environment for selection. We also analyzed

the environmental selection of C1-FFL over C4-FFL with AND logic (Section 6.10.6).

Consistent with abundance data we found that C1-FFL is energetically favorable over C4-FFL

for all pulse durations. Thus, these results let us conclude that SDE can be the underlying basis

not only for predicting dynamic phenotype but also for motif selection in varying environments.

6.7 SDE PREDICTS NEW FUNCTIONALITIES OF MOTIFS

Having shown that the energetic cost, in combination with optimality theory, can be used

to identify the motif selection during varying environments, we moved on to predict new

functionalities of motifs using typical regulatory interaction objectives such as robustness and

transcription rate, along with the underlying objective of minimal energetic cost. The difference

between abundance of various motifs is directly correlated with their functionalities, thus rarely
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occurring motifs may owe their existence to unidentified functionalities. Cellular TRN systems

often have robustness as their objectives, and tradeoffs between robustness and cellular functions

imposed (Barkai and Leibler, 1997; Carlson and Doyle, 2000; Martin and Wagner, 2008;

Morohashi et al., 2002; Rao et al., 2004; Rao et al., 2002; Stelling et al., 2004a; Stelling et al.,

2004b) on complex genetic circuits may play a dominant role during evolutionary selection of

motifs. Robustness index (RI) was defined here as the objective function which cellular decision

machinery utilizes for selecting motifs among topologically and architecturally different but

equally capable of higher transcription during varying environments of internal and external

perturbations, mutations and non-genetic changes. Thus, we hypothesized that motifs which have

high RI and transcription rate despite the high fluctuations during varying environments will

emerge as preferred during evolutionary selection. Further, the higher the TRN objectives (i.e.,

robustness and transcription rate) normalized by the underlying energetic cost, the higher the

fitness advantage of one FFL motif over another under a fluctuating environment. Typical

environment fluctuations that were considered included parametric variations, mutational

variations, and a combination of both. We conducted large-scale simulations of varying

environments across fluctuations spanning two orders of magnitudes and thus imposed a variety

of environments which are generally difficult to study in naturally evolved biological networks.

We found that transcription rate and robustness form a Pareto frontier during both parametric

fluctuating environment and mutational variations for various motifs (Figure 6.6B). The highly

abundant motifs (for coherent FFLs is Cl-FFL and for incoherent FFLs is I1-FFL) displayed

lower Pareto-averaged SDE and had a higher benefit (or objective) function advantage for both,

transcription rate and robustness over rarely occurring motifs (for coherent FFLs, C4-FFL; and

for incoherent FFLs, 13 and I4-FFLs). As hypothesized, both C1-FFL and I1-FFL had higher

fitness advantage, i.e. normalized benefit function (ratio of objective function over energetic cost)

over rarely occurring FFLs throughout the parameter space and Pareto frontier. In a particularly

challenging environment of mutational variations, we found that C3-FFL is more favorable over

other coherent FFLs and a rarely occurring motif, I2-FFL, has higher robustness benefit function

over other incoherent FFLs. Our results indicate that C3-FFL has higher normalized robustness

and transcription rate throughout the parameter space over other coherent FFLs for mutational

variations and likewise I2-FFL has higher normalized robustness advantage over other

incoherent FFLs. More precisely, if parametric robustness is the desired functionality then Cl-
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FFL is favorable over other coherent FFLs, thus explaining their abundance. On the other hand

for coherent FFLs, if robustness against mutational changes is desired, then C3-FFL is

energetically favorable and has higher normalized benefit function for both transcriptional rate

and robustness transcriptional objectives. This is significant, because so far no functionality has

been found for C3-FFL. Similarly, the results of incoherent FFLs highlight an unidentified

functionality for rarely occurring motif, 12-FFL, chiefly the high robustness for mutational

changes (I2-FFL has higher normalized robustness although it has lower normalized

transcription rate), which was not captured by current TRN models because of ignored

energetics. For the third simulation group of overall robustness (both parametric and mutational)

(Figure 6.6B), motifs generally followed the abundance principle. In general, our results reveal

how functionalities and selection behavior emerges by combining energetics in network motifs.

Importantly, current mass-balance based optimality paradigm will not be able to capture these

functionalities because essential thermodynamic constraints are ignored.

6.8 SDE AS THE BASIS FOR TOPOLOGICAL GENERALIZATION OF MOTIFS

We further hypothesized that evolution converges toward a single basis of SDE for

topological generalization of subgraphs. Addition of each new topological pattern can occur in a

random fashion or can be selected by evolution based on nutrient resources and environment. In

the latter case, a new level of biological organization is made having emergent properties

governed by the physical laws and evolutionary selection constraints. We first analyzed the

generalization of single input module (SIM) patterns (Figure 6.7A, Section 6.10.7). With the

addition of nodes there is a steady decrease in SDE, which becomes nearly constant around SIM

with 13 nodes. Although still unexplained, previous results(Shen-Orr et al., 2002) have revealed

that SIM occurs in TRNs only for input nodes greater than 13. We observed that there is no

further energetic benefit after increasing the number of nodes beyond 13 which explains the

minimum requirement of 13 nodes in SIM.

Next, we analyzed various generalizations of SIM. Earlier studies reported agreement

between analytical predictions and the measured subgraph counts of E. coli and S. cerevisiae

TRNs (Vazquez et al., 2004). We hypothesized that SDE could explain the reason behind the

atypical frequency of occurrence of generalized SIM subgraphs. To elucidate this, a
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corresponding energetic phase diagram (Figure 6.7B, Section 6.10.8) using the presented SDE

analysis was estimated for steady state of subgraphs. Strikingly, we found that the energetic

phase diagram was similar to the subgraph phase diagram obtained using abundance data

(Vazquez et al., 2004). In both phase diagrams, two types of subgraph patterns emerge: type-I

(below the white line), which are highly abundant and have favorable lower SDE; and type-II

(above the white line), which have higher SDE and are rarely occurring in TRNs of both E. coli

and S. Cerevisiae (Vazquez et al., 2004). Remarkably, this shows that energetic demand can be

used as a basis for the topological generalization of the simplest unit or motif in a complex

network. Coupled with the observation previously made that scale free networks form hubs and

that there is a preferential addition of new linkages to the nodes with the higher linkages, the

presented energetic phase diagram explains that this phenomenon occurs because of favorable

energetics. Throughout the phase diagram (Figure 6.7B), any addition of linkages to the input

node decreases the energy compared to the addition of a linkage at other nodes. In summary, our

SDE data for these subgraphs uncovers a mechanism for formation of these complex networks

and is significant because, to date, there has been no functional basis or explanation provided for

topological generalization of these subgraphs.

We next developed a new pulsed energetics topological generalization prediction (PETGP)

framework which allows predicting generalizations of subgraph patterns without prior

knowledge about function and characterization of a subgraph pattern (Section 6.10.9). To

validate this for known generalizations, we assumed no knowledge about any relationship

between gene-activator linkages or any dynamic behavior; hence, all the linkages had equal

transcription parameters. The first step in PETGP analysis requires sending a small pulse input

around its ic value (activation coefficient, here defined as the characteristic concentration of the

subgraph) whereby energetic cost SDE is estimated. PETGP analysis is similar to the residence-

time-distribution analysis, in which an input tracer pulse is used to predict the characteristics

about chemical reacting systems in a reactor. Similar to Gibbs energy change of any reaction

(higher -AG is favorable for a reaction to proceed forward spontaneously) we found that higher

I-A(SDE) leads to favorable generalizations (Figure 6.7C).
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based on the number of nodes (N) and the number of links (M) is similar to the predicted subgraph phase diagram

organization based on abundant subgraphs (Vazquez et al., 2004). The stepped white line separates the lower SDE

type I subgraphs (below the line) from the higher SDE type II subgraphs. Some of subgraphs for the same number of
nodes and linkages can have various topologies based on directionality of linkages and only representative values of

SDEs are shown. The background color is proportional to the relative subgraph being SIM with 2 output nodes the

base one. For directionality, FFL-OR with a forward basis structure was i mplemented. The critical energetic

difference or ASDE was chosen to be 2-105 J/mol for this classification. C) PETGP organizes and predicts

generalization of a subgraph into large-scale topological assembly of networks (Kashtan et al., 2004). Various input

pulses were studied and only representative exponential pulse time-averaged SDE data are shown. The

generalization strategy is presented for SIM, FFL, BIFAN or dense overlapping regulons (DOR) and Layered

generalization of three-layered SIM with OR input logic. SDE is presented relative to the base case for each

generalization with the base case normalized to zero value. Highly favorable subgraphs have high negative A(SDE)

compared to unfavorable subgraphs with positive A(SDE) when compared to the base subgraphs.

Using the PETGP framework we correctly predicted possible generalizations of different

subgraphs. We observed that 2Z-FFL had higher I-A(SDE)I than both 2X-FFL and 2Y-FFL thus

suggesting that 2Z-FFL is the only motif occurring in TRNs (Figure 6.7C). The other commonly

occurring motif (besides FFL) is the so-called BIFAN. Experimentally determined motif

abundance data in E. coli has revealed that adding more input nodes during BIFAN

generalization makes them unfavorable for occurrence (Kashtan et al., 2004). For example, in E.

coli TRNs (3X-3Y) is less abundant (21 occurrences) than (2X-2Y) which is highly abundant

(242 occurrences). Remarkably, we noticed that the addition of a new input node to create a

higher input pattern in BIFAN increases A(SDE) (Figure 6.7C). Therefore, our model predicts an

unfavorable generalization and low frequency of occurrence for input node addition.

Next, we investigated the generalization of a three-node SR in a layered architecture

(Figure 6.7C). First, we found that for a three-layered network the most favorable subgraph was

the 3X-3Y-1Z configuration. This tapered architecture prevalent in neural networks may be

abundant because it is energetically beneficial in TRNs. Second, we found that for one-input

node generalizations, LAY(1,3,1) is the most favorable subgraph compared to the other eight

possible configurations. This is consistent with earlier findings in TRNs of E. coli where it was

found that the number of nodes in layer-0, 1, and 2 were 76, 233 and 87, respectively (Kashtan et

al., 2004). These results also show that Diamond architecture motifs are energetically favorable

since LAY(1,2,1), a Diamond motif, was energetically favorable and is abundant in neural TRNs

in C. elegans (Milo et al., 2002). We obtained similar observations for different input types (step,

exponential, Gaussian and ramp pulse) and for a wide range of pulse durations (Section 6.10.9).
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Thus, we demonstrate that the generalization results obtained using PETGP analysis are invariant

with respect to pulse durations and pulse types when perturbations are made around the ic of a

motif.

6.9 DIscussIoN

The energetic-cost theory presented here clearly indicates that SDE may be a suitable basis

for evolutionary selection of one motif over another and could provide an explanation for the

rare occurrence of various network motifs. Our analysis indicates that the Pareto-optimality

principle, when combined with NESS analysis, leads to energetically efficient solutions for

transcription. The underlying energetic-cost criterion, SDE, for Pareto-optimal conditions is a

measure that reflects maximal transcription at the lowest energetic demand. Beyond its

application as a functional basis in TRN motifs, the Pareto-optimal SDE concept may also lead to

an optimal and energetically efficient design of synthetic gene circuits. Further validation of this

concept for protein and metabolic networks is required to confirm its generality; however, the

corresponding abundance data for these networks is unavailable. The finding that energetic cost

may be used as an underlying basis for evolutionary selection of a motif among motifs having

similar dynamic functionality is of major significance. The overwhelming diversity of possible

dynamical functions with highly-interactive biological networks limits effective learning from

experimental data alone. Network analyses using knowledge of the often ignored energetics may

greatly reduce the hypothesis space, enabling identification of new functionalities of dynamically

perturbed large-scale networks. Further, the developed dynamic PETGP framework may be used

not only for analyzing motifs in complex networks but also for designing complex synthetic

networks. Appropriate identifications of cellular objectives involved in evolutionary decision

making may provide a potentially novel approach to identify optimal environmental conditions

and therefore, as a stand-alone strategy, may provide a more efficacious simultaneous prediction

and validation strategy for biological networks.
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6.10 METHODS

6.10.1 Pareto Dominance Concept Correlates Dissipative Energetics for Metabolic

Networks and TRN Motifs

Pareto Dominance-SDE: One-Cycle Metabolic Network

The parameters and constraints used in this metabolic network are shown in detail in

Figure 6.8. The steady state mass balances for metabolites A, B and C are given by the following

equations:

d[A]= JA -J 3 =0 (6.1)
dt

d[B] = J + 2 -JB = 0 (6.2)
dt

d[C] 3 J 2 -JC = 0 (6.3)
dt

where the internal reaction fluxes are J = ki[A] - kl[B], J2 = k2[C] - L2 [B] and J3 = k3[A] -

k-3[C]. Notice that Equations (6.1) to (6.3) can be written in the form:

Aeq, = beq (6.4)

- (k, + k 3) k I  k_3  1 0 0

where Aeq = k, - (k_1 + k-2) k2  0 - 1

k3  k-2 -(k3 +k 2 ) 0 0 -1

and =[[A] [B] [C] JA JB Jc]T and beq = =[0 0 0].

Equation Aeq = beq represents the mass balance (or stoichiometric) constraint for this

metabolic system. If Ki = klk_-, for for i = 1, 2, 3, then the chemical potential associated to each

reaction is:

A/ 2 =9 Tln( [B] (6.6)
(K,[A]) (6.5)

A/P2 =9TIn(K2C[B] ) (6.6)

Ap3 = 9T In( K[A][C] ) (6.7)

169



I

J Jl
1 A - . B

A\\k 3 k 21 -

/4

A.

ki,
k =

k, =

k,=
k3 =
k -- 3 "-

100 [s']
0.1 [s']
10 [s'1]

0.1 [s"1]

100 [s-']
10 [s"']

B.
JA k J8
-A k I B -

\3\k
2 k5\

C C
k4

= 100 [s-]
= 0.1 Is[&]
= 10 [s1]
= 0.1 [S-]
= 100 [s&']
= 10 [s- ]
= 50 [sj ]
= [s']

k5 = 50 [s']
k 5 = 100 [s']

T = 298 [K]
91= 8.314 [J/mol]
10 - 5 <[A],[B],[C],[D]< 10 [M]

0 < J4 < 3 [M/s]

0 J , Jc, J [M/s]
4000 < hdr < 5000 [J/s]

0 0.05 0.1 0.15 0.2 0.25

I J

Figure 6.8: Metabolic networks shown in Figure 6.3B. A) Three-node metabolic network and Pareto frontier for

minimization of JB and Jc. This curve represents the minimum tradeoff region between these external fluxes and for

simplicity it has been reduced into a single point (square). B) Four-node metabolic network and Pareto frontier for

minimization of JB, Jc and JD. This curve represents the minimum tradeoff region between these external fluxes and

for simplicity it has been reduced into a single point (square).

For this particular system, in which the net fluxes are assumed to diverge from A, the

chemical potentials must satisfy Api - Ap2 - Apu3 = 0 which is equivalent to K1 = K2K3. From

Figure 6.8, K1 = 1000, K2 = 100 and K3 = 10, and then the chemical potential of the cycle is zero.

The HDR and the SDE (Section 5.2) for this system can be calculated as follows:
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HDR = -(Jl " AP + J2 2 Au - J 3 .APu3 ) (6.8)

SDE =HDR (6.9)
JA

Notice that the term Ji-Api is always less or equal than zero (Section 5.2). However,

because the energy available for the system is finite, the following energetic constraint in the

Second Law of the Thermodynamics is imposed:

HDR b < HDR < HDRub (6.10)

As the production rate of B and C are desired to be maximized, the trade-off between

these two fluxes leads to a Pareto frontier. Basically, the optimization problem can be

summarized as follows:

Maximize
(JB, Jc)

subject to:

AeqX = beq

HDRIb < HDR < HDRub

Xlb <- 5 ub

Once the maximal Pareto frontier is obtained, the minimal Pareto frontier is determined

by minimizing both JB and Jc which also conveys to a Pareto frontier as shown in Figure 6.8A.

For simplicity, because this Pareto frontier is very small, it has been represented in Figure 6.3B

as a single point, corresponding to the middle point of this optimal curve shown as a square in

Figure 68A. When the minimal and maximal optimal regions are found, a vector can be traced

from the minimal Pareto frontier to any point on the Pareto frontier for maximization (as shown

in blue, green and red in Figure 6.3B). As the coordinates of this vector are known in the JJc

space, it can be equally divided in n points where point i has the coordinates (J, Jc). Then,

each of these points can be fully characterized by minimizing the input flux JA in order to

maximize the fixed "benefit" (given by the values of J. and Jc ) at the minimal "cost" (given

by JA). This optimization problem can be described as follows:
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for i= 1: n

Minimize

subject to:

AeqX =beq

HDRb HDR HDRub

J= J Jc = c

Xlb - X - Xub

end

As seen in Figure 6.3B, the SDE decreases as the vector moves from the minimal to the

maximal Pareto frontier demonstrating that the Pareto frontier for maximization is energetically

optimal for the system. It is important to note that at the Pareto frontier (of both one-cycle and

two-cycle metabolic networks) there is optimal utilization of nutrient resources for a certain

transcriptional rate. SDE being minimal at the optimal production indicates optimal production

with efficient energy utilization. This is consistent with recent findings indicating that biological

systems operate under optimal environmental conditions with optimal selection and utilization of

resources (Dekel and Alon, 2005) (see Section 6.4).

Pareto Dominance-SDE: Two-Cycle Metabolic Network

Figure 6.8B shows the parameters and constraints used in this metabolic network. The

mass balance equation for A is given by (6.1). However, for B, C and D are given by the

following equations:

d[B] J +J2 -5 -B =0 (6.11)

dt

d[C] J 2 4 = 0 (6.12)

dt

d[D] J4 + J
5 -JD = 0 (6.13)

dt
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where the internal fluxes for J1, J2 and J3 are the same as the one cycle network, and J4 = k4[C] -

k-4[D] and J5 = ks[B] - ks[D]. Equations (6.11) to (6.13) can be cast into a matrix form as

Equation (6.4) with

- (k + k3) k,- k-3 0 1 0 0 0

k, -(k_1 +k-2 +k 5) k2  k_5  0 -1 0 0

eq k3  k2 - (k3 + k 2 + k 4 ) k_4  0 0 -1 0

0 k5  k 4  -(k 4 +k_5) 0 0 0 -1

and x=[[A] [B] [C] [D] JA J J, J D] T and beq=[0 0 0 0].

The chemical potential associated to reactions 1, 2 and 3 are given by Equations (6.5) to

(6.7). For reactions 4 and 5, it can be expressed as follows:

A 4 = 9T ln K4[C][D] (6.14)

AP5 = 9Tln K[B[D] (6.15)

In order to have null chemical potential of the cycles, these relationships must satisfy:

Ap - Ap2 - A 3 = 0 and Ap4 - Ap2 - 5 = 0. These equations are equivalent to K1 = K2K3 and

K4 = K2K5 . From Figure 6.8B, both equalities are verified.

For this metabolic network, the production rate of B, C and D is desired to be maximized

and the Pareto surface is obtained. This optimization problem can be summarized as follows:

Maximize
S (J,,Jc,JD)

subject to: AeqY = beq

HDRIb < HDR < HDRub

Xb X Xub

Once the maximal Pareto frontier is obtained, the minimal Pareto frontier is determined

by minimizing JB, Jc and JD. For this metabolic system, this region is not a Pareto surface as
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expected, but a frontier in the plane JBJD for Jc = 0 as shown in Figure 6.8B. This Pareto frontier

is reduced and it has been represented in Figure 6.3B as a single point, corresponding to the

middle point of this optimal curve shown as a square in Figure 6.8B. As in the one-cycle

metabolic network, a vector can be traced from the minimal point to any point on the Pareto

surface for maximization (as shown in blue, green and red in Figure 6.3B). As the coordinates of

this vector are known in the JBJDJC space, it can be equally divided in n points where point i has

the coordinates (J', Jc, J) . Then, each of these points can be fully characterized by minimizing

the input flux JA in order to maximize the fixed "benefit" (given by the values of J , Jc and JD

) at the minimal "cost" (given by JA). This optimization problem can be described as follows:

MinimizeMinimize(J A) (for i= 1: n)

subject to:

Aeq. = beq

HDRIb HDR < HDRub

JB = J , Jc = Jc I JD = JD

b ubXlb <  < Xub

Pareto Dominance-SDE: FFL TRN Motif

The FFL TRN corresponds to a C 1-FFL with an OR input logic. Chapter 5 describes the detailed

TRN model, mass balance and thermodynamics. Essentially, the FFL network is composed of six

cycles as shown in Figure 6.9A: two of them are involved in the transcription of Y by X, and four

in the transcription of Z by both X and Y. The first two cycles correspond to cycle YA

(transcription of Y from its basal activator A) and cycle YX (transcription of Y from the activator

X), and the last four cycles are cycle ZB (transcription of Z from its basal activator B), cycle ZX

(transcription of Z by the activator X), cycle ZY (transcription of Z by activator 1) and cycle ZXY

(transcription of Z by both X and Y together). The kinetic constants used in Figure 6.3B are

shown in Figure 6.9A.
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Figure 6.9: Transcriptional Networks shown in Figure 6.3B. A) The Coherent Type-i FFL with OR input logic.
Parameters and optimization constraints are shown. B) The three-node transcription network with complete
feedback and OR input logic. Parameters and optimization constraints are shown. Basal TF refers to the basal
activator (blue cycle), individual TF refers to only one transcription factor (for instance, X or Y in the transcription of
Z), and combined TF refers to the joint interaction between the individual activators (for instance, XY in the
transcription of Z).

The basal cycles are colored blue and the other cycles are green, meaning that there is

active transcription from all of them. In fact, since this network obeys an OR input logic for

transcription of Z (notice that transcription of Y does not need any input logic, because only one

transcription factor is present), transcription of Z can be seen from all of the six cycles. Observe

that the basal kinetic parameters and thus the basal maximal transcription rates and activation

coefficients were selected in order to have J asa = 0.1] ,Ma and ],sasaz = 0.001] , Ma. In]Tr,Bsal = 0 JIIT,Max JTP /,Basal=000JI-,a-I
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addition, the kinetic parameters of the other cycles were found in order to get the following

activation coefficients: KYX= 0.01, Kzx = 0.05, KZY= 0.5, Kz'X = 104 [nM]. The first three values

are based on (Mangan and Alon, 2003). In this analysis, the combined contribution of XY is

reduced in order to observe the individual effect of X and Y. By making 87x low and KZxY high,

the transcription rate from the ZXY cycle is negligible. Notice as well that the maximal

transcription rate of Y (fx = 2) is twice the maximal transcription rate of Z (F = 1 and fZ' = 1).

This was done in order to have concentrations of Y of the same order of magnitude of Z since Y is

being consumed when transcribes Z. The maximal consumption rate of Y corresponds to the

maximal transcription rate of that cycle (Jf = 1), and then the net transcription rate of Y when

fully transcribes Z is 1 [nM-sl].

As both external fluxes of Y and Z are desired to be maximized when X is externally

provided, there is a tradeoff region between these two objective functions: when more Y is taken

out of the system (higher Jy), the concentration of Y goes down and its contribution in the further

transcription of Z decreases, leading to lower Jz, and vice versa. This Pareto frontier is shown in

Figure 6.3B and the optimization problem can be expressed as follows:

Maximize
(J, Jz)

subject to:

f(2) = 0

HDRIb < HDR HDRub

Xlb ub

where f(x) represents the nonlinear mass balance equations at steady state and x = [[X Jy Jz]T.

Recall that both Jy and Jz are negative since these fluxes are leaving the system. It is important to

note that at the Pareto frontier (in both FFL and Feedback TRNs) there is optimal utilization of

nutrient resources for a certain metabolic fluxes. SDE being minimal at the optimal production

indicates optimal production with efficient energy utilization. This is in concurrence with the

recent laboratory evolution experiments where evolutionary adaptation of E. coli towards
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optimal metabolic fluxes has been shown and the key role of fitness criteria in evolutionary

selection of certain mutations (Ibarra et al., 2002).

The minimal Pareto frontier can be obtained by simultaneously minimizing Jr and Jz For

this transcription network, this region is confined to a single point characterized by the vector x =

[10 -4 -10-5 -10-]T.. A vector in the space JyJz can be traced from the minimal point to any point

on the Pareto frontier for maximization (as shown in blue, green and red in Figure 6.3B). As the

coordinates of this vector are know, it can be equally divided in n points where point i has the

coordinates (Jr, J) . Then, each of these points can be fully determined by minimizing the input

flux Jx in order to maximize the fixed "benefit" (given by the values of Jr and Jz) at the

minimal "cost" (given by Jx). This optimization problem can be described as follows:

Minimize( Jx) (for i= 1: n)

subject to:

f() = 0

HDRIb HDR HDRub

J = J , Jz = z

Xlb X < Xub

Pareto Dominance-SDE: Feedback TRN loop subgraph

The Feedback TRN loop subgraph corresponds to a three-node system with complete

feedback and an OR input logic as shown in Figure 6.9B. This network is composed of twelve

cycles: four of them are involved in the transcription of Xby both Y and Z, another four cycles in

the transcription of Y by X and Z, and four in the transcription of Z by both X and Y. The first

four cycles correspond to cycle XA (transcription of X from its basal activator A), cycle XY

(transcription of X from the activator Y), cycle XZ (transcription of X by Z), and cycle XYZ

(transcription of X by both Y and Z). The next four cycles involve cycle YB (transcription of Y

from its basal activator B), cycle YX (transcription of Y from the activator X), cycle YZ

(transcription of Y by Z), and cycle YXZ (transcription of Y by both X and Z). The last four cycles
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are cycle ZC (transcription of Z from its basal activator C), cycle ZX (transcription of Z by the

activator X), cycle ZY (transcription of Z by activator Y) and cycle ZXY (transcription of Z by

both X and Y together). As being depicted throughout this work, the basal cycles are colored blue

and the other cycles are green, meaning that there is active transcription from all of them.

Transcription of Z occurs from all of the nine cycles because the OR input logic.

Notice that the basal kinetic parameters and thus the basal maximal transcription rates

and activation coefficients were selected in order to have Ja = 10 4 J for I = X,

In addition, the kinetic parameters of the other cycles were found in order to get the following

activation coefficients: K individual = 0.1 and Kcombined = 104 [nM]. K ind'vidua l refers to the individual

action of a single transcription factor (cycles XY, XZ, YX, YZ, ZX and ZY) and Kcombined refers to

the combined action of two transcription factors (cycles XYZ, YXZ, and ZXY). The first activation

coefficient value is based on(Mangan and Alo n, 2003). As in the FFL TRN, / ombined and

Kcombined are low and high, respectively and findividual = 2.

For this TRN, the minimal Pareto frontier is confined to a single point characterized by

the vector. x = [1.961.10 4 , -10-,-_10-5] .

6.10.2 Pareto Optimal SDE for FFL TRN Motifs

Figure 6.4A shows the Pareto averaged SDE for all the FFLs with AND and OR input

logics, as depicted in Figure 6.10. FFLs can be divided into Coherent-Type 1 to 4 (C1-FFL to

C4-FFL) and Incoherent-Type 1 to 4 (I1-FFL to 14-FFL). Independently of the Boolean input

logic or the Coherent or Incoherent structure, these networks are composed of six cycles as

shown in Figure 6.10: two of them involved in the transcription of Y by X, and four in the

transcription of Z by both X and Y. The first two cycles correspond to cycle YA (transcription of

Y from its basal activator A) and cycle YX (transcription of Y from the activator X), and the last

four cycles are cycle ZB (transcription of Z from its basal activator B), cycle ZX (transcription of

Z by the activator X), cycle ZY (transcription of Z by activator Y) and cycle ZXY (transcription of

Z by both X and Y together). In Supplementary Fig. 10, the basal cycles (YA and ZB) are shown

in blue, and the other cycles are either green if the transcription factor behaves as an activator, or

red if the transcription factor acts as a repressor. In the latter case, no transcription occurs and

then there is no arrow leaving the cycle.
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ZXY ZXY
Activation YA YX ZB ZX ZY OR AND Repression YX ZX ZY OR AND

k, [s-'nM - ' ] 2 222.2 1 20.2 2.02 10-8 40.4 k, [s'nM-'] 2.22 1.01 0.101 10-" 40.4

k[s-'] 2 2 1 1 1 104 1 Ik [s'] 2 1 1 10 4  1

k [s-'] 10 [s-'] 106

k, [s-'] 10- k [s-'] 10-12

k [s'] 106 k. [s'] 10-1

k 3 [s-'nM 2] 10.6 k 3 [s-'nM 2]  10-12

0 [nM-s] 2 2 1 1 1 10- 1 [nM-s-'] 2 1 1 104 1

K [nM] 1 0.009 1 0.049 0.49 10 0.0247 K [nM) 0.898 0.989 9.89 107 0.0247

T = 298 [K], [A] = 0.11 [nM], [B] = 0.01 [nM], [Dr , = [Dz], , = 1, a = 1 [s-'] (for all the species)

J = 0 (for all the co-activators), 10-4 < [X],[Y],[Z] < 1 [nM], Jr,Jz < 10- ' [nM-s'], 1.5 -104 < hdr < 1.5. 10' [J.s']

Figure 6.10: Cyclic representation of the Feed Forward Loops (FFL) with input logics AND and OR. FFL Coherent

Type 1 to 4 and Incoherent Type 1 to 4 are shown. Kinetic parameters for activation and repression, as well as the

optimization parameters are shown here.

Notice that the basal kinetic parameters and thus the basal maximal transcription rates

and activation coefficients were selected in order to have J~,as =0.1. J;,

179



JBasal = 0.001" Jr,M . In addition, the kinetic parameters of the other cycles were found in order

to get the following activation coefficients:

For activation:

KY = 0.01, Kzx = 0.05, KzY = 0.5, KzX = 104 (OR input logic) and Kzxy = 0.025 (AND input

logic) [nM].

For repression:

KYX = 1, Kz = 1, KzY = 10, Kz  = 107 (OR input logic) and KZX = 0.025 (AND input logic)

[nM].

For both Boolean input logics, values of KYX, Kz , and KzY are based on (Mangan and

Alon, 2003). For this analysis, the combined contribution of XY for OR input logic is desired to

be minimal in order to observe the individual effect of X and Y. By making ZY' low and KZ"x

high, the transcription rate from the ZXY cycle is negligible. On the other hand, when the input

logic is AND, the contribution from the ZXY cycle has to be as important as the one from the

individual transcription factors. In this case, p"x = 1 is same as / = 1 and f' = 1 and for the

activation case KZYY = KZXKzY, as previously suggested (Mangan and Alon, 2003). Observe that

the maximal transcription rate of Y (fYX = 2) is twice the maximal transcription rate of Z. This

was done in order to have concentrations of Y of the same order of magnitude of Z since Y is

being consumed when transcribes Z. The maximal consumption rate of Y corresponds to the

maximal transcription rate of that cycle (fZY = 1), and then the net transcription rate of Y when

fully transcribes Z is 1 [nMs-'].

As both external fluxes of Y and Z are desired to be maximized when X is externally

provided, there is a tradeoff region between these two objective functions. The first step in

generating Figure 6.4A is to get these Pareto frontiers without constraining the total HDR

(infinite energetic source) In other words, first we need to analyze the feasible space by

satisfying the mass balance constraints. The energy-unconstrained Pareto frontiers are shown in

Figure 6.11 A-B and the optimization problem can be stated as:
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Maximize
- (JY ,Jz)

subject to:

f(-) = 0

X'b < Xub

where f(x) represents the nonlinear mass balance equations at steady and x = [[XJ Jr Jz]T. Recall

that both Jr and Jz are negative since these fluxes are leaving the system. Figure 6.11 C-D shows

the Pareto averaged HDR when the energy of the system is unconstrained and Figure 6.11E-F

shows the Pareto averaged SDE for both input logics. Notice that even in the energy-

unconstrained problem, C1-FFL and I1-FFL present with the lowest values of SDE for both input

logics. C2-FFL and I2-FFL have the highest SDE in the OR input logic and C2-FFL and I4-FFL

have the highest SDE in the AND input logic. It is important to note that similar SDE-abundance

correlations were obtained when the kinetics parameters were simultaneously increased or

decreased by 3 orders of magnitude.

The next step is to constrain the energy based on the energy-unconstrained problem. The

lower and upper limits for HDR are shown in Figure 6.10. These Pareto frontiers are shown in

Figure 6.12A-B, and correspond to those reported in Figure 6.4A. Figure 6.12C-D shows the

Pareto averaged HDR when the energy of the system is now constrained and Figure 6.12E-F

shows the Pareto averaged SDE for both input logics. Once again, similar SDE-abundance

correlations were obtained for changes in 3 orders of magnitude of the kinetics parameters.

Finally, all the Pareto frontiers were obtained by the Normalized Constraint Method

(Section 3.3.4) (Nagrath et al., 2007).

6.10.3 SDE Correlation With Frequency of Occurrence of TRN Motif

Figure 6.4B compares the results obtained in Figure 6.4A with the abundance data for

Escherichia coli and Saccharomyces cerevisiae. From (Ma et al., 2004; Mangan and Alon,

2003). This data is summarized in Table 6.1. A correlation of averaged Pareto-optimal SDE with
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relative abundance of FFL motifs for E. coli and S. cerevisiae TRNs from (Ma et al., 2004) is

shown in Figure 6.13.

Table 6.1: Data used in Figure 6.4B.

Relative Abundance Relative Abundance Relative Abundance Pareto Averaged SDE Pareto Averaged SDE
FFL S. cerevisiae E. coi E. coli Boolean logic OR Boolean logic AND

(Mangan & Alon, 2003) (Mangan & Alon, 2003) (Ma et al, 2004) HDR Constrained HDR Constrained

C1 0.464 0.371 0.550 2.375E+05 1.496E+05
C2 0.089 0.040 0.058 9.366E+07 7.066E+07
C3 0.000 0.109 0.015 2.389E+05 1.825E+05
C4 0.000 0.074 0.062 6.656E+05 6.922E+05

11 0.375 0.287 0.247 1.481E+05 1.503E+05
12 0.054 0.025 0.019 7.608E+07 6.802E+05
13 0.018 0.050 0.017 1.886E+05 1.894E+05
14 0.000 0.045 0.033 6.590E+05 2.696E+06
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Figure 6.13: Correlation of averaged Pareto-optimal SDE with relative abundance of FFL motifs for E. coli and S.
cerevisiae TRNs (Ma et al., 2004).
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6.10.4 Correlating SDE Function with Dynamical Functions of Network Motifs

Correlation between dynamical function and energetic cost of FFLs during selection of

motifs in evolution.

The dynamic responses of two pairs of FFLs with AND input logic (I1-FFL - I4-FFL and

C1-FFL- C4-FFL,) are compared in Figure 6.5A for an ON-OFF step change in the

concentration of X from 10
-4 to 1 [nM]. At times t < 0, the system is allowed to reach the initial

steady state (ssi) for [X] = 10-4 [nM]. At t = 0 the ON step change in the concentration of X

occurs and is maintained at [X] = 1 [nM] for 10 [s]. This time is enough for the system to reach a

new steady state (ssf,). At t > 10 [s], the OFF step change is induced and the concentration of X is

again brought to 10-4 [nM] and kept at this value for another 10 [s]. After this, the system attains

the initial steady state (ssi). Notice that in these FFLs, the transcription factor X always activates

Z in the direct transcriptional pathway. In the indirect pathway (X activating or repressing Z by

transcribing the intermediate Y first), different combinations between activation and repression

are considered. The dynamic response of FFLs is compared with the dynamic response of simple

regulation (SR) X -> Z. The parameters used in Figure 6.5A for the FFLs are the same as used in

Figure 6.2A and 6.3B, and are shown in Figure 6.10. The SR case is formed by only two cycles:

cycle ZB and ZX. The parameters used for these cycles are the same for their corresponding

cycles in the FFLs. In addition, notice that the lower and upper limits in the step change in the

concentration of X correspond to the lower and upper constraints in the Pareto frontiers used in

Figure 6.4A. In all of the responses, the concentrations were normalized from 0 to 1 as shown in

Equation (6.16) where C represents any concentration, and [C],si and [C],,f are the concentrations

of C at ssi and ss, respectively.

[C]-[C],
[C]normalized = (6.16)

[C f - iCLssi

Dynamic response of I1-FFL and 14-FFL with AND input logic

As theoretically explained (Mangan and Alon, 2003) and experimentally demonstrated in

the galactose system of E.coli (Mangan and Alon, 2003; Mangan et al., 2006; Mangan et al.,

2003; Zaslaver et al., 2006; Zaslaver et al., 2004), I1-FFL with AND input logic generates a pulse

and speeds up the response time only in the ON phase. I4-FFL with AND input logic also
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accelerates the response in this sign sensitive manner and generates a pulse response (Mangan

and Alon, 2003). Both dynamical behaviors are predicted by the nonequilibrium transcriptional

model presented in this work, as shown in Figure 6.14: during the ON response, I1-FFL and 14-

FFL speed up the response by generating a pulse that overshoots the final steady state (ssf) when

compared to the SR, but during the OFF response, 11-FFL, I4-FFL, and SR have similar

trajectory. Here, we quantify the accelerated response as the time required to reach 50% of the

final steady state during the ON response (tl/2) as seen in Figure 6.14. For I1-FFL and I4-FFL,

these times are tl- FFL = 0.24 and t 42FFL = 0.32 [s], respectively. Observe that the desired

dynamic functionality (accelerated ON response compared to SR) is present in both I1-FFL and

I4-FFL, but is only little better for I1-FFL. Our kinetic TRN model allowed us to calculate the

dissipated energy required to fulfill the dynamic requirement during the entire response time (tR)

or time required for the system to return to the initial steady state within a 1% of error

(t"-FFL = 16.7 and t'14 FFL = 15.6 [s]). Figure 6.14 shows the dynamic responses of SDE for I1-

FFL and 14-FFL. When SDE is time averaged during the response time, we can find the total

averaged specific dissipated energy (SDE) for both systems: (SDE)I-FFL = 2.53.106 and (SDE)14

FFL = 3.67.107 [ J/mol]. Importantly, the mapping between both dynamical functionalities is

robust to variations in the kinetic parameters. In fact, similar dynaminc and SDE responses were

obtained when the kinetics parameters were simultaneously increased or decreased by 2 orders

of magnitude

Dynamic response of C1-FFL and C4-FFL with AND input logic

As theoretically explained (Mangan and Alon, 2003) and experimentally demonstrated in

the arabinose system of E.coli (Mangan et al., 2003), the C1-FFL with AND logic presents a sign

sensitive delay for ON steps of the external signal X compared to the SR. Similarly, C4-FFL with

AND logic exhibits this delay during the ON response but not during the OFF step change

(Mangan and Alon, 2003). Both dynamical behaviors are predicted by our kinetic model of

TRNs, as shown in Figure 6.15: during the ON response, C1-FFL and FFL get initially delayed

compared to the simple regulation, but during the OFF response, C1-FFL, C4-FFL, and SR

follow the same trajectory. For C1-FFL and C4-FFL, the delay times are tl-12L =-1.15 and

C4-FFL = 0.83 [s], respectively.
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Observe that the desired "functional dynamic" (delayed ON response compared to SR) is

present in both Cl AND and C4 AND, but is better for Cl AND. SDE averaging through the

response time (tlC-AND = 16.3 and t14- A N D = 15.4 [s]) shows (SDE)C I -FFL = 2.25.10 6 and (SDE)C4-

FFL = 1.67 107 [J/mol]. Once again, the mapping between both dynamical functionalities is robust

to variations in the kinetic parameters (when simultaneously increased or decreased by 2 orders

of magnitude).

6.10.5 Dynamical Characterization of Higher Order FFLs Using Energetic Cost

The dynamic responses of three generalizations of the FFLs with OR input logic (double

input or 2X-FFL, double Y or 2Y-FFL and double output or 2Z-FFL) are compared in Figure

6.5B for an ON-OFF exponential change in the concentration of X from 10-' to 1 [nM]:

0.1 ,t<O

[X]= 0.1+(1- 0.1)(1-e-0. 8) ,0 < t <10 (6.17)

1 0.1+(1-0.1)e-0.8 (t- l ) ,t 210

In all the responses, the concentrations were normalized from 0 to 1 by using Equation

(6.16).

Dynamic response of double input (2X-FFL)

Essentially, the 2X-FFL is composed of twelve cycles: four of them are involved in the

transcription of Y by X1 and X2, and eight in the transcription of Z by X1 , X2 and Y. The first four

cycles correspond to cycle YA (transcription of Y from its basal activator A), cycle YXI

(transcription of Y by X1), cycle YX 2 (transcription of Y by X2), and cycle YXIX 2 (transcription of

Y by the joint action of X and X2). The other eight cycles are cycle ZB (transcription of Z from

its basal activator B), cycle ZX1 (transcription of Z by XI), cycle ZX2 (transcription of Z by X2),

cycle ZY (transcription of Z by activator Y), ZXIX 2 (transcription of Z by both X and X2), ZX1 Y

(transcription of Z by both Xi and Y), ZX2Y (transcription of Z by X2 and Y), and cycle ZX1X 2Y

(transcription of Z by the joint actions of X1, X2 and Y). Notice that the basal kinetic parameters

shown in Supplementary Fig. 16 were selected in order to have minimal basal transcription rates:

TY,Basal JT,Basal = 10 -6 [nM s].
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As explained in Chapter 5, as the basal activity approaches to zero, K -* K for any cycle.

Then, the K values shown in Figure 6.16 correspond to the activation coefficients K. Throughout

this work, the combined contributions of two or more transcription factors with OR input logic

are desired to be reduced in order to appreciate the individual effect of the indiviual activators.

This is done by reducing P and increasing K. In order to have concentrations of Y of the same

order of magnitude of Z, the maximal transcription rates of Y (Pyx"' = /JYX 2 = 2) are twice the

maximal transcription rates of Z (flz' = ZX"' = "8 = 1). Finally, as seen in Figure 6.16, the

exponential input in Equation (6.17) was assigned for both X and X2.

Dynamic response of double Y (2Y-FFL)

The 2Y-FFL is composed of twelve cycles: two of them are involved in the transcription

of Yi by X; two involved in the transcription of Y2 by X; and eight in the transcription of Z by X,

Y1 and Y2. The first two cycles correspond to cycle Y1A1 (transcription of Yi from its basal

activator A1) and cycle YIX (transcription of Y, by X); the next two cycles are Y2A2 (transcription

of Y2 by A 2), and cycle Y2X (transcription of Y2 by X). The other eight cycles are cycle ZB

(transcription of Z from its basal activator B), cycle ZX (transcription of Z by X), cycle ZY,

(transcription of Z by YI), cycle ZY2 (transcription of Z by activator Y2), ZXY1 (transcription of Z

by both X and Y,), ZXY 2 (transcription of Z by both X and Y2), ZYi Y2 (transcription of Z by Y, and

Y2), and cycle ZXY1Y 2 (transcription of Z by the joint actions of X, Y, and Y2). The kinetic

parameters are shown in Figure 6.17 and follow the same OR input logic as for the double input

network and are based on the previous case. In fact, the parameters used in the FFL composed of

X, Y1 and Z in the 2Y-FFL are same as those in the FFL composed of X1, Y and Z in the 2X-FFL.

Furthermore, to facilitate the comparison of the network structures, the parameters involved in

the transcription of Y2 by X are in the double intermediate network are same as those involved in

the transcription of Y by X2. In addition, the following rule applies for the three generalizations of

the FFLs: the parameters used in the transcription of I by Jk are same as those involved in the

transcription of Ik by J, where I, J = X,Y,Z and k = 1, 2

193



Dynamic response of double output (2Z-FFL)

The 2Z-FFL is composed of ten cycles: two of them are involved in the transcription of Y

by X; four involved in the transcription of Zi by X and Y; and four in the transcription of Z2 by X

and Y. The first two cycles correspond to cycle YA (transcription of Y from its basal activator A)

and cycle YX (transcription of Y by X); the next four cycles are Z 1B1 (transcription of Zi by its

basal activator B1), cycle Z 1X (transcription of Z1 by X), cycle Zi Y (transcription of Zi by Y) and

Z1XY (transcription of Z 1 by the joint action of X and Y). The last four cycles are cycle Z2B2

(transcription of Z2 by its basal activator B2), cycle Z2X (transcription of Z2 by X), cycle Z2Y

(transcription of Z2 by Y) and Z2XY (transcription of Z2 by the joint action of X and Y). The

kinetic parameters described in Figure 6.18 for OR input logic are related to the two other

generalizations as explained in the 2Y-FFL case: the parameters in cycle Z2X and Z2Y are same

than those in cycles ZX2 (2X-FFL) and ZY2 (2Y-FFL), respectively. In addition, as presented by

(Kashtan et al., 2004), the following relationship is satisfied: KZ,1 < KZ2 and KZ'Y > KZ2Y. In

concurrence with previous results (Kashtan et al., 2004), there is a temporal order (First-In-First-

Out, FIFO) in the expression of Zi and Z2 (Figure 6.18). This sequence in the protein synthesis

has been studied in the flagella system of E. coli (Kalir and Alon, 2004). It has been postulated

that this dynamical property makes the 2Z-FFL a network motif, being the most abundant among

the three cases analyzed. In addition, the energetic changes in the dynamic response of the 2Z-

FFL motif are much smaller than those in the 2X-FFL (which in turn presents smaller changes

than in the 2Y-FFL), being energetically more robust than the two other generalizations of FFLs.

6.10.6 Prediction of Environmental Selection of Motifs Based on Energetic Cost

Dynamic response of C1-FFL and Simple Regulation (SR) with AND input logic

In Figure 6.6A, the dynamic responses of C1-FFL and SR-AND (X-+Z--Y) are compared

for an ON step change in the concentration of X from an initial concentration X to a final

concentration Xf This step change is maintained for a pulse duration tx that varies from 10- 1 to

10 [s].

As described by (Dekel and Alon, 2005; Dekel et al., 2005), the production of protein Z

has two opposite effects in the overall cell growth. When Z is transcribed, is then used as an
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enzyme that potentiates further cell growth. This cell growth rate can be described by a

Michaelis-Menten reaction:

cell growth rate 6- [Z] (6.18)
L+[Z]

where 6 [nM/s] is the maximal growth rate per Z, and L is the Michaelis-Menten constant of Z.

The second effect is a reduction in the growth rate due to utilization of resources required for

other protein transcription. This rate is proportional to the transcription rate of Z, JJ :

cell growth reduction rate = qJz  (6.19)

where r is the reduction in growth rate per molecule of Z produced. When a step pulse is

induced in X, the total cell growth or benefit and the total cell growth reduction or cost can be

calculating by integrating the dynamic response during the time at which the pulse is acting:

benefit = j[Z] dt (6.20)
0 L+[z]

IX

cost = lqJz dt (6.21)
0

A Pareto frontier can be obtained between benefit and cost for both C1-FFL AND and

SR-AND as shown in Figure 6.6A by having X, Xf, tx and L as decision variables in the ranges

10-2 < Xi _ 10-1 [nM], 102 Xf 103 [nM], 10-2 1 tx 10 [s] and 10- ' L < 1 [nM]. The anchor

points represent maximal benefit and minimal cost (or maximal 1/cost).

As an underlying cost, we propose that the time-averaged SDE ((SDE)) may allow us to

predict the environmental selection between C1-FFL and SR-AND:

t
X

JSDE(t)dt
(SDE) = 0 (6.22)

tx

When the benefit at the Pareto frontier is normalized by its corresponding (SDE) and

plotted against the decision variable tx, we can see that C 1-FFL is selected over SR-AND for a

critical pulse txc 0.1 [s]. Observe that txc is in the short pulse duration range (txc < 1/a, with a

= 1 [s-']) as predicted by (Dekel and Alon, 2005; Dekel et al., 2005).

The parameters used in C1-FFL are the same used in Figure 6.4 and 6.5A and for SR-

AND, the parameters correspond to those used in the transcription of Z in C1-FFL. For benefit,
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we used 6 = 1 [nM/s] and for cost we used r = 1. Notice that 6 and r do not play any role in the

optimization of both benefit and cost.

Dynamic response of C1-FFL and C4 -FFL with AND input logic

In a very similar way, the dynamic response of C1-FFL and C4-FFL with AND input

logic is compared for an ON-OFF step change in the concentration of X. The parameters used

here are the same used in Figure 6.4A. Figure 6.19 shows that C1-FFL is energetically favorable

over C4-FFL for all pulse durations.

Pareto-optimal robustness analysis

Robustness, as defined here, is with respect to change in the cellular transcription rate.

Robustness index (RI) was hypothesized here as the measure which cellular decision machinery

utilizes for selecting motifs among topologically and architecturally different but equally capable

of higher transcription during variable environments having internal and external environmental

perturbations, mutations, and non-genetic changes. RI used here is similar to the one defined

previously (Stelling et al., 2004a).

RI = 1 x, (tk,to) (6.23)
k=1 i=1 Xi ap

where overall sensitivity is determined by integration over discrete time and calculated over

vector element for parameters varied pj. Thus higher the RI higher is robustness of cellular

system in maintaining a particular function. We adopted systematic approach relying on multi-

dimensional sections of parameter space where all possible combinations of appropriate

parameters were varied to evaluate particular robustness. For instance, discretizing the parameter

space for C1-FFL into 25 dimensions required varying in total 20 reaction parameters (3 rate

constants per cycle with 6 cycles in each FFL and two total binding sites). For parametric

robustness, we varied the forward kinetic constants of the kinetic TRN model (kl, k2 and k3 for

each cycle), and for mutational robustness we varied the available binding site parameter ([D]tot),

for all cycles involved during Y and Z transcription). For overall robustness, all possible

combinations of both parametric and mutational parameters were varied to obtain RL Thus, we

varied 20 parameters per FFL motif over 25 grid points.
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6.10.7 Energetic Cost as the Underlying Basis for Generalization of Subgraphs to Form

Complex Networks

Energetic cost analysis during generalization of single input module (SIM)

Figure 6.7A is constructed based on the Single-Input Module (SIM) seen in Figure

6.20A. In this network motif, the transcription of Yi is independent of the transcription of Yj (i #

j) and in fact, the final concentration of Yi is a function of the concentration of X and the external

uptake J, . The transcription of Y is composed of two cycles: cycle YA (transcription of Y by

its basal activator Ai) and cycle YX (transcription of Y by X). The kinetic parameters used for the

basal activity are the same for all proteins Y, and are assigned in order to have a negligible basal

transcription rate (Jriaa = 10- [nM-s']). This will allows us to observe only the effect of X in

the transcription of Yi. As the basal activity approaches to zero, rc--K, and thus the K values

shown in Figure 6.20A correspond to the activation coefficients K. As experimentally studied in

metabolic (Zaslaver et al., 2004) and DNA repair systems (Ronen et al., 2002) of E. coli, and

theoretically explained by (Shen-Orr et al., 2002), SIMs generate temporal expression programs

of Last-In-First-Out (LIFO) order that require Ki < K'+1 and ensures an order in the expression of

the proteins which guarantees a protein production only when its needed. Notice that this

condition is imposed in this work. The values of k ix were chosen in order to have AK = 0.001

[nM] between the transcription of Y+I and Y. The maximal transcription rates are equal and set

as = 1 [nM-s]. As only one transcription factor is present, there is no need of defining a

Boolean input logic for the SIM.

The results presented in Figure 6.7A were obtained for [X] = 0.01 [nM] and for a

constant total external flux Jr = 0.01 [nM-s- '] with Jr, = Jy,',. For an instance, when only Yi

and Y2 were present, JYr = JY2 5.10-3 [nM'S-1]. However, when there are four outputs,

JY
1 = JY2 = JY3 = JY4 = 2.5 -10- 3 [nM's-l]. This ensures a constant total external flux which allows

us to energetically compare all the topological generalizations of network motifs.

Figure 6.20B shows that there is a constant decrease in the SDE with the increase in the

number of transcribed proteins which is in agreement with the observations made by (Shen-Orr

et al., 2002). Figure 6.20C shows the slope of the curve presented in Figure 6.20B.
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Figure 6.20: The Single-Input Module (SIM). A) Parameters used in Figure 6.7A. B) SDE as a function of the SIM
outputs. C) Change of the SDE per change in the number of outputs, as a function of the number of outputs.

As seen in the figure, when SIM has greater than approximately 13 outputs, the slope

(indicating the rate of change of SDE with the number of linkages) is almost constant and close
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to zero, showing an energetic advantage for N > 13. This explains that SIM with lower linkages

are energetically favorable and also have low frequency of occurrence.

6.10.8 Energetic Phase Diagram Generation for Directional SIM Based Generalizations

First layer: SIM

The SDE at steady state is compared for topological generalizations of network motifs.

As previously explained, SIM is the simplest topological generalization for N > 2. The results

presented in Figure 6.7A correspond to the bottom row in the matrix shown in Figure 6.7B.

Second Layer: SIM with one linkage

The next layer in Figure 6.7B corresponds to the SIM with one interaction between

proteins Y which is always directed from Yk-1 to Yk, Yk being the protein transcribed by both X

and Yk-1. This order is needed to maintain the temporal expression already mentioned in the SIM

and, in general, here we assume that Yi-1 is always required first than Yi, and thus Y, I participates

in the transcription of Y when these nodes are linked. Based on (Vazquez et al., 2004), the

position k of the protein Y is given by:

k = round N 1, with N>2 (6.24)

where the function f= round(x) rounds x the towards nearest integer and N is the number of total

outputs. For an instance, when N = 2, then k = 2, and thus Y2 is transcribed by both X and Y1.

Notice that this topological generalization becomes a C1-FFL. As another example, if N = 5, then

k = 3 and now Y3 is transcribed by both X and Y2. Because there is only one interaction, Y1, Y2,

Y4, and Y5 are still being transcribed only by X as in the SIM.

Transcription of Yk is modeled by four cycles: cycle YkAk (transcription of Yk by its basal

activator Ak), cycle YkX (transcription of Yk by X), cycle YkYk-1 (transcription of Yk by Yk-1) and

cycle YkXYk-1 (transcription of Yk by the joint interaction of both X and Yk-1). The kinetic

parameters used in the cycles YkAk and YkX are the same as used in the SIM layer (shown in

Figure 6.20). In order to compare the transcriptional effect of X and Yk-1, we have set the

parameters of the cycle YkYk-I same as those used in cycle YkX. As Yk is transcribed by two

transcription factors X and Yk-1, a transcriptional input logic is required. For this work, we have
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selected an OR input logic. As has been mentioned previously, we make the contribution of this

cycle negligible by using low kXYk-_, = 10-4 [nM-s-1] and highKkX -' = 104 [nM]. The results

presented in Figure 6.7B were obtained for [X] = 0.01 [nM] and for a constant total external flux

ZJy = 0.01 [nM-s-] with J, = J1,,'

Third Laver: SIM with two linkages

We next built more complicated topological network motifs by adding a second

interaction to the SIM. As shown in (Vazquez et al., 2004), two proteins Yk, and Y,, are now

being transcribed by X and Yk-1, and by X and Y,-1, respectively. The positions k and m are given

by the following equations:

k = roundN) , for N > 3 (6.25)

k + 1, if (k -N/2) = 0.5

m k+2,if (k-N/2)=0 for N 3 (6.26)

For an instance, if N = 3, then k = 2 and m =3. Therefore Y2 is transcribed by both X and

Y1; Y3 is transcribed by both X and Y2; and Yi is only transcribed by X. Now, if N = 4, then k = 2

and m =4. Thus Y2 is transcribed by both X and Y1; Y4 is transcribed by both X and Y3; and Y1 and

Y3 are only transcribed by X as in the SIM.

Once again, the transcription of Yk, and Y, is presented as a four cycle model. For i= {k,

m}, these cycles are: cycle YiA (transcription of Yi by its basal activator At), cycle YX

(transcription of Yi by X), cycle YiY-l (transcription of Yi by Yi-1) and cycle YXY,_I (transcription

of Yi by the joint interaction of both X and Yi- 1). Parameter assignments and inputs follows the

same logic described for the second layer.

Fourth Layer: SIM with three linkages

General case (N > 4)

When three interactions are added to SIM with N > 4, proteins Yk, Yk+l and Yk+2 are transcribed

by both X and their corresponding predecessor. Position k is assigned by the following logic:

k= round N-1,with N 4 (6.27)
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C. D.

Y Y Y Y
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x x
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Figure 6.21: A-B) Two possible topological generalization motifs for a 3 output SIM with three interactions: A) Y1

transcribes Y3. B) Y3 transcribes Y1. In both cases, the temporal order is maintained by keeping Y--Y 2 and Y2 -'Y 3.

C-G) Four possible topological generalization motifs for a 4 output SIM with four interactions. C) Y1 transcribes Y3

and Y2 transcribes Y4. D) Y3 transcribes Y1 and Y4 transcribes Y2. E) Y transcribes Y3 and Y4 transcribes Y2. F) Y3

transcribes YI and Y2 transcribes Y4. In the four cases, the temporal order is maintained by keeping Y1-- Y2 and

Y3 -*Y4, and no interaction is allowed between Y2 and Y3 and between Y1 and Y4, according to (Vazquez et al.,
2004).G) Another possible topological generalization motifs for a 4 output SIM with four interactions. The temporal

order is maintained by keeping Y---Y 2, Y2-- Y3, and Y3 -*Y 4.
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Thus, if N = 4, then k = 2. Therefore Y2 is transcribed by both X and Y1; Y3 is transcribed

by both X and Y2; Y4 is transcribed by both X and Y3; and Y1 is only transcribed by X. Now, if N =

6, k = 3. Then Y3 is transcribed by both X and Y2; Y4 is transcribed by both X and Y3; Y5 is

transcribed by both X and Y4; and Y, and Y6 are only transcribed by X as in the SIM.

As explained before, the OR input logic still applies, as well as the four cycle model for

Yk, Yk+1 and Yk+2, the parameters assignment, and the inputs.

Special cases (N = 3)

When three outputs are present and the following interactions are already fixed by the

temporal expression of SIM: Y1-+Y2 and Y2-*Y3, then the only way of adding a third interaction

is by adding Y1--+Y3 (Figure 6.21A) or Y3-*Y 1 (Figure 6.21B).

In the first case, transcription of Yi and Y2 follow the two and four cycle model already

explained. However, transcription of Y3 involves now eight cycles: cycle Y3A3 (transcription of

Y3 by its basal activator A3), cycle Y3X (transcription of Y3 by X), cycle Y3YI (transcription of Y3

by Y1), cycle Y3Y 2 (transcription of Y3 by Y2), Y3XY 1 cycle (transcription of Y3 by both X and Y1),

cycle Y3XY2 (transcription of Y3 by both X and Y2), cycle Y3Y1Y2 (transcription of Y3 by both YI

and Y2), and cycle Y3XY 1 Y2 (transcription of Y3 by X, Y and Y2). Because the system follows an

OR input logic, the kinetic parameters associated to cycles Y3XYI, Y3XY2, Y3Y1Y2, and Y3XY1 Y2 are

given in order to have negligible transcription from the joint interaction of two or more

transcription factors, and the parameters given to cycles Y3Y and Y3Y2 are same than those

assigned to the initial SIM configuration for cycle Y3X.

In the second case, the transcription of each protein Y is always determined by the OR

input logic of two transcription factors: X and Y3 for transcription of Y1, X and Yi for transcription

of Y2, and X and Y2 for transcription of Y3. Four cycles are associated to each protein expression

and the parameters assignment is same as previously described.

Fourth Laver: SIM with four linkages

General case (N > 5)

When four interactions are added to SIM with N > 5, proteins Yk-1, Yk, Ym, and Y,+1, are

transcribed by both X and their corresponding predecessor. Assignment of positions k and m

follow Equations (6.25) and (6.26), respectively, but for N> 5.
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Thus, if N = 5, k = 3 and m =4. Then Y2 is transcribed by both X and Y1; Y3 is transcribed

by both X and Y2; Y4 is transcribed by both X and Y3; Y5 is transcribed by both X and Y4; and Y1 is

only transcribed by X. Now, if N = 6, k = 3 but m =5. Then Y2 is transcribed by both X and Yi; Y3

is transcribed by both X and Y2; 15 is transcribed by both X and Y4; Y6 is transcribed by both X

and Y5; and Yi and Y4 are only transcribed by X as in the SIM. The OR input logic still applies, as

well as the four cycle model for Yk-1, Yk, Ym, and Y,m+, the parameters assignment, and the inputs.

Special cases (N = 4)

As presented by (Vazquez et al., 2004) where there is not interaction between Y2 and Y3,

and between Y1 and Y4, and by fixing the following interactions according to the temporal

expression of SIM: Yi-+Y2 and Y3--*Y4, four possible cases shown in Figure 6.21C-F are possible

in order to have a total of four interactions, which kinetic parameters follows the same

assignment as already explained for OR input logic.

The first case is shown in Figure 6.21C and shows Y1 being transcribed only by X and

thus only 2 cycles describe the model; transcription of Y2 by X and Yi (total of 4 cycles),

transcription of Y3 by X and Yi (total of 4 cycles) and transcription of Y4 by X, Y2 and Y3 (total of

8 cycles). The cycles can be easily defined by getting all the possible combinations between the

transcription factors.

The second case is shown in Figure 6.21D and shows Y1 being transcribed by X and Y3 (4

cycles); transcription of Y2 by X, Y1 and Y4 (total of 8 cycles), transcription of Y3 only by X (total

of 2 cycles) and transcription of Y4 by X and Y3 (total of 4 cycles).

The third special case is shown in Figure 6.21E and shows Y being transcribed only by X

(2 cycles); transcription of Y2 by X, Yi and Y4 (total of 8 cycles), transcription of Y3 by X and Yi

(total of 4 cycles) and transcription of Y4 by X and Y3 (total of 4 cycles).

The fourth special case is shown in Figure 6.21F and shows Y1 being transcribed by X

and Y3 (4 cycles); transcription of Y2 by X and Y (total of 4 cycles), transcription of Y3 only by X

(total of 2 cycles) and transcription of Y4 by X, Y2 and Y3 (total of 8 cycles).

In addition to the interactions proposed by (Vazquez et al., 2004), here we proposed a

fifth case which is based on Case B from SIM with three linkages as shown in Figure 6.21G. The

transcription of each protein Y is always determined by the OR input logic of two transcription

factors: X and Y74 for transcription of Yi, X and Y1 for transcription of Y2, X and Y2 for

204



transcription of Y3 and X and Y3 for transcription of Y4. Four cycles are associated to each protein

expression and the parameters assignment is same as already mentioned.

6.10.9 Pulsed Energetics Topological Generalization Prediction (PETGP) Strategy for

Energetics Based Dynamical Analysis for Characterizing Subgraphs

In this section, we propose a novel strategy to predict the abundance of generalized

network motifs based on the computation of (SDE).

Assumptions

1. The basal transcription activity is neglected. This is achieved by using low concentrations

of the basal transcription factor.

2. The generalized network motifs have an OR input logic. This implies that the combined

interaction of multiple transcription factors is neglected by reducing f and increasing K

values.

3. Only the cycles corresponding to the individual transcription factors are active.

4. No external flux is withdrawn from the network.

The proposed strategy follows three main steps (Figure 6.22):

Step 1: Assignment of parameters

For any generalized network motif, assign equal parameters for all the existing

interactions between the nodes. It is important to note that the dynamic functionality (and thus

the relationship between the network parameters) is not required to be known. For every

linkage, assign any desired K and f3 value. For very irreversible reactions (i.e., ki >> k-, i = 1, 2,

3) and if k3 >> k2, the relationship between K and P and the kinetic parameters is given by:

I=k2 (6.28)
k,

fl = k2[D],,to, (6.29)
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STEP 1: For all linkages between nodes, assign equal parameters.

- IQ-

I [Xl/ I/

STEP 2: Choose a dynamic input for X around K with a pulse duration ,x.

Step Exponential Gaussian Ramp

U - -I ----- -
1.0 1 t------------t--------- -- --- -4- - ------------ -4 ----------- -- 4 -- - -------- ---- ------ ----- ...

0.9-
Time

STEP 3: Obtain the dynamic energetic response and time average.

: fSDE(t) -dt

L1 < SDE >= ',o

Time

Figure 6.22: Description of the general strategy procedure. The three main steps are: 1) Assignment of the

parameters, 2) Selection of the input X, and 3) Calculation of <SDE>.

Thus, when Ic and 8 are assigned, it allows the determination of the following kinetic

parameters: kl, k2, k3 and [D]tot. In addition, recall that when the basal activity approaches to

zero, Ic = K.

Constraints

When all the kinetic parameters are assigned, the network is fully characterized except

for the degradation rate a which is the same for all the proteins in the network. However, this

strategy has only one restriction. It requires the following relationship to be satisfied when this

parameter is assigned:
206
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S k-2[D]o, - k2[D]o, (6.30)
K - <<<< 2 «o -(k0

,93 KK 3  21 2kl

where = k3 , [2 ]  (6.31)
k-lk-2k-3[D]2ot

In Figure 6.7C, the following parameters were used: kl = 10 [s-1-nM-'], k2 = 1 [s-'], k3

1000 [s-], k-1 = 10-6 [s'], k-2 = 10-6 [S-l], k-3 = 10-6 [s-' nM 2], [D]to = 1 [nM], a = 10-3 [S-1].

These values determine x = 10-1 [nM], fl = 1 [nM-s'], and 6 = 1021 [s2]. Notice that condition

(6.30) is satisfied by the current parameters.

Step 2: Selection of the input X

In order to obtain the dynamic response of the SDE, a perturbation in the concentration of

X must be performed. As seen in Figure 6.22, we propose four different pulses to study the

dynamic energetic behavior: step, exponential, Gaussian, and ramp ON-OFF changes. The

duration of the ON input is the pulse duration tx and this time is the same for the OFF response.

Because K is the concentration of X required to reach half of the maximal transcription rate, in

this work we define K as the characteristic concentration of the network. We further

hypothesize that small perturbations around K can give us valuable information about the SDE of

the network. Thus, we select X = 0.9K and Xf = 1.1 K. As seen in Tables 6.2 to 6.5, (SDE) is

robust with respect to the shape of the input and the pulse duration. If the TRN has more than

one input X (as in the generalized FFL, DOR and LAY), the same input has to be given to all of

them. In Figure 6.7C, the shown results correspond to an ON-OFF step change in the

concentration of X with tx = 104 [s].

Step 3: Calculation of A(SDE)

Once the input of [X] is given, the dynamic energetic response can be obtained. Here we

define the response time tR , as the time required to the SDE to reach 0.1% of the initial state.

After calculation of the response time, the integration of SDE in time can be performed in order

to calculate the (SDE):
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tR

JSDE(t)dt
(SDE)= o

(6.32)

The SDE of the base subgraph is considered as the reference energetic state for all of its

generalized motifs and its (SDE)is zero by definition. A(SDE) of a generalized network is

obtained by subtracting (SDE) with a (SDE) of the base subgraph. If the generalized network is

energetically more favorable than the base subgraph, its A(SDE) will be negative. Otherwise, it

will take positive values.

Table 6.2: Time averaged SDE for the SIM generalization

INPUT tx [s] SIM(2,0) SIM(3,0) SIM(4,0) SIM(5,0) SIM(6,0) SIM(2,1) SIM(3,1) SIM(4,1) SIM(5,1) SIM(6,1)

10000 0.0 3.1 4.6 5.5 6.2 73906.9 44111.9 31443.5 24429.8 19975.3
1000 0.0 3.0 4.4 5.3 5.9 73225.3 43837.5 31301.2 24344.7 19919.8

Step 100 0.0 3.1 4.7 5.6 6.3 74052.0 44180.5 31481.5 24453.3 19990.9
10 0.0 3.1 4.6 5.5 6.2 73437.8 43976.4 31378.3 24388.4 19944.2

1 0.0 2.9 4.4 5.3 5.8 72315.0 43566.0 31163.0 24253.1 19849.6

10000 0.0 3.0 4.5 5.4 6.0 73328.5 44046.5 31342.3 24366.2 19932.1
1000 0.0 2.9 4.3 5.2 5.8 72329.7 43551.5 31160.0 24259.5 19862.0

Exponential 100 0.0 2.8 4.3 5.1 5.7 71947.9 43415.3 31091.8 24218.9 19835.2

10 0.0 3.0 4.5 5.4 6.0 72955.5 43795.9 31287.9 24336.7 19913.1

1 0.0 2.9 4.3 5.2 5.8 72126.1 43483.1 31114.3 24219.1 19822.8

10000 0.0 3.0 4.5 5.4 6.0 73205.8 43869.9 31322.4 24357.4 19927.1

1000 0.0 2.9 4.3 5.2 5.8 72401.5 43577.6 31173.3 24267.5 19867.3
Gaussian 100 0.0 2.8 4.3 5.1 5.7 71955.1 43419.1 31093.7 24220.1 19836.0

10 0.0 3.0 4.5 5.4 6.0 72988.0 43793.7 31278.8 24326.2 19902.1

1 0.0 2.9 4.4 5.2 5.8 72184.4 43507.0 31128.7 24229.6 19831.5

10000 0.0 3.0 4.4 5.3 5.9 72899.1 43761.6 31267.8 24324.7 19905.4

1000 0.0 2.9 4.3 5.2 5.8 72281.1 43536.0 31152.5 24255.2 19859.1

Ramp 100 0.0 2.8 4.3 5.1 5.7 71939.7 43413.3 31090.8 24218.4 19834.9

10 0.0 3.0 4.4 5.3 5.9 72723.8 43700.7 31233.9 24301.0 19886.9

1 0.0 2.9 4.3 5.2 5.8 72083.1 43469.8 31111.7 24222.0 19829.2

Table 6.2 (Cont): Time averaged SDE for the SIM generalization

INPUT tx [s] SIM(3,2) SIM(4,2) SIM(5,2) SIM(6,2) SIM(3,3) SIM(4,3) SIM(5,3) SIM(6,3) SIM(4,4) SIM(5,4) SIM(6,4) SIM(7,4)

10000 158315.8 99867.9 72964.6 57487.7 10437448.6 250715.1 161717.0 119412.4 10446517.7 348241.6 226914.5 168589.0
1000 157664.4 99547.1 72884.3 57519.6 11006229.4 250986.4 161649.3 119539.7 11015380.4 347376.4 227063.9 169181.6

Step 100 158041.0 99834.4 72952.1 57471.0 11244394.3 248358.9 161272.7 119359.2 11253575.5 341796.9 226047.6 168983.4
10 155552.0 99153.3 72731.2 57407.6 11265042.2 243993.5 160321.8 119310.5 11274189.2 337872.1 225476.5 169129.5
1 153606.4 98565.6 72530.0 57356.1 9270150.2 242392.5 159942.4 119292.0 9277658.5 336817.7 225294.5 169215.2

10000 156469.5 99553.5 72862.5 57477.9 10668997.6 247387.7 161267.6 119435.6 10677916.7 343563.1 226555.1 168770.4
1000 154543.1 98837.2 72672.8 57467.7 11080086.5 244662.5 160491.4 119472.0 11089379.8 340348.3 225948.6 169227.3

Exponential 100 153724.8 98596.7 72606.7 57467.2 11268325.0 243842.5 160244.0 119499.3 11277417.9 340922.8 225842.7 169436.8
10 154881.3 98957.0 72684.2 57424.6 11294058.9 243313.9 160189.6 119360.0 11303139.5 337244.8 225454.0 169277.5

1 153353.3 98487.1 72512.2 57365.2 11296383.4 242132.6 159906.7 119339.9 11305462.0 336577.1 225356.5 169350.3

10000 156534.5 99404.3 72836.1 57478.0 10648680.7 247712.8 161150.6 119444.9 10657823.3 344154.1 226470.7 168806.3
1000 154706.3 98885.2 72686.9 57468.9 11034513.5 244910.5 160549.2 119471.6 11043566.9 340649.8 225998.5 169196.3

Gaussian 100 153681.8 98596.2 72606.5 57465.9 11259310.1 243473.6 160221.5 119494.0 11268404.8 339383.7 225773.8 169433.4
10 155013.7 98967.3 72666.4 57398.7 11292723.7 243523.5 160212.4 119333.5 11301803.6 337383.8 225453.8 169238.8

1 153440.6 98520.6 72530.7 57378.2 11296749.3 242201.7 159934.1 119355.2 11305829.9 336623.2 225376.3 169362.2
10000 155799.7 99206.7 72781.5 57475.8 10785898.6 246532.6 160919.6 119461.9 10794797.7 342615.4 226297.2 168977.4

1000 154403.7 98806.2 72665.6 57468.0 11085741.7 244404.6 160454.6 119478.8 11094838.5 339971.8 225927.1 169268.1
Ramp 100 153677.3 98589.9 72605.1 57466.8 11265822.0 243642.9 160228.6 119498.8 11274912.4 340423.1 225813.4 169442.1

10 154605.5 98864.1 72649.3 57414.9 11293592.5 243222.9 160171. 119368.4 11302656.5 337236.0 225469.6 169303.6
1 153343.5 98500.5 72535.6 57394.1 11296171.0 242157.5 159943.9 119383.2 11305253.2 336618.2 225404.8 169402.0
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Table 6.3: Time averaged SDE for the FFL generalization

INPUT tx [s] FFL 2X 2Y 2Z

10000 0.0 9550.4 30113.9 -28870.0
1000 0.0 10295.6 32811.3 -28450.4

Step 100 0.0 9065.6 31817.5 -29005.2
10 0.0 8475.3 31775.4 -28511.7
1 0.0 8565.0 32476.9 -27733.9

10000 0.0 9207.9 31542.2 -28423.8
1000 0.0 9232.9 33386.5 -27925.2

Exponential 100 0.0 9273.6 33868.9 -27695.8
10 0.0 8695.3 32355.3 -28304.0
1 0.0 8690.8 33085.2 -27676.9

10000 0.0 9332.7 31969.1 -28448.4
1000 0.0 9241.0 33293.9 -27967.9

Gaussian 100 0.0 9203.6 33837.7 -27700.3
10 0.0 8728.6 32346.0 -28306.3

1 0.0 8683.8 33051.7 -27726.2
10000 0.0 9270.7 32796.3 -28263.8

1000 0.0 9205.9 33533.9 -27895.4
Ramp 100 0.0 9240.5 33851.2 -27690.4

10 0.0 8799.9 32635.1 -28153.5
S 1 0.0 8763.6 33198.3 -27692.5

Table6.4: Time averaged SDE for the BIFAN generalization

INPUT tx [s] DOR(2,2) DOR(2,3) DOR(2,4) DOR(3,2) DOR(3,3) DOR(3,4) DOR(4,2) DOR(4,3) DOR(4,4)

10000 0.0 4.7 7.1 451.9 458.2 461.4 864.6 872.7 876.7
1000 0.0 4.5 6.7 451.7 457.8 460.9 887.5 895.3 899.2

Step 100 0.0 4.8 7.2 376.5 383.0 386.2 740.6 748.8 752.8
10 0.0 4.7 7.1 375.1 381.5 384.7 738.5 746.5 750.6
1 0.0 4.4 6.6 385.4 391.4 394.3 754.1 761.6 765.3

10000 0.0 4.6 6.8 435.1 441.3 444.4 880.5 888.2 892.1
1000 0.0 4.3 6.5 397.1 402.8 405.7 776.5 783.8 787.4

Exponential 100 0.0 4.2 6.3 385.3 390.9 393.7 760.8 767.8 771.3
10 0.0 4.5 6.8 375.0 381.1 384.1 739.4 747.0 750.8

1 0.0 4.3 6.5 379.8 385.6 388.5 745.1 752.4 756.1

10000 0.0 4.5 6.8 425.3 431.4 434.4 820.1 827.7 831.5
1000 0.0 4.3 6.5 399.4 405.2 408.1 780.2 787.5 791.1

Gaussian 100 0.0 4.2 6.3 384.4 390.0 392.8 757.7 764.8 768.3

10 0.0 4.5 6.8 377.8 383.9 386.9 743.1 750.8 754.6

1 0.0 4.4 6.5 378.2 384.1 387.0 745.9 753.3 757.0

10000 0.0 4.5 6.7 414.7 420.7 423.7 803.0 810.5 814.2

1000 0.0 4.3 6.4 394.9 400.6 403.5 772.6 779.8 783.4
Ramp 100 0.0 4.2 6.3 384.5 390.1 392.9 758.8 765.8 769.3

10 0.0 4.5 6.7 376.4 382.4 385.4 741.0 748.5 752.3

1 0.0 4.3 6.5 379.1 384.9 387.8 745.2 752.5 756.2
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Table 6.5: Time averaged SDE for the Simple Regulation eneralization

INPUT tx [s] LAY(1,1,1) LAY(1,2,1) LAY(1,3,1) LAY(1,1,2) LAY(1,2,2) LAY(1,3,2) LAY(1,1,3) LAY(1,2,3) LAY(1,3,3)

10000 0.0 -5471.2 -41141.4 3447.4 1747.4 738.9 5459.4 3761.8 2762.3
1000 0.0 -3030.0 -39671.6 3448.3 1747.1 739.7 5461.2 3762.1 2762.1

Step 100 0.0 -2308.9 -45380.7 3449.5 1748.8 736.0 5461.9 3764.0 2764.0

10 0.0 -2411.4 -44303.2 3466.2 1757.5 713.3 5481.3 3779.5 2776.0

1 0.0 -2776.0 -40958.2 3526.9 1793.9 657.9 5552.7 3842.1 2823.6

10000 0.0 -4143.9 -40274.8 3446.8 1746.6 739.1 5458.7 3760.7 2761.1

1000 0.0 -2353.8 -39148.1 3446.3 1745.5 739.5 5458.2 3759.4 2759.8

Exponential 100 0.0 -1867.4 -39036.2 3446.4 1745.2 739.7 5458.5 3759.2 2759.4

10 0.0 -2125.6 -42874.2 3447.6 1147.0 736.5 5459.9 3761.0 2761.6

1 0.0 -2199.2 -40391.0 3494.0 1772.9 688.6 5513.6 3806.8 2795.9

10000 0.0 -3849.4 -40625.1 3446.9 1746.6 739.2 5458.8 3760.7 2761.1

1000 0.0 -2456.5 -39207.4 3446.4 1745.6 739.5 5458.3 3759.5 2759.8

Gaussian 100 0.0 -1883.3 -39016.0 3446.3 1745.2 739.6 5458.4 3759.1 2759.3

10 0.0 -2092.4 -42951.0 3453.5 1750.3 731.3 5466.2 3767.2 2766.4

1 0.0 -2159.2 -40648.8 3482.7 1766.4 696.8 5499.6 3795.2 2788.1

10000 0.0 -3100.6 -40273.0 3446.7 1746.2 739.3 5458.7 3760.3 2760.7

1000 0.0 -2237.8 -39163.6 3446.3 1745.5 739.5 5458.2 3759.4 2759.7

Ramp 100 0.0 -1875.4 -39036.5 3446.4 1745.2 739.7 5458.5 3759.2 2759.4

10 0.0 -2042.8 -42127.3 3451.8 1749.1 733.2 5464.3 3765.1 2764.4

1 0.0 -2081.5 -40318.6 3474.7 1761.1 708.4 5490.1 3787.0 2781.8

Table 6.5 (Cont): Time averaged SDE for the Simple Regulation generalization

INPUT tx [s] LAY(2,1,1) LAY(2,2,1) LAY(2,3,1) LAY(2,1,2) LAY(2,2,2) LAY(2,3,2) LAY(2,1,3) LAY(2,2,3) LAY(2,3,3)

10000 -361.3 -29127.9 -75063.1 3094.7 1401.6 -2324.0 5107.1 3419.9 2421.8

1000 -416.7 -28802.2 -74192.2 3041.9 1346.6 -784.8 5056.4 3366.5 2367.2

Step 100 -588.1 -29726.6 -76100.5 2876.5 1180.0 -393.3 4889.4 3201.9 2201.8

10 -709.3 -29109.9 -75910.6 2810.9 1087.2 -533.1 4828.0 3134.7 2119.4

1 -778.3 -26446.6 -74823.3 2858.5 1069.7 -1634.9 4888.7 3180.5 2126.6

10000 -423.9 -27271.7 -74610.4 3030.9 1337.3 -1406.1 5043.2 3355.0 2356.8

1000 -518.1 -25869.4 -73963.8 2935.6 1241.0 -258.1 4947.9 3258.2 2259.8

Exponential 100 -554.1 -25207.9 -73892.4 2899.6 1204.3 66.6 4912.1 3221.5 2222.9

10 -626.9 -27812.8 -75247.5 2847.3 1146.3 -219.4 4860.2 3171.1 2169.0

1 -715.8 -25955.0 -74540.4 2834.7 1088.9 -284.7 4854.5 3154.3 2126.2

10000 -428.8 -27559.8 -74781.0 3025.9 1332.2 -1178.5 5038.2 3349.9 2351.7

1000 -510.8 -26019.3 -73960.9 2942.9 1248.4 -319.2 4955.2 3265.6 2267.2

Gaussian 100 -554.6 -25155.4 -73892.8 2898.9 1203.7 55.2 4911.4 3220.9 2222.3

10 -606.4 -27843.2 -75281.1 2873.8 1168.3 -184.3 4887.7 3197.3 2192.4

1 -707.5 -26204.3 -74639.3 2819.5 1086.7 -245.4 4838.1 3139.9 2119.3

10000 -459.2 -26980.0 -74714.6 2995.2 1301.1 -686.9 5007.4 3318.6 2320.3

1000 -522.9 -25777.7 -73978.0 2930.7 1236.0 -170.3 4943.0 3253.2 2254.8

Ramp 100 -555.3 -25177.8 -73885.3 2898.4 1203.1 62.0 4910.9 3220.4 2221.7

10 -599.1 -27151.3 -74985.8 2874.5 1171.7 -130.01 4888.0 3197.6 2194.3

1 -670.6 -25870.7 -74476.5 2840.1 1115.4 -165.7 4857.2 3161.3 2144.8

Table 6.5 (Cont): Time averaged SDE for the Simple Regulation generalization

INPUT tx [s] LAY(3,1,1) LAY(3,2,1) LAY(3,3,1) LAY(3,1,2) LAY(3,2,2) LAY(3,3,2) LAY(3,1,3) LAY(3,2,3) LAY(3,3,3)

10000 -211.5 -36931.6 -84881.4 3253.3 1567.1 -11702.4 5266.0 3589.5 2592.5

1000 -245.6 -37093.5 -84278.1 3224.9 1535.1 -12128.1 5241.0 3561.0 2562.1

Step 100 -564.2 -37475.8 -85244.7 2918.2 1224.0 -14749.1 4931.2 3254.4 2252.6

10 -763.4 -37195.9 -85236.5 2813.5 1067.0 -14345.6 4831.5 3146.7 2113.0

1 -885.1 -35491.0 -84714.2 2822.5 984.2 -12115.6 4856.0 3150.7 2055.4

10000 -304.9 -35742.2 -84531.3 3158.2 1471.3 -11027.0 5170.6 3492.9 2495.8

1000 -446.6 -34874.2 -84110.1 3014.8 1326.2 -10344.9 5027.3 3347.0 2349.6

Exponential 100 -493.1 -34592.1 -84069.3 2968.7 1279.0 -10512.3 4981.9 3300.1 2302.3

10 -630.1 -36215.4 -84806.7 2880.9 1172.2 -13153.8 4894.2 3214.3 2205.6

1 -762.9 -35117.1 -84507.2 2817.3 1055.5 -11673.6 4838.6 3146.1 2101.1

10000 -316.3 -35909.6 -84667.6 3146.6 1459.3 -11230.3 5159.1 3480.9 2483.7

1000 -436.0 -34964.6 -84136.4 3025.6 1337.0 -10365.3 5038.0 3357.9 2360.6

Gaussian 100 -498.1 -34475.6 -84069.1 2963.3 1273.8 -10349.6 4976.0 3294.5 2296.8

10 -596.9 -36231.3 -84805.8 2915.2 1202.8 -13149.4 4929.7 3248.5 2236.0

1 -742.9 -35291.4 -84557.7 2810.4 1065.7 -11904.2 4829.0 3140.7 2106.4

10000 -361.8 -35536.2 -84509.6 3100.5 1412.7 -11043.6 5112.9 3433.9 2436.7

1000 -454.5 -34805.7 -84114.6 3006.8 1318.1 -10350.9 5019.2 3338.8 2341.4

Ramp 100 -496.3 -34542.1 -84067.1 2965.2 1275.5 -10479.2 4978.3 3296.7 2298.8

10 -583.2 -35755.8 -84647.6 2916.8 1209.7 -12535.5 4930.7 3249.5 2240.6

1 -687.7 -35025.8 -84445.1 2845.5 1113.0 -11571.6 4862.4 3175.6 2149.2
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7 ENERGETIC ANALYSIS OF AN EXTENDED PLURIPOTENCY MODEL OF THE

TRANSCRIPTIONAL NETWORK OF EMBRYONIC STEM CELLS

7.1 INTRODUCTION

The transcriptional regulatory network model for pluripotency of embryonic stem cells

(Figure 7.1) consists of various autoregulatory, feedback and feedforward loops, single input

modules and bifan motifs. The ESC regulatory network as seen in figure 7.1 has multilevel

network architecture. It can be divided into three levels: (1) Level-0, transcriptional regulatory

circuit with three transcription factors Oct4, Sox2 and Nanog; (2) Level-1, inner core of

transcriptional circuity with nine transcription factors Klf4, c-Myc, Zfp281, Sox2, Nanog, Oct4,

Rexl, Daxl and Nacl; and (3) Level-2, combined transcriptional regulatory circuit with target

hubs of multiple transcription factors.

Not much has been understood about the occurrence of these motifs and levels in

embryonic stem cells network biology. Thus, there has been lack of explanation on how a level

architecture in ESC network influences other levels, functional role of various levels, dynamics

and functional objectives of ESCs TRN. Moreover, there has been the lack of a regulatory

network analysis criterion which can describe the underlying mechanisms behind the occurrence

of these layers, motifs, as well as the way in which these motifs play a role in developmental

biology and the way that both functional objectives and topological architecture may evolve.

Here, we postulate that the architecture of ESC-TRN can be explained based on a

conceptual framework that integrates nonequilibrium thermodynamics with Pareto-optimality of

the biological functions to be carried out by the embryonic stem cells. We present an energetic-

cost theory that can explain cofactor occupancy as well as the topological arrangement of the

ESC network. Through the developed framework, we have tried to answer the questions of why

during development certain architecture is favored and what advantage different levels offer for

steady state analyses. Our study also demonstrates that ESC network analyses using often-

ignored energetics enables identification of new functionalities for various topological

arrangements.
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Figure 7.1: Expanded transcriptional regulatory network model for pluripotency of embryonic stem cells. The ESC
regulatory network is divided into three levels: (1) Level-O, transcriptional regulatory circuit with three transcription
factors Oct4, Sox2 and Nanog; (2) Level-i, inner core of transcriptional circuity with nine transcription factors Klf4,
c-Myc, Zfp281, Sox2, Nanog, Oct4, Rexl, Daxl and Nacl; and (3) Level-2, combined transcriptional regulatory
circuit with target hubs of multiple transcription factors. Arrowhead indicates the direction of transcriptional
regulation by transcription factors. Ingoing arrow indicates action of protein as a TF on a gene and outgoing arrow
indicates the role of protein as TF. Activators AKIf, AN,,c and Aoc0 so moves the ESC cell toward pluripotent state and
repressors BN,,og and BdMye moves the ESC towards differentiated state. Klf4, Sox2, Nanog, and Daxi TF nodes have
positive autoregulation whereas Oct4 TF has concentration dependent negative autoregulation.
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7.2 THEORY

7.2.1 Improved Kinetic Transcriptional Regulatory Network (TRN) Model

This novel strategy to model the translation and transcription process of any protein Z in a

given network not only allows the calculation of the transcription rate but also the estimation of

the energy associated with it, in particular, the computation of the heat dissipation rate (HDR). In

this approach, each individual transcription factor or the combined set of transcription factors (in

case that cooperativity exists) has a cycle associated to it. On the other hand, each cycle is

composed of four steps modeled as chemical reactions at nonequilibrium steady state (NESS)

which contrasts the basic thermodynamic equilibrium hypothesis in the existing TRN models. At

thermodynamic equilibrium steady state, the net flow (]) and chemical potential (AM) associated

to each chemical reaction are null. Since the heat dissipated by each reaction is given by -j] Alt,

then at thermodynamic equilibrium the translation and transcription of protein Z is energy free.

However, at NESS the net reaction flow is different than zero and its direction is given by the

sign of the corresponding chemical potential. If AM < 0, then ] > 0, and vice versa. Hence, the

heat dissipated by each chemical reaction is always positive, -J -AM > 0. Notice that -J AM =

0 if and only if AM = 0 and ] = 0.

Simple activation of protein Z by X: To conceptualize the kinetic TRN model, a simple

network consisting of transcription factor (TF) X activating the translation and transcription of

protein Z will be used. As there is only one TF, there is only one cycle and thus four steps as

explained below (see Figure 7.2).

Step 1: TF X binds a free DNA site (Dz) in the promoter region of gene Z. The free DNA site

occupied by X is symbolized by Dzx. If the corresponding chemical reaction X + Dz *- Dzx has

k, and k_l as the forward and reverse kinetic constants, then the reaction flow and reaction

chemical potential are given by:

J1 = J+ -J1- = kl [X][Dz] - k-1[Dzx] (7.1)

AM1 = 9ITln ( 9 in (1jDZ) (7.2)
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Step 4

D,

Dzx , .- RDzx

Step 1: TF binds the free DNA promoter region

S X+Dz' Dzx
Reaction Flow:

11 = kl[X][D]z - k-l[Dzx]

Reaction Chemical Potential:

A/' = 9?Tln kk-1 [Dzx)
(kz[X][Dzl]

Promoter
Gene Z

Heat Dissipation Rate (HDR):

HDR = -(J 1 AI +J]2A 2 +]3A/ 3 + 4 AM/4)

Step 4: TF returns to its initial energetic state

Step 2: RNAp binds the TF - DNA complex
RNA

k2 = k2[R]
R + Dzx -- - RDzx

Reaction Chemical Potential:

A 2 _Tln _R Zk[DZX
DNA

Dz

XZ, - X

Reaction Flow:

14 = k4[Xz] - k- 4 [X]

Reaction Chemical Potential:

AI 4 = Tln
k 4[X]

\k4[XZ])

12 = k2[Dzx] - k-2[RDzx1

Step 3: Transcription and translation of protein Z
TF at different

energetic Aminoacids
configuration Transcription RNA

pFactor RNAseAlf polymerase A

TF Release

, -a Release
co-activators

mRNA

I) T
k3 = k3 [AA]

RDzx + AA .- -- -  R + Dz + C X + Z
k-3 = k*3[R]

Reaction Chemical Potential:

3 = kTn \ k[RD zx

Reaction Flow:

3 = k3 [RDzx] - k-3[Dzl[Cz][Xzl[Z]

Figure 7.2: Putative kinetic transcriptional regulatory network model and estimation of energetic cost. Here
activation of gene Z by transcription factor X is shown.
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where T is the universal gas constant and T is the temperature. As seen from Equation (7.1), the

net reaction flow is the difference between the forward J' and reverse J- reaction flows.

Step 2: Once the TF X is bound to the promoter region of gene Z, RNA polymerase (R) is

recruited to form the complex RDzx in the following chemical reaction R + Dzx <> RDzx. Under

the assumption that [R] > [Dzx], the forward kinetic constant can be expressed as k2 = k~ [R],

and the net flow and chemical potential for the second step are:

]2 = I+ - ]Z = k2 [Dzx] - k-2[RDzx] (7.3)

AP2= 9lTn f) = 9Tln(k-2[RDZX]) (7.4)
f+ k2[Dzx]

Step 3: After RNA polymerase is bound, amino acids (AA) are recruited. In a combined

translation of mRNA and transcription of protein Z, this step releases the free DNA site, the TF

X, co-activators (Cx), and RNA polymerase. However, TF X is released at some different

configuration (or energetic state), called Xz and it is not ready to bound a free DNA site once

again. This step can be represented as RDzx + AA *- R + Dz + Xz + Cz + Z. If [AA] > [RDzx],

then the forward kinetic constant can be written as k= k~ [AA]. In addition, at relative high [R],

the reverse kinetic constant is given by k_ 3 = k 3 [R]. The net reaction flow and reaction

chemical potential are given by:

J3 = J+ -13 = k3 [RDzx] - k-3[Dz][Cz][Xz][Z] (7.5)

A 3 = 9 Tn () = 9Tn (k- 3 [DZ][Cz][XZ][Z] (7.6)
+3] kg[RDZX

Step 4: The released TF Xz returns to its initial energetic state X. Once X is recovered, it can be

used again to bind a free DNA site and start a new transcriptional cycle. For this step Xz < X,

the reaction flow and chemical potential are:

J4 = J4 -Jj- = k4[Xz] - k- 4 [X] (7.7)

A14 = MTln (L--) = 9ITn 4[x] (7.8)

Because the translation and transcription of Z is an irreversible process, one should

expect reactions 1-4 to be highly irreversible (k >> k-i). Therefore, the net reaction flows of
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steps 1-4 are highly positive (in accordance to NESS) and approximated to the forward reaction

flows. The steady state mass balances of the DNA sites (Dz, Dzx, and RDzx) reveal that J1 =

]2 = ]3 = ]C, where ]c is the cyclic NESS flow. In addition, the rate at which protein Z is being

transcribed corresponds to ]3 = ]c. Thus, in this case, ]c is also the transcription rate of Z, TR.

Let us define:

k2k3[Dz]tot (7.9)
k2+k 3

and

K = k 2 k3  
(7.10)

kl(k 2 +k 3 )

where [Dz]tot = [Dz] + [Dzx] + [RDzx] is the total DNA sites. Then, it can be shown that:

]c = TR = P [x] (7.11)
K+[X]

Equation (7.11) clearly shows that the transcription rate of protein Z follows a first order

Hill's functionality with respect to the concentration of the TF X. This Hill's equation has a

maximal transcription rate fl (TR -* fP when [X] -4 oo) and an activation coefficient K, defined as

the concentration at which half of the maximal transcription rate is obtained, i.e., TR = f/2 at

[X] = K.

From the individual mass balances, the concentration of each species can be found:

[Dz] = 1 P [x] (7.12)
kj K+[X]

[Dzx] = 1 P [x] (7.13)
k2 K+ [X]

[RDzx = 1 P [x] (7.14)
k 3 K+[X]

[Z] = 1 fl[x] (7.15)
aZ K+[X]

[Cx] =- P [x] (7.16)
aCZ K+[X]

In order to ensure that X is not consumed during transcription but degraded at rate ax, the

constraint k 4 >> aTX is imposed in the model, leading to ]4 - J 1 0 (]4 is the rate at which X is

being recovered in step 4 after being consumed in step 1 at rate i]). This constraint gives:

[X = 1 P [x] (7.17)
k4 K+[X]

J4 = J] = K+[x] (7.18)
K+ [X]
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Then, the concentrations of each species and the transcription rate of Z can be obtained

for a given concentration of the TF X. Computation the reaction chemical potentials given by

Equations (7.2), (7.4), (7.6), and (7.8) can be done using Equations (7.12)-(7.17). The heat

dissipation rate (HDR) of the ith reaction can then be found as:

HDRi = -Ji -Ali = -Jc - ALi (7.19)

And the total heat dissipation rate (HDR) can be obtained as the sum of the individual

contribution of the heat dissipated by each reaction:

HDR = -]c -Alc (7.20)

where Ayc = Alt1 + AP 2 + A1t 3 + A/i 4 is the cyclic chemical potential. From Equations (7.2),

(7.4), (7.6), and (7.8) it can be shown that:

A(c = 9Tln kk-2k-3k-4[Cz][Z]) (7.21)

Notice that if k 3 >> k2 , then from Equations (7.9) and (7.10), k 2 = f/[Dz]tot and

k, = fl/(K[Dz]tot). Then:

Ac = Tln (5K[C][Z]) (7.22)

with

S=kk-2k-3k-4[D]2tot (7.23)
k 3 k 4

Finally, the heat dissipation rate can be expressed as:

HDR = l[X] 9Tln (7.24)
K+[X] EiK[CZ][Z]

Activation of protein Z by multiple transcription factors: When N + 1 transcription factors

X 0 , Xl,.., XN activate the translation and transcription of Z, there will be N cycles each of those

composed of the four steps previously described. If cooperativity exists between two or more

TFs, for instance X1 and X2 can both individually and jointly activate Z, then a new TF is defined

as [X1X2 ] = [X1] [X2 ] and an additional cycle is incorporated. As the model assumes competitive

binding of the TFs at the available DNA site, [Dz] is common in the first step of each cycle.

Thus, the total DNA sites is given by [Dz]tot = [Dz] + Zo1 Dzxj + = RDzxj. When the

i b c zxj
mass balances of the sites are solved at steady state, it can be shown as before that J x j = J
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ZXj ZXj ZX1J2 = 3 , where JZ is the ith net reaction flow in the corresponding cycle of transcription of

ZX

Zby Xj. Because the rate at which Z is being transcribed is Z' j]z3 , then it can be shown that:

fl zx x]

Czx K zx (7.25)c z,,.N+1 [Xj]

ZX =o -

the cycle ZXj, Kzxi are defined by Equations (7.9) and (7.10), with kg = ki •

When the following auxiliary variables are defined:
aZX = k zk zxj (7.27)

j ZX ZXj

bzx = k 3  [X] (7.28)

iZXj 

ZXj

cZXi = kzx k z[Xj] (7.29)

dZXj = aZXi + bZXi + cZXj (7.30)

dz dzxj N+ azx  N 1N+ azxi (7.31)

then, the concentrations of the individual species can be found by solving the corresponding

mass balance equation at steady state:

lN+1 ZX

[Dz] = a [Dz]tot (7.32)
dz

b zxc N+1 zxIS = [Dz]tot (7.33)

ZXj FN+' ZXj

[RDzx c azz= a z [Dz]tot  (7.34)

[Z] =TR (7.35)
az

Cxj = -_c (7.36)
acxj

ZX
Under the assumption that kz4 Xj axz (to ensure only degradation of Xj):

Unerth ssmpin ha 4 >> 1z
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ZX

[x] = (7.37)
jZXj I ZXj

zxi =zx (7.38)

The chemical potentials of reactions 1-4 for each cycle ZXj can be calculated by using

Equations (7.32)-(7.37) into Equations (7.2), (7.4), (7.6) and (7.8), and the heat dissipation rate

of each cycle by using Equation (7.20). Finally, the network HDR corresponds to the sum of the

heat dissipated through each cycle.

Presence of basal activity: When basal activity exists, the model assumes a basal transcription

factor B at constant concentration that also competes for the free DNA site Dz. Basically, this is

effect is introduced by assigning TF Xo = B into Equations (7.25)-(7.38).

Simple repression of protein Z by X: The simplest repression model, i.e., TF X represses the

translation and transcription activity of protein Z, is composed of two cycles: a basal activity

cycle ZB and a repression cycle ZX. Since cycle ZB leads to activation, this cycle is formed by

the four steps previously described. On the other hand, the repression cycle has four reactions as

well, but with the following modifications due to the repressive nature of X:

Step 1: As in the activation case, X competes with B for Dz and forms the complex Dzx in the

reaction X + Dz *- Dzx. Hence, Equations (7.1) and (7.2) apply, but the forward and reverse

kinetic constants kl and k 1_ may have different values.

Step 2: Because X is a repressor, RNA polymerase is not recruited. In turn, the complex Dzx

experiences a change into another energetic state and changes its configuration to Dix as

Dzx + Dix. Let k 2 and k-2 the forward and reverse kinetic constants for this step, respectively,

with different values than in the activation case. Then, the net reaction flow and chemical

potential for this step are given by:

J2 = ] -J- = k2 [Dzx] - k-2 [D*x] (7.39)

A 2 =  lTln (2) = 9 Tl n k2[Dzx ]  (7.40)
12 k2[DZX]
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Step 3: The TF-DNA complex D*x returns to its initial state Dz by releasing co-repressors (Cx)

and the TF X in a different energetic state, Xz in the corresponding reaction D*x ++ Dz + Cx +

Xz. Since RNA polymerase in not bound in the previous step, no amino acids are recruited and

protein Z is not formed. However, protein Z is being transcribed from the basal TF B that

competes with X for the free Dz. When no X is present, TF B can bind every available Dz and

transcribe the highest amount of Z. But when the concentration of X increases, TF B sees less Dz

and the availability to drive the cycle ZB and its corresponding cyclic flow decreases. If k3 and

k- 3 are the forward and reverse kinetic constants for this step, respectively, the repression flow

and chemical potential are:

J3 = J] -J3 = k3[Dix] - k-3[Dz][Cz][Xz] (7.41)

AP3 = 9Tln () = 9Tln k-3[DZ][Cz][Xz] (7.42)

The kinetic constants k 3 and k_3 are different than in the activation case.

Step 4: Same as in the activation case, the released TF Xz returns to its initial configuration X

and is ready to bind a new free DNA site as Xz -+ X. Equations (7.7) and (7.8) are valid but

kinetic constants may have different values as in the activation case.

From the individual mass balances of the DNA species and using by [Dz]tot = [Dz] +

0D=oDzxj + Z=o RDzxj with Xo = B and X1 = X, it can be shown that the equation for the

ZX ZX ZX
cyclic flow of each cycle given by Equation (7.25) remains the same and Jc = J] = 2 =

3 zx. However, because Z is only transcribed from the third step of the ZB cycle, then:

ftZB[B]

TR = jZB = ,B (7.43)

1+ZB I

When kzx >>axz is assumed for Xj = B,X, Equations (7.27)-(7.38) remain

unchangeable with exception of Equation (7.34) in which RDzx becomes Dix in the case of

repression.

Generalization of the kinetic TRN model for multiple TFs with activation-repression

nature: Let us finally consider the most general case where N + 1 transcription factors X0 , X1,..,
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XN regulate the transcription activity of protein Z through activation and repression. Let us

define the following vectors: transcription factor vector x = [[Xo] [X1] ... [XN]]T;

activation/repression logic vector I whose jth element is 1 if Xj is an activator and 0 if Xj is a

repressor (notice that 10 = 1 when basal activity is present, with X0 = B); vector dx whose jth

element is [RDzx] if lj = 1 and [D x] if lj = 0. Then, the total mass balance for the DNA sites
can be written as [Dz]tot = [Dz] + y +[Dzx] + d o x and from the individual mass

ZX ZXj ZX

balance of the DNA sites it can be shown that ]c I= j (i = 1, 2, 3) with j]c given by

Equation (7.25). Since transcription of Z occurs only from the activation cycles, then the total

transcription rate of Z is given by:

TR = jc - 1 (7.44)

where jc = [jZXo ... XN] . The individual concentrations of the species can be obtained by

using Equations (7.27)-(7.37). However, [RDzxj] in Equation (7.34) should be replaced by d xj.

Once the species concentrations are obtained, the chemical potentials of reactions 1 and 4 can be

calculated using Equations (7.2) and (7.8), respectively, but the expression of the chemical

potentials of reactions 2 and 3 should be reformulated as follows:

A4zx = Tln kz x, (7.45)
DzxjDZXj

A/,X = 9Tln -zx 3 ) (7.46)
3 zxoj

where the jth element of vector z is 1 if 1j = 0 and [Z] if ij = 1.

Based on Equation (7.24), the general expression of the heat dissipation rate is given by:

HDRZXj= - 9I n Tln zxjK 2 (7.47)
K J+[Xj] ZXj zxi]

7.2.2 General Michaelis-Menten Formulation

In general, the Michaelis-Menten approach assumes binding of the TFs in the promoter

region of gene Z at thermodynamic equilibrium and that the total transcription rate is

proportional to the concentration of DNA sites bound by RNA polymerase. Let us assume that
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the translation and transcription activity of protein Z is regulated by NA activation TFs (Xj), NR

repressive TFs (XJ) and RNA polymerase (R), with N = NA + NR. In a competitive binding X 4 ,

Xo, or R can bind a free DNA site in the promoter region Dz for transcription of protein Z,

forming a transcription factor-DNA site complex XjDz: Xj + Dz *4 XjDz, where Xj represents

either X/, xJ, or R. Let KZX be the association equilibrium constant of this step. Then, at

thermodynamic equilibrium:

KzJ [Xj][Dz] = [XjDz] (7.48)

If Xj is an activator (Xj = X), then RNA polymerase (R) is recruited by the activator

XA bound to Dz: R + XDz -+ RX/ Dz. If K2 ' is the association equilibrium constant of this

reaction, then at thermodynamic equilibrium:

K2 X[R][X Dz] = [RXfDz] (7.49)

If Xi is a repressor for the expression of Z (Xi = Xj), then RNA polymerase is not bound

and translation does not occur. The total number of sites in the promoter region for transcription

of Z can be expressed as follows:

[Dz]tot =

[Dz] + [RDz] + Z=[XjDz] + =A[RXjADz] = [Dz] (1+ KZR[R] + Z 1 zKJ[x] + ZjA KZXJ[R][X/])(7.50)

As initially mentioned, the transcription rate (TR) of protein Z is proportional to the total

number of sites bound by RNA polymerase TR = kz([XoDz] + Z)N[RXfDz]), with kz being

the proportionality constant. Using Equations (7.48)-(7.50), it can be shown that:

TR = N (7.51)ZX ZX
kiz[Dz ]tot[R] (K +ji K[) K2 [X ]; ]

TR = 1+K [R]+A KZX [xj ](1+KzxJ[R]+E KZX[x (7.51)
j=1 1-- 2 j i 1
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By defining

azxP = kz[Dz]tot[R]Kzx K2ZXj,aZ~fI I2

the following variables,

YZR = KJR[R],

77Z R = kz[Dz]tot[R]Kz R,

zx i ZXJ[R] and bzx1

ZXj
K , the transcription rate of protein of Z can be expressed as:

ZR+ NA ZX4 [A]7 ~ a [X]

1+yZR+ NA ZX X]+ENR bZx [X ]
j=1 b I [) I Ji=1 IX

7.2.3 Relationship Between the Kinetic TRN Model and the Michaelis-Menten

Formulation

It can be shown that the transcription rate given by the kinetic transcriptional regulatory

model [Equation (7.44)] matches the one obtained from thermodynamic equilibrium hypothesis

[Equation (7.51)] by having:

zx = flzxjaZXj I3 = kzx [Dz]tot

ZX(k ZXj ZX

bX1 k' 2+k, )

1 2 3

ZR - ZB k ZB[B][Dz] tot
S KZB 1

ZR 1 kZB (kZB+kZB)[B]

KZB k ZB kZB
K 2 3

(7.53)

(7.54)

(7.55)

(7.56)

Based on Equation (7.22), the chemical potential of the cycle ZXj can be expressed as

Azx = 9Tn (zxjibz zxzj (7.57)

7.2.4 Total Transcription Rate

The ordinary differential equation describing the mass balance of Zi, for i = 1 ... N, is

given by:

f i = = TR, - agiZi (7.58)
d =ct
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where TRi is the transcription rate of Zi given by either Equation (7.44) (kinetic TRN model) or

Equation (7.51) (Michaelis-Menten approach), and ai is the degradation rate of Zi. In general,

the transcription rate of protein Zi in a network is a function of the input vector of external

activators and repressors (x) and a function of the vector containing all the parameters of the

model (p). Thus,

TRi = TRi(x,p) (7.59)

7.2.5 Robustness Index

In this work, we define the sensitivity of the transcription rate of protein Zi with respect to

the input vector x (or input sensitivity) as the relative change in the transcription rate of Zi when

the input vector x is perturbed (or amplified) by a scalar Ax for a constant set of parameters:

S x = TRi(x,p)-TRji(;xX,P) (7.60)
i TRi(x,p)

In an analogous way, we define the parametrical sensitivity of the transcription rate of Zi

as the relative change in TR1 for a perturbation of magnitude Ap in the parametrical vector p at

constant x:

S - TRi(xp)-TR(x,App) (7.61)
i TRi(x,p)

Both input and parametrical sensitivities can be grouped in a sensitivity matrix S whose

columns are the input sensitivity vector and the parametrical sensitivity vector. For a network

composed of N transcription factors, the sensitivity matrix is defined as:

Ssf]P
S [Sx SP] (7.62)

As a measurement of the network sensitivity, we also define the sensitivity index (SI) of

the network as the Frobenius norm (also known as the Euclidian norm) of the sensitivity matrix

SI = ISill = = = S 2 (7.63)

Here, we defined the robustness index (RI) as the inverse of the network sensitivity:

(7.64)RI = 1
SI
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If the total transcriptional rate of the network barely changes when both perturbations in

the inputs and parameters are introduced, then the overall sensitivity is small and the robustness

of the network is high (represented by the robustness index). On the other hand, if small changes

in the inputs and parameters lead to high relative changes in the total transcription rate, then the

network is highly sensitive and thus lacks of robustness.

As the mass balance solutions of the kinetic TRN model reduces to the Michaelis-Menten

formalism, and as seen from Equations (7.53) to (7.56), a perturbation of Ap in p will induce a

perturbation of magnitude A l in azxi and no change in bZXj. The basal parameters 7rZR and yZR

will get perturbed by 2 and Ap, respectively. To avoid this effect in the total transcription rate,

only the forward kinetic constant of the first step is affected when p is amplified by lp (i.e., only

vector kj), all the four backward kinetic constants (vectors k-i) and the degradation rate vector

a.

7.3 RESULTS

7.3.1 Insights From A Basic TRN Model of ESCs or Level-0

This simple model of ESCs (Chickarmane et al., 2006) is composed of three core TFs:

Oct4 (Oc), Sox2 (Sx), and Nanog (Ng) (see Figure 7.3A). Both Oct4 and Sox2 are activated by

an external TF Aoc/sx. When Aoc/sx binds the promoter region of Oct4 (Doc) and Sox2 (Dsx),

translation and transcription of these proteins occur. In a protein-protein interaction, Oct4 and

Sox2 bind to form the complex Oct4-Sox2 (OS) which also acts as a TF of activation of both

Oct4 and Sox2, creating a positive feedback loop. This protein complex also binds the free DNA

site in the promoter region of the third core TF Nanog (DNg), leading to transcription of Nanog.

Nanog in turn cooperates with the protein complex Oct4-Sox2 to further activate Oct4, Sox2 and

itself, forming additional positive feedback loops. Although Nanog can be externally activated, a

most efficient activation of the system can be achieved by manipulation of Aoc/sx. On the other

hand, repression or deactivation of the network can be better obtained by externally repressing

Nanog through the external repressor BNg instead of externally repress both Oct4 and Sox4

(Chickarmane et al., 2006).
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Figure 7.3. Pareto optimality and energetic analysis of Level-O ESC regulatory circuitry at steady state. A) Level-O

circuit consisting of various positive feedback interactions between Oct4, Sox2 and Nanog TFs is shown. B) Pareto

optimal analysis reveals existence of two separate Pareto frontiers. In pluripotent state, transcriptional rate is

maximal and Pareto frontier is between ESC objectives maximal robustness and maximal transcription rate Second,
Pareto frontier exists in differentiated state, i.e. lowest transcription rate region and there the desirability is to

minimize transcription and maximize robustness. The corresponding energetic cost (heat dissipation rate) estimation

reveals lower cost for max-max Pareto frontier in self-renewal state and higher cost for min-max Pareto frontier in

differentiate state. D)-E) Corresponding Pareto optimal activator and repressor concentration shows switch in BNg
concentration from low to high when moving from self renewal state to the differentiate state. There is a continual

decrease in Ao, concentration when moving from self-renewal state to differentiate state. Similar behavior was

observed for robustness index.
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The representation of this network by the kinetic TRN model is based on three sets (one

for each core TF) composed of four cycles each one and one biochemical reaction for the

protein-protein interaction. Both transcription of Oct4 and Sox2 contain one cycle for basal

activator (Coc and Csx, respectively), another cycle for the external activator Aoc/sx, a third cycle

for activation through OS, and a fourth cycle for the cooperativity interaction OS Ng.

Transcription of Nanog also takes into account basal TF activation (CNg), a cycle for the external

repressor BNg, a cycle for activation by OS, and a fourth cycle for the autoregulatory activation

with OS, OS Ng. Formation of the protein complex Oct4-Sox2 is modeled as a single

biochemical reaction Oc + Sx <,- OS with ks and ko s being the forward and reverse kinetic

constant for this reaction. Table 7.1 summarizes the parameters of the kinetic TRN model.

Table 7.1: Parameters of the kinetic TRN model for the basic ESCs network. All chemical potentials were obtained

at T = 298.15 [K]. For the protein-protein interaction Oc + Sx -~ OS, kos = 0.05, k s = 10- 3 , aos = 5. All other

degradation rates were set at a = 1.

Transcription of Oct4 (Oc) Transcription of Sox2 (Sx) Transcription of Nanog (Ng)
[Doc] = 1, [Coc] = 10 - 4  [Dsx] = 1, [Csx] = 10 - 4  [DNg] = 1, [CN] = 10 - 4

Coc Aoc/sx OS OSNg Csx Aoc/sx OS OSNg CNg BNg OS OSNg

k 1 1 0.01 0.2 1 1 0.01 0.2 1 10 5.10-3 0.1

k2 10 3  910 10 286 103 910 10 286 10
3  10 3  5 100

k 3  10 6  106 106 106 106 106 106 106 106 10 9  106 106

k 4  10 6  106 106 106 106 106 106 106 106 106 106 106

k_ 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12 10-6 10-6

kz 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12 10-6 10-6

k_ 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12 10-6 10-6

k- 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9

1 1 1 1 1 1 1 1 1 1 0 1 1

For the basic TRN of ESCs, the input and parameter vectors are given by

x = [Aoc/sx BNg]T (7.65)

p = [k kT kT kT k 1 kT2 kT k k o Ts DT CT aT]T (7.66)

where vectors ki and k-i (i = 1 ... 4) contain the forward and reverse kinetic parameters of step i

for the twelve cycles of the basic TRN of ESC model. Vector kos contain the forward and

reverse kinetic constants for the protein-protein interaction between Oct4 and Sox2. Vectors D,

C, and a contain the concentration of total available DNA sites, basal transcription factors and

degradation rates, respectively (all of these parameters are specified in Table 7.1). Once vectors
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x and p are specified, the transcriptional network is fully described. At steady state, fL = 0 and

both Zi and TR i can be calculated. Then, the total transcription rate for this Oct4/Sox2/Nanog

network is calculated as the sum of the individual transcription rates:

TRtot = TRoc + TRsx + TRNg (7.67)

To calculate the robustness index, perturbations of Ax = 1.01 and Ap = 1.01 were used.

The sensitivity matrix [Equation (7.62)] for this network is:

[Sc SO 1
S = Sx Six] (7.68)

SX SP
Ng Ng

As seen in Figure 7.3B, Pareto optimality analysis of Level-0 ESC network revealed

existence of two separate Pareto frontiers. In pluripotent state, transcriptional rate is highest and

Pareto frontier is between ESC objectives of maximal robustness and maximal transcription rate.

This is not surprising because in the proliferation stage ESCs objective is to have maximal

expression of genes related to proliferation and also maintain this high proliferation gene

expression under external influences. Second Pareto frontier exists in differentiated state, i.e.

lowest transcription rate region and here the desirability is to minimize transcription and

maximize robustness. This can be understood from the fact that in differentiated state in ESCs it

will be desirable to have both minimum expression of proliferation genes and high robustness.

As seen in Figure 7.3 C, the corresponding energetic cost (heat dissipation rate) estimation

reveals lower cost for max-max Pareto frontier in self-renewal state and higher cost for min-max

Pareto frontier in differentiate state. Interestingly, we observed bistability (Figure 7.3 D) for total

transcription rate as a function of external inputs BNg and Aoc/x. Moreover, the corresponding

Pareto optimal activator and repressor concentration also shows switch in BNg concentration from

low to high when moving from self renewal state to the differentiate state. Furthermore, there is a

continual decrease in Aoc/x concentration when moving from self-renewal state to differentiate

state. Similar behavior was observed for robustness index.

7.3.2 The Extended Pluripotent TRN of ESCs. Level-1

This network is composed of two interaction levels: a first level containing nine core TFs

(including Oct4, Sox2 and Nanog) with positive feedback loops; and a second level of 22 target

genes (TGs) for the nine core TFs (see Figure 7.1).
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Level -1 contains two master regulators which are externally activated: Klf4 (Kf) and

Nac (Nc) activated by AKf and ANc, respectively. Klf4 binds the free DNA site in the promoter

region of cMyc (Mc), Sox2 (Sx), Nanog (Ng), Oct4 (Oc), Rexl (Rx), as well as its own

promoter region for positive autoregulation (Jiang et al., 2008; Kim et al., 2008). On the other

hand, Nacl activates the transcription of Sox2, Nanog, Oct4, Rexl, and Daxl (Dx), but does not

have positive autocontrol (Kim et al., 2008). TF cMyc plays the role of activating the

transcription of a downstream TF, Zfp281 (Zp) which in turn binds the promoter region of Sox2,

Nanog, and Oct4 (Kim et al., 2008). This positive effect in the activation of Sox2, Nanog, and

Oct4 by cMyc is externally controlled by an external repressor of cMyc, BMc. Daxl also

contributes to the activation of Oct4, Sox2, and Nanog, in addition to the activation of Rexl and

itself (Kim et al., 2008).

The interactions between Oct4, Sox2, and Nanog are basically the same as in the basic

TRN model of ESCs but with two major differences: the complex Oct4-Sox2 (OS) is not

explicitly formed through a protein-protein interaction and negative regulations of Oct4 on Sox2,

Nanog and itself are added. Because many authors do not agree with the existence of the

complex Oct4-Sox2, we have decided not to include this explicit reaction (Chickarmane and

Peterson, 2008; Kim et al., 2008). Instead, a cooperativity interaction between Oct4 and Sox2

replaces the explicit transcriptional activity of Oct4-Sox2. Similarly, the positive feedback loop

due to the joint interaction of Oct4-Sox2 and Nanog is reformulated as a cooperative binding

between Oct4, Sox2 and Nanog. The second modification to the basic TRN model of ESCs takes

into account the repressive nature of Oct4 on Sox2, Nanog and itself at low concentrations

(Chickarmane and Peterson, 2008; Pan et al., 2006; Pan and Thomson, 2007).

Table 7.2: Transcriptional logic for the Level 1 of the extended pluripotent TRN model. Entry (i,j) of the table

represents TF j binding the promoter region of TF i. Element (i,j) = 0 if no interaction exists, 1 if TF j is an

activator of i, and -1 if TF j is a repressor of TF i.

TF Aoc/sx AKf AMc BNg BMc Oc SX Ng Rx Dx Mc Zp Kf Nc

Oct4 1 0 0 0 0 ±1 1 1 1 1 0 1 1 1

Sox2 1 0 0 0 0 ±1 1 1 0 1 0 1 1 1

Nanog 0 0 0 -1 0 +1 1 1 0 1 0 1 1 1

Rexl 0 0 0 0 0 1 1 1 0 1 0 0 1 1

Daxl 0 0 0 0 0 1 1 1 0 1 0 0 0 1

cMyc 0 0 0 0 -1 0 0 0 0 0 0 0 1 0

Zfp281 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Klf4 0 1 0 0 0 0 0 0 0 0 0 0 1 0

Nacl 0 0 1 0 0 0 0 0 0 0 0 0 0 0
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Table 7.3: Parameters for Level 1 of the kinetic TRN model for the extended pluripotent ESCs network. All
chemical potentials were obtained at T = 298.15 [K] and all degradation rates were set at a = 10.

Transcription of Oct4: [Doc] = 1, [Coc] = 10-

Coc Aocsx Kf Nc OcSx OcSxNg Rx Dx Zp Oc

k 1 1 0.5 0.5 0.01 0.2 0.5 0.5 0.5 10

k 103 104 500 500 10 286 500 500 500 103

k 106 106 106 106 106 106 106 106 106 109

k 106 106 106 106 106 106 106 106 106 106

k- 1  10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12

k- 10
-
6 10 6 10-6 10-6 10.6 10-6 10-6 10-6 10-6 10-12

k-j 10-6 10-6 10-6 10.6 10.6 10-6 10-6 10 6 10-6 10-12

k-4 10 .9  10 .9  10-9 10-9 10-9 10-9 10-9 10"9 10-9 109

1 1 1 1 1 1 1 1 1 1 0

Transcription of Sox2: [Dsx] = 1, [Csx] = 10
- 4

Csx Aocsx Kf Nc OcSx OcSxNg Dx Zp Oc

k 1 1 0.5 0.5 0.01 0.2 0.5 0.5 10

k 103 104 500 500 10 286 500 500 103

k 106 106 106 106 106 106 106 106 109

k 106 106 106 106 106 106 106 106 106

k- 10-6 10-6 10-6 10-6 10 6 10-6 10-6 10-6 10-12

k- 10-6 10-6 10-6 10-6 10 6 10-6 10-6 10-6 10-12

k_ 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12

k 4  10 .9  10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9

l 1 1 1 1 1 1 1 1 0

Transcription of Nanog: [DNg ] = 1, [CNg] = 10
- 4

CNg Kf Nc OcSx OcSxNg Dx Zp Oc BNg

k 1 0.25 0.25 0.005 0.1 0.25 0.25 10 10

k 103 250 250 5 143 250 250 103 2.103

k 106 106 106 106 106 106 106 109 109

k4 106 106 106 106 106 106 106 106 106

k_ 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12 10-12

k-_ 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10-12 10-12

k- 10-6 10-6 10-6 10-6 10-6 10 6 10-6 10-12 10-12

k 4  10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9 10-9

1 1 1 1 1 1 1 1 0 0

Transcription of Rexl: [DRx] = 1, [CRx] = 10
- 4  Transcription of Daxl: [Dox] = 1, [Cox] = 10

- 4

CRx Kf Nc Oc SxNg Dx CDx Nc Oc SxNg Dx

k 1 0.5 0.5 0.01 0.2 0.5 1 0.5 0.01 0.2 0.5

k 103 500 500 10 286 500 103 500 10 286 500

k 106 106 106 106 106 106 106 106 106 106 106

k4 106 106 106 106 106 106 106 106 106 106 106

k_ 10-6 10-6 10-6 10-6 10-6 10-6 10 6 10
-
6 10-6 10

-
6 10-6

k- 10-6 10-6 10-6 10-6 10-6 10-6 10-6 10 6 10-6 10-6 10-6

k_- 10-6 10-6 10-6 10-6 10-6 10-6 10 6 10 6 10
-
6 10-6 10-6

k-4 10 9  10-9  10-9 109 109 109 10-9 109 109 109 10-9

1 1 1 1 1 1 1 1 1 1 1 1

Transcription of cMyc: Transcription of Zfp281: Transcription of KIf4: Transcription of Nacl:

[DMc] = 1, [CMc] 10-4 [D 
=

1, [Cz] =10-4 [DK= 1, [CK= 0- [DNc] = 1, [CNc] = 10-4

CMc Kf Bmc Czp MC CKf AKf Kf CNc ANC

k 1 5 10 1 10 1 1 10 1 10

k 103 5.103 103 103 104 103 104 104 103 104

k 106 106 106 106 106 106 106 106 106 106

k 106 106 10
9  

106 106 106 106 106 106 106

k- 106 106 106 10-6 10-6 10-6 10-6 10-6 10-6 10-6

k_ 10-6 10-6 10- 12 10-6 10-6 10-6 10-6 10-6 10-6 10-6

k- 10
-
6 10-6 10-12 10-6 10-6 10-6 10-6 10-6 10-6 10-6

k- 10-6  10-6 10-12 10-9 10-9 10 9  10-9 10-9 10-9 10-9

1 1 1 0 1 1 1 1 1 1 1
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In addition to the activation of Rexl by Klf4, Nacl, and Daxl, Rexl is also activated by

Oct4 (Ben-Shushan et al., 1998; Kim et al., 2008) and Sox2 and Nanog (Kim et al., 2008; Shi et

al., 2006). Although all of them can bind the promoter region of Rexl, Sox2 cooperates with

Nanog to upregulate the transcription of Rexl (Shi et al., 2006). Thus, the individual interactions

of both Sox2 and Nanog on the regulation of Rexl have been neglected and only the combined

transcription has been considered. The key role of Rexl in the core level is the activation of Oct4

(Kim et al., 2008).

Daxl is activated through the master regulator Nac and by positive autoregulation (Kim

et al., 2008) and it is also activated by Oct4 (Sun et al., 2008), Sox2 and Nanog (Kim et al.,

2008). As not much is known about Daxl, we have assumed a cooperativity interaction between

Sox2 and Nanog as in the case of activation of Rexl. Table 7.2 presents the interaction logic of

Level 1:

The transcription of Oct4 is represented by the kinetic TRN model as ten cycles:

activation of Oct4 by basal TF Coc, external activation by Aoc/sx, two cycles for activation

through the master regulators Klf4 and Nacl, two cycle for positive autoregulation by Oct4 and

Sox2, and by Oct4, Sox2 and Nanog, three cycles for activation of Oct4 by Rexl, Daxl and

Zfp281, and one cycle for autorepression of Oct4.

Both transcription of Sox2 and Nanog include nine cycles with the difference that one of

the cycles of Sox2 is activation of Sox2 by Aoc/sx and one cycle for Nanog is repression through

the external repressor BNg. The other eight remaining cycles are: activation by basal TFs (Csx

and CNg for Sox2 and Nanog, respectively), two cycles for activation by master regulators, two

cycles for positive feedback between Oct4, Sox2 and Nanog, two cycles for activation by Daxl

and Zfp281, and one cycle for repression of Oct4.

The transcription rate of Rexl is modeled by six cycles, being one of them the activation of

Rexl by Klf4. The remaining five cycles are similar for the transcription of Daxl which include:

activation by basal TFs (CRx and CD, for Rexl and Daxl, respectively), one cycle for activation

by Oct4, another cycle for the joint activation of Sox2 and Nanog, and another cycle for

activation by Daxl.

Transcription of cMyc occurs from two cycles: basal activity (due to CMc) and activation by

Klf4. A third repressive cycle is included for the external repressor BMc. Finally, Zfp281 is
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transcribed from two cycles, basal TF Czp and activation from cMyc. The kinetic parameters

involved in the Level 1 of the extended pluripotent TRN model of ESCs are summarized in

Table 7.3.

In the extended pluripotent TRN model of ESCs, the input and parameter vectors are defined

as follows:

X = [Aoc/s x AKf ANc BNg BMc]T (7.69)

p = [k 3 k 4 k k- k k k 4 DT C-4 T D t]T (7.70)

Elements in vector p in Equation (7.70) are the same than in (7.66), but defined for the 49

cycles of this model. Values of p are given in Table 7.3. The total transcription rate for Level 1 is

TRtot = TRoc + TRsx + TRNg + TRRX + TRDx + TRMc + TRzp + TRKf + TRNc (7.71)

Figure 7.4 shows the steady state responses in concentration of the Level-i transcription

factors for both individual and total transcription rate of transcription factors. As seen in the

figure, bistability was observed in concentration of all level 1 transcription factors as a function

of various external activators. Interestingly, the expression of proliferation and differentiation

target genes also exhibited bistable behavior although in reverse direction. This shows that

various external activators/repressors can "switch on" or "switch off' the ESC-TRN system. The

ability of various external activators to completely switch off and switch on the developmental

cascade is not surprising because each external activator is coupled in turn with various

developmental pathways and thus they can independently control the differentiation/proliferation

of ESCs.

Input and parametric vectors were perturbed by Ax = 1.01 and Ap = 1.01, respectively.

The sensitivity matrix for the individual transcription factors gets reduced to the vector:

Si = [S SP], for i = Oc, Sx, Ng, Rx, Dx, Mc, Zp, Kf, Nc (7.72)

The overall sensitivity matrix for Level 1 is defined as

X X XX SX S ,c-
[Soc Sx S, SSx D Sc Sz S Sc (7.73)

o - SP SP S1  SP SP SP SP SP SP
Oc Sx Ng Rx Dx Mc Zp Kf Nc
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Figure 7.4: Steady state responses of the individual and total transcription rate of transcription factors of Level 1. A)

Steady state responses as a function of the external activator Aoc/sx. All the other inputs were kept constant at a

value of 10 - 3 . B) Steady state transcription rates as a function of the external activator AKf. All the other inputs

were kept constant at a value of 10- 3 . C) Steady state response as a function of the external activator ANc. All the

other inputs were kept constant at a value of 10- 3 . D) Steady state transcription rates as a function of the external

repressor BKf. External activator Aoc/sx, was set at 150 and all the other activators were kept constant at a value of

10 - 3 .
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Figure 7.5 shows the steady state response of the robustness index. As seen previously for

transcription rates, the steady state robustness of the expression of various transcription factors as

a function of external activators of Oct4-Sox2, Klf4, Nacl and external repressors of Nanog

exhibits bistable switch with respect to both external activator and repressor concentrations. The

switch behavior existence in individual TFs influenced by external signals and also in overall

Level-i system robustness which includes the entire nine inner core TFs.

The total heat dissipation rate is calculated as the sum of the contribution from each of

the 49 cycles of level one:

HDR = 49 HDRi (7.74)

where HDRi is calculated from Eq. (7.20). Figure 7.6 shows the steady state response of HDR.

Similar to transcription rate and robustness, energetic cost (Figure 7.6) exhibits switch like

behavior as a function of external activator. Energetic cost (heat dissipation rate) increases with

increase in both activator and repressor concentrations.

The Pareto frontiers between maximal total transcription rate [given by Equation (7.71)]

and the overall Level-i robustness index [with sensitivity matrix given by (7.73)], is shown in

Figure 7.7.

We next analyzed Level-i architecture of the extended TRN model of ESCs using Pareto

optimality based energetic analysis. Similar to Level-0 we observed two different two separate

Pareto frontiers. Since, in pluripotent state, transcriptional rate is highest Pareto frontier is

obtained between ESC objectives of maximal robustness and maximal transcription rate. Again,

this is because in the proliferation stage ESCs objective is to have maximal expression of genes

related to proliferation and also maintain this high proliferation gene expression under external

influences. Second Pareto frontier exists in differentiated state, i.e. lowest transcription rate

region and here the desirability is to minimize transcription and maximize robustness. As seen in

Figure 7.7 C, the corresponding energetic cost (heat dissipation rate) estimation reveals lower

cost for max-max Pareto frontier in self-renewal state and higher cost for min-max Pareto

frontier in differentiate state. Figure 7.D-E shows the variation in external activator and repressor

to obtain the corresponding Pareto frontiers.
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Figure 7.5: Steady State Characteristic of robustness as a function of external activators of Oct4-Sox2, Klf4, Nacl
and external repressors of Nanog. Robustness exhibits bistable switch with respect to both external activator and
repressor concentrations. The switch behavior exists in TFs influenced by external signals and also in overall Level-
1 system robustness which includes the entire nine inner core TFs. Conditions are same as in Figure 7.4.
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Figure 7.7: Pareto optimality analysis of Level 1 of the extended TRN model of ESCs. A) Schematic representation

of Level-1. B) Pareto frontier between maximal total transcription rate and the maximal overall robustness index of

Level 1. The Pareto frontier between minimal total transcription rate and maximal overall robustness index is also
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shown. C) Pareto-underlying heat dissipation rate. D)-E) Decision activators (D) and decision repressors (E) of the

Pareto solutions shown in B). Conditions are same as in Figures 7.5 and 7.6.

7.3.3 Energetic Cost Explains Regulation of Target Gene Expression by Transcription

Factor Occupancy in Level-2

Level-2 This is the level of target genes (TGs) for the nine TFs in the core level or Level

1. Thousands of TGs have been identified for Oct4, Sox2, Nanog, Rexl, Daxl, cMyc, Zfp281,

Klf4, and Nacl but combination of transcriptional network data and protein-protein interaction

data identified 22 important TGs (Kim et al., 2008). Table 7.4 shows the TGs in Level 2 as well

as the TFs from Level 1 that bind the promoter region of each of them.

Table 7.4: Transcriptional logic for the Level-2 of the extended pluripotent TRN model. Entry (i,j) of the table

represents TF j binding the promoter region of TF i. Element (i,j) = 0 if no interaction exists, 1 if TF j is an

activator of i, and -1 if TF j is a repressor of TF i.

TG Oc Sx Ng Rx Dx Mc Zp Kf Nc Total TFs

Ahctfl (Ah) 0 0 0 +1 0 +1 0 0 0 2

Arid3a (Aa) 0 0 0 0 0 0 0 ±1 0 1

Arid3b (Ab) 0 0 +1 0 0 0 0 0 0 1

Btbdl4a (Bt 0 0 0 0 ±1 0 0 0 0 1

Cdc2a (Cd) 0 0 0 0 0 +1 0 0 0 1

Ewsrl (Ew 0 0 0 1 0 1 1 1 0 4

Hdac2 (Hd) +1 0 0 0 0 +1 +1 0 0 3

Pelo (Pe) 0 0 0 +1 0 0 0 0 0 1

Prmt Pr) 0 0 0 0 0 +1 -1 0 0 2

Rail4 (Ra) +1 0 +1 0 0 0 0 0 ±1 3

Rest (Re 1 1 1 1 1 0 0 1 1 7

RifM (Ri) 1 1 1 0 1 0 0 1 1 6

Rnf2 (Rn 0 0 0 0 +1 0 0 0 0 1

Rybp (Ry) 0 1 1 0 1 1 0 1 0 5
Sall (S) 1 0 1 0 0 0 0 1 1 4

Sall4 (S4 0 1 1 0 1 0 0 1 1 5

Spl S 0 0 0 1 0 1 0 1 1 4

Trim28 (Tr) 0 0 0 0 0 0 ±1 0 0 1

Wapal (Wa) 0 0 0 0 0 +1 0 0 0 1

Wdrl8 Wd) 0 0 0 0 0 +1 0 0 0 1

Yyl (Yy) 0 0 0 0 0 +1 0 0 0 1

Zfp219 (Zf) ±1 0 0 0 0 0 0 0 0 1

As seen from Table 7.4, TGs in Level

et. al. (Kim et al., 2008) experimentally obse

bound by few TFs are inactive and those TGs

2 are not externally activated nor repressed. Kim

rved that those TGs whose promoter regions are

with more than four TFs are highly active during

proliferation. We have modeled these observations by explicit repression of those TGs with total
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TFs less than four and activation for those TGs with more than four TFs when we analyzed the

cofactor occupancy of TFs from Level 1 on Level 2. In particular, these TGs are Ahctfl, Arid3a,

Arid3b, Cdc2a, Hdac2, Pelo, Prmtl, Rail4, Rnf2, Trim28, Wapal, Wdrl8, Yyl, and Zfp219. For

the analysis of Level 1 structure on Level 2 and on the overall extended network, these

interactions were assumed as activation linkages with both OR and AND Boolean logics. Thus,

the sign ± was used in Table 7.4. Although not stated in Table 7.4, all the 22 TGs have basal

activity.

When we studied cofactor occupancy, we assumed cooperative transcription in Level 2 by

all the nine TFs from Level 1. Based on (Kim et al., 2008), this assumption seems to apply when

a large number of TFs regulate the translation/transcription of the TGs in Level 2. We have

extended this assumption to those TGs transcribed by less than four TFs. Under these

considerations, the kinetic TRN model represents the transcription of each of the 22 TGs in

Level 2 by only two cycles: basal activity due to basal TF Ci, and either an activation or a

repressive cycle for TFs from Level 1. Table 7.5 summarizes the kinetic parameters used in

Level 2.

Table 7.5: Parameters for Level 2 of the kinetic TRN model for the extended pluripotent ESCs network. All

chemical potentials were obtained at T = 298.15 [K] and all degradation rates were set at a = 10. Here, TG refers

to any of the 22 target genes in Level 2 and k is the number of transcription factors (TFs) from Level 1 bound to the
promoter region of TG.

Transcription of TG for k 2 4 Transcription of TG for k < 4

[DTG] = 1, [CTG] = 10- 4  [DTG] = 1, [CTG] = 10-4

k k

CTG TF ,  CTG TF ,

k Ii 1 1 1 1
k 10 3  10 4  10 3  10 4

k 106 106 106 106

k 4  10
6  106 106 106

k_ 1  10-6 10-6 10-6 10-6

k- 10-6 10-6 10-6 10-6k_ 10-6 10-6 10.6 10-6

1 1 1 1 0

We compared the Pareto-underlying energetic cost when k transcription factors from

Level 1 (k = 1, ...,9) activate or repress a single target gene in Level 2. In this figure, Boolean

logic AND was used for both activation and repression, and the parameters for the basal cycle
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and the cycle of the transcription factors from Level 1 are shown in Table 7.5. As seen in Table

7.5, same parameters were used for activation (when four or more transcription factors are

bound, k -> 4) and repression (k < 4). The input vector of this network is the same as for Level

1 [Equation (7.69)]. The parametric vector is defined by Equation (7.70) but extended to the

parameters of the two cycles of Level 2. Perturbations of Ax = 1.3 and i2 = 1were used. The

objective function total transcription rate was obtained for the entire network as:

TRtot = TRt + TRTG (7.75)

Where TR, is given by Equation (7.71).

The sensitivity matrix for the calculation of the overall robustness index was defined as:

xT
so = (G (7.76)

where SU,' is defined by Eq. (7.73).

We studied the effect of having all possible combinations of k transcription factors acting

as activators or repressors, resulting in 2 x Ck9 Pareto frontiers between total transcription rate

and robustness index, with

C = 9! (7.77)
k k!(9-k)!

Thus, when one TF bounds the promoter region of the target gene (k = 1), there are 9

possible combinations (each of the 9 TF from Level 1) of activation and repression, resulting in

18 Pareto frontiers composed of 5 points. As another example, when 4 TFs from Level Iregulate

the transcription rate of the target gene in Level 2, there are 126 possible combinations. If all the

TFs activate or repress the TG, then there are 252 Pareto frontiers. Therefore, we obtained 1022

Pareto frontiers between total transcription rate and overall robustness index.

After the numerical computation of the Ck Pareto frontiers of activation and the Ck Pareto

frontiers of repression for each k, the Pareto-underlying benefit over cost was calculated for each

Pareto frontier, as the Pareto average of the ratio between the Pareto robustness index and the

underlying heat dissipation rate:

(1 p ( i (7.78)
c = Np J=1 HDRI
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where Np is the number of points in the i Pareto frontier (we used Np = 5). Then, the fitness

function defined by Eq. (7.78) was compared between activation and the corresponding case of

repression. Figure 7.8 shows these results.

A

Repression -0- Activation

B
100

=.o 95

S9011111111
0

I.

a.

1 2 3 4 5 6 7 8 9
Number of Transcription Factors Bound to the

Promoter Region of Target Gene

2 3 4 5 6 7 8 S
Number of Transcription Factors Bound to the

Promoter Region of Target Gene

g Pareto-averaged RI/HDR in activation higher than repression
Pareto-averaged RI/HDR in repression higher than activation

Figure 7.8: Energetic cost explains regulation of target gene expression by transcription factor occupancy. A) Pareto
frontiers between robustness and transcription rate under self-renewal state was obtained for genes whose promoters
are targets occupied by one TF (Nac 1l), two TF (Nac, Dax), three TFs(Nac, Dax, Myc) and four TFs (Nac, Dax, c-
Myc, and ZFp281) for two scenarios: (1) all TFs are activators; (2) all TFs are repressors. Typical case is shown in
A. B). Benefit/cost i.e. Robustness Index/heat dissipation rate was compared for the eight cases. Higher benefit/cost
was observed for the cases where all TFs are repressors and TFs are less than 3. For higher than 3 TFs benefit/cost
was higher for cases where all TFs are activators. Exhaustive search was done where all possible nCr combinations
where considered when all TFs are either activators or repressors. Percentage of cases where repressors or activators
are better for normalized benefit is shown.
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Figure 7.8 indicates the usage of energetic cost for explaining regulation of target gene

expression by cofactor occupancy. First, Pareto frontiers between robustness and transcription

rate under self-renewal state was obtained for genes whose promoters are targets occupied by

one TF (Nacl), two TF (Nac, Dax), three TFs(Nac, Dax, Myc) and four TFs (Nac, Dax, c-Myc,

and ZFp281) for two scenarios: (1) all TFs are activators; (2) all TFs are repressors. We only

show the typical case is shown in 7.8 A-B. Next, Benefit/cost i.e. Robustness Index/heat

dissipation rate was compared for all of the possible eight cases. We observed higher benefit/cost

for the cases when all TFs are repressors and less than 3 TFs are coregulating. For the case where

more than 3 TFs coregulate a gene, benefit/cost was higher for cases when all TFs were

activators. Exhaustive search was done to obtain all possible nCr combinations of TFs as

activators or repressors. Percentage of cases where repressors or activators are better for

normalized benefit is shown. Our results indicate higher benefit/cost for i.e. higher functional

objective at lower energetic cost for the cases when all TFs are repressors for less than 3 TFs

coregulation and higher benefit/cost for the cases when all TFs are activators for more than 4 TFs

coregulation.

7.3.4 Analysis of ESC TRN Architecture: Role of Autoregulation, Feedback Loops, and

Other Motifs.

To investigate further the role of complex architecture of various motifs and TRN loops

in ESCs-TRN we utilized energetic cost and benefit/cost analysis to decipher the utility of

various motifs.

Effect of Level-1 on Level-1: Conditions and definitions of total transcription rate and

robustness index are same as for Figures 7.5 and 7.6. When an interaction is removed, the

parameters from Table 7.3 associated to that linkage become zero, but the other parameters are

kept at their values set in Table 7.3.

The normalized Pareto frontiers and normalized Pareto benefit over cost between the total

transcription rate of Level 1 (objective function 1 or gl ) and the overall robustness index of the

network (objective function 2 or g 2) was obtained by following the next sequence:

1. Find the overall Utopian point UP, and the overall Nadir point NP, defined as:
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UP = [max(gl) max(g )] = [UP 1  UP 2 ] (7.79)

NP = [min(g'j) min(g2)] = [NP1  NP2] (7.80)

Where g,i is the j Pareto point of objective function k in the i Pareto frontier.

2. Normalize the Pareto solutions with respect to the Utopian and Nadir points:

, - NP, (7.81)
UP1-UP1

, U,2J-NP2 (7.82)
92, UP21-UP

2

3. For each normalized Pareto point, calculate the benefit over cost as

( _91+92,j (7.83)
c/ i HDR

4. Calculate the Pareto benefit over cost as:

= = 2 (7.84)

Where Np is the number of Pareto points in Pareto frontier i.

5. Among the Pareto frontiers, find the maximal and minimal benefit over cost, and

normalize their values as:

(B)= (-C)iK-)minC(B (7.85)

In the analysis of the effect of Level 1 architecture on Level 2 and on the overall network,

only activation was considered. When Boolean logic AND was used, each TG is transcribed

from two cycles (as explained before). In the case of OR logic, each TG is transcribed from a

variable number of cycles which equals the total number of TFs (see Table S4) plus basal

activation. For instance, when Rest is activated, the kinetic TRN model represents this

transcription as eight cycles. Parameters for each cycles are the same no matter what Boolean

logic was used. For the basal cycle, parameters are same as in Table 7.5. For the activation

cycles from TFs (either AND or OR), parameters are the same as in transcription of TG for

k > 4 (activation case of Table S5) but with k2 = 10 3.
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We next investigated effect of Level 1 architecture on Level 1 using energetic cost

approach presented previously. Figure 7.9A shows different network architectures of Level 1.

Here, NO is the basic case that contains all the possible interactions of the network. In NI

architrecture, all the feedback and mutual interactions are removed and the nodes are activated

(or repressed) only through the master regulators Klf4 and Nacl. This allows us to understand

the role of these feedback loops and mutual interactions. In N2 architecture, basic Oct4, Sox2

and Nanog interactions were removed to understand their significance. In N3 architecture, all the

positive interactions (including the basic Oct4, Sox2 and Nanog linkages) were removed. In N4,

in addition to the positive autoregulatory interactions, the repressive effect to Oct4 was also

eliminated. In N5, N6, and N7, the individual effects to Zfp281, Daxl and Rexl were removed,

respectively.

For the above mentioned various cases ranging from NO-N7 we obtained normalized

Pareto frontiers between maximal transcription rate and maximal robustness index (Figure 7.9B).

The corresponding normalized Pareto benefit-cost is shown in Figure 7.9C. As seen in the figure,

the complete architecture has highest benefit/cost compared to all other architectural designs,

thus, indicating the importance of various interactions. Interestingly, our analysis reveals that N3

and N4 i.e. positive interactions play a strong role in maintaining functionality of ESC network

during development.

Effect of Level 1 on Level 2: For this analysis we assumed all interactions in Level 2 as

activation with OR logic. The parameters of Level 1 are given in Table 7.3 and the parameters of

Level 2 are given in the left portion of Table 7.5 (k > 4) but with k 2 = 10 3 . As in Figure 7.9,

perturbations of Ax = 1.01 and Ap = 1.01 were used. Since we want to study the effect of Level

1 on Level 2, the total transcription rate given by Equation (7.86) was used.

TR , = TRAh + TRAa + TRAb + TRBt + TRcd + TREd + TRHd + TRpe + TRpr + TRRa + TRe +

TRRi + TRRn + TRRy + TRs, + TRs+ TRsR + TRTr + TRwa + TRwd + TRyy + TRzf (7.86)

The sensitivity matrix was built only with the individual relative change in the

transcription rate of the 22 TGs in Level 2 (the 9 TFs from Level 1 were not included in neither

of both objectives functions). The normalized Pareto frontiers and normalized benefit over cost

were obtained through Equations (7.79) to (7.85). Figure 7.10 shows these results.
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We next analyzed, effect of Level 1 architecture interactions on Level 2 using Pareto-

optimal energetic cost approach. Figure 7.10A is similar to Figure7.9 A but has an additional

linkage with the gene of protein networks of Level 2. Figure 7.10 B shows the normalized

Pareto Frontiers between maximal transcription rate and maximal robustness index of Level for

the different network architectures defined in Figure 7.10 A. The normalized Pareto-benefit over

cost for the Level 1 network architectures is shown in Figure 7.10 C. As seen in the figures,

again positive autoregulatory interactions and positive feedback loops play an important role for

maintain higher functionality in Level 2. This is surprising because it suggests that N3 and N4

interactions are not only important for maintaining higher functionality at lower cost in its

individual layer but also for overall network and downstream network cascade.

Effect of Level-1 on the Overall ESC TRN: Same parameters and conditions as in Figure 7.10,

but total transcription rate is defined as:

TROt = TRL 2 +TR L (7.87)

and the sensitivity matrix is contains the individual sensitivities of the 22 TGs in the Level 2 in

addition to the 9 TFs in Level 1.

Next, we compared the Effect of Level 1 architecture on the overall network using

energetic cost. Again, various network architectures are similar to that in Figure 7.9 but the

connectivity with Level 2 TGs can be seen. Here, we see significant role of not only N3 and N4

but also of feedback and oct4-sox2-nanog complex interactions
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NO: Complete Level 1
Network

N4: Removal of postive auto-
regulation and negative interactions

NI: Regulation of Level 1
through master regulators

N5: Removal of Zfp281
Interactions

N2: Removal of Oct4/Sox2
Nanog basic interactions

NB: Removal of Daxl
Interactions

N3: Removal of positive
autoregulatory interactions

N7: Removal of Rex1
Interactions

B
1.0

0 o
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---- Removed interaction
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C Pareto Benefit-Cost Analysis

1.0

0.8

0.6

-0.4

0.2
0

0.0
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Level 1 Network

Figure7.9: Effect of Level 1 architecture on Level 1 energetic cost. A) Different network architectures of Level 1.

NO is the basic case that contains all the possible interactions of the network. In N1, all the feedbacks and mutual

interactions are removed and the nodes are activated (or repressed) only through the master regulators Klf4 and

Nacl. N2 architecture lacks of the basic Oct4, Sox2 and Nanog interactions. In network N3, all the positive

interactions (including the basic Oct4, Sox2 and Nanog linkages) were removed. In N4, in addition to the positive

autoregulatory interactions, the repressive effect to Oct4 was also eliminated. In N5, N6, and N7, the individual

effects to Zfp281, Daxl and Rexl were removed, respectively. B) Normalized Pareto Frontiers between maximal
transcription rate and maximal robustness index of Level for the different network architectures defined in A). C)

Normalized Pareto-benefit over cost for the Level 1 network architectures.
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Figure 7.10: Effect of Level 1 architecture on Level 2 energetic cost. A) Same as in Figure 7.9 but the connectivity

with Level 2 TGs is seen. B) Normalized Pareto Frontiers between maximal transcription rate and maximal

robustness index of Level for the different network architectures defined in A). C) Normalized Pareto-benefit over

cost for the Level 1 network architectures.
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Figure 7.11: Effect of Level 1 architecture on the overall network energetic cost. A) Same as in Figure 7.9 but the
connectivity with Level 2 TGs is seen. B) Normalized Pareto Frontiers between maximal transcription rate and
maximal robustness index of Level for the different network architectures defined in A). C) Normalized Pareto-
benefit over cost for the Level 1 network architectures.
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7.4 CONCLUSIONS

Here we applied previously developed energetic cost theory to study the architecture of

embryonic stem cells. We studied the layered architecture of ESC-TRNs using energetic cost.

Our results reveal that feedback loops, positive interactions play an important role in ESCs for

maintaining functionality and robustness. Moreover, our energetics based framework could

explain both why cofactor occupancy is favored towards repressors for less than 4 TFs

coregulation and also towards activators for greater than 4 TFs. In summary, our study was able

to predict the functionalities, objectives and experimental observations in the expanded ESC

transcriptional regulatory network model.
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8 SUMMARY AND FUTURE DIRECTIONS

Mammalian systems perform several different functions in nature and hence,

optimization of such systems may involve more than one objective as the goal. For example,

hepatocytes perform several different functions as the key component of BAL systems, and these

functional objectives are potentially conflicting. As seen in previous chapters, higher albumin

synthesis changes the uptake of various metabolites in such a manner that necessarily decreases

urea secretion. In order to investigate the trade-offs between these conflicting objectives and to

explore available design options, one need to formulate the optimization problem with multiple

objectives (vector optimization). Vector optimization obtains a Pareto optimal solution that

satisfies the strict constraints imposed by multiple objectives. We developed a constrained

multiobjective formulation, LPPFBA approach which overcomes several disadvantages

possessed by current algorithms, such as: requiring a priori selection of weights or targets for

each of the objective functions which are inadequate in capturing desired preferences; providing

a single Pareto solution; inability to generate proper Pareto points for non-convex problems (e.g.,

the weights method); inability to generate sensitivity information for trade-off and decision

making; and no inherent capabilities for design exploration. The LPPFBA approach provides a

new effective tool to obtain Pareto optimal solutions. The incorporation of LPP into the standard

Metabolic Flux Analysis method enables an unambiguous formulation of an aggregate objective

function that facilitates effective multiobjective flux balance analysis for large-scale problems.

The presented LPPFBA approach initiates a meaningful step towards infusion of genomic and

proteomics data into metabolite perturbations. Importantly, the presented methodology could be

employed in various metabolic networks that invariably have multiple objectives (ranging from

physiological to design objectives) to be optimized. The combined quantitative and visualization

framework presented in this work sets the stage for the development of true optimal solutions for

large scale genomics based metabolic network systems.

To incorporate energetic constraints, we developed a NCEFBA platform which is a

useful tool for optimality analysis of large scale metabolic networks that are bound to possess

multi-objective Pareto optimal solutions. This technique enables the systematic identification of

tradeoff situations between various metabolic objectives that characterize a particular cellular

phenotype. The addition of FBA to EBA constraints ensures that thermodynamically feasible

solutions are obtained. Furthermore, experimental flux data can be easily incorporated into the
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analysis, which further reduces the feasible space of fluxes. Although the NCEFBA approach

described here was applied to the specific case of hepatocellular metabolism, it can be readily

used on any large-scale metabolic network. This study highlights how Pareto optimal solutions

may contribute to operating BAL devices, alter the metabolic states of hepatocytes, achieve the

desired range of objectives and has relevance for understanding the impact of environmental

stress, inducers, hormones and supplements on cellular metabolism.

The energetic-cost theory was further developed in the thesis and which clearly indicates

that energetic cost may be a suitable basis for evolutionary selection of one motif over another

and could provide an explanation for the rare occurrence of various network motifs. Our analysis

indicates that the Pareto-optimality principle, when combined with NESS analysis, leads to

energetically efficient solutions for transcription. The underlying energetic-cost criterion, SDE,

for Pareto-optimal conditions is a measure that reflects maximal transcription at the lowest

energetic demand. Beyond its application as a functional basis in TRN motifs, the Pareto-optimal

SDE concept may also lead to an optimal and energetically efficient design of synthetic gene

circuits. Further validation of this concept for protein and metabolic networks is required to

confirm its generality; however, the corresponding abundance data for these networks is

unavailable. The finding that energetic cost may be used as an underlying basis for evolutionary

selection of a motif among motifs having similar dynamic functionality is of major significance.

The overwhelming diversity of possible dynamical functions with highly-interactive biological

networks limits effective learning from experimental data alone. Network analyses using

knowledge of the often ignored energetics may greatly reduce the hypothesis space, enabling

identification of new functionalities of dynamically perturbed large-scale networks. Further, the

developed dynamic PETGP framework may be used not only for analyzing motifs in complex

networks but also for designing complex synthetic networks. Appropriate identifications of

cellular objectives involved in evolutionary decision making may provide a potentially novel

approach to identify optimal environmental conditions and therefore, as a stand-alone strategy,

may provide a more efficacious simultaneous prediction and validation strategy for biological

networks.

We also developed energetic cost theory to study the architecture of embryonic stem cells

and studied the layered architecture of ESC-TRNs using energetic cost. Our results reveal that

feedback loops, positive interactions play an important role in ESCs for maintaining
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functionality and robustness. Moreover, our energetics based framework could explain both why

cofactor occupancy is favored towards repressors for less than 4 TFs coregulation and also

towards activators for greater than 4 TFs. In summary, our study was able to predict the

functionalities, objectives and experimental observations in the expanded ESC transcriptional

regulatory network model.

In future, our theory could be extended for coupled protein and transcriptional regulatory

network. For metabolic systems, network architecture theory could be applied to analyze futile

cycles and role of various competing metabolic cycles.
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