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Abstract

Perception is fundamentally underconstrained because different combinations of object properties can generate the same
sensory information. To disambiguate sensory information into estimates of scene properties, our brains incorporate prior
knowledge and additional ‘‘auxiliary’’ (i.e., not directly relevant to desired scene property) sensory information to constrain
perceptual interpretations. For example, knowing the distance to an object helps in perceiving its size. The literature
contains few demonstrations of the use of prior knowledge and auxiliary information in combined visual and haptic
disambiguation and almost no examination of haptic disambiguation of vision beyond ‘‘bistable’’ stimuli. Previous studies
have reported humans integrate multiple unambiguous sensations to perceive single, continuous object properties, like size
or position. Here we test whether humans use visual and haptic information, individually and jointly, to disambiguate size
from distance. We presented participants with a ball moving in depth with a changing diameter. Because no unambiguous
distance information is available under monocular viewing, participants rely on prior assumptions about the ball’s distance
to disambiguate their -size percept. Presenting auxiliary binocular and/or haptic distance information augments
participants’ prior distance assumptions and improves their size judgment accuracy—though binocular cues were trusted
more than haptic. Our results suggest both visual and haptic distance information disambiguate size perception, and we
interpret these results in the context of probabilistic perceptual reasoning.
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Introduction

For well over a century [1,2] psychologists have considered the

question of how the brain uses visual angle sensations to make

judgments of an object’s size, overcoming the confounding effect

of its distance - but the topic remains unsettled. Holway and

Boring [3] found that when strong sensations of an object’s

distance were made available, human size matching performance

at different distances was high, but when distance sensations were

removed human perception of an object’s size was erroneously

dominated its visual angle. Epstein et al. [4] surveyed literature

regarding the ‘‘size-distance invariance hypothesis’’ [5], which

holds that retinal visual angle constrains perception of an object’s

size and distance such that their ratio holds a constant value (e.g.

doubling an object’s physical distance while hold its retinal image

size constant causes its perceived size to double), and concluded

the size-distance invariance hypothesis was subject to a variety of

failures. Several studies attributed participants’ mistaken size

perceptions [4,6–12] to misjudgments of physical distance, while

others point out that specific experimental design choices and task

demands contribute to reported failures of size constancy [13–16].

Recently Combe and Wexler [17] reported that size constancy is

stronger when the relative distance between observer and object

varies due to observer motion, than when due to object motion.

Such findings highlight the unsettled state of current empirical

knowledge about human size and distance perception, which is

exacerbated by the absence of a unified theoretical account for

normative size/distance perception.

We hypothesize that the brain makes size inferences by

incorporating multiple sensations based on knowledge of their

generative relationship with physical environment properties, and

that failures like inaccuracy and systematic biases are due to

poverty, unreliability, and/or mistrust, of observed sensations. Our

experiments tackle the issue of how the brain incorporates distance

information, in particular binocular and haptic (touch), to jointly

perceive of how an object’s size is changing. Size-change

perception, which surprisingly has not been studied in the size/

distance perception literature, bears close similarity to static size

perception because size-change judgments based on retinal image

size are ambiguous if information about the object’s motion-in-

depth is unknown. However when auxiliary sensations indicating

motion-in-depth are available, an observer may rule out size-

change/motion combinations that are inconsistent with the

auxiliary sensations, and unambiguously infer whether the object

is inflating or deflating. We predicted that despite the inherent

novelty of the stimuli (i.e. objects do not typically change in size
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while moving in depth), participants’ abilities to discriminate

whether an object inflated or deflated would depend on the

availability and quality of information about its motion-in-depth.

Because binocular and haptic sensations provide information

about depth, we predicted that they would each be incorporated

for improving size-change judgments. Thus our study answers two

key questions: 1) Does the brain use distance-change information

for size-change perception? 2) What are the roles of binocular and

haptic distance-change information?

Our size-change discrimination task (Figure 1) presented

participants with an object that either inflated or deflated while

simultaneously either approaching or receding, and asked them to

discriminate whether it inflated or deflated (Figure 2). Most static

size perception tasks use matching paradigms, and our task was

advantageous because it allowed us to present a single stimulus per

trial, and avoid issues regarding relative comparison of pairs of

stimuli. We provided participants with different types of auxiliary

motion-in-depth information, binocular [3,16,17] and haptic

[18,19], both in isolation and simultaneously, and examined their

inflation/deflation judgments to evaluate how auxiliary distance

information influenced perceived size-change. Evidence for the use

of binocular and haptic distance information in size-change

perception has not been reported, and previous studies of cue

integration [20] suggest the brain combines haptic and binocular

information in proportion to its reliability to jointly improve spatial

perception.

We found that when distance-change information was absent,

participants’ size-change judgments closely matched object’s

image size-change. However, when we provided participants with

auxiliary distance-change sensations, participants incorporated this

additional information to form more accurate size percepts that

were consistent with both monocular and auxiliary sensations.

Moreover when both binocular and haptic information was

presented, most participants showed greater disambiguation of size

than when either was presented in isolation. These results suggest

size-change perception uses knowledge of how multi-modal size

and distance sensations are related to interpret the scene. We

interpret these findings in the framework of probabilistic

perceptual inference, in which available sensations are combined

according to their relationship to scene properties and their

respective reliabilities [21,22].

Results

Experiment 1: Distance disambiguation for size
perception

Experiment 1 contained four distance-cue conditions (H2/B2,

H+/B2, H2/B+, H+/B+) that provided the four possible

combinations of the presence (+) or absence (2) of haptic (H)

and binocular (B) cues to the ball’s distance-change. Haptic cues

include proprioceptive and pressure information generated by the

ball’s movement in depth, and binocular cues include vergence

and relative retinal disparity information that gives direct

information about the ball’s trajectory (see Methods and Text

S1). Figures 2A–B show grids on which we plot the ball’s size- and

distance-change rates for all stimuli (black dots). The diagonal

dashed line divides the stimuli into those in which the ball’s image

size increases (lower-right) versus decreases (upper-left) in size, and

the vertical dotted line divides the stimuli into those in which ball’s

physical size inflates (right) versus deflates (left).

Our specific analysis and results are as follows. We separated

balls’ distance-change rates into three distance-direction groups:

receding, intermediate, and approaching (colored lines, Figures 2A–B).

For each group we fit individual psychometric functions

(cumulative Gaussian), where the height of the function at a

particular size-change rate indicates the percentage of trials the

participant judged ‘‘inflating’’. Figures 2C–D depict the results for

one participant corresponding to the distance-direction group in

Figure 1. Experimental apparatus. Participants viewed a mirror that
reflected the stimulus image from a monitor suspended overhead, such
that the image depicted objects located in front of the participants.
Participants viewed the mirror through Stereographics stereo glasses
that allowed the computer to present stimuli independently to one, or
both, eyes. Binocular depth stimuli were achieved by presented
different images to each eye that simulated the appropriate stereo
disparity. Beneath the mirror, participants’ fingertips were attached to a
PHANToM (Sensable Technologies) robot arm that allowed the
computer to apply forces to the finger simulating rigid surfaces and
objects.
doi:10.1371/journal.pcbi.1000697.g001

Author Summary

To perceive your surroundings your brain must distinguish
between different possible scenes, each of which is more
or less likely. In order to disambiguate interpretations that
are equally likely given sensory input, the brain aggregates
multiple sensations to form an interpretation of the world
consistent with each. For instance, when you judge the
size of an object you are viewing, its distance influences its
image size that projects to your eyes. To estimate its true
size, your brain must use extra information to disambig-
uate whether it is a small, near object, or large, far object. If
you touch the object your brain could use the felt distance
to scale the apparent size of the object. Cognitive
scientists do not fully understand the computations that
make perceptual disambiguation possible. Here we
investigate how people disambiguate an object’s size
from its distance by measuring participants’ size judg-
ments when we provide different types of distance
sensations. We find that distance sensations provided by
viewing objects with both eyes open, and by touching the
object, are both effective for disambiguating its size. We
provide a general probabilistic framework to explain these
results, which provides a unifying account of sensory
fusion in the presence of ambiguity.

Distance Disambiguates Size-Change Perception
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Figure 2. Experiment 1 predictions and data format. A–B: Trial parameters and predictions. The figure depicts the combinations of size- and
distance-rates used in different trials, and hypothetical predictions. The x- and y-axes represent the rates of change of a ball’s physical size and
distance, respectively. Each quadrant corresponds to one combination of approaching/receding and inflating/deflating. Each black dot indicates a
pair of distance- and size-change rates presented as a trial during the experiment (each trial was repeated 10 times). The trials’ rates were chosen so
they fell into 3 distance-direction groups (colored line lines), approaching (blue), receding (red), and intermediate (green). The diagonal, dashed line
in A and B is a discrimination boundary representing size- and distance-rate combinations that would result in zero image size-change. The vertical
dotted line in A and B is a discrimination boundary representing zero physical size-change. An observer who relies fully on the ball’s changing image
size, (e.g. the ‘‘ambiguous’’ H2/B2 cue condition), would judge the ball to be ‘‘inflating’’ for trials to the right of the discrimination boundary (shaded
region of Panel A), and make errors for stimuli that fall in the triangular hatched regions. An observer who correctly uses the distance cue(s) (e.g. the
‘‘unambiguous’’ H+/B+ condition) would completely disambiguate size and distance and make ‘‘inflating’’ size judgments (shaded region of Panel B).
C–D: Psychometric functions for H2/B2 (C) and H+/B+ (D) distance-cue conditions (participant 5). Each graph depicts the proportion of trials judged
‘‘inflating’’ in the approaching (blue), intermediate (green), and receding (red) distance-direction groups, for participant 5. The x-axis represents size-
change rate (mm/s) and the y-axis represents the percent of trials judged ‘‘inflating’’. The ‘X’s represent actual data and the curves represent best-fit
psychometric functions (cumulative Gaussian). The horizontal gray lines represent points at which the ball would be judged as ‘‘inflating’’ 50% of the
time. The vertical colored dashed lines indicate the size-change rates that correspond to zero image size-change for each distance-change direction
condition (the intersections of the diagonal dashed line with the colored lines in Box A). E–F: 3D psychometric functions for H2/B2 (C) and H+/B+ (D)
distance-cue conditions (participant 5). The surface plots depict participant 5’s choice probabilities for the H2/B2 and H+/B+ conditions. The x-axis
represents size-change rate, the y-axis represents distance-change rate, and the z-axis represents the percentage of trials in which the participant
judged the ball as ‘‘inflating’’. The curves are schematic, they represent the average psychometric function estimates across the three distance-cue
conditions, interpolated so that the PSEs lay on the discrimination boundary. The colored lines overlaid on the surfaces are similar to those in boxes
C–D. This figure shows the relationship between the psychometric functions in boxes C–D and the participant’s associated ‘‘inflating’’ size judgments
shown in boxes A–B. The heavy black dotted line corresponds to the confusion (white-gray boundary in boxes A–B).
doi:10.1371/journal.pcbi.1000697.g002

Distance Disambiguates Size-Change Perception
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Figures 2A–B. Figures 2E–F illustrates the relationship between

the psychometric function fits and the shaded regions in

Figures 2A–B. Within each distance-cue condition, we found each

psychometric function’s 50% point, and fit a line between these

points. We termed these best-fit lines participants’ discrimination

boundaries between ‘‘inflating’’ and ‘‘deflating’’ responses, and

interpreted them as measures of participants’ confusion. Specifically,

we computed the best-fit slope with respect to distance-change rate

(y-axis), and normalized it into a confusion ratio. A confusion ratio of

1 meant the participant discriminated inflation from deflation

depending exclusively on the sign of the image size-change rate,

which corresponded to the locus of physical distance- and size-

change rates that produced an image-change rate of 0 (diagonal

line, Figure 2A). A confusion ratio of 0 meant the participant

discriminated inflation from deflation depending on the sign of the

physical size-change rate (vertical line, Figure 2B). Simply put,

when a participant’s discrimination judgments were independent

of the nuisance distance property they did not confuse distance-

change for size change (zero confusion), and when their

discrimination judgments were dependent on the nuisance

distance property they confused distance-change with size change

(confusion of 1). Our ‘‘confusion ratio’’ is related to the Brunswick

and Thouless ratios, which apply to static size matching tasks [23].

Notably, those ratios scale inversely to ours: they take values of 1

when participants comparison size judgments match the standard

stimulus size (confusion of 0), and 0 when the comparison size

judgment matches the image size (confusion of 1).

In the trials that contained no distance cues (H2/B2), we

predicted participants would rely on prior assumptions that the

ball tends to stay still (or move slowly). This is a sort of motion

analog to the ‘‘specific distance tendency’’ [10]. Slow movement

priors have previously been reported for 2D motion perception

[24–26] and others [27] find similar priors in 3D [28]. Assuming

slow, or no, movement would bias participants to attribute

increasing image size largely to inflation and in turn lead them to

judge stimuli with increasing image sizes as ‘‘inflating’’ (shaded

grey in Figures 2A–B). All participants display precisely this

pattern; Figure 3 (top-left box) shows the specific pattern for a

typical participant (5) in the H2/B2 condition, and Figure 4

Figure 3. Experiment 1 discrimination boundaries (participant
5). This figure depicts participant 5’s discrimination boundaries in all
distance-cue conditions, on the same axes as in Figures 2A–B. Each box
is a single distance-cue condition (indicated by ‘‘H*/B*’’ on left side of
each box). The colored lines are the same as those depicted in Figure 2.
Gray regions represent size- and distance-change combinations
predicted to be judged ‘‘inflating’’ more than 50% of the time by
discrimination boundary fit to participants’ PSEs; white regions
represent combinations predicted to be judged ‘‘deflating’’ more than
50% of the time.
doi:10.1371/journal.pcbi.1000697.g003

Figure 4. Experiment 1 size-change confusion. The figure depicts the size-change confusion for each participant, and the group mean. Each bar
is a single distance-cue condition’s size-change confusion, with 1 MADC error bars (can be interpreted similarly to standard error, see Data Analysis).
The distance-cue condition is indicated by the bar’s shading and referenced in the legend. The horizontal dashed line indicates the predicted
confusion for an observer that relies exclusively on the image size-change cue to make physical size-change judgments; this is why the H2/B2
condition bars, in which only image size-change cues were available, all overlap the horizontal dashed line.
doi:10.1371/journal.pcbi.1000697.g004

Distance Disambiguates Size-Change Perception
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summarizes all participants (white bars). The evidence suggests

that participants used prior assumptions that objects tend to stay at

rest to disambiguate the scene. But because the ball was often

approaching or receding, these often-incorrect prior assumptions

led to erroneous perceptual size judgments. However, if we had

allowed participants to decide whether the ball was changing size

or changing distance, they may have preferred changing distance

in some cases - it may be that the role of the prior is guided by the

task’s demands.

In those conditions that contained auxiliary distance-change

cues (H+/B2, H2/B+, H+/B+), we predicted participants would

perceive trials with increasing image size as ‘‘inflating’’ (shaded

regions in Figure 2B) only when the ball’s movement in depth

could not account for the changing image size; in other words, the

participant will not perceive a rapidly approaching ball as inflating

if the image size is only increasing a small amount. Likewise, when

the ball’s image size was decreasing, we predicted participants

would perceive the ball as deflating only when the recession rate

was not great enough to account for the image size change. All

participants exhibited this pattern when the auxiliary binocular

cue was present (H2/B+ and H+/B+), and 7 of 10 also showed

size disambiguation when the haptic cue alone was present (H+/

B2); again, Figure 3 (bottom-left, and right boxes) shows the

specific pattern for a typical participant (5) in the H+/B2, H2/

B+, and H+/B+ conditions, and Figure 4 summarizes all

participants (grey bars). These results indicate that participants

disambiguate the scene using both haptic and binocular distance-

change cues, by augmenting their prior assumptions to make more

accurate inflation discriminations.

Figure 4 presents confusion for all participants in all distance-

change conditions. A two-way, repeated-measures ANOVA found

a significant reduction of confusion across participants for both

haptic (F(1, 9) = 17.42, p,0.005) and binocular (F(1, 9) = 212.5,

p,0.0001) distance-change cues, and no significant interaction

(F<0, p.0.05) (though the fact that the binocular cue almost fully

disambiguated the inflation/deflation rate for most participants

means any interaction effect would be masked by the ceiling).

Our results indicate participants use binocular distance-change

cues significantly more than haptic cues for disambiguating the

scene and improving physical size judgments (H+/B2 vs. H2/B+
conditions compared in a paired sign test, p,0.002). Previous cue

combination studies [20,29–38] have demonstrated integration of

cues in proportion to their relative reliabilities. If each auxiliary

cue, binocular and haptic, was trusted by the observer to provide

information about the ball’s distance-change, we hypothesized that

their disparate explaining-away effects were due to the binocular

cues’ greater reliability over the haptic cues’. We examined

whether Experiment 1’s binocular/haptic discrepancy was due to

differences in haptic and binocular cue reliabilities in Experiment

2.

Experiment 2: Distance-change cue reliability
We measured the haptic and binocular cues’ noise (see [39]) to

determine whether differences in their respective reliabilities could

explain their discrepant effects on disambiguating the balls’

inflation/deflation rates in Experiment 1. Participants observed

two moving balls sequentially, and judged which ball moved faster,

in a two-interval forced choice (2IFC) discrimination task.

Experiment 2 used binocular and haptic cues in different

conditions, so we could measure their respective reliabilities in

isolation. The ball’s movements were always restricted to the depth

axis (with slight fronto-parallel oscillation described in the

Methods) as in Experiment 1, and also spanned the same speed

range as Experiment 1. In the haptic condition, the ball was not

visible during the stimulus interval; in the binocular condition the

ball was visible and its image size changed under accurate

perspective projection (see Methods for details).

Our results show that with the exception of one participant, the

haptic and binocular cue reliabilities do not explain their

differential uses in Experiment 1. Figure 5 shows the haptic and

binocular distance-change noise magnitudes for each participant,

where each pair of bars represents the haptic and binocular noise

magnitudes (standard deviation) for a participant. Qualitatively it

is clear that the binocular and haptic noises have comparable

magnitudes. By comparing the set of bootstrap-resampled

binocular and haptic noise magnitudes, we can perform a

hypothesis test of the prediction that the binocular noise is less

than the haptic noise. All participants fail this test (p.0.05), except

Figure 5. Experiment 2 distance cue noise standard deviations. The figure depicts the inverse-reliability of the haptic and binocular distance-
change cues for each participant, and pooled across all participants. Each bar represents the standard deviation of the noise that corrupts a distance-
change cue, with 1 MADC error bars (see Data Analysis). The haptic cue is indicated by the light bars, the binocular cue by the dark bars.
doi:10.1371/journal.pcbi.1000697.g005

Distance Disambiguates Size-Change Perception
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participant 9 (p,0.05). Thus, differences in cue reliabilities cannot

explain Experiment 1’s discrepant use of binocular and haptic cues

to reduce confusion. This effect is consistent with the observer

trusting the binocular cue more greatly than the haptic, thus

integrating less of the haptic cue information.

Discussion

Our study finds that humans use within- (binocular) and cross-

modal (haptic) distance-change sensations to disambiguate other-

wise ambiguous monocular image size sensations, resulting in

more accurate judgments of object size. Binocular distance-change

cues influenced participants’ size judgments more strongly than

haptic cues. When both modalities’ distance-change cues were

presented simultaneously, nine of ten participants’ physical size

judgments were virtually confusion-free.

In order to use the distance-change to improve size-change

judgments, the brain must use generative knowledge of how an

object’s physical size and distance cause monocular image size-

and distance-change cues to alleviate the confounding effects of

physical distance-change. Such knowledge may be abstractly

represented (the laws of physics) or encoded in a more applied

manner (a look-up table relating size, distance, and image cues).

This is consistent with a core feature of Bayesian reasoning termed

explaining-away [40]. Knowledge about the relationships between

world properties and sensations provides perceptual inference

processes with a common representation for integrating prior

knowledge with sensory evidence, and probabilistically ‘‘solving

for’’ scene properties based on sensations. Bayesian reasoning as a

framework for interpreting perceptual behavior has attracted

considerable attention because it provides a principled theoretical

framework for describing the brain’s recovery of scene properties

from sensations [22,41] and has allowed quantitative confirmation

that humans exhibit near-optimal perceptual performance across

many tasks [20,22,29,33,35–38]. Various studies have found that

when humans judge single scene properties that produce multiple

pieces of sensory information, or cues (Figure 6A), they average the

cues in proportion to their reliability [25], which is the Bayes’-

prescribed perceptual strategy. Others report [42–44] perceptual

‘‘discounting’’, in which prior knowledge is used to disambiguate

otherwise ambiguous sensory cues, which requires knowledge of

the generative relationship between a cue and the scene properties

that cause it.

Our study examines a more complex situation (Figure 6B)

where, unlike discounting [42–44] (Figure 6A), correct inference of

the desired scene property (physical size-change) requires an

inference strategy that exploits generative knowledge of the

relationships between multiple scene properties (physical size-

Figure 6. Bayesian inference: from discounting to explaining-away. Perception is characterized by two complementary processes: 1.) The
‘‘generative process’’ determines how scene properties, such as an object’s physical size and distance, cause the observer’s sensations, such as
monocular image cues, binocular, and haptic information, and 2.) The scene ‘‘inference process’’ characterizes the observer’s use of generative and
prior knowledge to recover local scene properties. The generative process can be summarized by a conditional likelihood Pr(cues D properties), the
inference process by the posterior probability distribution, Pr(properties D cues). Bayes’ rule dictates how each process relates:
Pr(properties D cues)~Pr(cues D properties)Pr(properties), where Pr(properties) represents the prior probability distribution over scene properties. In
the figures above, scene properties are represented by white nodes, and cues are represented by gray nodes. In our experiment, the desired property
was the physical ball size, the nuisance property was the physical ball distance, the ambiguous cue was the monocular image size cue, and the
auxiliary cue was provided by the binocular and haptic distance cues. A.) Discounting inference: a desired property influences a single cue, which is
ambiguous due to the confounding influence of a nuisance property. The single ambiguous cue can be used to estimate the desired scene property
that caused it by discounting the effect of the nuisance property using prior knowledge about it. The conditional relationships (arrows) in Box A
specify that Bayes’ rule can be factored such that:

P(desired D ambiguous) ~
Ð

P(desired,nuisance D ambiguous)

~
Ð

P(ambiguous D desired,nuisance)P(desired)P(nuisance)

B.) Explaining-away inference: similar structure to discounting, but involves additional, auxiliary cues. By using the auxiliary cue to ‘‘explain-away’’ the
influence the nuisance property has on the ambiguous cue, the desired property can be unambiguously inferred. Bayes’ rule specifies inferring the
desired property as:

P(desired D ambiguous,auxiliary)

~

ð
P(desired,nuisance D ambiguous,auxiliary)

~
ð

P(ambiguous,auxiliary D desired,nuisance)P(desired)P(nuisance)

~
ð

P(ambiguous D desired,nuisance)P(auxiliary D nuisance)P(desired)P(nuisance)

The ambiguous and auxiliary cues can be factored because they are conditionally independent given the nuisance property.
doi:10.1371/journal.pcbi.1000697.g006

Distance Disambiguates Size-Change Perception
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change and physical distance-change) and multiple sensations

(retinal image size-change, binocular and haptic distance-change

cues). No single sensation alone, retinal image size-change or

distance-change cue, constrains the physical size-change inference

uniquely due to the confounding influence of nuisance scene

properties – properties that affect sensations but do not contribute

to the judgment - in this case, physical distance-change (Figure 6B).

Because the nuisance property (physical distance) confounds the

direct cue (retinal image size-change) to the desired property

(physical size-change), incorporating auxiliary cues (distance-change

sensations) can explain-away the influence of the nuisance physical

distance-change and allow unambiguous judgments of physical

size-change.

Explaining-away can characterize other perceptual tasks in which

multiple scene properties influence multiple cues in the manner

depicted by Figure 6B; for example, estimating surface reflectance

from sensed lightness despite the confounding influence of

illumination [45], estimating object shape from image contours

despite the confounding influence of pose, and the general class of

‘‘perceptual constancy’’ effects. Also explaining-away is a general

Bayesian perspective on a specialized concept [46] termed ‘‘cue

promotion’’ - in which a relative cue (like stereoscopic disparity) is

able to be incorporated into perceptual judgments (promoted) only

because a second, auxiliary cue (like depth from vergence) provides

information to make it an absolute cue. Many unimodal perceptual

phenomena are characteristic of explaining-away [3,47–48].

Multimodal perceptual explaining-away is less documented, but

explaining-away in bistable percepts has been reported [49–52] as

well as in continuous percepts [53–54]. Our results extend previous

reports of explaining-away to include continuous, multimodal scene

property judgments [47,50–51,53,55–56].

Explaining-away is only appropriate when the auxiliary cues are

dependent on scene properties that influence cues to the desired

scene property. This typically occurs when the nuisance variable

causes the auxiliary cue. There is evidence suggesting that non-

visual sensory cues are integrated less efficiently than their

reliabilities afford [33] or in a less committed, reversible manner

[39,57–58], and some have attributed lack of cue integration to

weak conditional dependency between cues and world properties

[31,58–62]. Reliability reflects the quality of a cue; if the sensory

signal is corrupted by noise the reliability decreases. Trust reflects

the degree to which the observer believes the cue is related to the

desired scene property; there may be other scene properties that

influence the auxiliary cue which diminishes the cue’s diagnosticity

for the desired scene property. In cases in which all auxiliary cues

are trusted equally, they should be integrated in proportion to

their relative reliabilities only. However, if trust in the auxiliary

cues is unequally distributed they should integrated in proportion

to the relative reliabilities and their trust.

Previous studies that tested multisensory disambiguation of

bistable stimuli reported mixed results [50–51]. It is possible that

these different findings are due to non-visual cues being trusted less

due to their frequent independence from visual cues. Alternatively

the mixed results may be due to variable cue reliabilities [63], for

instance when visual cues to a bistable stimulus’s structure vary in

relative reliability compared with tactile cues, tactile cues may

influence perceived structure in proportion to their reliability. Our

experiment was sensitive to partial disambiguation, because

participants discriminated percepts that lied on a continuous axis

(rate of distance-change), which may reconcile previous mixed

results by demonstrating the graded roles of auxiliary cue

information. We found different effects of individual haptic and

visual cues, and strongest influence when both were present, which

argues for the reliability-weighted integration of that information.

One potential reason that binocular distance-change cues were

more useful than haptic cues for disambiguating size perception in

our experiment may be that the haptic cue is more weakly coupled

with the image cue than the binocular cue, perhaps reflecting the

causal structure of the world. In decoupled situations, in which

different world properties influence different cues independently, it

is inappropriate to combine cues. For instance, in natural settings

binocular depth and monocular image size cues are transmitted to

the eyes by the same light patterns, thus are usually highly

dependent. Because, sensory channels for visual and haptic

information differ, and there are many situations in which the felt

position of an object differs from its visual position, like

manipulating a tool, playing with a yo-yo, or touching an object

that is occluded by a nearer object. In our experiment the haptic cue

was somewhat atypical, because we forced the fingertip to always be

positioned at the center of the ball, not the edge, so the size-change

would not be directly measurable by radial pressure toward or away

from the ball’s center. It is plausible that this atypicality degraded

participants’ belief that haptic and visual cues were caused by the

same object. Recent reports of visual-auditory cue integration have

found causality-modulated cue integration [59–62], and it may

explain why the haptic cue is trusted less for disambiguation

compared with the disparity cue in our experiment.

Another possibility derives from the brain’s algorithm used to

compute the size-change rate. Per Rushton and Wann ([64],

Figure 1 caption), the B+ conditions allow the possibility of

estimating the size-change rate without explicitly estimating the

distance-change rate (by computing the ratio between image-size-

change and binocular vergence angle-change rates, which causes

the explicit distance-change rate terms to cancel). This means that

a potential source of noise in the B+ conditions, incurred during

estimation of the distance-change rate, would be removed,

allowing higher fidelity disambiguation of the size-change rate in

those conditions. If this were the case, Experiment 2 may have

overestimated the effect of noise in Experiment 1’s B+ conditions

depending on how noise enters the system: if noise only corrupts

the brain’s estimates of binocular vergence angle-change rates,

then Experiment 2’s binocular noise estimates are valid. However,

if noise additionally corrupts the ability to make binocular

distance-change judgments, then Experiment 2’s binocular noise

estimates would be overestimates of the true noise afflicting

Experiment 1’s B+ conditions. This logic may be moot if the

distance-change is used to drive oculomotor vergence dynamics

(i.e. tracking in depth) because in that case the noisy distance-

change rate would influence the binocular vergence-change rate.

Either way, in order to apply the ratio algorithm [64] for

computing size-change still requires the brain to understand the

generative relationships among size, distance, and the image and

binocular sensory cues, which does not diminish our findings.

One future challenge is directly assessing what prior assump-

tions the perceptual system has about the world, and how

reliability and trust in various cues are learned [63]. With

quantitative estimates of prior assumptions, one can predict how

reliable auxiliary cues must be and how much they should be

trusted, to override conflicting priors. Other studies [5] refer to a

‘‘specific distance tendency’’ in which participants assume objects

appear at a canonical distance. In the 2D motion perception

domain and [24,26] each reported that humans exhibit strong

prior preferences for ‘‘slow and smooth’’ movement, and our study

suggests participants assume objects move slowly in 3D, but a

stronger direct test of 3D motion priors requires quantitative

predictions. Measuring prior knowledge directly is difficult, but

developing indirect methods is an important topic of recent and

continuing research [26].
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Our results indicate that the brain uses multisensory distance-

change cues to improve perceptual size-change disambiguation.

Haptic and binocular distance-change cues are both effective,

binocular more than haptic, which is not explained by their

relative reliabilities, but is consistent with causal cue integration

models [61–62]. Our findings support the view that perceptual

processing employs knowledge of the sensory generative process to

infer scene properties and disambiguate competing interpretations.

Methods

Ethics statement
Experiments were undertaken with the understanding and

written consent of each subject, with the approval of the Ethik-

Kommission der Medizinischen Fakultät und am Universitätskli-

nikum Tübingen, and in compliance with national legislation and

the Code of Ethical Principles for Medical Research Involving

Human Subjects of the World Medical Association (Declaration of

Helsinki).

Participants
11 right-handed participants (ages 18 to 35) with normal/

corrected-to-normal vision (Snellen-equivalent of 20/25 or better)

and normal stereopsis (60 s of arc or better - Stereotest circles;

Stereo Optical, Chicago) were recruited from MPI Tuebingen’s

Subject Database and compensated 8 J/h. All participants

completed both Experiments 1 and 2, with the exception of one

who was excluded from reported results because her responses

indicated she did not follow the experimenters’ instructions.

Apparatus
Participants sat in a virtual workbench that presented both

graphical and haptic stimuli (Figure 1; see [20] for details).

Participants’ heads were stabilized with a chin-and-forehead rest

45 deg forward. Visual stimuli were presented on a monitor (210

GDM-F500R SONY, 38.2629.8 cm, resolution of 128061024

pixels, refresh rate 100 Hz) whose center was 50 cm from the eyes

reflected on a first-surface mirror, and whose top was tilted 22 deg

backwards from the fronto-parallel plane. Binocular stimuli were

presented through CrystalEyes TM (StereoGraphics) liquid-crystal

shutter glasses which allowed different images to be presented to

each eye. Haptic stimuli were presented using a Premium

PHANToM force-feedback device (SensAble Technologies), to

which the index finger was attached by a thimble and elastic band,

allowing six degrees of freedom movements. The 3D fingertip

position was monitored continuously, and the computer applied

simulated normal forces when the tip reached the positions of the

virtual haptic objects. The apparatus was calibrated to spatially

align the visual and haptic stimuli, simulating a single scene.

General procedure
There were two experiments, 1. Distance cue disambiguation for size

perception and 2. Distance cue reliability, that each contained haptic and

binocular distance cues. At the start of each trial, a 35 mm diameter

red ball was placed between 443 mm and 455 mm from the

observer (4.4–4.5 deg visual angle). In trials containing a binocular

distance cue, the ball was presented binocularly to the observer’s

two eyes, rendered to simulate an interocular distance of 58 mm.

The participant signaled he or she was ready to begin the trial by

reaching and contacting the ball with the index finger (attached to

the PHANToM device). Once contact was made, the PHANToM

device applied forces to the fingertip to guide it to the center of the

ball.

At this point the experimental phase of the trial began: the ball

began moving in depth with respect to the participant, while

simultaneously changing in size, for a duration of 1000 ms. If the

trial contained a haptic distance cue, as the ball moved

appropriate forces were applied to the fingertip to maintain its

position at the center of the ball; otherwise no forces were applied

to the fingertip once the ball began to move and participants

typically held their fingertips at a roughly constant position. The

ball also slightly oscillated in the observer’s fronto-parallel plane

following a sinusoidal displacement (with amplitude between 5.0

and 15.0 mm) in a random direction and at a random frequency

(between 0.35 and 0.5 Hz). This was intended to both decrease the

similarity of the visual and haptic trajectories across trials, increase

their perceptual fusion, as well as obviate local edge motion

information as a direct indicator of image size-change.

Although fixation was not precisely controlled or monitored,

our experience and observations of participants suggested they

fixated the ball in monocular and binocular conditions. Also, our

stimuli were constructed to eliminate two potential sources of size-

change information from binocular cues. One source is ‘‘Da

Vinci’’ stereopsis, which refers to depth information that results

from points on the object that are visible in only one eye due to

object self-occlusion. This cue requires identifying object points

without correspondences between the eyes. Because the ball has

no horizontal luminance/color contrast, Da Vinci stereopsis was

eliminated as a cue to size-change. A second potential source of

binocular size-change information was disparities due to the ball’s

oscillation. For a ball in the mid-sagittal plane there are no

binocular disparity cues to size change. We determined that the

slight oscillatory movements the balls made out of the mid-sagittal

plane created sub-threshold (undetectable) relative disparity cues

to ball size. See Text S1l for an in-depth examination and

schematic of the binocular cue. Lastly, accommodation was a

potential cue, uncontrolled except that the screen depth was fixed.

After 1000 ms, the ball disappeared. In Experiment 1, only a

single stimulus interval was presented. In the Experiment 2, two

stimulus intervals were presented; following the first interval a new

ball appeared and the second interval proceeded just as the first.

Once the stimulus interval(s) were finished, two buttons appeared

on the left side of the scene and participants were instructed to

press the button that corresponded to his or her judgment of the

scene. The trial ended once the button was pressed, and the

subsequent trial began immediately.

In Experiment 1 the buttons were labeled ‘‘inflating’’ and

‘‘deflating’’, and the participant pressed the button corresponding

to his or her perception of the ball’s physical size change. We

interpreted participants’ choices as their discriminations of the

ball’s absolute size-change rate.

In Experiment 2, each trial was designed as two-interval forced-

choice (2IFC). In every trial, both balls moved in the same

direction with respect to the participant (approaching/receding),

but their speeds were different relative to each other. Also, the

balls never changed in size (equivalent to 0 mm/s size-change rate

in the main experiment). In haptic trials, the ball disappeared from

view as soon as it began to move. Following the two intervals

participants were instructed to press one button among two

choices, labeled ‘‘1st’’ and ‘‘2nd’’, indicating which interval

contained the faster ball.

Design specifics
Experiment 1. Four distance-change cue conditions were

run, distinguished by the type(s) of distance cues that were

presented: no-haptic/no-binocular (H2/B2), haptic/no-

binocular (H+/B2), no-haptic/binocular (H2/B+), and haptic/

Distance Disambiguates Size-Change Perception
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binocular (H+/B+). The haptic and binocular distance cues are

described above in the General Procedure subsection; each

provided a compelling sensation of the ball’s changing distance.

The ball’s movement rate was selected from between 2104.0

and 104.0 mm/s, where a negative velocity corresponds to the ball

moving toward the observer and a positive velocity corresponds to

the ball moving away, in the line of sight of the participant.

Specifically, we used 3 pedestal distance-change rates, {271.5,

0.0, 71.5 mm/s}, and varied the distance-change around these

pedestal values by adding satellite values {232.5, 226.0, 219.5,

213.0, 26.5, 0.0, 6.5, 13.0, 19.5, 26.0, 32.5 mm/s}, for a total of

33 possible distance-change values. The ball spanned 7.7 deg

visual angle at its nearest/largest state and 2.5 deg at its farthest/

smallest.

Concurrent with the ball’s distance change, its size changed at a

rate selected from between 211.0 to 11.0 mm/s, where negative

rates correspond to the ball deflating and positive rates correspond

to the ball inflating. For each pedestal distance-change, we paired

each of the satellite distance-change values with a particular size-

change rate from the set {211.0, 28.8, 26.6, 24.4, 22.2, 0.0,

2.2, 4.4, 6.6, 8.8, 11.0 mm/s}. The pedestal distance-change rates

defined which distance-direction group (approaching, receding,

intermediate; indicated by the line colors in Figures 2C–F) the

trial belonged to. In total there were 33 unique distance and size-

change rate pairs, each repeated 10 times. Figures 2A–B plots all

unique distance- and size-change rate combinations (black dots) as

2D coordinates.
Experiment 2. Two conditions were run, haptic and

binocular. The experiment was 2IFC and the two intervals were

called the standard and comparison, the order in which they were

presented was randomly selected before each trial. For each

distance-cue condition, two standard distance-change rates were

used, {255.0, 55.0 mm/s}. The comparison distance-change

rates differed from the standard by a value from the set {254.0,

236.0, 218.0, 0.0, 18.0, 36.0, 54.0 mm/s}. Each possible

standard and comparison pair was repeated 14 times.

Data analysis
All confidence intervals were estimated by nonparametric

bootstrapping [65], comparable to those used by [66–67]. Error

bars on some figures were computed using the ‘‘median absolute

deviations with finite sample correction factors’’ (MADC) from the

LIBRA Robust Statistics toolbox for Matlab [68]. MADC

approximates standard deviation estimates of the mean of the

sample for normally-distributed data, but it is more robust for

skewed and kurtotic distributions.

Experiment 1. Maximum-likelihood estimation (MLE) was

used to fit participants’ size-change discrimination performance

with psychometric functions (robust cumulative normal functions,

see [66–67]) with size-change rate on the abscissa and frequency of

responding ‘‘inflating’’ on the ordinate. The Point of Subjective

Equality (PSE) was the 50% point on the fitted psychometric

functions (horizontal gray lines in Figures 2C–D). Across distance-

change directions, approaching, intermediate, and receding, we

maximum-likelihood-fit discrimination boundary lines to the PSEs to

separate ‘inflating’ from ‘deflating’ responses (Figures 2E–F). The

free parameters for estimating discrimination boundaries were

slope and intercept (with respect to the distance-change axis).

Because all error bars were estimated by bootstrapped resampling,

if the linear fits were poor models this was represented as increased

error bar magnitudes.

We defined the confusion as the slope of the discrimination

boundary with respect to the distance-change axis; confusion of 1

corresponds to the image-only discrimination boundary (Figure 2A–

B diagonal dashed line), while confusion of 0 corresponds to the

veridical size-change discrimination (Figures 2A–B vertical dotted

line).

Experiment 2. We MLE-fit discrimination performance with

robust cumulative normal functions [66–67] and interpreted the

fitted just-noticeable-difference (JND) as
ffiffiffi
2
p

times the standard

deviation of the noise which corrupted a single distance-change

cue [39]. Each single-cue standard deviation, which we refer to as

noise, was an estimate of how reliable each distance-change cue

was (reliability is inversely proportional to the noise’s variance).

Supporting Information

Text S1 Details regarding the binocular stimuli presented to

participants.

Found at: doi:10.1371/journal.pcbi.1000697.s001 (0.24 MB PDF)
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