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Abstract

The classical problem of the interaction of a non-emitting spherical body with a zero mean-

free-path continuum plasma is solved numerically in the full range of physically allowed free

parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and

body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias,

weak and strong shielding, thin and thick sheath). Results include current-voltage characteristics

as well as floating potential and capacitance, for both continuum and collisionless electrons. Our

numerical computations show that for most combinations of physical parameters, there exists a

closest asymptotic regime whose analytic solutions are accurate to 15% or better.

1 Introduction

1.1 Background

Theoretical analysis of flux-sensing probes’ [1] operation in stationary, weakly ionized plasmas

where the ion and electron mean-free-paths Li,e are much shorter than the probe dimensions and
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the electron Debye length ΛDe (continuum regime) has a long history. Indeed by assuming that

ion and electron transport reduces to the mobility-diffusion equations

Γi,e = −Di,e∇Ni,e − µi,eNi,e∇V, (1)

approximate analytic or reasonably simple numerical treatments yielding current-voltage charac-

teristics become possible for probes with spherical geometry. In Eq. (1) Γi,e, Ni,e, Di,e and µi,e are

respectively the ion (electron) flux density, density, diffusivity and mobility; V is the self-consistent

electrostatic potential governed by Poisson’s equation

∇2V =
1

ǫ0
(Ne − Ni). (2)

Most of the interesting theoretical work on this model was done in the years 1960s/70s, and the

relevant literature up to 1975 usefully reviewed in Refs [2, 3].

Interestingly enough, little application for those theories existed in their early days, and in fact

ad hoc experiments were built for the sole purpose of verifying their validity [4, 5]. With the recent

development of plasma-processing technologies however, probe diagnostics are today widely used

in high pressure discharges where continuum conditions are easily satisfied; this naturally calls for

further development of the yet incomplete theory of continuum probes.

Also recent is the interest for Dusty plasmas [6], containing micrometer-size particles the charg-

ing of which shares many properties with the just-discussed probes. Although dust grains are

typically two to four orders of magnitude smaller than probes (∼ 1 − 100µm for the former ver-

sus ∼ 1 − 10mm for the latter), experiments at nearly atmospheric pressure where the continuum

theory of current collection can be applied have been conducted [7].

A fundamental difference between probes and dust particles is that probes are biased by an

external circuit, while dust particles must float to balance ion and electron fluxes. Because of the

high electron to ion mobility ratio, the floating potential of a non-emitting body is negative, as are

the typical operating points of a probe.
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1.2 Previous approaches to the “probe” problem

In their classical paper [8], Su and Lam cast the mobility-diffusion equations for ion and electron

transport to a spherical probe of radius Rp and negative potential Vp (1) as an initial value problem

by neglecting the high order non-linearities and limiting themselves to ΛDe
<∼ Rp, where by “ <∼ ”

we mean less or approximately equal. Both an approximate analytic treatment for weak probe

biases and numerical for strong biases was proposed. In this particular case, strong bias entails

|Vp| ≫ Ti,e/e, where Ti,e is the ion (electron) temperature of the unperturbed plasma. For our

purposes, the most valuable part of Su and Lam’s paper is the theoretical analysis of the continuum

model rather than its numerical solution. In fact a significant part of today’s available literature

on the subject “rediscovers” ideas already present, although not obviously, in Ref. [8].

Simultaneously, Cohen [9] completed Su and Lam’s results with a numerical treatment in the

moderate bias regime (|Vp| <∼ 10Te/e), still assuming ΛDe
<∼ Rp.

Su and Lam’s, as well as Cohen’s results have been commented on by Baum and Chapkis [10],

who published numerical solutions in the entire range 0 < ΛDe/Rp < ∞ when Ti = Te. Unfor-

tunately they limit themselves to moderate potentials, and so did the authors of Refs [11, 12, 5]

(|Vp| <∼ 500Te/e), leading to confusing conclusions concerning asymptotic properties of the current-

voltage characteristics. Furthermore, to our knowledge no complete results in the regime of cold

ions (Ti < Te) are available.

The previously cited treatments solve the simplest possible self-consistent formulation of the

continuum probe problem. In particular the body is assumed to be thermalized with the background

gas, and non-emitting. Relaxation of the first hypothesis has been discussed by Thomas [13] and by

Chapkis and Baum [14]; while the effect of electron emission (photoemission, secondary emission, or

thermionic emission) has recently received interest in the context of dusty plasmas [15]. Ionization

or recombination will be neglected as well. A further point to keep in mind is that in those

same treatments the transport coefficients D and µ are uniform and related by Einstein’s formula

(Di = Tiµi/mi and De = −Teµe/me). Those assumptions are not valid when probe-induced electric

fields are too strong [16], i.e. |µi,e∇V | >∼
√

Ti,e/mi,e; in this case a full kinetic treatment, such as

Ref. [17], might be more appropriate. Further development on those effects is out of the scope of
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the present publication.

1.3 Previous approaches to the “dust” problem

Many treatments specific to dust particles focus on the large Debye length or “Coulomb” regime,

loosely corresponding to ΛDe ≫ max(Rp,−eVp/Ti,−eVp/Te) (a more rigorous definition will be

proposed). This allows to calculate the ion and electron fluxes analytically with the assumption that

the potential distribution is V (R) = VpRp/R [14] , and from there obtain a first order correction to

the plasma profiles (directly as in the appendix of Ref. [8], or after Fourier analysis of the governing

equations as in Ref. [18]).

We have so far considered both the ion and electron species to be in the continuum regime.

When treating micrometer-size dust particles in noble gases however, an interesting regime to

analyze is when the ion transport obeys Eq. (1) but the electrons are collisionless: a Kinetic

Electrons plasma (KE), as opposed to a Continuum Electrons plasma (CE). To our knowledge

little specific work on the KE regime is available, and the reader is referred to Ref. [19] for some

preliminary considerations.

For probes with strong negative bias the electrons can be shown to be Boltzmann distributed

(Ne = N∞ exp (eV/Te)) down to a “thin” layer at the collector’s surface, where their density is

negligible. This is valid in both KE [1] and CE [8] plasmas. Profiles (hence ion flux) in KE and

CE plasmas are therefore only distinguishable for weak enough probe biases.

In this publication, we will refer to the term “probe” regardless of the physical nature of the

collector.

1.4 Structure of this publication

The purpose of this publication is twofold. First we find the current-voltage characteristics, floating

potential and capacitance of a spherical probe in CE and KE plasmas, in the range 0 < ΛDe/Rp < ∞

and 0 > Vp > −105Ti/e. To do so we solve the coupled set of mobility-diffusion and Poisson’s

equations (1,2), using a Finite Element Method with linear basis functions for the potential and

exponential basis functions for the ion and electron densities. We consider 0.01Te ≤ Ti ≤ Te for
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KE plasmas, but limit ourselves to 0.1Te ≤ Ti ≤ Te for CE plasmas, since continuum electrons can

hardly sustain a strong temperature difference with the background neutrals.

Second we build on the major available analytic treatments of the continuum problem, mostly

from Ref. [8], to derive analytic solutions in a set of well defined asymptotic regimes (Weak/moderate

and strong bias, weak shielding and Coulomb regime, thin and thick sheath). Those solutions, con-

veniently referenced in Tab. 2, facilitate the interpretation of our numerical computations. They

should however be considered as valuable results per se, as we show that for most combinations of

physical parameters, there exists a closest asymptotic regime whose analytic solutions are accurate

to 15% or better.

2 Statement of the continuum problem

2.1 Continuum model

We study a neutral, weakly ionized plasma of singly charged ions and electrons with density at

infinity Ni = Ne = N∞, perturbed by a spherical probe of radius Rp placed at the origin. The

charged particles’ density is much smaller than the neutrals’ (Ne,Ni ≪ Nn); consequently only

ion-neutral and electron-neutral collisionality effects are considered. Ionization and recombination

are neglected in the probe vicinity, hence ion and electron flux-densities Γi,e are conserved.

Two different plasma models are considered, describing two possible opposite collisional be-

haviours of the electrons.

2.1.1 Continuum Electrons (CE)

In Continuum Electrons (CE) plasmas, both the ions and electrons are strongly collisional, and Γi,e

obey mobility-diffusion equations (1) with uniform mobility and diffusion coefficients µi,e and Di,e.

Those are closed by flux conservation (∇Γi,e = 0), and coupled through Poisson’s equation (2).

We define the normalized potential φ = eV/Te, ion temperature τ = Ti/Te, densities ni,e =

Ni,e/N∞ and electron Debye length λDe = ΛDe/Rp (ΛDe =
√

ǫ0Te/N∞e2). Capital letters refer

to dimensional quantities while low-case characters refer to their dimensionless counterpart. All

5



lengths are normalized to the probe radius Rp, hence rp = 1.

If we further assume that the mobility and diffusion coefficients obey Einstein’s relation Di,e =

±Ti,eµi,e/e, our one-dimensional problem can be reduced to:























∇
(

−∂ni

∂r − 1
τ ni

∂φ
∂r

)

= 0

∇
(

−∂ne

∂r + ne
∂φ
∂r

)

= 0

∇
(

∂φ
∂r

)

− 1
λ2

De

(ne − ni) = 0,

(3)

where the divergence operator is ∇(x) = 1/r2∂/∂r(r2x). The potential boundary conditions are

φ(rp) = φp (probe potential) and φ(∞) = 0. When the ion and electron mean-free-paths are

much shorter than the probe radius, we can use as density boundary conditions ni,e(rp) = 0 and

ni,e(∞) = 1 [3, 20].

After solving Sys. (3) with the above boundary conditions, the dimensional ion flux density to

the probe is given by

Γp
i =

N∞Di

Rp

∂ni

∂r
(rp). (4)

In Eq. (4) no role is played by the potential gradient at the probe surface since the density there

is zero. Similarly, the electron flux density is Γp
e = (N∞De/Rp)∂ne/∂r(rp). The “+” signs in front

of the density gradients are chosen to have a positive flux in the probe direction (decreasing r).

The total ion (electron) current is then given by

Ii,e = 4πR2
pΓ

p
i,e. (5)

2.1.2 Kinetic Electrons (KE)

In nobles gases, ions suffer resonant charge exchange collisions, and it is not uncommon for their

mean-free-path to be much shorter than the electron’s. It is therefore of interest to consider Kinetic

Electrons (KE) plasmas, where electrons are assumed collisionless.

If there is no potential well around the negatively charged sphere (in particular no potential

minimum below φp), the electron density only depends on the local potential and position (see for
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instance Eq. (8.41) in Ref. [21]):

ne(φ, r) =
1

2
eφ

{

1 + erf
(

√

φ − φp

)

+

√
r2 − 1

r
exp

(

φ − φp

r2 − 1

)

[

1 − erf

(

r

√

φ − φp

r2 − 1

)]}

; (6)

the problem therefore amounts to solving











∇
(

−∂ni

∂r − 1
τ ni

∂φ
∂r

)

= 0

∇
(

∂φ
∂r

)

− 1
λ2

De

(ne(φ, r) − ni) = 0.
(7)

The electron flux density is in this case thermal

Γp
e =

N∞Dapp
e

Rp
eφp = Γ0

ee
φp , (8)

where Dapp
e is an apparent diffusion coefficient given by

Dapp
e = Rp

vte

2
√

π
. (9)

Here vte =
√

2Te/me is the electron thermal speed.

If 0 ≥ φ ≫ φp and/or r ≫ 1, Eq. (6) reduces to

ne(φ, r) = eφ, (10)

hence the electrons are Boltzmann distributed. It is common approximation to use Eq. (10) instead

of Eq. (6), but as we will see our numerical procedure allows to account for the exact electron density

distribution at little cost.

If the potential distribution has a minimum below φp, Eq. (6) is not valid and the electron

density depends on the full potential profile. It is not possible in that case to devise formulas

such as Eqs (6,8), and the electron Vlasov equation must be solved (via a Particle In Cell code for

instance), which is out of the scope of this publication. Because it is not possible to know before

solving Sys. (7) if the potential dips below φp or not, we need to extend Eq. (6) in order to handle
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such situations. We use:

next
e (φ, r) =











ne(φ, r
rmin

) r > rmin

1
2 exp(φmin) r ≤ rmin,

(11)

where φmin is the minimum value of the potential (maximum of |φ|) reached at rmin. When we

compute the probe floating potential, the electron flux is required and we replace exp(φp) by

exp(φmin)r
2
min in Eq. (8). Of course Eq. (11) and the fixing on Eq. (8) are at most heuristic

recipes, required to avoid singularities in the code operation, and we do not claim any precision on

their validity. As we will see, weakly biased probes in KE plasmas indeed produce non monotonic

potential profiles.

Both the CE and KE models depend on the three dimensionless parameters λDe, τ , and φp.

The diffusion coefficients Di, De or Dapp
e are only required a posteriori, to calculate dimensional

flux densities and floating potentials.

2.2 Solution method

Solving Sys. (3) or Sys. (7) presents three main difficulties. (a) The equations are coupled, (b)

non linear, and (c) the mobility-diffusion equation for the attracted species (the ions) is highly

hyperbolic when |φp|/τ ≫ 1 and/or λDe ≪ 1.

Our approach to solving the problem is to use the Lagrangian Finite Element Method (FEM),

that we here detail for KE plasmas. Application to CE plasmas is then straightforward.

2.2.1 Finite Element discretization

We consider a (N+1)-points grid rj (j ∈ [0 : N ]) defining N elements Kj = [rj−1 : rj] (j ∈ [1 : N ]).

We associate a set of basis functions Ψj to each node, such that Ψj(rj) = 1 and Ψj(rj±1) = 0. The

numerical approximations of the unknowns ni and φ then take the form:
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ni(r) =

N
∑

j=0

nj
iΨ

j
i (r) (12)

φ(r) =
N
∑

j=0

φjΨj
φ(r). (13)

The unknowns are nj
i and φj , values of the approximated solutions at the node points. Because

Sys. (7) is coupled, we simultaneously solve for the vector uj = (nj
i ;φ

j) (j ∈ [0 : N ]), but the basis

functions Ψj
i and Ψj

φ need not be the same.

We use simple linear basis functions for the potential φ:

Ψj
φ(ξ) =























1 − ξ ξ ∈ [0; 1]

1 + ξ ξ ∈ [−1; 0]

0 otherwise,

(14)

with mapping

ξ =











r−rj

rj+1−rj r > rj

r−rj

rj−rj−1 r ≤ rj.
(15)

Using linear elements for the ion density is however not wise. Indeed for |φp|/τ ≫ 1, the

convective term in Sys. (7) (∂φ/∂r/τ) becomes large at the probe surface, and a thin ion-density

boundary layer which we would need to resolve forms there. Our choice is to use upwind exponential

elements:

Ψj
i (ξ) =























exp(Pej+1)−exp(Pej+1ξ)

exp(Pej+1)−1
ξ ∈ [0; 1]

exp(Pej)−exp(−Pejξ)

exp(Pej)−1
ξ ∈ [−1; 0]

0 otherwise,

(16)

where Pej and Pej+1 are the numerical Peclet numbers associated with the elements Kj and Kj+1:

Pej = −φj − φj−1

τ
(17)

and Pej+1 = −(φj+1−φj)/τ . Using the just-described elements for the ion density allows us not to
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resolve the ion-density boundary layer if it is thinner than the Debye layer, because those elements

are the exact solution of the diffusion-mobility equation in one-dimension with uniform advection.

The linear elements (Eq. (14)) can be seen as exponential elements (Eq. (16)) in the limit

Pe → 0; this is consistent with the observation that Poisson’s equation is a mobility-diffusion

equation with zero mobility. Fig. (1) shows an example of linear and exponential basis functions.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

Ψ
j

 

 
Element Kj Element Kj+1

Pej=0, Pej+1=0

Pej=3, Pej+1=10

Figure 1: (Color online) Example of linear (Pej = Pej+1 = 0) and exponential (Pej = 3 and
Pej+1 = 10) basis functions associated with node j, with mobility going from left to right. Numerical
Peclet numbers can significantly change from an element to the next if the grid is highly non-
uniform.

2.2.2 Equation linearization

Because Sys. (7) is non linear, its solution requires an iterative process. If n∗
i (r) and φ∗

i (r) are the

solutions at the previous iteration, the new (improved) solutions can be found by solving Sys. (7)

linearized about n∗
i and φ∗

i (i.e. by assuming |n∗
i − ni| ≪ ni and |φ∗

i − φi| ≪ |φi|):











∇
(

−∂ni

∂r − 1
τ

[

ni
∂φ∗

∂r + n∗

i
∂φ
∂r − n∗

i
∂φ∗

∂r

])

= 0

λ2
De∇

(

∂φ
∂r

)

−
(

next
e (φ∗, r) + ∂next

e (φ∗,r)
∂φ (φ − φ∗) − ni

)

= 0
(18)

We therefore start with an initial guess for n∗
i and φ∗

i (typically uniform n∗
i = 1 and Coulomb

potential φ∗ = φp/r), and repetitively solve Sys. (18) by a standard linear Galerkin approach up

to convergence, using the previously described discretization. Of course at each iteration we need
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to change the basis functions for the ion density Ψj
i , according to the latest values of the Peclet

numbers.

3 Quasineutral behaviour and regime classification

Following an idea introduced by Su and Lam [8] in the context of small Debye length (λDe
<∼ 1)

CE plasmas, it is convenient to classify the different physical regimes of probe operation according

to the quasineutral solutions.

3.1 Quasineutral solutions

The lower-bound ion flux (when the boundary condition ni,e(rp) = 0 is chosen as it is in this paper)

is reached when the probe does not induce a potential perturbation in the plasma (i.e. if φp = 0

and λDe → ∞). It is given by [8]

Γ̃0
i = N∞Di/Rp = κ0

i Γ
0
i , (19)

where Γ0
i = N∞Vti/(2

√
π) is the ion thermal flux at infinity, and κ0

i an ion Knudsen number.

Similarly the upper-bound electron flux is Γ̃0
e = N∞De/Rp in CE plasmas, and Γ0

e = N∞Dapp
e /Rp

in KE plasmas.

Far from the probe, Syss (3,7) can easily be solved as a function of the fluxes if Poisson’s

equation is replaced by quasineutrality (|ni − ne| ≪ ni,e) [8, 9]:











ni,e = 1 − rs

r

φ = η ln (ni,e).
(20)

We see that ni,e(r) and φ(r) have a 1/r asymptotic dependence as r → ∞, which is fundamentally

different from collisionless plasmas where geometric shading effects cause a 1/r2 dependence [22].
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In CE plasmas (Sys. (3)), rs and η are given by

rs =
τΓp

i /Γ̃
0
i + Γp

e/Γ̃0
e

1 + τ
(21)

η =
τ(Γp

i /Γ̃
0
i − Γp

e/Γ̃0
e)

τΓp
i /Γ̃

0
i + Γp

e/Γ̃0
e

, (22)

where η is of order unity (unless |φp| ≪ 1, in which case we will see that Γp
i /Γ̃

0
i ∼ Γp

e/Γ̃0
e ∼ 1). rs

is referred to as the sheath radius by Su and Lam [8].

In KE plasmas (Sys. (7)):

rs =
τΓp

i /Γ̃
0
i

1 + τ
(23)

η = 1. (24)

From Eqs (21,23) we see that for CE plasmas rs ≥ 1 and for KE plasmas rs ≥ τ/(1 + τ). The

quasineutral CE and KE solutions coincide when Γp
e/Γ̃0

e ≪ Γp
i /Γ̃

0
i , in other words when the probe

potential φp is “negative enough”.

Two limiting regimes of sheath thickness should be defined:

• Thick sheath: rs − 1 ≫ 1.

• Thin sheath: rs − 1 ≪ 1.

3.2 Quasineutrality breakdown

The quasineutral solutions (20) are singular at r = rs. As Riemann [23] argued however, the

concept of sheath edge defined as the matching point of two asymptotic solutions in λDe/(r − 1)

(presheath) and (r − 1)/λDe (sheath) should be reserved to purely collisionless plasmas. Indeed

here the singularity is never reached, and the quasineutral assumption breaks down at r >∼ rt, where

we arbitrarily define the transition point rt by |∇2φ(rt)| = ni,e(rt)/λ
2
De with φ and ni,e given by

Eqs (20):

η
r2
s

r4
t

=
1

λ2
De

(

1 − rs

rt

)3

, (25)
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the transition potential φt = η ln (ni,e(rt)) being

φt =
1

3
η ln

(

ηr2
sλ

2
De

r4
t

)

. (26)

Solution of Eqs (25,26) in the limit ηλ2
De/r

2
s ≪ 1 is

rt

rs
= 1 +

(

ηλ2
De

r2
s

)1/3

+ O

(

ηλ2
De

r2
s

)2/3

(27)

φt ∼ 1

3
η ln

(

ηλ2
De

r2
s

)

, (28)

while in the limit ηλ2
De/r

2
s ≫ 1 it is

rt

rs
=

(

ηλ2
De

r2
s

)1/4

+
3

4
+ O

(

ηλ2
De

r2
s

)−1/4

(29)

φt ∼ −η

(

ηλ2
De

r2
s

)−1/4

. (30)

In between, rt/rs and φt are increasing functions of ηλ2
De/r

2
s .

Recalling that η is of order one, we will consider the two following limiting regimes in λDe/rs:

• Strong shielding (“Small Debye length”): λDe ≪ rs, i.e. φt ≪ −1.

• Coulomb limit (“Large Debye length”): λDe ≫ rs, i.e. |φt| ≪ 1.

The regime λDe ≪ rs is referred to as “Strong shielding” because it entails quasineutral solutions

extending down to the probe surface, hence rs → 1.

The limit λDe ≫ rs (i.e. λDe ≫ rt) is referred to as “Coulomb” because in this regime plasma

profiles are governed by the quasineutral physics, and become independent of λDe; hence the

potential distribution becomes Coulomb (φ(r) = φp/r).

3.3 Probe bias

Extending Su and Lam’s classification [8], we define the following bias-regimes:

• Weak bias: 0 ≥ φp
>∼ − min(1, τ).
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• Strong bias: φp ≪ −max(1, τ) and φp
<∼ φt.

• Moderate bias: Otherwise.

3.3.1 Moderate/strong bias transition

It is possible to show that the potential distribution in CE plasmas (with the zero-density inner

boundary condition considered in this paper) must be monotonic, therefore regardless of the prob-

lem parameters φt
>∼ φp. In the KE regime this is not necessarily true; we can choose φp

>∼ φt, in

which case the potential will dip below φp.

This difference is illustrated in Fig. (2), representing potential profiles calculated with τ = 1,

λDe = 10−3 (φt ∼ 2/3 ln (10−3) ≃ −4.6), and two different biases φp = −1 and φp = −4, for both

KE and CE plasmas.

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1/r

φ

φ
p
=−1

 

 

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

φ
p
=−4

1/r
 

 

CE
KE
Boltzmann

CE
KE
Boltzmann

Figure 2: (Color online) Potential profiles plotted against 1/r, calculated with our numerical code,
for τ = 1, λDe = 10−3 and two different biases φp = −1 and φp = −4. “CE” curves are solution of
Sys. (3), “KE” solution of Sys. (7) with ne given by Eq. (11), and “Boltzmann” solution of Sys. (7)
with ne given by Eq. (10).

Two observations should be made from Fig. (2). First in situations where the potential distri-

bution is monotonic (φp = −4 figure), using the Boltzmann approximation for the kinetic electron

density is justified. Second, as |φp| increases the CE and KE potential profiles become closer one

to each other. This is consistent with the observation made in Paragraph 3.1 that quasineutral CE

and KE solutions are equivalent provided Γp
e/Γ̃0

e ≪ Γp
i /Γ̃

0
i .
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In fact, it is possible to integrate the electron transport equation in Sys. (3) once, and obtain

the electron density profile as a function of the (yet unknown) potential profile as follows (Eq. (2.5)

in Ref. [8]):

ne(r) = eφ(r)



1 −
∫

∞

r
exp(−φ(ξ))

ξ2 dξ
∫

∞

1
exp(−φ(ξ))

ξ2 dξ



 . (31)

For |φp| >∼ O(|φt|) ≫ 1, Su and Lam [8] have shown that Eq. (31) reduces to Eq. (10) down to a

distance from the probe surface where ne ≪ ni, hence the precise electron density is not required.

This is the strong bias regime, where KE and CE models yield the same potential profiles and the

same ion flux density Γp
i (The electron flux is of course different).

3.3.2 Weak/moderate bias transition

Su and Lam [8] define a probe as weakly biased when the ion and electron thermal energies are

higher than or approximately equal to the electrostatic potential at the probe surface, that is to

say |φp| <∼ min(1, τ). This definition is interesting in the context of CE plasmas, because it allows

for a linearization of the transport and Poisson’s equation about space potential.

However as shown in Fig. (2), for KE plasmas |φp| <∼ min(1, τ) does not imply |φ| <∼ min(1, τ)

everywhere around the probe, hence no distinction between weak and moderate bias is useful.

3.4 Regime classification

We will present our analytic and computational results by subdividing the physical regimes of probe

operation as follows:

Table 1: Subdivision of physical regimes considered in this publication.

(1) Strong shielding, thin sheath λDe < rs/10, rs ≤ 2
(2) Strong shielding, thick sheath λDe < rs/10, rs > 2
(3) Intermediate shielding rs/10 ≤ λDe ≤ 10rs

(4) Coulomb limit λDe > 10rs

The factors “10” and “2” in Tab. 1 might seem arbitrary, but as we will see they define regions

in which the corresponding asymptotic solutions are accurate to within 15% or better. Fig. (3) is
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an illustration of this subdivision in terms of ion density profiles.
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Figure 3: (Color online) Computed ion density profiles for a strongly biased probe with τ = 1,
using the following physical parameters: (1) λDe = 0.01, φp = −10; we compute rs = 1.098 and
rt = 1.14. (2) λDe = 0.1, φp = −100; we compute rs = 3.45 and rt = 3.77. (3) λDe = 1, φp = −10;
we compute rs = 2.40 and rt = 3.57. (4) λDe = 100, φp = −20; we compute rs = 9.13 and
rt = 32.28. The dashed lines are the quasineutral solutions (Eq. (20)), and the squares indicate the
densities at rt. For each case rt is obtained from rs by solving Eq. (25), rs being the intersection
point of the quasineutral solution with the ni = 0 line. Computations have been performed with
the KE equations, but CE calculations would be indistinguishable with such negative φp.

In the following sections, a series of analytic asymptotic solutions specifically valid in regions

1,2 or 4 of Tab. 1 will be proposed. Those are referenced in Tab. 2.

4 Fluxes with continuum electrons when |φp| <∼ 10

4.1 Analytic solutions

4.1.1 Strong shielding, weak bias

As λDe/rs → 0 at fixed φp, the quasineutral plasma region extends down to the probe surface and

rs → 1. This is the strong shielding regime, illustrated by the curve (1) in Fig. (3). Injecting rs = 1

in Eqs (21,22) gives

η = τ
(

Γp
i /Γ̃

0
i − 1

)

. (32)

We can proceed further analytically if 0 ≥ φp
>∼ −min(1, τ) (weak bias), as Poisson’s equation
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Table 2: Reference of the major analytic solutions presented in this publication. “∗” indicate non
straightforwardly new results.

a) Strong shielding regime:

Weak bias CE Weak/moderate bias KE
Strong bias
Thin sheath Thick sheath

rs = 1 rs = 1 rs: Eq. (46)∗ rs: Eqs (50,51)∗

Γp
i : Eq. (37)∗ Γp

i : Eq. (43) Γp
i : Eq. (47) with Eq. (46)∗ Γp

i : Eq. (47) with Eqs (50,51)∗

Γp
e: Eq. (38)∗ Γp

e: Eq. (8) Γp
e ≪ Γp

i Γp
e ≪ Γp

i

φf : Eq. (53)∗ φf : Eq. (61) φf : Eq. (59)∗ φf : Not relevant
c: Eq. (72)∗ c: Negative c: Eq. (73) with Eq. (46)∗ c: Eq. (75)∗

b) Coulomb regime:

CE plasmas KE plasmas

rs: Eq. (21) rs: Eq. (23)
Γp

i : Eq. (40) Γp
i : Eq. (40)

Γp
e: Eq. (42) Γp

e: Eq. (8)
φf : Eq. (60) φf : Eq. (62)
c: Eq. (67)∗ c: Eq. (76)∗

can then be linearized. Under this hypothesis, Su and Lam (Eq. (6.8) in Ref. [8]) find the potential

profile from Sys. (3) as

φ(r) = −η

∫ ξ0(1− 1

r )

ξ0

w(ξ) dξ, with ξ0 = −λ
−2/3
D , (33)

where

λD =
λDe

√

1 + 1/τ
(34)

is the linearized Debye length, and w(ξ) is solution of:

∂2w

∂ξ2
+ ξw + 1 = 0 (35)

with boundary conditions ∂w/∂ξ(0) = 0 and w(−∞) = 0.

We first notice from Eq. (35) that in the limit ξ ≪ −1, w(ξ) ∼ −1/ξ. Therefore, for |ξ0| large

17



enough (i.e. in the strong shielding regime), Eq. (33) gives φp as

φp = φ(1) = −η lim
A→−∞

[∫ 0

A
w(ξ) dξ + ln

(

ξ0

A

)]

. (36)

We solved Eq. (33) numerically with a simple finite difference scheme, and obtain

limA→−∞

(

∫ 0
A w(ξ) dξ − ln (−A)

)

≃ 1.356.

Combining Eqs (32,36) we obtain the ion flux as

Γp
i

Γ̃0
i

= 1 − φp/τ

1.356 − 2
3 ln (λD)

, (37)

and by symmetry the electron flux as

Γp
e

Γ̃0
e

= 1 +
φp

1.356 − 2
3 ln (λD)

. (38)

Because Su and Lam did not solve Eq. (35), they could only derive the first order expansion in

1/ ln (λD) of Eq. (37) (Eq. (6.14) in Ref. [8]).

4.1.2 Coulomb limit

In the opposite limit λDe/rs → ∞, the ion and electron dynamics decouple and the potential tends

to the Coulomb form φ(r) = φp/r.

Under this assumption, the ion density can be solved for analytically [8]:

nCoul
i (r) =

exp(−φp/τ) − exp (−φp/(rτ))

exp(−φp/τ) − 1
. (39)

Injecting the density derivative at the probe edge in Eq. (4), one finds [10]:

Γp,Coul
i

Γ̃0
i

=
φp/τ

exp(φp/τ) − 1
. (40)
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By symmetry, the electron density and flux are

nCoul
e (r) =

exp(φp) − exp(φp/r)

exp(φp) − 1
, (41)

Γp,Coul
e

Γ̃0
e

=
φp

1 − exp(−φp)
. (42)

4.2 Numerical solutions and physical discussion

Figs (4,5) show the collected ion and electron fluxes in CE plasmas as a function of λDe,

computed with our numerical code for probe potentials φp ∈ [−0.2 : −10].

In order to facilitate physical interpretation, the Γp
i,e − λDe space is divided by brown dash-dot

lines in the four regions defined in Tab. 1. Region (1) is further subdivided in (1b), with rs ≤ 1.1.

Eqs (37,38) are applicable for λDe ≪ rs and rs = 1, corresponding (to within 10%) to region

(1b). Although they formally require |φp| ≪ min(1, τ), Fig. (4) shows that φp
>∼ − 5 is sufficient

to have less than 10% error on Γp
i ; the error on Γp

e is a little higher. Nevertheless it is clear that as

φp → 0 the asymptotic formula matches the numerical solution.

As noticed by Baum and Chapkis [10], at fixed φp we see that Γp
i,e/Γ̃

0
i,e → 1 as λDe → 0. Even

at λDe = 10−5 however, the fluxes are not yet saturated.

In region (4), corresponding to the Coulomb regime, the ion and electron fluxes tend as expected

to the prediction of Eqs (40,42).

5 Fluxes with kinetic electrons when |φp| <∼ 10

5.1 Analytic solutions

As for CE plasmas, the KE strong shielding limit is characterized by rs → 1. Using Eq. (23) with

rs = 1, we straightforwardly obtain

Γp
i

Γ̃0
i

=
1 + τ

τ
. (43)
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Figure 4: (Color online) Evolution of the collected ion flux Γp
i (normalized to Γ̃0

i = κ0
i Γ

0
i =

N∞Di/Rp) with λDe in CE plasmas, for τ = 1 (a) and τ = 0.1 (b). “SS, rs = 1” curves cor-
respond to Eq. (37), and “Coulomb” asymptotes to Eq. (40). The Γp

i −λDe space is divided in four
regions corresponding to the regimes described in Tab. 1. Region “(1b)” is a subsection of region
(1) with 1 ≤ rs ≤ 1.1.
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Figure 5: (Color online) Evolution of the collected electron flux Γp
e (normalized to Γ̃0

e = κ0
eΓ

0
e =

N∞De/Rp) with λDe in CE plasmas, for τ = 1 (a) and τ = 0.1 (b). “SS, rs = 1” curves correspond
to Eq. (38), and “Coulomb” asymptotes to Eq. (42). The Γp

e − λDe space is divided as in Fig. (4).
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Contrary to the derivation of Eq. (37), no weak-bias assumption is used here, since Poisson’s

equation need not be solved.

The Coulomb limit ion results (Eqs (39,40)) are still valid for KE plasmas.

5.2 Numerical solutions and physical discussion

Fig. (6) shows the collected ion flux in KE plasmas as a function of λDe, computed with our

numerical code for probe potentials φp ∈ [−0.2 : −5].

Dotted portions of curves correspond to parameters where the potential profile dips below φp,

hence we need to rely on our extended model (Eq. (11)) for which we do not claim any accuracy.

This regime would however be worth further analysis since we find the unintuitive result that the

flux decreases with increasing Debye length, and more interestingly we will see in Section 10 that

there the probe capacitance is negative.

As λDe → 0, the ion flux tends to the strong-shielding asymptote predicted by Eq. (43). In

region (1), Eq. (43) is accurate to within 15% for the φp = −5 curves.

In region (4), corresponding to the Coulomb regime, the ion flux tends as expected to the

prediction of Eq. (40).

6 Fluxes when φp ≤ −10

The strong shielding transition potential at λDe = 10−5 is φt ∼ −7 (Eq. (28) with rs ∼ 1), hence

the choice φp ≤ −10 guarantees that for λDe
>∼ 10−5 probes operate in the strong bias regime.

Considering λDe
<∼ 10−5 would not be reasonable, since for a typical probe with Rp ∼ 1mm, we

would approach quantum conditions.

In this section devoted to the strong bias regime we shall therefore not distinguish between CE

and KE plasmas. Numerical results presented here derive from KE calculations with ne given by

Eq. (10), but using Eq. (6) (or even assuming a CE plasma) would be equivalent.
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Figure 6: (Color online) Evolution of the collected ion flux Γp
i (normalized to Γ̃0

i = κ0
i Γ

0
i =

N∞Di/Rp) with λDe in KE plasmas, for τ = 1 (a), τ = 0.1 (b) and τ = 0.01 (c). Solid lines
correspond to regions of λDe − φp space where the potential profiles are monotonic (hence ne is
given by Eq. (6)). Dotted lines correspond to regions of λDe −φp space where the potential profiles
have a dip below φp (calculations have been performed with ne given by Eq. (11)). “SS, rs = 1”
asymptotes correspond to Eq. (43), and “Coulomb” asymptotes to Eq. (40). The Γp

i − λDe space
is divided in four regions corresponding to the regimes described in Tab. 1.
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6.1 Analytic solutions

6.1.1 Strong shielding, thin sheath

In the strong bias regime, Su and Lam (Eq. (3.23a) from Ref. [8]) took advantage of the Boltzmann

distribution of the electrons and assumed λDe/rs ≪ 1 to derive the following expression for the

potential distribution in the sheath (r < rs):

φ(r) =
2

3
ln

(

λDe

rs

√
1 + τ

)

− c(τ) −
√

2

3

(
√

1 + τ

λDe

)∫ rs

r

[

1 −
(

x

rs

)3
]1/2

(rs

x

)2
dx. (44)

In Eq. (44), c(τ) is a weakly varying function of τ (c(τ) ≃ 3). Two interesting limits of Eq. (44)

are the thin and thick sheath regimes.

In the thin sheath limit (rs − 1 ≪ 1) one can let rs = 1 + ǫs with ǫs ≪ 1 in Eq. (44). If we

further set r = rp = 1, to order ǫ
3/2
s Eq. (44) reads:

φp =
2

3
ln

(

λDe√
1 + τ

)

− c(τ) − 2
√

2

3

√
1 + τ

λDe
ǫ3/2
s − 2

3
ǫs. (45)

Rigorously, in Eq. (45) the “ǫ
3/2
s ” term has a higher order than the “ǫs” term. However recall

that we are in the strong bias regime, hence |φp| is much larger than | ln
(

λDe/
√

1 + τ
)

| and unity.

Since ǫs ≪ 1, the factor in front of ǫ
3/2
s must be very large. It is therefore appropriate to drop the

“ǫs” term in Eq. (45).

The strong bias, thin sheath, strong shielding sheath radius is therefore:

rs = 1 +

[

3

2
√

2

λDe√
1 + τ

(

2

3
ln

(

λDe√
1 + τ

)

− φp − c(τ)

)]2/3

. (46)

Eq. (46) breaks down when |φp| < c(τ) − 2/3 ln
(

λDe/
√

1 + τ
)

, indicating that we leave the

strong bias regime.

The ion flux is then given by inversion of Eq. (23) (KE plasmas) or Eq. (21) with Γp
e/Γ̃0

e ≪ Γp
i /Γ̃

0
i

(CE plasmas):

Γp
i /Γ̃

0
i =

1 + τ

τ
rs. (47)
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For completeness, we point that in the limit |φp| ≫ max
(

c(τ),− ln
(

λDe/
√

1 + τ
))

, in practice

|φp| >∼ 50, Eq. (46) simplifies to

rs = 1 +

(

− 3

2
√

2

φpλDe√
1 + τ

)2/3

. (48)

The rs − 1 ∝ (−φpλDe)
2/3 dependence for rs − 1 ≪ 1 had been anticipated by Brailsford (Eq. (16)

in Ref. [24]) by means of a heuristic model, unfortunately he finds the incorrect coefficient.

6.1.2 Strong shielding, thick sheath

When the thick sheath limit (rs−1 ≫ 1) of Eq. (44) is reached, the potential at the sheath entrance

φ(rs) is negligible compared to φp. In this case we can drop the first two terms on the right hand

side of Eq. (44). If we set r = rp = 1, we recover Kiel’s Ohmic model derived with a quite different

approach [12]:

r2
s

∫ rs

1

[

1 −
(

x

rs

)3
]1/2

dx

x2
= γ1, (49)

where

γ1 = −φpλDe

[

3

2(1 + τ)

]1/2

. (50)

Expanding Eq. (49) for large γ1 to order 0(1):

rs =
√

γ1 +
5

8
. (51)

In other words, as already pointed out by Su and Lam, at fixed λDe when |φp| → ∞ the ion flux

varies as Γp
i ∝ (−φpλDe)

1/2. This result has erroneously been contradicted by authors basing their

argument on incomplete current-voltage characteristics. This is for instance the case of Cicerone

and Bowhill [11] (Numerical simulation) or Kamitsuma and Chen [5] (Experiment) who conclude

in a flux dependence for strongly biased probes of the form Γp
i ∝ (−φp)

s where s is a function of

λDe.

After integrating Eq. (49) numerically for γ1 ∈ [1 : 500], and enforcing rs = 1 for λDe|φp| ≪ 1,
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Kiel proposes the following approximate form for the sheath radius:

rs =
[

1 + 0.83γ0.535
1

]

. (52)

Eq. (52) is only approximate, as it does not match Eq. (46) when γ1 ≪ 1 or Eq. (51) when γ1 ≫ 1.

6.1.3 Coulomb limit

Eq. (44) breaks down when λDe approaches the order of rs. In the opposite limit of λDe ≫ rs, the

Coulomb limit solution (Eq. (40)) applies.

6.2 Numerical solutions and physical discussion

6.2.1 Flux dependence on λDe

Fig. (7) shows the evolution of the ion flux-density to the probe, computed with our numerical code

in the strong bias regime, as a function of λDe.

Superposition of the “exact” solutions with the analytic asymptotic curves is of course perfect

in their respective limits. It is however interesting to notice that using Eq. (46) in the entire region

(1), Eqs (50,51) in the entire region (2), and Eq. (40) in the entire region (4) yields less than 15%

error on the ion flux. In other words, except in region (3) where there is no convenient asymptotic

expansion, we solved the continuum probe problem to within typical experimental accuracy.

The curves at φp = −10 in Fig. (7) are identical to those plotted in Fig. (4), except for

λDe
<∼ 10−5 where we transition to the moderate bias regime, hence KE and CE calculations

differ.

We emphasize here that the Coulomb limit results for the fluxes are valid for λDe ≫ rs, which

is more stringent than the usually assumed condition λDe ≫ rp = 1.

6.2.2 Current-voltage characteristics

Fig. (8) shows the current-voltage characteristics for τ = 1, τ = 0.1 and τ = 0.01 when |φp| ≥ 10

as computed by our numerical code. For clarity, we did not superpose the corresponding analytic
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Figure 7: (Color online) Evolution of the ion flux density (normalized to Γ̃0
i = κ0

i Γ
0
i = N∞Di/Rp)

with the electron Debye length for τ = 1 (a) and τ = 0.1 (b), in the strong bias regime. The
Γp

i − λDe space is divided in four regions corresponding to the regimes described in Tab. 1. “SS,
Thin sheath” (region 1) and “SS, Thick sheath” (region 2) curves correspond to Eq. (47) with rs

respectively given by Eq. (46) and Eqs (50,51). “Coulomb” (region 4) asymptotes correspond to
Eq. (40).
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solutions.

It is convenient to analyze Fig. (8) at fixed φp, from large to small λDe. In the limit λDe = ∞,

the ion flux density is given by the Coulomb calculation (Eq. (40)), according to which the ion flux

is Γp
i ∝ −φp in the considered strong bias regime. This is region (4). As λDe decreases we enter the

intermediate shielding regime, region (3). As λDe is further reduced, we enter the strong shielding,

thick sheath regime (region (2)), where the ion flux is given by Eq. (47) with Eqs (50,51). For small

enough λDe the sheath radius becomes smaller than rs = 2 and we reach the strong shielding, thin

sheath regime (region (1)) where the ion flux is given by Eq. (47) with Eq. (46).

7 Floating potential solutions with Continuum electrons

7.1 Analytic solutions

7.1.1 Strong shielding, weak bias

The CE floating potential in the strong shielding, weak bias regime (rs = 1) is straightforwardly

given by equating Eq. (37) to Eq. (38):

φf =
1 − De/Di

De/Di + 1/τ

(

1.356 − 2

3
ln (λD)

)

. (53)

By normalizing ion (electron) fluxes to Γ̃0
i (Γ̃0

e or Γ0
e), diffusivities can be simplified out from

Syss (3,7), explaining why in the previous sections diffusivities did not explicitly appear in the

solutions. Diffusivity ratios (De/Di or Dapp
e /Di in the next section) here appear as a key parameter

governing floating potentials.

7.1.2 Strong shielding, strong bias (thin sheath)

In Section 6, we did not present electron flux results. Indeed double machine precision is 2−53,

hence electron fluxes scaling as exp(φp) can not directly be calculated when φp
<∼ − 30. Γp

e is

nevertheless required for floating potential calculations.

Recalling that Γp
e = Γ̃0

e∂ne/∂r(rp), the electron flux can be obtained by differentiation of Eq. (31)
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Figure 8: (Color online) Current-voltage characteristics for τ = 1 (a), τ = 0.1 (b) and τ = 0.01 (c),
for |φp| ≥ 10. The ion flux density is normalized to Γ̃0

i = κ0
i Γ

0
i = N∞Di/Rp. The four regions of

rs −λDe space described in Tab. 1 are mapped to the Γp
i −φp space, hence region (4) is degenerate

with the “Coulomb” solution (Eq. (40)).
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at r = rp = 1. This yields (Eq. (2.6) in Ref. [8]):

Γp
e

Γ̃0
e

=

[∫

∞

1

exp (−φ(ξ))

ξ2
dξ

]−1

. (54)

The potential profile φ(r) around a strong bias floating probe (Γp
e = Γp

i with Γp
i /Γ̃

0
i given by

Eq. (47)) must therefore satisfy the following equation:

τDe

(1 + τ)Di
= rs

∫

∞

1

exp (−φ(ξ))

ξ2
dξ. (55)

Because λDe ≪ rs (strong shielding), most of the potential drop occurs within r = 1 and r = rs

(i.e. |φ(rs)| ≪ |φf |). In addition, our numerical solutions will show that for physically reasonable

parameters the floating potential is |φf | <∼ 0(10); hence in the strong shielding, strong bias regime,

we operate in region (1) of Tab. 1 and rs − 1 ≪ 1 (thin sheath).

We can therefore set φ(r) = φf + (r − 1)∂φ/∂r(1) in Eq. (55), and integrate between r = 1 and

r = rs ∼ 1, yielding

τDe

(1 + τ)Di
= rs exp(−φf )

[

∂φ

∂r
(1)

]−1

. (56)

Differentiation of Eq. (44) with respect to r at r = rp = 1 yields:

∂φ

∂r
(1) =

√

2

3

(
√

1 + τ

λDe

)[

1 − 1

r3
s

]1/2

r2
s . (57)

In the thin sheath limit (rs − 1 ≪ 1):

∂φ

∂r
(1) =

√

2(1 + τ)

λDe

√
rs − 1, (58)

where rs is given by Eq. (46).

Eq. (56) with ∂φ/∂r(1) given by Eq. (58) can be solved explicitly if |φf/ ln (φf )| ≫ 1 is assumed:

φf = − ln

(

τDe

(τ + 1)Di

)

+
2

3
ln

(

λDe√
1 + τ

)

− 1

3
ln

[

3

(

ln

(

τDe

(τ + 1)Di

)

− c(τ)

)]

. (59)
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7.1.3 Coulomb limit

Analytic expressions for the floating potential in the Coulomb limit can be calculated by equating

Eq. (40) to Eq. (42):

Di
φf/τ

exp(φf/τ) − 1
= De

φf

1 − exp(−φf )
. (60)

Eq. (60) can be solved explicitly when τ = 1, yielding φf = − ln (De/Di). For arbitrary

temperature ratio τ , φf → − ln (τDe/Di) in the limit |φf | ≫ max(1, τ).

7.2 Numerical solutions and physical discussion

Fig. (9) shows the probe floating potential as a function of λDe in CE plasmas.

It can be seen that at fixed λDe, |φf | increases with De/Di. Indeed for lower ion diffusivity,

stronger probe bias is required for the ion flux to match the electron’s. Similarly, at fixed diffusivity

ratio De/Di, |φf | increases for decreasing λDe.

In the strong shielding regime, the weak bias solution (Eq. (53)) applies when φf
>∼ − 5, which

is very fortunate as we recall that it formally requires |φf | ≪ min(1, τ). When φf
<∼ − 10, the

strong bias solution (Eq. (59)) applies.

In the Coulomb limit, φf tends to the value predicted by Eq. (60).

8 Floating potential solutions with Kinetic electrons

8.1 Analytic solutions

In KE plasmas, the floating potential in the strong shielding regime is given by equating Eq. (43)

to Eq. (8):

φf = − ln

(

τ

1 + τ

Dapp
e

Di

)

. (61)

Of course Eq. (61) is valid provided Eq. (8) can be used, in other words with the assumption that

no dip below φp forms in the potential profile (such as in Fig. (2a) for instance).
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Figure 9: (Color online) Probe floating potential in CE plasmas as a function of λDe for τ = 1
(a) and τ = 0.1 (b). A wide range of diffusivity ratios is explored (De/Di ∈ [2 : 104]). “SS, WB”
curves correspond to the strong shielding, weak bias solutions (Eq. (53)), “SS, SB” curves to the
strong shielding, strong bias solutions (Eq. (59)) and the “Coulomb” asymptotes to the solution
of Eq. (60). When φf is approximately between −5 and −10, none of the two strong shielding
formulas apply.

32



In the Coulomb limit, the floating potential can be calculated by equating Eq. (40) to Eq. (8):

Di
φp/τ

exp(φp/τ) − 1
= Dapp

e exp(φp). (62)

8.1.1 Numerical solutions and physical discussion

Fig. (10) shows the probe floating potential as a function of λDe in KE plasmas.

In the large Debye length limit φf tends to the value predicted by Eq. (62), but contrary to

the CE regime φf does tend to a limit when λDe ≪ rs (Eq. (61)), at least as long as the potential

profiles are monotonic.

Indeed when φt
<∼ φf and a potential well forms around the probe, decreasing λDe at fixed φp

decreases the electron flux (according to the model extension in Paragraph. 2.1.2), hence increases

the floating potential. As we do not claim any accuracy in our results when the potential profiles

are not monotonic, we do not elaborate further.

9 Capacitance with Continuum electrons

9.1 Analytic solutions

9.1.1 Coulomb limit

In a series of recent publications (see for instance [18] and references herein), Khrapak et al have

investigated Syss (3,7) by linearizing the mobility-diffusion and Poisson’s equations about the un-

perturbed plasma density and potential, and assuming λD ≫ 1 (Eq. (34)). Their model yields the

following potential distribution:

φ(r) =
φp

r
exp

(

−r − 1

λD

)

− rsη

r

[

1 − exp

(

−r − 1

λD

)]

, (63)

where rs and η are given by Eqs (21,22) or Eqs (23,24). When r → ∞, one recovers Eq. (20) as

expected.

Eq. (63) can be applied when the Debye length is longer than the distance it takes for the

potential to satisfy |φ| ≪ min(1, τ), i.e. λDe ≫ |φp|/min(1, τ), in addition to λDe ≫ 1. Indeed
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c) τ = 0.01
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Figure 10: (Color online) Probe floating potential in KE plasmas as a function of λDe for τ = 1 (a),
τ = 0.1 (b) and τ = 0.01 (c). A wide range of diffusivity ratios is explored (Dapp

e /Di ∈ [10 : 105]).
“SS, rs = 1” asymptotes correspond to Eq. (61), and “Coulomb” asymptotes to Eq. (62). Dotted
portions of curves correspond to φf − λDe parameter space where the potential profiles are not
monotonic, hence we can not assert the accuracy of our results.34



when this condition is satisfied, although a linearized treatment is not appropriate in the vicinity of

the probe, the potential slope there is determined by the ion and electron density distributions in

a few Debye spheres from there where the potential and density perturbations are indeed “small”.

Eq. (63) was first published by Su and Lam (last unlabeled equation, following Eq. (A11) in

Ref. [8]), but their approach to its derivation was quite different and no physical discussion of the

formula was given. In addition, the linear approach of Ref. [18] allows to treat weakly drifting

plasmas, although not required here.

In both Refs [8, 18], Eq. (63) is proposed with exp (−r/λD) instead of exp (−(r − 1)/λD).

Because it is first order in 1/λD both forms are equally valid, but Eq. (63) is more convenient as it

gives the correct potential for r = rp = 1.

Perhaps the most useful usage of Eq. (63) is to extract the dimensionless probe capacitance

c = − 1

φp

∂φ

∂r
(1), (64)

the dimensional capacitance being C = 4πǫ0Rpc, and the dimensional probe charge

Qp = CVp. (65)

We obtain

cCoul = 1 +
1

λD

(

1 +
rsη

φp

)

. (66)

Eq. (66) readily shows that collisions decrease the capacitance from the large Debye length colli-

sionless value c = (1 + 1/λD) [25], since φp ≤ 0 and rsη ≥ 0.

The condition λDe ≫ |φp|/min(1, τ) implies λDe/rs ≫ 1 (see Fig. (8)), hence we can calculate

rsη using the expressions for the ion and electron fluxes in the Coulomb limit (Eqs (40,42) in the

CE regime):

cCoul = 1 +
1

λD

[

1 +
τ

1 + τ

(

1/τ

exp(φp/τ) − 1
− 1

1 − exp(−φp)

)]

. (67)
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For |φp| <∼ 2min(1, τ), cCoul reads

cCoul = 1 +
1

λD

[

1

2
− φp

12

τ − 1

τ

]

, (68)

while for |φp| >∼ 2max(1, τ), cCoul reads

cCoul = 1 +
τ

1 + τ

1

λD
. (69)

When τ = 1, Eq. (67) takes the following very simple form, independent of φp:

cCoul = 1 +
1

2λD
. (70)

9.1.2 Weak bias, strong shielding

In the weak bias, strong shielding limit, we can use Eq. (33) to write

∂φ

∂r
(1) =

∂φ

∂ξ

∂ξ

∂r
(1) = −ηw(0)ξ0; (71)

our numerical solution of Eq. (33) gives w(0) = 1.288.

Replacing η with Eqs (32,37), we find an analytic formula for the dimensionless probe capaci-

tance, valid for λDe ≪ rs and |φp| <∼ min(1, τ) (formally |φp| ≪ min(1, τ)):

c =
1.288

λ
2/3
D

(

1.356 − 2
3 ln (λD)

)

, (72)

where again λD is the linearized Debye length (Eq. (34)). Because deriving from a linear treatment

of Poisson’s equation, Eq. (72) is independent of φp.

9.1.3 Strong bias, strong shielding, thin sheath

Differentiation of Eq. (44), valid in the strong shielding and strong bias regime, with respect to r

at r = rp = 1 in the thin sheath limit (rs = 1 + ǫs with ǫs ≪ 1), has previously been performed in

36



the context of floating potential calculations (Eq. (58)). It readily yields the capacitance as

c = −
√

2(1 + τ)

√
rs − 1

φpλDe
, (73)

with rs given by Eq. (46).

When φp
<∼ − 50, we can use Eq. (48) and the capacitance simplifies to:

c = 31/3

(

− 1 + τ

λDeφp

)2/3

. (74)

9.1.4 Strong bias, strong shielding, thick sheath

In the opposite limit of thick sheath (but still strong bias and strong shielding), combination of

Eqs (51,57) yields

c = 1 +
5

4

[

2(1 + τ)

3

]1/4 1
√

−φpλDe

. (75)

9.2 Numerical solutions and physical discussion

Figs (11,12) show the probe dimensionless capacitance defined by Eq. (64) as a function of λDe for

CE plasmas. For convenience c − 1 is plotted, and the weak/moderate and strong bias results are

shown separately.

Plasmas with τ = 1 have the interesting property of having a capacitance quasi independent of

φp for |φp| <∼ 10 (Fig. (11a)). Indeed both the equithermal Coulomb capacitance (Eq. (70)) and

the weak bias, strong shielding capacitance (Eq. (72)) are independent of φp.

Fig. (11b) shows that this is not the case for plasmas with τ < 1. The general Coulomb

capacitance (Eq. (67)) depends on φp, and the weak bias, strong shielding capacitance is only

valid for |φp|/min(1, τ) <∼ 10 (this is fortunate as the formal condition is |φp|/min(1, τ) ≪ 1), i.e.

|φp| <∼ − 1 if τ = 0.1.

Capacitances for φp ≤ −10 are plotted in Fig. (12), and show perfect agreement with the strong

shielding (Eq. (73) and Eq. (75)) and Coulomb solutions in their regime of validity, i.e. respectively

region 1, 2 and 4 of Tab. 1.

Two trends are clearly observable. First c increases with decreasing λDe, in agreement with
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Figure 11: (Color online) Dimensionless probe capacitance in CE plasmas for τ = 1 (a) and τ = 0.1
(b) as a function of λDe, for φp ≥ −10. “SS, rs = 1” asymptotes correspond to the strong shielding
solution (Eq. (72), and “Coulomb” asymptotes to Eq. (67).
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Figure 12: (Color online) Dimensionless probe capacitance in CE plasmas for τ = 1 (a) and τ = 0.1
(b) as a function of λDe, for φp ≤ −10. “SS, Thin sheath” and “SS, Thick sheath” curves correspond
to the strong shielding solutions respectively given by Eq. (74) and Eq. (75). “Coulomb” asymptotes
correspond to Eq. (67).
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the intuition that shortening the Debye length increases the shielding. Second c tends to 1 as |φp|

increases, indicating that for strong biases the effective shielding length is much longer than λDe.

10 Capacitance with Kinetic electrons

10.1 Analytic solutions

10.1.1 Coulomb limit

Applying the general form for the Coulomb limit capacitance given by Eq. (66) to KE plasmas

(with Γp
i /Γ̃

0
i given by Eq. (40)), we obtain

cCoul = 1 +
1

λD

(

1 +
1

(1 + τ)(exp(φp/τ) − 1)

)

. (76)

Contrary to its CE plasma counterpart (Eq. (67)), Eq. (76) allows the capacitance to be lower

than 1 (when φp > τ ln (τ/(1 + τ))), and even negative when

λD <
1

(1 + τ)(1 − exp(φp/τ))
− 1. (77)

Eq. (76) is only valid when λDe ≫ 1, therefore the prediction of Eq. (77) is only expected to be

accurate for |φp|/τ ≪ 1. The trend is however clear: the weaker the probe bias, the higher a

Debye length is needed to ensure a positive capacitance. This is in agreement with the quasineutral

analysis performed in Paragraph 3.2.

When |φp|/τ ≫ 1, Eq. (76) reads

cCoul = 1 +
1

λD

τ

1 + τ
, (78)

in other words the strong bias Coulomb capacitance is the same as for CE plasmas (Eq. (69)).
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10.1.2 Strong shielding

In the strong shielding limit (λDe ≪ rs), two possibilities should be considered. If we are in the

strong bias regime, the capacitance formulas for CE plasmas apply (Eq. (73) and Eq. (75)).

If we are in the weak bias regime, the capacitance is negative, and we can not calculate it as

our continuum model breaks down.

10.2 Numerical solutions and physical discussion

Fig. (13) shows the probe dimensionless capacitance defined by Eq. (64) as a function of λDe in

KE plasmas.

It is convenient to analyze Fig. (13) from large to small Debye length. For λDe ≫ max(1, |φp|/min(1, τ))

Eq. (76) applies, as shown in Fig. (13a) in the case φp = −0.2. For weak enough bias c(λDe =

∞) = 1−, and decreases down to negative values as λDe is reduced.

For high enough biases (φp
<∼ − 1 in the equithermal case), c(λDe = ∞) = 1+ and increases up

to a maximum with decreasing λDe, before turning negative as φt
<∼ φp (Eq. (28)). Of course for

λDe ≫ max(1, |φp|/min(1, τ)) Eq. (76) would apply, but because we plot c rather than c − 1 the

agreement between theory and computation would hardly be visible on the figure.

As shown in Section 4, provided λDe
>∼ 10−5 CE and KE results are indistinguishable (strong

bias regime) when |φp| >∼ 10. In other words, the curves labeled “φp = −10,−102,−103” in Fig. (13)

are virtually identical to those in Fig. (12). The strong bias analytic results derived in the previous

section (Eq. (73) and Eq. (75)) are still valid here, although we have not plotted them in Fig. (13).

11 Summary and conclusions

In summary, we provided the first full numerical solution to the idealized problem of the interaction

of a non-emitting spherical body with a continuum plasma, considering both fully collisional and

collisionless electrons as outlined in Paragraph 2.1. Areas of investigation included collected fluxes

(Sections 4,5,6), floating potentials (Sections 7,8) and capacitances (Sections 9,10).

By adopting the zero-density inner boundary condition, we were able to reduce the dimensionless
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Figure 13: (Color online) Dimensionless probe capacitance in KE plasmas for τ = 1 (a), τ = 0.1
(b) and τ = 0.01 (c) as a function of λDe. “Coulomb φp = −0.2” refers to Eq. (76) with φp = −0.2.
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parameter space to τ (ion to electron temperature ratio), φp (probe bias) and λDe (electron Debye

length); diffusivity ratios De/Di or Dapp
e /Di replace φp as free parameter when we solve for the

floating potential. We however showed that the key parameter governing the shielding is not λDe,

but the electron Debye length to sheath radius ratio λDe/rs.

Comparison with existing, or in most cases new analytic asymptotic solutions (referenced in

Tab. 2), helps to understand the physics behind our computational results. In particular we showed

that with the exception of the intermediate shielding regime defined in Tab. 1 (rs/10 ≤ λDe ≤ 10rs),

there aways exists a closest asymptotic regime whose analytic solutions are accurate to 15% or

better.

This work concludes more than 40 years of research on an admittedly extremely idealized model

of plasma-probe interaction, by resolving long-standing contradictions, establishing the validity of

previous approaches, and proposing a rigorous classification of operational regimes that can possibly

set the basis for the analysis of more elaborated models.
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