II. MICROWAVE SPECTROSCOPY*

Academic and Research Staff

Prof. M. W. P. Strandberg	Dr. T. E. McEnally, Jr.	J. G. Ingersoll
Prof. R. L. Kyhl		J. D. Kierstead

Graduate Students

J. M. Ditz	J. U. Free	M. K. Maul
R. L. Espino	R. M. Langdon, Jr.	S. R. Reznek
L. R. Fox		B. N. Yung

A. VELOCITY SURFACES IN LITHIUM NIOBATE

The method for determining an analytical approximation for the velocity of sound surfaces for previously reported crystals¹ has been applied to lithium niobate. This method expresses an approximation to each of the three surfaces as a sum over functions of the appropriate symmetries. The method determines the coefficients in the sum by a least-squares fit to the exact surface. Lithium niobate has the symmetry of quartz or sapphire. The basis functions are those listed in Quarterly Progress Report No. 84. Table II-1 lists the coefficients in the expansion $V(\theta, \phi) = \sum C_n^{\sigma} W_n(\theta, \phi)$. ($\sigma = 1, 2, 3$ for each of the three surfaces.)

n	$\sigma = 1$	σ = 2	σ = 3
1	.7920	.8610	1.4484
2	003786	02802	.07939
3	06458	01514	.04267
4	.04947	04637	001434
5	.04148	03404	004503
6	.02470	02417	006694
7	1190×10^{-6}	$.1117 \times 10^{-6}$	$.3242 \times 10^{-8}$
8	.009004	008396	001100
9	.006779	006630	001841
10	$.70618 \times 10^{-8}$	6717×10^{-8}	9156×10^{-9}
11	.0003993	0007653	.0004249
12	.0007973	0007792	0002178
13	$.1125 \times 10^{-8}$	8639×10^{-9}	2138×10^{-9}
14	$.1676 \times 10^{-10}$	1638×10^{-10}	$.1692 \times 10^{-12}$

Table	II - 1.	Coefficients	C _n .
-------	----------------	--------------	------------------

^{*}This work was supported by the Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E).

Fig. II-1. True and approximate values for the velocity of sound in Lithium Niobate.

Fig. II-1. Continued.

Fig. II-1. Continued.

Fig. II-1. Continued.

Fig. II-1. Continued.

Fig. II-1. Concluded.

(II. MICROWAVE SPECTROSCOPY)

Figure II-1 shows the surfaces computed exactly and those computed by using the analytical approximations.

S. R. Reznek

References

 S. R. Reznek, "Expansion of Velocity Surfaces in Spherical Harmonics," Quarterly Progress Report No. 84, Research Laboratory of Electronics, M.I.T., January 15, 1967, pp. 17-26.