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A. ELECTRON COLLISIONAL EFFECTS ON WAVE PROPAGATION

IN A NONMAGNETIZED PLASMA

To account properly for the effect of electron-atom collisions on the propagation of

waves in plasmas, it is necessary to utilize the Boltzmann collision integral.1 This

integral assumes only two-body collisions, and therefore is valid only for collisions

involving short-range forces such as those occurring in electron-atom collisions.

Our treatment utilizes the Boltzmann collision integral and assumes that the elec-

trons collide with particles of much greater mass. Thus, this treatment applies to

electron-atom collisions. The calculation determines the form of the dispersion rela-

tion for the electron plasma wave in the presence of electron-atom collisions, and is

a direct application of the method developed by Allis. 1

Generally, the Krook model 2 ' 3 is used to account for collisions when studying col-

lisional effects on the electron plasma wave. The advantage of this method is that it

can be applied readily to problems in which the electron temperature is high; for

example, when the Larmor orbit is comparable with the wavelength perpendicular to

B, the mean-free path is long compared with the wavelength parallel to B, and the

thermal motion of the electrons parallel to B introduces a significant Doppler shift of

the plasma-wave frequency. It has the disadvantage that it is only an approximation to

the collisional effect and, although it can be so formulated that it does not violate the

conservation of plasma particles, it cannot be readily formulated in such a way that it

also conserves plasma particle energy and accounts correctly for the angular and veloc-

ity dependence of the electron-atom scattering cross section. The method used in this

report is cumbersome to apply to plasmas with high electron temperatures, but it does

account exactly for the collisional effects. The results of the two methods will be com-

pared at the end of the calculation.

The Boltzmann equation for the electron distribution function, f, in the absence of

an applied magnetic field is
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where e/m is the electron charge-to-mass ratio, E is the electric field, and (f c
represents the Boltzmann collision integral. The distribution function is expanded in
Legendre polynomials, P (cos 0), where 0 is the angle between 2 and the electron

velocity, v:

00

f = f (r, v, t) PP(cos 0). (2)
£=0

This expression is substituted in both the right- and left-hand sides of (1), and the terms
comprising the coefficients of each P on each side of the equation are equated sep-
arately; this generates an infinite set of equations for the f (the ratio of the electron-

to-atom mass is set equal to zero, also):
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It has been assumed that the perturbed distribution function does not depend on the x
and y spatial coordinates, and the E field is assumed to be parallel to the z-axis. This
is consistent with the effect of plasma wave propagation (E II k) on the distribution func-
tion, in the absence of a magnetic field. The quantities vcl are weighted collision
frequencies arising from the Boltzmann collision integral. They are given by

ve = 2 rvng =0 "(O)(1 -Pf(cos 0)) sin 0 dO, (4)
9 0=0

where a(O) is the differential scattering cross section, v the electron velocity, and n
g

the volume density of the gas atoms.

In the absence of the perturbing wave only the spherically symmetric, time-
independent part of f, fo(v), is nonzero. The unperturbed distribution function, fo, is

so normalized that f fo d3 v = no, where n is the unperturbed electron density. Denoting0
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the time-dependent part of fo by fo, we obtain the linearized form of Eqs. 3:
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(k>1).

We next assume that all of the perturbed quantities and the electric field vary as

e i(ct-kz); thus we obtain for Eqs. 5

• o ikv f1-iwf 0 + kf = 0
1 3
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cl 1 5
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This infinite set of equations can be solved for fl to obtain1
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where D is a fraction of the form

9(kv)

16 (kv)2

63(-iw + vc4 +...)

3 5 (-io + Vc3

and the general term in the fraction is

2 (kv) 2
-iw + v +cl-1i

(4 j 2 - 1) -i +
(f+1)2(kv)2

(4( +1) - 1)(-i +vc+v +... etc.)
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We may now calculate the electron density perturbation, nl, which is due to the
wave:

0 2
n 1 = n o  f14wrv dv. (9)

0

Poisson's equation for the electric field is

n l e
7V E = ikE - (10)

o

and combining (9) and (10), we obtain the dispersion relation for the wave

afo
4 2 o v - dv

1 2 2 ' (11)
0 (kv) iwo(kv)

iw(iw - v) + 3 (-iw + vc2 + D)
c2

/n e
where c = is the electron plasma frequency.

0

afo
If fo is Maxwellian, it follows that 0 f where v2 kT and is of the

o av 2 o o mo
v

o
order of the mean-square electron velocity. In this case Eq. 11 becomes

2

p 0 v4 f dv
1 2 (12)Sv 0 (kv) 4 iw(kv) 2
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For a cold plasma in which (kv)Z << 2 + 2 )1/2 only the collision frequency vl
enters significantly into the damping. To account correctly for first-order tempera-
ture effects, it is seen from the denominator of (12) that the collision frequency Vc2
is also important. The last of the three terms in the denominator (see Eqs. 6) is absent
if f2 is assumed to be negligible and, therefore, f2 must not be neglected in this treat-
ment if the dispersion relation is to be correct to first order in temperature. It is seen

(kv)2
that this treatment does not converge rapidly unless << 1 and, therefore,

(2 + v l )1/2

is not readily applied to cases in which the wave phase velocity is not much greater than
the electron thermal velocity. Setting D = 0 is equivalent to assuming f = 0 for f > 3
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in Eqs. 6, and

By setting fo =o

will give us the correct first-order dependence on temperature of Eq. 12.

3/2 -v2 / 2v 2
(e 0 and D = 0, Eq. 12 becomes

2wv
o

S P 3/2 00
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e v dv
2

(kv) (i 4 ic

i(i- vcl ) + 3 5 ic - vc2

(13)

Bers and Musha4 have calculated the plasma wave dispersion relation, using the

Krook model and assuming a collisional relaxation rate, v c , that is independent of veloc-

ity. Their result for zero magnetic field is

pP
2 2 [I + oZ(o)]

k v

iv
1+ c Z((o)

w+iv 0 0
c

(14)

w + iv
where = c, and Z(So) is the

kv 2-o
0

plasma dispersion function. 5 For low tempera-

ture, the asymptotic expansion of Z( o ) may be used. With Landau damping neglected,

this is

Z(o) 1 (1 + I + 4

OO~
.") (15)

Substituting (15) in (14) and saving

and denominator, we obtain, after

terms to first order in temperature in the numerator

some algebraic manipulations,

p 3k2v
2

= 22W(W + iv C)  (W + iv C )
iv k v

c o
1

S(w + iv2
c

To first order in temperature Eq. 16 becomes

2
w 22
p 3k v iv2 i

w(w + iv c) ( + iv) 2 3 w
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It is only possible to check Eq. 17 against Eq. 13 if we assume vc1 and Vc2 to be

velocity-independent in Eq. 13. Making this assumption, evaluating Eq. 13 to first
order in temperature, and again neglecting the effect of Landau damping gives

2
2 2
p 3(kvo) 5

1=+ + (18)
w(w + ivl) (w + i l iv ) 9 (

If we consider a gas for which the scattering is isotropic, then v = Vc2. For this
case, Eqs. 17 and 18 agree very closely. For low-temperature plasmas and for v c<
w, this small error in the Krook model will not be important. In a plasma for which
the electron scattering cross section is not isotropic and is strongly velocity-dependent,
for instance, in an argon plasma, a deviation from the Krook model predictions of mea-
sured wave lengths and collisional damping effects might be observable.

J. C. Ingraham
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