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A. CONTRAST DETECTORSt

Lateral substractive inhibition may occur at the retinal bipolar level, thereby

enabling a contrast-detection process in which each "contrast bipolar" cell could detect

any spatial change of the intensity of light incident in its receptive field. In such a sit-

uation, the locus of the contrast bipolar cells that fire at any time gives the contour of

any sharply contrasted image on the retina at this time. A contrast-detector ganglion

cell receiving signals from an area that contains many contrast bipolar cells thereby

senses a significant part of that contour as limited by the object size-ganglion field

relationship. Its rate of firing is different for different shapes and sizes of the image

and for different velocities of a moving image. It is, therefore, desirable to obtain

simple expressions relating ganglion tone to the aforementioned parameters that are

consistent with, and supported by, neurophysiological evidence.

In particular, we shall be concerned with the dependence of ganglion tone upon the

length of the contrast, or edge, of the image and upon its velocity. By applying a pro-

cess used to model a specific visual ganglion cell,l we can obtain one expression for

such a dependence. The process to which we refer is the lateral (nonlinear) inhibition at

the level of the ganglion cell dendrites. All that we require is, first, that there be a

single horizontal dendritic layer for the contrast ganglion cell, and second, that signals

arriving there from bipolar cells interact by lateral nonlinear inhibition. Either divisive

inhibition of exponential inhibition would be adequate for this task. We chose, for sim-

plicity, to use exponential inhibition 2 in our formulations.

This work was supported by the National Institutes of Health (Grant 5 ROl

NB-04985-04), and in part by the U. S. Air Force (Aerospace Medical Division) under

Contract AF33(615)-3885.

tThis work was done partly at the Instrumentation Laboratory under the auspices of

DSR Project 55-257, sponsored by the Bioscience Division of National Aeronautics and

Space Administration through Contract NSR 22-009-138.
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For the sake of simplicity, we assume: First, that the contrast bipolars are uni-

formly distributed throughout the retina and that their number is large enough to per-

mit the assignment of "linear density" (X), the number of contrast bipolar cells per unit

retinal length, as a constant. Second, we assume that bipolar cells give rise to pulses

(action potentials) of constant amplitude (p) and constant duration (T), and that they con-

tain refractory periods of sorts.

If the image of a sharply contrasted object is stationary with respect to the retina,
and 1 is the length of the edge in the contrast ganglion cell receptive field, this cell

receives pulses from n o contrast bipolar cells, in which

n o = l. (1)

If the image moves with respect to the retina, with velocity of absolute value u, the

ganglion cell will receive pulses from ne additional bipolar cells such that ne is approx-

imately given by

n e = u - Tl A. (2)

The total number, n, of bipolar cells exciting the ganglion cell is given by

n = n + ne = lX(l+uTX). (3)

If the lateral exponential inhibition occurs, the contribution of a single bipolar cell
to the activity of the ganglion cell is given by

p . e-kp(n- 1), (4)

where k is a constant that determines the strength of the inhibitory action. Under the

assumption that contributions are additive, the total activity, Ac, of the ganglion cell

is given by

Ac = p e-kp(n-l), (5)

where the summation is over all of the bipolar cells that are firing, that is, n. Then,

Ac =npe-kp(n 1) (6)

By substituting Eq. 3 in Eq. 6 and renaming the constants, we obtain

Ac = K 11(1+K 3 u) e-K 1(1+K 3 (7)

where
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K 1 = p ekp

K2 = k p X

K3 = T X.

Let the frequency (tone), f, of the ganglion cell be linearly related to its activity;

that is,

f = aAc + b, f >0, (8)

where b, if positive, is the spontaneous firing frequency. A negative value of b may

be interpreted as threshold.

Let us define z as

z - 1(1+K 3 u). (9)

af
The maximum value of f occurs when = 0, that is, for a value of z (represented

by Zopt), in which

z = 1 (10)
opt K2

For a stationary object (u = 0) there is an optimum edge length in the retinal field

which produces a maximum response. This is

1 = 1 (11)
opt K2

For moving objects of constant edge length, 1 o, there is an optimum velocity, Uop t '

which produces a maximum f and is given by

opt K 3  10 ) 
(12)

In any case, the maximum frequency is given by

K
fmax =a K + b. (13)

Since only the absolute value of the velocity u appears in the expressions above, a

negative value for Uopt has no meaning. Therefore, for a given edge length, 1o , the

maximum frequency can be obtained only if

Kz1 < 1. (14)

The case K2 1 = 1 corresponds to the optimum stationary edge, that is, a maximum
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ganglion tone that is due to a stationary edge, as given by Eq. 11.

Properties that are qualitatively similar to the ones described here - and that have

oriented our work- have been reported for the group 1 ganglion cells in the frog's

retina.3, 4

R. Moreno-Diaz
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B. INSIGHT INTO NEURONAL CLOSED LOOPS FROM SHIFT-REGISTER THEORY*

In 1943, Pitts and McCulloch I produced three theorems showing that nets with circles

could compute only those numbers that a Turing machine could compute with a finite

tape. Recently, Minsky and Papert 2 have reported several theorems applicable to them,
3-6

and our group has presented some in previous reports. Since Wiener's pioneering

treatment of nonlinear filters, little progress has been made, until last year when

Caianiello published two items in Kybernetik. 7' 8

In the meantime, a theory of shift registers has grown up independently, depending

on Galois Fields, initiated by Huffman's 9 ' 10 analysis of their use in coding, and a sub-
11-24

sequent evolution of theorems of limited generality. It has not been recognized

that all such devices were within the scope of nerve net theory, although the converse

is not generally true in the present state of the art. As their theory is relatively com-

plete 2 5 - 9 (except for fully nonlinear shift registers with inputs), it is clear that shift-

register theory can sometimes be extended from Boolian functions of 0 and 1 to any
30-32

finite field of integers, and in some cases to the field of real numbers, and perhaps

even of complex numbers.

There is no apparent reason why these theories may not ultimately be extended to

all closed-loop structures in finite automata of neuron nets of proper neuromimes. We

still do not know how to extend this theory to the general problems of nonlinear anasto-

motic nets with inputs.

(a) (b)

Fig. XXIII-1. Nonlinear feedback shift register for control (a) and command (b).

Even without that, the utility of these notions foreshadows a great extension of neu-

ronal modelling in the design of circuits for command and control, as well as in the pro-

gramming of commands for which shift registers are eminently suitable. We already

have simple solutions for temporal sequences in nonlinear feedback shift registers.

*This work was done partly at the Instrumentation Laboratory under the auspices of
DSR Project 55-257, sponsored by the Bioscience Division of the National Aeronautics
and Space Administration through Contract NSR 22-009-138.
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For example, we have found conditions for driving the state of nonlinear feedback

shift registers with input through any logical gate of types (a) and (b) (see Fig. XXIII-1).

In this figure

I = Input

L = Logical gate

The vector that defines the state of the n delay elements of an n th-order shift

register

f(X) = Any Boolian function of the n components of X

g(X, I) = Any Boolian function of the components of X and I.

W. S. McCulloch, J. L. S. da Fonseca
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