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A. ON THE AMBIPOLAR TRANSITION

A report1 by Cohen and Kruskal (referred to here as C+K) considers the ambipolar

transition by dividing the problem into a number of "regions" in which the equations may

be simplified, and this is very helpful in understanding the problem. The report is, how-

ever, difficult to follow for a number of reasons, and it therefore appears useful to write

the present report, containing little that is factually different from theirs, but in which

some more complete equations are presented and the structure of the problem is more

carefully exhibited. The method of C+K makes mathematical rigor possible, which is

excellent, but the report is not convincing that the rigor is always there. Hidden errors

may lurk where the interrelations of equations are not clearly shown. C+K consider var-

ious limiting forms assumed by the complete ambipolar diffusion equations when certain

parameters go to zero or infinity. In each case the limiting process results in dropping

one term in each of several three-term equations. In any physical problem where param-

eters and variables may have values ranging over orders of magnitude it is generally

true that, to some approximation, the smallest term out of three may be neglected. In

this problem the three terms A, B, C, will be of the same sign, so that the full equation

can be written

A + B = C (AB)

with two simplified forms

A =C (A)

or

B =C (B)

These simplified forms will be called "limits" in the sense that some physical process

has become inoperative when a term can be dropped. This is different from the math-

ematical meaning of "limit" used by C+K, although the result is generally the same. The

This work was supported by the United States Atomic Energy Commission (Contract
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full equation (AB) will be called a "transition" and must be used in the neighborhood of

A = B. In a "transition" two physical processes are competing.

As there will be 3 three-term equations, there are 8 possible limits, but as we shall

assume that the positive ions are both heavier and colder than the electrons, only 4 of

the limits actually occur. They will be named, somewhat arbitrarily, the Ambipolar (a),

Boltzmann (b), Cosine (c), and Diffusion (d) limits. These will be discussed in reverse

order. They are separated by the Space-Charge (ab), Electron-Flow (bc), and Ion-Flow

(cd) transitions. We also consider the sheath limit (s) in which ionization is neglected.

It must not be assumed that the same limit holds throughout a given plasma. In gen-

eral, the transition condition A = B will cut across the diffusing, and therefore nonuni-

form, plasma so that several limiting and transition forms must be used. It is our

purpose to sketch the way in which these limiting and transition forms fit together in a

given plasma. This leads to our final diagram (Fig. X-3) which summarizes as much

information as can be collected in a single figure.

In order to facilitate comparison with the work of C+K their equation number (D. . )

or the page reference (Eq. _p. _) will be given next to ours whenever we have found the

appropriate reference.

(e) Basic Equations

The physical parameters of this problem are the ion and electron temperatures T

and transport coefficients 4+, D = ±I±T , the ionization frequency vi, and the diffusion

length A = L/r. Parallel plane geometry will be considered. These physical parameters

are combined in the following dimensionless parameters:

T = T+/T_ < 1

= +/_ < 1

(e 1) (p. 15)
6 = D+/D_ = TFI 1

1 +

and use will also be made of the electric field J. defined as
1

= v.T_/ . (e 2)1i +

(Note that our T is 1/T in C+K.) The first three parameters are less than 1, the fourth

is a characteristic value obtained from the solution of the equations. Its free and ambi-

polar limits are 1/4 and (1+T)/(1+p); C+K claim that this last limit is approached from

below. We claim this has not been proved.

We then introduce the dimensionless variables
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n = N e[ /E oV

s n + - n

E = /J. (e 3) (p. 15)
1

J = Fe / .iV i

x X& ./T_1 -

and use the same variables throughout. They differ slightly from the variables used by

Allis and Rose 2 (referred to here as A+R). C+K rescale variables on pp. 33, 37, 38,

45, 59, 60, 71 and this makes their equations difficult to compare. Our single set of

variables resembles their barred variables but differs from them by factors of Tw/2

because of the use of the diffusion length A in the dimensionless parameters (e 1). Ours

are chosen so that T and t tag those terms in the equations which are going to be neg-

lected and that v not appear explicitly in the equations. They are all of order 1 at the

space-charge transition.

In terms of these variables, the ion flow, electron flow, Poisson and ion generation

equations are

J = -TV7n + En+

gJ = -n_ - En

(e 4) (B. 1)
7 E= n+- n_ = s+-

V' J=n

with the boundary conditions

S= n n+ = n+0 at J = E = x =

(e 5)
J J=J E = E d , x = x d  atn = n = 0.

The reason for the subscript d at the wall will appear later. Here, n o is quite arbitrary

but n +o/no is determined a posteriori by requiring that n+ and n_ go to zero at the same

place. Jd, Ed' and x d have whatever values result from the solution. By requiring that

xd correspond to X = L/2 at the wall, it follows from (e 1) and (e 3) that in these variables

-v- = 2xd/TT. (e 6)

Thus the characteristic value is computed directly without the need of any fitting.

The set of equations (e 4) is assumed to be valid all the way to the wall, which implies

that the collision mean-free path is much smaller than the thickness of any boundary
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layer. This is rarely true, but the assumption provides definiteness to the mathematical

problem.

Because the equations are invariant to translations in x, it is convenient to eliminate

it as independent variable in favor of the current, J (p. 38). This is done by use of the

ion-generation equation and leads to the set of 3 three-term equations mentioned above.

Primes are used for derivatives with respect to J.

-Tn_n' = J - En+

-n_n' = ±J + En_ (e 7)

n E' =n+- n

The space coordinate is then obtained by quadrature

n
o

dJ 0  dn
n = - J + En (e8)

o

Certain exact relations can be derived from the set of equations (e 7), and in order to

be perfectly clear as to which equations are exact, they are all summarized here. Limit

solutions can then be compared with them to see explicitly what has been neglected.

Taking the derivative of the ion flow equation and combining with Poisson's equation gives

n - 1) n+ 1 - En' + T(n n ). (e 9)

Combining the equations in different ways yields the two relations that are useful near

the ambipolar limit

(1-6)J - (1+T)En = Es - Tn s' (e 10) (D. 3. 5)

(l1+p)J + (1+T)n n' = Es - n _s' = ar. (e 11) (D. 3. 8)

Eliminating J from the flow equations, combining with Poisson's equation, and inte-

grating gives

[iE + (1+4) E dJ = n - n - (n-n). (e 12)
So +o+-n++

o

A somewhat different combination of the equations yields, upon integrating,

S + (non+o-nn+) +  [n-n- (n-n)] +  
(n dn_-n dn+).

+ ++ o+o + 0- n- (n+o-n+(e + 13)+ +

(e 13)
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For an isothermal plasma T = 1, so that the integral in (e 13) drops out and the

remaining terms are a first integral of the equations.

Finally, n can be divided out of (e 11) so that it integrates with respect to dJ = n_ dx.

(1+9i) J dx = E 2 /2 + n - n + T(n+o-n )0 - +0-+

(1+±) SXd
0

(e 14)

(e 15)2J dx =E /2 + no + Tn +0

(d) Diffusion Limit n << 6

In the limit of very low densities the quadratic terms En+

so that the limiting equations are

and En can be neglected

Fig. X-1. Plasma profiles.
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-Tn : J

-n n' = J

n E' = n - n ,

and the solution is

6n = n

6E = (1-6)J

j2 2 n 2
S= n - n

0

n = n cosj x
- 0

v = v d = 1/4.

(d 2) (D. 4. 3)

It will be convenient to plot n_/no and n+/no against J/Jd (see Fig. X-l).

are ellipses in this limit and remain identical for all sufficiently small values

C+K show quite generally that

6n+ < n_ < n+,+ - +

(d 3)

Both plots

of n . As
o

(d 4) (B. 6)

all future curves of n /no will fall between these two limit curves.

Putting the value of E from (d 2) into the electron flow equation (e 7) yields the first-

order departure

2 1- 6 no
3Tr 6 i *

(cd) Ion Flow Transition

(d 5) (p. 75)

_- - n /n+ - 0 n+o 6
+0

As En_ /4En+ = T, and we assume T < 1, the ion mobility term will, with increasing

density, become equal to and cross the ion diffusion term before the electron mobility

term need be considered. In an active plasma the electric field assists the ions to flow

out before it effectively retains the electrons. This is the Ion Flow Transition. It occurs

before the Electron Flow Transition in an active plasma, although they occur together

in an isothermal plasma. We shall consider them separately. The appropriate equations

for the Ion Flow Transition are

-Tn_n' = J - En+

-n n' = tJ (cd 1)

n E' = n+.
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From (e 12) we see that

S+ E n - n - (n +o-n ),2 o - +
(cd 2) (D. 2. 4)

and from the electron flow equation, as before,

2 2
J= n - n

0
(cd 3)

ILv = 1.

(c) Cosine Limit

After the ion flow

D+ - n_/n+ - 0 6< n <

transition, the appropriate equations are

J = En+

-n n' = [J

n_E' = n+.

The electron profile is the same as before

j2 2Jj= n -n
o

(c 1)

(cd 3)

4V = 1,

but now we have

1 2
- .E = n - n2 o -

n2 (n +n )/2

n = n- cos NT x/2.
+ o

(D. 2. 8)

(c 2)

(D. 2. 7)

[*In going from (D. 2. 4) to (D. 2. 8) C+K neglect bn+0 but keep 6n+. This seems incon-

sistent.]

This limit has been called the Cosine Limit because n+ is a cosine function; but it

is of twice the base, so that it does not vanish at the wall. Clearly this limit, as all of

the regions that follow, are not valid beyond the point where their plasma profiles inter-

sect the curve (d) of Fig. X-1. The solutions (c 2) must be broken off at a coordinate

x < xd at which the conditions of validity of (c 1) break down and a single new boundary

condition of the form

n /n+ = c (c 3)

must replace (e 5).
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The impossibility of satisfying the double boundary condition n+ = n- = 0 arises

because in dropping the ion diffusion term the order of the equations has been reduced

by one, and hence there is one less disposable constant of integration. This becomes

obvious when we drop the diffusion term in (e 9). This then becomes

n 1 - En 1
= 1 + >1 + (c 4)n n n

and

n+o 1

no +o
(c 5)

Thus n o and n+o are related by (c 5) and only one of them may be chosen arbitrarily.

Thus we no longer have the flexibility to require both n+ and n_ to go to zero. In fact,

neither one can go to zero before the conditions of the equation set (c 1) become invalid.

(The appropriate constant in (c 3) will be discussed below in (s) Sheaths.) We also have

a bound on n+/n_ and it is now convenient to represent the solutions as plots of n_/n+

AMBIPOLAR LIMIT

Z

Z

O-©C b

c

0r
0L_

U-

SHEATH

SKIN

DIFFUSION LIMIT

0 8 112 1 2

Fig. X-Z. Plasma ratios.
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against n+ (Fig. X-Z). For n+ > 6 all of the integral curves start on the hyperbola (c 4)

at n+ = n+o and remain below it. Eventually they curve sharply to the left, because of

the ion diffusion term, and meet the axis of ordinates at n_/n = 6. In practice, it may

often be sufficient simply to cut the curves off at n_/n+ = 6 without computing the ion dif-

fusion part.

Note that (c 4) and (c 5) remain valid through (c), (b), and (a). Similarly, the electron

profile (cd 3) remained valid through (d) and (c). The formula (d 5) produces a hardly

noticeable change in v through these regions. After (c) it is not the appropriate formula.

We should now take E from (c 2) and put it into the electron-flow equation to get first-

order departures for v. This yields

\- _. 13 o (c 6)
Tr

where the decimal comes from a complicated logarithmic term. This differs markedly

from the previous formula (d 5) and is valid for considerably larger values of no

(bc) Electron-Flow Transition D+ - n /n+ - 0 n+o

The next term to enter the equations is the electron mobility, which acts to oppose

the electron flow. The equations then are

J = En+

-n n' = J + En (bc 1)

n_E' = n+.

A relatively simple equation can be obtained for the current squared J = F in terms of

the field squared E 2 = Y. The equation is

2F" + F' + i = 0, (bc 2) (D. 2. 11)

where the primes are derivatives with respect to Y, with

n = F'.

A similar equation has been solved by C+K.

(b) Boltzmann Limit D+ - n_/n+ -0 j -0 co < n+ < 1

In this limit the ions are cold, flow is due to the field only, and the electrons have

such large mobility that they assume a Boltzmann distribution in the field

QPR No. 77



(X. PLASMA PHYSICS)

n = ne
- 0

The equations are

J = En+

-n' = E

nE' = n+

and they lead to the simple equation
and they lead to the simple equation

J = nn'n".

(b 1)

(b 2)

(b 3) (D. 1. 9)

limit is called the "Similarity Solution" by C+K because it has an obvious scaling

n - k4n J - k3

2n - k n. E - kE
+ +

x -- s/k

N = const

(b4) (Eq. 3 p. 43)

v - v/k 2

N v. = const.
-1

Here, the last line makes use of definitions (e 1) and (e 3). This implies that when N

varies in the range of validity of (b), which is two decades in Fig. 5 of C+K, v. varies

inversely with No, and N+ does not change at all! Fortunately there is a fallacy in this

argument. The boundary condition (c 3) does not satisfy the scaling law. Hence x does

not scale with x, and nothing can be said about the scaling of v. The result on p. 43 of

C+K is difficult to understand.

(ab) Space Charge Transition D+ -0 n+o 1

In the regions considered thus far with n+ < 1 it follows* from (c 4) that n_/n+ < 1/2

and hence the electron space charge could, in the approximation used throughout this

report, be neglected. It must now be included and the equations are

J = En+

-n = E (ab I)

n+ = n (1+E') = n_(1-n") (D. 1. 7)

which yield

J = n n' (n"-1). (ab 2) (D. 1. 8)
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The electron profiles plotted against x are bell-shaped with an inflection at E2 = s. As

E is large near the wall, the profile against J comes in to the axis nearly vertically, so

that its departure from ellipticity is unnoticeable.

Note that the equations now contain no physical parameters. They are universal, and

tabulated solutions with no as a parameter would be very useful; it is left to the user to

join these solutions to the boundary solutions appropriate to his problem.

(a) Ambipolar Limit n+/n - 1 no > 1

In this limit the Poisson term is neglected. As the electron current and ion diffusion

terms do not create extra difficulties, it is convenient to re-introduce them. The equa-

tions, therefore, are

-Tn_n' = J - En+

-n n+ = J + En_ (a 1) (D. 3. 2)

n =n

and the solution is

(1-6)J = (1+T)En

(1-p)J 2 = (1+T) n2-n (a 2) (pp. 44 + 45)

n = n cos x (D. 3. 3)

1+T
a 1 +"

Computing the Poisson term, one finds

2
1 - 6 o = s. (a 3)n E'-

For equations (a 1) to be valid one must have

s < n (a 4)

or

n3 > n 2  n 2  (Eq. 3, p. 45)
- ab o

and the ambipolar limit is perhaps best expressed as

limit n3/n2 - oo. (a 5)
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The ambipolar transition takes place first at the center and works outward, never
reaching the wall.

From (a 3) we see that there is a space charge so = (1-6)/(1+p) at the center of the
plasma and the space charge at the wall is much larger, although (a 3) is clearly exces-
sive. It is interesting to know how large the effect of the distributed space charge is
compared with that in the sheath.

Making use of (a 3) and neglecting terms in s 2/n, one finds that the right-hand side
of (e 11) is

r = -(l+T)asn',

where (a 6)

1 - 2T - 36
a

(1+T)(1+)

so that

(1+p)J = (1+T)(n +n +2a)(n -n_ ) (a 7)

and s is a number between s and s.
o

Treating s as constant in (a 6) and integrating dJ/n_ from no to na gives

n + as 2nx Tr -1 a as o-- sin + In
2 n + a- n nn +as 0 aa 0

n 2n
Tr a as oa + as in 0 (a 8)
2 n n en

0 0 a

where e = 2. 718. Hence

1 + as n - na . (a 9)

There is a negative effect on v because of cutting off the integral at na instead of at zero

and a positive effect caused by the space charge. The first will be partially or totally

offset by adding the sheath thickness. The space-charge term is already dominant if s

is given its value (a3) at na , but not if given the value s o . There is a larger space

charge, however, in the sheaths. The effect of this sheath charge will have to be added

to the effect computed here.

(s) Sheaths J = Jd

None of the limits (c) to (a) are valid out to the boundary of the plasma. As n

increased and successive approximations became valid in the center, the previous
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(1+T)FE 2/2 = n - n - 6(n+-n+)o = 6Ln+o-=/n

D =4 =n /n =0

0~I

c\0

I I
I I

Nc
± ±

6<n <FL+

2F" + F' + L = 0

D = n/n = 0

b p_ = 00 <n < 1

J = n n' n"

FL = 00

J = n n' (n"-l)

n =n
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Fig. X-3. Diagrammed solutions of the ambipolar equations.
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regions were merely pushed out toward the wall in successive layers. As they approach

the wall, a new approximation becomes valid: the current through them becomes sub-

stantially constant. The current is therefore no longer a suitable independent variable

in the equations, and we turn to the variable E by dividing each equation (e 7) by

Poisson's equation:

dn -Jd + En
7- (s 1)dE n n_

dn _-Jd - En
(s 2)dE n - nn+-

x = (s 3)
+ -

The crowding toward the wall is evident in Fig. X-1 where all the profiles crowd

together at J = Jd Figure X-3 is a diagram based on Fig. X-1 but distorted to show

how the central regions are bounded toward the wall. Thus we see that the total sheath

region may be divided into three parts: a pre-sheath, a sheath, and a skin.

(abs) Pre-Sheath D+ - 0 _ - < n_/n+ < 1/2

This is an extension of the space-charge transition region. It is the region that is

well known to prove theorists in which electron space charge is not negligible but in

which the voltage drop is sufficiently large to accelerate the ions to a drift energy cor-

responding to the electron temperature. C+K call it the sheath (p. 45). Its equations are

En± = Jd

2 dE (abs 1) (Eq. 4, p. 46)
E = E - J /ndn d

This equation has to be solved numerically.

The pre-sheath is joined to the plasma where the two conditions n+ < 2n_, Jd < 2J

are well satisfied. This leads to inequalities

42 2 3
-n < n < n (abs 2)
3- o -

which can be satisfied by

4/5n = n = n (abs 3)
a o

but n 0 had better be quite large or the overlap region (abs 2) will not be appreciable. For

practical plasmas numerical solutions of (ab 2), extending to reasonably large n , will

be required. Unfortunately there is no approximate solution from which the thickness
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of the pre-sheath can be calculated.

(bcs) The Sheath T- 0 n -0

In the sheath, as generally understood, the electron space charge may be neglected.

We shall not, however, neglect the electron flow. The equations are then

En = Jd

dn E2n
= -- - E.

dE J dd

The solution of the second is

-V c
n = Le e E dE

V -V
c

= n+ce

2 2E -E
c bx - xb 2J

d

(Top eq., p. 48)

_ 1.04 V 2/3 V2/3\

1/3
d

The solution (bcs 2) is joined to the pre-sheath where the conditions of (abs 1) and

(bcs 1) overlap, which turns out to include

(n /n+)b = (bcs 4)

Thus

3 3 -3Vb
nb = n o e

3 2J J3 d d
n+b 3 3V

Eb bb

n 3Vb
o e

3/2 3Vb
(bcs 5)

2
Here, we have taken Jd

Similarly,

2
= n 2 (a 2) as being close enough.

o
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(n_/n )c= : (bcs 6)

and

3V
n c

o - e (bcs 7)
3 3V

c

Equations (bcs 5) and (bcs 7) give the potentials of the sheath, and by introducing them

in (bcs 3) we can evaluate the sheath thickness. In general,

V2/3 In (no 3)
x - x b-c =  (bcs 8)

c b 1/3 3n1/3
d o

but if Vb is large, so that the sheath potential Vc - V b is small,

lVn/3 nl 1
xc - xbI( n n (bcs 9)

cJd1 / 3  9n In n /13)1/3

Unfortunately the sheath thickness cannot be compared with the cutoff distance n /n in
2/3 o

(a 8). For small values of V b one could set n = n , and (bcs 8) shows that the sheath

is thicker than the cutoff, but for large V b there is no suitable value of na where the

sheath and the plasma overlap. The pre-sheath thickness has to be included.

The boundary condition (bcs 6) that we have chosen corresponds to setting p.J = En

It is therefore the point at which the Boltzmann distribution breaks down. It is because

we did not go beyond this point that we could use the simpler expression in (bcs 2). It is

also the point where conventional sheath theory breaks down, and the usual procedure of

setting the random electron current equal to the directed ion flow is equivalent to (bcs 6).

There is, however, a skin outside the sheath.

(cds) The Skin J = Jd E = Ed 6 < n_/n+ <

The skin is an extension of the ion flow transition. The electron density is so small

that the electron current cannot be left out of the equations, but the skin is so thin that

the electric field may be taken as constant. Eliminating dE between(s I)and(s 2), we get

dn T dn+
-dx = (cds 1)gJ + En J - En

(1+En_/ iJ)(1-En /J) T = 1 (cds 2) (D. 1. 5)

E(xd-x) = In (1+En/iJ).
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This has the proper limits, written

En = jJ En = J (Eq. 2, p. 36)

n_ - 0 n = 6n+, (cds 3)

the thickness of the skin Ax = n_/Fno is extremely small so that it does not affect the

value of v. For nearly all purposes, the wall can be put at xc with the boundary condi-

tion (bcs 6).

The Characteristic Curve

Integrating the appropriate equations numerically, C+K obtain the characteristic

curve shown in Fig. X-4. We show in the same figure the curve obtained by A+R. A+R

4 O)-10

S 'REGION ISOLUTION
bc CALCULATED FOR r= 1

1010

1 0 2 0'I /O0-
O ANALYSIS " ,- O

1 REGION II SIMILARITY SOLUTION o =
101 EXTENDED BEYOND RANGE OF VALIDITY 0.001

8= .001 ALLIS AND ROSE

1 0 0 1 1 1 1 1 1 1 t- t =- c O

10-6 10-4 10
-
2 100 102 o- Y=0.001

2 n /4
o

Fig. X-4. Normalized ionization frequency vs plasma density.

used p. = 1/32, C+K used L = 1/1000. As 1000 is roughly the square of 32, the slope of

the C+K curve is roughly twice that of A+R. There is no disagreement. The C+K curve

extends farther in both directions because they have dropped the small high derivative

term which is most troublesome to a computer, but it does not extend much farther, par-

ticularly in the direction of high densities which is of greatest interest. It is for this

reason that A+R proposed an approximation, and that C+K in their section D. 3 study

the limit n - o0 n - 0 and reach the conclusion v - v from below. As this is sur-

prising, we must look into their analysis of this limit with some care.

(as) The Ambipolar Singularity n0 - oo n - 0

In their section D. 3, C+K consider the singularity created by the somewhat contra-

dictory limits n 0 - o n - 0. As we have seen, the ambipolar limit is valid only for
dicorylimts o
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3 2
n > nab = no (as 1)

but since

-1/3
nab/no 0 - 0 (eq. 4, p. 60)

as

n - oo,
0

the fraction of the plasma where the ambipolar limit is invalid decreases as n
o

increases.

The terms on the right of equation (e 11) are small for n_ > nab; hence, we can sub-

stitute from (a 2) to get

l+ 2 2 2 n -n
J =n - n + An (as 2) (D. 3. 9)

1+- o o n

1 - 6 1 - 2
T - 36

A-
1+T

(1+±)

We note that the new term is small of order 1/no compared with the first near the center

but large of order 1/n near the wall. A recursive procedure will produce converging

terms at the center, diverging terms at the wall. Surprisingly, C+K expand (D. 3. 9) in

powers of a = (Xd-X) about the singularity at n = 0 (D. 3. 10). This is dangerous because

the series has no validity at its origin.

They now seek a sheath solution, making use of (e 14) which can be written

E 2  ±xd
(1+T)n = a +-- -T + + J dx,

2

where (as 3) (D. 3. 11)

a = n + Tn - (1+) d J dx.
o +o 0

The terms of order n cancel in "a", as can be seen by setting

J = j n sin x/T (as 4)

which yields

a = n + Tn +o- (1+)vn

For v near its ambipolar value,
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= +T + /n (as 5)
1+- 1 o

a = Ts - (l+)v1. (as 6)

C+K now expand (as 3) in powers of , which is correct. The solution (as 3) should

be joined to (as 2) in the region where both are valid, that is, for n > n . C+K do not

do this. On pp. 68 and 69 they equate the power series term by term. This is equivalent

to equating the functions and several derivatives at the origin of the series, that is, at

n = 0; however, (as 2), their (D. 3. 9), does not even approximate the solution at n = 0.

We have carried our approximation (as 4) farther than we should in (as 6) so that this

equation can be compared with the third equation on p. 68 of C+K. Following them and

neglecting Ts , one finds that the two equations turn out to be the same but with opposite

signs. Recursion procedures often give alternating signs when they diverge.

C+K find different signs for v1 in isothermal and active plasmas. The reason for

this is seen in the sign of a (a 6) in the distributed charge formula (a 9). a changes sign

for T = 1/(2+3L). This can be traced back to the sign of 0- in (e 11) and taking the deriva-

tive of the limit formula (a 3) to insert in s'; however, s' is a sharply peaked function in

the ambipolar limit and s' changes sign quickly in the pre-sheath. Thus the joining pro-

cedure is more difficult in the isothermal case and it would be better to use the first

integral (e 13).

W. P. Allis
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B. ION CYCLOTRON RESONANCE IN A RADIOFREQUENCY DISCHARGE

Ion cyclotron resonance has been observed in a rather unique RF discharge. As shown

schematically in Fig. X-5, the discharge is produced by a single electrode that is a

thermionic electron emitter (oxide-coated). The discharge appears to fill entirely a

region, 10 cm in diameter by 20 cm long, formed by electric insulators. The DC mag-

netic field B is uniform within 1 1/2 per cent over this region. Also indicated in
~0

Fig. X-5 are two magnetic pickups; the smaller is enclosed in 8-mm quartz tubing and

measures the AC magnetic field that is perpendicular to B , the larger is wrapped on

the discharge tube and measures the AC magnetic field that is parallel to Bo. Signals

from these pickups are detected and then plotted directly as a function of B on an0
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Fig. X-5. Schematic representation of the system.

x-y recorder. The frequency of the applied voltage is constant, and ion cyclotron reso-

nance is expected when

eB
P 

0
+ M+o

Data obtained in a hydrogen discharge are shown in Figs. X-6 and X-7. The hydro-

gen pressure is approximately 20 i, and the applied frequency is 4 Mc. It is assumed

that the hydrogen is disassociated and thus P+ is based on the proton mass. The curves

obtained from the two pickups are roughly similar and only those for the smaller one

are given here.

In Fig. X-6 the detector is tuned to 4 Mc; in Fig. X-7 it is tuned to 8 Mc. The

response of a wideband detector (10 cps to 10 Mc) showed little or no resonance behavior.

The 8-Mc signal is stronger than the 4-Mc signal. In order to get comparable

responses in Figs. X-6 and X-7, the 8-Mc signal was attenuated 13 db. The light showed

considerable modulation at 8 Mc, little at 4 Mc.

The curves of Figs. X-6 and X-7 are labeled with the applied peak-to-peak voltage.

This voltage varies little with B . In fact, it is essentially the same for a given setting

of the transmitter controls, with or without a plasma. The shapes of the curves depend

on the applied voltage. This is thought to be due to variation in the plasma density. A

similar dependence on the pressure is observed.

It is tempting to relate peaks observed for P+ <1 to plasma resonance of the extraor-

dinary wave propagating across B . The resonance condition for a lossless plasma is

2-1 1 -P2\ M2 +=
a = + - _

where p_ = e Bo/m -, and the approximation applies in the vicinity of ion cyclotron

resonance. A resonance occurring at P+ = 0. 8 would, then, correspond to a = 25. 7, or a
8 -3

plasma density of 1. 3 X 10 cm- 3

It is equally tempting to relate peaks observed for 1+ > 1 to generation of ion cyclotron

waves. The dispersion relation for a lossless plasma is
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Fig. X-6. Receiver response vs magnetic field, receiver tuned to 4 Mc.
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Receiver response vs magnetic field, receiver tuned to 8 Mc.
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2 m 2
2 a - a

n = 1-S (l-p+)(1+P_) M+ P+(P+-1)

for which the approximation again applies in the vicinity of ion cyclotron resonance. If

we take the 20-cm length as approximately X/4, n X 100, since the free-space wavelength

is 75 meters. The loading at = 1. 1 would then correspond to a = 1.4 X 10 , or a

plasma density of 4 X 10 11cm-3

If both resonances are observed the plasma resonance must occur in the outer

regions of the plasma. The existence of the plasma resonance has not yet been verified.

Distinct peaks, however, have occasionally been observed at P+ = 1 and P+ > 1. The

second peak then grows, relative to the first, and moves to higher + as the applied vol-

tage or pressure is increased. This gives some support to the ion cyclotron wave

interpretation.

J. J. Nolan, Jr.

C. ELECTRON CYCLOTRON ABSORPTION IN THE CESIUM AFTERGLOW

A knowledge of the electron-atom collision frequency in cesium as a function of elec-

tron velocity is essential in order to calculate transport coefficients in the thermionic

energy converter, which uses cesium plasma as the conducting medium.

Many experimental measurements have been made of this quantity, no two agreeing

entirely. The disagreement arises from the limited range of electron energies over

which the data were valid, the uncertainty of the electron energy, and the differences

in the techniques of measurement. Recently Stone and Reitz2 have given a theory for the

collision cross section of slow electrons with cesium atoms. The experimental data is

rather widely scattered about their theoretical curve.

In order to obtain a set of data connecting the limited regions of experimentation of

other workers, an experiment has been devised in which the electron-atom collision fre-

quency can be measured over a wider range of electron energies. Preliminary measure-

ments have been made. The wide range of energies is obtained from the afterglow period

of a pulsed DC discharge in cesium. During this period the electron temperature decays

from about 5000'K to 500 0 K. By using the transient microwave radiometer,3 it is pos-

sible to sample radiation emitted by and transmitted through the plasma during a short

interval of time (1,20, 200 or 1000 fsec). The choice of a certain time in the afterglow at

which to sample fixes an electron temperature, which may be measured by using the

radiometer technique. Then by employing a highly attenuated klystron probing signal of

magnitude only one hundred times that of the thermal radiation from the plasma (so that

the probing signal does not heat the plasma), the transmission of the plasma is measured

at this temperature with the radiometer now used as a detector for the klystron
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signal. The klystron signal is propagated through the plasma in a direction parallel to

a DC magnetic field that is applied to the plasma in such a way that when the signal elec-

tric field is of the proper frequency it will interact strongly with the plasma electrons

as they orbit in the magnetic field. The transmission of the plasma is then measured as

a function of the magnetic field and the width of this cyclotron resonance can be related

r--- KLYSTRON

SHIELDING

I 70 db ATTENUATOR

MECHANICAL SWITCH

, _ RADIATION STANDARD

BALANCING ATTENUATOR

FERRITE SWITCH ISOLATOR

ISOLATOR

TUNED CAVITY

LOCAL OSCILLATOR
AND

BALANCED CRYSTAL MIXER

SWITCHING SIGNAL

MICROWAVE HEATING
SIGNAL ( OPTIONAL)

3 db DIRECTIONAL COUPLER

"PULSED CESIUM PLASMA

CAVITIES TUNED TO 5495 mc

PULSE TO CESIUM PLASMA

Fig. X-8. Microwave circuit for transient absorption and temperature measurements.

VACUUM IONIZATION GAUGE

CESIUM RESERVOIR

SOLENOID MAGNET TEMPERATURE CONTROLLED
OIL BATH

ALL DISCHARGE TUBE SURFACES OTHER THAN THE CESIUM RESERVOIR
ARE HEATED WITH ELECTROTHERMAL HEATING TAPES AND THE TEMPERATURES
MONITORED WITH THERMOCOUPLES.

Fig. X-9. Cesium quartz discharge tube and magnetic field configuration.
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to the electron-atom collisions which interrupt the motion of the orbiting electrons.

1. Experimental Arrangement

Figure X-8 shows the microwave bridge circuit that is used to measure transient

temperatures and plasma absorption. The details of the temperature measurement have
3

been described in previous reports. When absorption measurements are to be made,

the radiation standard is turned off, the klystron at the top of the figure is switched on,

and the plasma absorption in the right arm of the bridge is balanced with the attenuator

in the left arm.

The cesium plasma is contained in a 1. 3 X 75 cm cylindrical quartz discharge tube

that is inserted at an angle of 5. 7 through the broad face of a 1 X 2 inch rectangular

brass waveguide (See Fig. X-9). Microwave chokes prevent radiation leakage from the

waveguide. A pulsed DC discharge is used to produce the plasma; the currents and vol-

tages are about 20 ma and 200 v at a cesium pressure of 0. 03 torr. The cesium pres-

sure is determined by the vapor pressure of cesium vapor in equilibrium with a cesium

puddle in a reservoir whose temperature is carefully controlled by an oil bath. The rest

of the tube is maintained ~50 0 C hotter than the reservoir by using electrothermal heating

tapes and thermocouples to monitor the temperature.

2. Theory

The absorption coefficient of a tenuous, waveguide-contained plasma that is longitu-

dinally magnetized may be calculated by using a perturbation theory in which the unper-

turbed electromagnetic field is given by the modes of the empty waveguide. The gen-

eral equations have been given by Bers ; the result of the perturbation calcu-

lation for a, the power absorption coefficient, is

a (=( 2 + r 4
df v dv) (1)

Sc 2 2 2 2 dv2c 1- uccb2 + + c

where

2
n e

p = , - the square of the electron plasma frequencyPo ME '

c = velocity of light

eB
b = -, the electron cyclotron frequency

v = electron-atom collision frequency
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= , radian frequency of the probing wave

v = electron speed

fo = electron velocity distribution in absence of the probing signal

n = electron density at the center of the discharge tube

a = the wider dimension of the rectangular waveguide.

The factor of 1/10 corrects for the fact that the plasma fills only the center portion of

the waveguide cross section. The electron density is assumed to be distributed in the

fundamental diffusion mode across the discharge tube cross section, and the magnetic

field is assumed parallel to the waveguide axis.

The perturbation calculation is only valid provided the plasma index of refraction

does not deviate significantly from one.

A more detailed calculation of a and of the plasma emission coefficient is in progress.

df mvo
When the plasma electrons have a Maxwellian distribution of velocities dv = -kT- f

and the magnetic fields are near cyclotron resonance, a may be written as

( p
a =-- --

4Tm(00 vf v
ccdv

3kTJ +

P = .0275 mm Hg

O T = 7150 K
O T =12800 K
A T =1860

0 
K

V T =2200
0

K

MAGNETIC FIELD ( ARBITRARY UNITS )

Dependence of plasma absorption (aL) on magnetic field for various electron
temperatures at a pressure of 0. 0275 torr.
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The experimental study is based on the measurement of a as a function of o. From

a knowledge of the Maxwellian nature of fo, the measured electron temperature, and the

shape of the resonance of a, it is possible to determine the velocity dependence of vc.

3. Experimental Results

Preliminary measurements of the dependence of a on the magnetic field have been

made for several different cesium atom densities corresponding to pressures up to

0. 059 torr at an electron temperature of 2200 0 K; similar measurements have been

made for various electron temperatures at a pressure of 0. 0275 torr.

Figure X-10 gives the data taken at fixed pressure and shows aL(L ~ 20 cm is the

effective length of the discharge tube in the waveguide) as a function of magnetic field.

The change in the shape of the resonance with temperature reflects a change in the veloc-

ity dependence of v . Figure X-ll shows the results at fixed temperature, and the half-

width of aL is plotted versus cesium atom density. At higher pressures the half-width

is linear with density. The nonlinearity at low densities is caused by magnetic field

inhomogeneities and by Doppler broadening resulting from electron thermal motion along

the magnetic field lines.

An effective collision frequency Veff may be calculated from the half-width expressed

in units of frequency and plotted against electron temperature to gain a qualitative feeling

for the energy dependence of the real collision frequency. This effective collision fre-

quency, evaluated for a density of cesium atoms corresponding to 1 torr and 273 0 K,

is plotted in Fig. X-12 and shows a tendency to decrease with increasing temperature.

To make a satisfactory comparison with other experiments, the correct velocity

dependence of vc must be determined by assuming a polynomial velocity dependence of

v , fitting the resonance curves of Fig. X-10, and then calculating the collision proba-

bility Pc = /v. We can, however, calculate Peff = veff/(v2)1/2 and compare this with

other experimental data. Peff = P c only when vc is independent of electron velocity. The

results of this approximation are plotted along with the experimental results of others in

Fig. X-13. If a more quantitative analysis of the data were made, stronger conclusions

might be drawn. At present, the great variation in the experimental data serves as a

stimulus to further work.

Three other points are worth mentioning at this time. For all measurements of this

experiment the electron velocity distribution was ascertained to be Maxwellian by

checking that the measured electron temperature showed no resonance at cyclotron fre-

quency.5 This required operating at peak values of aL as large as one (see Fig. X-10).

The condition that the plasma index of refraction be -1 for all values of wb is satisfied
2 2

p L P
provided that << 1. For a velocity-independent vc, if we use Eq. 2, (aL)max~ 20c

bc c
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so that the condition may be written as

2
p (aL) 20c /

- max = (aL)max << 1. (3)
2%vc L 2% 'max 2TrL /

But X = 6 cm and L = 20 so that for (aL)max = i, this quantity is ~1/2. In spite of this,

no change in the symmetry of the lines was found for the large values of aL.

The third point is that a microwave heating field will be employed to widen the spec-

trum of available electron temperatures in the afterglow. The experimental provision

made for this is shown in Fig. X-8.

J. C. Ingraham
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D. RADIOFREQUENCY CYCLOTRON CONFINEMENT

Work has been extended on the theory of RF confinement at exact ion cyclotron reso-
1 2

nance, discussed by Whitehouse, Kulinski, and others. Their theories do not explic-

itly treat the way the plasma modifies the fields. The present work has made it possible

to estimate the penetration of an RF field into a plasma in the geometry discussed by

Whitehouse, and then to compute the modifications to the RF confinement.

A two-dimensional geometry is used to make the problem tractable. (See Fig. X-14.)

The conductor is excited antisymmetrically by the surface current J, which produces a
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CONDUCTOR-- J///////////////
B
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Fig. X-14. Cross section of plasma slab and conductor.

magnetic field H out of the paper. The problem is to determine the penetration of the

magnetic field into the plasma whose dielectric constant may be extremely large. We

assume a diagonal form of the dielectric tensor but allow K to be different from KIl.

This problem would be very combersome if handled in terms of the standard E modesz
but becomes very simple if handled in terms of H modes. Using Maxwell's equations

we then arrive at the following equations

8H
y

- iw K E (1 a)8z olx

8H
y

x iwEoK E (Ib)

82H 82H
1 Y 1 y 2

+ + H 0 (2)K 8z 2  K x 2  2  y '

where the first two will be used to find E and E once H is known. We assume an H
x z y y

of the form

H H ikz+it eipx inside the plasma

H :He tx

S Le - x  outside the plasma

Using the boundary conditions and the antisymmetric excitation we arrive at the deter-

minantal equation.

P
6 tanh 6a = -tan P(b-a) (3)

K11
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This equation determines k since both 6 and p are functions of k and W by (2). If we

now assume that p(b-a) << , we can expand the tangents on either side of (3) and arrive

at an approximate equation for k,

k b (4)
c a

The condition for validity of Eq. 4 can be expressed in another form

pS(b-a) << T. (5)
c 2.

This approximate value for k will be useful for interpreting the general field solu-

tion inside the plasma. For b < x < a,

H = J cosh 6a [cos p(x-a) +tan P(b-a) sin p(x-a)] cos kz (6a)
y

E P J cosh 6a [sin p(x-a) -tan p(b-a) cos p(x-a)] cos kz (6b)
z K 11 iwE

kj cosh 5a
E = iw K [cos p(x-a) + tan p(b-a) sin p(x-a)] sin kz (6c)

It is clear that H and E are symmetric about the line x = b, while E is antisymmetricy x z
about this line. These equations coupled with the approximate determinantal equation

now answer the question whether or not H penetrates into the plasma slab. Even though

a large KI may shield the plasma from Ex, the magnetic field H will penetrate if p(b-a)

is considerably less than. From (6b) it can be seen that p is associated with an E
z

field. Since this field is parallel to the plasma boundary, it cannot be shielded out by

the plasma. It is the E field that allows the magnetic field to penetrate the plasma.
z

Returning now to the problem of the particle's orbit treated by Whitehouse, we use

Eq. 6a and 6c in the limit p(b-a) - 0 to specify the H and E . This assumes a thin slab
y x

of plasma. Using these fields we derive the following equation for the z velocity of a

particle

2

z' + +( i T zi) 2 z + K1  z = 0, (7)

which differs from Whitehouse's Eq. 7 only by the presence of K . At resonance the

equation for the z motion is the same, giving identical z reflection. However, the

transverse energy that a reflected particle picks up during reflection will be quite dif-
e 3

ferent from that computed by Kulinski for reflection in a plane wave. He finds that the

ratio of the transverse energy, at the point where the particle's Z motion just stops,
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to its initial z energy is approximately 4 B For typical values of B and BRF'\BRF/ o0 BRF'

this ratio can be extremely large and puts a severe restriction on the design of a simple
1

experiment. Our theory indicates that E will be approximately K times the free space

E that Kulinski considers, and therefore a particle can be reflected without an extremex
increase in its transverse energy.

P. W. Jameson
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E. DEFINITION OF THE "RAY REFRACTIVE INDEX" AND ITS ROLE IN

THE RADIATION IN ANISOTROPIC PLASMAS

Studies of the flow of radiation in inhomogeneous, dispersive media are based on a

classical theorem of geometrical optics by Clausius. This theorem can be stated as fol-

lows: Consider two points 01 and 02 of the medium (Fig. X-15), lying within elementary

areas dal and da 2 , respectively. Let R be the distance between 01 and 02 and let the

NORMAL

SdS22

01 10 2
-l w- - 1

Iw2

da d - da2 NORMAL
1

Fig. X-15. Rays between two points, 01 and 02, at which the respective

intensities of radiation are Iwl and I 2'

normal to dal make an angle 1 with O1O2 , and the normal to da 2 make an angle 2 with

010 2 . The distance R is taken to be large compared with dal and da 2 so that all pencils

of radiation passing through a point of dal and filling da 2 have essentially the same solid

angle d 1 ; similarly, dQ 2 is the solid angle of every pencil of rays passing da 2 and

filling area dal . Then if n 1 and n 2 are the refractive indices at 01 and 02, as a conse-

quence of Snell' s law of refraction,

2 2
n cos 1 dald21 = n2 cos (2 da d

or

n cos 2 dad = constant along the ray. (1)This is Clausius's theorem. The theorem is not valid, however, in anisotropic disper-sive media. Nevertheless, one may write

n cos dadQ = constant along the ray. (2)r

Here, the quantity n r plays the role of n in isotropic materials. For lack of better term-

minology, we call nr the "ray refractive index."

It is found that nr is related to n and to the magnitude of the group velocity w through

2 2 w dk /8 n \
r c d--\-2 / , , (3)
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MAGNETIC FIELD
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Fig. X-16. Direction of wave vector k and of group velocity vector w, at a point
in the medium. The elementary area, da, across which the flux of
radiation is considered, is taken to lie in the xy plane.

where d2 = sin ddl is the elementary solid angle about the ray direction, and d2 k

sin 0 ded is the elementary solid angle about the wave-vector direction with which the

bundle of rays is associated. (See Fig. X-16.) There is a set of equations like (2) and

(3) at a point r of the medium for every independent solution (that is, characteristic

mode) of the dispersion equation

= c(k, r).

Note that nr is zero for all ray directions associated with angles 0 and 4 for which

k(o,4,) is imaginary.

In the case of a plasma immersed in a magnetic field B , n is independent of the

azimuthal angle p, if the direction of B is chosen as the z axis of the polar coordinates

z, 0, 4. One then finds that

tan ( -O) = Jn"
n -6 

o
c 1 n2 1/2 ( 5)

(n n C

05- w ) 0

and

dQ = -
sin 0

(an2 sin 

an 21/2j

with the result that (3) becomes
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1 + an 2 1/2

2 2 1 n W cO
n = n sin 8 (7)

cos O + sin 0

a + I n)2 1/2
L r-n ao w]

This formula holds both for electromagnetic and longitudinal (electrostatic) waves. When

the medium is isotropic, nr reduces to n.

The "ray refractive index" appears, often in disguised form, in the work of many
1-4

authors (in particular, Rytov and Mercier) who have engaged in the study of thermal

and nonthermal radiation in plasmas and other anisotropic media. Before examining nr
in more detail, we summarize some of the more important results.

The results are all based on the following assumptions. The scale length over which

n varies appreciably must be large compared with the wavelength in the medium. Thus

(i) waves can be considered locally as plane waves satisfying the dispersion equation (4);

(ii) the characteristic modes of propagation are not coupled to one another; and (iii) there

are no waves reflected at gradients of n.

If there is any damping of the waves in the medium (k complex), then this damping

must be very weak. This allows one to neglect damping in calculating ray trajectories

and in deriving equations like Eqs. 2-7. It also allows one to define unambiguously quan-

tities like group velocity and energy density of radiation.

1. Equations of Transport of Radiation

In a perfect dielectric which does not emit, absorb, or scatter radiation, the specific

intensity I obeys the equation

I
2 = constant along ray, (8)

n
r

where I is the energy crossing a unit area per second per unit solid angle per unit rad-

ian frequency interval for the characteristic mode in question. Equation 8 is derived

from the equations of energy conservation and by application of Eq. 2.

For a medium which both emits and absorbs,

nr2 d = j- aI, (9)
r ds 2 O W

where j and a are the emission and absorption coefficients, respectively, and ds is

an element of length along the ray direction. The coefficient a can be determined from

the dispersion equation (4) and from Eq. 5 through
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a (-2 Im k) cos ( -O). (10)

2. Black-Body Radiation

a. Energy Density

The spectral energy density of black-body radiation for each characteristic mode in

an anisotropic medium is given by

co 21o ak dQ?

ow c 2
=T- n d 2,

Tr w r

where u , the energy density in vacuum (for one polarization), is

_ 3 [e ti/K-1] 1 (12)

o 2 2 2c 3
2ir c

b. Intensity

Since in general uu and I are related through

u = -- d , (13)

it follows from (3), (5), (6), and (11) that the black-body intensity, denoted by B , is

2
B =nB , (14)Co r ow

where B , the black-body intensity in vacuum (for one polarization), is

B - i 3  O/KT 1 ]- (15)
o 8 38 28

TT c

c. Kirchhoff's Law

In thermal equilibrium, Kirchhoff's law relates j, cc , and B through

jW 2
-= n B (16)a r oc

When thermal equilibrium does not exist, jw and a may be determined separately

in terms of the particle momentum distribution functions f(p) and f(p'), where p

and p' refer to the two states that participate in the emission of a quantum hw.

Thus
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j = 11 N (p') f (p') d3 p '

(17)

-3 3
a = wA(p) f(p) d - (p') f (p') d p',

where 9 ,p 'wA and - S are the differential coefficients for spontaneous emission, absorp-

tion, and stimulated emission, respectively, and are related (much as Einstein's A and

B coefficients) through

2 _o__-
n(p') = nr 3 2 S(')

(18)

1wA(p) d3 p = WS(p') d3 p'.

Individually, these coefficients have the property that

c 2
S w r

c

TwA w (19)

c
WS w

3. Polar Diagrams of (1/n) and (1/n r )

Several geometrical representations are used in describing wave propagation in an

anisotropic medium. One such representation is in terms of the "phase velocity surface,"

which is a polar plot of the phase velocity

V= - = c (20)
k n

as a function of the angle 0. From Eq. 20, this is equivalent (except for a constant of

proportionality) to a polar plot of (1/n). Much use of such diagrams has been made by

Allis, Buchsbaum, and Bers 5 in classifying waves in anisotropic plasmas. In the spirit

of this classification one may also inquire into the behavior of the ray refractive index

and thus obtain information about the angular distribution of radiant energy. (See, for

example, Eqs. 8 and 14.) Figure X-17 shows polar plots of (1/n), which are the same

as those of Allis, and polar plots of (1/n r). The results were derived from the compu-

tations by Rytov. They apply to the case of a cold plasma, (thermal motion of electrons

is neglected) with stationary ions.

Figure X-18 shows the location of the polar diagrams in relation to a Cartesian plot

of the variables 2= / versus a2 = ( /w) 2, where wo and wo are the electronc p c p
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cyclotron and plasma frequencies, respectively. We note that all polar diagrams of

Fig. X-17 lie on a diagonal passing through the origin of Fig. X-18. This describes a

10

S 2

9 10

92 = 9 /2
8 4

7

6

3 5/

4

9
3 *

8

2-

Fig. X-18.

0 2 3 4

a2 _ ( 2 / )
2

The points numbered 1,2, 3 ... 10 refer to the location in the a 2
plane of the polar plots shown in Fig. X-17. Polar plot 11 is outside
the range of this figure. The significance of all the other straight

lines and curves has been discussed by Allis, Buchsbaum, and Bers. 5

physical situation in which the plasma properties oa and w are held fixed and the fre-
p c

quency of observation w is varied from low frequencies (upper right) to high frequencies

(lower left) of Fig. X-18.

For each value of(a 2 , p2) there are two polar plots of (1/n) and (1/n ,). They refer

to the two independent electromagnetic waves, called the ordinary and extraordinary

in ionospheric studies, and denoted below by superscripts (1) and (2).
2

For a given direction of wave propagation, the magnitude of n is proportional to the
2 r

radiation intensity. Also, the relative magnitudes of n for the two waves is a measure

of the degree of polarization of the radiation. Define
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(1) (2)

Degree of polarization =
(1) (2)I ( ) + I (0)

then if follows from (8) or (14) that

[() () 2 - n(2)()]2

r r
Degree of polarization =

(1) (2) 72n(l)() 2+ n(2) (0) 2

r r

G. Bekefi
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F. APPLICATION OF PARALLEL PLATE GEOMETRY TO THE REFLECTION

OF GUIDED WAVES FROM A MAGNETIZED PLASMA

Experimental studies of the reflection of guided waves from a longitudinally mag-

netized plasma column were presented in Quarterly Progress Report No. 76, pp. 81-86.

The power reflected during the afterglow of a pulsed argon discharge tube inserted in a

section of S-band waveguide was studied as a function of magnetic field, electron den-

sity, and incident frequency. In conformity with the theory of propagation of electro-

magnetic waves in cold plasma, the condition for a maximum or minimum in reflection
2

C2 2
2 P 2 W

amplitude depended only on the dimensionless parameters a - 2 and p c2. Further-

more, in the a2, -plane, the locus of a given maximum (or minimum) formed a fairly
2 2

straight line starting at the point a = 0, = 1 and extending in some cases as far as
2

a = i.

It was suggested at the time that reflection maxima could arise from constructive

interference of waves off the two faces of the plasma region so that the loci plotted in

2 2plane would correspond to curves of 2 ) constant, where kz is the
the a , P -plane would correspond to curves of kz (a , P ) = constant, where k is the
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wave number along the waveguide. Further experimental studies have shown, however,

that the reflection characteristics at low densities and magnetic fields are determined

primarily by a cavity mode that exists in the empty waveguide. The cylindrical metal

sleeves or "chokes" which surround the plasma column outside the guide and prevent

radiation losses, provide a chamber wide enough to support a trapped standing wave.

The electric field of this mode is perpendicular to that of the normal guided wave and

so is cut off in the region beyond the chokes. Resonances of the empty "cavity" have

been found at frequencies of 2534, 3067, and 3480 Mc. At other frequencies an incident

propagating wave is undisturbed but, just on either side of resonance, the impedance

mismatch is considerable. This explains the double peaks in reflection observed near

these frequencies at low electron densities.

The problem of understanding the reflection characteristics at high densities and at

magnetic fields close to cyclotron resonance still remains. In this region, the plasma

column itself could have an appreeiable index of refraction and become the principal

reflecting agent. Indeed, the observed effect is a series of equally spaced maxima and

minima strongly suggestive of an interference pattern. Partial agreement may be
22p2 =k2 2 2l

obtained by simply using the relation k (a 2, ) = constant, where k 2 = k2 = - az z r 2 I'
c

that is, by considering a right circularly polarized wave propagating along the magnetic

field. Unfortunately, pure circular waves cannot exist in a waveguide with perfectly

conducting walls and a less more realistic model is required. The simplest geometry

that includes guide effects is that of two parallel conducting plates infinite in extent and

uniformly filled with homogeneous plasma. Consider the applied magnetic field, B , to
o

be in the z-direction, which is parallel to the plates. The field equations governing this

case have been presented by A. Bers. Briefly, assuming the longitudinal and time
i(wt-kzz)

dependence of the fields to be e , a fourth-order scalar wave equation involving

only transverse coordinates is obtained for the z-component of either E or H. The

particular advantage of the parallel plate geometry is that the wave functions are merely

sums of sines and cosines and one can turn his attention immediately to the dispersion

relation.

The solutions split into two separate clasese, symmetric and antisymmetric with

respect to a plane midway between the plates. For the symmetric case, application of

the condition that the tangential component of E vanish at the walls yields the dispersion

relation

fl 2 cos (p 1 d) sin (p 2 d) - f 2 p 1 cos (p 2 d) sin (pld) = 0 (1)

Here 2d is the plate separation, pl and p 2 are transverse wave numbers given by the

two roots of
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4 + k (K + K 2 - k2 ( 1 p2 p k2K -k2 kK2 -k2) = 0, (2)
o 11 K / z K o r z 0 z

and the f. are defined by
1

o 2Ik2K k P

2oi 

za i

f. -
K kzK koK1-k2 k nk 2

rr z o1 2 u

In the above equations present a rather involved relation betweenas the frequency variable.
c

ous dielectric coefficients related to a and r by

22
2 22a

to consider the limiting case in which a K = 1 - but the ratio 2 is arbitrary.
r 1r ' 1- 2  I 2

The above equations present a rather involved relation between the four variables

a, , ko , and kroughly to thIn principle, numerical results can be obtained by fixing the values

of three of these parameters and varying the fourth until Eq. s is satisfied. Usually an

iterative scheme of successive approximations based on the slope of the function in

question is employed, but for the method to be effective, a reasonable initial guess as

to the approximate location of a desired root must be made. This is especially true in

the present problem with its discrete spectrum of transverse eigenfunctions providing

an infinitude of roots that must be distinguished. In order to simplify the dispersion

relation further and understand the various types of propagating modes, it is convenient
2

2 2 2 2 ki 2 2k -
to consider the limiting case in which a - 0, P-- 1 but the ratio a2 = is arbitrary.

p12 =k 2-k 2 and 2 -0 Z (3)
The use of this limit is prompted by the fact that the observed loci of reflection maxima

correspond roughly to the condition n = constant. The dielectric coefficients then take

on the limiting values

Kr = 1 + 2,, K p = K = 1, K = 1 + r] and K X = -in.

Equation (2) for the pi becomes

P4 - [k 1+ 1+2]- k2 1 +1 p2 1 k2(l+p)_k2 k2-k2 = 0

which factors directly giving

2 2

p = k 2  k2  and Pz z (3)
1l o z z 1+T]
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Finally, it turns out that

-k 2  -k

fpz k 1and f
zz 1

so that Eq. (1) simplifies to

k2
pl cos (p1 d) sin (p d) +- p cos (pzd) sin (p 1 d) = 0 (4)

k
o

with pl and p 2 given in (3). A similar relation with the sines and cosines interchanged
2 2

applies to the antisymmetric case. In the regions where either pl or p 2 is negative,

hyperbolic trigonometric functions are used. However, if both pl and p 2 are pure

imaginary, Eq. 4 becomes

k
2

pl cosh (I pl d ) sinh (Ipz d) + IpZ cosh (Ip 2 d) sinh ( pl d) = 0,
k
o

which has no solution for real k and k
o z

Figure X-19 shows a diagram of the 1r, kzo -plane indicating the areas where

propagation is possible. The line rl = 0 corresponds to the empty waveguide and the line
KK

r = -1 to the plasma resonance condition - - = . The left boundary provides
K 1  1 + q

the cutoff limit k z = 0, and the line (k) = 1 represents waves traveling with a phase

velocity in the z-direction equal to the speed of light. All modes for -1 < rl < 0 approach
2 2

this limit as k C- . Modes for rl > 0 are seen to approach the limit k - (1+2rl)k but
o z o

for rl< -1, the ratio kz/ko can become arbitrarily large.

The cutoff limit kz/ko - 0 is easily taken. For symmetric modes Eq. 4 becomes

pi cos (p 1 d) sin (p 2 d) = 0 and yields two solutions

cos (p d) = 0, or k d = (2n-1) '
1 0o z

and n = 1, 2, 3, ...

sin (P2d) = 0 or kd = l+ro 1+2 1 n

The first solution corresponds to the TM or "ordinary" cutoff whereas the second gives

the TE or "extraordinary" cutoff condition.
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With the aid of a digital computer one can now proceed as follows: For a given value

of -q (starting at k z = 0 and ko = cutoff limit of desired mode) kz can be increased by

-0

-1

P1 ' P2
BOTH REAL

1.

P1
IMAGINARY

(t

( kz/, ko )2

/ P1 P2

P2 BOTH IMAGINARY
. IMAGINARY NO PROPAGATING

MODES

- ------------ - -

P1 , P2 P1
BOTH REAL IMAGINARY

Fig. X-19. Properties of pl and p 2 in the

-1, (kz/kd) 2-plane.

increments and the iterative process employed to trace an entire curve relating k to k .
o z

Such a curve is not a proper dispersion relation because a and P are not varied along

with k , but a collection of such curves provides the necessary starting values for pro-
o 2 2 22

ceeding away from the limit a = 0, = 1 out into the rest of the a , p -plane.

Typical results of this method are shown in Figs. X-20 and X-21 where curves cor-

responding to various values of k are presented for a fixed value of k . These should
z o

be compared with the experimentally observed loci of reflection maxima given in the

previous report. 2 Figure X-20 is based on the lowest antisymmetric mode, which has

the cutoff properties of a TE wave. No relation between the traces in Fig. X-20 and the

experimental ones is evident. Figure X-21, which illustrates the lowest symmetric
2

mode, is far more encouraging. At small values of a , these curves exhibit all the

properties of the observed loci including the very crucial one that no curves lie in the
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Fig. X-20. Lines of constant k and k for the

antisymmetric mode.

Fig. X-21. Lines of constant k and k for the
o z

symmetric mode.
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region bounded by a +p2 = 1 and P2 = 1. The only shortcoming is the bending of the

curves as a2 becomes significant; no such curvature was found in the experiment. In

this connection it should be pointed out that the reported electron density was that of the

plasma column itself and hence was greater than an average taken over the waveguide

cross section. Furthermore, plots similar to those shown in Fig. X-20, taken at var-

ious values of k , show that as k increases the curves are straight over a larger range
2 o o

of a before bending.

B. L. Wright
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