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A. A SPECIAL CLASS OF QUANTIZER-INPUT SIGNALS

In a previous study,1 the quantizer structure has been restricted in one case to have

constrained transition values, and to have constrained representation values. (For

nomenclature refer to Fig. XIII-1.) In each of these two cases sufficient conditions have

been found on the error-weighting function that the quantization error surface had a

x 2

y Q(x)

OUTPUT

I
I

IIx

x INPUT
N-1

Fig. XIII-1. Input-output characteristic of the N-level quantizer.
The x. are the transition values and the yi are the

representation values.
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(XIII. STATISTICAL COMMUNICATION THEORY)

single relative extremum, a relative minimum. In a recent paper,2 P. E. Fleischer has
2

constrained the error-weighting function to be g(e) = e . He then derived a sufficient

condition on the amplitude probability density of the quantizer-input signal so that the

associated error surface will also have one relative extremum, a relative minimum.

Fleischer's sufficient condition is expressed by the inequality

a 2
ln [px ) < 0. (1)

where px( ), the amplitude probability density of the quantizer-input signal, is

required to be continuous. In order to derive this condition, he determines a

sufficient condition on the matrix of second partial derivatives of the quantiza-

tion error so that all relative extrema will be relative minima. This condition

is equivalent to requiring that the matrix of second partials be positive definite.

In determining the condition for which this matrix is positive definite Fleischer
3

used the row-sum condition. The condition that is obtained guarantees that the

error surface will have only one relative extremum and that it will be a rel-

ative minimum.

In a typical practical problem involving experimental data px(g) will be specified

numerically, rather than by an algebraic expression. Since numerical differentiation

cannot be accurately accomplished, this particular form of Fleischer's condition cannot

be used to determine whether or not px(a) has a single relative extremum. Our primary

purpose here is to transform (1) into an equivalent condition that can be used to deter-

mine whether or not a specific numerically specified amplitude density satisfies

Fleischer's condition.

We begin by recalling the definition of a strictly convex function.

A function f(x) is strictly convex if and only if

f[aa+(l-a)b] < af(a) + (1-a)f(b), (2)

for all b > a and all a such that 0 < a < 1. It can be determined, for example, by graph-

ical consideration of the implications of Eq. 2, that strictly convex functions also satisfy

the inequality

2

- 2 [f(x)] > 0. (3)
8x

Therefore, comparing Eqs. I and 3, we see that Fleischer's condition is equivalent to

requiring that the function

b(9) = -ln [px()] (4)
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be strictly convex. Observing that the strictly convex criteria (2), may be alternatively

written

e- [aa+(1-a)b] >e-[a (a)+(1-a)j(b)] (5)

for all b > a and for all a so that 0 < a < 1, we can write for (4)

Px a) = e- (5

and, by direct substitution of (6) into (5), have

px[aa+(1-a)b] > [px(a)]a[px(b)](1-a)

If this inequality is satisfied for all b > a and all a so that 0 < a < 1, then Fleischer's

condition is satisfied.

An examination of Eq. 7 indicates several properties of the amplitude probability

densities which satisfy this condition. First, if we consider the case for which Px(a) =

Px(b), we find that (7) can be written equivalently as

STRAIGHT LINE

Px (b)
= B Px (a)

Px (a)

Fig. XIII-2. Illustration of Eq. 7 for Px(b) = p x(a). (The figure is drawn for P = 2.)
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px[aa+(1-a)b] > Px(a) = px(b)

or

px( ) > Px(a) = px(b) (8)

for a < < b. This implies that the px( ) satisfying this condition must have only one

relative extremum and that this relative extremum is a relative maximum. Second, if

we consider the case in which

Px(b) = PPx(a),

Eq. 7 becomes

px( ) > (1-a)px(a )  
(9)

for a < J < b. From a graphical examination of this condition (Fig. XIII-2), we see that

the px(a) that satisfy Fleischer's condition possess a type of mild convexity property.

In conclusion, we note that Eq. 7, the condition equivalent to Fleischer's condition,

is one that can easily be utilized, for example, by means of a digital computer search

program, to determine whether or not a given numerically obtained amplitude probability

density satisfies Eq. 1.

J. D. Bruce
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B. OPTIMUM HOMOMORPHIC FILTERS

1. Introduction

In this report optimum homomorphic filters will be discussed. The problem can be

stated as follows: two signals s (t) and s 2 (t) are combined according to some rule,

denoted o. We wish to determine the optimum homomorphic system from the class having

o as both the input and output operations such that the error between the output and the

desired output is minimized. Hence, we wish to select a nonlinear system from a speci-

fied class of nonlinear systems which is optimum according to some error criterion.
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The error criterion that will be used depends on the class of homomorphic systems

under consideration. Specifically, the error criterion to be associated with any partic-

ular filtering problem will be restricted to be the norm of the error vector in the vector

space of system outputs. This will guarantee that the error criterion satisfies the prop-

erties that we associate with error criteria such as mean-square error or integral-

square error. Since the norm that we associate with a particular vector space is not

unique, this restriction still permits flexibility in the specific error criterion that we

select and still affords analytical convenience.

Our approach is to consider the meaning of the error criterion on the output space

in the light of the cascade representation for homomorphic systems. We shall show that

the characteristic system to associate with the class can be chosen in such a way that

minimization of the error is equivalent to minimization of mean-square error or

integral-square error (the choice depending on whether the system inputs are continuing

or aperiodic) at the output of the linear portion of the cascade representation. When the

characteristic systems have been selected, the choice of the optimum system reduces

to a choice of the linear system in the cascade representation.

2. Linear Filtering Problem

The linear filtering problem, considered from the vector-space point of view, con-

sists in choosing a linear operator on the space, which will separate a given vector from

a linear combination of vectors in the space. When the vectors represent time functions,

with vector addition as the algebraic addition of the functions, we usually impose addi-

tional constraints such as realizability and time invariance of the system represented

by the linear operator. The primary aspect of the vector-space interpretation of

filtering is that it implies the determination of a linear transformation for which the

range is a subspace of the domain. In the general case, for which the linear transfor-

mation corresponds to a homomorphic system, the output space is a subspace of the input

space. On this basis, it is clear that the classes of homomorphic systems which are of

interest in this discussion are those for which the input and output operations are the

same.

Consider a vector space V. Let v 1, v 2 . . . . . vn be n vectors in V, and let v be a

linear combination of these n vectors, that is,

n

v = akvk'

k=l

A necessary and sufficient condition so that there exists a linear transformation T. on

V such that

T(v) = a.v.
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for all j, is that the set of vectors v I , v 2 ... , vn be linearly independent.1 When

restated in terms of linear systems, this means that there is always a linear system

that will filter an input from a linear combination of inputs, provided only that the inputs

that have been combined are linearly independent. This can also be interpreted to state

that if the vectors v I , v 2 . . .. . vk are chosen from independent subspaces of V, then

each of the vectors in the linear combination can be separated from the vector v. The

implications of this with respect to linear multiplexing have been discussed by Zadeh and
2

Miller. The existence of the linear transformation T. does not, of course, guarantee

realizability or time invariance of the associated linear system.

When signal separation cannot be performed exactly because the vectors do not lie

in independent subspaces or there are additional constraints to impose on the transfor-

mations, then an error criterion must be selected on the basis of which the optimum

transformation can be chosen. When an inner product is defined on the vector space,

this error criterion is generally selected to be the length, or norm, of the error vector.

This choice is based on two considerations: (i) it is meaningful as an error criterion;

and (ii) it is analytically convenient.

The error vector is defined as the vector sum of the desired output and the inverse

of the actual output. That is,

ve = Vd + (-Vo ),

where ve is the error vector, vd is the vector representing the desired output, and vo
is the vector representing the actual output. The vector (-vo) represents the inverse

of v o . For example, if sd(t) is the desired output, so(t) is the actual output and vector

addition is the product of the time functions, then the time function corresponding to the

error vector will be

e(t) = sd(t)/so(t).

When an inner product is associated with the vector space, the norm of a vector is

taken as the positive square root of the inner product of the vector with itself. The use-

fulness of the norm of the error vector as an error criterion arises directly from the

algebraic properties of the norm. Specifically, let (v l , v 2 ) denote the inner product of

a vector vl with a vector v 2 . Then for any vectors v l , v 2 , and v 3 in V and for any sca-

lar c in the field associated with V, the properties of an inner product require that

(1) (vl' ,v 2) = (2,v).

Here, the bar denotes conjugation.

(2) (vl+V2' v 3)=(V 1 I V) + (v2' v 3 )

(3) (cv1',v 2 ) = c(v 1 ,v 2)

QPR No. 77 250



(XIII. STATISTICAL COMMUNICATION THEORY)

(4) (v l' v 1 ) > 0 if and only if v 1 is not the zero vector.

The norm of a vector v denoted v 1 in an inner product space is given by

v 2 = (v, v).

It follows from properties (1), (2), (3), and (4) that

(1') jv > 0 if and only if v is not the zero vector

(2') v 1 +v 2  - v 1  + 21

(3') Icv 1  = c v 1l•

From property (1') it is clear that any norm for the error vector satisfies the fun-

damental restriction that we would like to impose on an error criterion. Specifically,

it guarantees that positive and negative errors cannot cancel, since v = 0 implies

that the actual output and desired output are equal.

3. Optimum Homomorphic Filters

The cascade representation for the class of homomorphic systems having the opera-

tion o as both input and output operations is shown in Fig. XIII-3. The inputs are

restricted to constitute a Hilbert space with an orthonormal basis, under some inner

product, and the set of outputs to constitute a subspace of the vector space of inputs. The

cascade representation is derived by mapping the input space linearly in a one-to-one

manner onto a space in which vector addition corresponds to algebraic addition. A linear

operation is then performed on this space and the resulting outputs are mapped onto the

output space, which is a subspace of the inputs, by means of the inverse of the system

a . I wish to show first that if L is chosen on the basis of any error criterion that is a
o

norm on its output space, then the over-all system will be optimum under some error

criterion that is a norm on the output space of the over-all system. This conclusion is

based on Theorems I and II which follow.

THEOREM 1: Let V and W denote two inner product spaces, and T denote an

invertible linear transformation between them. The inner product of two vectors v. and
1

vj. in V will be written as (v i , v.), and the inner product of two vectors w. and w.j in W

as [w., w ]. Then the inner product [w., w.] in W can be taken as

[w, w.I = (T'(w.), T 1 (w.)

or equivalently,

[w., w.] = (v i , v.), (1)

where
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-1
v. = T (w.)1 1

and

-1
vj = T (w.).

PROOF: We need only show that the inner product on W satisfies properties (1)-(4),

as required of an inner product.

Property 1: [w 1 ,w 2 ] = (v 1 ,v' 2 )

[w 2 ,w] = (v 2 ,v 1 ).

But (v 1 ,V 2 ) is an inner product of V; hence

(v 1 ,v 2) = (v 2 ' v).

Therefore

[w 1 ,' 2 ] = [w 2 ' 1 ].

Property 2: [w 1 +W2' 3] = (v 1+V2 , v 3 ),

since T-1 is linear, and therefore

T-1 -1 -1
T- (w 1 +w 2 ) = T (lw1 ) + T-l (w2 ).

But (v+v2',v3 ) = (v 1 ,v 3 ) + (v 2 ,v 3).

Also, [w 1 , w 3 + [w 2 , w 3 = (v 1 ,v 3 ) + (v 2 ,' 3 );

[wl+w 2 , w 3 ] = [w 1 ,w 3 ] + [w 2 , w 3 .

Property 3: [cwl w2 ] = (T-'(cwl),T'-(w )

= (cT-'(wl), T-l(w2)

= (cv 1 , 2 )

= c(v 1 , v 2 ).

Therefore

[cw 1 , w2 ] = c(v,' V2)

QPR No. 77
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[cwl , w 2 ] = c[w,' w2 ]

Property 4: Since T is invertible and linear,

T- (w) = 0 if and only if w = 0.

By definition of the inner product in W,

[w, w] = (T-l (w), T-l(w)).

But (T-l(w), T-(w)) = 0 if and only if T-l (w) = 0, since the inner product in V satisfies

the required properties. Consequently,

[w, w] = 0 if and only if T-l1(w) = 0

which in turn requires that

[w, w] = 0 if and only if w = 0.

THEOREM 2: Let V and W denote two Hilbert spaces with orthonormal bases. Let

(va, b) denote the inner product of any two vectors va and vb in V, and [w c , Wd] denote

the inner product of any two vectors we and wd in W. Then, an invertible linear trans-

formation T can always be defined which maps V to W in such a way that

[Wa, wb] = (T-'(w T1(wb))

S(va', v b )

for any vectors wa and wb in W.

PROOF: Let v l , v 2 , ... denote an orthonormal basis in V, and w l , w2, ... denote

an orthonormal basis in W. Consider any vector v in V which, in terms of the basis

in V, is

v = (v, v k ) v k
k=l

Then the transformation T will be defined as

00

T(v) = (v,vk) wk.

k=1

It has been shown that this transformation is linear and invertible.3 The proof is

omitted here to avoid a discussion of the convergence of the summation in Eq. 2. Now,

consider any two vectors va and vb in V, and let T(v a ) = wa and T(vb)= wb. The

vector va is expressible as
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a=
k=1

(va' vk) Vk

and the vector vb is expressible as

(vb' vk) Vk'

Hence, T(v a ) =w a (V ' k)
k=1

of wa and wb is, then,

wk and T(vb) = wb
S (v b ,vk) wk. The inner product

k=1

(v a ' vk) wk, vb, v r ) r
r=l

(v a , Vk)(v r , Vb)[wk' Wr]'

But the set w 1 , w 2 , ... is orthonormal in W; and hence

I k= r

[Wk' r] 0 k

Therefore

[w a , wb] =

k=1
(v a , Vk)(vk , Vb)

Similarly, the inner product of va and vb is

(va Vb) =

co

k=1

k=1

(v a' vk) V k

r = 1

(vb, V)r
r=1

(v a , V )(V r v b)(V k' v r )

(v a , Vk)(V k' Vb)

since the set v, v 2 , ... is orthonormal in V.

QPR No. 77
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c

[w a ,b] = (v a Vb) = (v a ,vk)(vkvb)
k= 1

Theorem 1 tells us that given a linear invertible transformation between two vector

spaces, a norm can be defined on the output space in such a way that the norm of a vec-

tor is invariant under the transformation. Alternatively, if the norm has already been

specified on both spaces, then from Theorem 2 we can find an invertible linear trans-

formation between these spaces under which the norm of a vector is invariant. It remains

to interpret these theorems within the framework of homomorphic systems.

o + + ++ o
-1

P L a 
0 o0

Fig. XIII-3. Cascade representation for the class of homomorphic systems
having o as both the input and output operations.

The system represented in Fig. XIII-3 is a linear transformation mapping a vector

space into itself. The output of the linear portion is a vector space V under addition

(that is, with vector addition as the algebraic sum of the time functions) and the output
-1of the over-all system is a vector space W under the operation o. The system a is
0

an invertible continuous linear transformation between these spaces. Let the norm of

a vector v in V be rewritten as Iv IV, where restrictions are not placed on the norm

other than those required by the definition of a norm. Similarly, let the norm of a vec-

tor w in W be written as w W defined as

w W = ao(w) V (3)

or equivalently,

v V = ao(v) W.

Suppose, now, that we wish to choose L such that the norm of the error vector in W

is minimum. Let fd(t) be the desired output and fm(t) be the output for the optimum

system, that is,

Ifd f-1 > d f W for any f in W not equal to f

But 1 fd of W = la(f d) o ao -lIv. Hence

a (f )oa (f )  > (f ) oa f II0od 0 0 od 0o m V
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This can be rewritten in a more convenient form by using the fact that a linear transfor-

mation between vector spaces maps inverses to inverses, which requires that

ao (fd)-ao(f) V > 11ao (fd)-ao fo) V

for any f in W that is not equal to f m. Hence, if the over-all system is optimized with

respect to the norm defined by Eq. 3, then the linear portion of the cascade representa-

tion must be optimum, according to the norm defined in V, when the desired output of

the linear portion is taken to be ao (fd). Hence the problem of optimizing a homomorphic

system within a specified class reduces to the optimization of the linear portion of the

cascade representation relative to the desired output transformed by a o. If the error

criterion in W is specified, then the optimization of the linear system L must be

carried out according to the error criterion specified by Eq. 3. If the error criterion

in V is specified, then when the linear system L is optimum, the over-all system is

optimum according to the error criterion dictated by Eq. 3.

As a result of Theorem 2, an alternative is offered. If an error criterion is speci-

fied in W, and we wish to optimize L according to a given error criterion in V, then
-1

the system a can be constructed according to Theorem 2. Thus, if the error criterion
o -1

is unspecified in W, we may make any convenient choice for the system a and optimize

L according to any convenient error criterion. If the error criterion is specified in W
-1

but unspecified in V, then a choice of a will constrain the error criterion in V.
o

Finally, if the error criterion is specified in both V and W, then when L is optimized
-1

the choice for a is constrained if the over-all system is to be optimum. Thus far, we
o -1

have been concerned with the choice of L and a in the cascade representation. The
o

question naturally arises as to how the optimization is affected by the system Po . On

the basis of the following theorem, it will be concluded that any choice for po can be

made. The optimization of L will effectively compensate for the choice of Po .
THEOREM 3: Let V and W be two vector spaces, and let Pa and Pb represent any

two invertible homomorphic transformations from V onto W. Then there always exists

a unique linear transformation L on W such that

Pa = LPb'

where Lpb represents the cascade of the transformations Pb and L. In other words, for

every vector v in V, there exists L such that

Pa ( v) = L[Pb(v)]. (4)

PROOF: Consider.the transformation L on W defined as

L(w) = pai b'(w)]. (5)
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-1
The transformations Pa and P b are homomorphic, that is,

and

Pa (c) = cPa(v).

We must show, first, that L is linear, that is,
L(w 1+w) = L(w 1) + L(w 2 )

and

L(cw) = cL(w).

But

S -11(w)

a[ b'(wl) + aP b 2

and

Pa[P-1b(wl) = L(w 1 )

a[L(-12) = L(wZ).

Therefore L(wl+w2 ) = L(w 1 ) + L(w2). Similarly,

L(cw) = pa[pb l(w)]

P a[cbl(w)

= cpa b'(w)1.

Hence L(cw) = cL(w), and consequently L is linear. But L, defined in Eq. 5,

provides the condition required by Eq. 4, for substituting Eq. 4 in Eq. 5,

we obtain
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[-1Pa(v) = Patpb'(Pb(v))!

= Pa(v).

It remains only to show that L as defined by Eq. 4 is unique. This will be done by

showing that Eq. 4 implies Eq. 5.

Consider any transformation L having the property required by Eq. 4. If w is any

vector in W, then there exists a vector v in V such that

-1
v = Pb (w),

since Pb is invertible. Substituting in Eq. 4, we have

PaIb I(w) = L Pb(Pbl(w))]

= L(w)

which is the transformation defined by Eq. 5.

Now, suppose that in the cascade representation of Fig. XIII-3, we have made an

arbitrary choice for the system P . The error criterion used to optimize L, and the

error criterion used to optimize the over-all system have been shown to determine the

system a . Let Lopt denote the optimum choice for L. By virtue of Theorem 3, if the

error could be further reduced by varying the system P o , then the error could be reduced

instead by cascading Lop t with an invertible linear system, which violates the assumption

that Lopt is the optimum choice for L.

4. Example

In order to relate the preceding discussion to a specific example, consider the opti-

mization of the systems in the class having multiplication as both input and output oper-

ations. This corresponds to the determination of an optimum filter for separating

signals that have been multiplied, as is the case, for example, in transmission over a

time-variant channel. It should be emphasized at the outset that for this example, the

formalism that we have just completed does not seem justified by the intuitively reason-

able result. The formalism indicates, however, that the approach is generally appli-

cable to any class of homomorphic systems.

S+ + + +

x - 0lob(x) L(y) b w

Fig. XIII-4. Cascade representation for the class of homomorphic systems
having multiplication as both the input and output operations.

QPR No. 77 258



(XIII. STATISTICAL COMMUNICATION THEORY)

In the cascade representation for the class under consideration, the system a can

be chosen as a logarithmic amplifier relative to any base b as shown in Fig. XIII-4, if

the system inputs and outputs are restricted to be positive. Let us restrict the system L

to be a linear, time-invariant, realizable system. If the input time functions for the

over-all system are random, then a mean-square-error criterion is an analytically con-

venient choice for optimization of the linear system. Hence, if fd(t) is the desired output

of the over-all system, then on the basis of the preceding discussion the system L is

to be so chosen that the error E given by

E = lim [logb(fd)-logb(fo)] 2 dt (6)
T- 2T -T

is minimum. If the input to the homomorphic system is f.(t), then
1

log ) = L[ , 1 (fid.

The solution for the optimum system L is specified by the Weiner-Hopf equation.

The error E is also the error at the output of the exponential amplifier. If we change

the error criterion in W but wish to maintain a mean-square-error criterion in V, then

the characteristic systems a and Po must be changed.

5. Conclusion

Homomorphic systems can be used for the separation of signals that have been non-

additively combined in much the same way as linear systems are used for the separation

of signals that have been linearly combined. The manner in which the signals are com-

bined determines the class of homomorphic systems from which the optimum system is

selected.

In determining optimum systems, the error criterion is generally based on consider-

ation of its validity as a measure of error, and the convenience that it offers in carrying

out the optimization. Since homomorphic systems are represented by linear transfor-

mations on vector spaces, the error criterion is restricted in this study to be describ-

able as the norm of the error vector. This restriction does not completely specify the

error criterion.

On the basis of the cascade representation for homomorphic systems, we have shown

that the optimization within a class of homomorphic systems can be reformulated in

terms of the optimization of the linear portion of the cascade representation. If the lin-

ear system is optimized according to some error criterion, then the over-all system

will also be optimum according to some error criterion. In this case the error criterion

under which the system is optimum will depend on the choice of the characteristic sys-

tem used in the cascade representation to map the outputs of the linear system to the

outputs of the over-all system. In particular, a mean-square-error criterion (or
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integral-square error if the inputs to the linear system are aperiodic) can be used to

determine the linear portion of the optimum filter. Alternatively, the error criteria

for both the linear system and the over-all system can be selected independently. When

this is done, the choice for the characteristic system is restricted.

If a mean-square or integral-square error criterion is used to optimize the linear

system and this system is restricted to be time-invariant, then the optimization can be

carried out by the methods developed by Wiener in his theory of optimum linear filtering.

This does not guarantee that the total system will be time-invariant. To insure this, the

characteristic systems must also be chosen to be time-invariant.

The ideas discussed in this paper may be potentially useful in the study of time-

variant communication channels, for which the transmitted signal has effectively been

multiplied by a noise waveform, and in the study of multipath channels in which signal

and noise have been convolved. It is hoped that through this study further work and

interest in this approach will be stimulated.

A. V. Oppenheim
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C. A SINGULAR MAXIMIZATION PROBLEM WITH APPLICATIONS TO FILTERING

In this report we generalize a previous result on a problem of extrema under con-

straints and discuss its application to filtering and estimation.

The mathematical problem is the following: We would like to find the probability

density p(x) that maximizes or minimizes the functional

L = L(x) p(x) dx under M constraints

G = G(x) p(x) dx

F = F(x) p(x) dx

1 = p(x) dx.
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We require the range of the random variable x to be bounded to some finite interval

[A, B].

We shall show that if there exists a p(x) satisfying all of the constraints, then the

probability density that maximizes or minimizes L under M constraints is made up of

M impulses, at most.

PROOF: Assume that there exists Po(x) such that all M constraints are satisfied

and which results in some value L of the functional L. In Fig. XIII-5 we define the

regions R 1 , R2 ... RM+ 1 by arbitrary cuts of the base [A, B].

P (x)

A R1 R2

Fig. XIII-5. Probability density Po(x) that satisfies all constraints.

We shall show that there exists a probability density Pl(x) that is nonzero on only M

of the M+l regions, which satisfies the M constraints and gives L1 < L o . Similarly,

P 2 (x), which is nonzero on M regions at most, satisfies the M constraints, and yields

L 2 > L o . It then becomes clear that by successive applications of this result, the base

of the probability density p(x) is reduced, at most, to M arbitrary small regions. There-

fore the probability density p(x) that maximizes or minimizes L under M constraints

will consist, at most, of M impulses.

To show that pl(x) and p 2 (x) with the properties claimed do exist, we define

Po(x) dx

F (x) Po(x) dx

G(x) Po(x) dx
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Lo = L(x) po(x) dx
ol ml R

m 2  R Po(x) dx

2

1
F I F (x) po(x) dx

2 m2 R2
2

L =1 L(x) Po(x) dx
o2 m 2

etc.

We have, therefore, the new set of equations

mlLol + m2Lo2 + ... + m M+1LoM+ = Lo

mlG 1 + ... + mM+G M+1 = G

m + .. . + mM+ 1 = 1

and since p(x) > 0, we have also

ml, m2 "' mM+1 >0.

Now consider these equations in the M+1 dimensional space of the weights m. The

M+1 equations define a point in this space, and any M equations define a line. Con-

sider the last M equations. They define a line C 1 which intersects the subspace

mlLol + m 2 Lo2 + .. . + mM+ LoM+1 = Lo at one point. The situation is represented

in three dimensions in Fig. XIII-6.

On the constraint line C 1 all points not in the subspace L = Lo correspond to L > Lo
of L < L . The line C 1 will leave the subspace of all m. > 0, (i= 1. .. M+1) at two points,

0 1 1

say, mk = 0 me = 0. These two points are necessarily on opposite sides of the subspace

L = L . Therefore, we have L > L at one point, and L < L at the other. Therefore,
o o o

in the space m, these two points satisfy all constraints and give smaller and larger val-

ues to the functional L. In terms of p(x), these two points correspond to a reassignment

of the weights in the M+1 regions, making one of the weights zero, which is our result.

It is of interest to discuss briefly the reason why M impulses are needed for the

number of constraints used. Assume that we subdivide p(x) in M regions instead of M+1;

we have, then, M+1 equations specifying one point in M-dimensional space. The M
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m3

/L = Lo HYPERPLANE

/X
m=0

LINE C1  X t/

Sm 2 =0

Fig. XIII-6. Discussion of the weight vector m in three dimensions.

constraints alone define one point in this M-dimensional space, the point we started

from, and we cannot reassign weights in the M regions to increase or decrease L.

Similarly, if we started with M+2 regions, then in the (M+2)-dimensional space, we

satisfy M constraints by constraining m to a plane, and this allows us to make two of

the weights equal to zero. The present result has been established previously I for M=2

by a more involved method, which did not lead simply to an extension.

GENERALIZATION: From the method of proof, it is clear that the result is not
limited to a one-dimensional probability density p(x) and will hold for probability densi-

ties with any finite number of dimensions, as long as the range of x = (x 1 , .. . XR) is

bounded for all the variables. Using a vector notation, we have immediately the fact
that is p(x) satisfies M constraints of the form

G(x) p(x) dx = G,

then the functional L, L = f L(x) p(x) dx will be maximized or minimized for a proba-

bility density p(x) which consists of M impulses at most.

Applications

1. Extrema of the Average Weighted Error for a Given Nonlinear Filter

Consider an input signal x(t), x(t) = m(t) + n(t) in which m(t) and n(t) are statistically

independent processes. We desire to estimate the message m(t) at time t = {tl ... tk}
from knowledge of the input with the same time constant. The noise statistics are known.

Let
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= {mlm 2' mt,.. mk

be the estimates of m(t ), m(t 2 ) . . . , and assume that the filter characteristic is known.

We have

m = g(x)

in which g(x) represents a set of k functions of the k input amplitudes. Let the error-
2 2 2

weighting function be a scalar function of k variable W(e) such as W(e) = el + e +... + e k .

Then the average weighted error can be written

W(e) = W[X-g()] pm (k,) dk, d.

But

Pm, (X,) = pm(X) P (-X),
m,x n

so that

W(e) = jW[-g()] Pn_(-k) pm() dkd .

If we let

L(X) W[X-g()] pn( -k) d

in which L(k) is a known function of k, then

W(e) = L(X) p m(k) d(k). (1)

The problem considered is that of finding the specific message density, pm(), that

will maximize or minimize expression (1) under a set of message constraints. This is

the mathematical problem discussed earlier; and if the message probability density

p(x) satisfies M constraints of the form f G(k) pm(k) dX = G, then W(e) will be maxi-

mizes or minimized if pm(X) consists of M impulses at most.

2. Minimum of the Average Weighted Error for the Optimum Nonlinear Filter

Since for any given nonlinear filter we have found that the minimum average weighted

error corresponds to an impulsive message probability density, it is a simple matter

to show that the same result holds if minimization is carried out among the filters, as

well as among the message probability densities. Assume that pmo(_) and go(x) are the

message probability density and the corresponding optimum nonlinear filter, and that the

minimum average weighted error is W (e). For the filter g o(x) considered as given

QPR No. 77 264



(XIII. STATISTICAL COMMUNICATION THEORY)

there exitst an impulsive message probability density p ml(k) such that W1 (e) < Wo(e).

Also the optimum nonlinear filter gl(x) associated with p m(X) will give W (e) such that

W 2 (e) < W 1(e) < Wo(e). (2)

Since, by hypothesis, W (e) is the lowest value achievable, we have necessarily

equality in Eq. 2; therefore, the lowest average weighted error, W min(e) is given by

an impulsive message probability density p m(k).ml- 1
Some examples for M=2 have been presented previously. A more comprehensive

discussion of these results will appear elsewhere.

V. R. Algazi
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D. ON THE RELATION BETWEEN INTEGRAL AND DIFFERENTIAL

CHARACTERIZATION OF NONLINEAR SYSTEMS

Consider the nonlinear system shown in Fig. XIII-7; N 1 , N2 , and N3 are linear sys-

tems and N4 is a multiplier. The behavior of the system can be characterized by the set

dz(t)
dt + az(t) = x(t) (1)

dw(t) + bw(t) = x(t) (2)
dt

2
d y(t) dy(t) dr(t)

+ d -+ ey(t)= cr(t) + d (3)
dt2  dt dt

r(t) = w(t) z(t), (4)

where x(t) is the input, y(t) is the output, and w(t), z(t), and r(t) are the inputs and output

of the multiplier, as shown in Fig. XIII-7. Equations 1-4 describe the behavior of N1

through N4 . We assume that all initial conditions are zero.

We would like to find a differential equation relating y(t) and x(t); that is, we would

like to eliminate w(t), z(t), and r(t) in Eqs. 1-4. In order to do so, we shall extend the

domain of definition from a line to a plane, and look along the 45' line in the plane.

Define r(t ,t 2 ) = w(t 1 ) z(t 2 ), and y(t 1 ,t 2 ) so that y(t) is (t t, ) =t =t Substitute t

for t in (2) and t 2 for t in (1). Then multiplication of (1) and (2) and use of the definition
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of /r'(tl , t 2 ) yields

2^
2a r(t , t 2 ) a t 2 ) 8a(t t 2 )

at at +a at +b +abr(t l , t 2) = x(tl) x(t 2 )t 2t 1 t 2 1

express (3) in terms of y(t 1 , t 2 ) we must find an expression for dy(t) in terms

Since y(t, t) = y(t), the desired derivative will be the directional derivative

z(t)

y(t)

In order to

of 9(tl', t2 ).

x(t)

w(t)

Fig. XIII-7.

of y(tl' t 2 ) along the line tl=t 2 , scale

change. The directional derivative i

with the unit vector in the direction c

A simple nonlinear system.

d by the factor N! to obtain the proper rate of

s given by the dot product of the gradient of Y(tl,t 2 )

f the 45 line. Hence we have the correspondence

dy(t) 1--tl t 2  ( 1 ay(t, t 2 ) y(t, t 2)
S (t , t )  f t c r s n c t

dt 2 atl at 2

Repeating this operation, we find the correspondence for the second derivative.

S2 ' t2 2 t , t2 )  2Y (t,
+ 2 + 2

dt2 at2 at. atl 2
1 2

By using these results, (3) can be extended to

2^
2A 2A ay aay ay a a

+2 + +d +d +ey cr+ +2 at at 2 at at at att 21 at 1 2 1 21 2

We must now combine (8) and (5) to eliminate r(t 1 , t 2 ). This may be accomplished by

taking the partial of both sides of (5) with respect to t 1 to obtain (9), and with respect

QPR No. 77 266



(XIII. STATISTICAL COMMUNICATION THEORY)

to t 2 to obtain (10).

3^ar

at 2 a t1

3Aa r
2 +

at2 at

2^ar
+ a t

at 2t

ZAa 2

at22

a 2r ar dx(tl)
+ b at 2 + at dt x(t )

at, 1 1

2 aar+ba
2t 1 ,

a? dx(t2)+ ab = x(t ) dtat 2 1 dt

Also, we take the partial of (8) with respect to tl to obtain (11), with respect to t 2

obtain (12), and with respect to t 1 and t 2 to obtain (13).

3?^ 33?
8y 8y

+2 + +d +d3 2 2 2 at2at1at 3 at at at at at 2 11 21 21 1

a+ a?
-at 1 at1

3/\ 3a 3
3y ay

2^.
ay

2A
ay

+d+ d-+ e-at2 at at 2  at 22

2^ar a r
at2 at 2 at 1

4  a 4 ^
ay ay

+2 + - +d
t2 3 8at21 3 t2 t2at 2 at 1 at2 t at at2 at 1

2yay
+ d + e

8t2 at2t
2zatj 2t at 1

Next, multiply through (5) by c, and add the resulting equation to (9) plus (10). Multiply

through (12) by a, (11) by b, and (8) by ab, and add the sum of these new equations to

(13). We can then write

dx(t 2)
cx(tl) x(t 2 ) + x(tl) dt +

2

dx(t)

dt1 x(t 2) =

3 ^ 3'ar a3r+ +
2 2

at 2 at 1 t 2 at1

a 2(a+b+c)
at2at 1

+ b +
at1I

2^a r a-_-
a + (ab+bc)atz at1at-

ar
+ (ab+ac) + abe^ =at2

3aa y
2 2 3 + (a+2b+d)

at 2 at 1 atatt 1 t1

3^ay
+ a + (ad+2ab+bd+e)

at 22

2
ay

+ (2a+b+d) 2
at2

2 ati

3

+b --
at31

2^ay
+ (ab+bd) + (ab+ad)

at at
1 2

Aay a? y
+ (abd+be) at + (abd+ae) t + abey,

1 2
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(9)

(10)

to

3aay
+2 ++2 2 1 3at2at at2 at 1 at 2

2^-
+ a

ati
2/,\

+ r
at 2 at 1

(11)

29
+ r

at2
2

(12)

2A
at2 8t I

33^

+
at at21

a3?
+

at 2 8t

(13)

atat

at28t 3

3^A
y

4^,
ay

3^
ay

3^ay

4,ay
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4 4 4^ 3a 3/ 3^

+2 +- + (a+2b+d) + (2a+b+d) b-
31 2 2 31 2 21 1

at28t1 8t28t at 28 at28at1 at at1 at1 t

3"
ay

2y
yy

2ya y
2 ^

a Y
+ a + (ad+2ab+bd+e)t- + (ab+bd) + (ab+ad)

3 t bt 2 2at2  1 t t

By ay
+ (abd+be) 8 + (abd+ae) - + abey =

1 2

dx(t 2 ) dx(t 1)cx(t) x(t2) + x(t) dt + dt
2 dt1

We have thus obtained a single differential equation relating y(t) and x(t). The equa-

tion is a linear partial differential equation with constant coefficients. This linear partial

differential equation is particularly well suited to solution by means of the two-

dimensional Laplace transform. Taking the transform of each side, we find

3lS~2 2 2 3 2 2 3 3+ s2 + s 2 + ( a + 2b + d ) s s Z + (2 a + b + d)s s 2 + b s +as + (a d + 2 ab + bd + s)s s 2+12 ~121 2 1 2 s1 2 1 2

2 2
+ (ab+bd)s1 + (ab+bd)s 2 + (abd+be)s + (abd+ae)s 2 +abe Y(s 1 s 2 = (sl+s2 +c) X(s 1 ) X(s 2 )

Factoring the polynomials in this expression and solving for Y(s1, s ), we have

s +s +c
I 2 2(sl+b)(s 2+a)[(sl+S 2 ) + d(sl+s 2 ) +e]

X(s 1 ) X(s2).

We now note that

H 2 (s 1 , s 2 ) A
s +s 2 + C

[( d(
(sl+b)(s2+a)[(sl+s2) +d(sl+s2) +e ]

is the transform of the Volterra kernel, h2 (T 1 , T 2 ) of the system of Fig. XIII-7 when the

system is characterized by the integral equation

y(t) = h 2 (T 1 T2 ) x(t-T 1 ) x(t-T 2 ) dTdTr2 . (16)

In fact, taking the inverse transform of (15), we have

h2(T1' T 2 ) X(tl-T 1) x(t 2- T2 ) dTldT2
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from which (16) follows by setting t =t =t.

From this example the following observations may be made. Given a system of

equations which is the dynamic description of a nonlinear system, we can, by extending

the domain of definition from one dimension to two dimensions, find a single linear par-

tial differential equation that also characterizes the system. That is, by extending from

one dimension to two dimensions, a one-dimensional nonlinear problem has been con-

verted into a two-dimensional linear problem.

Equations 1-4 and Eq. 14 describe the same situation. A system that is characterized

by a single integral equation is equivalently described by a set of several ordinary dif-

ferential equations and a nondifferential equation. A description by one nonlinear ordi-

nary differential equation does not seem to be possible.

Whenever a system is characterized by an n th-degree Volterra kernel that has a

rational transform, a linear partial differential equation with constant coefficients can

be found relating the auxiliary output function y(t 1, . . $ tn) to the input function x(t). If

the kernel is of the class that can be realized exactly with a finite number of linear sys-

tems and multipliers,1 then an equivalent description by a set of ordinary differential

equations and nondifferential equations can be found.

Although the example and observations presented here have not yet led to the solution

of any problems not easily handled by other methods, we feel that the viewpoint presented

is unique and may lead to a deeper understanding of the properties of nonlinear systems.

A. M. Bush
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E. USEFUL EXPRESSIONS FOR OPTIMUM LINEAR FILTERING

IN WHITE NOISE

In this report, optimum linear filters for extracting a message from an additive white

noise are considered. Results that have been derived may be listed as follows:

N1/2
1. Hopt(s) = 1- o (1)

[Sa (-s 2 )+N o ]

2. E2. , the minimum mean-square error, is given by
mNn

Em = Noh (0+) = N lim SHopt (s) (2)
min o opt o soo opt
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E2 0  log 1 + S Ja dw. (3)
mm 2min 2n -oo No

3. Hopt(s) is minimum phase.

Equation 2 is especially convenient when the optimum filter is known. On the other
2

hand, Eq. 3 is useful because it makes possible the determination of Emin without H (s)

Equations 1 and 3 have found wide application in the study of analog demodulation

theory, their existence being crucial in studies by Develet,2 Viterbi and Cahn,3 and

Van Trees and Boardman. 4

Equations 1 and 3 have been derived previously by Yovits and Jackson,1 and more

recently by Viterbi and Cahn.3 Here, all results are derived by use of a well-known

expression for the optimum filter. No minimization arguments are required, as was

previously the case.

1. Derivation of the Expression for Hopt(s)

The optimum linear filter is given by

Hopt (s) = a (4)

[Sa (-s 2 ) + No [Sa (- s 2) + No ] -+

where Sa( 2) and No are the power densities of the signal and noise, respectively, 5 - 7

Sa(W 2) is taken to be a rational function of w ; the superscripts + and - indicate spec-

tral factorization; the subscript + indicates the operation of taking the realizable part

of a partial fraction expansion.

It is seen from Eq. 4 that

1 S (-s )+ N N
H (s)o _ o

opt [Sa (-s2) + N]+ Sa (-s 2 ) + No] [Sa (- s 2 )+ No]

1 N
= 1 - + 2 (5)

[Sa(-s2 ) + N 1 [S (-S ) + N ]

The term with the subscript + in Eq. 5 can only be a constant. Under the assumption

that lim S (2) = 0, the constant is N1/2. Equation 1 follows upon substitution of this
. a o

constant in Eq. 5.

2
2. Derivation of E m in Terms of the Optimum Filter

The minimum mean-square error is given by

The minimum mean-square error is given by
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2 1 200
mrin = 2Tr -ooop

00oo
N0 H o p t (w)/ 2

From Eq. 1, it follows that

I 1-Hopt

N
2 o

S ((2) + Na o

and

S ( 2 _ N S ( 2)
IH op(W)l = oa + 21H o (W)j Cos (W).

opt S (o2) + N opt
a o

By using these two expressions in Eq.

N
2 o
mmin

2
6, E becomes

min

00

_ 0

H opt(c) cos () do.
opt

Since IHopt(W) I is an even function and (w) is an odd function of w,

2
E min

mm

N
0

iT
-00

H opt (o )l eJ() do

N (oo (8)
o H (w) dw

-T opt

= N[hopt(0-)+hopt(0+)].

Since hopt(0-) = 0, Eq. 2 follows. The second expression in Eq. 3 is obtained by use of

the initial value theorem. From these expressions, it is also observed that for large s,
hopt(0+)

Hopt(s) behaves as a

2
3. Derivation of in in Terms of the Signal and Noise Spectra

A simple application of contour integration and the residue theorem show that for any
1function F(s) that is analytic in the right half-plane (RHP) and behaves as- (n > 1) forn

large s, s

oo

V-00

N 000

Therefore, o \ H1 Hn () dw = 0 for n > 1 and, from Eq. 8
Tr Y.n opt

-00
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2 o , 1 2 1 3
E H (W) +- H (w)+H (W) +... dw.
mm n opt 2 opt 3 opt

Since log (1-z) = - z z z +. .. it follows that

N 01 o

E2  00 log (1-H (w)) do
mm - -0 opt

N oo N 00
:- o log (1-H (w)) do - log (l-Hopt (-)) do (9)

N o 0 opt 2 opt

N o log 1-H M 2 dw.
2 -o opt

The desired relation is obtained upon substitution of Eq. 7 and Eq. 9. The derivation

used here is similar to that used by Viterbi and Cahn. 3

4. Minimum Phase Property of Hopt(s)

Hopt(s) is of the form 1-G(s), where G(s) is minimum phase and G(j) I  1. A

Nyquist plot of Hopto() clearly has no encirclements of the origin. Therefore, the num-

ber of RHP poles and zeros of Hopt(s) is equal. Since Hopt(s) has no RHP poles, it has

no RHP zeros and is minimum phase. This result is in agreement with the views

expressed by Professor H. B. Lee in a discussion which the writer had with him on the

problem.

APPENDIX

S1-H opt() 2 = (1-H pt(w))(l-Hopt (-W))

1 + Hopt (W )
2 - 2 Hopt (W) cos (),

where

Hop t (o) = Hop t (w) ej(w ) .

Using Eq. 7, we have

NS (w2 )
H opt (  a N + 2 H (oW) cos p(w). (10)

opt S () + N opt
a o

D. L. Snyder
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F. AN APPLICATION OF VOLTERRA FUNCTIONAL ANALYSIS TO

SHUNT-WOUND COMMUTATOR MACHINES

The present report is a continuation, in the form of two appendices, of the report

published in Quarterly Progress Report No. 76 (pages 198-208).

APPENDIX A

Demonstration of Uniqueness

Consider the input-output equation (Eq. 11):

w(t) = ... hf(T1 ) ha 2) hoT 3 ) v(t-T-T 3 ) V(t-T 2 -T 3 ) dT 1 ... dT3
-00

- G ... yh f(T 1) h( 2) h 3) h(r 4 V(t-T 1 - 2- 4 ) v(t- 3 - 4)
-o

W(t-T 2 -T 4 ) dT 1 ... dT 4

For a given input v(t), is the output w(t) unique? Let us assume that it is not: Assume

that for some v(t) there exist two outputs, wl(t) and wc2 (t), both of which satisfy Eq. 11.

Let the difference between these two outputs be

6(t) = W1 (t)- cW2 (t). (A. 1)

Write Eq. 11 for v(t) and wl(t). Write Eq. 11 for v(t) and o2(t). Subtract the latter from

the former. The result, with the use of (A. 1), is

o--o 00

v(t-T3-T 4 ) 6(t-T 2 -T 4 ) dT 1 ... dT 4 .  (A. 2)

If v(t) exists, then it is everywhere bounded.

Iv(t)I < V, for all t. (A. 3)

By assumption, both wl(t) and w2 (t) exist and therefore 6(t) is everywhere bounded.

18(t) < D, for all t. (A. 4)

Equations A. 2, A. 3, and A. 4 show that

5(t) < GV 2 D ... hf(T1 ) ha (T 2 ) hf(T 3 ) h (T 4 )I dT 1 ... dT 4 .  (A. 5)
-- 00 -00
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When the expression for hf, ha, h (Eqs. 5, 7, and 10) are substituted in (A. 5), the eval-

uation of the integrals yields

G2V 2

6(t)J < D.
AR R

af

The following lemma has thus been demonstrated.

LEMMA: If Iv(t) < V and I6(t) < D, then I (t) < kD, where

G2V2

k= G V
AR Raf

(A. 6)

(A. 7)

This lemma is self-reflexive. That is, since I 5(t) < kD, 16(t) < k2D, and so forth.

Thus

6 (t) I< kmD, m = 0, 1, 2,.

If k < 1, then as m increases without limit, (A. 8) shows that

15(t)I = 01 (t)-C 2 (t)I = 0.

But, as long as the bound on v(t) satisfies Eq. 12,

R
v(t) < - a, for all t,

G a

then k is less than one and the solutions to Eq. 11 are unique.

APPENDIX B

Demonstration of Equation 36

Consider Eq. 36:

0 ... 02m (T 1 ... 2m) dT 1

... dT2m = m
Rf

for m= 1, 2, 3, ...

which will be demonstrated by induction.

Initial Case m=1

Observe that hf, ha , and h (Eqs. 5, 7, and 10) are non-negative. Thus g(a, p), which

is formed by an integral of their product (Eq. 20), is also non-negative. The kernel

S 2
(Tl, T 2 ) is formed by a summation of g's (Eq. 23) and is, therefore, non-negative. Thus
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(A. 8)

(A. 9)
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C =j. 00

=)0 Y022 (T1 ,T 2 ) dTldT 
2

(3. 1)22 (T1 2) dT dT2

Lut, by Eq. 23,

cc'T 2 ) dTldT
2 =

g(u, u') dudu'.

By Eq. 20 and suitable change of dummy variables,

g(u, u') dudu' = 0
0 0. 0

(1. 3)h (T1 ) hf(T2 ) ha(T 3 ) dTldT2dT 3

Finally, substitution of the expressions for h1 , h a, and h (Eqs. 5, and 10) yields

dTdT G 1 1.
1 2 A Rf R af a

(B1. 4)

which demonstrates Eq. 36 when m = 1.

Inductive Case m=M+l

Assume that Eq. 36 is true for m= M. We shall then show that it is true for m= M+1:

Consider Eq. 24 for the case in which n = 2M + 2. Due to the fact that the SYM operation

does not alter the value of this integration, with appropriate change of dummy variables,

we have

- 10 2(M+1) ' 1. T2M+2)I dTV '. d T 2M+2 =

00

G 0

02M(-1' ... ' O 2M) d 1 . .. d 4 dol . . . do-2 M

1
=G

R
a

G
A

1
Rf

R f
G

M
2

ARR2
af)

M+1

AR 
(B. 5)

Equation B. 5 demonstrates that Eq. 36 is true for m = M+1 if it is true for m = M.

Since (B. 4) demonstrates Eq. 36 for m= 1, it is now clear that Eq. 36 is true for m= 1,

2, 3, .
R. B. Parente
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-o0 0

(B. 2)

0 U

OO 00 1

)0 0 2

ha (I )h W( z ) hf( 3 ) hf(4)
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