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1. THEORY OF ION ACOUSTIC WAVES

The propagation characteristics of ion acoustic waves have been studied in highly

ionized collisionless helium and argon plasmas. The study indicates that the waves

are dispersionless and obey the classical dispersion relation for ion acoustic waves

propagating in an infinite medium along a magnetic field. The waves, however,

are heavily damped. In an attempt to explain this heavy damping, two different

approaches have been used in the derivation of the ion acoustic wave theory. One

theory, based on the Vlasov equation, ignores collisions and predicts the damping

to be independent of frequency and a function only of the ratio of electron to ion

temperatures for plasma parameters typically observed in PF-1. The other theory

is based on the macroscopic transport equations and predicts a damping that has a

strong frequency dependence and is a function of electron and ion temperature and

density. In this report these theories and their predicted damping curves are pre-

sented.

The strong magnetic field used to constrain the plasma to the axis of the system sug-

gests that only one dimension need be considered for these longitudinal waves. The good

agreement between the observed dispersion curves and the classical curves, which are

derived under the assumption of an infinite geometry, hints that boundary effects may

be unimportant for this simple longitudinal mode of the plasma. Therefore, both the-

ories will be derived, under the assumption of an infinite homogeneous plasma in one

dimension and neglecting the magnetic field. Drift of the plasma has been observed

experimentally; therefore, the equations will be derived to include the effects of drift

on the dispersion relations. The effect of a non-Maxwellian electron distribution is also

considered.

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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Collisionless Theory

The basis for this theory will be the collisionless Boltzmann equation or Vlasov

equation. If we assume the electrostatic approximation in addition to the approxima-

tions stated above, the following well-known dispersion relation for longitudinal waves

is obtained.

2
S C Fs (u)

D(k,l) = 1 - s _ = 0. (1)
14k2  1 2 -ccu-
k 2 -o0 u-

s k

Here F is the one-dimensional distribution function, k is the wavevector, and L is
So Ps

the plasma frequency of the species. Under the assumption that the species are in a

drifted Maxwellian distribution with a streaming velocity Us , the equation further

reduces to the following form

2

D(k,) = 1- k , (2)
2 2 kcsa

s s

where Z' is the first derivative of the plasma dispersion function,2 and a = 2T /m
is the thermal speed of the species. Making the usual assumption ae > >> ai , we may

use the power-series expansion and the asymptotic expansion for the plasma dispersion

function. Keeping two terms in the ion expansion and one in the electron expansion for

the dispersion function, we obtain for one of the two sets of roots

2 2e
1 + Deem.

2

where D = e is the electron Debye length. If we further assume that kk D << 1, which
e Pe e

is a very good approximation for the plasma produced in PF 1, Eq. 3 becomes

= V +U.,
k s i

where

T + 3T.
e 1 (4)

s m.
1
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If instead, two terms in the electron expansion are retained, and only the leading term

in the ion expansion is retained, one of the two sets of roots that is obtained is

2 T 1 m

k Ui m 2 2 4m. (5)
1 k D  1 U i

1+ e
2

If the frequency is assumed to have a small imaginary part, we can expand the dispersion
Y

function in a power series of the real part, that is, if w = w + iy and -<< 1, then
r

2

D(k, W) = D(k,wr) + iyD' (k, Or) - 2! D" (k, r +... (6)

Assuming y = 0, we obtain to first order

Im (D(k, wr))
y Z - (7)

Re (D' (k, wr))

where D' (k, r) is the first derivative of Eq. 2 with respect to w and evaluated at w = wr

Because y is assumed small, the power-series expansion of the plasma dispersion func-

tion for the ions will be used in which it is assumed y equal to zero. Putting into Eq.7 the

values obtained from the first-order expansion, the following equation for y is obtained

T T m
3 / 2

y =k i3 m e exp 2 . (8)

In Eq. 8, the ions and electrons are assumed to have equal streaming velocities.

Although these forms of the solution are relatively simple and easy to use, for our

experiments the approximations are not strictly valid. To avoid this difficulty, Eq. 2

was solved on the computer, using a modified Newton-Raphson method. 3 The exact solu-

tion of the dispersion equation obtained in this manner indicates that Eq. 4 gives the

real part of the dispersion relation within an accuracy of 3% for values of Te/Ti from

1 to 40. Equation 8 is found to be in poor agreement with the exact computer solution.

The quantity,

D
e -o e _ (9)X 2ny '

rather than y, is the quantity that is measured experimentally; therefore this quantity,
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rather than y, will be discussed in the rest of this report. If the electron and ion drift

velocities are equal, the value of the damping term D /X is found to vary from the value

obtained with no drift, (De/ ) o , in the following way

D e D .o U1
e__s Q )1 + (10)

Because of the good agreement (less than 3% variation) between the exact solution and

this equation, the theoretical curve of (D e/) as a function of T /T i is shown in

Fig. X-la. These values of (De/\)o are found to be independent of ion temperature, at

least for values between 0. 1 and 0. 4 eV, and a function only of the temperature ratio

Te/Ti, For comparison, Fig. X-lb and X-lc gives the values of De/\ as a function of

Te/Ti for upstream and downstream propagation with the electron and ion drift velocities

unequal.

The pronounced breaks observed in some of the log I vs V curves that were used

to obtain the electron temperature suggests that the plasma might consist of a two-

temperature Maxwellian electron distribution.4 The fact that the probe curves generally

suggested a slightly higher temperature than that calculated from the wavelength of the

ion acoustic wave gives additional support to the idea that the body of the electron dis-

tribution may not be Maxwellian. It has also been found that if the ion saturation current

is extrapolated by using a more horizontal line, i. e. , extrapolating that part of the ion

saturation curve which appears linear rather than using a tangent to the curve at a point

which gives the most linear log I vs V plot, pronounced breaks are observed even near

the axis of the column. The temperature obtained by this more horizontal extrapolation

indicates a high energy tail typically 9 or 10 eV.

Because of the long mean-free paths for the electrons in this system, it is not

unreasonable to assume that the electrons are not in a Maxwellian distribution. The

grid farthest from the plasma-generating structure is observed to act as an electro-

static reflector, causing the mirror magnetic field to have no observable effect on

either the plasma or the wave propagation. The reflecting efficiency of electrostatic

reflectors is greatest when the velocity of the reflected particles normal to the

reflector is the smallest. Therefore, because of the observed discrepancies between

measurements of the electron temperature and the definite possibility that the grids

could cause an overpopulation of the low parallel energy electrons relative to a

Maxwellian distribution, the effects of a two-temperature Maxwellian will be con-

sidered.

The effect of a colder component of the electron distribution on the dispersion rela-

tion is simply to add an additional term to the sum over the species in Eq. 1. This

additional term causes Eq. 2 to take the following form:
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T W- U T
22 e T k e

D(k, w) = k X Z'D T.. Te 1 1 e

U'k e6Z'
ae

ke
- EZ' k

ae

where 6 and E are the fractional concentrations of the cold and hot

tions, and the primed variables denote the parameters of the colder

For simplicity, assume U. = U = U' = 0, and a i << << a' < a
1 e e 1 k e e

priate series expansions for Z' (a), the following dispersion relation

the leading terms of the expansions are kept:

2 T T'
e ee

k mi(6T +T')

or

2 T
- eff

2 m. 'k 1

where

T T'
Tef f = ee

T' + 6(T -T')
e ee

electron distribu-

electron species.

Using the appro-

is obtained if only

(12)

e + 6 = 1.

The imaginary part of the dispersion relation is computed by using (7)

terms in the expansions of Z' (a). The following equation is obtained.

(13)

and the leading

T- ff)3/Z
8. exp -_ 2 f) +

mme T____3/

m.
1

The full equation, Eq. 11, was solved exactly for several values of Teff and Te, with zero

drift assumed. The real part of the dispersion relation agrees with Eq. 15 within 3%:

2 T + 3T.
k eff i

k2 m.k 1
(15)

The imaginary part of the dispersion relation is plotted as a function of T' in Fig. X-2,e
for values of Teff typically obtained from wavelength measurements, and values of Te

typical of those measured by using the more horizontal ion saturation current extrapola-

tion. From Eq. 13 5 and E were obtained.

Collisional Theory

The high densities that are obtainable with this plasma source suggested that viscous

damping might be playing an important role in the damping of the waves. Since, in
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Fig. X-2. Theoretical values of the Landau damping for a helium plasma
having a two-temperature Maxwellian electron distribution.
The temperature of the high-energy component of the electron
distribution is 9 eV for curve (a) and 11 eV for curve (b).
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general, the mean-free path of the ions is less than the wavelength of the waves that are

observed, a fluid description is valid, at least for the ions. Since the magnetic field

used to contain the plasma is sufficiently large to satisfy the following inequalities:

Qe >> 0i > Vi' Ve'

where Qi and 0e are the ion and electron-cyclotron frequencies, and vi and ve are the

self-collision frequencies of the ions and electrons, many simplifying assumptions may

be made. Braginskii 5 has considered these assumptions in some detail; therefore, the

transport equations derived by him will be used. The variables in the transport equation

will be assumed to consist of a steady-state plus a small perturbation having a harmonic

variation of the form, exp(i(wt+kz)). This is essentially equivalent to Fourier-Laplace

transforming the transport equations and solving them for times sufficiently long that

the initial-value terms introduced by the Laplace transforms can be neglected and only

the natural modes of the system considered. Absolute neutrality will also be assumed.

With these assumptions, the mass conservation equation for the ions may be linear-

ized to give

(W+Uik) = -knU., (16)

where n is the density and the tilde denotes a small perturbation to the steady state.

Defining w 1 = kUe , the electron-mass conservation equation becomes

(W+wll)n + nkUe = 0. (17)

The momentum conservation equations may be linearized to yield the following relations

if we neglect electron inertia; that is, we assume the frequency of the variation of the

electron velocity to be much greater than the frequency of the collective modes of inter-

est.

0 = -k(iT +nT ) (18)

nmi(w+kUi ) U. = -k(nT.+nT.). (19)

Adding Eqs. 18 and 19, we obtain

nm.i(w+kU.i) U. = -k(e(T +T.)+n(T.+T )). (20)

Proceeding to the energy balance equations for the ions and electrons, we have

T. k a.
(w+kUi) A- ix (w+kUi) -n (21)T. - i } n)

11
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Fig. X-3. Theoretical values of the viscous damping in a helium plasma
as a function of frequency. The density for curves (a) and (b)

is 4 X 109/cm 3 and 4 X 1010/cm3
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S 3 2 2
T a e - (w (22)

e (+I) - iXe 0 (22)
e e

The mass conservation equations have been used to obtain these forms; Xi and Xe are

numerical factors equal to 1. 95 and 1. 58 for singularly ionized ions and electrons,

respectively. Combining Eqs. 20, 21, and 22, we arrive at the following expression:

w+kU.N T. T

-nm U (T +T) + + e (23)
i3 i 3 e

3 TXi 3 _iXe

2 w + kU i  2 o + 0

where

k 2 2
5

X, = Xs v
s

22
In the limit k2a e>> e(C+ l) (long electron mean-free paths), this equation takes the form

e e

3 + *Xi

-nm(w+kUi) U. i( ) + kU
k = n Te 1 + + T + . (24)

k e 12
Xe _9+ Xi

4 2
(w+kU.)

1

Using Eq. 16, we arrive at the dispersion relation

2 (+kU
(w+kU.) T. +2 T + X +  iXe T (25)

1 e 1

Equation 5 may be put into the form of a fourth-order polynomial in , and solved25)
by a number of methods. Muller's method23 was used to solve this equation for various4 2 4 2(w+kU.) (w+kU.)1 i

where 5 = T /m.
s ei

Equation 25 may be put into the form of a fourth-order polynomial in , and solved

by a number of methods. Muller's method 3 was used to solve this equation for various

values of the wavevector k, electron temperature, ion temperature, and density. The

reciprocals of the self-collision times from Spitzer were used for the collision fre-

quencies. The theoretical curves relating De/X to the frequency, f = w/2Tr, are shown

for helium in Fig. X-3 for typical ion and electron temperatures and densities. The

numerical factors, Xi and Xe' were set equal to one for these calculations.

L. P. Mix, Jr., G. Bekefi
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2. THREE-WAVE COUPLING IN CLYNDRICAL PLASMAS

We consider a plasma cylindrical column in the presence of a uniform magnetic field,

directed along the axis of the cylinder. Our description of the system is simple: (a) The

electrons are assumed to behave like a charged conducting fluid. Their thermal motion

is neglected. (b) The ions constitute a uniform neutralizing background. (c) The exter-

nal magnetic field is of such strength that the motion of electrons perpendicular to it is

neglected.

We are interested in plasma waves whose phase velocity is much smaller than the

velocity of light, so that we may use the quasi-static approximation (neglect of AC mag-

netic field).

The equations that describe the system are

av e _ 1 8 2

(v ) (1)at - 8z 2 8zm

an 8 v a8S+ N (nv) (2)t 8z az

72 = 4wren. (3)

We have taken the external magnetic field in the z-direction (along the axis of the plasma

column); v is the component of velocity perturbation in the z-direction; m and (-e) are

the mass and charge of an electron; N is the number density of the ions, n + N the num-

ber density of electrons; 4 is the perturbation potential.

Linear Solution

The linear solution is found by neglecting products of first-order quantities, and

assuming solutions in the form of plane waves in the axial direction. The well-known

result is1

4(rt) = AJm(pr) ei(kz-wt+mO) (4)

e k
v(rt)- N (rt) (5)

2

n(rt)- e N (rt) (6)

2 2

p -- k E. (7)

Here, E is the cold-plasma dielectric function, and A is a complex constant.
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In the case of a perfectly conducting plasma-filled waveguide, the potential vanishes

at the wall, r = R. This gives the dispersion relation

2x
mn

R
2

where x is the nth
mn

phase velocity is

R
vph = p

P Xmn

2-P (8)

root of the mth-order Bessel function. For low frequencies, the

(9)

The group velocity is easily found from Eq. 8,

a= = E(.)

Vg- ak- (W) 1 1

Equation 8 shows that the waves cut off at the plasma frequency.

Coupled-Mode Equations

We combine Eqs. 1-3 to obtain

2 2 2\ a2 4TeN 8 2 2

S+ p + (v ) - 4e (uv).
at 2 t z 8z

(10)

(11)

Here, we have separated the Laplacian operator into its axial and transverse com-

ponents.

The nonlinear terms are assumed sufficiently small, so that we may use the linear

expressions for the number density and the velocity. We first expand n and v in the form

i(kz-wo t+m6)mn
v(rt ) = Vm(r) e

mn

i(kz-omnt+m)
n(rt) = nmn(r) e mn (12)

mn

We substitute these relations in the right-hand side of Eq. 11, denoted by R, and

obtain in simplified notation,

R - 4reN (k'+k")(2 vvG - e (k'+k")(w'+w")[n'v"+n"v' ]G, (13)
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where

G - exp[i(k'+k")z-i(wo'+w")t+i(m'+m")6].

We use (5) and (6) to relate the eigenfunctions for the density and velocity to the

eigenfunction for the potential. We substitute these relations in (13) to get, after some

reductions,

e 2 k' k" (k '+ k ')  k' k"Sp +(k +k")(w'+w")+ + ' "G. (14)

These are the driving terms in (11). If they are set equal to zero, the last equation has

the linear solutions already discussed. Since the radial and azimuthal modes form a

complete set, at given z and t we can expand the potential in (11) as a sum of such

modes. If we set

4(rt) = 4mn(zt) Jm(pmnr) exp[i(kz- mnt+mO)], (15)

mn

then 4(zt) will be a slowly varying function of z and t if the nonlinearity is weak.

Substituting the expansion (15) in the left-hand side of (11), denoted by L, and

neglecting second derivatives in z and t, we obtain

- 2 exp[i(kz-m t+mO)]mn mu
mn

22imk +  ' -k
~X V12 + 21E k + 2mn Vk mn )t mn(zt)

SJm(Pmnr). (16)

Substituting (15) in (14) and setting the resulting expression equal to (16), we obtain

the desired nonlinear equation. We can eliminate the dependence on the transverse

coordinates by making use of the orthogonality relation

2O i(m+m')O R R2 J2
de eim+m rdr J m(pmnr) Jm, (Pmn' r) = 6 6 n, J' (p R)

and the fact that

7(V+pm2 ) Jm(pmnr) = 0.m\ m mn
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We finally obtain

a + I a t ( z t ) IvI W it)
z-+ Umn t mn(zt) = - k V( )

mn mn nn"n' n"

X tm'n tm" n" a(n' n")

X exp[-iAkz+iAw mnt], (17)

where

_ e i 2 1 k" (wk'+k") k' k ilV(W 0' w") = 2 -(k'+k")(w'++") + +2 m p W 2 W " ('+) W

1 R
a(n'n") = 2  r dr Jm mnr)Jm(Pm' n' r) Jm" (Pm"n" r)

J' (P mnR)

S mn mnk mn mnu-
mn= (2 +k2) E m n

and

mn mn (m' n' +m"n")

Ak = k - (k'+k") (18)

0 = m - (m' +m")

Equation 17 is the final relation. It describes the coupling of the (m, n)th mode to

all other modes that satisfy the relations (18). Note that there is no such relation for

the radial (quantum) number, n. Also notice that the velocity u is the group velocity
th mnof the (m, n)th mode. For appreciable energy exchange either Acw = Ak = 0 (resonance),

or these quantities are small compared with any of the frequencies or wavevectors

(quasi-resonance).

For three-wave coupling, we drop the summation in (17), and introduce the simplified

notation

(m, n) - (1)

(m', n') - (2)

(m", n") - (3).
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We also put in the expression for the coupling coefficients

k 1 = k 2 + k 3 ,' W = 2 + W 3'

which is exact in the case of resonance, and holds approximately in the case of quasi-

resonance.

With this notation, we get

az.

V.= + V
S kj(-Eij)

1 (zt) = +(2) VI 24 3
exp[-iAkl z+iAwI t]

02 (zt) = +() V 2p 41 exp[+iAk 2 z-i w 2 t]

3 (zt)= +( V 3 1 2
exp[+iAk 3 z-iAw3 t],

(j = 1, 2, 3)

e 2 klk 2 k3 k1 k2 k3
V= --+ +

2m p olo 2 3 1 2 ;3

Equations 19 is a system of partial differential equations. Since they are very com-

plicated in general, we deal only with two specific cases.

Spatial Variation in the Mode Amplitudes

If we put in Eqs. 19 at = 0, we find that the resulting equations are in exactly the
2

same form as in a previous report. If we treat them in exactly the same way, we find

the solutions

N 1 (z) = Nla + (Nlb-Nla) y 2 [z]

y 2[z] = sn2 (Nc-N 1/ 2  z (20)

where sn(u) denotes the elliptic integral of the first kind of modulus A,

0 < 2 N lb -Nla<
=N -Nlalc la

QPR No. 94
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H = [VV 2 V 3 ] 1/2

N -
j V.

(j = 1, 2, 3),

and A is the amplitude of mode j.

4K(A 2 ) = 4 s '
0

The period of the elliptic function is 3

dt (1-t2)-1/2 (-A2 y2 -1/2

so that the period in z is given by

4K(A 2
]1/2

L = H/2 [N1 c-N 1 a-/2
Temporal Variation in the Mode Amplit/2

Temporal Variation in the Mode Amplitudes

8We now put in Eqs. 19 aZ 0. Then
we find

(21)

again treating the resulting equations as before,

N1(t) = Nla + (Nlb-N1a) y2 [t]

y 2 [t] = sn (N 1 c-N la/2) t-tl

and the period in time is

4K(A 2 )

T =
H/2

[N1 cN 1 ]-1/2

(22)

(23)

We see from Eqs. 19 that

V. = u.V.

A 1N.= N.
j uj J

H= (ulu 2 u 3 ) 1/2

Using (24) and comparing (21) and (23), we get
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T = (u 2 u 3 ) -1/ L

or, put another way,

y = (uu 3 ) 1/2 ;

that is, the time growth rate, y, is equal to the space growth rate, F, multiplied by the

geometric mean of the two group velocities.

E. N. Spithas, W. M. Manheimer
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3. LANGMUIR PROBE IN THE ORBITAL MOTION REGIME

The purpose of this report is to correct a formula used for determining plasma prop-

erties from Langmuir probe curves. The corrected formula is important practically,

as well as conceptually, as it allows the plasma density to be computed independently

of the electron temperature. Thus the density determination will not be subject to errors

in the temperature measurement.

This formula is applicable in the regime in which Langmuir's orbital motion theory

applies, namely rp << D, where rp is the probe radius, and XD is the electron Debye

length. Chen has written the expression for the ion current to a cylindrical probe as

2 1/2
I = eJ (1+ p) (1)

rp

where J = 27r p(kTi/2mdi) 1/2 fn is the total random ion flux, and p = -eV p/kT is
r p o p p e

the normalized probe potential, with

r = probe radius T = electron temperaturep e

f = probe length m i = ion mass

T i = ion temperature no = ion density

V = potential with respect to plasma potential.

The proper normalized probe potential, however, should be qp = -eV /kT. With
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this qp , as T.i approaches zero, the ion current properly remains nonzero.

Consider the orbit of an ion in an attractive central force field. Let the initial veloc-

ity be v 0 and the impact parameter be "b". At the point of closest approach to the poten-

tial center let the velocity be va and the radius be "a". Then

1 2 1 2
-- my = mvy + eV (conservation of energy)

o aby = av a (conservation of angular momentum)

ba( 
2eV 1/2

b = a 1 e a- 
(2)

2
where V must be referenced to zero (plasma potential) and mvy /2 = kT.. Then b =

a 0 1

a(l+rlp)1/2 , where qp is defined as -eVp/kT i .

If "a" is the probe radius r , then any ion with "b" smaller than r (1+71) will
2 1 / 2be collected. Therefore the effective probe radius is r/ (+r ) , and the correct

formula is

eV 1/2
2p

n =2 J 1 kT (3)
r kTi

m (A 2 1/2
m e  /AI2'

o 3/2 ) AV (4)

(2e) (r f )

where all values are in MKS units, and n is independent of T. It is then easy to plot

12 against V from the measured probe characteristic and use the slope of the resulting
3

straight line in this formula to determine n o .

The densities derived from this formula are equal to those derived from the exact

computer calculations of Laframboise 4 for cylindrical probes with r p/ D < 2. 5.

A. J. Cohen
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4. NONLINEAR HARMONIC GENERATION AT PLASMA

RESONANCES

The subject of this report is the generation of harmonics of an RF signal applied to

an antenna immersed in the center of a low-density (n ~ 109 electrons/cm 3 ), low-

pressure (p ~ 0.4 p.), DC discharge in Argon.

This harmonic generation was reported in two previous reports. 1,2 Various changes

have been made in the system, which have resulted in more precise data of the kind

reported previously and in new interesting data.

The experiment is basically the same as that reported earlier. The monopole spher-

ical antenna has been replaced by the split-sphere dipole reported on by Waletzko and

Cohen previously.1,3,4 This was done to increase the Q of the resonance that naturally

results in better definition of the observed effects. Since the dipole field is more local-

ized than the monopole field, the dipole field is more intense for a given applied voltage

to the antenna. Therefore the harmonic generation is more intense. The spectrum ana-

lyzer used earlier as a detector can now be replaced by an RF voltmeter so as to get a

direct voltage reading for the harmonics. The coaxial cable used earlier to feed the

dipole, RG174, was shown to be significantly lossy at the harmonic frequencies. It has

been replaced by precision rigid and semirigid cables. The glass vacuum chamber was

surrounded with a cylindrical screen closed top and bottom. This prevented RF leakage

from the antenna from going directly into the detecting apparatus. It also prevented spu-

rious pickup of radio and television stations that had been thought to be Tonks-Dattner

resonances. Since the shield formed a cylindrical cavity resonant in the range of the har-

monics, the RF absorber had to be placed strategically to damp out the cavity resonance.

A 20-dB directional coupler was mounted to sample the power incident to the dipole. This

power was kept constant during each run of data. The dipole could not be DC-biased

because no double DC blocks were available at the frequencies of operation. The antenna

is coated with a thin layer of dielectric, Insl-X, so it can remain DC floating throughout

the experiment. A movable cylindrical Langmuir probe operating in the Langmuir

orbital regime (see Sec. X-A. 3) was used to obtain radial density profiles. A diagram

of the experiment is shown in Fig. X-4.

Most RF data were taken by sending 0. 50 V of frequency f onto a dipole,

1 3/4 inches in diameter, and monitoring the reflected power both at f and at 2f, and

by sending 2f onto the dipole and monitoring the reflected power at 2f. For a given fre-

quency, the reflected signals were observed as a function of discharge current. Then

the incident frequency was changed and the measurements were repeated. The RF admit-

tance of the probe was monitored with a GR 1602B admittance meter. The value 0.50 V

was chosen because it was large enough to give good results on the output detectors and

small enough so as not to perturb the resonance significantly. The gas pressure could
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V ,_ , IV i o-- LANGMUIR PROBE

TUNABLE MOTOR-DRIVEN
BANDPASS PROGRAMMING
FILTER RESISTOR / 10-
2f, 3f r inch

RADIUS

VARIABLE I- inch
CURRENT RADIUS
DC POWERFUPPLY INDIRECTLY

VOLTMETER CATHODE

SIGNAL - PUMP
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DC OUTPUT Y X TO DISCHARGE

INLET
X-Y RECORDER

Fig. X-4. Diagram of the experiment.

also be varied from 0. 25 4 to 2 L by changing the flow rate. The measurements reported

here are at 0. 25 i and 0. 4 t.

Geometrical Resonance

If a probe is inserted into a plasma, its RF admittance characteristic will show a

resonance at a frequency somewhat below plasma frequency. This is attributed to a

series resonance between the capacitive sheath surrounding the probe and the inductive

plasma just beyond. (A plasma acts as an inductance below plasma frequency, since the

conduction current exceeds the displacement current for w less than w ( VX H = J + D).)

The variation of the resonance with electron density n has been calculated theoreti-

cally from the formula

3

r 3 fp' (1)

((11

where R is the probe radius, f is electron plasma frequency, and s is the sheath thick-
5 p

ness given by 4. 4 XD. For the conditions at 0. 4 p. at which the admittance runs were

taken, this formula can be written approximately as fr ~ n 3 0 for electron temperature,
26 78T e a constant. Experimentally we observe a variation of fr I' but since n ~ I7

33from Langmuir probe data, we derive fr n 3 3 . This shows excellent agreement between
fromLanguirprob dat, w derve r
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Fig. X-5. (a) Second harmonic as a function of density.
(b) Fundamental power reflected as a function

of density.
(c) Harmonic power reflected as a function of

density. (Zeros are displaced for clarity.)
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theory and experiment. The precise positions of the resonant frequencies calculated

from the same formula depend strongly on the value of density inserted for s and f .
p

Type B Peaks

If we put frequency f onto the antenna and look at the generation of frequency 2f by

the plasma, or if we look at the reflected power from the plasma at f itself, both

measurements being made as a function of plasma density, we observe effects that we

previously called "type B" peaks 2 (see Fig. X-5). These results can then be correlated

with the measurements at frequency f with the admittance meter.

a. Reflected Power from Plasma at Frequency f

In a simple series RLC circuit in which R, L, and C are independent of frequency W,

the minimum in the power reflected from the circuit occurs at the resonant frequency,

where

R
G=

1R + L 1

is a maximum and

B=

R + wL )

is zero. If, however, R, L, and C vary with frequency, then the minimum in reflected

power does not have to occur at the resonance. This, in fact, is the case for the type B

peaks observed in reflection at frequency f.

For experimental simplicity, the frequency is kept constant and the plasma density

is varied instead. Since R, L, and C are functions of the density, the minimum in

reflected power does not coincide with the conductance maximum (see Fig. X-6). The

observed reflection curve at the fundamental f can be approximately generated from the

observed admittance at the fundamental by using the formula

V = /V = y L i (2)

inc. o L

where p is the reflection coefficient, p = (Yo -YL)/(Y o +YL), Yo is the admittance of the

50-0 cable, and YL is the measured admittance of the load that includes the inside

capacitance of the dipole (see Fig. X-7).
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Fig. X-6. (a) Admittance as a function of discharge current for 60, 80,
and 100 MHz.

(b) Absorbed power as a function of discharge current.
(c) Harmonic generation as a function of discharge current.
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Fig. X-7. Reflected power as a function of discharge current: (a) at
60 MHz; (b) at 80 MHz; (c) at 100 MHz.
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b. Generation of the Second Harmonic

If an RF signal is applied to a probe immersed in a plasma, then harmonics of that

applied signal will be generated by the nonlinear exponential sheath. To explain the

type B peak observed in the second harmonic, the admittance characteristics at the

fundamental must be considered.

Since the harmonic is generated by rectification in the nonlinear exponential sheath,

then the harmonic must peak when the voltage in the sheath is a maximum. The electron

current to a probe is

= ne(kTe 1/2 -eV/kT e (3)
e)

Now, if V = VDC + V RF , where VRF Vsheath at frequency f, then

(-eV RF

R 1 VRF

I DC +T 2 T 2e T

We are interested in the term in the expansion for I which varies at 2w. For

VRF/T small, the series converges rapidly, and the only term that contributes signif-

icantly to I(2w) is the 1/2 (VRF/T)2 term. The validity of this approximation for the

experimental conditions is discussed in Appendix I. It is shown in Appendix II that I(2w)

is given by

IDC IVs(w) 2
I(2w) =4 s 2  (5)

T
e

If the voltage across the terminals of the dipole could be kept constant, then this
sheath voltage would be largest at the admittance peak. Unfortunately, only the incident

voltage can be kept constant. The terminal voltage equals the incident voltage plus the
reflected voltage.

V V. + V (1+p)V 0 V. (6)T inc. refl = (l+p)Vinc. Y + Y L Vinc.

Thus the terminal voltage drops as the resonance is approached. To determine the

sheath voltage, a model more complex than the constant-voltage model used by others
must be constructed.
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The system may be modeled as shown in Fig. X-8. Then

2Y
V =IZ I =V Y V o V

s  p s  p VT p T Yo + YT inc.

and so

s YZ+ Y Vinc (7)

A value for Vs can then be obtained from the measured values of YT and Y and from
1 abPa calculation for Z which is j and C equals 4rE -, where a is the radius of the

T
I

Lp

Vinc Rp

Fig. X-8. Model for determining the
PLASMA-SHEATH terminal voltage.

SYSTEM

Ci=INSIDE CAPACITANCE OF DIPOLE

YT = Yp + jCi

T ,, T2 = TERMINALS ACROSS WHICH
VT IS DEVELOPED

antenna, s is the sheath size (4. 4 XD), and b = a + s. Since C s ~ 1/AD 1 /2 , the ratio
of sheath voltages for two different densities at a fixed frequency is

V Y +Y Y n )spo T1 p2 1

where the various Y's are the values of admittances at frequency f. The ratio
IV /Vs 2 12 calculated from formula (8), by using the experimental values for Y , YT'
and n, can be compared with the harmonic generation at 2f. The calculated and experi-
mental peaks are close to each other. The calculated widths, however, are significantly
larger than the observed widths.

This model was used to calculate the relative amplitudes of the second harmonic
peaks for various frequencies, by using the experimentally determined values for the
admittances. The theory and the experiment do not agree.

It should be noted that the comparisons above are valid only under the assumptions
that the plasma admittance at the second harmonic is constant and that the only thing
that determines the height and width of the B peaks is the variation of plasma admittance
at the fundamental. These assumptions will be subject to further scrutiny.
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Various Methods of Determining Series Resonance

Other investigators have measured resonance probe characteristics in three standard

ways. They have used admittance meters,5,6 observed transmitted or absorbed power, 7 ' 8

and detected the extra rectified current to a biased probe when the radiofrequency is

turned on.8, 9 This extra rectified current to the probe derives from the time average

of Eq. 4, where VRF is taken as V s sin wt. Then

IDC (s

which is just the time average of Eq. 5. The heights of the resonance curves have been

related to the damping by Buckley and others. 1 0 ,11 These methods have been compared

and the positions of the resonances have been found to be equivalent in the regimes in

which the experiments have been performed. 8, 6

The various methods may, in fact, be equivalent only over a limited range of cur-

rents, frequencies and pressures for which the Q of the resonance is not too high. At

high Q' s, the differences between these methods begin to show up.

As the resonant frequency is increased for a fixed pressure, the Q increases, as

does the RF conductance as measured with the admittance meter (see Fig. X-9). It is

seen, however, that the peak absorbed power at o and the peak harmonic generation at

2w (which should be equivalent to the extra rectified current) attain peak values, and then

2 4 x IO9

--- ,- R E G IO N  I

E 20x109

PROBE
Si9 RADIUS

M 6 x10 
875"

z

DISCHARGE CURRENT 300 mA

I x IO
9  

PRESSURE 041-

FOR ANY CURRENT
z 0 

7 8

o n I SHEATH
REGION

ne< ni

6" 4" 2" 0

DISTANCE FROM CENTER OF DIPOLE inches)

Fig. X-10. Density profile as determined by a Langmuir probe.
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decrease as a function of w (see Fig. X-5a and 5b and Fig. X-6b and 6c). Since the peak

value of the RF conductance peak increases as expected for increasing resonance fre-

quency and its position varies according to formula (1), then we expect that the RF admit-

ance meter determination is the proper technique to use in a regime in which the various

methods differ.

Type A Peaks

The solutions to the RF probe in a plasma are of two types: the long-wavelength

solution in which the phase velocity is comparable to the vacuum electromagnetic veloc-

ity; and the short-wavelength solution in which the waves propagate at approximately

the electron thermal velocity. The geometrical resonance and type B peaks were of

the long-wavelength variety. We shall now consider the thermal waves.

The effects called "type A" previously2 may result from a thermal standing wave

that propagates between the dipole antenna and a point in the plasma for which W = o (r).
The wave equation 0 is W = c p(r) + 3V Tk2(r), where VT is the electron thermal velocity,

and k is the wave number of the oscillation. The wave becomes evanescent; that is,

k becomes imaginary for A < p(r). Standing waves of this type are known as Tonks-

Dattner resonances, and have been discussed extensively by others.

If we look at the radial density profile (Fig. X-10), measured with a thin cylindrical

Langmuir probe operating in the orbital regime (see Sec. X-A. 3), we see that a region

in which the Tonks-Dattner resonances could occur does exist for this probe-plasma

system (region 1 of Fig. X-10).

A computer program is being prepared to predict the locations of the Tonks-Dattner

resonances from the measured density profiles and electron temperatures. These

solutions will be compared with the locations of the experimental type A peaks (see

Fig. X-11).

Appendix I

In the expansion of Eq. 4, only the terms in even powers of Vs contribute to the

second-harmonic current.

The term following V2/2T 2 is V4/24T 4 . If V/T is small, then higher order terms,

n > 2, may be neglected.

Let us see what Vs/T is for the case of maximum harmonic generation. If this is

small, then the approximation should be valid everywhere. See Fig. X-6 for 80 MHz

and 155 mA.

Y
2Y p

V o Vs Yo + YL Ys inc.'
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where Y = (13-3j) mmhos, and YL = (13+3j) mmhos.P

Y = jwCs s

4TE ab
C

s s

where s = 4 . 4XD, a = radius of the probe, and b = a + s.

For T = 4. O eV and n s = n/4 = 4 X 108/cm2

jwC s = 8. 5j mmhos.

Vs = . 9 V.inc but V. = 0.5 V.
inc.

V s 1
T -T, and the fourth-order contribution will be

e
negligible.

Appendix II

The applied signal is V. sin wt.inc.
Then V across the sheath is given by

V = o Y Z V.
s Yo + YL p s inc.

V = V sin wt + V. cos wt
S T 1

2 2 2V = V sin wt +
s r

2V. cos

. 2 1 - cos 2t
sin t = 22

wt + 2V V. sin wt cos wt,r i1

2 1 + cos 2wt
, cos t = 22

2 sin wt cos wt = sin 2wt

V 2 1 cos 20t - V 2

s 2 1i r cos 2wt + 2V V. sin 2wt.r 1

Then, from Eq. 4,

I(2w) = IDC V r2 V 2 cos
4T2 r

but we measure II(2w) I, so

II(2w) I- V DC V+V}
4 T2 r

2wt + 2V V. sin
r 1

IDC IVs!2

4 T 2

A. J. Cohen
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5. RADIATION TEMPERATURE OF EXTRAORDINARY WAVES

Observations have been made in this laboratory of the effective temperature, T (w),
1-4

of microwave radiation emitted from weakly ionized gas discharges. In the presence

of an external magnetic field, B, resonant peaks in T (w) were observed at the electron-

cyclotron frequency w = wc = eB/m (in MKS units.) A theoretical model for this behavior

was obtained by treating the steady-state intensity of radiation as a balance between the

emission and absorption (by orbiting electrons) of right circularly polarized (resonant)

electromagnetic waves propagating in the direction of B. The resultant expression for

the effective temperature of the radiation is

4

S v m f(v) dvS(W- )OC + v

kTr( =r 4 c m (1)
m 1 af dv

(co-c(W )2 + V2 m v
c m

where k is Boltzmann's constant, vm(v) is the electron-atom collision frequency for

momentum transfer, and f(v) is the (isotropic) electron velocity distribution function

normalized so that 4Tr f0 v 2 f dv = 1. Both the numerator and denominator (representing

coefficients of emission and absorption of right circular waves) exhibit resonant behavior

at w = wc and, if vm(v) is not constant and f(v) is not Maxwellian, their ratio, T r() is res-

onant also. The model neglects warm plasma effects (for example, Doppler broadening)

and assumes that electron collisions with neutral particles predominate. Because of its

manifest simplicity, Eq. 1 has always been used - sometimes with remarkable success -

in the analysis of resonant temperature data. 4 ',5 In the guided-wave systems normally

employed in these experiments, however, the claim that right circularly polarized radia-

tion is being monitored exclusively cannot be made. Furthermore, for waves propa-

gating at an angle to the magnetic field, the wave resonant frequency (at which the wave

phase velocity becomes quite large) is different from the electron-cyclotron frequency.

Because of these potential influences, we have undertaken a study of the validity of

(1) for other resonant polarizations.

A more general expression for Tr (w), one which explicitly includes the wave polar-

ization, may be based upon the theory of fluctuations. It is found that for weakly damped

modes in a plasma confined by conducting walls (say, a waveguide) an effective radiation

temperature may be defined by 4

E (r, w) . (r, w) E(r, w) d 3 r
kT (O) = T, (2)

E(r, o) H(r, O) E(r, ) dr
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iwt
where E(r, w) is the wave electric field (assumed to vary as e ), 4(r, w) is the micro-

scopic current correlation dyadic, and H(r, w) is the Hermitian part of the conductivity

tensor, ^. The two integrals are taken over the plasma volume, and it has been assumed

here that C and a reflect only local behavior (cold-plasma limit). The expression (2)

represents the average energies of fluctuating modes in the system as a balance between

their rate of emission by random electron motion (the numerator) and their ohmic dis-

sipation through the induced, in-phase current. In the case of a weakly ionized gas with

a uniform magnetic field in the z-direction, all expressions are simplified by trans-

formation to right and left circular coordinates:

' - E =E iE, ,Z E =E +iE.
r x y x y

This transformation diagonalizes the tensors 4 and o-, and for a uniform plasma we

may write

SE 2 Wr + I E 12 4 + Ez 12 z

kTr( r) rz (3)
Er 2Hr + E 2 GH + I Ez 2 aHz

The appropriate fQrm of the components of has been obtained by Bunkin

4
2 00 v v

4ne 2  v m f(v) dv (4)
r, 3 0 (w T ) + v

c m

9 z = the same expression with c = 0.

Here n is the electron number density. Similarly, for the components of the diago-

nalized conductivity tensor

S4Tnev 1 8f dv (5)
r,f 3 i(: wc ) + my 8v

az = the same expression with w = 0.

The components of the Hermitian tensor 0H are simply the real parts of (5). Combining

(4) and (5) with (3), we recover the original result (1) for Tr(w) in the case of pure right

circular polarization: E = Ez = 0.

In the interpretation of temperature measurements of guided electromagnetic waves,

the form of E(r, L) in the plasma column is not known. We can argue, however, that the
2 2

component E is probably comparable to Ed and E so that for (w-wc) <vm the right
circular terms in (3) dominate the nonresonant terms by a factor , which is

circular terms in (3) dominate the nonresonant terms by a factor of 4/v Zm , which isc m
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generally quite large. Whereas this argument is often valid and there may even be
7

experimental evidence of significant resonant polarization, its range of validity off
resonance may be questioned, and we can hypothesize cases for which it might not apply

at all. One such case is that of the so-called extraordinary wave encountered when the

direction of propagation is perpendicular to the magnetic field. It has the property that,

in the absence of collisions, its right circular component, E , vanishes at c = o .
r c

Furthermore, its refractive index (and correspondingly its emission and absorption

coefficients) are greatest at the hybrid frequency, H =2 +w )1/2 where w is the

plasma frequency: w = ne /e m. Thus for dense plasmas we might expect no resonant
p o

behavior in the intensity of extraordinary radiation at w = c and might even anticipate

an anomaly in Tr(w) near wH
A computer program was written to rigorously examine this question. We used the

forms f(v) = fo exp[-(v/V)P] and vm(v) = Cv q , where vo, C, p, and q are arbitrary

constants, to calculate the conductivity from (5). For a given angle of propagation rela-

tive to the magnetic field, the components of E(w) were obtained from the wave equation

K X (KXE) + ) K E = 0,

where K(w) = I + /i °E is the dielectric tensor, and K is the propagation vector. The

resultant values were then combined with the appropriate components of (4) and (5) to

obtain kT r() from (3). The results of two such calculations (for right circular and

extraordinary waves) are shown in Fig. X-12. Because the forms adopted for f(v) and

v (v) contain an arbitrary velocity scale that does not affect the form of Tr(w), that
1 2

quantity is plotted relative to the kinetic effective temperature: kT k  m(vT) , where

vT is the rms electron velocity. Similarly, the scale of frequencies has been removed

through use of dimensionless plasma parameters8: for the electron density, a = w /W;
for the magnetic field, P = w /w; and for the velocity-dependent collision frequency,

y(v) = vm(v)b = Yo(v/T )q . In keeping with experimental practice, we plot Tr as a

function of magnetic field for fixed w.

The parameters chosen for the case illustrated in Fig. X-12 are typical of experi-

ments performed with argon discharges. Apart from a slight asymmetry, the effective

radiation temperature for the extraordinary polarization is resonant at the electron

cyclotron frequency (P=l) and exhibits no anomalies at the hybrid frequency (P=0. 7).

Indeed, the difference between the pure right circular and extraordinary polarizations,

for the most part, is within experimental error.

To understand the physics underlying this result, the two nonzero components of

E(w) in the extraordinary case are plotted in Fig. X-13a. The field amplitude has been

normalized so that I 2 = Er + I E 2 =1. For comparison we show the corresponding

plot for a collisionless wave (y=0). In spite of their similarity, these curves differ
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Fig. X-12. Computed radiation temperature as a function of P = w

for propagation parallel and perpendicular to the magnetic

field. f= fo exp[-(v/v) 4], y = 0.1 (v/vT)3 , a2= 2 = 0.5.

importantly, in that IEr 12 is nonzero at w = w when collisions are included. The right

and left components of rr and a-H are shown in Fig. 13b. Note that aHk and r are

quite small in comparison with aHr and iTr and here are shown magnified by a factor

of 100. The total emission and absorption terms (numerator and denominator of (3)) are

presented in Fig. X-13c. The hybrid resonance appears as a broad maximum in both

terms near p = 0. 7 but the velocity-dependent collision frequency manifests itself in

additional structure at P = 1. That the right circular terms clearly dominate the

behavior of T (w) in this case can be seen from the smallness of the left circular terms

that are plotted for comparison. It is not surprising then that the resulting radiation

temperature is only slightly different from that obtained from the right circular terms

alone (see Fig. X-12).

Clearly, the appearance of the electron-cyclotron resonance in the extraordinary-wave
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B B

Fig. X-13. (a) Right and left circularly polarized components of the extraordinary wave

electric field with a 2 = 0. 5. (1) Without collisions. (2) Under the condi-
tions of Fig. X-12.

(b) Dependence upon P3 of right and left circular components of P and -H'
Parameters as in Fig. X-1 2.

(c) Dependence upon P3 of the numerator and denominator of Eq. 3 illustra-
ting hybrid and cyclotron resonances. The nonresonant contributions are
also shown. Parameters as in Fig. X-12.
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temperature is related to the influence of collisions on IE r 2 and to the general domi-

nance of I Er2  Hr and IEr 2 r over I Ep 2 THe and I EI 2  , near P = 1. The relative

magnitudes of these terms may be estimated by assuming that v m(v) is constant. In so

doing we discard the resonant peak in Tr(w), but preserve the magnitudes of the terms

in question. For the extraordinary wave, the circular field components are simply

related 8

E r  K

rE K'

where, for y(v) = constant,

1 Tp - N- a2

2
HH rHr r (+p)2 

+ 2

HIe (1_-) + yZ

Working out the details, we therefore find that the ratio of the resonant terms in (3) to

the nonresonant terms is given by

I Er 2 r (1+p-a 2 )2 +
R= 2 2 (6)

1Ev 2  (1--a2 ) + '

If R is large (say, greater than 10) over the range of the resonant peak in T (w), then

the simple expression (1) could be used for the interpretation of experimentally observed

extraordinary intensities. Taking its range as extending from P = 1 - y to p = 1 + y, we

plot in Fig. X-14 the minimum value of R in the resonance region as a function of the

parameters a2 and -y. It is seen that for y < 0. 2, R is suitably large for a2 < 0. 5. The
2

example that we have cited with yo = 0. 1 and a = 0. 5 corresponds at resonance to R = 9,

and we should therefore expect a 1 07 difference between the extraordinary and right

circular versions of T r(). This is borne out by Fig. X-12 at the point P = 1, but off

resonance the agreement improves as the r and f components of aH and 4 become pro-

portional in the limit (w-w )2 >> v
c m

In our calculations we have also examined the resonant waves that propagate at angles

other than 0' and 90' relative to B. In all respects, they are intermediate between the

right circular and extraordinary cases cited here. We also considered the nonresonant

polarizations which vary from the pure left circular wave at 0' to the "ordinary" wave
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at 900. For these cases the wave fields generally contain only a slight amount of E ,r
and the radiation temperature does not vary dramatically.

1.0 Rmin
=  

1

0.8

Fig. X-14.

0.6 Dependence on a2 and y of the minimum value

C12 0.4 5of R = Er12 r/I Eej 2  in the range from

0.4 - 10 
= 1 - y to p = 1 + y. Reduced collision fre-

quency, y, assumed independent of electron
20 velocity.

0.2
50

100

0 0.2 0.4 0.6 0.8 1.0

Y

Our initial concern has been with the radiation of guided waves in the neighborhood

of the electron-cyclotron frequency. These waves are not pure plane waves and the
2 2

suggestion that (1) may be correctly applied if 4w > v is probably still valid. As ac m
potential counterexample we have treated the extraordinary polarization and found that

Tr(w), if properly measured, would be resonant at w = wc even though the rates of

emission and absorption are maximum elsewhere. Indeed (1) could be used with little

error for moderate plasma densities. This is true in the collisionless limit y -* 0 (see

Eq. 6), even though this implies Er - 0 at w = oc. A related question arises from studies

of the anomalous emission of microwaves from noble-gas discharges. Even in dense

plasmas, the observed radiation is well tuned to the electron-cyclotron frequency. 9 The

phenomenon is thought to involve the negative absorption of extraordinary waves, and it

seems apparent that as f(v) and v (v) are varied the denominator of (3) will first become

negative at the particle resonance, w = uc, rather than at the wave resonance, w = WH.
Computer programs are being written to pursue this and related problems.

A. C. Reisz, B. L. Wright
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6. DEVELOPMENT OF THE CASCADE IN LASER-

PRODUCED PLASMAS

According to one physical picture of the process,I the breakdown of gases at the

focus of a high-intensity laser occurs in three stages:

(a) A few initial free electrons appear, probably produced by low-order multiphoton

ionization of impurities.

(b) A "cascade" of free electrons develops. In this stage, each free electron absorbs

energy from the photon field during collisions with the massive neutrals. The number

density of free electrons multiplies because those electrons that have gained enough

energy to do so collide with and ionize the neutral atoms.

(c) When the electron and ion densities become great enough, nonlinear processes

begin to dominate the cascade as follows:

(i) Collisions of free electrons with ions. Because the cross section for this process

is greater than that for collisions with neutrals, the electrons gain energy more rapidly,

and the growth rate is enhanced.

(ii) Electron-electron thermalization. This tends to fill out the high-energy tail of

the electron distribution function, so that this process also increases the ionization

rate.

(iii) Ambipolar diffusion. This decreases the effectiveness of one loss process.

All of these act to enhance the growth of the cascade, while the competing nonlinear

process of recombination remains negligible. Thus, as soon as the breakdown reaches

this third stage, it almost certainly goes to completion. (In support of the existence of

this third stage, the data of Young and Hercher1 show a discontinuity in the amount of

charge collected near the threshold laser-beam power.)

A consequence of this physical picture is that it is stage (b) (linear growth of the

cascade) that mainly determines the threshold for breakdown. Once stage (c) is reached,

the cascade goes to completion; while the elimination of stage (a) does not seem to affect

the threshold. (Young and Hercher's data show that using a low-grade discharge to pro-

vide, say, 100-1000 free electrons in the focal volume does not noticeably lower the

threshold.)

Analogy with High-Frequency Microwave Breakdown

This report presents a calculation of gain and loss rates in stage (b) based

on the Boltzmann equation as analyzed by Allis.2 In his treatment, the distri-

bution function, electric field intensity, and collision integrals are Fourier-analyzed

in time and expanded in spherical harmonics in velocity space. For our pur-

poses, the result may be written
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8F 1 a 2 p m 8Fa- vt 6v 2 8v m2 2 2 av
m

m 1 a Zv(
M + m 2 av mmv av

v2v2F
[- (V)+ i(v)]F + g(v) F + 3v (1)

m

where

F(v, r, t) = the spherically symmetric DC component of the electron velocity-space-

time distribution function;

v,e,m = the electron speed, charge, mass;

M, T = the mass, temperature of the unperturbed neutral gas;
g

vm(v) = the electron-atom collision frequency for momentum transfer;

v (v), .i(v) = the excitation and ionization collision frequencies for electrons incident

on atoms;

S(v) F = the rate at which slow electrons reappear, because of inelastic collisions

of high-speed electrons;

S= the peak electric field strength - a function of space and time;
P

W = the angular frequency of the incident radiation.

This equation treats the photon field classically; it makes no provision for the discrete-

ness of photon energies, which are approximately 5-10 per cent of gas ionization ener-

gies.

In extending this theory to the case of laser-produced plasmas, we must note, among

others, the following conditions:

1. The field is not uniform in space. This results in an uneven rate of growth for

the electron density. Since the rate of growth is fastest at the center, this condition may

enhance diffusion losses.

2. The field is not uniform in time. In microwave terms, the field is pulsed, rather

than cw. We must therefore compute and integrate the net gain over the duration of the

pulse in order to predict the threshold.

Also, we may expect this theory to be valid only provided that the mean-free path of

the free electrons, and the amplitude of their oscillations, are both small compared with

the characteristic dimensions of the discharges.3

For the present, these computations will be restricted to helium, for the following

reasons: (a) The collision frequency in helium is very nearly constant as a function of

electron speed.3 This simplifies Eq. 1 considerably. (b) Fairly exact measurements
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exist for the inelastic (excitation and ionization) cross sections of helium.4 (c) Next to

hydrogen, helium is the simplest atom known. This means that oscillator strengths have

been calculated in a number of different approximations,5 so that, if necessary, one may

guess appropriate radiative rates a little more confidently. (d) Helium is monatomic,

so that there are no low-lying rotational or vibrational molecular states. In principle,

however, other gases could also be treated by the present theory.

As a first approximation to the solution, we may reduce Eq. 1 to an ordinary differ-

ential equation in two steps.

Step 1

Let

F(v,r,t) = e f t v(t)dt h(v, r, t). (2a)

Then

1 aF 1 ah
F at (t)h at

Our first approximation is to write

1 8FF 8t = v(t); (2b)

that is, we assume 8 In h/at to be small.

Step 2

Extending the same analysis to nonuniformity in space, we write quite generally

h(v, r, t) = f(r) g(v, r, t) (3a)

-2
2 2 g gV2h Vf f Vg g
h -+ 2 - + -

h f f g g

Let

Vf 1

f 2f 2f A 2 (r)

Then we make the second approximation:

V2h 1h - (3b)
h A 2(r)
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where the terms ignored are of order A- 1 IV In g . It is not obvious that these two

approximations are valid; their validity must be checked against the solutions that they

yield. But Eq. 1 now becomes (locally and instantaneously) an ordinary differential

equation for g as a function of v. Furthermore, if we choose to normalize g(v) inde-

pendently of the electron number density,

Y50 g(v) v 2 dv = 14Tr'

then the parameters v(t) and A(r) reflect the growth and spatial distribution of the num-

ber density itself.

We may simplify the appearance of (1) by introducing the following grouped variables:

S e2 2
2 1 M P
T m 2 2 6m 2 kT

-M6

D2 2312
v = 3tv2 A

D m

m m
SM+m M

0=

kf (v) = 1 (v) g(v)
nm -LVm

x, 1
h (v) X,

L - L m i( .

At the same time, we take advantage of

following ordinary differential equation

1 d [ 2 2 dg + 3 v 2

2 v v vT dv gv D

the function g(v) introduced by (2) to write the

for the reduced distribution function:

hi (v)+ h(v) g + g - kfnm(v
4 r I

For convenience, we normalize

YOf
0 nm ~0

2 1g(v) v dv = -.

For the sake of comparison with the theory of high-frequency microwave discharges, we
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note that v T corresponds roughly to the concept of an effective electric field, while vD
is proportional to the "dimensionless" variable PA. 3

The parameters k and 0 are still unknown. To solve for these self-consistently,
we may impose further conditions on the parameters of (4) on physical grounds. Multi-

plying by v2 and integrating, we obtain

oo 2

Tv dv 24w V 2 3  =(h) + Kh) + 0 - k + , (5)o vD

where for an arbitrary function s(v)

( s) = 4Y s(v) g(v) v 2 dv.
0

Now k is the (reduced) rate at which slow electrons appear following high-speed inelastic

collisions:

k = (h > + 2(h' (6)

Furthermore, the growth rate 0 should represent the difference between the ionization

rate and the diffusion loss rate:

2

0 = (h 2 (7)
vD

Finally, we expect g to vanish rapidly at oo. All this is consistent with (5) if and only
if

2 dg + v3 = o. (8)

Now, unless fnm(v) is singular at v = 0, the solution to Eq. 4 is either analytic at the
origin or has a simple pole there. But a simple pole at the origin violates condition (8),
so we conclude that

g(v-0) = const. (9)

It turns out that Eqs. 4, 6, and 7 yield a unique solution for any pair of values
of (VT,VD); condition (9) is but an additional check on the correctness of the inte-
gration procedure.
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Method of Numerical Integration

For a given set of values (vT, vD, k, 0), we may integrate (4) numerically, first

rewriting it as follows:

2 2 dg
dg I T dg v 3 - 2 g k

2 2 v dv 2 2 v 2 nm
dv v vT vD T

or

g" + A(v) g' + B(v) g = C(v).

We divide v-space into discrete intervals Av = h, and label these intervals with an

index n:

g+A g' + Bg =Cn nn nn n

We combine this equation with two integrations by the trapezoidal rule

h
gn gn- 1 2 gn gn- 1

h
gn = gn- 1 + -2 (gn+gn-

1 )

and solve these three, step by step, as simultaneous equations in g , gn, and g."

The values of k and 0 are obtained by iteration. Values of these two parameters

are guessed initially, but with each integration of g, new values of k and E are computed

from (6) and (7). Thus far, this iteration has in every case converged; moreover, the

final form of g always satisfies condition (9).

Preliminary Results

The computer program turns out values for 0, k, (hX+h i ), (hi ), and (v 2 ),

as well as values of the distribution function and its derivatives at selected intervals.

Variations of interval size, of the maximum velocity serving as cutoff for the inte-

gration (in lieu of infinity), and of the normalization function f (v), indicate that the

parameters obtained are accurate within 1%.

The variation of E = (h ) with vT for infinite vD is shown in Fig. X-15, as is

(hX+h l ). The corresponding variation of (v2 ) is shown in Fig. X-16.
[I.1 i 22

Figure X-17 shows the variation of (h ), k, and (h = v D with vD for four

values of vT. The point at which (h ) and (v 2 )/v D2 are equal is the value of vD for whichLwhich
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O(vT'VD) changes sign, and is so marked. It will be noted in Fig. X-17 that the point

0 = 0 may be fairly closely determined by the intersection of straight lines extrapolated

from vD -oo; that is, the values given in Figs. X-15 and X-16 may be used to estimate

thr
vT (vD),

where vt h r is that value of v for which 0 changes sign. Such a plot is shown in
vT

Fig. X-18.

Figure X-19 shows the curves of Fig. X-18 reduced to the 6-P plane, for two values
6

of A, together with some experimental data of Haught and Smith. Note that the order

of magnitude of our calculation from first principles is correct, but displaying the curves

of Fig. X-18 in the #-P plane does not predict a strong enough dependence of the thresh-

old on A. We do not know at this time whether this discrepancy is due to (a) our failure,

thus far, to integrate over the pulse duration; (b) our use of the approximations (2), which

have not yet been sufficiently justified; (c) our failure to include some other important

effect such as trapping of the resonance line emission; or (d) the failure of the classi-

cal treatment of the incident electric field.

J. H. Vellenga
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7. DETERMINATION OF THE ENERGY DISTRIBUTION OF THE

HOT-ELECTRON COMPONENT IN A PULSED ELECTRON-

CYCLOTRON RESONANCE DISCHARGE

We have continued the study of the high-frequency instability that is present in the

hot-electron plasma of our mirror-confined electron-cyclotron resonance discharge.

Previous reports l ' 2 have disclosed that several hundred microseconds pass following

the end of the heating pulse before an intense burst of instability radiation is emitted

by the plasma. Under the assumption that this time is that required for the velocity dis-

tribution of the hot-electron component to evolve into an unstable form, it follows that

the energy distribution of these electrons may reflect these changes. We have thus

undertaken a detailed study of the electron-energy distribution in the range 10-100 keV

through measurement and interpretation of the plasma Bremsstrahlung spectra. This

report presents the findings of the study.

It is well known that the relationship between the emission of x rays arising from the

scattering of energetic electrons by neutral hydrogen and the energy distribution of

these electrons is given by 3

2 2
r ac - oo n(u) ma u)

7(E) =6 N In du, (1)

where r(E) is the number of x-ray photons per second per unit energy per unit volume

emitted by the process at an energy E, N is the neutral gas density, n(E) is electron

energy distribution (number per unit energy per unit volume), with u being the electron

velocity, ro the classical radius of an electron, a the fine-structure constant, c the

velocity of light, a the first Bohr radius, m the electron mass, and h Planck's con-

stant. It then follows from (1) that

2. 2 X 1014 1/2 d
n(E) = - N E dE [E r(E)] (2)

when the energy is in keV, the unit volume is taken as a cubic centimeter, and the slowly

varying logarithm in (1) has been assumed constant with its argument evaluated at a

velocity equal to the speed of light.

Measurement of r(E) was accomplished by means of the system of Fig. X-20 in con-

junction with a 400-channel RIDL pulse-height analyzer. The collimation system con-

sists chiefly of two copper plates, 1/2 inch thick, separated by 75 cm with each having

a viewing hole, 1/4 inch in diameter. A region, approximately 1 cm in diameter, is

viewed by this system at the axis of the cavity. The vacuum extension between the col-

limators provides a path of minimum absorption for low-energy x-ray photons, and is
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Detail of the collimation and detection system for the
measurement of the plasma Bremsstrahlung spectrum,

sealed by a beryllium window, 5 mil thick. By viewing the plasma perpendicular to the

cavity axis at the midplane, the collimation system is able to avoid detection of wall-

generated x-rays, since it "looks" down the waveguide that is located on the opposite

side of the cavity.

Detection of the x-ray photons was accomplished with an NaI(Tl) scintillation crystal,

2 mm thick, having a beryllium window, 5 mil thick, and a Model 10-8 RIDL scintilla-

tion probe to detect the scintillations. The 5-mil beryllium window on the crystal and

the 5-mil beryllium vacuum window have very low attenuation for photon energies greater

than 10 keV. (At 5 keV the correction for absorption in the windows is only -1. 4, thereby

permitting qualitative observations below 10 keV.) The upper energy limit with this thin

crystal is determined by the energy at which a photon can pass through the crystal. This

energy was found experimentally to be ~140 keV. Analysis of the phototube output was

accomplished with a 400-channel RIDL pulse-height analyzer. Calibration of the over-

all detection system was achieved in the range 0-100 keV by observing the x-ray peaks
57 137 241

of C , C and A (14, 32, and 59. 7 keV, respectively) and adjusting the ana-
o s m

lyzer amplifiers to place the peaks in the proper channels.
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Measured photon number count vs energy at three critical
times in the afterglow. Actual counting time, 24 sec.

-5
Discharge parameters: 3 X 10 - 5 Torr H 2; magnet cur-

rent, 75 A; incident peak microwave power, 26 kW at
2852 MHz.
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In operation the analyzer was gated on for a 20-isec period at a given delay time

following the end of each microwave heating pulse (1000/sec). In this way, the charac-

teristics of the x-ray emission were determined as a function of time throughout the

afterglow of the plasma. "Figure X-21 shows this number count at three critical times

in the afterglow for a total counting time of 20 min. The measured number count rc(E)

is related to in(E) by

?c( E)
(E) = c XV X AE X Po

(3)

where T is the actual time that the analyzer is gated on, V is the volume of plasma

viewed by the detector, AE is the energy width of each channel of the analyzer, and P

is the probability that an x-ray photon generated in the plasma will pass into the colli-

mator. Under the assumption that the x rays are radiated isotropically, this latter

quantity is simply the solid angle subtended by the collimator as viewed from the plasma

divided by 4,T. For our conditions this becomes i(E) = 6. 24 X 103 ilc(E) (photons keV-

-1 -1
cc sec ). Combining this result with (2) yields

n(E) = -1. 3 X 106 E1/2 d electrons
cm -keV

(4)

when n corresponds to that at a hydrogen pressure of 3 X 10- 5 Torr.

Figure X-22 shows the relative unfolded energy distribution functions at the three

t= l0psec

(JUST AFTER HEATING)

10 20 30 40 50 60 70 80 90 I00

E(KeV)-

t= 350j/sec
(JUST BEFORE INSTABILITY)

10 20 30 40 50 60 70 80 90 100
E(KeV) -

t= 600psec
(JUST AFTER INSTABILITY)

10 20 30 40 50 60 70 80 90 100

KeV --

Fig. X-22. Relative electron energy distribution functions determined
from the measurements of Fig. X-21.
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times of Fig. X-Z1. The data were not unfolded for energies below 10 keV, because of

the exponentially increasing correction resulting from absorption in the beryllium win-

dows and an insufficient accuracy in the measurement of the energy. In obtaining these

curves the data of Fig. X-21 were corrected for absorption at 10 keV (correction factor=

1. 048) and also corrected for the slight nonlinear pulse height vs photon energy charac-

teristic of the NaI(Tl) crystal. In performing the latter correction, the data of Aitken

and co-workers, determined for a similar crystal, were employed.4 Absolute measure-

ments of the density as predicted by (4) are found to be approximately two orders of mag-

nitude too high when compared with independent measurements of the total electron

density. This is attributed to the relatively high percentage of large Z impurity atoms
-5

present in the background gas at a pressure of 3 X 10-5 Torr (base pressure = 2 X
-7

10-7 Torr), since it is known that the x-ray intensity goes as Z2 of the scattering atom.

It is clear from Fig. X-22 that the energy distribution of the electrons is peaked

around 30 keV immediately following the heating pulse. Up to the time of the instability

there is also a continuous decrease in the total density of electrons with energies between

10 keV and 100 keV. From curves similar to those of Fig. X-22 it is observed that this

density decreases with a time constant of -440 psec. This is to be compared with the

~30-msec decay time expected from electron-neutral small-angle scattering calculations

for a 30-keV electron. As well as this rapid loss of plasma, we observe that the dis-

tribution becomes more highly peaked, with a large fraction of the lower energy elec-

trons being lost. The instability results in a loss of approximately one-half of the

electron density in the 10-100 keV range, and also appears to result in a spreading of

the distribution. Following the instability, the distribution changes only slowly with

time. The hot-electron density-decay rate late in the afterglow is then -32 msec, which

is consistent with previously reported total density-decay rates.5 It also is consistent

with loss times attributable to small-angle scattering of the 30-40 keV electrons into

the mirror loss cone.

Finally, the relative energy density vs time determined from these and similar elec-

tron energy distributions at other times in the afterglow is shown in Fig. X-23. Note

that the energy density decays with a time constant of ~450 1 sec up to the time of the

instability. This decay rate is an order of magnitude slower than that observed from

the plasma diamagnetism. This more rapid drop in the diamagnetism is believed to be

associated with the rapid loss of electrons with energies in the range ~1-5 keV. That

such a loss occurs can be inferred qualitatively from c (E) at various times in the after-

glow by realizing that Eq. 1 states that the only way the number count at low energies

can decrease relative to that at higher energies is if the low-energy electron density

has decreased. This loss has also been observed directly in thick target Bremsstrahlung

from a beryllium target placed on the cavity wall at the mirror peak.

These observations indicate that before the occurrence of the high-frequency
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Fig. X-23. Decay of the energy density as determined from the plasma
Bremsstrahlung measurements. The arrows indicate the
range of the most probable time for the occurrence of the
instability.

instability the hot-electron distribution is becoming highly peaked in energy in the range

30-35 keV. This indicates that a nonequilibrium condition may exist but is not conclu-

sive, since an instability theory requires the more detailed information contained in a

velocity distribution. We are continuing the interpretation of these results in light of

previous measurements in order to see if a consistent velocity distribution may be

inferred.

C. E. Speck
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8. INSTABILITIES DRIVEN BY HOT ELECTRONS IN A

MAGNETIC MIRROR

We have continued our investigation of the possibility of negative dissipation effects

in a mirror-confined electron distribution in the presence of a high-frequency electric

field. Our previously reported calculations 1 were based on the approximation that the

electrons did not penetrate too deeply into the magnetic mirror. In this report we pre-

sent additional calculations that remove this approximation.

Subject to the experimental observations discussed in our previous report, we choose

to calculate the power absorbed (or emitted) by a distribution of electrons confined

by a mirror magnetic field with parabolic axial dependence, B(z, r = 0) = B (1 +z /L2),

when they are acted upon by an RF electric field. We take the RF field to have an ejwt

dependence (w = c + jwi, Wi << r ) and to be circularly polarized transverse to the mag-

netic field. No variation of the electric field along z is assumed, and it is taken to be

of infinite wavelength.2 (In our previous report we took the field to be linearly polarized,

but have found that in the decomposition of this field into two oppositely rotating cir-

cularly polarized fields only the component rotating with the electrons entered into the

interaction.) Taking the midplane (Z = 0) electron distribution in the absence of the elec-

tric field to be of the form

f = noFi(v2 ) F 1 (V 2 1 0 ), (1)

where n0 is the electron density, we integrate the linearized Vlasov equation along the

zero-order electron orbits predicted by adiabatic theory

z(t') = z cos [wm(t'-t)+4] (2)

v (t') = o e 1 + z 2 /L e (t") dt'

(3)

= vx(t) + jv y(t),

where z 0 = Lv 110/Vo is the maximum penetration depth into the mirror of an electron

whose midplane parallel and perpendicular velocity magnitudes are v 1 1 0 and vio
respectively, = Vlo/L is the mirror frequency of the electron, w (t) = W (1+z 2 (t)/L 2 )

is the instantaneous cyclotron frequency of the electron, is the phase of the electron

in its longitudinal motion at t' = t and 9' is the phase of the transverse velocity at

t' = t. This integration yields the first-order distribution function for the electrons,

fl(z' v110, v o' t), which is then used to calculate the first-order current density in the

plasma. The time average power absorbed per unit transverse area by the electrons

can then be determined from the expression
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P = Re (E J) dz,

where both El and J± are written in circular polarized variables. The results of

calculation are

(4)

the

2 22\T C
Ew i

o po! JS d(vo)2 5 d(zZ) S 2
3/2( v*2o mb3/(z) v1

S o
-00

dT e j  FFj F -FF )b(z +

b( z')

exp{-j[ c T+A sin 2(w T+) -Asin 2] },

where

b(z) = 1 + z /L

z z cos

T =t' - t

z'= Z(T)

wc co(1+z/ZL )co 0

A= o z2 /(4 L2
co o m

po =e 2 n/(Eom)

and the primes on the distribution functions indicate derivatives with respect to their

arguments. In order to perform the integrations on T and 4, we introduce the real func-

tions Mk(A' z2/L 2 ) defined byn o0

-oo

n=_00

1+ coS
2 Z(0

e-jA sin 6 Mk e-jn0
n

(6)

which satisfy the relation

dO ejnO - jA sin 0
2

1+ cos
L
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These integrations may then be performed to yield

3

d = -(E12 E 2 Re S d(v o Sd(z2

o M3/2r(FF1 -F Fl )M-l/2 + F' M1/2z 1 (8)
n 11 n j(W- - n(8)

n=-oo j c-2nm)c m

Thus it is clear that the "resonant" electrons are those whose average cyclotron fre-

quency plus or minus even multiples of its mirror frequency equals the frequency of the

RF field. In the limit of vanishing small negative imaginary part of c the integration

on z 2 is then performed to yield

2
co cc

P d =2 3 -- - CoLIE I 112  dj Fl( ]) Qn ( ) '  (9)

co n=-oo

where

Q On) -- 13/2 M3/2 M/2 M--I/2 n + 1 7 + 1 F (1 - n

3/2 3 1 3/2 -1/2 d 3/2 -1/2+ 3/2 1 Mn Mn 2 + n M /2M / n FII Yn) I 1 (n )  (10)

with

2 Zn] I/Z
n co co L

co

2
wL z

k k co o
n n 41/2 L n

4 1

271= Vio.

Of particular interest in the application of this theory to the explanation of the high-

frequency instability present in our pulsed electron-cyclotron resonance discharge2 is

the nature of the power absorption at a frequency equal to the minimum cyclotron fre-

quency along a field line. From Eq. 9, the sign of Pd for a sufficiently narrow perpen-

dicular distribution about a particular 1 is determined by the sign of the sum of the Qnn
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evaluated at r. Noting that for w = w none of the positive n values contribute and

because the parallel distribution should decrease at large arguments, we expect that only

the n = 0 and first few negative terms in the sum are necessary for the determination of

Pd" Note also that to first order in yn the Mk(A, yn) functions defined by (7) are approx-

imated by J (A ). We then find for w = wco that the n = 0 term is given by

3 1/2F (0)(11)
Qo 2 11

and for the n = -1 term

2 /3/61 2 4 +3/Z 3 1/Zz 43/2

Q = J2(1) F 1  3 (1) F1 1  . (12)
-1 L2 1 11 Lw

From (11), which in fact is exact, we see that the n = 0 term always predicts positive

dissipation at w = wco. It vanishes only if F 1 1(0) vanishes. By combining (11) and (12),

an approximate criterion for negative dissipation at w = wco may be derived to yield

413/2

43/2 F11 L F (0)
o >1+ 11 (13)

F J (1) F
1 1 Lw 1 11 Lw

It can be shown that a Maxwellian parallel distribution cannot satisfy this criterion and,

therefore, must result in positive dissipation at wco. In fact, numerical calculations

of the entire sum in (10) showed strong positive dissipation for w at and above W co and

very small negative dissipation in frequency bands below w co, when a Maxwellian F 1 1

was used.

The class of distribution functions that most easily satisfy (13) are those with

F 1 1 (0) = 0. Thus we are led to consider peaked distributions of the form

2 n 2 n
2 n v1 1 0  v 1 1 0F11 v 1 0  11 exp- 2 (14)

v11TF(1+1/2n) v11T 11T

2 2
which are observed to approach a delta function at v11 = v lT as n - o0. A detailed

numerical study of Eq. 9 was undertaken, using the n = 4 member of the class of dis-

tribution functions described by Eq. 14. The M k functions were evaluated by expanding

them in terms of an infinite sum of Bessel functions. Figure X-24 shows a characteristic
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Fig. X-24. Fig. X-25.

Plot of the gain parameter Q -Z Qn of Contours of constant Q for the parallel dis-

parameters in our experiment. Note that a wide region of negative absorption occurs

in the vicinity of w = w . Several such curves for different vio have been used to con-

struct the plot of constant Q contours in v1 0 tribution co space shown in Fig. X-5.

A region of negative absorption is observed for large values of vio and w - wco. We thus

arrive numerically at the conclusion that for the relatively peaked parallel distribution

under consideration, the perpendicular velocity must also be peaked in order to achieve

net negative dissipation (that is, Eq. 9 states that Q(v' ) is weighted by Fi(vlo) in
ooLo

determining the net dissipation).

These calculations illustrate that net dissipation is possible for suitable distribution

functions. We are continuing the study of this theory with particular interest in its

application to the experiment.
C. E. Speck, R. J. Briggs
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1. EXPERIMENTS ON WAVE-PARTICLE INTERACTION

The construction of the linear nonadiabatic experimental device, which was intended

to provide a sensitive test of nonlinear theories of wave-particle interactions in
1-4

plasma, has been completed. This report describes a performance test in the device

and preliminary results of an experiment on the interaction between electrons and waves

produced by the electron beam itself.

The experimental configuration, described in detail in a previous report,1 is shown

schematically in Fig. X-26. An electron trap in a uniform magnetic field is produced

by two negatively biased trapping electrodes. The pulse system enables us to inject

the electrons into the trap and to extract them for energy analysis after some trapping

time which is variable from 10- sec to 5 X10 sec. The interaction of the trapped elec-

trons with the perturbation field located in the trap causes the electron velocity distri-

bution to change from a delta function to some other broader one. The shape of the

broadened distribution as a function of the trapping time is the experimental information

that we seek. The distribution of E 11 (energy parallel to the uniform magnetic field) is

determined by a retarding potential technique, by using the Faraday cage current modu-

lated by small AC voltage superposed on the DC retarding potential to monitor the energy

distribution.

To test the over-all performance of the device, the first experiment was done with

no external perturbation field. The experimental data shown in Fig. X-27 indicate time

evolution of the distribution function for the 1000-eV electrons injected parallel to the

uniform magnetic field of 100 G. The transit time of these electrons between the elec-

trodes is 170 nsec. The data show that the electrons can be trapped without substantial

changes of their distribution function for more than 100 sec (600 transits). The

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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appreciable broadening at 200 psec or later results from collisions with background neu-
trals (the estimated total collision time is 200 lisec at 5 X 10- 7 Torr). A bump on each

distribution function at 520 V corresponds to the electron population influenced by the
transient electric field when they are extracted, hence only the electrons whose parallel
energy is above this bump energy can be allowed to impinge on the energy analyzer.

Besides the collisions, the following effects may result in distortion of the distribu-

tion function. The first is nonadiabaticity caused by the trapping electrode potentials.

The change in magnetic moment 5 is of the order of (rL/L)2 , where rL is the Larmor

radius, and L is the characteristic length of the field - in this case, of the axial electric

field of the trapping electrodes. Since this nonadiabaticity limits the confinement time,
bigger electrodes have been constructed. The second is instability caused by collective
effects, which will be discussed hereafter. In the actual experiments (corkscrew or
constant-pitch perturbation), the injected beam has a certain gyration radius; thus the

electron density is smaller than that in the present case, and hence the instability is less
important.

Figure X-28 shows time evolution of the distribution function for an intense-beam

current, which is fifteen times as large as that in Fig. X-27. We can see that two peaks
appear in the 2. 5-pLsec curve, while they merge at 10 1 sec. The resultant distribution

functions are much broader than those in Fig. X-27. Again the collision effect becomes

evident at 250 Lsec. Figure X-29 demonstrates evolution of the distribution function on

500. 0

250.0

100.0

50.0

2INJECTION ENERGY 1000 V

MAGNETIC FIELD 100 G
10. 0 BEAM CURRENT 8 IA

-7I
BASIC PRESSURE 4 X 10 Torr

2.5

0.5

0.0

600 1000 V

PARALLEL ENERGY

Fig. X-28. Time evolution of the energy distribution
function in the intense-beam case.
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of the energy distribution function during the
the same case as in Fig. X-28.

a faster time scale during the first 10 psec. The distribution function has been broadened

at 0. 5 4sec, and in the 2. 0-i sec curve it splits into two peaks. Thereafter the lower

energy peak becomes heavier and heavier, while the higher energy peak is decaying, and

finally they merge at ~6. 0 psec. In fact, the total particle energies calculated from the

distribution functions are smaller by approximately 1%0 than the initial particle energy.

This fraction of the energy may be counted as the wave energy.

An obvious candidate for the instability is two-stream instability because the

reflected portion of the electron beam faces the incoming portion. According to the

threshold condition of the two-stream instability, the present beam with an estimated

beam radius of 1. 5 mm has a minimum unstable wavelength of 60 cm, which corresponds

to one-quarter of the trapping length. Therefore this instability presumably exists. Since

the phase velocity of this instability is nearly equal to zero, we cannot expect such strong

resonant wave-particle interactions as those appearing in Fig. X-29.

The other possibility is an instability caused by coupling between (longitudinal)

plasma waves and (transverse) backward cyclotron waves. The frequency is approxi-

mately one-half the cyclotron frequency for the case of equal and opposite streaming

velocity beams. A relevant feature is that the phase velocity is very close to the

streaming velocity; thus resonant wave-particle interaction, if the unstable wave exists,

can be expected.
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We observed the collector current signals. The oscillation on the signals has char-

acteristically a frequency of ~50 MHz, which is almost independent of the magnetic field.

The oscillation lasts a long time, and finally it ceases rather suddenly (for example, at

30 sec in the 100-G field). The cessation time is approximately proportional to the

magnetic field. Therefore the signal may be an indication of bunching of the charges,

because of the two-stream instability, and the dependence of the cessation may be

explained by the focusing effect of the magnetic field to keep it dense enough to satisfy

the instability condition.

The oscillation of the wave electric field was observed by fixed electrostatic probes.

We can distinguish two modes: one is the high-frequency mode, the other is the low-

frequency mode. The low-frequency mode corresponds to the oscillation seen in the

collector signal. The high-frequency mode is observed to have a frequency of approxi-

mately one-half the cyclotron frequency, as predicted for coupling between the plasma

and cyclotron waves. The detailed characteristics, such as spectrum and wavelength,

are under investigation.

The next pertinent question is whether the phase velocity of the unstable oscillation

is larger or smaller than the stream velocity, with respect to the Landau damping. The

frequency and wave-number formulas in the uncoupled-mode approximation by Maxum

and Trivelpiece6 indicate that difference between the phase velocity and the stream

velocity is approximately one-thirtieth the stream velocity, or in terms of energy, the

unstable wave lies at 1000 ± 60 V for the 1000-V stream (the plus sign is for the fast

plasma wave, and the minus sign is for the slow plasma wave, coupled with the backward

cyclotron wave). These positions are approximately the positions where the peaks appear

on the distribution function. Because of the large-amplitude oscillation, the trapping of

the particles in the wave potential trough may be important in the wave-particle inter-

action process. Further investigation of these points is under way.

M. Murakami, L. M. Lidsky
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1. FEASIBILITY OF PULSED FUSION DEVICES

Ribe has proposed I a pulsed fusion device with a 10-cm vacuum wall radius R and

a maximum B field of 200 kG. The vacuum wall is the magnetic-field-producing coil

and withstands the stress thereby produced. The plasma has a temperature of 15 keV

and a radius of half the wall radius. The burning time TT is three-eighths the field

period T, and a cooling mechanism operates between pulses.

In the present study we investigate the tritium-breeding, hoop-stress, wall-heating,
thermal-stress, and cooling requirements in devices of this sort, using coils of copper-

zirconium, niobium-zirconium, or TZM. The coils vary in size from 10 cm to 60 cm.

Tritium Breeding

With an infinite blanket of 98% lithium and 2% niobium, the tritium blanket breeding

is acceptable for TZM coils 7 cm or less in thickness. The TZM coils breed better than

comparable niobium-zirconium coils or copper-zirconium strengthened with TZM

backing. Copper-zirconium is inferior to TZM because copper nuclei slow down neu-

trons that are then absorbed by the molybdenum nuclei before reacting with the lithium.

For the 7. 00-cm TZM coil there is no significant change in the T/n = 1. 35 breeding ratio

for variations in the amount of lithium coolant in the coil for cooling channels occupying
less than 7. 2% of the coil volume. Of the breeding, 90% comes from the L6(n, T) a reac-

tion.

Hoop Stress

The hoop-stress considerations eliminate from consideration any coil made of

copper-zirconium alone, since it cannot withstand the envisioned fields with a safety

factor of two. Niobium-zirconium is also unsuitable. It has a low-yield stress at the

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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envisioned peak temperatures =1400*K. There is no serious problem with TZM coils.

A copper-zirconium coil clad with TZM has been designed, but it would not permit tri-

tium breeding.

Wall Heating

The wall heating is the most critical consideration. The heating in the coil comes

from 5 sources: Bremsstrahlung, electrical resistance, neutron collisions, gamma-ray

absorption, and synchrotron radiation. The synchrotron radiation is only 0. 1% that of

Bremsstrahlung; so it is neglected. Electrical and gamma heating are peaked toward

the inner wall, and the Bremsstrahlung radiation is deposited in a surface layer, 2 mm

thick. Good engineering practice is not to permit operating temperatures to exceed half

the melting temperature (on an absolute scale). This eliminates copper-zirconium coils

(melting point 1353 0 K) from consideration. The wall heating for 200 kG, and fractional

burnup of 0. 09 for copper-zirconium is approximately 1400 0 K; for niobium-zirconium,

2000 0 K; for TZM, 1700 0 K. The gamma heating is 26. 2 times the direct neutron heating

at the wall for the 7-cm TZM coil. Because of this, the field must be reduced to

approximately 180 kG. This does not permit reconsideration of copper-zirconium, since

the initial coil temperature still prevents its use; nor of niobium-zirconium, since the

gamma heating for it is approximately the same as for the TZM coil and the heating is

more severe in the niobium-zirconium coil than in the TZM coil.

For the TZM coil, the maximum wall temperature is

T = 1.11 X 10 19B4R ,' /2+ 7.73 X 10 1 9 B 4 R RT
c T c T

-9 2+ 4. 08 X 10 B + Tinitial ( K). (1)

Here B is the field in gauss, Rc the coil radius in cm, and T the burning time in sec.

Since TT c B, it is seen that for large machines (where B2R = constant from stress

consideration) the second term of Eq. 1 (the gamma and neutron contribution) dominates

the first term (Bremsstrahlung heating) and the third term (electrical heating). This is

observed for the devices of interest (see Fig. X-30), where the wall heating is 1400*K.

Of the temperature rise above the ambient value, 79% is due to gamma heating, 8% to

electrical heating, 10% to Bremsstrahlung heating, and 3% to direct neutron scattering.

The fields and burning times necessary to achieve this wall heating are also given, as

are the number of Bohm times TT/TB needed to achieve enough confinement. The net

power out, P out' is given by

Pout = 1{EPt+3(E-1)PE . (2)
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Here PT is the

converting to

thermonuclear

usable power.

power, PE the electrical power, and E the efficiency of

The factor 1/4 appears as the pulses are spaced

1420

140 1.0 - 1340 16 T Fig. X-30. The 7-cm TZM coil.
600

120 - 0.8 14

I o _ _ _ _ _100 0. 4  - 12 -
200 TT/r

B80 0 B

0.2 0.4 0.6

R (METERS)

3 pulse times apart to allow cooling. The factor 3/8 appears because the plasma

burns only during a portion of the pulse. The factor 3 accounts for the electrical

loss in the feed slot, as well as in the coil. For radii less than 30 cm the net power out

is negative. Thus it seems that a feasible device requires lower fields and larger radii

than those envisioned by Ribe.

Thermal Stress

The thermal stress attributable to the temperature gradient caused by the Brems-

strahlung at the low fields required by wall heating are well below the yield stress of

75K psi for TZM near 14000K. The thermal stress is also included in Fig. X-30.

Cooling Requirements

The cooling for the 7-cm TZM coil is easily handled by turbulent flow of liquid lith-

ium in channels that are 1 mm in diameter and approximately 13 cm in length. The

interfacial temperature difference is 139 0 C, and the temperature rise along the channel

is 2500C. The channels are spaced so that the heat transfer coefficient is approximately

7 X 104 Btu/hr ft 2 0 F in order to guarantee turbulent flow and reasonably long channels.

This spacing is less than the thermal diffusion length in the coil, yet the channel volume

never exceeds 5% of the coil volume. The pressure drops needed for this cooling are

approximately 20-30 psi, and the pumping power needed to pump the coolant through
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the channels does not exceed 8 kW/cm, which is negligible compared with the output

power which is of the order of 105 W/cm.

The present study indicates that the most feasible pulsed fusion devices will have

TZM coils, fields of 100 kG or less, and radii of 30 cm or more.

G. L. Flint, Jr., D. J. Rose
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2. END LOSS FROM A MAGNETIC MIRROR CAUSED BY

FIELD FLUCTUATIONS

Consider the magnetic mirror shown in Fig. X-31, which shows a finite-p plasma

in the main part where the field inside the plasma is B 1 (uniform). At the mirrors, the

field is B > Bl . Suppose that B1 increases for some reason while Bo stays constant; for

example, a flute causes radial plasma loss which decreases P, but this has little effect

in the region of the mirrors. Each trapped particle has its perpendicular velocity vi
increased, hence has improved confinement with respect to the unperturbed loss cone.

On the other hand, the loss cone is enlarged. Here is a question: Are particles swept

into the loss cone, hence ejected from the region, or not? The question relates to

observed fluctuations in high-P mirrors, for example, the device ELMO at Oak Ridge

National Laboratory.

Assume that a particle spends all but a negligible fraction of its time in the uniform

field region B 1 . For the particle, with velocities v ll parallel to the axis and v± in the

perpendicular direction, we define the particle velocity direction p as
p

tan p = vi/VII. (1)

But the loss-cone angle 0m ism

sin 8m = B 1 /B , (2)

and 8 > 0 for trapped particles. Furthermore,p m

2
m vI

2 - B1' (3)

where i. is the (invariant) magnetic moment. From these relations, find

dO p/dB 1 = sin p cos Op/2B 1  (4)

dOm/dB 1 = tan Om/2Bl' (5)

whence

dO /dO = tan O sec z 0p/tan O . (6)m p m p p

Now for the most vulnerable particle at the edge of the loss cone, m = 0 . Thus if B1
mincreases, d and some particles are always thrown out of the system axially.

increases, dOm/dO > 1, and some particles are always thrown out of the system axially.mp
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----- B---

D Boa

Fig. X-31. Magnetic mirror system.

Conversely, decreasing B l does not lead to particle loss by this mechanism.

More questions can be asked as a consequence. A first one is: Are enough particles

ejected so that the total perpendicular plasma energy actually decreases (recall that the

remaining particles are heated)? For a uniform filling of velocity angles out to the loss

cone, the answer is easy. From Eqs. 4 and 5, the loss cone encroaches into the distri-

bution at a rate

de
dO p 2

m - dB =(tan m sin2 )/2B 1 , (7)
dB dB 1  m m

and the rate of change of pressure from all causes is

dP P sin 60
- -(8)

dB B Z
2cdB1  coso

The first term in the bracket represents adiabatic heating, and the second represents

the energy particles lost by the net dO/dB mechanism of Eq. 7. From Eq. 8, the total

energy decreases if

6 2
sin 0 cos 0

m > 1 m (9)
2 3

2 cos Om

which is true for 0m > 60. 80 (mirror ratio 1:31).

Finally, can P 1 decrease enough that a mirror instability will develop? Here we

must have

BB 2
I- + P  +p (10)
2o 1 fter 2o 0 1 before

if so, the (presumed) equilibrium is upset by a lemon-pip (in Tennessee, watermelon-seed)

QPR No. 94



(X. PLASMAS AND CONTROLLED NUCLEAR FUSION)

effect. Since necessarily also

2 2
B B

1 0

or else no mirror would exist when the trap was empty, we see at once that there is no

energy source to drive the instability at low p.

in the form

+ <- 3x
4(1-x)(2+x)

At finite p, Eqs. 10 and 11 can be cast

(unstable) (12)

(13)x < 1 - ,

where

2x = sin 0
m

Equations 12 and 13 can be combined in the inequality

(x+l)(x+2) < 3x3/2 (unstable),

which cannot be satisfied for x < 1.

effect.

(14)

(15)

Thus a mirror instability cannot develop from this

D. J. Rose
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3. EFFECT OF HIGH FUEL BURN-UP IN PROPOSED

DEUTERIUM-TRITIUM FUSION REACTORS

A computer study of conditions expected inside a deuterium-tritium (D-T) fusion

reactor for conditions of low fractional fuel burn-up (fb) is being extended to regions

of high burn-up. Results have been obtained for comparison with a fusion feasibility

study in which a different assumption about helium nuclei (a-particle) energy deposition 2

was used.

In summary, the model uses the following proposed energy balance. D + T ions are

Table X-1. Plasma parameters for large fb exponential lifetime
distribution assumption.

V. T. fb Q

(keV) (keV)

C l = 1. 100 64. 7 .0416 .202 3. 66

C 2 =0.2 100 74. 0 .0656 . 155 5. 78

100 84. 5 .0952 .125 8. 37
S1. 100 93. 0 .1256 . 103 11.05

V = 0 100 99. 1 .1544 .0855 13. 60e
80 60.4 .0564 .132 6. 20J=1.
80 66. 1 .0702 .121 7. 72

80 77. 6 .1005 .105 11. 05

80 93. 1 .1546 .0812 17. 00

60 52. 7 .0609 .0961 8. 95

60 58. 8 .0751 .0930 11. 03

60 70. 8 .1055 .0861 15. 50

60 87. 3 .1579 .0737 23. 2

40 45. 6 .0661 .0673 14. 55

40 52. 0 .0805 .0695 17.70

40 64. 2 .1100 .0701 24. 2

40 81. 2 .1605 .0655 35. 3

20 39. 5 .0721 .0462 31.7

20 45.9 .0863 .0509 38. 0

20 58.4 .1163 .0567 51.2

20 75. 5 .1651 .0565 72. 6

0 34. 3 .0786 .0317 -

0 40.7 .0933 .0368

0 53. 0 .1227 .0449

0 70. 0 .1699 .0488
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injected with energy V i, for which input power is required. Inside the plasma, the ions

have energies in a presumed Maxwellian distribution at temperature T.. They are
1

confined with a mean lifetime T. and carry off power as they leave. Similar things can

happen to electrons, for which the symbols V e , T e , and Te apply. Also, electrons can

lose energy via Bremsstrahlung, multiplied by an adjustable dimensionless constant C1 ,

and modified synchrotron radiation, multiplied by a similar constant C 2 to account for

reflectivity of the surrounding vacuum walls. Electrons and ions interchange energy by

Coulomb interactions. Inside the plasma, D + T ions fuse and two-tenths of the fusion

power appears with the energetic a particles formed in the nuclear reaction. The

a density is small, but the a energy is high and hence the a pressure is substantial.

The a cool in the plasma by dynamical friction on both electrons and ions; their energy

distribution is not Maxwellian. By assumption, for this study, the lifetimes of the alpha

particles are exponentially distributed, with a time constant set equal to the ion lifetime.

Table X-l shows some plasma conditions calculated for typical open-ended systems.

In every case, electrons are injected with zero energy (Ve=0), the ion and electron

confinement times are the same, (J=Ti/T e=l), and an intermediate assumption is made

about the escape of synchrotron radiation from the optically thick plasma (C 2 =0. 2, D=l,

according to a previous report2). From the computer calculations, we find two quan-

tities of interest for reactor feasibility, p and Q. is the probability of ion loss per

900 effective Coulomb scatter, and Q is the ratio of fusion power to injection power.

The results shown in Table X-1 are plotted in Fig. X-32, as contours of constant

100 I

80 V =100 6

o 60, 80 Fig. X-32. Contours of constant V., -P, Q
60 - 7 1

< 40, on an fb-Ti scale.
50 -20 1.0  b

Li=0 / 1 C 2_0,2
40 - 20 / Vi= D = 1.0

z 0 / Ve Oo 4, 0.05
=50 J = :1.0

30 I
0.03 0.05 0.1 0.2

FRACTIONAL BURN-UP fb

V i, , and Q on an fb-Ti scale. This graph shows that it will be more difficult to

operate in a region of high Q. For very optimistic confinement, 4 = 0. 1, the best Q

would be a bit more than 10, for an fb around 0.10. These results are more pessimistic
2than those in the feasibility study, as can be seen by comparing contours of Q in

than those in the feasibility study, as can be seen by comparing contours of Q in
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Fig. X-33. The contours of Q are those from Fig. X-32, containing the assumption of

exponential distribution of a lifetimes. The contours of Q are for the same input

values, except for the assumption that the a completely thermalize, which were calcu-

lated in the previous feasibility study. For a given fb' Q is lower than Q . Even though

confinement time is long at high burn-up, and the a deposit much of their energy, not

all is deposited, some a escape early, and Q is deleteriously affected.

100

o 80- -

7 0' =50 Fig. X-33.

o 60, / Values of Q for exponential lifetime distri-

o -, c=I 0 bution assumption compared with Q for

0 10 / C2 =02 complete a-particle thermalization.
40 - // = 10

z Q=1 yQ50 Ve= O
o 020 Q=20 J I.O

30
0.03 0.05 0.1 0.2

FRACTIONAL BURN-UP fb

These two assumptions, fixed lifetime Ta for each a particle, or an exponential

distribution with mean life T , in our view enclose what would be the true situation in a

fusion plasma. This begs the question of whether other effects not included in this

plasma model (such as non-Maxwellian electron velocity distribution) will alter the

energy balance still further.

F. B. Marcus, D. J. Rose
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4. SYNCHROTRON RADIATION FROM A FUSION PLASMA

ENCLOSED BY REFLECTING WALLS

We want to determine the synchrotron radiation intensity from a plasma enclosed by
reflecting metal walls for proposed operating ranges of fusion reactors. First, the

reflectivity of the surrounding walls is found. The electrical resistivity of possible

metals for the wall is obtained from formulas and tables. The reflectivity at a given

frequency is calculated for resistivities at different temperatures. With these we can

find an effective reflectivity F for an open-ended system. F is lowered primarily

because of physical holes through which radiation can escape; variations in metal reflec-

tivity caused by temperature and radiation wavelength will have little effect on the

results.

In order to calculate the radiation from a plasma with a previously developed model,
it is necessary to derive a synchrotron radiation coefficient C 2 , in the symbolism used
previously, which is the ratio of actual power radiated to the amount of energy that
would be radiated if there were no reflectors present in the system. Since the area under
a curve of spectral intensity vs frequency represents total radiated power, the ratio of
the areas of power curves with reflectors to power curves without reflectors gives C 2.
It is a very complex computational task to calculate the power radiated as a function of

frequency at a given electron temperature T e. Partial results have been obtained for
T = 25 keV and Te = 50 keV. The value of C 2 will be calculated for these two cases,

and we shall show that it is approximately the same for both. We can therefore assume
that C 2 is roughly a constant and use it for intermediate values of T . A calculation ise
performed on the plasma model to find actual radiation level.

Expressions 2 , 3 for electrical resistivity (ir) for Mo and Nb at different wall tempera-
tures are used to calculate Table X-2. The surface reflectivity F , which is the fraction

Table X-2. Resistivity and reflectivity coefficients.

Electrical Reflectivity
Material Temperature Resistivity -q F

(oK) (- cm)

Mo 800 18. 6 X 10 - 6 . 9848

Mo 1100 26.7 X 10- . 9818
-6

Mo 1400 35. 1 X 106 . 9791

Nb 800 36.7 X 10-6 9786

-6Nb 1100 47.0X 10 . 9759

Nb 1400 54. 6 X 106 . 9740
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of incident power reflected from a metal wall, is given in MKS units by 4

WEorl
= 1- 4 , co << 1 (1)

For Table X-2, let w be the twentieth harmonic of electron synchrotron frequency ob
for a magnetic field Bo of 5 T (experience shows that the power spectrum peaks at co

20 wb). Note that a representative value is F = 0. 98, and that variations will be small

over different temperatures and frequencies. Next, an effective F may be found for

an open-ended system. Assume a configuration of a closed cylindrical surface with a

hole cut out at each end. Typically, the end holes with zero reflectivity take up 8% of

the surface area; the rest would have F = 0. 98. We thereby obtain an effective F = 0. 9

to be used in radiation calculations.

The basic synchrotron radiation equation is5

S cc SB[1 -exp(-aL)], (2)

where S is the intensity of radiation at frequency w, SB is the spectral intensity of

black-body radiation at temperature Te and frequency c. The quantity a is the energy

absorption coefficient for a ray propagating in the plasma, and L is a characteristic

length of the plasma. At the frequencies of interest, the Rayleigh-Jeans approximation

for SB is valid. Thus for fixed T e , for dimensionless frequency w/wb' we obtain

S cc [1- exp(-aL)], (3)

where b is the nonrelativistic synchrotron frequency at Bo . If the plasma is enclosed

by reflectors with an effective reflectivity F, then the intensity of radiation SF is given

by

SB[1 -exp(-aL)][1-F]
S F cc (4)

1 - F exp(-aL)

Let S50' (aL) 5 0 , and SF50 denote S, (aL), and SF at Te = 50 keV, F = 0. 9, and simi-

larly for S25, (aL)25, and S2 at T = 25 keV, F = 0. 9. Values for S50 and SF50 are

in relative units, and values for (aL) 5 0 vs w/wb are available and are shown in
4Table X-3 and in Figs. X-34 and X-35. These values are for 0 = 10 , where

w2L

- PC (5)
wbC

with plasma frequency w . This value of Y will be justified here. TrapezoidalP
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Plasma synchrotron radiation with and without reflectors.

QPR. No. 94

b0 050 525Wb (aL) 50 S50 50 X (aL)Z5  SZ5 SrZ5

1 Large 1. 5 0. 1. 0 Large 1. 5 0. 2

2 Large 4. 0 0. 5 1. 0 Large 4. 0 0.4

3 Large 7. 0 0.8 1. 0 Large 7. 0 0. 7

4 Large 13. 0 1. 0 1. 0 Large 13. 0 1.3

5 Large 19. 0 1.5 0. 725 1. 3 13.8 1.8

6 14. 7 30. 0 2. 5 0. 710 1. 2 21.3 2.9

7 5. 6 39. 0 3. 5 0. 513 0. 71 20. 0 3. 6

8 2. 88 49. 0 5. 0 0. 297 0. 33 14.4 4. 1

9 1. 37 50. 0 6. 5 0. 157 0. 12 7. 8 3.9

10 0. 750 41.5 8. 0 0. 118 0. 064 4. 9 3. 3

11 0.463 34. 0 8. 7 0. 080 0. 052 2. 7 1.9

12 0. 288 28. 5 9.0 0. 067 0. 017 1.9 1.7

13 0. 177 22. 0 9. 0 0. 067 0. 001 1.5 1.4

14 Small 18. 0 9. 0 0. 059 Small 1. 1 1. 1

15 Small 15. O0 8. 5 0. 058 Small 0. 9 0. 9

16 Small 11. 5 8.0 0. Small 0. 0.

17 Small 8. O0 6. o 0. Small 0. 0.

18 Small 5. 0 5. 0 0. Small 0. 0.

19 Small 3. 0 3. 0 0. Small 0. 0.

20 Small 2. 0 2. 0 0. Small 0. 0.

Table X-3.
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Fig. X-34. Dimensionless absorption coefficient aL/Y for cyclotron radiation as a
function of dimensionless frequency w/wb, for a plasma with electron tem-

perature Te = 50 keV. (After J. L. Hirshfield, D. E. Baldwin, and S. C. Brown.)

Black body No reflection
(Rayleigh-Jeans) - 90 reflection- - - 90% reflection

1

2213.4b
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0= 0k 25 key

S= 103
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Fig. X-35.

Relative cyclotron radiation loss from a

plasma at Te = 50 keV for = w2L/wbC =
3 4

10 and 10 with and without 90% reflecting
walls. Short arrows indicate the frequency
w* at which aL = 1.

Fig. X-36.

Relative cyclotron radiation loss from
a plasma slab at T e = 50 keV, 25 keV,

10 keV forA = o L/bC= 10 . In this

case A is .Y. (After B. A. Trubnikov

and V. S. Kudryavtsev. 7 )
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integrations of S 5 0 and SF50 yield

96. 5
C (T = 50 keV)- 399. 0. 24. (6)

2 e 399. 3

Now let us find C 2 (Te = 25 keV). Define the ratio X = S 2 5 /S 5 0 . Values for S 2 5 and

X are available 7 and are shown in Table X-3 and in Fig. X-36. From Eq. 3,

(aL) 2 5 = n - X1 -exp[-(aL)50] (7)

Values for (aL) 2 5 in Table X-3 are found from Eq. 7. From Eqs. 2 and 4,

S2511-F]
S F25 (8)

1 - F exp[-(aL)25

Values for SF25 in Table X-3 are found from Eq. 8. Trapezoidal integrations of S 2 5
and SF 2 5 yield

29.1
C (T = 25 keV) - 115.1 = 0. 25. (9)2 e 115. 1

For Y= 104 and F = 0. 9, C2 has nearly the same value at T e = 25 keV and T e= 50 keV.

Therefore, it seems reasonable to adopt C 2 = 0. 25 for intermediate values of T e

Table X-3 may be used for calculations for other F.

With a previously developed model of a fusion plasma,1 we find a completely self-

consistent solution, with C2 = 0. 25. Relevant quantities are the magnetic field at the

vacuum wall (Bm), the magnetic field at the plasma surface (Bo), the radius of wall

facing the plasma in a cylindrical geometry (rw), the neutron power deposition per unit

wall area (S ), a dimensional parameter characteristic of the system (D), the ion tem-

perature (Ti), ion and electron injection voltages (V i and V ), fractional fuel burn-

up (fb ) , total synchrotron radiation per fusion event (Uc), with each fusion event giving

3500 keV to the plasma. Results have been calculated 8 for T = 40 keV and are showne
in Table X-4 for comparison with results from the previous feasibility study. Other

symbols are described there.

The thing to note here is the ratio C 2 /D, which is a multiplicative factor in the syn-

chrotron radiation term of the model. This ratio is considerably larger in the self-

consistent case. The radiation is much greater than was hitherto estimated, as is

shown by the term Uc; fb is much higher, which will also justify a model assumption

of complete alpha-particle fusion energy deposition in the plasma. This raises T.

and makes energy available for the increased radiation. Note that the answer is
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Table X-4. Comparison of previous results
for an open-ended system.

with self-consistent results

T = 40 keV
e

C = 1.

J = 1.

V. = 40 keV

V = 0 keV
e

B =5T

B = 10 Tm

F =3m
S107 2

S =10 W/m2

Input C 2

Input D

Assumed 2

Computer calculated T.

p

r

D

Uai

U
cze

fb

U x

U
c

Feasibility
Study

1.

104

62. 8 keV

.284

1. 23X10 20/m 3

1. 24x 104

.59

1954 keV

1542 keV

. 072

80. 3 keV

259 keV

Self-consistent

.25

.74

104

79. 3 keV

.33

1.31X 10 20/m 3

1. 24X 104

.74

1954 keV

1542 keV

.134

79. O0 keV

1345 keV

self-consistent, with calculated D = 0. 74, and 2 is close to 104. Thus we have shown

that C2 may be considered a constant over a range of Te, and that the synchrotron radia-

tion is considerably larger than had been assumed in previous calculations.

Solutions to the plasma energy-balance equations that are internally self-consistent

to this extent are hard to come by, and we have calculated just one. There are many

others, and our judgment is that more attractive solutions lie at lower fractional burn-up

(0. 08?) than was found here (0. 134). Such solutions would naturally have lower Te'

hence lower synchrotron radiation loss. Thus the discontentful situation here will be

somewhat ameliorated; but it seems that the synchrotron radiation losses in mirrors is

likely to exceed those casually implied heretofore.

F. B. Marcus, D. J. Rose
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5. STABILITY OF A RELATIVISTIC ELECTRON LAYER

We have continued our study of the stability of a relativistic gyrating electron beam

as previously formulated. , 2 In the last report, 2 we presented a dispersion relation for

the beam in vacuum. Now, we shall examine this dispersion relation in some detail,

and in the last part of this report we shall consider the case in which background plasma

is included. Nyquist stability methods have been used to study these dispersion relations.

Stability of the Beam in Vacuum

The dispersion relation for a neutralized relativistic electron beam in vacuum,

located at radius R with thickness T, can be written 2

1
D1 (, ) + - (b +b_) = 0, (1)

where

(1 1 2 o + 6 2 T - 6r0 r + 6r

DD, = , ) = K + K 2 log + K (2)

In these equations,

-u W (R) .T

K= 2 2 2(4)b= , - (3)

b z (5)
+ jcow 0E 0/

o =r2

b = jwE (6)

1,2

and the remaining symbols are the same as those used previously.

The map of the lower half of the cut r plane on the D 1 plane is illustrated in

Fig. X-37. The Nyquist criteria indicate that the beam is stable if the contour l , in
1

the D -plane (Fig. X-37) does not enclose the point - - (b +b ). Therefore, for all
1 3 +

lossless, "inductive" structures, b + + b_ < 0, the beam is stable; while for lossy and

some capacitive structures, b+ + b_ > 0, instability is predicted.
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Im7 I.

BRANCH
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Re ?7

Fig. X-37. Map of the lower half of r~ plane on D 1 plane.

It is of some interest to compute the growth rates for capacitive structures, under

the assumption that the beam is "tenuous." For such cases, K is small, and thus as a

first approximation, Eq. 1 becomes

- (b +b_) + K
_ 1r 0.
n + 81 -.

The omitted terms involve factors of K 2 and are of higher order

parameter. Equation 7, when solved for r, yields

in -, the expansion

= ++b
r=- +b

+, t- b _2+b ) T (b +b_)

Note that the first term under the radical is assumed small. Thus, stability results if

> K4R

T(b +b_)
+

2

(b+ +b_)
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2
W T

p
where - is known as the "loading factor" and is essentially equal to the ratio of

0wR
the self-magnetic field to the applied magnetic field. Equation 9 indicates that, even if

the structure is capacitive, the beam is stable when the wave number f is large enough.

As f increases, the assumption that K is small becomes better (K~1/f), and the growth

rate, because of the omitted terms, becomes diminishingly small. As an example, con-
2 2

sider an electron beam parametrized by wp/W = 0. 2 and R/T = 20, located in vacuum

inside a (capacitive) structure with dimensions a/R = 2/3 and b/R = 1.4. For this con-

figuration, Eq. 9 predicts stability for f > 7. We have also shown that when >i 7 the

growth rate attributable to the omitted terms (~K 2 ) in Eq. 2 is very small.

As a closing remark, we note that the present analysis is consistent with that of

Briggs and Neil 3 as we let T -+ 0. In so doing, only the last term under the radical in

Eq. 8 is important. Furthermore, the series expansion should not be pushed any farther

because we have omitted terms of higher order in rn when we formulated the constitutive

relation for J."

Stability of the Beam in a Cold Plasma

We shall now consider the effects of a cold plasma on a relativistic E-layer of inter-

mediate thickness. The inclusion of background plasma will modify the previous formu-

lation in the following way: An additional contribution to the total current arising from

a background plasma is now introduced into the constitutive relation. Needless to say,

the values of the wave admittances b ± at the beam edges are also modified because of

the presence of plasmas; otherwise, the analysis is identical with the one we have

described in some detail previously.

The model consists of a metallic cylinder of inner radius a and outer radius b,

between which the E-layer, located between rl and r 2 , is immersed in a blanket of cold

(collisionless) plasma. We are still concerned with the negative-mass mode whose only

nonvanishing field quantities are Hz, Er, and E0 , and whose frequencies are near kwo
The total perturbation current now is

J = J(beam) + J(plasma)

ow _ Wplo E

A d o p2 pl odr 2 + 2 2 cr-jWE rL c
+ O dr + 2 2 ( - E r-j wE

0) 0 r
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Here,

2
Cp2 = plasma frequency of the E-layer

2
2 = plasma frequency of the background plasma
pl

eB
0= -- ,-=oo .

C m OO

With this expression substituted in Maxwell's equations, and after eliminating E and
r

H , we arrive at the following differential equation:

d )(KI+K2) rE 0 _ d r d(rE)
dr 2 1 dr 2

2  Kr 2 2 Kir2
C C

d 
2

(rE ) 2 r(K 1 +K 2 ) rE@

SK1 2 2

l2r_ Klr

2o2 d
+ o dr (rE ) + KIE = 0, (10)W - f0 dr10

0

where

2

p l
KL = 1 2 2

C

2
pi

K

and K 2 = op2/7 o

The remaining task is to solve Eq. 10 subject to appropriate boundary conditions

at r1 and r 2 . Note that Eq. 10 has a simple mathematical structure (though the algebra

is complicated when we series-expand its solution), in the sense that it has only one

singularity, namely at a point where ( - two = 0, in the region of interest since the
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point r' = fc/0c-K 1 does not lie between r l and r 2 for the parameters of interest here

(K > 1.4 for w p 30 . Therefore, the series solution expanded about the singu-

larity converges rapidly enough at the beam edge, in contrast to the vacuum case.

We have obtained a series solution for = rE6 about the singularity 0 = w - = 0.
2 0

For convenience, we set = c/r and 2 a constant across the beam. With the series
o pl

solution substituted in the boundary conditions at rl and r 2 , we obtain the following dis-

persion relation.

I F bl (0+60) c
D() (0-8)P a + +

IPI Fa + b(z(2-65) + c2
(2+62) (02+6)

=0, (11)

where

K 2y QKZ,

M1,2 KKK j

r 2, 1 K 2  b + K K 2

2 r I r 2

2 -c (

In the analysis up to this point we have imposed no restriction on the plasma density

distribution outside the beam. We have considered a simplified case in which the plasma

blanket extends uniformly from the inner to outer walls. Furthermore, if the plasma

density is high enough (>101 0/cm3 for modes 2< o = 9), the fields outside the beam decay

rapidly, and the edge impedance is approximately that of an infinite plasma. This

assumption simplifies the calculation of b considerably. Under this assumption, we

obtained the Nyquist plot of D for various particular values of T/R, (, J and pl The

result is as follows. For a given value of T/R, and I, there is a critical plasma den-

sity (which increases with f at fixed and T/R) above which the Nyquist contour of D
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does not encircle the origin (see Fig. X-38). In other words, the negative mass insta-

bility can be suppressed by a high-density plasma background. A numerical example

with T/R = 1/20, = 4% is illustrated in Fig. X-38.

y=9, ~=4 %, =_
R 20

iI

i-A

UNSTABLE

i-

H-

STABLE

N 'C-C

2 x 1010 4 x 1010

Fig. X-38. Critical plasma density as a function of k.

Analytically, we can show

ditions for stability according

that the following set of inequalities yields sufficient con-

to the general dispersion relation, 11

a + bl - a - b Z < 0

c 2 - 2b260 > 0

c1 + 2b6 > 0

al 2  <0
1 2802

(12)

and the numerical data agreed with this result. It is of some interest to note, according

to our data, that in the stable regime, b+ +b_ <0, and in the unstable regime, b++b_ >0,

so that the stabilization at higher plasma densities is basically an inductive medium

effect. Also, the curve in Fig. X-38 has a remarkable resemblance to the result of

Briggs, which was obtained from a model with zero thickness.

Y. Y. Lau, R. J. Briggs
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