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A. FIRST-PASSAGE TIME STATISTICS OF A FIRST-ORDER

MARKOV PROCESS WITH A LINEAR RAMP

1. Statement of the Problem

Some problems concerning time jitter in regenerative switches can be reduced to

the calculation of the statistical characteristics of the first zero passage time (FPT)

of the sum y(t) of a linear ramp x(t) = Et and a first-order Markov process x(t) defined

by the differential equation

dx + x = n(t). (1)
dt

We assume that n(t) is stationary white Gaussian noise with the autocorrelation function

R (T) = n(t) n(t+T) = 26(T), (2)
n

where 6(T) is the unit impulse function. If the coefficients of Eq. 1 and the noise spec-

tral density were arbitrary rather than as specified above, the problem could easily be

reduced to that described with suitable scaling of x and t.

The problem is illustrated in Fig. XVI-1. Solution for the first zero of y(t) = Et +

x(t) is equivalent to determining the first time instant that x(t) = -Et. As the slope,

E, decreases, we would expect the mean FPT to become more negative, and the

standard deviation of the FPT to increase. In this report, we have obtained asymp-

totic expressions for the probability distribution w(O), the mean value 0, and the

standard deviation cr6 0- 2 of the FPT. The results are valid when E << 1, which

turns out to be the region where computer simulation of the process is most diffi-

cult.

This work is supported by the Joint Services Electronics Programs (U. S. Army,
U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E).
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FIRST-PASSAGE TIME (FPT)

y(t)

X= Et

Fig. XVI-1. First-passage time for the sum y(t) of the linear ramp
x = Et and noise x(t).

2. Method of Solution

The results were obtained by a Fokker-Planck equation approach. We utilized the
series solution of the problem for R(t) = const. (obtained by Stumpers ) and proceeded
to the case of slowly varying x(t). Asymptotic formulas for the parabolic cylinder func-

2tions were used to present the results in a very simple form.

3. Statistical Characteristics of the FPT

The asymptotic distribution, w(6), of the FPT is

1 (E) e - ( )2 / Z exp 1 e -( 6)/0 0

w(O) = p(E6) = (3)

S0 > 0

In terms of the integrated distribution function, W(6) = . w(r) dr a simpler form

exp [e -E6 < / 0

1 - W(O) = (4)

0 0 >0

is obtained. Examples of the distribution in Eq. 3 are shown in Fig. XVI-2.
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Fig. XVI-2. First-passage time probability distributions p(EO) for
several values of the ramp slope E.

a. Average Value 0 of the FPT

We were unable to get an analytical expression for 0 from Eq. 3. A numerical eval-

uation of 0 was made and is presented in Fig. XVI-3. Fortunately, for E << 1, 0 is
A

asymptotically close to the value 0 of the maximum of the distribution w(0), which can

easily be approximated. An expression for the mean EO(E) is thus found to be

-10 -8 -6 -4 -2 og 0 E

08

06

0.i

- A
Fig. XVI-3. Plots of the mean value 0, mode 0, and standard deviation

06 of the FPT distribution as a function of ramp slope E.

The parameters are multiplied by E to emphasize deviation
of the laws from 1/E.
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6 E6 - -2 In Er- - 1 - (5)
-Z In (E -Tr)

which is also shown in Fig. XVI-3.

b. Standard Deviation (6

The variation of the FPT standard deviation cr6 with slope E was calculated numeri-

cally and is also shown in Fig. XVI-3. An approximation for cr- can be obtained by
A

using analytic results for the height of w(0) at the maximum, 0, and approximating the

shape of w(6) by a unit-area Gaussian distribution. We obtain the approximate formula,

-e 1. 083

ZK Ed EO

c. Range of Validity of the Asymptotic Results

The formulas above are certainly valid for E << 0. 005 when the assumption

w(0) = 0 for 0 > 0 gives negligible error. Under this condition, most of the first passages

occur far back in time where the threshold, -Et, is still several standard devia-

tions (of x(t)) high.

4. Discussion of Results

There are two points in these results that deserve to be mentioned.

The first is connected with applications. If we apply this FPT model to a calculation

of jitter statistics in a regenerative switch where noise is caused by wideband shot and-2

thermal noise, the region where E < 10-2 is the range of practical interest.

The second point is concerned with the generalization of the results. Replacing

(t) = Et with any function with dt < 0. 01 and using the same approach, we can get

approximate analytical expressions for w(O). It is also possible to adapt this analysis

to the case in which the spectral density of n(t) is multiplied by a slowly changing

coefficient.

V. N. Kuleshov, D. E. Nelsen
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B. DISCRETE REPRESENTATIONS OF ANALOG SIGNALS

1. Introduction

In many applications we are concerned with implementing or simulating analog signal

processing on a digital computer. In carrying out such an implementation, an analog

(continuous) signal is represented by a sequence that is processed digitally, and the out-

put sequence is then converted to an analog signal. The most common example of a dis-

crete representation of continuous signals is periodic sampling. More generally,

Steiglitz1 has discussed the equivalence of digital and analog signal processing through

an isomorphic mapping between the s-plane and the z-plane, and he suggests the bilinear

transformation as a specific mapping that permits linear, time-invariant continuous fil-

ters to be represented by linear, shift-invariant discrete filters. Masry, Steiglitz, and

Liu discuss other isomorphisms between continuous and discrete signals. Piovoso

and Bolgiano 3 have proposed the Poisson transform as a means for associating

sequences with continuous functions to implement linear continuous time-invariant

filters digitally.

A linear representation of a continuous function f(t) with a sequence fn is of the

form

+o

f(t) = f n n(t), (1)

n= -

where the functions cn(t) should, for convenience, be linearly independent so that the

representation is unique, but need not be orthogonal. The requirement that a linear,

continuous time-invariant filter be represented by a linear discrete shift-invariant fil-

ter corresponds to requiring that if f , hn, and gn are the discrete representations of

f(t), h(t), and g(t), respectively, and if g(t) is the continuous convolution of f(t) and h(t),

then gn will be the discrete convolution of the sequences fn and h n. It is straightforward

to show that this requires the Fourier transform of cn(t), denoted (n(jw), to have the

property

4n(j) m (j )= n+m(j )" (2)

When fn is derived by periodic sampling of f(t) so that fn = f(nT), the functions (t)

are given by

sin wr(t-nT)
n( = (t ) (3)

v(t-nT)
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with

e-jwnT 0 < @ I

S 0 otherwise

so that (2) is satisfied.

In general, any mapping from the s-plane to the z-plane corresponding to expressing

z as a function of s will lead to a representation of a time function f(t) in the form

of Eq. 1 with the n(j) satisfying Eq. 2. This can be seen in several ways. For

example, from (1), the Laplace transform F(s) of f(t) can be expressed as

+oo

F(s) = fn n ( s ) . (4)

n=-oo

A
The z-transform of the sequence fn, denoted F(z), is given by

+o
A fZ-n
F(z) = f -n

n=-oo

and since the s-plane is mapped to the z-plane, we have z = G(s), and consequently

+o

F(s) = F[G(s)] = fn[G(s)]n. (5)

n= -oo

Comparing Eqs. 4 and 5 yields

(n(s) = [G(s)] - n, (6)

so that Eq. 2 is clearly satisfied. In general there is no guarantee that the set of func-

tions 4n(t) corresponding to (6) is complete. The conditions under which they are have

been discussed by Masry et al. 2

Any mapping from the s-plane to the z-plane of a form corresponding to Eq. 6 will

preserve convolution whether or not it maps the jw axis in the s-plane to the unit circle

in the z-plane. For the case of the bilinear transformation, z = G(s) =a-s so that

n() = s. With z = e corresponding to the unit circle and s = jc,

ejR +1
j = a . = ja tan -

e j - 1
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or

Q(w)= 2 tan - . (7)

In particular, then, the bilinear transformation maps the jw axis in the s-plane to the unit

circle in the z-plane. The functions cn(t) corresponding to this transformation are

2a(-1) n - 1 -at e L (2 at) u (t) + (-1) u (t), n > 0
n-1 1 0

n(t ) = uo(t) n = 0

2a(n-1 at LM (-Zat) u_ (-t) + (-1 )n u(t), n < 0 (8)
-n-1 1 o

where L(1) (x) is the first-order Laguerre polynomial of degree (n-1) defined as
n-1

L ( ) (x) = d [L (x)(n-l1) dx n

(9)

ex d n -x
L(x) = n (x n e .

dxn

In addition to simulation, it is often desirable to choose a discrete representation of

analog signals which permits a determination of the analog spectrum digitally. This is

motivated in part by the fact that an efficient algorithm exists for computing samples of

the z transform on the unit circle. In order to utilize this algorithm for measuring an

analog spectrum, we would want to choose a discrete representation that maps the

jw axis to the unit circle. A common procedure is periodic sampling corresponding

to a representation in terms of Eqs. 1 and 3. If the sampling rate is sufficiently

high so that aliasing is avoided, then a spectral analysis of the discrete sequence

resulting in samples at equally spaced angles on the unit circle will correspond to a

measurement of the analog spectrum at equally spaced frequencies on the jw axis. Fur-

thermore, since the computation of the spectrum of the discrete sequence must be

carried out on a finite-length sequence, a finite-duration window is put on the

sequence. This then corresponds to a "smearing" of the spectrum with a spectral win-

dow that is the same at all frequencies. Consequently, measurement of the analog spec-

trum by generating a sequence through periodic sampling, applying a window, and then

computing the discrete Fourier transform is similar to measurement of the analog spec-

trum with equal-bandwidth filters. More generally, if we choose a discrete repre-

sentation of the form of Eq. 1 with D n(s) given by (6), then the jw axis in the s-plane
will be mapped onto the unit circle in the z-plane if G() = , that jn(w)will be mapped onto the unit circle in the z-plane if IG(jw) = , so that n (jw) = e -
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The function Q(w) then represents a warping between analog frequencies W and digital
frequencies 2. In many instances, it is desirable to measure an analog spectrum with
unequal resolution across the band, as obtained for example, with a constant-Q mea-
surement. Such a spectral measurement can be obtained digitally by using a discrete
representation corresponding to the bilinear transformation between the s- and

z-planes. For Eq. 7 we see that frequencies equally spaced in 2 correspond to fre-
quencies unequally spaced in c with spectral samples closer at low frequencies than
at high frequencies. Just as in periodic sampling, the discrete sequence must be trun-
cated before computing the transform. If fn corresponds tothe discrete representation
of f(t), and wn is a finite-duration window, then the sequence to be transformed, gn,
would be given by

gn = W nn

A
If F(Q), W(Q), and G(Q) represent the transform of the sequences fn' wn, and gn'
respectively, then

1 ^
G(2) = -L W( A-) F( ) d .  (10)

-1

Or if F(jw) corresponds to the analog spectrum of f(t), then from (7)

G() = W(Q-) F(ajtan 2 d. (11)

From Eq. 11 we see that the digital spectrum, G(Q), is obtained by smearing the analog
spectrum in such a way that spectral resolution decreases as the analog frequency

increases. Samples of G(Q2) equally spaced in Q2, would then correspond to a measure-
ment of the analog spectrum with a filter bank for which the filter bandwidth was
proportional to the tangent of half the center frequency. Over a range of frequencies,
this can be made to look similar to a constant-Q filter bank, with the specific

shaping of the frequency resolution governed by the parameter a.

One of the major advantages of the discrete representation of analog signals

through periodic sampling is the ease with which samples can be obtained. To obtain the

coefficients in an expansion in terms of the set of functions given in Eq. 8, there are

several alternatives. One possibility is to utilize the fact that for these functions,

St(t) m(t) dt = 0 n m (12)

= In n=m
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so that

f n tf(t) cn(t) dt. (13)

n n -oo

If we consider, for convenience, f(t) to be zero for t < 0, then f for n > 0 can ben
obtained by exciting the linear time-invariant network shown in Fig. XVI-4 with

f(-t) 2a a-s a-s

(s+a)2 a+s a+s

-0'
f1 (t) f2 (t)

Fig. XVI-4. Analog network for obtaining the discrete representation
corresponding to the bilinear transformation.

f(-t). The coefficients fn are then equal to the outputs at each of the taps at t = 0,

that is,

f = f (0).n n

An alternative procedure is periodic sampling of f(t) at a sufficiently high sampling rate

to avoid aliasing, and then converting these samples to samples corresponding to a rep-

resentation in terms of the functions in Eq. 8. If f(nT) correspond to the periodic

samples, and fn correspond to the coefficients for an expansion in terms of the functions

in Eq. 8, then

0o

fn f(kT) Cnk (14)
k=0

00 sin L (t-kT)
1 T

C 1 t n(t) dt
nk n 0 n r (t-kT)

T

corresponding to a matrix multiplication.

The transformation from periodic sampling to the samples fn in Eq. 14 can be viewed

in the z-plane as a transformation from the unit circle to the unit circle that preserves

convolution and also provides a frequency warping. In future work, other means for

accomplishing this frequency warping will be investigated.

A. V. Oppenheim, D. H. Johnson
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C. NONLINEAR PROCESSING OF SIGNAL ENVELOPES

In recent months our group has been considering some problems relating to the ques-

tion of style in music. Some of these ideas were suggested by M. V. Cerrillo, in

1957.1,2 At that time, he pointed out that the gross essence of style may be characterized

PREAMPLIFIER X TO POWER AMPLIFIER

(a)

PREAMPLIFIER X TO POWER
AMPLIFIER

FULL-
AV ENVELOPE TRANSFER

RECTIFIER DETECTOR CIRCUIT
DC

(b)

Fig. XVI-5. (a) Circuit for altering level contrast.
(b) Circuit for altering note-to-note contrast.

by a small number of parameters, such as contrast, attack, tempo, and so forth. These

in turn may be related to more physical quantities, such as the time between two

accented notes for tempo, or the magnitude of note envelopes for contrast. While

tempo cannot be altered in real time, contrast or attack can be.

Thus far, we have concentrated mainly on contrast, which, qualitatively at least,

is the difference between the loud and the soft passages of music. We have defined
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two different kinds of contrast. The first is level contrast, that is, the difference

in level between two successive passages of music, while the second is note-to-note

contrast, or the difference between the level of a note and the background. Save

for the noticeable lag when a fast transition between two passages of different levels

occurs, level contrast is easily accomplished (see Fig. XVI-5a). On the other hand,

note-to-note contrast is somewhat more complicated (see Fig. XVI-5b). In order

to avoid unnecessary delay, the envelope detector must be mainly a peak detector,

rather than an averaging detector. The problem is to set the time constant. If it

is too short, the detector will pick up carriers, as well as envelopes, while if it

is too long, it will tend to skip notes, particularly any preceded by a much louder

note or a very short one. Furthermore, while the music is playing, the peak detec-

tor seldom gets a chance to decay completely before the next note, so that a super-

fluous DC level is injected into the signal.

While there is no optimum solution to the question of a time constant, it is pos-

sible to find a working compromise so that only very few notes are skipped. Elim-

inating the excess DC, however, requires some kind of nonlinear transfer curve,

and several such curves have been found that are effective to one degree or another.

Both kinds of contrast can now be altered in a manner that sounds quite natural.

M. P. Bruce-Lockhart
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