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A. RELATIONSHIPS BETWEEN RANDOM TREES AND

BRANCHING PROCESSES

Let z be a non-negative, integer-valued random variable and let z i , 1 i < oo, be

independent random variables, all having the same distribution as z. At t = 0 one

particle is alive, and at t = 1 it gives birth to a random number z 1 of offspring. At

t = 2 each of the z 1 first-generation particles gives birth to a random number (z 2 , z 3 ,th
.z +1) of offspring, etc. If N(k) is the number of particles in the k generation,

1
then N(k), k = 0, 1, 2, ... , is called a branching process. Letting z denote the

expected value of z, it can be shown I that

-k
N(k) = z . (1)

Thus if ~> 1, N(k) - oo; if _ <1, N(k) - 0; while if z = 1, N(k) = 1 for all k. It is also

known I that if z < 1, the process dies out (i. e. , N(k) = 0 for some k) with probability

one; while if z > 1 the probability of ultimate extinction p is strictly less than 1, and

is the smallest non-negative solution to

p = P (p), (2)

where P (s) = E[sz] is the probability-generating function of z.

Here, we examine a process which is a generalization of a branching process and

find many similarities. In this random-tree process one particle starts at the origin

at t = 0. At t = 1 it gives birth to a random number z 1 of offspring, each of which moves

a random distance yl, y2, . . .. . yz from the origin. At t = 2 each of the first-generation

particles gives birth to a random number of offspring, each of which moves a random

This work was supported by the National Aeronautics and Space Administration
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distance yl+1, yzl+2 ..... Yl+N(2) from its starting position, etc. The random vari-

ables yi, 1 < i < 0c, are independent of one another and of the z., and have a common

distribution. We shall let y denote the generic random variable.

Thus far the number of particles N(k) in the random tree is itself a branching pro-

cess. We now define a region of activity (-p, a), such that if a particle ever leaves the

region it produces no new offspring. This type of behavior is found in a nuclear reactor

or a sequential decoding search, and other applications undoubtedly exist.

Let us consider the case where y is an integer-valued random variable (generaliza-

tion to arbitrary distributions is being undertaken). Then the population distribution at

time k = 0, 1, 2, ... , is specified by (N.(k)}" , where N.(k) is the number of particles
1 i= - coi 1

in position i, at time k. Since only particles in the region (-P, a) play dynamic roles,

we may restrict attention to {Ni(k)}, - < < i < a. Let us renumber the integers in the

region from 1 to n (assuming there are n integers). We show that

N(k+1) = N(k)[zPJ, (3)

where N(k) = (N 1 (k), N (k).. N (k)) is the population distribution (row) vector, and

P = [pij] = [Pr {transition from i to jl i}], 1 < i,j < n (4)

is the "reduced" state transition matrix. We then show that if z > (1/), where N is the

maximal eigenvalue of P, then N(k) - oc; while < (1/X) implies N(k) - 0; and - = (1/k)

implies that there exists a B < o, such that (1/B) < N(k) < B. The similarity to a

branching process is striking.

It is further shown that as n - oc, X - min G (s), where G (s) = E[e s y ] is the moment
s Y Y

generating function of y.

The probability of ultimate extinction is one if z < (1/) and is strictly less than one

if z > (1/). Further, a relation similar to (2) exists. Let

Pi(k) = Pr {random tree dies out by time kj initial state = i}. (5)

Then

Pi(k+l) = P ij"  j(k -P P(i)[p(k)], (6)Sz Pij z (6)

where p(k) = (pl(k) ... , P(k)). Then we have

p(k+1) = P [p(k)], (7)

where P = p(1) p( 2 ) . (n). Since

p(1) = (qo, qo, ... o ) (8)
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where go = Pr z= },

p = lim p(k) (9)
Sk-oo

is easy to find numerically and must be a solution of

p = P (p). (10)

One last similarity exists. As a, P - co the probability of extinction (starting from

the origin) tends to the probability of extinction of the associated branching process,

provided z > [i min G Y(s)]

Thus it is seen that the random-tree process is amenable to analysis and has many

similarities to a branching process. R. G. Gallager is also investigating this problem,

particularly as it applies to sequential decoding, and has obtained similar results.

M. E. Hellman
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B. FINITE MEMORY DECISION SCHEMES

Let X 1 , X 2 , ... , Xn, ... be a sequence of independent, identically distributed

random variables with probability density p. There are two hypotheses Ho and H1 with

a priori probabilities Tro and Tr I ' respectively. Under Ho:p = Po', while under H 1:p= pl.

One would like to determine the true state of nature with minimum probability of error.

In general one is interested in a sequence of optimal decision rules dl(X 1 ), d 2 (X 1 X2),

... , d (X1 , X 2 ... X), . . . . Since each decision may depend upon all preceding obser-

vations, the amount of data to be stored increases without bound.

Motivated by a desire to reduce the data to be stored, Hellman and Coverl have

investigated the hypothesis testing problem under the restriction that the data be sum-

marized by an updatable statistic T, where T takes on a finite number of values; T E{1,

2, .. . , m} = S. Motivated by a desire to bring the hypothesis testing problem further

into the "real" world, we have considered the problem with the additional stipulation

that the number of observations N be finite.

The statistic at time n is a time-independent function of the statistic at time n-l

and the observation X
n

This work was supported in part by the National Science Foundation (Grant
GK-5800).
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Tn = f(Tn-1V X )

The independence of the observations and the action of the updating rule induce a Markov

process on the memory space S. This process may be viewed as the operation of an

m-state automaton acting on input X. and yielding output d(Ti) E{H o , H I.

As a specific example, consider the symmetric coin-toss problem. Here, X. takes
1

on one of two possible values, heads (H) or tails (T). The hypotheses are

H o : Pr H) = p> ; Pr T = 1- p q o

H : Pr{H}= q; Pr{T)= p Tr1 2

1

It is seen that the infinite-time solution to the symmetric coin-toss problem

embodies all the important aspects of optimal memory decision schemes. Thus, let us

restrict attention to this problem in our search to learn about optimal, finite-time deci-

sion rules.

A greatest lower bound to the infinite-time probability of error is

P = 1/[l+(p/q)m-1

No automaton can actually have a probability of error equal to P . There do

exist sequences of E-optimal automata. (A sequence of automata Al, A2, ... An, ... is

said to be c-optimal if the associated sequence of probabilities of error approaches P

as a limit.)

An intuitively pleasing decision rule is the saturable counter. This rule moves from

state i to state i+1l if H is observed, and from state i+l to i if T is observed (l,<im-l).

Since H is more likely under H than under H , decide H in state i if i > m/2, and H I0 1' o
otherwise.

A slight modification greatly improves the saturable counter. If in state 1 an H is

observed, move to state 2 only with small probability 6; if in state m a T is observed,

move to state m- 1 with small probability k6. Such a machine is called a saturable

counter with 6 traps. From the symmetry of the problem k= 1 seems an optimal choice

for any 8, and indeed it is. As shown, l if A is a saturable counter with 8 = 1/n, then
n

{An} is E-optimal.

Unfortunately, for the infinite-time problem there exist other E-optimal sequences

which are structurally very different from the saturable counter. It was felt, however,

that these were "less natural" solutions, and that the sequence of optimal finite-time

solutions, A N would approach a structure similar to the saturable counter. In partic-

ular, one might expect that the optimal solution AN for N observations would have
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the following properties:

0. Upward transitions occur only on H; downward transitions occur only on T.

1. The machine is symmetric.

2. Transitions only occur between adjacent states.

3. As N - o, the probability of a transition from state 1 to state 2 (or from m to m-1)

on H (or on T) tends monotonically to 0.

4. Randomization is needed not only for transitions from state 1 to 2, and from m to

m- 1, but also for transitions between interior states. Moreover, it is felt that ran-

domization will only be needed for transitions from a better to a worse state (i. e. ,

from a state with a low probability of error to one with a higher probability of

error).

To test these conjectures, one could do a computer search over the space of all pos-

sible automata and find AN. However, there are 2m(m-1) parameters over which to opti-

mize so that even for moderate values of m this is infeasible in practice.

Therefore we assumed that conjecture 0 is in fact true and tested the validity of con-

jectures 1, 2, 3, and 4 under this assumption, thereby halving the number of param-

eters. We found that conjectures 2, 3, and 4 are correct, but conjecture 1 is not true

for m odd.

We believe that this anomaly is due to the fact that state (m+1)/2 provides no infor-

mation either in favor of Ho or H1, so that a slightly asymmetric machine is better.

However, it can be predicted that as N - oc the asymmetry should vanish and, in fact,

such behavior was observed.

For m = 3 or 4 the only randomization occurs in transitions from state 1 to 2, and

from m to m - 1. Thus the AN are saturable counters with 6-traps in the end states
N

only. For m = 4, k = 1 the machine is symmetric. Although for m = 3, k ~ 1 it is true

that k - 1 as N - co. Therefore assuming k = 1 does not affect the asymptotic behavior

in this case.

For m > 4, randomization is needed in the interior as well, but much can be learned

by considering the saturable counter with 6-traps in the end states only, and with k = 1.

Let us consider such machines and optimize over 6.

First, let P (6) be the infinite-time probability of error for a saturable counter with

6-traps in the end states only. For small 6 it can be shown that

P (6) = P : + k 16.

It is shown 1 that 1/6 has significance as a kind of time constant for the

machine. Let us assume, therefore, that PN(5), the probability of error after

N observations, is
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PN ( 6 ) z Po + k16 + k2 exp(-k 3 6N).

Taking the partial with respect to 6 and setting it equal to zero yields

* In N In (k2 k3 /k 1)
6N k3 N k3 N

as the optimal value of 6, and

PN PN (6N)

= P + (kl/k 3 N)[l+nN+ln(k2k 3 /k l)]

Thus asymptotically 6 N and PN both approach their limits (0 and P as In N/N.

As has been mentioned, for m > 4 the type of machine assumed is not optimal. How-

ever, we felt that even then the results gave an indication of the true behavior. Experi-

mental evidence (i. e. , numerical calculations) bears this out.

R. A. Flower, M. E. Hellman
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C. DETECTOR STATISTICS FOR OPTICAL COMMUNICATION

THROUGH THE TURBULENT ATMOSPHERE

1. Introduction

It has been established, both theoretically1 and experimentally,2' 3 that optical sig-

nals transmitted through the turbulent atmosphere are subjected to log-normal fading.

Specifically, the spatial fading may be represented by a random process of the form

exp y(r) = exp[x(r)+j(r)] (1)

multiplying the field that would otherwise be received in the absence of turbulence,

where r is the two-dimensional spatial coordinate in the plane of the receiving aper-

ture R, y(r ) is a complex Gaussian random process whose real and imaginary parts,

X(r) and c(r), are assumed to be statistically independent and stationary, and the vari-

ance of the phase term 4(r) is so large that we can assume it is uniformly distributed

over [0, 2r).4

In order to examine the performance of an optical communication link in the atmo-

sphere, we must determine the fading statistics of the detector output in the receiver.
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In a direct detection system, the fading affects the Poisson rate parameter ± of the

photodetector in the receiving aperture, where ~. is proportional to the total field inten-

sity in the aperture.5 Under the assumption that the received signal field would have

no spatial variation over the aperture in the absence of fading, and ignoring the additive

noise field, for an ideal photodetector,

SCc IR dr I e'Y(r)12 = R dr e 2 X(r) ()

In a heterodyne detection system, the receiver extracts a single spatial mode of the

field incident on the receiving aperture. The fading parameter of interest is the magni-

tude u of this spatial mode; under the same assumptions which led to Eq. 2, we can

write

u2 dr ey(r ) e-jk - r 12 (3)

where the spatial mode has direction cosines -. 7 We can also regard u2 as the field

intensity at some point in the focal plane of the receiving lens.

2. Probability Density Expansion

We will examine the statistical nature of i and u2 by using a mathematical technique

described by Cramer,8 which demonstrates whether an indeterminate probability density

function p y(a) converges to an arbitrary probability density Px(a), provided only that

lower order moments for both x and y can be determined. Notationally, we can expand

Py (a) in terms of any px(a) as follows:

p y(a) = Px(a) + z ri(a) (4)

where

D.(a) i
ri(a) D Z L (i( -m ); i > 1,

1 i-1 k=O

k k
k=y , mk=x,

m m ... m. m m ... m.
o 1 1 o 1 1

m1 m2 mi+ 1 m m . mi+

D.(a) D. L1 .i+ 1,i+l

o 1 i m.i m 1 . mi
a a ... a 1 i+ 1 mzi
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Li, k is the cofactor of a k in D.i(a).

We can always select a Px(a) for which m i = 1~' and since mo 1, r 2 (a) is the

first nonvanishing correction term in the expansion:

(a) = px(a) 1+ (2- D + 2-m3, 2 ( 2-m 2 ) D3D2 + ( 3 -m 3 ) D 3.

r 2 (a) r 3 (a)

(5)

Furthermore, if Px(a) is specified by two independent parameters of our choosing, we

can arrange to have m 1 = 21 and m = 2 , so that r 3 (a) is the first nonvanishing cor-

rection term in the expansion:

py(a) = p (a) i + (f 3 -m 3 ) 3 + L4, 3 4 -m 4 D4 3 4 -m4-m4 ) D4

r 3 (a) r 4 (a)

(6)

3. Direct Detection Fading Statistics

We cannot determine a sufficient number of moments from the integral expression

for i in Eq. 2 needed to use the expansion technique above. Therefore, assume that

the integral of the log-normal random process e2X() can be approximated by a sum

of n identically distributed, statistically independent, log-normal random variables e2Xt

where n is the number of degrees of freedom of e 2 X (r) over the aperture R:

n 2Xf=
4 oc Z e I . (7)

k=1 n

In some sense, n can be thought of as the number of coherence areas of e2z (r ) contained

in R.

For convenience, we shall normalize I , so that

2m + 2 0-

In - mI I - n e
n ny - , (8)

n 2 4 Tn 2m +20-2  X
ne X X e -1

n
2 2

where m , - , m , and T- are the means and variances of I and X2 . The first four
n n
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moments of y are then given by

= , 3 = +2 e - 1

42 12i G2

e X-1 X
2 2

8o- 4o-r
+3e X+6e X

According to the Central Limit theorem,

Gaussian probability density as n gets large.

terms of

p y(a) should converge to a normalized

We shall therefore first expand p y(a) in

a
1 2

Px (a )  e
--

which has moments

m = 0

m 2 = 1

m3 = 0

m 4 =3

m5 = 0

m = 15

m =07

m 8 = 105.

(10)

As one indication of how closely p y(a) is approximated by Px(a) in Eq. 10, a comparison

of Eqs. 9 and 11 suggests that

Ik -~ mkn-o

Combining Eqs. 6, 9, and 11, we find after some algebraic manipulation that

4T2 24

r 3(a)e X+ 2 - 1 3 -1/2 (12)
r3(a) = e(a -3a) - n ()

4o-2  12 2  8-2 4o-

r4(a) = e X 1 e +4ne X+ 6 e X 6 (a4-6a +3)
4 4n(a

-1l (13)

The orders of r 3 (a) and r 4 (a) in n suggest that all of the correction terms in the expan-

sion converge to zero so that Py (a) converges to px(a) in Eq. 10 as n gets large.

However, Mitchell has concluded that I converges in distribution to a log-normal
n 9

random variable more rapidly than to a Gaussian random variable. 9 To show this, he

uses the expansion technique above modified to compare cumulative probability distri-

butions instead of densities; he uses Eq. 4 in the form

QPR No. 99
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00

P (a)= Px(a) + Z fa dp x(P ) ri.().
Y i=l 

(14)

Let us check his contention by expanding p y(a) in terms of the probability density

function of the normalized log-normal random variable

e _m
I
n

X = 0-_ where 4 is N(1r, p ), (15)

and T and p are chosen to set m I = 0, m 2 = 1i:

2 122m +2r- - P
e X Xnee =ne

(16)
2

e = + E;

4 0-

e X-
n
n

Then we can show that

m 3 = (3+E) - 0
n 0c

(17)

m 4 = 3 + 16 + 15E 2 + 6 3 + 4 3
n- co

so we suspect that corresponding moments of x and y converge to the same values

as n gets large, just as in the Gaussian expansion.

To solve for the correction terms in the expansion is an algebraically complicated

task in general; however, if E is small, we can show that to dominant order in n

2 3/2
(e4 (- /

r3(a) (a3-3a) ~ n ; /Z
6\-

4o2
n >> e - 1 (18)

4 X -2
e X

8( _2 4- 2

e X+4e X -8) 4 _6a 2 +3) n-

24n
24n

4_2
n >>e X-1.

Extrapolating the results of Eqs. 18 and 19, it appears that p y(a) converges to the

probability density function of x in Eq. 15. Thus, In converges to both a Gaussian andn

QPR No. 99
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a log-normal random variable as n gets large. For large n, r 3 (a) is the dominant

correction term in both the Gaussian and log-normal expansions, and hence lr 3 (a) is

a measure of the accuracy of approximating Py(a) by Px(a) in each case. But com-

paring Eqs. 12 and 18, it is evident that

4TX- 4 4 2

Ir 3 (a) - r3(a) < a,n >>e - . (20)

log-normal e + Gaussian Gaussiane +2

This reinforces Mitchell's conclusion: I does in fact converge more rapidly to a log-n

normal than to a Gaussian random variable over its entire sample space as n gets

2
large, and this is especially true when T- is small.

X
Since r 3 (a) is the dominant correction term when convergence occurs, we can con-

clude that when Ir 3 (a) << 1, p y(a) is accurately approximated by px(a). Note, however,

that if _r 3 (a)I is not small, it is nonetheless possible that i ri(a) is still small,
2i=3 2 -1

so that convergence is uncertain in this case. As an example, for - = 10

in Fig. X- 1 we have graphically illustrated the regions of convergence in (n, a) space for

the Gaussian and log-normal approximations, by arbitrarily assuming convergence when

Ir 3 (a) I < 10-1 This clearly gives us some quantitative information about the conver-

gence of p y(a) near the tail of the density function.

Contrast this withMitchell's analysis: he assumes convergence of P (a)to P (a) when
y x

R(a) f a dp px(p) r 3 (P) << 1; (21)

however, this does not reveal very much about the behavior of p (a) near its tail. For

example, the tail of p y(a) may differ drastically from Px(a), and this may result in a

large correction term r 3 (a) for large a. But if Px(a) decays fast enough as a gets

large, the product Px(a) r 3 (a) may remain sufficiently small that R 3 (a) is still small,

even for very large a.

4. Heterodyne Detection Fading Statistics

As in the previous section, in order to calculate the moments needed in the expan-

sion, we shall approximate the integral expression for u2 in Eq. 3 by the finite sum

2
2 n X +j(4f-k0) 2

u cc E e = J . (22)
=1 n
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Regions of convergence of the probability density function
n 2Xj

for I n e to the log-normal and Gaussian densities,
n ]=1

where each X is N(m , ), the X,'s are independent, and

a is the distance in standard deviations -rI from the mean
n2 n -1m I of I . For the specific case of a- = 10 A is the

n n X

region where convergence occurs for both the log-normal
and Gaussian approximations, B is the region of conver-
gence for the log-normal approximation only, and conver-
gence is uncertain in region C.

QPR No. 99
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In Eq. 22, the X 's are each N mX, ~2), the ,'s, and consequently the ~ 's, are each

uniformly distributed over [0, 2T), and the XjY's and i's are statistically independent.

Again we shall examine a normalized version of Jn"

2m +2 -

n J J -ne X X
n n

J 2m +2r 2

n ne X X T/j+6

The first four moments of y are given by

£1=0, 2=o0,

3

£4

4o 2)( 12o-2 4o-

2n 2 + 6n e X2 + e X-9e X+12

n 2 (1+6)3/2

42

6 e

n
(23)

n- o

(24)

42 ) (e 122 8a-2  4o2 24-2 12 8u2 4 2
9n+4 e X +6n 2e +3e X-30e X+36+ e X-16e -18e X+144e X-144

n3(1+6)
2

-- 9.
n-o0

The Central Limit theorem for complex random variables tells us that the probability

density of Jn should converge to that of a central chi-square random variable z with

two degrees of freedom:

a

Pz(a) = e U_(a); z k k! (25)

We shall therefore expand p y(a) in terms of px(a), where

2m +2 -2

X X
z - ne X X(26)

2
2m +2o-

ne X Xl 6

2m +2o$2
In order to have m 1 = 0, we must set X = n e X X; then we can show that

2
3 =i.. 2,
3 3/2 n.

(1+6)

9
m 2- 9,

(1+6) n- o

QPR No. 99
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so, apparently corresponding moments of x and y converge to identical values as n

gets large.

Evaluating the first two nonzero correction terms, we find that

rZ(a) = [(1+6)a-2 (1+ ) 1 / 2 a-1 - n (8)

e X -9e X +12 -2=3 /6 2 21 ( 2
r 3 (a) = 2 1[(1+6)3/ a3_6(1+6) a+3(1+6) 1/2 a+4] n, (29)

36n

from which we can conclude that J does behave like the chi-square random variable z
n

for large n.

Finally, since we have shown that the sum of n real log-normal random variables

tends to a log-normal random variable for large n, it is conceivable that the sum of n

complex log-normal random variables looks log-normal for large n. Therefore, we

should try to expand Py (a) in terms of px(a), where X is given in Eq. 15. To set m 1 = 0

and m 2 = i1, rj and p must satisfy

2 1 22m +2- p 2

e = ne X 2, e = 2 + 6. (30)

Then we can show that

2 3
4 + 96 + 682 + 6

m 3 = - 4,

(1+6)3/2 n- o
(31)

41 + 150 8 +... 1.
m4= -- 41.

(1+6) n-mo

So, fk and m k do not converge to the same values for k > 3 as n gets large. This is

an indication that J ndoes not behave like a log-normal random variable for large n. If
0

the nonzero correction terms are evaluated, we find that for i > 3, ri(a) ~ n , which cor-

roborates our previous conclusion.

5. Conclusions

With appropriate reservations for the approximations of the integrals in Eqs. 2 and

3 by finite sums of independent random variables in Eqs. 7 and 22, we have used the

Cramer expansion technique to demonstrate that in an atmospheric medium, if the col-

lecting aperture of the receiver is large relative to a spatial coherence area of the

atmospheric turbulence, and ignoring any background noise,

(i) the direct detection fading parameter p. is approximately log-normal, and
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(ii) the heterodyne detection fading parameter u is approximately chi-square, or

equivalently, u is approximately Rayleigh.

B. K. Levitt
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D. DIRECT DETECTION ERROR PROBABILITIES FOR OPTICAL

COMMUNICATION OVER A RAYLEIGH FADING CHANNEL

Under certain conditions, usually satisfied in practice, optical direct detection sta-

tistics in the presence of a temporally and spatially white background noise field can be

accurately modelled by a Poisson process. In this report we shall use this model to

determine error probabilities for the case of binary PPM signalling over a Rayleigh

fading channel.

If message m I is sent, the time-varying Poisson rate parameter during a single baud

of duration T can be represented by

2 T
uwhe + ~s and no ts n 2

n 2

where s and pn are signal and noise rate parameters, and the random variable u
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accounts for the fading. Denote the number of counts registered by the direct detector

in the first- and second-half bauds by n1 and n 2; under the Poisson model n 1 and n2 are

statistically independent with distributions

[ L (
+ 

2 a )

Pr [nI m I u] = ll (1+u2a)I e

L

Pr [n 2 ml, u] = Lnz e- (1)

conditioned on the channel fading parameter u. For convenience, we have introduced

the following parameters in Eq. 1:

a -Ps/n = a priori signal-to-noise ratio,

L - InT = average number of noise counts per baud.

For equally-likely signals, the probability of a communication error on a single

transmission, conditioned on the fading parameter u, can be shown to have the following

forms :

P(E u) = Pr [n 2 >n 1 m l, u] - Pr [n2 =n 1 ml, u]

S( a) (1+u a)-j/2 IA L 1+ua) 1Io (L 1+ua(2)

m e L (+u 2 e IL (L +ua (3)

- (2+u a) L (3)

2 2

="1 + +Qm\- L(+u2a) Qm L (l+u2a), (4)

1 u dx e- x I 2 2 x (5)

2 + u (2+u2a) 2 + a

th
where I.( ) is the j -order modified Bessel function of the first kind, and

a +x-
Qma, b] - dx x e I (ax) (6)

, b yb

or, alternately,
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Qm[a, b] = e (2b I.(ab) (7)
j=0

are expressions for Marcum's Q function of radar theory3, 4 which has been tabulated. 5

Professor E. V. Hoversten has suggested the following useful approximation for the

conditional error probability above. In Eq. 5, the argument of the Bessel function sat-

isfies the inequality

2 x > L 1+ u2 a
2+u a

over the range of integration. But the large argument asymptotic approximation for

the 0t h order Bessel function is

e
Io(z ) -

oZz
z >> 1.

Therefore, Eq. 5 can be approximated by

2

P(E u) a

4 / r(2+u a) (l+u a)1 /4
00+u a

2 (2+u a)

1- 2 x

I 2 +u a
dx - e

L u1 a >>1.

Making the substitution

y= ( 2 a 2x

Z+u a

leads to the form

2
P(E u) U a

2(1+u2a - )

1+u Q i- 1( 1 -

(l+u2a)1/4

L +ua >> 1,

where

1
Q(z) = 1 dy e

2
z

1 2
e

z \1r

QPR No. 99

z> 3. (10)

125



(X. PROCESSING AND TRANSMISSION OF INFORMATION)

is the Gaussian error function. Using the approximation of Eq.

2
u a

8TrL (1- 1u1 )2 (1+u a)1/4

L +1 u2a >>l,

10 in Eq. 9, we have

L( 2 2

/T ( i i +u a -I) (11)

This result is particularly satisfying since it agrees exponentially with the Chernoff

bound for the conditional error probability:

- (1- ( I u 2

P(E u) < e

Equation 11 can be further simplified if u a is large

Lau 2

2
P(E I u) e

a1/4
a '#8wLu

L + u a>>l,

We will now examine P(E), the probability of a communication error on a single

transmission averaged over the channel fading, for the specific case where u is Rayleigh:

2
u

2u u
p(u) = -- e u-1(u),

u

where u is the second moment of u, and u_ ( ) is the unit step function.

6, and 14, we can write

- u
P(E) = P(EI u)

(14)

From Eqs. 3,

- L (l+u a)
du (2au) e dx x

V L(1+u a)

L L 2--eK ('0- (I +u a)-K 2K du (au) e 2K

0

L (2+u a)
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P(E I u) '

>3,
2

u a>

(13)

L
e2K e

0\

2
e I (x \L-)

Io(L l+u a (15)

(12)

u a- 1)
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where we have defined the parameter

2
u sT u2 La

K- - 2 - average number of signal counts per baud.

To evaluate the first integral in Eq. 15, let

2
y= 1 +u a

and then interchange the order of integration:

LI=
2K

L
2K

e

1.

1dy e

+xdx

dx x e 2- I (x i )

dx x e
(L+X2( 2 / x /L

I(xxi)
1

L(K-1)

ZK _dx x e
= Qm[ , - e

By making the substitution

K+ 1
z=in the integralabove, we find that

in the integral above, we find that

I= Qm[, L-]- ( K

L

eZK(K+l) Qm +

Finally, we can evaluate the second integral in Eq.

variable

L(K+1)(1+u2a)
X K

(K+1)]

15 by introducing the change of
15 by introducing the change of

we then find that

L

1 2K(K+1)

2Z(K+1)

LK
Q m K+1

L(KI )
K
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L
dy 7 e

L
2K

L
2K

e -e

2
x
2K

I (x L- ).

x (K+ 1)

2K

ZK y:

L
ZK 002K Y

=e
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Therefore, Eq. 15 becomes

P(E) = Qm[ \iL ]- K e 2K(K+1)
K+ /1 e

L (K+ 1)

+KL~
(16)

Using Eq. 7 in Eq. 16, we can write

-LP(E) = e

j=

j= 0

( K / < 1,

(K+1 j(L).
K+ 1/ ) .

V K,j > 0,

so that Eq. 17 leads to the lower bound

-L
P(E) > e - L  I. (L) = 1 Q

2 (K+1) j 2 (K+1)
j= 0

Since tables of the Marcum Q function are not always readily available,
venient to use a property of this function 7 to rewrite the lower bound

(18)

it is con-

of Eq. 18
in the form

P(E) > 1 +e-LI (L).
4 (K+ 1)

We can also upper bound P(E) by averaging the Chernoff bound for P(E I u) in Eq.
over u. For Rayleigh u, we have, in our previous notation

(19)

12

u

2 1-2
P(E) < e

L L(1+u2 a) L
L e2K du (au) e e

0

)2.'/l + U?-~ a)

Making the substitution

x = 1 ua - K+

in the integral above, we find that
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LK
m vK+ I'
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L(K+ 1)

Z2K
dx x e

L 2K(K+1)
K+ eK +l1

1/K+

L(K+1) Z
-- x

2K
dx e

1 L

K L'+ 2K(K1)( K(K+1)

We also have the following useful approximation to the upper bound above:

P(E) < 1 + A L

K (K+ 1)

This is interesting because Eqs. 19 and 21 suggest that P(C) is inversely proportional

to the parameter K under certain conditions, which is further corroborated below.

As a final exercise, we can use the approximation for Marcum's Q function derived

in Appendix A to calculate a simple approximation for P(E). Thus, using Eq. A. 1 together

with Eq. 16, we find that

1 1
P(E) I +

4(K+1) \Z-rrL

2 L
K+ 1 ZK(K+1)

K K Q K(K+
K(K+1)

Now, if K >> 1 and p >> 1 as well, using Eq. A. 2 we can show that Eq. 22

P(E) I K >> 1, >> 1.

L- >> 1.

(22)

reduces to

(23)

If the average number of signal counts equals or exceeds the average number of

noise counts, that is K > L, then the restriction on Eq. 23 can be rewritten in

the form

P(E) z - P(E) << ,
KIJZ

K > L, (24)

which is a useful approximation for small P(E).

Appendix A

We will now derive a useful approximation for Marcum's Q function. Combining

Eqs. 6 and 8, we have

Qm(a, b)
m Z1;a

2
x

dx Nx+a e 2
b-a

ab >> 1.
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L 2K(K+1)
P(E) <-K e 1/K+

1 /K± 1

(20)

K >> 1. (21)

->> 1,
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Using the first two terms in the Taylor series expansion for \x+a about x = b-a, we

find that

2
x

Q (a, b) E dx + - [x-(b-a)] e 2m 2 a b-a 2b

(b-a)
1 1 2b= (+ )+ Q(b-a) + e ;2 a b\/rab

provided ab >> 1, b >> 1, b > a. (A. 1)

Also, note that the Taylor series expansion for the Gaussian error function Q(z)

about z = 0 is

Q(z) + .... (A. 2)

B. K. Levitt
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E. WEAKLY COHERENT QUANTUM CHANNELS I

We derive a bound to the error probability of a weakly coherent quantum channel used

with a photon counting receiver and orthogonal, equal energy, equi-probable, signals.

The nature of these channels has been discussed elsewherel, 2 and the bound has been
2-5

presented previously. We here limit our attention to the derivation of the bound.

For simplicity we consider a single polarization component of the field at the aperture.
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Consider the system for which the receiver aperture field contains a zero mean

Gaussian noise component that is white in space and time and a random signal compo-

nent. The noise power density, N, of the noise is assumed to be much less than hf .

The signal component corresponds to the transmission of one of M messages. The com-

ponents resulting from the transmission of different messages are orthogonal to each

other in that the sample functions of the random signal fields corresponding to different

messages are orthogonal.

Analytically, the above assumptions may be restated as follows. When the jth

message is transmitted, the complex envelope U(r, t) of the receiver's aperture field

can be expressed as

U(r, t) = L Sij i(r, t) + N(r, t)
1

where N(r, t) is the white Gaussian noise component of the field and the i(r, t) are a set

of orthonormal functions over the receiving aperture. The Sij i = 1, 2, . .. are random

variables that characterize the signal component of the field when message j is trans-

mitted. The assumption that the signal components of the field are orthogonal for dif-

ferent messages is equivalent to the statement that, for all i,

Sij Sik = 0 for all j t k; j = 1, . . . M, k = 1, ... M. (1)

The random variables S.. can be viewed as the modal field amplitudes associated

with the signal component of the received field. For weakly coherent quantum channels

they behave as though they were statistically independent zero mean complex Gaussian

random variables with variances that are small relative to the energy of a carrier pho-

ton. The following analysis is directed toward such channels with the additional

assumption that the noise power density N is much less than hf .

Suppose that the receiver decomposes the received "signal plus noise" field into

M orthogonal components, indexed 1, 2, ... M, such that each component contains all

of the energy associated with one, and only one, of the signals. Suppose further that

the average noise energy in each of these orthogonal components are equal. The energy,
.th

or photon count, in each such component is then measured and the i message is

assumed to have been transmitted if the energy in the it h component exceeds the energies

in the remaining M-1 components. If none of the energies exceed all of the other ones,

the choice among those with the maximum energy is made by choosing each with equal

probability.

The error probability of the receiver just described will satisfy the inequality

PePn <ni one or more ifj Imessage j]. (2)

i
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Here the ni, i = 1, . .. M, are the photon counts in the M components into which the
receiver divides the received field. Our objective is to bound the right member of this
equation by a simpler (but weaker) expression. As a first step in that direction we
employ some known results to obtain

Pe < Z P[n. message j] {Z P[ i n. n I message j; n ]}. (3)

In this equation p is a free parameter whose value is constrained to be in the interval
(0, 1). The validity of the equation rests upon the assumption that the receiver energy
measurements are on orthogonal components of the received field and hence are condi-
tionally independent.

To proceed, we invoke the assumption that N and the variances of the S are small
relative to hfo. This implies that the n. and n. are approximately Poisson distributed.78
We further invoke the assumptions that the received energies associated with

the different messages are equal and that the average noise energies in each of the M
receiver field components are equal. This implies that the photon counts in each of the
components that do not contain signal energy are identically distributed and that the
probability distribution of the count in the component that does contain signal energy is
independent of which message was transmitted. Specifically

n.
1

P[n. message j] = exp -k i # j, n = 0, 1, . (4a)
1

n.
(o o+ I ) J

P[n message j] exp -(o+k) n. = 0, 1, ... (4b)

Here ko is the average number of detected noise photons in each one of the M receiver
components and XI is the average number of signal photons detected in that component
that contains signal energy.

Upon introducing Eq. 4 into Eq. 3 and using standard Chernov bounding techniques 6

one obtains

Pe < M P exp -{pko(l-et)- (ko+k )(-e-t)}. (5)

Minimizing the bound with respect to the free parameters t and p yields

Pe < exp -KEd([ P) (6a)

where

K = log2 M (6b)
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= X1/X (6 c)

= X 1 /K (6d)

and

(I+ p )p P(l+p) /(+p
Ed( L, ) max + - p In 2 - (1+i) . (6e)

0 <pl K

The exponent Ed(R, 1) can also be expressed parametrically as

j. In 2
if p > Pcrit \1- %+T 1 [I-ln(1+)] (7a)

Ed( j, p) = [ 1]2 In 2 (7b)

.L In 2
if P > P > = (7c)

1cap -F- + (1+0) In (1+.)

Ed(~, P) = [i + +p - (l+p)(l+) 1/ ( 1+ p )] - p In 2 (7d)

where p is determined from the relationship

P (1+L)1/(1+p) 1 n (I+ -}1 In 2. (7e)

Finally,

if P < Pcap' Ed(1, P) = 0. (7f)

2-5
The bound of Eqs. 6 and 7 has been presented previously. We note in passing that

the derivation depends upon the statistics of the incident field only through the assump-

tion that the n. are Poisson distributed. Thus the bound applies to the detection of known1
signals as well as to weakly coherent random signals - provided that the contribution

of the background noise to the count is itself Poisson distributed.

R. S. Kennedy
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