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National Aeronautics and Space Administration (Grant NGL 22-009-013)

S. J. Dolinar, Jr.

Recently an (ideally) implementable receiver for the detection of binary coherent-

state signals has been discoveredl whose performance is exponentially optimum, dif-

fering from that of the optimum quantum receiver by at most a factor of two in the error

pro- bability. By suitably generalizing the structure of that receiver, we have been able

to obtain one that achieves quantum optimal performance precisely for this particular

detection problem.

Our problem is to decide, with minimum probability of error, between two possible

messages m and ml, with a priori probabilities Tro and rl, respectively, when the

received field, conditioned on m. being sent, is a linearly polarized narrow-band plane

wave corresponding to the quantum coherent state sj), j = 0, 1. The minimum error

probability for this problem is well known,

P(E) = I1 - 1 - 4 -ro 1  K s s l 2 (1)

where ( s o sl) is the inner product of so) with s]). For coherent states, the mag-

nitude squared of this inner product may be simply expressed in terms of the complex

envelopes So(t), S (t) of the classical received fields corresponding to the states I so )

s).

(s Isl) 12 = exp - f kX(t) dt), (2)

where we have defined (t) to be the photon-counting rate for direct detection of a plane
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wave of complex envelope So(t) - SI(t), and [0, T] is the signaling interval.

X(t) = C IS(t) - Sl(t) 2 , (3)

where C is a constant related to the aperture area, the impedance of space, and the
energy of photons at the carrier frequency.

The near-optimum receiver processes the received field by adding to it a fixed lin-
early polarized local reference plane wave 1(t), equal to the negative of one of the sig-
nals So(t) or Sl(t), and direct-detecting the result with a photon counter. We generalize
this concept by allowing the choice of the local reference field added at the receiver to
depend causally on the actual output of the photon counter, via a feedback arrangement.
This generalization immediately introduces complexities in the analysis of the photon
counter output, since it is no longer a Poisson process conditioned on the message sent.
It remains at least a regular point process, and so it is characterized by the set
of times t 1 < t 2 < ... at which counts occur. Thus, the class of receivers that we are
considering is identifiable with the set of all possible feedback functions, {((t: t), t =

(tl ... tn): 0 <t < .< tn < t < T, n= 0, 1, 2,.. . . Here, 1(t: t) represents the feed-
back field at time t when the vector of counts observed prior to t is t. The structure
of such a receiver is illustrated in Fig. VII-1.
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Fig. VII-1. Receiver structure considered here.

When a particular feedback function f( ) is specified, the statistics of the photon
counter output may be determined from the following observation. Conditioned on the
message m. being sent and also on the entire history of event times t of the photon
count process up to time t, the probability that a single count will occur in the small
interval (t, t+ A) is Xj(t:t)A, within o(A), and the probability of multiple counts in this
interval is o(A), where
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\.(t:t) = C S (t)+ f(t: t) . (4)

This incremental analysis may be easily extended to yield the probability density p (t: T)

for the set of event times t within the entire observation interval [0, T], conditioned

on m..

n n+l 1 1
pj(t: T) = I J(t: t.1 )  1 exp - (a-:t ) do- , (5)

i= 1 ti

where

t = (t 1  ... tn) to 0

ti 1 = (t 1  ... . ) tn+ 1 - T.

The optimum decision rule is obvious from (5), and in principle the probability of error

may be obtained by integrating the expressions in (5) over the appropriate decision

regions in t, for any feedback function f(). As expected, explicit evaluation of per-

formance is possible only for certain special cases, one of which is the optimum feed-
A

back function f( . ).

In this report, we shall describe, rather than derive, the optimum feedback f( ),

and then calculate performance and verify that it is quantum-optimal. We first define

a deterministic weighting function f (t), which depends on S ( ), (S1(), and the ratio

y T Irl o  Without loss of generality, we assume -y > 1.

f (t) = em(t) - 1 + )2 e2m(t) - 4 em(t), (6)

where m(t) = k(o-) d- = C f So(o)-S1() 2 do-. Next, we define two weighted com-

binations of the signals So(t), S 1 (t).

S ( t ) f (t) - So(t)

f (t) = (7a)
f (t) - 1

S o() f (t) - S ( t )

So(t) = 
(7b)

f (t) - 1

The optimum feedback function C( . ) depends very trivially on the observations t:
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n even

n odd

If we use this feedback function in (4) and (5) and make use of the fact that f ( ')

satisfies the integral equation

X([f () + 1t Y
k(o-) do-,

o Y

0 < t < t < T,

it is straightforward, albeit tedious, to obtain an expression for the likelihood ratio

A(t: T) = Pl(t: T)/p (t: T).

n(t: T) = [
yA(t: T) = [f (T)](-1 t = (t .... , t ).

-- n

Since f (T) > 1, the decision regions for minimum probability of error are very simply

defined:

D = {t = (t ... , t ):yA(t: T) > I} = {t= (t .... t ): n even}
1 - 1' n 1. n

Do = {t= (t .. , t ):yA(t: T)< 1} = {t= (t,
o ( . ' n =''"

The probability of error is given by

P(E) = fD0 Tr1 p1 (t: T) dt + fD Iropo(t: T) dt
o 1

., t n): n odd}.

(Ila)

(llb)

= D yA(t: T) To o(t: T)
o

dt + fD 1
D1 'yA(t: T) rlpl (t: T) dt

D 1

of (T)c

Tr op (t: T) dt + fD
00-

1
1 1 (t:T)f ( T)

To o (t: T) dt + fDI1 Trlp(t:T) dt].

The quantity in brackets is the probability of correct detection, or 1 - P(E). Solving
for P(E), we obtain
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(t:t) = if0(t), t =(tl, , t n),

f (t)
In -

(10)

1

f (T)C
ID (12)
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1
P(E) =

1 + f (T)

S1 -m(T)
21- 1 - em(T

1(1+ )2

1 - 1 - 4  r em(T)]. (13)

Recalling the definition of m(T), we see that this is identical to the quantum-optimal

results in (1) and (2).

Let us briefly discuss some aspects of the behavior of our optimum receiver

(Fig. VII-2). The feedback field alternates between fl(t) and fo(t) with each count. At

the same time, In yA(t:t) changes sign at each count, but its magnitude is a

deterministically increasing function of time, In f (t). Thus the occurrence of

each successive count constitutes a more and more conclusive negative test of the

hypothesis last considered more probable. As time goes on, the optimum feedback
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0(t) OR I ( 0

GENERATE
, -- - lo(t)

GENERATE 1

Fig. VII-2. Optimum receiver for known So(t), Sl (t).

alternates less frequently between I(t) and fo(t) and with increasing probability tends

toward nulling whichever signal was actually sent. In fact, if lim m(t) = cc, there is,
t- oc

with probability one, a final count even in the case of an infinite signaling interval

(T = c).

We remark that in the case of equal a priori probabilities (y = 1), Eqs. 4, 7,
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and 8 provide only a formal description of the optimum processing, since the required

feedback field, and hence the photon counting rate, are infinite at t = 0. It is possible

to define rigorously the random process which represents the photodetector output for

this optimum processor, but it is not a regular point process on [0, T] and so the opti-

mum receiver technically does not belong to the class we are considering. We point out,

however, that we may approach optimum performance as closely as desired with bounded

feedback fields by appropriately redefining k(t:t) for t in some small interval

[0, E), 0 < E < T, and letting E 0. One redefinition that has this convergence property

is

-S ( t ) ,  t E [0, c)

f (t: t) = (14)

f(t: t), tE [E, T]

From a practical point of view, the foregoing result might seem insignificant, since

an exponentially optimum receiver for this particular detection problem is already avail-

able. The attainment of precisely optimum performance, however, warrants an investi-

gation into the possible connection between the type of feedback receiver considered here

and quantum-optimal measurements for more general problems for which exponen-

tially optimum receivers have not yet been found. Further study is being conducted on

this question.
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