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A. ANOMALOUS OXYGEN ABSORPTION INFERRED FROM NIMBUS-5

MICROWAVE EXPERIMENT

California Institute of Technology (Contract 952568)

R. K. L. Poon, D. H. Staelin

Atmospheric absorption near 5-mm wavelength is dominated by oxygen. We shall

describe 10 methods for computing its absorption coefficient (see Expressions 1-10 in

Table II-1). The pressure-broadening theories of Van Vleck and Weisskopf (VV-W)1 and

of Gross and Reber (G-R) 2 lead to different spectral line shapes (Methods 1 and 2). One

major uncertainty associated with these theories is the linewidth, whose value has been

experimentally determined but not well explained.3 For this reason, we have developed

Expressions 3-10 in Table II-1.

We assume that the absorption coefficient k varies with total air pressure p as

k= a p , where a and x are frequency-dependent parameters. Good fit of this expression

to Methods 1 and 2 is obtained when a and x are determined by regressing k against

pressure from 10 to 1000 mb. The regression is performed on a sample of pressure-

temperature pairs that occur in the ARDC model. 4  This yields Expressions 3 and 4,

respectively, for the two line shapes. As a check, a "random sample" is prepared with

pressures and temperatures T independently chosen in the range of atmospheric interest.

Regression is then performed on this "random sample" in the form k = a px (Expres-

sions 5 and 6) and in the form k = a pX Ty (Expressions 7 and 8).

Table II-1 shows the result of different expressions of regression in the general

normalized form k =ko(p/ 0 )x (T/T o) . The parameters ko, x, and y give best fit to

Method 1 values when we use Expressions 3, 5, or 7 for regression. Expressions 2, 4,

6, and 8 are counterparts referred to the Gross-.Reber (G-R) line shape. The parameters
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Table II-I. Parameters inferred from different expressions of regression in

the normalized form k = ko(p/po ) x (T/T )Y

PARAMETE1R CH 1 3 5 7 2 4 6 8 9 10

p = 617 mb 3 0. 191 0. 189 0. 192 0. 192 0. 181 0. 178 0. 182 0. 182 0. 186 0. 244

ko P = 265 mb 4 0. 203 0. 195 0. 199 0. 198 0. 174 0. 167 0. 170 0. 170 0. 232 0. 247

p = 89 mb 5 0. 302 0. 297 0. 293 0.293 0. 239 0. 241 0. 242 0. 242 0. 339 0. 772

3 - 1. 26 1. 29 1. 29 1. 28 1. 25 1. 24 1.3 1. 5

x 4 - 1.40 1.32 1.32 3 1.47 1.45 1.45 1.54 1.75

5 1.79 1.57 1.57 1.51 1.48 1.48 2.05 4

TF = 262'K 3 - 0 0 -0. 10 0 0 -0.07 0 0

y T = 223 K 4 - 0 0 -0. 21 - 0 0 -0. 15 0 0

T = 217oK 5 - 0 0 -0.96 - 0 0 -0. 84 0 0

NEMS Exact ARDC Random Exact ARDC Random Nimbus-5 NEMS
Channel (p, T) (p, T) (p, T) User's Data

Frequencies _ Guide

3 53. 6 5 GHz VV-W G-R WF

4 54.9 GHz Line Shape Line Shape

5 58. 8 GHz
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Fig. II-1. Fitted absorption coefficient for the ARDC model atmosphere.

are given for the absorption at 53. 65, 54. 9, and 58. 8 GHz, three center frequencies

near the 5-mm oxygen resonances (Channels 3, 4, 5) which have been selected for

the Nimbus-5 Microwave Experiment (NEMS).5 Figure II-1 shows the good fit of

Expression 3 to the ARDC model atmosphere.

The form k = a pX leads to a surprisingly simple description of the temperature

weighting function (WF), defined 3 as k(z) exp[-T(z)], which takes on the simple form

s exp -[sz + exp(-sz )] at any height z, where s = x/H, z = z - zm is the height refer-
x

1 apo
enced at the WF peak height z = -n a , and the atmospheric pressure p is assumedm s s
to equal po at the surface of the Earth and decrease exponentially with a scale height H.

The opacity at z is T(z)= fo k(z) dz = k(z)/s. In particular, at the WF peak, T(z m) = 1,

while k(zm) = s, or roughly I dB/km, since x ~ 1. 5, H - 7 km and 1 neper " 4. 343 dB.

The peak value of the WF is s/e, which reduces to a fraction f of the peak value when

the shoulder width of the WF is c/s, where c is a tabulated function of f (for example,

c = 2. 45 at f = 0. 5). The exact relationships derived from the form k = a pX are shown

in Fig. 11-2. They help us to fit a given WF by a judicious choice of a and x (Method 9).

In Table II-1 the normalization constants po and To are the pressures and temperatures

where the three weighting functions peak. Figure II-3 shows the result of fitting the

NEMS weighting function as given in "The Nimbus-5 User's Guide." 5

This form of WF, in conjunction with the radiative transfer equation, is used to
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Fig. 11-2. Exact relationships of the analytic weighting function.
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Fig. II-3. Fitted weighting functions for the NEMS oxygen channels.
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Fig. II-4. Brightness-temperature error: (a) Channel 3, (b) Channel 4, (c) Channel 5.
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calculate brightness temperatures TB,calc for comparison with NEMS measured values

TB,NEMS for 100 major frames of data (December 1972) with wide spatial and temporal

extent (Method 10). At each NEMS frequency, a and x are varied as free parameters in

computing the absorption for the subsatellite temperature profile as analyzed by the

National Oceanic and Atmospheric Administration (NOAA). We base our compari-

son on 4 error criteria: (i) mean error E, which is the average of the discrepancy

E = TB,calc T B,NEMS; (ii) tilt t, defined as E = t(T BNEMS-T BNEMS) + E; (iii) rms

error about E; and (iv) rms error about the tilted line. (In these expressions, overbars

denote averaging over the 100 major frames.) These discrepancies depend much more

on x than on a. In Fig. II-4 the x dependence is shown for the value of a that gives the

least rms about E. Besides uncertainty in the absorption coefficient, there is inherent

discrepancy associated with instrumental noise, error in the NOAA analysis, and other

approximations in the radiative transfer computation. Everything considered, however,

we recommend the values x = 1. 5, 1.75, and 4 for Channels 3, 4, and 5, respectively,

and z = 4, 9. 25, and 17. 5 km. This suggests more absorption than is given by the

VV-W line shape, which in turn predicts more absorption than is given by the G-R line

shape, at least near the peak of each WF. Absorption measurements with a Fabry-Perot

interferometer are being made in our laboratory to resolve the present discrepancy.
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B. STELLAR INTERFEROMETER: DIGITAL FILTERS

U. S. Air Force Air Force Systems Command (Contract F33615-72-C-2129)

P. L. Kebabian

In previous studies of digital filters with variable sampling ratel ' 2 the input to the
filter was a time series of numbers. Obviously, all results derived for that case also
apply to the case of parallel processing of numbers stored in a table. When the impulse
response of the filter is of finite duration, which is almost always true of filters of
practical interest (cf. Schafer and Rabiner3), it is possible to build such a parallel
processor to obtain any given sample of the filter' s output. This is no advantage in the
case of rate-reducing filters, but it provides an attractive way of using a rate-increasing
filter to interpolate between numbers stored in a table, in particular in a table of cosines.

Consider the rate-increasing filter in Fig. II-5a. The input sequence is w 0, w i, w2,
... , and the output of the rate-increasing sampler is w, 0, . ... , wl, 0, 0, ... . , with r-1
zeros added after each input number. The time-invariant filter interpolates between
these numbers to produce the output sequence y0 y, y 2, . . . . . Figure II-5b shows the
equivalent parallel processor to generate y l . Note that the filter h. must be causal
(hj< 0 = 0), but there is no similar restriction on the coefficients in the parallel proces-
sor.

Figure II-6 shows the spectrum at the input to the filter, after the sampler, and at
the output when the w are samples of a cosine function, w. = A cos (Zrrj/N). H(f) is the
frequency response of the filter h. and, by assumption, M h. = 1 = H(0). Ideally, the onlyJ j 3
components of the output would be at I and (r-1)N, and the design of the filter is governed
by the tolerance on the components at N± 1, 2N± 1, etc. For a given tolerance, as r
increases the number of coefficients also increases, but because only 1/r of the samples

WO, 0, 0 ... , . ,  , 0,...

WO' wI .T -YTIM -Y1N ARIT - 7 YO' YA Y2 ... ASAMPLING RATE f

(0) AT INPUT
0 1 N-1 N f

W01 h A

2 + 
AFTER SAMPLER (r =2)

yl 0 1 N-I N N+i rN-1 rN f

0 h0 A AH(f)

(b) IAT OUTPUT(b) 0 1 N-1 N N+1 rN-I rN f

Fig. 11-5. (a) Interpolation in a time series. Fig. 11-6. Signal spectra.
(b) Parallel interpolation, for the

case r = 2.
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sent to the filter are nonzero the number of multiplications per second (in Fig. II-5a)

stays the same. For very large r, the memory required for the coefficients becomes

impractically large, and this prevents realizing the interpolator as a single unit cell

such as in Fig. 1I-5.

As shown elsewhere, both rate-decreasing and rate-increasing filters are realizable

as a cascade of unit cells, the total rate change being the product of the rate changes of

the separate cells. Realizable, in this case, means only that the filter in each cell

is causal, and that the coefficients in the impulse response may be calculated from the

cell's rate change, the overall rate change, and the overall impulse response. In

general, the duration of the cell impulse responses is infinite, even when the overall

impulse response has a finite duration. There is, however, one family of functions,

f(b), that generate sets of duplicating filters all of which have finite duration. These

are fn(b)= 1 +[b/n], n > 1, b > 0, together with f0 (b) = 1 (for b<0, f(b) = 0 in both cases),

also with convolutions of these with each other. For example, f 0 generates the

duplicating filters that comprise a single boxcar integrator. Likewise, f 0 *f 0 (which is

also fl ) generates the duplicating filters that comprise two boxcar integrators in cas-

cade. An important remaining theoretical question is, Under what circumstances will

the duplicating filters used to realize a given finite-duration impulse response filter with

rate change all have finite-duration impulse responses?

SAMPLING
RATE f SAMPLING RATE

SAMPLE DELAY r1 2

(a)
Fig. 11-7. (a) Chain with a delay.

(b) Equivalent chain.

-' 1 '2 SAMPLE DELAY

(b)

One of the elementary properties of a cascade of unit cells (Fig. II-7a) is that a time

delay associated with the filter may be moved to the high sampling rate end of the chain,

as in Fig. II-7b.

Assume that the chain has n stages, each having a rate increase of 2, and a filter

with a symmetrical, finite-duration impulse response with 0 time delay. Now let a time

delay of d < 2n samples be inserted after the output of the chain; d/ 2 n = d 2-1 + d2 2
-  +-n

.+ d 2 n, d. = 0 or 1. This is equivalent to a chain having d1 samples delay in series

with the first filter, d2 in series with the second filter, and so forth. Suppose that the

input is a sequence of samples from a cosine function, as before, with N = 2m, and that

A and the filter impulse responses are such that the output is a suitably accurate

sequence of samples, at 2n higher sampling rate, from a cosine function. By selecting
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the initial phase of the input sequence and d 1 through dn, the output at index 0 is the

cosine of any angle, represented as an n+m bit binary fraction of a circle. Since the

filter impulse responses have finite duration, only a finite number of input samples is

needed, usually <<N.

This is the central idea of the present interpolation method: a 2m word read-only-
n+m

memory (ROM) and n unit cells simulates a 2 word ROM, which might be far too

large to be built directly.

Assume that each of the filters in the unit cells has an odd number of points, k+1, in

its impulse response. As noted by Schafer and Rabiner,3 this should be true of the filter

to which the chain is equivalent because otherwise there will be a 1/2 sample phase

shift; that is, the interpolator would not generate cos (0). Let the input to the chain

transmit k+l samples to the rate-increasing sampler, which interleaves k+1 zeros and

thus transmits 2k+2 samples to the filter, the indices of the samples being from -k

through (k+l). When the coefficient d of the unit cell is zero, the filter uses samples

with indices -k/2 through k/2 in computing the output sample with index 0; -k through 0

for the output of index -k/2; and 0 through k for the output of index k/2. If d = 1, the

highest index input sample used is k+1. Thus, the k+1 input samples are all that are

needed to find k+1 output samples, and therefore the parallel processor may have any

number of identical unit cells. Figure II-8 shows an example for k = 2.

DECODING BITS

2
m 

WORDS MATRIX ADDRESS
O INPUT

M

INPUTS M OUTPUTS OUTPUT

(a)
M

_ _ -._ _-_-- DECODING

( ) 
MATRIX - mBITS

ADDRESS
INPUT

2 + P-1
WORDS

INPUTS h 0 1 OUTPUT

P OUTPUTS
(P- 3)

(b) (b)

Fig. 11-8. (a) Parallel unit cell. Fig. 11-9. (a) Conventional read-only-
(b) Network M. memory (ROM).

(b) Modified ROM.
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The ROM may store samples from the entire cosine function, or from just one

quadrant. In that case, means must be provided to convert the address to that quad-

rant, and to multiply the outputs by ± 1 as needed. Because the input to the interpolator

uses several consecutive entries from this memory, it differs from the conventional

ROM, as illustrated in Fig. 11-9.

Duplicating filters, as used for time-series filtering, are inherently discrete-time

filters, but not necessarily digital, except to the extent that analog delay elements such

as charge-coupled devices are not generally available. This limitation does not apply to

the parallel processors described above in which it is perfectly possible for all the sig-

nals to be analog. In that case, this system is a form of digital-to-analog converter, in

which the output is the cosine of the input number. The practical constraints deter-

mining the best structure of the unit cell are very different from those that apply to the

case of digital signals, and it remains to be seen if this kind of D/A converter would be

competetive with more conventional methods.

In the digital case, errors in the output result from errors in the numbers in the

ROM, rounding errors in the unit cell, and errors inherent in the quantized angle, all in

addition to the unwanted frequencies transmitted by the filter. Thus, all parts of the

system must use a word length comparable to that of the output, and this, as well as the

fact that each unit cell has several parallel data paths, means that bit-parallel repre-

sentation of the numbers would involve an excessive amount of circuitry. Using bit-

serial numbers simplifies the structure of the ROM, since a simple shift register will

drive the bit-select lines, instead of a complete decoder.

The filters in the unit cells contain a cascade of k boxcar integrators. This struc-

ture, as shown in Fig. II-10 for the case k = 4, has the advantage of being built from a

regular array of serial adders, and thus is suitable for large-scale integration. For

this kind of filter, the only significant unwanted components in the spectrum are at

INPUTS T L OUTPUTS

I +

d 1 o

Fig. II-10. Unit cell built from 4 cascaded boxcar integrators.
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N+ 1, with images at (r-1)N± 1. These have amplitude =(1/N)k , =2 - m k for N = 2m

They must produce negligible error compared with the quantization error, and thus

2 -mk+1+t < 2 -(m + n) , or k(m) > (m+n+t+l)/m, where t is the tolerance in bits (typically

2). Also, k must be even so that the number of points in the impulse response is odd.

Each word in the ROM has length m+n+k+t' bits, where m+n is the length of the out-

put, k is the increase in length within one unit cell before the number is rounded to form

the cell's output, and t' is the tolerance to insure that the rounding error in the filter is

negligible compared with the quantization error (typically 2 bits). Assume the ROM can

have, at most, a total of 2s bits, and that only one quadrant of the function is stored;

s = 13 is reasonable, given the current state of the art, and the greater complexity of

this kind of ROM. Then 2m(m+n+k+t ' ) < 2 s is a limit that must be satisfied by k(m), and

m should be as large as possible, since for fixed n+m the computation time is propor-

tional to n.

Each unit cell rounds the outputs from the adder array, and resynchronizes them by

adding a delay of at least one bit. It is possible to use a real chain of separate unit

cells, but a better way to get the same result is to store the outputs in shift registers,

and at the end of each interpolation return them to the input of the same unit cell for

the next interpolation. While this is happening, the ROM may send a new set of numbers

to another unit cell, thereby effectively doubling the computation speed in the ordinary

case when both the sine and cosine of an angle are used.

Table II-2 summarizes the performance of the system. The times are in units of

the clock period of the serial data. If this is conservatively taken to be 1 Ls, the times

compare favorably with the 1-2 ms required for a typical 16-bit general-purpose compu-

ter (NOVA 1200) with hardware multiply/divide to compute a 24-bit answer.

Table 11-2. System performance.

m+n Bits m k Number of Adders Time

=k2 +k/2

16 8 4 18 176

24 8 4 18 480

32 7 6 39 1000

64 6 12 150 4500

The advantage of this kind of cosine generator is that it requires relatively little

circuitry and is comparable in speed to a small general-purpose computer with hard-

ware multiply/divide. In computers without such a multiplier, it will greatly increase
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the speed of jobs such as spectral analysis, and in computers with one it will increase

the speed somewhat, by permitting a measure of parallelism in operation of the program.
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