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1. Introduction

It is well known that the least-squares linear estimate of a signal in additive white

noise may be obtained by solving a Wiener-Hopf integral equation for the least-squares

filter. 1 This report presents some new results concerning this integral equation and

demonstrates that the observed process is wide-sense stationary if and only if the filter

satisfies a certain differential equation referred to as the stationarity equation.

We indicate how these results may be applied to spectral estimation and to wave

propagation in a lossless nonhomogeneous medium. We also interpret the Chandrasekhar

equations 2 , 3 in terms of the stationarity equation. Some of our results are analogous

to certain well-known results in the linear predictive filtering of discrete-time pro-

cesses.

2. Stationarity Equation

We summarize our results concerning the Wiener-Hopf type of integral equation,

h(t, T) + ft h(t, x) p(x, T) dx = p(t, T), 0 < 7 < t < T. (1)

We form the definitions:

1. An innovations kernel on [0, T] is a continuous symmetric function P ( , v), 0 - ,

v < T such that 6(t-v) + p(L, v) is positive definite.

2. An innovations kernel is said to be stationary if it depends only on the difference

of its two arguments. In this case, we write it asp (T), IT I T. JS
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JS 3. A Volterra kernel on [0, T] is a function h(t, T), 0 < T, t < T that is continuous

on the triangle 0 < T < t < T and zero outside the triangle.

We employ the following result of Kailath:4

Eq. 1 determines a one-one correspondence between the inno-

vations kernels on [0, T] and the Volterra kernels on [0, T].

We note that the mapping P (F, v) -- h(t, T) is well known in the context of least-squares

linear filtering theory (especially when P (a, v) is a covariance function). Kailath has

shown the following identity:

P(p, v) = b(4, v) + f0 b(p, x) b(v, x) dx, . > v, (2)

where b(, v) is the sum of the Neumann series

b(, v) = h( .,v) + ff h(4,xl) h(x 1 ,v) dx 1

+ f f 2 h(4,x 2 ) h(x 2 ,x l ) h(x 1 ,v) dx 1 dx 2

+... 0- < v < T. (3)

Now, if h(t, T) is a given Volterra kernel, it is easy to verify that the function ( L, v)

defined by (2) and (3) is an innovations kernel that satisfies (1). Thus, the inverse map-

ping h(t, T) - P (p., v) is well defined and Kailath's result follows.

We can show that

R1. An innovations kernel is stationary if and only if the corresponding Volterra

kernel satisfies the differential equation

a
- h(t, t-T) = -h(t, T) h(t, 0), 0 < T - t < T. (4)at

For obvious reasons, we refer to (4) as the stationarity equation. This equation is the

continuous-time analog of the Levinson recursion which is commonly employed in linear

predictive filtering of discrete-time stationary processes. 5 ' 6

We have the following results pertaining to (4):

R2. For any continuous function g(t), 0 < t < T, the boundary-value problem com-

posed of (4) and the boundary condition h(t, 0) = g(t), 0 < t < T has a unique solution

h(t, T), where the latter is a Volterra kernel given by the uniformly convergent series

oo

h(t,T) = Z (-1) n f n(T,t-T), 0 T < t < T, (5)
JS n=0
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where f (X, T) = g(T), and JS

fn(x, ) =- fn- 1 (T, y) g(y+T) dy, n > 1.

R3. If h(t, T) is a Volterra kernel satisfying (4), then the Laplace transform

R(s:i4) = 1 - f h(, w-x) e - s x dx (s = + j) (6)

is bounded away from zero in the right-half s plane:

R(s: ) > exp(-f0 Ig(t) I dt), o > 0, O -< T, (7)

where g(t) = h(t, 0), 0 < t < T.

R2 and R3 are analogous to well-known results in discrete-time linear predictive

filtering. The analogy to R2 is that, given the partial correlation coefficients, one may

solve the Levinson recursion for the regression filter (one-step predictive error filter)

and the analogy to R3 is that the regression filter is minimum-phase. 5

We observe that R1-R2 imply that (1) determines a one-one correspondence between

the stationary innovations kernels on [0, T] and the continuous functions on [0, T]. We

denote this correspondence by the invertible map

fT: P(T), T T - h(t, 0), < t < T.

It follows from (1) that fT is "memoryless" in that an extension of p (T) from the interval

[-T, T] to [-T', T'] yields a corresponding extension of h(t, 0). Thus we have the following

result:

R4. If p (T), I T I T is an innovations kernel and h(t, T) is the corresponding Volterra

kernel, then the positive-definite continuous extensions kE(T), I < oo of the covariance

k(T) = 6
(T) + p (T) are equivalent to the continuous extensions of h(t, 0), 0 < t < T.

We have illustrated this result in Fig. XIV-1.

IS POSITIVE DEFINITE

IT

jT

h(t, O) t I h(t, O)
IS CONTINUOUS

Fig. XIV- 1.

Positive -definite extensions.

t

is
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JS We now consider several applications of these results. We shall see that R2 and R3

may be applied to solve a certain distributed-state variable equation that arises when

we consider wave propagation and which is directly related to the Chandrasekhar equa-

tions. First, we discuss the application of R4 to spectral estimation.

3. A Generalization of the Maximum Entropy Method

Suppose that we have covariance measurements of the form

k(T) = NO[(T)+P(T)], ITI-< T,

where No > 0 and P(T) is an innovations kernel. If E represents the class of positive-

definite continuous extensions of k(T), then a logical way to estimate the power density

spectrum is to select an element of E subject to some criterion. Because of the dif-

ficult constraint of positive definiteness, this approach has not been considered in the

past. By R4, however, the problem reduces to choosing a continuous extension of h(t, 0),

0 < t < T.

This approach is a generalization of the maximum entropy method (M. E. M.) of spec-
7-10

tral estimation, whereby the estimated covariance is extended by fitting an auto-

regressive process to the measurements. We can argue that the M. E. M. is equivalent

to the zero extension of h(t, 0), 0 < t < T.

4. Solution to a Distributed-State Equation

Consider the complex distributed-state equation (s =a + j):

a
-- x(pi, s) = A(p., s) x(G, s), 0 < p < T, (8)

where

0 -g(.) e-sf
A(, s) = . e

and g([.), 0 - p. - T is real-valued and continuous. We shall relate this equation to wave

propagation on a nonuniform lossless transmission line and then compare (8) with the

Chandrasekhar equations. It is of interest here that the solution to (8) follows from R2

and R3:

Let R(s:p.) be given by Eq. 6 where h(t, T) is the solution to (4) subject to the boundary

condition h(t, 0) = g(t), 0 < t < T, and let f(s:p.) be the realizable part of the spectrum

1 + f(s: 4) + f(-s: ) = (9)
JS R(s:p) R(-s:.)
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We can show that the state transition matrix associated with (8) is given by JS

yl ( S' s) y 2 (,' -s)

S(([, s ) = , (10)

where

y l (p, s) = (I +f(s:)) R(s: ±)

y 2 (L, s) = -f(-s:) R(-s:p).

Thus we may solve (8) by obtaining the solution to (4) and factoring the spectrum (9).

We now apply this to the transmission-line problem.

5. Solution of the Nonuniform Transmission Line

Consider a nonuniform lossless transmission line segment on the interval 0 - ~  T

with characteristic impedance z(p.), where the variable Fi represents the two-way propa-

gation time. The Laplace transform V(p., s) of the propagating voltage satisfies the dif-

ferential equation

2 2

SV(p, s) = 2g() V(l, s) 4- V(, s), (11)

where g(j.), 0 < p. < T is the reflection-coefficient density defined by

1 a
g(g) - In (z (i)).

The corresponding equation for the current follows by replacing g(F) with -g([I) in (11).

It is easy to verify that

V(p, s) = exp(f I g(t) dt) es / 2 x1 (, s) + e- s /2 x 2 (p, s)] (12)

where x(4, s) satisfies the state equation (8). We observe that the first and last terms

in brackets in (12) represent voltage waves traveling in backward (-) and forward (+)

directions, respectively. Thus defining the voltage vector

V_( p, s)

V(p, s) =

and the delay matrix JS
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D( , s) =
0 e-S4/2

we may write (12) as

V( , s) = exp(f g(t) dt) D(, s) x(, s). (13)

Or, employing the state transition matrix (10), we obtain

V( , s) = exp g(t) dt) D( , s) (P(, s) V(0, s), (14)

which is the desired result. We note that if two additional linear constraints are imposed

on the forward and backward components at 4 = 0 and 4 = T, then (14) completely deter-

mines the line voltage.

To provide an example of this and to obtain an analogy to known discrete-time

results, we consider the transmission-line segment (Fig. XIV-2) which is terminated

in its characteristic impedance and is driven by an impulsive current source.

I
Z(O) = (s) V _( ,s) Z(T)=ZL VL (s)

ol..------ "IT

Fig. XIV-2. Transmission-line segment.

We want to compute the load voltage VL(s) and the backward propagating voltage at

the origin V_(0, s). We observe that the boundary conditions for this problem are

V+(0, s) = 1 + V_(0, s)

V (T, s) VL(s)

V_(T, s) = 0.

Evaluating (14) at [ = T and applying the boundary conditions, we obtain

V_(0, s) = f(s:T) (15)

VL(s) = exp (f g(t) dt e T/ 1(16)
JS R(s:T)

QPR No. 114 142



(XIV. DETECTION AND ESTIMATION THEORY)

The discrete-time version of (15) and (16)is well known in the field of seismology 12 S

where the earth strata are regarded as a medium of N reflecting layers for acoustical

waves and (15) corresponds to the acoustic response or seismogram of the medium. Our

interpretation of g(t) = h(t, 0), 0 < t < T as a reflection-coefficient density is analogous

to the interpretation of the partial correlation coefficients as the reflection coefficients

of the layers.

6. Chandrasekhar Equations

Consider the Wiener-Hopf integral equation (1) for the special case

P (4, ) = P (G-v) = fb e- I -v a w (a) da.a

Chandrasekhar 3 has shown that the solution h(t, T) of this equation can be written in terms

of two functions, now known as the Chandrasekhar X and Y functions, satisfying the

simultaneous nonlinear differential equations

5t X(t, a) = -Y(t, a) g(t) (17)

a
SY(t, a) = -aY(t, a) - X(t, a) g(t) (18)

X(0, a) = 1 = Y(0, a), a < a < b,

where

g(t) = h(t, 0) = fa Y(t, a') w(a') da', 0 < t < T.

Since these equations have been given considerable attention, 2,3,13-17 it is of interest to

interpret them in terms of the stationarity equation (4).

Comparing (17) and (18) with the state equation (8), we see that

X(t, a) = X 1 (t, a)

Y(t, a) = e - a t X2 (t, a).

Thus the Chandrasekhar equations are related in a simple way to the state equation where

s is restricted to be a real variable.

It follows readily from the stationarity equation that

R(a:t) = -g(t) eat R(-a:t). (19) Js
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JS Comparing (19) with (17) and (18) and noting that R(a:0) = 1, we see that

X(t, a) = R(a:t) (20)

Y(t, a) = e-at R(-a:t). (21)

This is not a solution to (17) and (18) in the usual sense, since we are not given g(t) as

in the transmission-line problem. It does, however, provide an interesting interpreta-

tion of the X and Y functions and we may conclude that the Chandrasekhar equations

are an immediate consequence of the stationarity equation.

7. Summary

We have considered applications of the stationarity equation to spectral estimation

and wave propagation in a lossless nonhomogeneous medium and indicated that the

Chandrasekhar equations follow readily from this equation.

In the first application we discussed a generalization of the maximum entropy method

(M. E. M.) so as to include arbitrary positive-definite extensions of the estimated covari-

ance. This procedure was based on the fact that the continuous positive-definite exten-

sions of 6(T) + P (T), IT[ I< T are equivalent to the continuous extensions of h(t, 0),

0 < t < T.

The second application followed from the observation that we could solve a certain

distributed-state variable equation. The solution was obtained by solving the station-

arity equation and then performing a spectral factorization.
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B. RANGE ESTIMATION PERFORMANCE WITH NARROW-BAND

PASSIVE SIGNALS

Joint Services Electronics Program (Contract DAAB07-71-C-0300)

Jos6 M. F. Moura

In this report we analyze adaptive passive systems tracking a moving or a stationary

source that radiates a narrow-band signal. We also carry out performance studies

based on the Cramer-Rao inequality. The main issue is the range estimation perfor-

mance, since it has been shown 1 that receivers designed with linearized models (e. g.,

extended Kalman filters) exhibit fundamental range ambiguity resulting from the narrow-

band signal structure and the linearized approximations. We consider two problems of

y SOURCE

/ 0

L_ I SOURCE
2 2 OMNIDIRECTIONAL WITH

LINEAR ARRAY ARRAY VELOCITY V

(a) (b)

Fig. XIV-3. (a) Stationary array, stationary source (SASS).
(b) Stationary array, moving source (SAMS). JS
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JS practical significance and emphasize their space/time dualism. We have (Fig. XIV-3a)

the dual problem of a Stationary Array detecting a Stationary Source (SASS), or equiva-

lently a Moving observer generating a synthetic Array tracking a Stationary Source

(MASS), and (Fig. XIV-3b) a Stationary omnidirectional Array tracking a Moving Source

(SAMS).

1. Signal Model

We assume that the radiations are narrow-band. At any point of the receiving array

we model the signal at time t as

r(t, ~) = N Re {((t, f) +'(t, f)) exp(-joct)} (1)

with the signal complex envelope

E\1/2
(t, f) = b explj  R(t (2)LTT

where Er is the total energy received during the observation time interval 2- '5 by

an array of dimension L; R(t,j) is the distance (range) at time t from the source to the

array element at location f; X = 2= c is the wavelength; and ' = b exp[j ], with b a
c

Rayleigh-distributed random variable, and k uniformly distributed in [0, 2tr]. The com-

plex Gaussian random variable b accounts for the absence of an absolute phase reference

(incoherent receiver) and makes it explicit in the model that the focusing on the range

parameter is to be achieved from the modulation induced in the signal structure rather

than from the absolute phase. It also accounts for model inaccuracies caused by varia-

tions of the transmitted signal power about some nominal value, fading in the transmis-

sion medium, and so forth. The complex additive noise w(t, 1) is assumed to be spatially

and temporarily white Gaussian noise with spectral height N o .

Case A. Stationary Array - Stationary Source (SASS)

Within the SASS context the range is determined from the spherical curvature of the

incoming wave fronts (targets in the near field). We keep the parametrization of

Fig. XIV-3a, and for a linear array

2 R (t, Tr 2 R 2 + 2fR sin o . (3)

Case B. Stationary Array - Moving Source (SAMS) and

Moving Array - Stationary Source (MASS)

JS By assuming planar wave fronts (targets in the far field) and constraining the source
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or observer motions to a nominal constant-velocity linear path, the parametrization in JS

Fig. XIV-3b leads to

2r R (t,) = R 2 + (vt2 + 2 (vt) R sin . (4)

Identification of f with vt in expressions (3) and (4) emphasizes the space/time

dualism underlying the range measurement in cases A and B. In the SASS context the

spherical curvature of the incoming wave fronts induces a "nonlinear spatial modulation"

while in the SAMS or MASS configurations the range information is conveyed by the non-

linear temporal modulation induced on the signal structure by the relative dynamics.

Three remarks should be made.

(i) In the general SAMS problem the target speed is unknown and represents an extra

parameter to be estimated. The errors are highly correlated with errors in the estimate

of the other parameters with the net effect of deterioration in the receiver performance.

(ii) If the parameter v is assumed known, which is realistic in a MASS problem,

then the SASS and MASS estimation problems are basically equivalent. But with a

moving observer we can synthesize larger arrays by simply enlarging the observation

interval. Therefore in practice the ranges of application are much greater than for

the spherical curvature measurement processors.

(iii) Expressions (3) and (4) can be approximated by a truncated Taylor's series. It

can be shown that within the SASS or MASS contexts (with known velocity) a second-order

expansion leads to a range observable model, while in the SAMS problem with an omni-

directional array third-order temporal effects are required to focus on the range param-

eter. In the sequel we shall work with the general expressions (3) and (4).

2. Performance Bounds

We study the performance bounds derived from the Cramer-Rao inequality. It is

well known 2 that if A = [-2 ] is the error covariance matrix of the parameter estimates,

-1then A E J , where J is the Fisher Information Matrix (FIM) which for this problem

has the general element

2E E r R T/2 dt L/2 as 8a

ij No N + E -T/2 - aA. A.

T/2 L a L/2 L/2*2
n I n a (5)dt di s dt d s. (5)

-T/2 -L/2 i L -T/2 -L/2 A

where JS
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is1 2rr T T R
s exp j R(t, f, A), tE - , ? , , , A= vo

n L 2 2 2
sin 0

and the star indicates complex conjugate.

By direct substitution and integration we obtain closed-form expressions for FIM

and A . Apart from a multiplicative gain G, the elements of FIM depend essentially
vT L

on the bearing 0 and a geometric parameter X = for the SAMS or MASS or X =
R R
o o

for the SASS problem. Given the analytical complexity of this dependence, we pursue

the study by graphical analysis.

We take

SNR = signal-to-noise ratio = 0 dB v = 30 ft/s

SNR 2
G 2~ )2 LTR = range standard deviation

o 2
- = -22 velocity standard deviation

Rr = 6 X 104 ft

2. = 50 ft sn = 33 = sin 0 standard deviation.
k = 50 ft sin 0 33

In the expression for the multiplicative gain G it is assumed that b I is either a

known amplitude or an unknown nonrandom amplitude.

For the SAMS and MASS we take L = 250 ft and with the SASS configuration we take
250

T = 30 s, so that the gain G will be the same whenever all other parameters and X are

equal.

Figure XIV-4 shows the behavior of -R as a function of 0. Comparing Fig. XIV-4a
O

with Fig. XIV-4b, we note a sharp decrease in performance for small bearings in the

SAMS problem. This is explained by the strong coupling between the errors in the esti-

mates (skewed error ellipsoids) and the large errors in the velocity estimate, as seen

from Fig. XIV-5a. After a certain bearing these errors are sharply reduced with a

corresponding gain in -R which then follows the same pattern as in Fig. XIV-4b, mono-
0

tonically increasing when approaching an end-fire array geometry. This is because of

the reduction of the effective synthetic array dimension, which also explains the behavior

of 0 sin 0 as illustrated in Fig. XIV-5b.

Figure XIV-6 shows the dependence of the range standard deviation on the absolute

value of R . Under the assumed conditions, and for a proportionately larger observa-
o

JS tion interval, so that X is constant, the deterioration in performance is essentially due
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Fig. XIV-4.

SAMS

MASS

(a)

(b)

150 450 750

BEARING ( 8)

Range standard deviation as a function of

bearing. R ° = 6 X 10 4 ft. T = R /4V.

(a) Stationary array -moving source
(SAMS).

(b) Moving array - stationary source
(MASS).
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2 r\ X2

300 600

0.4X 10
-2

-sinO

0.2

0

OR o

300 600 6X 104 6X 10
5

6X 106

RANGE (ft)

Fig. XIV-5.

(a) Velocity standard deviation as a func-
tion of bearing (SAMS).

(b) Bearing standard deviation as a func-
tion of bearing (SAMS). X1 = 1/5. 4,
X = 0. 25.2

Fig. XIV-6.

Range standard deviation as a function of
4 vT 1

range (SAMS). R = 6 x 10 4 ft. -
o R 5.74

Fig. XIV-7.

Range standard deviation as a function of

X = vT/Ro (SAMS). R = 6 X 104 ft.
o
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0,
SIN 8

0.25 0.5

L ovTX - or -
R6 R,

Fig. XIV-8. (a) Range and (b) bearing standard deviation as functions of X

(SASS or MASS). R = 6 X 104 ft, 0 = 35*.

to the signal power dependence on the normalized inverse of the range squared.

Figure XIV-7 illustrates the behavior of the range standard deviation with the param-

eter X, namely, a strong deterioration for small X while saturating for X near 0. 5.

Figure XIV-8 shows the equivalent behavior of aR and asin 0 for the SASS and MASS
o

problems. We note, however, the gain in performance when going from a SAMS to a

MASS configuration. But for ranges of the order of 10 miles or greater the X parameter

will be very small for the SASS problem; that is, we are usually at the left ends of

Fig. XIV-8a and 8b.
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