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5.1 Photorefractive Effect

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

Hermann A. Haus, Mary R. Phillips

The experiments with visible light or 0.85 [L light on coupled waveguides and waveguide

interferometers fabricated in LiNbO3 are plagued by the photorefractive effect, in particular if

optical nonlinearities in these waveguides are used intentionally, as in the all-optical waveguide

modulator.' In her experiments on optical waveguide interferometers, A. Lattes discovered a

transformation from a TM-mode input to a TE-mode output on a time scale of seconds. If the

input was TE no transformation occurred.

This effect was not understood on the basis of the Helwarth et al.2 and A. Glass 3 models of the

photorefractive effect. In her Master's thesis, M.R. Philips confirmed Lattes' findings and

succeeded in explaining the phenomenon by the photogalvanic process postulated by Russian

researchers.4
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5.2 The Nonlinear Waveguide Interferometer

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

National Science Foundation (Grant ECS83-05448)

Hermann A. Haus, Norman A. Whitaker

Nonlinear Waveguide Interferometers built in GaAs-AIGaAs are much less susceptible to

photorefractive damage than in LiNbO 3. Further, they permit the incorporation of quantum well

structures. We have, therefore, begun to build such interferometers. The main problem is to

provide the Y's of the interferometer with sufficiently large divergence angles so that the length of

the interferometer is not excessive. However, the transverse-field confinement in ridge

waveguides is weak for single mode waveguides unless the "ridges" are etched quite deeply, into

the lower index substrate. Under these conditions, the effective index method of mode analysis

does not give reliable answers. Norm Whitaker is currently fabricating an interferometer in

GaAs-GaAIAs and working on the extension of the analysis to deeply etched waveguides.

The Quantum Well nonlinearity saturates with laser intensities achievable with semiconductor

lasers. Thus a nonlinear interferometer in GaAs incorporating a quantum well can be at power

levels compatible with semiconductor lasers. A nonlinear interferometer in GaAs-GaAIAs

incorporating a quantum well is currently in fabrication.

5.3 Quantum Noise and Quantum Nondemolition
Measurement

Joint Services Electronics Program (DAAG29-83-K-0003)

National Science Foundation (Grant ECS83-10718)

Hermann A. Haus

During the author's sabbatical stay at the Nippon Telegraph and Telephone Co. he worked with

the coherent optical communications group headed by Dr. Y. Yamamoto. This group is interested

in achieving improved detector sensitivity using light that, impingent upon a photodetector,

produces noise less than shot noise. Such light is said to be in a "squeezed state." Similar work

is pursued within RLE by Professor Shapiro's group.

The nonlinear interferometric all-optical modulator first realized by our group' is a candidate, at

least in theory, for the achievement of such squeezed states. In its ideal lossfree form it can be

shown to be an apparatus for a quantum nondemolition measurement of photon number.2

Successive measurements on a wavepacket produce the same measured value of the photon

number, hence the "nondemolition" designation.
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5.4 Picosecond Optical Signal Sampling

National Science Foundation (Grant ECS83-10718)

Hermann A. Haus, Wei Ping Huang, Lynne A. Molter-Orr

Coupled pairs of waveguides have device applications that have been extensively exploited in

the past. We have pursued investigations of multiple coupled waveguides and shown that they

offer interesting novel applications. 1' 2 A properly designed array of N parallel waveguides is

capable of collecting coherent input excitations in N-waveguides into a single output waveguide.2

The question arises whether such waveguides arrays permit parameter adjustment by the A/3

principle first proposed by Kogelnik and Schmidt for the coupled waveguide pair. We have shown

that this is indeed possible.3

The coupled mode analysis of multiple waveguides can be interpreted by analogy with the

paraxial wave equation. Since the physical intuition and the store of solved problems built up for

this equation is considerable, such an analogy can prove very useful. It has been proposed

previously by Kapon, 4 but was not carried out correctly. In a paper accepted for publication we

have set up the correct formalism. 5

Recently the coupled-mode approach has been criticized by Hardy and Streifer. 6 In particular

they challenged the symmetry of the coupling of guides of different cross sections or index

distributions. The symmetry assumption underlies all previous work utilizing the coupled mode

formalism. We have shown the symmetry of the coupling coefficients is a matter of proper choice

of the mode amplitudes and, thus, previous work using the symmetry condition maintains it's

generality.7
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5.5 Studies of Surface Acoustic Wave Propagation in Gratings

National Science Foundation (Grant ECS82-1 1650)

Dong-Pei Chen, Hermann A. Haus, John Melngailis

The analysis of metal-strip SAW gratings and transducers has been carried out deriving all

pertinent transducer parameters from one single set of coupled mode equations via the use of a

variational principle.' A sign mistake in the reflection coefficient due to the mass loading of the

transducer finger that appeared in the literature was found and corrected. This sign reversal

changes the criterion for reflection-free metal finger design. The reflection can be eliminated

even for solid (as opposed to split) fingers for a special choice of metal thickness and metalization

ratio. This can double the working frequency of transducers for a given resolution limit of

fabrication.

The variational approach to coupled mode theory used on the SAW analysis has also been

employed to settle a controversy as to the proper derivation of the coupling coefficients for optical

waveguide couplers.2
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5.6 Solitons

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

Hermann A. Haus, Masataka Nakazawa

The soliton laser uses index modulation, rather than absorption modulation, for modelocking

and pulse shortening. This fact opens up new possibilities for the generation of short pulses that

in addition can be made to assume a standard shape. We have developed a theory of the soliton

laser as realized by Dr. L.F. Mollenauer and Dr. R.H. Stolen at AT&T Bell Laboratories. 1

There are other realizations of a soliton laser such as the Raman fiber ring soliton laser

proposed by Dr. M. Nakazawa. During Dr. Nakazawa's stay we have developed a theory of the

laser and its tuning characteristic. 2 Interestingly, the frequency of the laser can be changed by a
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change of the ring roundtrip time that can be adjusted by variable distance between the fiber

input and output ends.
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5.7 Ultrashort Pulse Generation

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

National Science Foundation (Grant ECS84-06290)

Erich P. Ippen, James G. Fujimoto

Femtosecond pulses are generated in our laboratory at a high repetition rate (100 Mhz) by a

colliding-pulse-modelocked (CPM) ring dye laser and then amplified to high power, at a lower

repetition rate, in an Nd:YAG-laser-pumped dye amplifier chain. This system is the workhorse of

our program in femtosecond spectroscopy to date, and methods for extending its capabilities are

currently being investigated. During the past year several significant improvements have been

implemented.

By incorporating a set of four prisms into the CPM laser (in a dispersion-compensating

arrangement originally demonstrated by Fork et al.' at AT&T Bell Laboratories), we have been

able to reduce the minimum output pulse duration from about 55 fsec to 35 fsec. Even more

important, for many spectroscopic applications, this makes it possible to vary the output pulse

duration continuously from 35 to 200 fsec. With a second set of four prisms external to the laser

we can tailor the output pulses for either minimum or desired frequency chirp. These new

features allow us to distinguish between electric field correlation and intensity correlation effects

in pump-probe experiments and thereby identify coherence artifacts that may otherwise be

confused for physical phenomena.

For high power experiments, our signal averaging capability has been enhanced by upgrading

the Nd:YAG system to improve beam quality and increase repetition rate from 10 to 20 Hz. High

gain and pulse durations well under 100 fs have now also been achieved at the slightly longer

wavelength of operation caused by insertion of the prisms in the oscillator.

In addition to continuing research on our 20 Hz femtosecond laser system, we have recently

begun the construction of a new CPM ring dye laser and amplifier system which will operate with

intermediate gains but high repetition rate. 2 The dye amplifier uses a copper vapor laser operating

at an 8 kHz repetition rate as the pump source. Femtosecond pulses generated by the ring dye

laser are amplified by successive passes through a pumped gain jet. Using a 6 pass
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configuration, we have obtained gains of > 104 corresponding to single pulse energies of - 1pJ

at 635 nm. For pulse durations of 35-55 fs, this corresponds to peak intensities of > 108 W. These

intensities are sufficient for most nonlinear optical experiments including the generation of a

broadband femtosecond continuum. The high repetition rate of this system allows the use of

lock-in detection techniques and signal averaging so that very high sensitivity measurements are

possible and changes in optical properties as small as one part in 105-106 are measurable on a

femtosecond time scale. This system thus has complementary capabilities to our high power

Nd:YAG pumped femtosecond amplifier; together these two laser facilities provide the basis for a

wide range of femtosecond research.

During the past year we have also succeeded in developing a tunable femtosecond system for

the wavelength range 780-860 nm, important for GaAs studies. This was accomplished by fiber

compression of pulses from a near infrared dye laser. The laser was a cavity-dumped OX750 dye

laser, synchronously pumped by a modelocked Krypton ion laser and yielding output pulses of 15

nJ and 8 ps. These pulses were compressed by passage through 35 m of polarization preserving

fiber and a grating pair (in double-pass configuration). With four birefringent plates inside the

dye laser to insure transform-limited operation, compression factors of 15-20 and pulse durations

of 400-500 fs were obtained.
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5.8 Femtosecond Spectroscopy

U.S. Air Force - Office of Scientific Research (Contract AFOSR-85-0213)

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

International Telephone and Telegraph, Inc.

Erich P. Ippen, James G. Fujimoto

The dynamics of excited carriers in GaAs are of fundamental importance to both electronic and

optical devices, and ultrashort light pulses provide a means for studying them. With the

femtosecond facility in our laboratory, we have therefore begun a program to investigate the

scattering, relaxation, and transport processes that occur on the fastest timescale. Initial

experiments were performed using pulses from our CPM laser and thin films of GaAs. With pump

and probe pulses at X = 625 nm, we observe absorption saturation high above the bandgap.

Experimental results show an initial rapid recovery time that, even at excitation densities of less

than 5 x 1018 cm - 3 , is not clearly resolved by 35 fs-duration pulses and is thus less than 30 fs. The
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change in amplitude of this component with carrier density is consistent with a very rapid initial

relaxation whose rate increases with increasing carrier density. Measurements made as a

function of pulse duration (which help separate rapid response from coherent artifact) also

indicate the presence of an ultrafast process. Further recovery of the absorption saturation

occurs with a longer - 1.5 ps time constant. These initial results seem to be consistent with an

interpretation assuming an initial femtosecond redistribution of excited carriers in the bands

followed by a picosecond cooling of the carrier distribution to the lattice. Plans in progress

include measurements as a function of polarization and pulse-chirp as well as variation of

material properties and sample structure.

In addition to studies of semiconductors, we are also continuing research on femtosecond

nonequilibrium processes in metals.' Using transient reflectivity and photoemission

measurements, it is possible to generate and investigate nonequilibrium electron temperatures in

metals which occur on a time scale comparable to or faster than the electron-phonon energy

transfer time of - 1 ps. Experiments in progress are aimed at the investigation of

nonequilibrium electron heat diffusion and excited electron transport in metals. Future

extensions of these studies may provide an approach for the characterization of high speed

transport and electrical phenomena in devices.

Ultrashort pulses now also make it possible to excite and probe the dynamic behavior of

molecular and solid state systems on a timescale that is comparable not only to energy relaxation

and dephasing times but also to the fundamental period of the excitation. With pulse durations of

less than 100 fs, vibrational motion at frequencies up to 200 cm - 1 can be observed. In

collaboration with Prof. Keith Nelson's group we recently demonstrated what we believe are the

first time-resolved measurements of optic phonon oscillation and decay on a femtosecond

timescale.2 In a series of experiments, decay rates of vibrational and translational optic phonons

in perylene crystals were measured in the temperature range 20-3000 K.

Another area of investigation is femtosecond spectroscopy of organic polydiacetylenes. These

materials are potentially important for applications in all optical signal processing because of their

high nonlinear susceptibilities X(3) > 10-9 esu and rapid response speeds.3 We are currently

collaborating with Dr. G.M. Carter of GTE Laboratories to examine the dynamics of the excited

state of these materials. These studies will help to elucidate the rapid response times observed in

these materials as well as yielding important information on the physics of quasi-one-dimensional

electronic systems.
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5.9 Diode Laser Dynamics and Diagnostics

National Science Foundation (Grant ECS84-06290)

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

Erich P. Ippen

We have recently performed experiments which reveal, for the first time, subpicosecond

dynamics in GaAIAs laser diode devices. Using compressed pulses from our near-infrared

(780-850 nm) synchronously-pumped dye laser, we are able to probe GaAIAs laser amplifiers

near their operating wavelengths. In our experiments, both pump and probe pulses travel

collinearly through the active region of the diode in guided modes. The laser diodes, Hitachi

HLP-1400's (CSP structure), are biased with a DC current so that they exhibit gain. A

subpicosecond pump pulse traveling through the diode induces a dynamic change in

transmission that is then monitored as a function of delay by the probe pulse, traveling in a guided

mode of orthogonal polarization. In all cases a fast transient, with a time constant of about 400 fs,

is observed in addition to longer-lived saturation signals. We interpret this fast response as being

due to nonequilibrium energy dynamics of carriers in the active layer. Future experiments will be

carried out as a function of wavelength, current density, diode structure, and temperature.

Work with semiconductor lasers with intracavity saturable absorbers has also continued, with

particular attention on regimes of chaotic pulsation. Using InGaAsP diode lasers with

proton-bombardment-induced absorber sections, we have mapped out stable and chaotic

regimes as a function of bias current and length of external resonator.1 Several interesting results

have been obtained: stable pulsation requires a minimum bias level and only occurs when the

natural pulsation frequency of the diode is greater than that of the external resonator, i.e., the

stability regime is asymmetric. Also, the transition between stable and chaotic regimes is often

characterized by a period-two or period-three pulsation suggestive of deterministic chaos.2 This

possibility is presently being tested by additional experiments and analytic modelling.
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5.10 Quaternary (InGaAsP) Diagnostics

National Science Foundation (Grant ECS84-06290)

Joint Services Electronics Program (Contract DAAG29-83-K-0003)

Erich P. Ippen

The nonlinear optical properties of semiconductors are being studied for potential application

to optical switching and signal processing devices. Those of the InGaAsP compounds are

particularly important for the 1.3 - 1.6 im wavelength band, since their composition-dependent

bandgaps can be tuned for resonance in this regime. During the past year, we reported the first

picosecond, near-bandgap measurements of nonlinear absorption and refraction of these

materials.

Our experiments were performed with a modelocked color center laser, based on TIo (1) centers

in KCI kindly provided to us by L. Mollenauer of AT&T Bell Laboratories. The laser,

synchronously-pumped by a cw modelocked Nd:YAG laser, produces pulses of 10-15 ps in

duration at a repetion rate of 100 Mhz and an average power of 300 mW. The output wavelength

is controlled digitally by stepper-motor rotation of two birefringent plates and can be tuned over

the range 1.48 - 1.58 [im.

Thin InGaAsP films (grown on InP for us by E.G. Burkhardt and T.J. Bridges of AT&T Bell

Laboratories) were used at room temperature. Nonlinear absorption was observed directly by

pump-probe measurement, and nonlinear refraction was then deduced from degenerate

four-wave mixing experiments. Time-resolved nonlinear signals were obtained as a function of

laser wavelength and excitation density for materials of several different bandgap energies.

Nonlinear absorption cross-sections ueh as large as -5.7 x 10-15 cm 2 were obtained from the

pump-probe results, while effective nonlinear cross-sections oefi as large as 7.8 x 10- 16 cm 2

(corresponding to a steady state I X(3)1 ~ 3.8 x 10- 3 esu for a 20 nsec relaxation time) were

observed in the DFWM experiments. The spectral behavior of the data showed, very interestingly,

that above the bandgap the nonlinearity is due to a combination of band-filling and excitonic

screening effects.1 The effectiveness of the screening enhancement diminishes, however, within

one or two plasma frequencies of the band edge.
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5.11 Short and Ultrashort Pulse Laser Medicine

National Institutes of Health (Grant 1 RO 1 GM35459)

James G. Fujimoto, Erich P. Ippen

During the past year we initiated a new program to investigate the applications of short and

ultrashort pulse lasers to laser medicine. This program is being conducted in collaboration with

Dr. C.A. Puliafito of the Massachusetts Eye and Ear Infirmary and with investigators at the

Wellman Laboratory of the Massachusetts General Hospital.

One of the major components of our program is the application of time resolved spectroscopic

techniques to the investigation of problems in laser medicine. In this context we have

investigated the physical processes associated with laser induced optical breakdown. This type

of laser tissue interaction has emerged as an important therapeutic technique in ophthalmic laser

surgery. The use of high intensity nanosecond or picosecond pulses generated by an Nd:YAG

laser allows the surgical incision of intraocular structures which are nominally transparent to the

laser wavelength. Using time resolved pump and probe techniques we have investigated the

processes of plasma formation, acoustic shock wave propagation, and cavitation associated with

laser induced breakdown. 1 These measurements can provide a better understanding and an

approach to optimizing the theraputic process.

The use of femtosecond lasers in medicine has also been under investigation. We have

demonstrated the first application of femtosecond optical ranging in biological systems.2 This

technique is similar to radar or ultrasound except that short pulses of light are used instead of

radio or acoustic waves. The use of transient optical gating techniques allows the discrimination

of signals generated by the external and internal features of biological specimens. Using pulse

durations of 70 fs in conjunction with nonlinear optical gating, we have performed measurements

of corneal thickness in rabbit eyes in vivo as well as epidermal structure in human skin in vitro.

Finally, as a step toward understanding the biological aspects of femtosecond laser tissue

interaction, we have begun preliminary studies of retinal damage produced by exposure to 70 fs

pulses. The retina is one of the most highly investigated systems in the context of laser tissue

interaction and thus constitutes an important model system for developing an understanding of

laser tissue effect. The study of laser effects in this time regime can provide information on the

relative roles of thermal, acoustic, and photochemical damage as well as determining damage

thresholds from the viewpoint of eye safety. These studies constitute the first investigations

performed on biological systems in this regime. This research is being conducted in collaboration

with Dr. R. Birngruber of the University of Munich.
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