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Neurons perform computations, and convey the results of those computa-
tions through the statistical structure of their output spike trains. Here we
present a practical method, grounded in the information-theoretic anal-
ysis of prediction, for inferring a minimal representation of that struc-
ture and for characterizing its complexity. Starting from spike trains, our
approach finds their causal state models (CSMs), the minimal hidden
Markov models or stochastic automata capable of generating statistically
identical time series. We then use these CSMs to objectively quantify
both the generalizable structure and the idiosyncratic randomness of the
spike train. Specifically, we show that the expected algorithmic informa-
tion content (the information needed to describe the spike train exactly)
can be split into three parts describing (1) the time-invariant structure
(complexity) of the minimal spike-generating process, which describes
the spike train statistically; (2) the randomness (internal entropy rate) of
the minimal spike-generating process; and (3) a residual pure noise term
not described by the minimal spike-generating process. We use CSMs to
approximate each of these quantities. The CSMs are inferred nonparamet-
rically from the data, making only mild regularity assumptions, via the
causal state splitting reconstruction algorithm. The methods presented
here complement more traditional spike train analyses by describing not
only spiking probability and spike train entropy, but also the complex-
ity of a spike train’s structure. We demonstrate our approach using both
simulated spike trains and experimental data recorded in rat barrel cortex
during vibrissa stimulation.
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1 Introduction

The recognition that neurons are computational devices is one of the
foundations of modern neuroscience (McCulloch & Pitts, 1943). However,
determining the functional form of such computation is extremely difficult,
if only because while one often knows the output (the spikes), the input
(synaptic activity) is almost always unknown. Often, therefore, scientists
must draw inferences about the computation from its results, namely the
output spike trains and their statistics. In this vein, many researchers have
used information theory to determine, via calculation of the entropy rate,
a neuron’s channel capacity: how much information the neuron could
conceivably transmit, given the distribution of observed spikes (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997). However, entropy
quantifies randomness and says little about how much structure a spike
train has, or the amount and type of computation that it must have, at a
minimum, taken place to produce this structure. Here, and throughout
this letter, we mean “computational structure” information theoretically:
the most compact effective description of a process capable of statistically
reproducing the observed spike trains. The complexity of this structure
is the number of bits needed to describe it. This is different from the
algorithmic information content of a spike train, which is the number
of bits needed to reproduce the latter exactly, describing not only its
regularities but also its accidental, noisy details.

Our goal is to develop rigorous yet practical methods for determining
the minimal computational structure necessary and sufficient to generate
neural spike trains. We are able to do this through nonparametric analysis
of the directly observable spike trains, without resorting to a priori assump-
tions about what kind of structure they have. We do this by identifying the
minimal hidden Markov model (HMM), which can statistically predict
the future of the spike train without loss of information. This HMM also
generates spike trains with the same statistics as the observed train. It thus
defines a program that describes the spike train’s computational structure,
letting us quantify, in bits, the structure’s complexity.

From multiple directions, several groups, including our own, have
shown that minimal generative models of time series can be discovered
by clustering histories into “states,” based on their conditional distribu-
tions over future events (Crutchfield & Young, 1989; Grassberger, 1986;
Jaeger, 2000; Knight, 1975; Littman, Sutton, & Singh, 2002; Shalizi & Crutch-
field, 2001). The observed time series need not be Markovian (few spike
trains are), but the construction always yields the minimal HMM capable
of generating and predicting the original process. Following Shalizi (2001)
and Shalizi and Crutchfield (2001), we will call such an HMM a causal
state model (CSM). Within this framework, the model discovery algorithm,
called causal state splitting reconstruction (CSSR; Shalizi & Klinkner, 2004),
is an adaptive nonparametric method that consistently estimates a system’s



The Computational Structure of Spike Trains 123

CSM from time-series data. In this letter, we adapt CSSR for use in spike
train analysis.

CSSR provides nonparametric estimates of the time- and history-
dependent spiking probabilities found by more familiar parametric anal-
yses. Unlike those analyses, it is also capable, in the limit of infinite data,
of capturing all the information about the computational structure of the
spike-generating process contained in the spikes themselves. In particu-
lar, the CSM quantifies the complexity of the spike-generating process by
showing how much information about the history of the spikes is relevant
to their future, that is, how much information is needed to reproduce the
spike train statistically. This is equivalent to the log of the effective num-
ber of statistically distinct states of the process (Crutchfield & Young, 1989;
Grassberger, 1986; Shalizi & Crutchfield, 2001). While this is not the same as
the algorithmic information content, we show that CSMs can also approx-
imate the average algorithmic information content, splitting it into three
parts: (1) the generative process’s complexity in our sense; (2) the internal
entropy rate of the generative process, the extra information needed to de-
scribe the exact state transitions the undergone while generating the spike
train; and (3) the residual randomness in the spikes, unconstrained by the
generative process. The first of these quantifies the spike train’s structure,
the last two its randomness.

We give precise definitions of these quantities—both their ensemble aver-
ages (in section 2.3) and their functional dependence on time (in section 2.4).
The time-dependent versions allow us to determine when the neuron is
traversing states requiring complex descriptions. Our methods put hard
numerical lower bounds on the amount of computational structure that
must be present to generate the observed spikes. They also quantify, in bits,
the extent to which the neuron is driven by external forces. We demonstrate
our approach using both simulated and experimentally recorded single-
neuron spike trains. We discuss the interpretation of our measures and how
they add to our understanding of neuronal computation.

2 Theory and Methods

Throughout this letter, we treat spike trains as stochastic binary time se-
ries, with time divided into discrete, equal-duration bin steps (typically at
1 millisecond resolution); 1 corresponds to a spike and 0 to no spike. Our
aim is to find a minimal description of the computational structure present
in such a time series. Heuristically, the structure present in a spike train
can be described by a program, which can reproduce the spikes statisti-
cally. The information needed to describe this program (loosely speaking,
the program length) quantifies the structure’s complexity. Our approach
uses minimal, optimally predictive HMMs, or causal state models (CSMs),
reconstructed from the data, to describe the program. (We clarify our use of
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minimal below.) The CSMs are then used to calculate various measures of
the computational structure, such as its complexity.

The states are chosen so that they are optimal predictors of the spike
train’s future, using only the information available from the train’s history.
(We discuss the limitations of this below.) Specifically the states St are de-
fined by grouping the histories of past spiking activity Xt

−∞, which occur
in the spike train, into equivalence classes, where all members of a given
equivalence class are statistically equivalent in terms of predicting the fu-
ture spiking X∞

t+1. (Xt
t′ denotes the sequence of random observables, i.e.,

spikes or their absence, between t′ and t > t′, while Xt denotes the random
observable at time t. The notation is similar for the states.) This construc-
tion ensures that the causal states are Markovian, even if the spike train
is not (Shalizi & Crutchfield, 2001). Therefore, at all times t, the system
and its possible future evolutions can be specified by the state St. Like all
other HMMs, a CSM can be represented pictorially by a directed graph,
with nodes standing for the process’s hidden states and directed edges
the possible transitions between these states. Each edge is labeled with
the observable or symbol emitted during the corresponding transition (1
for a spike and 0 for no spike) and the probability of traversing that edge
given that the system started in that state. The CSM also specifies the time-
averaged probability of occupying any state (via the ergodic theorem for
Markov chains).

The theory is described in more detail below, but at this point, examples
may clarify the ideas. Figures 1A and 1B show two simple CSMs. Both are
built from simulated ≈ 40 Hz spike trains 200 seconds in length (1 msec time
bins, p = 0.04 independent and identically distributed (i.i.d.) at each time
when spiking is possible). However, spike trains generated from the CSM
in Figure 1B have a 5 msec refractory period after each spike (when p = 0),
while the spiking rate in nonrefractory periods is still 40 Hz (p = 0.04). The
refractory period is additional structure, represented by the extra states.
State A represents the status of the neuron during 40 Hz spiking, outside of
the refractory periods. While in this state, the neuron either emits no spike
(Xt+1 = 0), staying in state A, or emits a spike (Xt+1 = 1) with probability
p = 0.04 and moves to state B. The equivalence class of past spiking histories
defining state A therefore includes all past spiking histories for which the
most recent five symbols are 0, symbolically {∗00000}. State B is the neuron’s
state during the first msec of the refractory period. It is defined by the set of
spiking histories {∗1}. No spike can be emitted during a refractory period,
so the transition to state C is certain, and the symbol emitted is always 0. In
this manner, the neuron proceeds through states C to F and back to state A,
where it is possible to spike again.

The rest of this section is divided into four subsections. First, we briefly
review the formal theory behind CSMs (for details, see Shalizi, 2001; Shal-
izi & Crutchfield, 2001) and discuss why they can be considered a good
choice for understanding the structural content of spike trains. Second, we
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Figure 1: Two simple CSMs reconstructed from 200 sec of simulated spikes
using CSSR. States are represented as the nodes of a directed graph. The transi-
tions between states are labeled with the symbol emitted during the transition
(1 = spike, 0 = no spike) and the probability of the transition given the origin
state. (A) The CSM for a 40 Hz Bernoulli spiking process consists of a single
state A, which always transitions back to itself, emitting a spike with probability
p = 0.04 per msec. (B) CSM for a 40 Hz Bernoulli spiking process with a 5 msec
refractory period imposed after each spike. State A again spikes with probabil-
ity p = 0.04. Upon spiking, the CSM transitions through a deterministic chain
of states B to F (squares), which represent the refractory period. The increased
structure of the refractory period requires a more complex representation.

describe the causal state splitting reconstruction (CSSR) algorithm used to
reconstruct CSMs from observed spike trains (Shalizi & Klinkner, 2004).
We emphasize that CSSR requires no a priori knowledge of the structure
of the CSM discovered from the spike train. Third, we discuss two differ-
ent notions of spike train structure: statistical complexity and algorithmic
information content. These two measures can be interpreted as different
aspects of a spike train’s computational structure, and each can be related
to the reconstructed CSM. Finally, we show how the reconstructed CSM
can be used to predict spiking, measure the neural response, and detect the
influence of external stimuli.

2.1 Causal State Models. The foundation of the theory of causal states
is the concept of a predictively sufficient statistics. A statistic, η, on one
random variable, X, is sufficient for predicting another random variable, Y,
when η(X) and X have the same information1 about Y, I [X; Y] = I [η(X); Y].
This holds if and only if X and Y are conditionally independent given η(X):
P(Y | X, η(X)) = P(Y | η(X)). This is a close relative of the familiar idea of
parametric sufficiency; in Bayesian statistics, where parameters are random
variables, parametric sufficiency is a special case of predictive sufficiency
(Bernardo & Smith, 1994). Predictive sufficiency shares all of parametric
sufficiency’s optimality properties (Bernardo & Smith, 1994). However, a
statistic’s predictive sufficiency depends on only the actual joint distribution

1See Cover and Thomas (1991) for information-theoretic definitions and notation.



126 R. Haslinger, K. Klinkner, and C. Shalizi

of X and Y, not on any parametric model of that distribution. Again as in
the parametric case, a minimal predictively sufficient statistic ε is one that
is a function of every other sufficient statistic η: ε(X) = h(η(X)) for some h.
Minimal sufficient statistics are the most compact summaries of the data,
which retain all the predictively relevant information. A basic result is that
a minimal sufficient statistic always exists and is (essentially) unique, up to
isomorphism (Bernardo & Smith, 1994; Shalizi & Crutchfield, 2001).

In the context of stochastic processes such as spike trains, ε is the minimal
sufficient statistic of the history Xt

−∞ for predicting future of the process,
X∞

t+1. This statistic is the optimal predictor of the observations. The sequence
of values of the minimal sufficient statistic, St = ε(Xt

−∞), is another stochas-
tic process. This process is always a homogeneous Markov chain, whether
or not the Xt process is (Knight, 1975; Shalizi & Crutchfield, 2001). Turned
around, this means that the original Xt process is always a random func-
tion of a homogeneous Markov chain, whose latent states, named the causal
states by Crutchfield and Young (1989), are optimal, minimal predictors of
the future of the time series.

A causal state model or causal state machine is a stochastic automaton or
HMM constructed so that its Markov states are minimal sufficient statistics
for predicting the future of the spike train and consequently can generate
spike trains statistically identical to those observed.2 Causal state recon-
struction means inferring the causal states from the observed spike train.
Following Crutchfield and Young (1989) and Shalizi and Crutchfield (2001),
the causal states can be seen as equivalence classes of spike train histories
Xt

−∞, which maximize the mutual information between the states and the
future of the spike train X∞

t+1. Because they are sufficient, they predict the
future of the spike train as well as it can be predicted from its history alone.
Because they are minimal, the number of states or equivalence classes is as
small as it can be without discarding predictive power.3

Formally, two histories, x− and y−, are equivalent when P(X∞
t+1 | Xt

−∞ =
x−) = P(X∞

t+1 | Xt
−∞ = y−). The equivalence class of x− is [x−]. Define the

function that maps histories to their equivalence classes:

ε(x−) ≡ [x−]

= {
y− : P

(
X∞

t+1 | Xt
−∞ = y−) = P

(
X∞

t+1 | Xt
−∞ = x−)}

.

2Some authors use hidden Markov model only for models where the current observation
is independent of all other variables given the current state, and call the broader class,
which includes CSMs, partially observable Markov model.

3There may exist more compact representations, but then the states, or their equiva-
lents, can never be empirically identified (see Shalizi & Crutchfield, 2001, or Löhr & Ay,
2009).
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The causal states are the possible values of ε (i.e., the equivalence classes).
Each corresponds to a distinct distribution for the future. The state at time t
is St = ε(Xt

−∞). Clearly, ε(x−) is a sufficient statistic. It is also minimal, since
if η is sufficient, then η(x−) = η(y−) implies ε(x−) = ε(y−). One can further
show (Shalizi & Crutchfield, 2001) that ε is the unique minimal sufficient
statistic, meaning that any other must be isomorphic to it.

In addition to being minimal sufficient statistics, the causal states have
some other important properties that make them ideal for quantifying struc-
ture (Shalizi & Crutchfield, 2001). As mentioned, {St} is a Markov process,
and one can write the observed process X as a random function of the
causal state process—X has a natural hidden-Markov-model representa-
tion. The causal states are recursively calculable; there is a function T such
that St+1 = T(St, Xt+1) (see appendix A). And CSMs are closely related to the
predictive state representations of controlled dynamical systems (Littman
et al., 2002; Singh, Littman, Jong, Pardoe, & Stone, 2003; see appendix C).

2.2 Causal State Splitting Reconstruction. Our goal is to find a mini-
mal sufficient statistic for the spike train, which will form a hidden Markov
model. The states of this model are equivalence classes of spiking histories
Xt

−∞. In practice, we need an algorithm that can both cluster histories into
groups that preserve their conditional distribution of futures and find the
history length � at which the past may be truncated while preserving the
computational structure of the spike train. The former is accomplished by
the CSSR algorithm (Shalizi & Klinkner, 2004) for inferring causal states
from data by building a recursive next-step-sufficient statistic.4 We do
the latter by minimizing Schwartz’s Bayesian information criterion (BIC)
over �.

To save space, we just sketch the CSSR algorithm here.5 CSSR starts by
treating the process as an independent and identically distributed sequence,
with one causal state. It adds states when statistical tests show that the
current set of states is not sufficient. Suppose we have a sequence xN

1 =
x1, x2, . . . , xN of length N from a finite alphabet A of size k. We wish to
derive from this an estimate ε̂ of the minimal sufficient statistic ε. We do
this by finding a set � of states, each of which will be a set of strings,

4A next-step-sufficient statistic contains all the information needed for optimal one-
step-ahead prediction, I [Xt+1; η(Xt−∞)] = I [Xt+1; Xt−∞], but not necessarily for longer
predictions. CSSR relies on the theorem that if η is next step sufficient and it is recursively
calculable, then η is sufficient for the whole of the future (Shalizi & Crutchfield, 2001).
CSSR first finds a next-step sufficient statistic and then refines it to be recursive.

5In addition to Shalizi and Klinkner (2004), which gives pseudocode, some details
of convergence, and applications to process classification, are treated in Klinkner and
Shalizi (2009) and Klinkner, Rinaldo, and Shalizi (2009). An open source C++ imple-
mentation is available online at http://bactra.org/CSSR/. The CSMs generated by CSSR
can be displayed graphically, as we do in this letter, with the open source program dot
(http://www.graphviz.org/).
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or finite-length histories. The function ε̂ will then map a history x− to
whichever state contains a suffix of x− (taking “suffix” in the usual string-
manipulation sense). Although each state can contain multiple suffixes,
one can check (Shalizi & Klinkner, 2004) that the mapping ε̂ will never be
ambiguous.

The null hypothesis is that the process is Markovian on the basis of the
states in �,

P
(
Xt | Xt−1

t−L = axt−1
t−L+1

) = P
(
Xt | Ŝ = ε̂

(
xt−1

t−L+1

))
, (2.1)

for all a ∈ A. In words, adding an extra piece of history does not change the
conditional distribution for the next observation. We can check this with
standard statistical tests, such as χ2 or Kolmogorov-Smirnov (KS). In this
letter, we used a KS test of size α = 0.01.6 If we reject this hypothesis, we
fall back on a restricted alternative hypothesis: that we have the right set of
conditional distributions but have matched them with the wrong histories,
that is,

P
(
Xt | Xt−1

t−L = axt−1
t−L+1

) = P
(
Xt | Ŝ = s∗), (2.2)

for some s∗ ∈ �, but s∗ 	= ε̂(xt−1
t−L+1). If this hypothesis passes a test of size α,

then s∗ is the state to which we assign the history.7 Only if equation 2.2 is
itself rejected do we create a new state, with the suffix axt−1

t−L+1.8

The algorithm itself has three phases. Phase 1 initializes � to a single
state, which contains only the null suffix ∅ (i.e., ∅ is a suffix of any string).
The length of the longest suffix in � is L; this starts at 0. Phase 2 itera-
tively tests the successive versions of the null hypothesis, equation 2.1, and
L increases by 1 each iteration, until we reach some maximum length �.
At the end of II, ε̂ is (approximately) next step sufficient. Phase 3 makes ε̂

recursively calculable by splitting the states until they have deterministic
transitions. Under mild technical conditions (a finite true number of states),
CSSR converges in probability on the correct CSM as N → ∞, provided only
that � is long enough to discriminate all of the states. The error of the pre-
dicted distributions of futures P(X∞

t+1 | Xt
−∞), measured by total variation

6For finite N, decreasing α tends to yield simpler CSMs with fewer states. In a sense,
it is a sort of regularization coefficient. The influence of this regularization diminishes as
N increases. For the data used in section 3, varying α in the range 0.001 < α < 0.1 made
little difference.

7If more than one such state s∗ exists, we chose the one for which P̂(Xt | Ŝ = s∗)
differs least, in total variation distance, from P̂(Xt |t−1

t−L= axt−1
t−L+1), which is plausible and

convenient. However, which state we chose is irrelevant in the limit N → ∞, so long as
the difference between the distributions is not statistically significant.

8The conceptually similar algorithm of Kennel and Mees (2002) in effect always creates
a new state, which leads to more complex models, sometimes infinitely more complex
ones. See Shalizi and Klinkner (2004).
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distance, decays as N−1/2. Section 4 of Shalizi and Klinkner (2004) details
CSSR’s convergence properties. Comparisons of CSSR’s performance with
that of more traditional expectation-maximization-Based approaches can
also be found in Shalizi and Klinkner (2004) as can time complexity bounds
for the algorithm. Depending on the machine used, CSSR can process an
N = 106 time series in under 1 minute.

2.2.1 Choosing �. CSSR requires no a priori knowledge of the CSM’s
structure, but it does need a choice of of �. Here, pick it by minimizing the
BIC of the reconstructed models over �,

B I C ≡ −2 logL + d log N, (2.3)

where L is the likelihood, N is the data length, and d is the number of
model parameters—in our case, the number of predictive states.9 BIC’s
logarithmic-with-N penalty term helps keep the number of causal states
from growing too quickly with increased data size, which is why we use
it instead of the Akaike information criterion (AIC). Also, BIC is known to
be consistent for selecting the order of Markov chains and variable-length
Markov models (Csiszár & Talata, 2006), both of which are subclasses of
CSMs.

Writing the observed spike train as xN
1 and the state sequence as s N

0 , the
total likelihood of the spike train is

L =
∑

s N
0 ∈�N+1

P
(
XN

1 = xN
1

∣∣ SN
0 = s N

0

)
P
(
SN

0 = s N
0

)
, (2.4)

the sum over all possible causal state sequences of the joint probability of
the spike train and the state sequence. Since the states update recursively,
st+1 = T(st, xt+1), the starting state s0 and the spike train xN

1 fix the entire
state sequence s N

0 . Thus, the sum over state sequences can be replaced by a
sum over initial states,

L =
∑
si ∈�

P
(
XN

1 = xN
1

∣∣ S0 = si
)
P(S0 = si ), (2.5)

9The number of independent parameters d involved in describing the CSM will be
(number of states) * (number of symbols − 1) since the sum of the outgoing probabilities
for each state is constrained to be 1. Thus, for a binary alphabet, d = number of states.
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with the state probabilities P(S0 = si ) coming from the CSM. By the Markov
property,

P
(
XN

1 = xN
1

∣∣ S0 = si
) =

N∏
j=1

P(Xj = xj | Sj−1 = s j−1). (2.6)

Selecting � is now straightfoward. For each value of �, we build the
CSM from the spike train, calculate the likelihood using equations 2.5 and
2.6, and pick the value, and CSM, minimizing equation 2.3. We try all val-
ues of � up to a model-independent upper bound. For a wide range of
stochastic processes, Marton and Shields (1994) showed that the length m
of sub-sequences for which probabilities can be consistently and nonpara-
metrically estimated can grow as fast as log N/h, where h is the entropy rate,
but no faster. CSSR estimates the distribution of the next symbol given the
previous � symbols, which is equivalent to estimating joint probabilities
of blocks of length m = � + 1. Thus, Marton and Shield’s result limits the
usable values of �:

� ≤ log N
h

− 1. (2.7)

Using equation 2.7 requires the entropy rate h. The latter can either be
upper-bounded as the log of the alphabet size (here, log 2 = 1) or by some
other, less pessimistic, estimator of the entropy rate (such as the output of
CSSR with � = 1). Use of an upper bound on h results in a conservative
maximum value for �. For example, a 30 minute experiment with 1 msec
time bins lets us use at least � ≈ 20 by the most pessimistic estimate of
h = 1; the actual maximum value of � may be much larger. We use � ≤ 25
in this letter but see no indication that this cannot be extended further if
need be.

2.2.2 Condensing the CSM. For real neural data, the number of causal
states can be very large—hundreds or more. This creates an interpretation
problem, if only because it is hard to fit such an CSM on a single page
for inspection. We thus developed a way to reduce the full CSM while
still accounting for most of the spike train’s structure. Our “state culling”
technique found the least-probable states and selectively removed them,
appropriately redirecting state transitions and reassigning state occupation
probabilities. By keeping the most probable states, we focus on the ones that
contribute the most to the spike train’s structure and complexity. Again, we
used BIC as our model selection criterion.

First, we sorted the states by probability, finding the least probable state
(“remove” state) with a single incoming edge from a state (its “ancestor”)
with outgoing transitions to two different states: the remove state and a
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second “keep” state. We redirected both of the ancestor’s outgoing edges
to the keep state. Second, we reassigned the remove state’s outgoing transi-
tions to the keep state. If the outgoing transitions from the keep state were
still deterministic (at most a single 0 emitting edge and a single 1 emitting
edge), we stopped. If the transitions were nondeterministic, we merged
states reached by emitting 0s with each other (likewise, those reached by
1s), repeating this until termination. Third, we checked that there existed a
state sequence of the new model that could generate the observed spikes. If
there was, we accepted the new CSM. If not, we rejected the new CSM and
chose the next lowest probability state from the original CSM to remove.

This culling was iterated until removing any state made it impossible
for the CSM to generate the spike train. At each iteration, we calculated
BIC (as described in the previous section) and ultimately chose the culled
CSM with the minimum BIC. This gave a culled CSM for each value of �;
the final one we used was chosen after also minimizing BIC over �. The
CSMs shown in section 3 result from this minimizing of BIC over � and
state culling.

2.2.3 ISI Bootstrapping. While we do model selection with BIC, we also
want to do model checking or adequacy testing. For the most part, we
do this by using the CSM to bootstrap point-wise confidence bounds on
the interspike interval (ISI) distribution and checking their coverage of the
empirical ISI distribution. Because this distribution is not used by CSSR
in reconstructing the CSM, it provides a check on the latter’s ability to
accurately describe the spike train’s statistics.

Specifically, we generated confidence bounds as follows. To simulate
one spike train, we picked a random starting state according to the CSM’s
inferred state occupation probabilities and then ran the CSM forward for
N time steps, N being the length of the original spike train. This gives a
binary time series, where a 1 stands for a spike and a 0 for no spike, and
gave us a sample of interspike intervals from the CSM. This in turn gave
an empirical ISI distribution. Repeated over 104 independent runs of the
CSM, and taking the 0.005 and 0.995 quantiles of the distributions at each
ISI length, gives 99% pointwise confidence bounds. (Pointwise bounds are
necessary because the ISI distribution often modulates rapidly with ISI
length.) If the CSM is correct, the empirical ISI will, by chance, lie outside
the bounds at ≈1% of the ISI lengths.

If we split the data into training and validation sets, a CSM reconstructed
from the training set can be used to bootstrap ISI confidence bounds, which
can be compared to the ISI distribution of the test set. We discuss this sort of
of cross-validation, as well as an additional test based on the time rescaling
theorem, in appendix B.

2.3 Complexity and Algorithmic Information Content. The algorith-
mic information content K (xn

1 ) of a sequence xn
1 is the length of the shortest
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complete (input-free) computer program that will output xn
1 exactly and

then halt (Cover & Thomas, 1991).10 In general, K (xn
1 ) is strictly uncom-

putable, but when xn
1 is the realization of a stochastic process Xn

1 , the
ensemble-averaged algorithmic information essentially coincides with the
Shannon entropy (Brudno’s theorem; see Badii & Politi, 1997), reflecting
the fact that both are maximized for completely random sequences (Cover
& Thomas, 1991). Both the algorithmic information and the Shannon en-
tropy can be conveniently written in terms of a minimal sufficient statistic Q:

E
[
K

(
Xn

1

)] = H
[
Xn

1

] + o(n)

= H[Q] + H
[
Xn

1

∣∣ Q
] + o(n). (2.8)

The equality H[Xn
1 ] = H[Q] + H[Xn

1 | Q] holds because Q is a function of
Xn

1 , so H[Q | Xn
1 ] = 0.

The key to determining a spike train’s expected algorithmic information
is thus to find a minimal sufficient statistic. By construction, causal state
models provide exactly this: a minimal sufficient statistic for xn

1 is the state
sequence sn

0 = s0, s1, . . . sn (Shalizi & Crutchfield, 2001). Thus, the ensemble-
averaged algorithmic information content, dropping terms o(n) and smaller,
is

E
[
K

(
Xn

1

)] = H
[
Sn

0

] + H
[
Xn

1

∣∣ Sn
0

]
= H[S0] +

n∑
i=1

H[Si | Si−1] +
n∑

i=1

H[Xi | Si , Si−1]. (2.9)

Going from the first to the second line uses the causal states’ Markov prop-
erty. Assuming stationarity, equation 2.9 becomes

E
[
K

(
Xn

1

)] = H[St] + n (H[St | St−1] + H[Xt | St, St−1])

= C + n (J + R) . (2.10)

This separates terms representing structure from those representing ran-
domnes:

The first term in equation 2.10 is the complexity, C, of the spike-
generating process (Crutchfield & Young, 1989; Grassberger, 1986; Shalizi,
Klinkner, & Haslinger, 2004).

C = H[St] = −E[log P(St)]. (2.11)

10The algorithmic information content is also called the Kolmogorov complexity. We
do not use this term, to avoid confusion with our “complexity” C—the information needed
to reproduce the spike train statistically rather than exactly (see equation 2.11). See Badii
and Politi (1997) for a detailed comparison of complexity measures.
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C is the entropy of the causal states, quantifying the structure present in the
observed spikes. This is distinct from the entropy of the spikes themselves,
which quantifies not their structure but their randomness (and is approxi-
mated by the other two terms). Intuitively, C is the (time-averaged) amount
of information about the past of the system which is relevant to predicting
its future. For example, consider again the i.i.d. 40 Hz Bernoulli process of
Figure 1A. With p = 0.04, this has an entropy of 0.24 bits/msec, but because
it can be described by a single state, the complexity is zero. (That state emits
either a 0 or a 1, with respective probabilities 0.96 and 0.04, but either way,
the state transitions back to itself.) In contrast, adding a 5 ms refractory pe-
riod to the process means six states are needed to describe the spike trains
(see Figure 1B). The new structure of the refractory period is quantified by
the higher complexity, C = 1.05 bits.

The second and third terms in equation 2.10 describe randomness, but
of distinct kinds. The second term, the internal entropy rate J, quantifies the
randomness in the state transitions. It is the entropy of the next state given
the current state:

J = H[St+1 | St] = −E[log P(St+1 | St)]. (2.12)

This is the average number of bits per time step needed to describe the
sequence of states the process moved through (beyond those given by C).
The last term in equation 2.10 accounts for any residual randomness in the
spikes that is not captured by the state transitions:

R = H[Xt+1 | St, St+1] = −E[log P(Xt+1 | St, St+1)]. (2.13)

For long trains, the entropy of the spikes, H[Xn
1 ], is approximately the sum

of these two terms, H[Xn
1 ] ≈ n (J + R). Computationally, C represents the

fixed generating structure of the process, which needs to be described once,
at the beginning of the time series, and n(J + R) represents the growing list
of details that pick out a particular time series from the ensemble that could
be generated; this needs, on average, J+R extra bits per time step. (Cf. the
“sophistication” of Gács, Tromp, & Vitanyi, 2001.)

Consider again the 40 Hz Bernoulli process. As there is only one state, the
process always stays in that state. Thus, the entropy of the next state, J = 0.
However, the state sequence yields no information about the emitted sym-
bols (the process is i.i.d.) so the residual randomness R = 0.24 bits/msec—
as it must be, since the total entropy rate is 0.24 bits/msec. In contrast, the
states of the 5 msec refractory process are informative about the process’s
future. The internal entropy rate J = 0.20 bits/msec and the residual ran-
domness R = 0. All of the randomness is in the state transitions, because
they uniquely define the output spike train. The randomness in the state
transition is confined to state A, where the process “decides” whether it
will stay in A, emitting no spike, or emit a spike and go to B. The decision
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needs, or gives, 0.24 bits of information. The transitions from B through F
and back to A are fixed and contribute 0 bits, reducing the expected J.

The important point is that the structure present in the refractory period
makes the spike train less random, lowering its entropy. Averaged over time,
the mean firing rate of the process is p = 0.0333. Were the spikes i.i.d., the
entropy rate would be 0.21 bits/msec, but in fact J + R = 0.20 bits/msec.
This is because a minimal description of a long sequence Xt1 , . . . , XtN =
XtN

t1 , the generating process needs to be only described once (C), while the
internal entropy rate and randomness need to be updated at each time step
(n(J + R)). Simply put, a complex, structured spike train can be exactly
described in fewer bits than one that is entirely random. The CSM lets
us calculate this reduction in algorithmic information and quantify the
structure by means of the complexity.

2.4 Time-Varying Complexity and Entropies. The complexity and en-
tropy are ensemble-averaged quantities. In the previous section, the ensem-
ble was the entire time series, and the averaged complexity and entropies
were analogous to a mean firing rate. The time-varying complexity and
entropies are also of interest, for example, their variation after stimuli. A
peristimulus time histogram (PSTH) shows how the firing probability varies
with time; the same idea works for the complexity and entropy.

Since the states form a Markov chain, and any one spike train stays
within a single ergodic component, we can invoke the ergodic theorem
(Gray, 1988) and (almost surely) assert that

∑
St ,St+1

P(St, St+1, Xt+1) f (St, St+1, Xt+1) = lim
N→∞

1
N

N∑
t=1

f (St, St+1, Xt+1)

= lim
N→∞

〈
f (St, St+1, Xt+1)

〉
N (2.14)

for arbitrary integrable functions f (St, St+1, Xt+1).
In the case of the mean firing rate, the function to time average is

l(t) ≡ Xt+1. For the time-averaged complexity, internal entropy, and resid-
ual randomness, the functions (respectively c, j, and r) are

c(t) =− log P(St)

j(t) =− log P(St+1 | St)

r (t) =− log P(Xt+1 | St, St+1), (2.15)

and time-varying entropy h(t) = j(t) + r (t).
The PSTH averages over an ensemble of stimulus presentations rather

than time

λP ST H(t) = 1
M

M∑
i=1

li (t) = 1
M

M∑
i=1

Xt+1,i , (2.16)
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with M being the number of stimulus presentations and t reset to zero at
each presentation. Analogously, the PSTH of the complexity is

CP ST H(t) = 1
M

M∑
i=1

ci (t) = 1
M

M∑
i=1

− log P(St,i ). (2.17)

For the entropies, replace c with j, r, or h as appropriate. Similar calcula-
tions can be made with any well-defined ensemble of reference times, not
just stimulus presentations; we will also calculate c and the entropies as
functions of the time since the latest spike.

We can estimate the error of these time-dependent quantities as the
standard error of the mean as a function of time, SEt = st/

√
M, where st

is the sample standard deviation in each time bin t and M is the number
of trials. The probabilities appearing in the definitions of c(t), j(t), r (t) also
have some estimation errors, either because of sampling noise or, more
interesting, because the ensemble is being distorted by outside influences.
The latter creates a gap between their averages (over time or stimuli) and
what the CSM predicts for those averages. In the next section, we explain
how to use this to measure the influence of external drivers.

2.5 The Influence of External Forces. If we know that St = s, the CSM
predicts that the firing probability is λ(t) = P(Xt+1 = 1 | St = s). By means
of the CSM’s recursive filtering property (see appendix A), once a transient
regime has passed, the state is always known with certainty. Thereafter, the
CSM predicts what the firing probability should be at all times, incorporat-
ing the effects of the spike train’s history. As we show in the next section,
these predictions give good matches to the actual response function in sim-
ulations where the spiking probability depends on only the spike history.
But real neurons’ spiking rates generally also depend on external processes
(e.g., stimuli). As currently formulated, the CSM is (or, rather, converges
on) the optimal predictor of the future of the process given its own past.
Such an “output-only” model does not represent the (possible) effects of
other processes, and so ignores external covariates and stimuli. Determin-
ing the precise form of spike trains’ responses to external forces is best left
to parametric models.

However, we can use output-only CSMs to learn something about
the computation. The PSTH-calculated entropy rate HP ST H(t) = J P ST H(t) +
RP ST H(t) quantifies the extent to which external processes drive the neuron.
(The PSTH subscript is henceforce supressed.) Suppose we know the true
firing probability λtrue (t). At each time step, the CSM predicts the firing
probability λC SM(t). If λC SM(t) = λtrue (t), then the CSM correctly describes
the spiking, and the PSTH entropy rate is

HC SM(t) = −λC SM(t) log [λC SM(t)] − (1 − λC SM(t)) log [1 − λC SM( t)].

(2.18)
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However, if λC SM(t) 	= λtrue (t), then the CSM misdescribes the spiking be-
cause it neglects the influence of external processes. Simply put, the CSM
has no way of knowing when the stimuli happen. The PSTH entropy rate
calculated using the CSM becomes

HC SM(t) = −λtrue (t) log [λC SM(t)] − (1 − λtrue (t)) log [1 − λC SM(t)].

(2.19)

Solving λtrue (t),

λtrue (t) = HC SM(t) + log [1 − λC SM(t)]
log [1 − λC SM(t)] − log [λC SM(t)]

. (2.20)

The discrepancy between λC SM(t) and λtrue (t) indicates how much of the
apparent randomness in the entropy rate is actually due to external driving.
The true PSTH entropy rate Htrue (t) is

Htrue (t) = −λtrue (t) log [λtrue (t)] − (1 − λtrue (t)) log [1 − λtrue (t)]. (2.21)

The difference between HC SM(t) and Htrue (t) quantifies, in bits, the driving
by external forces as a function of the time since stimulus presentation:

	H = HC SM(t) − Htrue (t)

= λtrue (t) log
[

λtrue (t)
λC SM(t)

]
+ (1 − λtrue (t)) log

[
1 − λtrue (t)
1 − λC SM(t)

]
. (2.22)

This stimulus-driven entropy 	H is the relative entropy or Kullback-Leibler
divergence D (Xtrue‖XC SM) between the true distribution of symbol emis-
sions and that predicted by the CSM. Information theoretically, this relative
entropy is the error in our prediction of the next state due to assuming
the neuron is running autonomously when it is actually externally driven.
Since every state corresponds to a distinct distribution over future behavior,
this is our error in predicting the future due to ignorance of the stimulus.11

3 Results

We now present a few examples. (All of them use a time step of 1 millisec-
ond.) We begin with idealized model neurons to illustrate our technique. We
recover CSMs for the model neurons using only the simulated spike trains

11Cf. the informational coherence introduced by Klinkner, Shalizi, and Camperi (2006)
to measure information sharing between neurons by quantifying the error in predicting
the distribution of the future of one neuron due to ignoring its coupling with another.
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as input to our algorithms. From the CSM, we calculate the complexity, en-
tropies, and, when appropriate, stimulus-driven entropy (Kullback-Leibler
divergence between the true and CSM predicted firing probabilities) of each
model neuron. We then analyze spikes recorded in vivo from a neuron in
layer II/III of rat SI (barrel) cortex. We use spike trains recorded both with
and without external stimulation of the rat’s whiskers. (See Andermann &
Moore, 2006, for experimental details.)

3.1 Model Neuron with a Soft Refractory Period and Bursting. We
begin with a refractory, bursting model neuron whose spiking rate depends
on only the time since the last spike. The baseline rate is 40 Hz. Every spike
is followed by a 2 msec “hard” refractory period, during which spikes
never occur. The spiking rate then rebounds to twice its baseline, to which
it slowly decays. (See the dashed line in the first panel of Figure 3B.) This
history dependence mimics that of a bursting neuron, and is intuitively
more complex than the simple refractory period of the model in Figure 1.

Figure 2 shows the 17-state CSM reconstructed from a 200 second spike
train (at 1 msec resolution) generated by this model. It has a complexity
of C = 3.16 bits (higher than that of the model in Figure 1, as anticipated),
an internal entropy rate of J = 0.25 bits/msec, and a residual randomness
of R = 0 bits/msec. The CSM was obtained with � = 17 (selected by BIC).
Figure 3A shows how the 99% ISI bounds bootstrapped from the CSM en-
close the empirical ISI distribution, with the exception of one short segment.

The CSM is easily interpreted. State A is the baseline state. When it
emits a spike, the CSM moves to state B. There are then two deterministic
transitions, to C and then D, which never emit spikes; this is the hard
2 msec refractory period. Once in D, it is possible to spike again, and if that
happens, the transition is back to state B. However, if no spike is emitted,
the transition is to state E. This is repeated, with varying firing probabilities,
as states E through Q are traversed. Eventually the process returns to A,
and so to baseline.

Figure 3B plots the firing rate, complexity, and internal entropies as
functions of the time since the last spike, conditional on no subsequent
spike emission. This lets us compare the firing rate predicted by the CSM
(solid line squares) to the specification of the model that generated the
spike train (dashed line) and a PSTH calculated by triggering the last spike
(solid line). Except at 16 and 17 msec postspike, the CSM-predicted firing
rate agrees with both the generating model and the PSTH. The discrepancy
arises because the CSM discerns only the structure in the data, and most of
the ISIs are shorter than 16 msec. There is much closer agreement between
the CSM and the PSTH if firing rates are plotted as a function of time
since a spike without conditioning on no subsequent spike emission (not
shown).

The middle and bottom panels of Figure 3 plot the time-dependent com-
plexity and entropies. The complexity is much higher after the emission of a



138 R. Haslinger, K. Klinkner, and C. Shalizi

A
0 | 0.957

B

1 | 0.043

C

0 | 1.000

D

0 | 1.000

H

1 | 0.053

I

0 | 0.947

1 | 0.069

J

0 | 0.931

F

1 | 0.024

G

0 | 0.976

1 | 0.039

0 | 0.961

1 | 0.076

K

0 | 0.924

E

1 | 0.012

0 | 0.988

1 | 0.003

0 | 0.997

P

1 | 0.069

Q

0 | 0.931

0 | 0.933

1 | 0.067

O

1 | 0.074

0 | 0.926

N

1 | 0.078

0 | 0.922

M

1 | 0.080

0 | 0.920

L

1 | 0.075

0 | 0.925

1 | 0.079

0 | 0.921

Figure 2: CSM reconstructed from a 200 sec simulated spike train with a soft
refractory or bursting structure. C = 3.16, J = 0.25, R = 0. State A (circle) is the
baseline 40 Hz spiking state. Upon emitting a spike, the transition is to state B.
States B and C (squares) are “hard” refractory states from which no spike may
be emitted. States D through Q (hexagons) compromise a refractory or bursting
chain from which if a spike is emitted, the transition is back to state B. On exiting
the chain, the CSM returns to the baseline state A.

spike than during baseline, because the states traversed (B–Q) are less prob-
able and represent the additional structures of refractoriness and bursting.
The time-dependent entropies (bottom panel) show that just after a spike,
the refractory period imposes temporary determinism on the spike train,
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Figure 3: Soft refractory and bursting model ISI distribution and time-
dependent firing probability, complexity, and entropies. (A) ISI distribution and
99% confidence bounds bootstrapped from the CSM. (B) Top panel: Firing prob-
ability as a function of time since the most recent spike. Line with squares =
firing probability predicted by CSM. Solid line = firing probability deduced
from PSTH. Dashed line = model firing rate used to generate spikes. Middle
panel: Complexity as a function of time since the most recent spike. Bottom
panel: Entropies as a function of time since the most recent spike. Squares =
internal entropy rate circles = residual randomness, solid line = entropy rate
(overlaps squares).
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but burstiness increases the randomness before the dynamics return to the
baseline state.

3.2 Model Neuron Under Periodic Stimulation. Figure 4 shows the
CSM for a periodically stimulated model neuron. This CSM was recon-
structed from 200 seconds of spikes with a baseline firing rate of 40 Hz
(p = 0.04). Each second, the firing rate rose over the course of 5 msec to
p = 0.54 spikes/msec, falling slowly back to baseline over the next 50 msec.
This mimics the periodic presentation of a strong external stimulus. (The
exact inhomogeneous firing rate used was λ(t) = 0.93[e−t/10 − e−t/2] + 0.04
with t in msec. See Figure 5B, top panel, dashed line.) In this model, the
firing rate does not directly depend on the spike train’s history, but there is
a sort of history dependence in the stimulus time course, and this is what
CSSR discovers.

BIC selected � = 7, giving a 16-state CSM with C = 0.89 bits, J = 0.27
bits/msec, and R = 0.0007 bits/msec. The baseline is again state A, and if no
spike is emitted, then the process stays in A. Spikes are either spontaneous
and random or stimulus driven. Because the stimulus is external, it is not
immediately clear which of these two causes produced a given spike. Thus,
if a spike is emitted, the CSM traverses states B through F, deciding, so to
speak, whether the spike is due to a stimulus. If two spikes happen within
3 msec of each other, the CSM decides that it is being stimulated and goes
to one of states G, H, or M. States G through P represent the response to the
stimulus. The CSM moves between these states until no spike is emitted for
3 msec, when it returns to the baseline, A.

The ISI distribution from the CSM matches that from the model (see
Figure 5A). However, because the stimulus does not depend on the spike
train’s history, the CSM makes inaccurate predictions during stimulation.
The top panel of Figure 5B plots the firing rate as a function of time since
stimulus presentation, comparing the model (dashed line) and the PSTH
(solid line) with the CSM’s prediction (line with squares). The discrepancy
between these is due to the CSM’s having no way of knowing that an exter-
nal stimulus has been applied until several spikes in a row have been emit-
ted (represented by states B–F).12 Despite this, c(t) shows that something
more complex than simple random firing is happening (see the middle panel
of Figure 5B), as do j(t) and r (t) (see the bottom panel). Further, something
is clearly wrong with the entropy rate, because it should be upper-bounded
by h = 1 bit/msec (when p = 0.5). The fact that h(t) exceeds this bound
indicates that an external force, not fully captured by the CSM, is at work.

As discussed in section 2.5, drive from the stimulus can be quantified
with a relative entropy (see Figure 5C). Stimuli are presented at t = 1 msec,

12In effect, this part of the CSM implements Bayes’s rule, balancing the increased
likelihood of a spike after a stimulus against the low a priori probability or base rate of
stimulation.
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Figure 4: Sixteen-state CSM reconstructed from 200 sec of simulation of period-
ically stimulated spiking. C = 0.89, J = 0.27, R = 0.0007. State A is the baseline
state. States B through F (octagons) are “decision” states in which the CSM
evaluates whether a spike indicates a stimulus or was spontaneous. Two spikes
within 3 msec cause the CSM to transition to states G through P, which represent
the structure imposed by the stimulus. If no spikes are emitted within 5 (often
fewer) sequential msec, the CSM goes back to the baseline state A.



142 R. Haslinger, K. Klinkner, and C. Shalizi

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

Time Dependent Firing Probability

0 5 10 15 20 25 30 35 40 45 50
0

5

10
Complexity C(t)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3
Entropies

ISI Distribution

msec

Time since stimulus (msec)

Time since stimulus (msec)

b
it

s
b

it
s

s
p

ik
e
s
/m

s
e
c

Stimulus Driven Entropy  (ΔH(t))

A

B

C

λCSM(t)

λPSTH(t)

J(t)

R(t)

H(t)

λmodel(t)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

b
it

s

Figure 5: Stimulus model ISI distribution and time-dependent complexity and
entropies. (A) ISI distribution and 99% confidence bounds. (B) Top panel: Firing
probability as a function of time since the stimulus presentation. Middle panel:
Time-dependent complexity. Bottom panel: Time-dependent entropies. (C) The
stimulus-driven entropy is more than 1 bit, indicating a strong external drive.
See text for discussion.
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where 	H(t) > 1 bit. It is not until ≈25 msec poststimulus that 	H(t) ≈ 0
and the CSM once again correctly describes the internal entropy rate. Thus,
as expected, the stimulus strongly influences neuronal dynamics immedi-
ately after its presentation. The true internal entropy rate Htrue (t) is slightly
less than 1 bit/msec shortly after stimulation, when the true spiking rate has
a maximum of pmax = 0.54. The fact that the CSM gives an inaccurate value
for J actually lets us find the number of bits of information gain supplied
by the stimulus, for example, 	H > 1 bit, immediately after the stimulus is
presented.

3.3 Spontaneously Spiking Barrel Cortex Neuron. We reconstructed
a CSM from 90 seconds of spontaneous (no vibrissa deflection) spiking
recorded from a layer II/III FSU barrel cortex neuron. CSSR, using � =
21, discovered a CSM with 315 states, a complexity of C = 1.78 bits, and
an internal entropy rate of J = 0.013 bits/msec. After state culling (see
section 2.7.2), the reduced CSM, plotted in Figure 6, has 14 states, C = 1.02,
J = 0.10 bits/msec, and residual randomness of R = 0.005 bits/msec. We
focus on the reduced CSM from this point onward.

This CSM resembles that of the spontaneously firing model neuron of
section 3.1 and Figure 2. The complexity and entropies are lower than
those of our model neuron because the mean spike rate is much lower,
and so simple descriptions suffice most of the time. (Barrel cortex neu-
rons exhibit notoriously low spike rates, especially during anesthesia.)
There is a baseline state A that emits a spike with probability p = 0.01
(i.e., 10 Hz). When a spike is emitted, the CSM moves to state B and then
on through the chain of states C through N, returning to A if no spike
is subsequently emitted. However, the CSM can emit a second or even
third spike after the first, and indeed this neuron displays spike doublets
and triplets. In general, emitting a spike moves the CSM to B, with some
exceptions that show the structure to be more intricate than the model
neuron’s.

Figure 7A shows the CSM’s 99% confidence bounds almost completely
enclosing the empirical ISI distribution. The top panel of Figure 7B plots the
history-dependent firing probability predicted by the CSM as a function of
the time since the latest spike, according to both the PSTH and the CSM’s
prediction. They are highly similar in the first 13 msec postspike, indicating
that the CSM gets the spiking statistics right in this epoch. The CSM and
PSTH then diverge after this, for two reasons. First, as with the model
neuron, there are few ISIs of this length. Most of the ISIs are either shorter,
due to the nueron’s burstiness, or much longer, due to the low baseline
firing rate. Second, 90 seconds does not provide many data. We show in
Figure 10 that a CSM reconstructed from a longer spike train does capture
all of the structure. We present the results of this shorter spike train to
emphasize that as a nonparametric method, CSSR uncovers the statistical
structure only in the data—no more, no less.
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Figure 6: Fourteen-state CSM reconstructed from 90 sec of spiking recorded
from a spontaneously spiking (no stimulus) neuron located in layer II/III of rat
barrel cortex. C = 1.02, J = 0.10, R = 0.005. State A (circle) is baseline 10 Hz
spiking. States B through N comprise a refractory or bursting chain similar to
but with a somewhat more intricate structure than that of the model neuron in
Figure 2.

Finally, the middle and bottom panels of Figure 6B show, respectively,
the complexity and entropies as functions of the time since the latest spike.
As with the model of section 3.1, the structure in the process occurs af-
ter spiking, during the refractory and bursting periods. This is when the
complexity is largest and also when the entropies vary most.
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Figure 7: Spontaneously spiking barrel cortex neuron. (A) ISI distribution and
99% bootstrapped confidence bounds. (B) Top panel: Time-dependent firing
probability as a function of time since the most recent spike. See the text for
an explanation of the discrepancy between CSM and PSTH spike probabilities.
Middle panel: Complexity as a function of time since the most recent spike.
Bottom panel: Entropy rates as a function of time since the most recent spike.

3.4 Periodically Stimulated Barrel Cortex Neuron. We reconstructed
CSMs from 335 seconds of spike trains taken from the same neuron used
above, but recorded while it was being periodically stimulated by vib-
rissa deflection. BIC selected � = 25, giving the 29-state CSM shown in
Figure 8. (Before state culling, the original CSM had 1916 states, C = 2.55
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Figure 8: Twenty-nine-state CSM reconstructed from 335 seconds of spikes
recorded from a layer II/III barrel cortex neuron undergoing periodic (125 msec
interstimulus interval) stimulation via vibrissa deflection. C = 1.97, J = 0.11,
R = 0.004. Most of the states are devoted to refractory or bursting behavior;
however states C1, C2, and ZZ represent the structure imposed by the external
stimulus. See the text for discussion.
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and J = 0.11.) The reduced CSM has a complexity of C = 1.97 bits, an
internal entropy rate of J = 0.10 bits/msec, and a residual randomness
of R = 0.005 bits/msec. Note that C is higher when the neuron is being
stimulated as opposed to when it is spontaneously firing, indicating more
structure in the spike train.

While at first the CSM may seem to represent only history-dependent
refractoriness and bursting, ignoring the external stimulus, this is not quite
true. Once again, there is a baseline state A, and most of the other states
(B–X) comprise a refractory/bursting chain, like this neuron has during
spontaneous firing. However, the transition on A emitting a spike is not back
to B and then down the chain again, but to either state C1, and subsequently
C2, or, more often, to state ZZ. These three states represent the structure
induced by the external stimulus, as we saw with the model-stimulated
neuron of section 3.2 and Figure 4. (The state ZZ is comparable to the state
M of the model-stimulated neuron: both loop back to themselves if they
emit a spike.) Three states are enough because in this experiment, barrel
cortex neurons spike extremely sparsely—0.1 to 0.2 spikes per stimulus
presentation.

Figure 9A plots the ISI distribution, nicely enclosed by the bootstrapped
confidence bounds. Figure 9B shows the firing rate, complexity, and en-
tropies as functions of the time since stimulus presentation (averaged over
all presentations). These plots look much like those in Figure 7B. However,
there is a clear indication that something more complex takes place after
stimulation: the CSM’s firing rate predictions are wrong. The stimulus-
driven entropy 	H turns out to be as large as 0.02 bits within 5 to 15 msec
poststimulus. This agrees with the known ≈5 to 10 msec stimulus prop-
agation time between vibrissae and barrel cortex (Andermann & Moore,
2006). The reason that 	H is so much smaller for the real neuron than the
stimulated model neuron of section 3.2 is that the former’s firing rate is
much lower. Although the firing rate poststimulus can be almost twice as
large as the CSM’s prediction, the actual rate is still low: max λ(t) ≈ 0.04
spikes/msec. Most of the time the neuron does not spike, even when stim-
ulated, so on average, the stimulus provides little information per presen-
tation. For completeness, Figure 10 shows the spike probability, complexity,
and entropies as functions of the time since the latest spike. Averaged over
this ensemble, the CSM’s predictions are highly accurate.

4 Discussion

The goal of this letter was to present methods for determining the struc-
tural content of spike trains while making minimal a priori assumptions
as to the form that structure takes. We use the CSSR algorithm to build
minimal, optimally predictive hidden Markov models (CSMs) from spike
trains, Schwartz’s Bayesian information criterion to find the optimal his-
tory length � of the CSSR algorithm, and bootstrapped confidence bounds
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Figure 9: Stimulated barrel cortex neuron ISI distribution and time-dependent
complexity and entropies. (A) ISI distribution and 99% confidence bounds.
(B) Top panel: Firing probability as a function of time since stimulus presenta-
tion. Middle panel: Time-dependent complexity. Bottom panel: Time-dependent
entropies. (C) The stimulus-driven entropy (maximum of 0.02 bits/msec) is low
because the number of spikes per stimulus (≈0.1–0.2) is very low, and hence
the stimulus does not supply much information.
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Figure 10: Firing probability complexity, and entropies of the stimulated barrel
cortex neuron as a function of time since the most recent spike.

on the ISI distribution from the CSM to check goodness of fit. We demon-
strated how CSMs can estimate a spike train’s complexity, thus quantifying
its structure, and its mean algorithmic information content, quantifying
the minimal computation necessary to generate the spike train. Finally
we showed how to quantify, in bits, the influence of external stimuli on
the spike-generating process. We applied these methods to both simulated
spike trains, for which the resulting CSMs agreed with intuition, and real
spike trains recorded from a layer II/II rat barrel cortex neuron, demonstrat-
ing increased structure, as measured by the complexity, when the neuron
was being stimulated.

We are unaware of any other practical techniques for quantifying the
complexity and computational structure of a spike train as we define them.
Intuitively, neither random (Poisson) nor highly ordered (e.g., strictly pe-
riodic, as in Olufsen, Whittington, Camperi, & Kopell, 2003). spike trains
should be thought of as complex since they do not possess a structure requir-
ing a sophisticated program to generate. Instead, complexity lies between
order and disorder (Badii & Politi, 1997), in the nonrandom variation of the
spikes. Higher complexity means a greater degree of organization in neural
activity than would be implied by random spiking. It is the reconstruction
of the CSM through CSSR that allows us to calculate the complexity.
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Our definition of complexity stands in stark contrast to other com-
plexity measures, which assign high values to highly disordered sys-
tems. Some of these, such as Lempel Ziv complexity (Amigo, Szczepanski,
Wajnryb, & Sanchez-Vives, 2002, 2004; Jimenez-Montano, Ebeling, Pohl,
& Rapp, 2002; Szczepanski, Amigo, Wajnryb, & Sanchez-Vives, 2004) and
context-free grammar complexity (Rapp et al., 1994) have been applied
to spike trains. However, both of these are measures of the amount
of information required to reproduce the spike train exactly and take
on very high values for completely random sequences. These complex-
ity measures are therefore much more similar to total algorithmic in-
formation content and even to the entropy rate than to our sort of
complexity.

Our measure of complexity is the entropy of the distribution of causal
states. This has the desired property of being maximized for structured
rather than ordered or disordered systems, because the causal states are
defined statistically as equivalence classes of histories conditioned on future
events. Other researchers have also calculated complexity measures that
are entropies of state distributions but have defined their states differently.
Amigo et al. (2002) uses the observables (symbol strings) present in the
spike train to define a kth-order Markov process and calls each individual
length k string that appears in the spike train a state. Gorse and Taylor (1990)
similarly use single-suffix symbol strings to define the states of a Markov
process. In both cases, i.i.d. Bernoulli sequences could exhibit up to 2k states
(in long enough sequences) and possess an extremely high “complexity.”
However, all of these states make the same prediction for the future of the
process. The minimal representation is a single causal state—a CSM with a
complexity of zero.

There are also many works that model spike trains using HMMs, but
in which the hidden states represent macrostates of the system (e.g.,
awake/asleep, up/down), and spiking rates are modeled separately in each
macrostate (Abeles et al., 1995; Achtman et al., 2007; Chen, Vijayan, Barbieri,
Wilson, & Brown, 2008; Danoczy & Hahnloser, 2004; Jones, Fontanini,
Sadacca, & Katz, 2007). Although the graphical representation of such
HMMs may look like those of CSMs, the two kinds of states have very
different meanings. Finally, there are also state-space methods that model
the dynamical state of the system as a continuous hidden variable, the
most well known of which is the linear gaussian model with Kalman filter-
ing. These have been extensively applied to neural encoding and decoding
problems (Eden, Frank, Barbieri, Solo, & Brown, 2004; Smith et al., 2004;
Srinivasan, Eden, Mitter, & Brown, 2007). Interestingly, for a univariate
gaussian ARMA model in state-space form, the Kalman filter’s one-step-
ahead prediction and mean-squared prediction error are, jointly, minimally
sufficient for next-step prediction, and since they can be updated recur-
sively, they in fact constitute the minimal sufficient statistic, and hence the
causal state in this special case.
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Neurons are driven by their afferent synapses. Although as discussed
in appendix C, there is a parallel “transducer” formalism for generating
CSMs that takes external influences into account, this is not yet computa-
tionally implemented, and our current approach reconstructs CSMs only
from the spike train. Since the history of the neuron under study is typically
connected with the history of the network in which it is located, this CSM
will, in general, reflect more than a neuron’s internal biophysical properties.
Nonetheless, in both our model neurons and in the real barrel cortex neuron,
states not interpretable as simple refractoriness or bursting appeared when
a stimulus was present, proving we can detect stimulus-driven complexity.
Further, we showed that the CSM can be used to determine the extent (in
bits) to which a neuron is driven by external stimuli.

The methods presented here complement more established modes
of spike train analysis, which have different goals. Parametric methods,
such as PSTHs or maximum likelihood estimation (Brown, Kass, & Mitra,
2004; Truccolo, Eden, Fellow, Donoghue, & Brown, 2005), generally focus
on determining a neuron’s firing rate (mean, instantaneous, or history
dependent) and on how known external covariates modulate that rate.
They have the advantage of requiring fewer data than nonparametric
methods such as CSSR but the disadvantage, for our purposes, of imposing
the structure of the model at the outset. When the experimenter wants
to know how a neuron encodes a particular aspect of a covariate (e.g.,
how neurons in the sensory periphery or primary sensory cortices encode
stimuli), parametric methods have proved highly illuminating. However,
in many cases, the identity or even existence of relevant external covariates
is uncertain. For example, one could envision using CSMs to analyze
recordings in prefrontal cortex during different cognitive tasks or perhaps
compare spiking structures during different attentional states. In both cases,
the relevant external covariates are not at all clear, but CSMs could still be
used to quantify changes in computational structure for single neurons
or groups of them. For neural populations, one can envision generating
distributions (over the population) of complexities and examining how
these distributions change in different cortical macrostates. This would
be entirely analogous to analyzing distributions of firing rates or tuning
curves.

In addition to calculations of the complexity, the whole array of mutual
information analyses can be applied to CSMs, but instead of calculating
mutual information between the spikes and the covariates (which could
include other spike trains), one can calculate the mutual information be-
tween the covariates and the causal states. The advantage is that the causal
states represent the behavioral patterns of the spike-generating process,
and so are closer to the actual state of the system than the spikes (output
observables) are themselves. Results on calculating the mutual information
between the causal states of different neurons (informational coherence)
in a large simulated network show that synchronous neuronal dynamics
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are more effectively revealed than when calculated directly from the spikes
(Klinkner et al., 2006).

Our methods provide a way to understand structure in spike trains and
should be considered as complements to traditional analysis methods. We
rigorously define structure and show how to discover it from the data them-
selves. Our methods go beyond those that seek to describe the observed
variation in the spiking rates by also describing the underlying computa-
tional process (in the form of a CSM) needed to generate that variation. A
CSM can not only that the spike rate has changed, but also exactly how it
has changed.

Appendix A: Filtering with CSMs

A common difficulty with hidden Markov models is that predictions can
be made only from a knowledge of the state, which must itself be guessed
at from the time series, since it is, after all, hidden. This creates the state
estimation or filtering problem. Under strong assumptions (linear gaus-
sian stochastic dynamics, linearly observed through i.i.d. additive gaussian
noise), the Kalman filter is an optimal yet tractable solution. For nonlinear
processes, however, optimal filtering essentially amounts to maintaining
a posterior distribution over the states and updating it by Bayes’s rule
(Ahmed, 1998). (This distribution is sometimes called the process’s infor-
mation state.)

One convenient and important feature of CSMs is that this whole machin-
ery of filtering is unnecessary because of their recursive-updating property.
Given the state at time t, St, and the observation at time t + 1, Xt+1, the
state at time t + 1 is fixed, St+1 = T(St, Xt+1), for some transition function
T. Clearly if the state is known with certainty at any time, it will remain
known. However, the same recursive updating property also allows us to
show that the state does become certain; after some finite (but possibly
random) time τ , P(Sτ = s | Xτ

1 ) is either 0 or 1 for all states s. For Markov
chains of order k, clearly τ ≤ k; under more general circumstances, P(τ ≥ t)
goes to zero exponentially or faster.

Thus, after a transient period, the state is completely unambiguous.
This will be useful to us in multiple places, including understanding the
computational structure of the process and predicting the firing rate of the
neuron. It also leads to considerable numerical simplifications, compared to
approaches that demand conventional filtering. Further, recursive filtering
is easily applied to a new spike train—not merely the one from which the
CSM was reconstructed. This helps in cross-validating CSMs, as discussed
in appendix B.

Appendix B: Cross-Validation

It is often desirable to cross-validate a statistical model by spliting one’s
data set in two, using one part (generally the larger) as a training set for
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the model and the other part to validate the model by some statistical test.
In the case of CSMs, it is particularly important to check the validity of the
BIC used to regularize the � control setting.

One possible test is the ISI bootstrapping of section 2.3. A second, some-
what stronger, goodness-of-fit test is based on the time rescaling theorem of
Brown, Barbieri, Ventura, Kass, and Frank (2002). This test rescales the in-
terspike intervals as a function of the integrated history-dependent spiking
rate over the ISI,

τk = 1 − e− ∫ tk+1
tk

λ(t)dt, (B.1)

where the {tk} are the spike times and λ(t) is the history-dependent spiking
rate from the CSM. If the CSM describes the data well, then rescaled ISI’s
{τk} should follow a uniform distribution. This can be tested using either a
Kolmogorov-Smirnov test or by plotting the empirical CDF of the rescaled
times against the CDF of the uniform distribution (Kolmogorov-Smirnov
or KS plot) (Brown et al., 2002).

Figure 11 gives cross-validation results for the rat barrel cortex neuron
during both spontaneous firing and periodic vibrissae deflection. Ninety
seconds of spontaneously firing spikes were split into a 75 second training
set and a 15 second validation set. The 335 seconds of stimulus-evoked fir-
ing were split into a 270 second training set and a 65 second validation set.
Figures 11A and 11B show the ISI bootstrapping results for the spontaneous
and stimulus-evoked firing, respectively. The dashed lines are 99% confi-
dence bounds from a CSM reconstructed from the training set, and the solid
line is the ISI distribution of the validation set. The ISI distribution largely
falls within these bounds for both the spontaneous and stimulus-evoked
data.

Figures 11C through 11F display the time-rescaling test. Figures 11C and
11D show the time-rescaling plots for the spontaneous and stimulus-evoked
training data, respectively. The dashed lines are 95% confidence bounds. The
spontaneous KS plot largely falls within the bounds. The stimulus evoked
does not, but this is expected because the CSM does not completely capture
the imposition of the external stimulus. (The jagged “steps” in both plots
result from the 1 msec temporal discretization.) Figures 11E and 11F show
the time-rescaling plots for, respectively, the spontaneous and stimulus-
evoked validation data. The fits here are somewhat worse. In the stimulated
case, this is not surprising. In the spontaneous case, the cause is likely
nonstationarity in the data, a problem shared with other spike train analysis
techniques, such as the generalized linear model approaches described in
appendix C. It should be emphasized that the point of reconstructing CSMs
is not to obtain perfect fits to the data, but instead to estimate the structure
inherent in the spike train; the cross-validation results should be viewed in
this light.
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Figure 11: Cross-validation of CSMs reconstructed from spontaneously firing
and stimulus evoked rat barrel cortex on an independent validation training set.
(A,B) ISI distribution of spontaneously and stimulus-evoked firing validation
sets and 99% confidence bounds bootstrapped from CSM. (C–D) Time-rescaling
plots of training data sets for spontaneously firing and stimulus-evoked firing,
respectively. Dashed lines are 95% confidence bounds, and the solid line is the
rescaled ISIs. The solid line along the digagonal is for visual comparison to an
ideal fit. (E–F) Similar time-rescaling plots for the validation data sets.

Appendix C: Causal State Transducers and Predictive State
Representations

Mathematically, CSMs can be expanded to include the influence of external
stimuli on the process, yielding causal state transducers, which are optimal
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representations of the history-dependent mapping from inputs to outputs
(Shalizi, 2001). Such causal state transducers are a type of partially observ-
able Markov decision process, closely related to predictive state represen-
tations (PSRs) (Littman et al., 2002). In both formalisms, the right notion
of “state” is a statistic, a measurable function of the observable past of the
process. Causal states represent this through an equivalence relation on
the space of observable histories. For PSRs, the representation is through
“tests”—a distinguished set of input-output sequence pairs. The idea is that
states can be uniquely characterized by their probabilities of producing the
output sequences conditional on the input sequences.

An algorithm for reconstructing causal state transducers would begin
by estimating probability distributions of future histories conditioned on
both the history of the spikes and the history of an external covariate Y, for
example, P(X∞

t+1 | Xt
−∞, Yt

−∞), and otherwise be entirely parallel to CSSR.
This has not yet been implemented.
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