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Abstract

Neuroscientists researching locomotion take a top-down approach by elucidating high-
level cortical control circuits. In contrast, biomechanists prefer to focus on structural
and mechanical aspects of the legged movement apparatus. We posit that studying
interplay between neural co-ordination and legged biomechanics can yield crucial
insight into (a) motor control and (b) human leg morphology. Physiological facts
indicate that muscle actuator state (activation, length and velocity) is key to this
neural-structural interplay. Here we present a novel model-based framework to resolve
individual muscle state and describe neural-structural interactions in normal gait.

We solve the inverse problem of using kinematic, kinetic and electro-myographic data
recorded on healthy humans during level-ground,self-selected speed walking to es-
timate state of three major ankle muscles. Our approach comprises of two steps.
First, we estimate neurally-controlled muscle activity from EMG data by building on
statistical and mechanistic methods in the literature. Second, we perform a system
ID on a mechanistic (Hill-type) model of the three muscles to find tendon morpho-
logical parameters governing evolution of muscle length and velocity. We implement
the parameter identification as an optimization based on the hypothesis that neural
control and lower limb morphology have co-evolved for optimal metabolic economy
of natural walking. We cross-validate our framework against independent datasets,
and find good model-empirical ankle torque agreement (R2 = 0.96).

The resulting muscle length and velocity predictions are consistent with in vivo ultra-
sound scan measures. Further, model predictions reveal how leg structure and neural
control come together to (a) define roles of individual plantar flexor muscles and (b)
boost their joint performance. We find that the Soleus operates as a steady efficient
force source, while the Gastrocnemius functions as a burst mechanical power source.
An analysis of the estimated states and optimized parameters reveals that the plantar
flexors operate jointly at a net mechanical efficiency of 0.69 ± 0.12. This is roughly
three times higher than the maximal efficiency of skeletal muscle performing positive
work. Our results suggest that neural control may be tuned to exploit the elasticity
of tendinous structures in the leg and achieve the high walking economy of humans.
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Chapter 1

Introduction

Locomotion is a highly concerted effort coordinated by a multitude of physiological
systems. Control commands initiated in the brain travel through the spinal cord and
the peripheral nervous system down to skeletal muscles that actuate the lower limbs.
The forces generated by muscles are transmitted through the tendinous structures to
the skeleton. Forces on the skeleton cause joint motion and mechanical interactions
with the environment. These interactions are fed back to the nervous system through
the tendons, muscle sensors and visual/proprioceptive circuits. The environmental
and sensory information relayed back facilitates maintenance of the rhythmic feature
of gait, and also helps in control and planning of next steps. A lumped component
description of this system would group the nervous system blocks and the musculo-
skeletal structures in the leg as ‘neural controller’ and ‘plant’ respectively (Figure
1-1). This thesis is about understanding the interactions between the nervous system
(controller) and the leg structures (plant) in human walking.

Neural 
Controller

Muscle
Actuator

Structure: 
Tendon and 

Skeleton 

Mechanical 
E�ects and 
Interaction 

with Environment

Plant

Figure 1-1: Hierarchy in physiological systems influencing locomotion. We refer to the shaded
block as the ‘Plant’.
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1.1 Context

To understand interactions, we need to first place them in context of the mechanical
and neural aspects of locomotion.

It has been argued that mechanical aspects dominate human walking. Inverse
pendulum walkers and passive dynamical robots, having little control or actuation,
largely mimic trends observed in human walking [1, 2]. Logically, this leads to the
expectation that changing mechanical loading and speed requirements would cause
significant changes in motions. However, there is evidence that kinematic profiles are
conserved across walking speed and body weight load [3]. This could be interpreted as
the influence of some feed-forward neural encoding of kinematics. The feed-forward
hypothesis becomes unlikely if we consider the major kinematic variations between
air-stepping and ground-stepping [3]. Thus, it appears that perception and sensation
of ground contact are defining factors. This is very reasonable given the rhythmic
nature of locomotion - as perception and contact are key to rhythmic phase transi-
tions in many systems [4]. Physically, these phase transitions may be enforced via
feedback circuits communicating lower level sensation of contact to higher level neural
controller structures, and vice versa. By definition, this interplay has to be mediated
via the musculo-skeletal structures in the leg where the neural feedback sensors and
muscle actuators are located. Thus, the interplay between neural control and me-
chanical effects is significant in locomotion, and is mediated by the musculo-skeletal
structures in the leg (plant).

1.2 Literature Survey

The study of this interplay is at a level in between the extremes of passive dynamic
mechanical models [1] and purely feed-forward pattern generator models [5]. Neural
co-ordination at the level of the musculo-skeletal structures in the leg has been studied
widely by the neuromuscular modeling community. But the interaction between the
neural and mechanical components is not sufficiently captured in existing models
which belong to the two categories discussed below.

1.2.1 Inverse Modeling

These studies try to infer features of neural coordination or leg structure from in vivo
motion capture studies. Most inverse studies have focused on inferring either of the
above.

Inferring Neural Control

To infer neural coordination features, dynamic optimization approaches have been
proposed [6, 7]. These studies use physiological models of musculo-skeletal structures
in the leg, and dynamically optimize time-varying neural commands that activate
different sets of muscles - to track in vivo data and/or minimize some performance-
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related cost objectives. There are three main questions relating to the accuracy and
uniqueness of the optimized activation estimates.

• Firstly, the actual objectives governing neural activation can be complex and
the differences in goals of different muscles may not be captured in the modeled
costs.

• Secondly, there is no systematic consideration of the variability in neural com-
mands activating muscles and the redundancy in the neuromuscular system
wherein different sets of activation patterns could lead to the same gross me-
chanical effects.

• Finally, most of these studies set the many parameters governing the plant
dynamics (musculo-skeletal models) from values in literature even though there
are no standard techniques to capture subject-to-subject variations in these
parameters.

Thus, these studies do not appropriately capture the interplay between neural control
and leg structure - as they set the leg structure and optimize for the highly variable
neural control features based on controversial objective functions.

Inferring Leg Structure

Other inverse studies have focused on capturing the key features of muscle-tendon
structure and behavior in locomotion by hypothesizing mechanistic approximations of
musculo-skeletal dynamics. In one such study, plant dynamics is represented through
clutch-spring approximations [8]. This minimalist representation is based on the
hypothesis that muscle-tendon units work like linear springs when they are ‘clutched’
on by the neural commands activating muscles. These mechanistic models have higher
predictive power, elucidate general principles of legged mechanics and tell us that
spring-like behavior of muscles may be key to walking. However, they too, do not
capture the interplay between neural control and leg structure as they lump both the
active neurally controlled muscle and passive structural tendon elements into springs.
To capture the interplay, it is important to decouple the active and passive structures.

1.2.2 Forward Modeling

To avoid the computational problems in capturing both key aspects of neural control
and leg structure in inverse problems, researchers have built forward models to cap-
ture interplay between these two aspects. These models are based on physics-based
guesses of controllers that lead to observed trends of legged mechanics in walking.
For example, it has been shown that a purely reflex-actuated model capturing the
conceptual features of neural-mechanical interaction adapts to terrain variations [9].
While such models have the power to resolve high level features and suggest exper-
iments, it is hard to verify them directly against ground truth. In vivo measures of
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accuracy of the proposed controllers are often inaccessible. Further, with such for-
ward approaches, it is hard to obtain detailed resolution of control features without
resorting to manual tuning or approximations of a multitude of parameters.

In summary, neither the inverse approaches nor the forward approaches existing in
the literature fully capture the interactions between neural control and leg structure
in locomotion. Thus, it is important to develop a framework that can (a) capture the
physics of the interplay like the forward methods and (b) obtain high granularity of
information from empirical data without compromising the physics of the interactions
we seek to understand.

1.3 Thesis Objectives

The goal of this thesis is to develop a modeling framework that uses human gait data
to capture quantitative insights about the interplay between neural and structural
aspects governing ankle behavior during walking.

Taking inspiration from biophysical features governing these interactions, we re-
frame the inverse problem as a two-step combination of (a) a hidden state estimation
and (b) system ID problem. We anticipate that each of these steps will address com-
putational difficulties faced by previous efforts, without compromising the important
physics involved.

First, we address challenges arising from system redundancy and neural control
variability by building on physical and statistical techniques to estimate neural control
from in vivo electro-myographic data. Then, we hypothesize that neural control and
leg structure have co-evolved for optimal economy of natural walking. We use this
hypothesis to drive an optimization and identify key invariant parameters defining
actions of musculo-skeletal structures.

We find a model structure that predicts human-like ankle torque from empirically
based inputs about ankle motion and muscle activity. Finally, we use this model
to probe (a) ankle muscle state profiles, (b) roles of individual ankle muscles, (c)
performance metrics regarding function of ankle muscles and (d) structural and neural
features governing design and control of the ankle muscles during walking.

1.4 Chapter Summary

In Chapter 2, we introduce several aspects of the physiology and gait biomechanics
that would aid in reading this thesis.

In Chapter 3, we detail the computational framework to estimate muscle state
from motion capture data. We propose a hybrid statistical-mechanistic estimator of
muscle active state from electro-myographic data, and develop a system ID procedure
for identifying key morphological parameters needed for estimating muscle length and
velocity.

In Chapter 4, we evaluate the effectiveness of the methods from Chapter 3. We
discuss robustness and sensitivity issues influencing the muscle activation estimates.
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Then we describe analytical experiments performed to validate the system ID ap-
proach and understand the solutions. Finally, we cross-validate the entire framework
on test datasets.

In Chapter 5, we present model predictions regarding leg structure, neural control
and the interplay between the two aspects. We present ankle muscle state estimates,
discuss role-division between the two posterior-leg muscles and present several metrics
suggestive of their function and energetic performance.

Finally, in Chapter 6, we summarize the conclusions of our study and suggest
directions for future work in both the scientific and device engineering realms.
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Chapter 2

Background

This chapter introduces concepts and facts relating to biomechanics, musculo-skeletal
structures and neural control that may be useful in reading this thesis. We start by
introducing general gait analysis facts and terminology. Then, we outline biomechan-
ical and anatomical features affecting human ankle motion in walking. In the last
few sections, we delve into the relevant physiology of neural control, muscle actua-
tion, tendon transmission and the interactions between these different aspects. The
descriptions are developed from biological, systems and physics viewpoints. We end
the chapter with a detailed statement of the problem solved in this thesis.

2.1 Walking

In this section, we introduce some terminology relating to gait analysis and commonly
accepted energetic features governing walking.

2.1.1 Gait Cycle

Human walking is a periodic motion, and is often analyzed with reference to normal-
ized time periods - ranging from 0-100% of gait cycle (GC). Consecutive heel-strikes
of the same limb designate the start and end of a period (0% and 100% points).
Typically, walking is analyzed for data over one gait cycle. Hence all plots of data in
this thesis will be presented with respect to gait phase or percent gait cycle units.

Figure 2-1 shows the division of gait cycle into phases. Primary periods of inter-
est for this thesis are the stance-phase (during ground contact) and the swing-phase
(when a limb is not in contact with ground). Early stance is used to refer to the
initial contact and loading phases, before the contra-lateral foot is lifted off for swing.
Pre-swing refers to the final phase of stance between contralateral heel strike and ipsi-
lateral toe-off. Toe-off is used to designate the end of stance phase and the beginning
of swing phase for a given leg.
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Figure 2-1: Gait Cycle Phase Divisions: Source [10]

2.1.2 Locomotion Energetics

The major sources of energy expenditure during locomotion come from the need to
activate muscles and move the body forward/against gravity. Energy cost for most
natural walking speeds has a quadratic dependence on speed [11]. There are variations
of this quadratic dependence that account for step length and step rate, but they all
have the same general monotonically increasing trend with speed. However, a metric
commonly used for energy expenditure in locomotion is the energy expended per unit
distance walked normalized by subject weight (J/(kg ·m)). This metric, also referred
to as locomotion economy in this thesis, has a concave up relationship with walking
speed. As discussed in [11], it has been shown that a person walking in a natural
self-selected manner adopts speeds close to the most economic speed. Therefore, for
a subject walking at their preferred speed, it is safe to assume that the metabolic
energy consumed has to be close to the minimum of the metabolic energy per unit
distance traveled. Further, if the motion of the subject is known consistently at self-
selected walking speeds, the metabolic energy consumed corresponds to the minimum
metabolic energy expenditure for that subject’s walking motion.

2.2 Muscle-Tendon Units of Ankle-Foot Complex

Much of the motion involved in level ground walking is in the sagittal plane. In this
section we introduce the major structures influencing sagittal plane motion of the
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ankle joint we study in this thesis. These include the Triceps Surae muscle-tendon
units, the Tibialis Anterior muscle-tendon unit and the Achilles tendon (Figure 2-2).

Tibialis
Anterior

ankle

Figure 2-2: Muscles and Tendons of the Ankle-Foot Complex

The Triceps Surae comprises the two heads of the two major masses of muscle in
the posterior part of the lower leg. The two muscles are Soleus and Gastrocnemius,
with the latter having two heads (medial and lateral). These muscles insert into the
bone of the heel of the foot (Calcaneus). Commonly they are referred to as the calf
muscles. The Tibialis Anterior muscle is located in the anterior part of the lower leg.
Finally, there is the Achilles tendon (ACHI) - known to be the largest and strongest
tendon in the body. This mass of tendinous structures connects the Calcaneus with
both the Triceps Surae muscles.

All the muscle-tendon units are unidirectional actuators, and can cause two kinds
of motion at the ankle joint: plantar flexion and dorsiflexion. Plantar flexion is a
motion of the foot rotating the forefoot away from the shin. Plantar flexor refers to
a muscle that causes plantar flexion. Dorsiflexion is the reverse of plantar flexion;
and rotates the forefoot upwards towards the front of the shin. Dorsiflexor refers to
a muscle that causes dorsiflexion.

Of the major muscle-tendon units outlined above, the Soleus (SOL) and Gas-
trocnemius (GAS) are the major plantar flexors, and the Tibialis Anterior (TA) the
major dorsiflexor. There are smaller plantarflexors1 and dorsiflexors2, that are not

1Flexor Longus muscles, Posterior Tibialis, the Peroneus Longus and Brevis muscles
2Extensor Hallicus Lingus and Extensor Digitorum Longus
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considered individually in this thesis. Their effect is lumped into the effects of the
bigger muscles in their categories.

2.3 Muscle Physiology

This section (a) describes the process of actuation of skeletal muscle and (b) intro-
duces qualitative and quantitative aspects of features affecting muscle dynamics.

2.3.1 Structure

Skeletal muscles are highly structured. Structural units in order of increasing granu-
larity are muscles, fascicles, fiber bundles, muscle fibers (cells), myofibrils, myosin and
actin filaments. Muscles contain fascicles, and fascicles contain fiber bundles and so
on. The myosin (thick filaments) and actin (thin filaments) are hexagonally arranged.

2.3.2 Force Generation

Muscle is a tension actuator controlled by nervous system signals. Nervous impulses
are conveyed to muscles at the neuromuscular junction via firing of efferent motor
neuron action potential trains (a series of all or none pulse-events). These action po-
tentials set off a depolarization wave that invades muscle cells via transverse tubules.
This invasion depolarizes the membranes of the muscle’s calcium stores - sarcoplasmic
reticula (SR) - causing the release of calcium ions from the SR into the cell interior.
The calcium ions then bind to a protein (troponin in the troponin-tropomyosin com-
plex) that sterically blocks myosin binding sites on the actin filament in resting muscle.
The calcium binding with this complex causes a conformational change, exposing the
myosin binding sites on the actin filament. This allows myosin heads to bind with
actin, and causes the formation of ‘cross-bridges’.

The cross-bridge formation releases energy stored by myosin. This causes the
myosin molecule to relax by rotating its globular head, which in turn induces the
filaments to slide past each other longitudinally. The formation of cross-bridge bonds
stiffens the muscle, helping it generate force by a mechanism similar to that involved
in connecting many stretched springs. The sliding of filaments during force generation
imposes a length-dependence on this stiffness. Further, since it takes a finite amount
of time to attach, if filaments are sliding past each other at high velocity, lesser
cross-bridges will be formed and less force will be generated. This can be interpreted
naively as a variable ‘viscosity’ feature of the muscle dynamics, and was explained by
A.V. Hill through difficult and famous thermodynamic experiments relating speed of
shortening, rate of energy release, and muscle force [12]. A key feature of the force-
velocity relation is that the slope during slow lengthening is around six times greater
than that during slow shortening.

After the action potentials cease to fire, the calcium ions get taken back into
SR stores. The decrease in free calcium ions reverses the protein complex changes,
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causes breakage of cross-bridges between actin and myosin filaments and causes force
to cease.

2.3.3 States and Dynamics

The force generation described above is often described as contraction dynamics of
the muscle. For a systems description of these dynamics, it is important to identify
and define the three states of muscle influencing contraction: activation, length and
contractile velocity.

Activation: The muscle active state or ‘muscle activation’ is defined in the literature
as the relative amount of calcium bound to troponin [13, 14]. The significance of
this binding to force generation is apparent from its role in cross-bridge formation
as outlined above. For a systems level description, the active state is an ‘average’
property of a set of fibers that are excited asynchronously by neural pulse-trains [15].
Therefore, it is an indicator of the relative number of exposed myosin binding sites on
the actin filaments, or in other words the relative 3 number of cross-bridges that can
be formed at a specific time-point. A muscle’s active state describes the (relative)
level of its force-generation capability commanded by the nervous system.

Length: This is the length of the muscle fascicles. The dependence of muscle dynam-
ics on length is a bell-shaped tension-strain curve that comes about from the sliding
filament theory discussed above.

Contractile Velocity: This is the rate of change of fascicle length during contrac-
tion. The dependence of muscle dynamics on velocity comes from the ‘viscous’ effects
discussed above. Based on muscle velocity, force generation of muscle is divided into
three modes: (a)isometric mode referring to zero-velocity, constant length force gen-
eration, (b)concentric mode referring to negative velocity or shortening contraction,
(c)eccentric mode referring to positive velocity or force generation in which fascicles
lengthen.

All three muscle states affect muscle impedance (effort to flow relation) -as the
dynamics (relating motion to force) depends on each of the three states. Muscle
models formalize the state-dynamics dependencies.

2.3.4 The Hill-type Muscle Model

One of the most widely accepted models of muscle dynamics is the Hill model. This
model is based on several empirical studies, and models muscle contractile force FCE

as a multiplicative effect of functions of each of the three states.

FCE(t) ∝ α(t) · fl(lCE(t)) · fv( ˙lCE(t)) (2.1)

α is activation and lCE is muscle (contractile element) length. fl and fv denote the
length and contractile velocity dependencies of contractile force respectively. Hill
models also include a non-linear parallel elastic term representing the elastic struc-

3relative to maximum number of cross-bridges that can be formed in the muscle at any time
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tures (collagenous fibers) encompassing the muscle. The total force generated by the
muscle is Fm = FCE + FPE.

The Hill model assumes the active state to be independent of the fascicle length
and velocity. There are other models like the Distribution Moment model [14, 16]
which detail complex interactions between the activation and length/velocity states as
well. For our purposes, the Hill model was chosen for its elegance and simplicity. With
a small number of parameters defining the dynamics, this model captures impedance
and operation regimes pertaining to most functions of skeletal muscle - ranging from
actuator, clutch, strut to brake.

2.4 Tendon Physiology

This section describes qualitative and quantitative aspects of tendon structure, dy-
namics and function.

Tendons are masses of passive, connective tissue connecting muscle to bone. They
attach to muscles in oblique series arrangements (at angles termed pennation angles4),
to exert pulling forces when the connecting muscle(s) are active. They are composed
of parallel arrays of collagen fibers packaged together. As such, tendon structure
mimics the parallel elasticity described above.

The tendon elasticity is non-linear, with a length-tension curve that is an offset
exponential [17, 18, 14].The tangent modulus of elasticity increases with strain at low
strain and stays approximately constant with strain at higher strains. Tendon action
is governed by parameters related to its structure or morphology such as slack length,
cross-sectional area and reference strain. The reference strain depends on the ratio
of muscle to tendon cross-sectional areas. While most models of tendon are lossless,
animal tendon has been shown to lose upto 6-11% of its stored energy due to viscosity
during shortening at physiological rates [17, 14].

The main function of tendon is to transmit force between muscle and load, like
gears in a bicycle. Tendons also mediate the transfer of information about mechanical
effects at the load to the nervous system. Abstractly, tendons link the load and the
actuator, and affect the impedance seen by the actuators. As such they can modulate
the effect of muscle actuation.

2.5 Neural-Structural Interactions

It is apparent from Figure 2-3 that tendon morphology and neural commands both
affect muscle dynamics and muscle state.

• Tendon morphology represents the passive, structural effects on muscle state.
Tendon structure affects tendon dynamics, and in turn the muscle dynamics by
affecting muscle length and velocity.

4Greater pennation angles mean better transmission of muscle force, and less muscle force needed
for a given movement
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Figure 2-3: Placing neural control, muscle actuation, tendon transmission and environmental
perception in the hierarchical context. Artwork courtesy Cajigas 2009.

• Neural commands represent the active effects on muscle state. They affect
contraction dynamics, and in turn the muscle dynamics by affecting muscle
active state.

Therefore, interactions between neural control and features of leg structure are man-
ifested in the muscle state evolution.

Implicitly, this means that the interplay we seek to understand is manifest in
muscle impedance modulation. Since neural commands sometimes convey ‘intent’
to the limb and tendinous structures sometimes transmit environmental effects to
the nervous system, muscle impedance changes result from and mediate both ‘intent’
and ‘feel’. Thus, to understand the interactions between the two aspects, we must
first understand muscle impedance modulation. Equivalently, we must estimate the
common denominator affected by both neural and structural aspects - the muscle
state evolution.

2.6 Problem Statement

This is a good place to add some depth and perspective to the thesis problem in-
troduced in Chapter 1, in light of the background described here. The arguments
presented above suggest reframing the inverse problem to capture neural-structural
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interactions from gait data, into the inverse problem of estimating muscle state from
gait data. Now we can pose the mathematics of this latter problem for ankle joint
motion.

τ(t) =
∑
i

(Fi(t)ri(t)) (2.2)

Fi(t) = Fm,i(t) = Ft,i(t) (2.3)

Fm,i(t) ∝ αi(t) · fl(lCE,i)(t) · fv( ˙lCE,i)(t) + FPE(lCE,i) (2.4)

Ft,i(t) = ft(λi(t), ~mi) (2.5)

The first equation expresses net ankle torque as the sum of individual muscle-tendon
unit torques. Fi(t) is the muscle-tendon force, which is equal to both the muscle force
Fm,i, and tendon force Ft,i. ri(t) is the time varying moment arm of muscle tendon
unit i. The second equation describes the kinetics of the non-linear system formed
by each individual muscle-tendon unit. The third and fourth equations are for the
non-linear functional forms of muscle and tendon. λi(t) refers to tendon strain, which
is related to lCE,i(t) by the structural features and geometry of the muscle-tendon
attachments for unit i. Therefore, λi is implicitly known if lCE,i is known. ~mi refers
to the morphological parameters governing the tendon force-length relation ft.

All in all, there are three independent unknowns (αi, lCE,i, ~mi) for each muscle-
tendon unit i. The first two are hidden state time series variables, and the last
unknown ~mi represents time invariant structural features governing ft.

The system has many degrees of freedom within each muscle tendon unit. The
summation imposes yet another redundancy on the inverse problem of inferring in-
dividual muscle-tendon effects from overall joint torques. The inverse problem of
constraining these degrees of freedom to obtain muscle state from data reduces to (a)
estimation of hidden states αi and lCE,i and (b) system identification of ~mi for each
muscle-tendon unit i spanning the ankle. The next chapter details the methods we
used to solve this inverse problem.
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Chapter 3

Methods

Several empirical and mathematical techniques were employed to obtain data-driven
ankle muscle state estimates, while capturing key aspects of both neural control
and leg structure in walking. Standard empirical techniques were used to collect
heterogeneous motion datasets on healthy adults. The kinematic and kinetic data
were processed to obtain gross information (angles and torques) about joint motion.
Standard gait analysis methods were then employed on the joint angles to estimate
muscle-tendon unit state. Using this information and the electro-myographic data,
underlying muscle states were estimated in a two-step fashion. First, a Bayesian
inference algorithm was used to obtain individual muscle activation estimates from
the EMG data. Second, key morphological parameters influencing muscle function
and energetics were identified with an optimization scheme. This chapter provides a
detailed description of each of these steps: (a) data collection, (b) data processing for
ankle joint and muscle-tendon state, (c) estimation of ankle muscle state using EMG
data and a musculoskeletal model-based system ID procedure.

3.1 Data Collection Procedures

Kinetic, kinematic and electro-myographic data were collected at the instrumented
Motion Analysis Laboratory (Holodeck) in the Computer Science and Artificial In-
telligence Lab (CSAIL) at MIT, in a study approved by the MIT Committee on the
Use of Humans as Experimental Subjects. Five healthy adult males participated in
the study. Care was taken to ensure that the subjects did not suffer from known
gait pathologies, injuries and leg length asymmetries. The range of anatomical di-
mensions, ethnicities and athletic abilities represented in the study are detailed in
Table 3.1.

After obtaining informed consent, the participants were asked to walk barefoot at
a self-selected speed (typically around 1.25 − 1.35 m/s) across a 6 m walkway in the
Holodeck. Walking speeds within 5% of self-selected speed were accepted. For each
study participant, a total of 25-30 trials were collected.
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Table 3.1: Subjects for Motion Capture Data Collection

Subject Age Weight Height Leg Length Gender Ethnicity Athletic
Initials [yrs] [kg] [in] [in] Ability

JS 21 81.8 75.5 40.6 Male White Moderate

KE 31 77.8 72.0 36.6 Male Japanese Moderate

RS 26 72.7 73.0 40.9 Male South Asian Basic

EJ 21 72.0 67.0 34.2 Male Korean Professional

AS 24 86.4 71.0 38.4 Male East Indian Basic

The data collection procedures were based on standard techniques. Three kinds
of data were collected synchronously:

Kinematic Data: An infrared camera system (16 cameras, VICON motion analysis
system, Oxford Metrics, Oxford, UK) was used to measure three-dimensional
locations (with precision of about 1 mm) of reflective markers at 120 Hz. The
markers, 13 mm in diameter, were placed at 46 (bilateral) locations on the
participant’s body (as per the prescription of the Helen Hayes marker model)
to track the subject’s motion during the trials.

Kinetic Data: Two back to back platforms (Advanced Mechanical Technology, Inc.,
Watertown, MA) embedded in the walkway were used to measure ground reac-
tion forces synchronously with the kinematic data at a sampling rate of 1080 Hz.
To ensure natural gait, subjects were kept blind to the force-plate locations. The
platforms measured ground reaction force and center of pressure locations to
precisions of about 0.1 N and 2 mm respectively.

Electro-myographic Data: Surface EMG from the Soleus, Medial Gastrocnemius,
Lateral Gastrocnemius and Tibialis Anterior muscles from one randomly cho-
sen leg was also recorded synchronously at sampling rate of 1080 Hz. A 16
channel EMG system and MA-411 preamplifiers (20X gain) from Motion Lab
Systems were used for surface EMG measurements. The EMG data collection
was done in the presence of a physician, using disposable, pre-gelled surface
bipolar electrodes with 20 mm center-to-center spacing (Electrode Store Model
BS-24SAF, part # DDN-20).

To test robustness of modeling and estimation procedures, data was collected on
two days for two of the five subjects. Consistency of the procedures and calibrations
performed on separate days was ensured.
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3.2 Data Processing

3.2.1 Joint State

Information at the joint level is, physiologically, the coarsest description of limb move-
ment possible. Therefore, analysis of joint state serves as a good starting point for an
inverse problem. This section summarizes the steps taken to obtain joint mechanical
state (angle and torque) from raw marker and force plate data.

Raw marker data was labeled and gaps in marker locations were filled using the
interpolation algorithm in the VICON motion capture software. The VICON motion
capture data was then exported into SIMM (Software for Interactive Musculoskele-
tal Modeling, MusculoGraphics Inc., Evanston, IL) using the SIMM C3D Module.
SIMM was chosen for analysis of joint state because of (a) the anatomical accuracy
in representing complicated joints and skeletal structures and (b) the ability to access
subject-specific parameters used in the calculation during modeling for consistency.

Inverse kinematics and inverse dynamics analyses on the data were performed in
SIMM to obtain joint angle and torque time series. The SIMM Full Body Dynamic
Model was used as the template for inertial, geometric and mechanical properties.
This template model was scaled to subject dimensions using algorithms within SIMM.
The marker data were digitally filtered using fourth-order zero-lag Butterworth filters.
The cut-off frequency was 10 Hz. Forces were not smoothed as the sampling rate
was high. Inverse kinematics was performed in SIMM to find joint angles. The
algorithm uses marker trajectories and internally pre-defined anatomical landmarks
to find instantaneous joint centers, and then calculates joint angles from these center
points. Equipped with the joint angles and the measured ground reaction forces,
it is possible to perform inverse dynamics and find the joint torques generated by
the subject during the trial. The inverse dynamics analysis was performed using the
SIMM Dynamics Pipeline to obtain joint torques, segment and full body center of
mass positions as a function of time.

Since each trial normally comprised multiple gait cycles, data for individual gait
cycles was extracted by identifying gait cycle start and end points. These points were
estimated using sudden changes in ground reaction force and repeating patterns in
heel marker position. To prevent errors in gait cycle start and end point definition
from propagating into the estimation and model identification steps, systematic errors
were corrected as follows. All processed data was circularly shifted to optimize the
simultaneous periodicity of the ankle, knee, hip joint angle and torque gait cycles.
Typically, this meant a circular shifting of 2-5 points out of 100. The data was then
time-normalized to percent gait cycle co-ordinates. Figure 3-1 shows the sagittal
plane ankle angle and ankle moment averaged across all trials for each subject.

Only one degree of freedom ankle motion and dynamics were considered for our
analysis, since most of level ground walking is known to occur in the sagittal plane.
Forward progression speed in the sagittal plane and stride length were calculated using
the full body center of mass position trajectory obtained from the inverse dynamics.
Timing of significant gait events such as toe-off (stance-end) and contra-lateral heel
strike were calculated from patterns in changes of force measurements and heel/toe
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Figure 3-1: Ankle angle and moment for 5 subjects. Averages are from steady state gait cycles.
Standard deviation indicated is across multiple walking trials for a given subject. Average steady
state speed across subjects was 1.25 m/s.

marker positions. Typically toe-off occurs around 50-80% of gait cycle - when the
ankle moment transitions from positive to negative (plantar flexion to dorsiflexion).

3.2.2 Muscle-Tendon State

To transition from joint state to individual muscle state, it is necessary to first obtain
the muscle-tendon unit state. Joint angle trajectories are related to the muscle-tendon
unit lengths via the geometry of the musculoskeletal system. This section outlines
the procedures followed to obtain muscle-tendon state from joint state.

The literature is rife with several geometrical models that have been used to
estimate muscle-tendon lengths from joint angles. For our estimation, we chose the
SIMM Full Body Dynamical Model introduced in Section 3.2.1, as it is widely accepted
as a professional standard in the field. This model is unique in its level of anatomical
detail and accuracy. In particular, it integrates digitized bone surface data with
cadaver data to define points where muscle wraps over bone. This enables the model
to capture variations in muscle paths and lines of muscle-tendon action arising from
the complex musculo-skeletal geometry [19].

For the actual calculation of muscle-tendon length from joint angle, we followed
SIMM’s method as it is well suited to the geometrical model. Briefly, the inputs
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to the estimation algorithm are the joint angles obtained from inverse kinematics
and the musculoskeletal parameters scaled to the subject dimensions. The software
performs a co co-ordinate transformation to the individual muscle frame defining
muscle path, to compute muscle-tendon length. The algorithm is detailed in [19].
We also obtained estimates of the moment arms (r(t) in Equation 2.2 from the same
model for consistency, for use in the system ID step to be described in Section 3.5.

Figure 3-2: Muscle-tendon unit length and moment arms for 5 subjects. Same time normalization
and averaging as for joint state.

The plots in Figure 3-2 show averages of right and left estimates obtained using
SIMM for all trials on each subject. The averaging accounts for disparities in left and
right muscle parameters that may have arisen during scaling of the template model.

Summarizing briefly, we have detailed in the previous two sections the many stan-
dard gait analysis procedures employed to (a) collect in vivo motion data and (b)
to use the data for calculation of joint state and muscle-tendon length profiles. We
now have some base information to build the estimator of muscle state referred to in
Section 2.6.

3.3 Estimation of Muscle State

While joint angles can help estimate the geometry of the muscle-tendon unit as a
whole, joint and muscle-tendon mechanical state by themselves do not uniquely spec-
ify the state of individual muscles and tendons. This is because of two reasons:
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1. Most joints (including the ankle joint discussed here) are over-actuated with
many muscle actuators spanning them and multiple muscles can be simultane-
ously activated.

2. Further muscle-tendon unit state cannot be directly related to muscle state
without knowledge of the morphology governing tendon action.

To address these respective redundancies, we need phase and amplitude information
about neural control at the individual muscle level as well as the tendon morphol-
ogy governing muscle action within the muscle-tendon unit. We evolved a two-step
framework to address these aspects by:

1. Analyzing EMG data for neural control at the individual muscle level via a
hidden state estimation

2. Obtaining key morphological parameters affecting muscle state within the muscle-
tendon unit via a system identification procedure

The next two sections detail our two-step method for estimating individual muscle
state from the EMG data and the joint/muscle-tendon unit states.

3.4 Neural Control to Individual Muscles

Among all the information recorded during the human trials, the EMG data is the
only piece that directly relates to neural control commanding individual muscle ac-
tivity. Therefore it is valuable in addressing the redundancy challenge arising from
co-activation of multiple muscles. The next few subsections describe (a) the bio-
physics of the coupling between neural commands, muscle activation and EMG data,
(b) the method we evolved from those in the literature to estimate muscle activa-
tion from EMG data, (c) our implementation algorithm and (d) the results of our
estimation.

3.4.1 Biophysics of Muscle Activation

Before using the information in the EMG data to infer neural control commanding
muscle activity, it is important to understand the biophysics associated with muscle
activity and the nature of the information contained in the EMG signal. Figure 3-3
provides a systems view of the important information about muscle activation bio-
physics from Chapter 2.

The neural action potential train is a spike-like process that commands the muscle
active state via excitation, activation and deactivation dynamics.

Neural excitation can be viewed as a jump process causing release of calcium
ions from the sarcoplasmic reticulum (SR). The jumps can be physically related to
sourcing of calcium ions. Implicit to this jump process are all the non-linear dynamics
governing motor unit recruitment and firing patterns - which are blanketed into neural
excitation jump process in this thesis. It is known that the relative increase in calcium
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Figure 3-3: Biophysics of muscle activation.

ions in response to a stimulus depends on the history - i.e. the pre-stimulus free
calcium concentration [15].

Activation dynamics refers to the link between the neural excitation process and
the active state. It comprises the calcium-troponin binding dynamics dictating cross-
bridge formation, and involves a series of slow, 2nd order events, rate-limited by
biochemical reaction rates (especially the calcium-troponin binding kinetics), ion dif-
fusion rates and field-induced (drift-like) ion currents. Activation can be viewed as
a slow-diffusion like process driven by the jump process sourcing calcium. The acti-
vation reaches its peak 10 − 12 ms after stimulation frequency increases from basal
levels [15].

Finally, the deactivation dynamics refers to the process by which calcium ions get
taken back into the sarcoplasmic reticulum when action potentials cease to fire. Thus
fall in excitation is like a sink of calcium ions. The decrease in free calcium ions causes
unbinding of calcium-troponin, a fall in the active state, and reestablishes inhibition of
cross-bridge formation by the troponin- tropomyosin complex. Typically deactivation
time constants are slower than activation time constants. The rate limiting factor in
deactivation may be the uptake of calcium into the sarcoplasmic reticulum [20].

The EMG recording is an electric potential measurement. Therefore electromyo-
graphy senses, through the filter of skin and fat tissues, the net effect of the various
pulse-like signals, depolarizations and calcium currents occurring as a result of the
neural commands causing muscle activation. Thus EMG data contains phase and
amplitude information pertaining to the net active state of the muscle - which is an
indicator of the effective neural command at the individual muscle level. This is well
acknowledged in the literature with many reported attempts to infer muscle activa-
tion from EMG data. The upcoming section reviews some of these attempts, and
motivates our approach to this estimation problem.
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3.4.2 Estimation of Muscle Activation

Many mathematical approaches have been proposed in the literature for using EMG
data to estimate muscle activation. While the fancier techniques attempted range
from statistical factor-graph models and autoregressive filters to black box approaches
such as pattern recognition and neural networks, the simpler techniques are most
widely used.

The most common approach is based on the notion that the amplitude envelope
of the demodulated EMG signal is a measure of muscle activity, as the latter is a slow
process compared to the spiky neural excitation events captured in the EMG. The
amplitude envelope is often extracted by applying a low-pass filter on the full wave-
rectified EMG signal. This technique is founded in studies that showed the maximum
likelihood estimate of the amplitude envelope could be obtained by low-pass filtering
the power in the EMG signal [21, 22].

While the low-pass filter technique is simple and elegant, it cannot resolve sud-
den jumps in activity or the spike-like nature of the events causing muscle activa-
tion. Sanger 2007 [23] introduced an innovative Bayesian estimation algorithm that
attempted to sharpen time-resolution. Sanger models the excitation process as a
diffusion process driven by a jump process.

dx = ε(dW ) + (U − x)dNβ x uniform when jump (3.1)

Even though Sanger makes no claims to the physical relevance of his technique, his
model reflects the basic excitation biophysics outlined in Section 3.4.1. An easy way
to see this relevance is to initialize x(0) as N units. These N units of x(t) will diffuse
around till an excitation (frequency β) has a source or sink influence on x(t). Then
the new x(t) will diffuse around and so on. The diffusion process comes in between
jumps, and therefore is driven by the jumps.

The stochastic model of the underlying process and the Bayesian technique means
the approach can capture statistically important features of both the underlying pro-
cess, and the randomness inherent in the EMG measurement itself. For this latter
part, Sanger models the skin/fat tissue filter between actual electrical events in the
muscle and the EMG recording through a probabilistic measurement model.

P (emg|x) =
exp(−emg|x)

x
(3.2)

The key feature of the measurement model is the Supra-Gaussian nature of the condi-
tional probability density function coming about from the x in the denominator. This
feature comes about due to a Laplacian model of the conditional of EMG signal given
x, and the rectification of EMG. The Sanger approach propagates the above models
of excitation and observation using an approximate solution to the Fokker-Planck
equation and Bayes law, to obtain a recursive estimator of x.

A key limitation of using the Sanger model of the underlying process for estimat-
ing muscle activity is that it 1 does not capture two important biophysical features

1like the linear low pass filter model
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outlined above. While Sanger’s article did not claim biophysical interpretations, we
draw these inferences because they are important for our purpose of muscle state
estimation.

1. Firstly, the Sanger model has constant jump frequency and uniformly dis-
tributed jump amplitude. Therefore, it does not model the history dependence
in the rise and fall of active state. The lack of history effects causes the algo-
rithm to find a sudden jump in the estimated activation when the EMG signal
bursts into high amplitude firing, and then mainly diffusion when the EMG
signal remains high, and a sudden downward jump when the EMG stops firing.
Thus Sanger appears to be estimating the release/flow of calcium in the muscle,
and not the active state of the muscle because there are no explicit activation
dynamics in his model.

2. Secondly, the Sanger model has the same jump rate for source and sink or for
activation and deactivation. This is not consistent with the kinetic differences
between the two processes (Section 3.4.1). It is especially important that the
deactivation rate is much longer than the activation rate because it means the
muscle is generating force for a significant period of time even after the EMG
signal dies down. Thus this drawback can cause the estimation of muscle length,
velocity and force in our inverse problem to go astray.

The ideal scenario would be to incorporate time varying activation and deactiva-
tion rates into Sanger’s jump-diffusion process and re-derive his algorithm. However,
there is no appropriate analytical solution for the Fokker-Planck equation in the time
varying rate case, and it would be necessary to use Monte Carlo simulation techniques
for a solution.

A simpler alternative is to assume that Sanger’s x corresponds to calcium levels
or neural excitation, and then find the active state α by applying calcium-activation
dynamics on the x from Sanger’s method. A mechanistic model of the calcium-
activation dynamics is given in [17], and has the following deterministic bilinear form:

dα(t)

dt
+

 1

τact

(γ + (1− γ)x(t))︸ ︷︷ ︸
rate constant

α(t) =
1

τact

x(t) 0 < γ =
τact

τdeact

< 1 (3.3)

This model accounts for the two effects missing from the Sanger specification.
The history dependence is modeled by the dependence of rate on x(t). A higher x(t)
would mean that the rise rate of the activation α(t) is higher. Further the different
activation and deactivation rates are captured in parameter γ which is defined as
the ratio of activation to deactivation time constants. There are instances in the
literature where the bilinear model is used by itself, by setting x(t) = |EMG|. We
chose a hybrid of the Sanger-bilinear model because the bilinear model by itself does
not capture statistical features in the data, and ignores the information contained in
the randomness of the signal. Our implementation of this hybrid approach is outlined
below.
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3.4.3 Implementation Algorithm

The algorithm has 4 main parts: (a) pre-processing, (b) statistical technique, (c)
artifact removal and (d) activation dynamics. All of the steps were followed for each
individual muscle, unless indicated otherwise.

Preprocess: First, we performed 4 standard pre-processing operations [24]. We
removed the DC offset (mean) from the raw EMG data, and calculated the standard
deviation (d) in signal. Then we clipped the signal at times when it is greater than
5d to remove outliers that may have arisen from artificial effects2. We then full-wave
rectified to capture ‘power’-like features. It is important that rectification comes after
the first 2 steps as the rectified signal has a different mean and standard deviation
than the raw recording. Finally, we normalized the rectified signal by the peak EMG
value during the walking trial.

Statistical Technique: The preprocessed gait EMG data was first analyzed using
the Sanger algorithm. The diffusion and jump rates (ε and β) were chosen to be
similar to the parameters in [23]. It is known that the diffusion of calcium ions
should be quite rapid [20, 25]. However, sensitivity to ε is low, and it can be varied
between 0.001 − 100 units. It was set to 0.001 units for this study. The jumps take
care of what the diffusion cannot and the measurement model helps the estimation
a lot. Also, sudden extreme jumps are rare in physical systems, but having a non-
zero jump frequency is statistically important. Further, the jump rate sets the time
resolution of the model especially during ’turn on’ and ’turn off’ of the muscle. It was
empirically found that β between 10−20−10−30 Hz worked well for the gait data, while
parameters outside of this range introduced either really jittery estimates or really
slow build up of active state. For this study β was set to 10−24 Hz as in Sanger’s
study.

Artifact Removal: Before further analysis, we removed motion artifacts on esti-
mate. This step is intermediate to the statistical and mechanistic steps as applying
motion artifact removal on the raw data may cause loss of valuable statistical fea-
tures. Further, it is easy to discern motion artifacts and their sources, after distilling
out the phasic, statistically relevant information from the raw EMG data. It was
found (by examining x) that the ankle plantar flexors have motion artifact spikes
around the foot-flat period, possibly due to movements of the flabby muscles (and
their electrodes). The artifacts should be filtered out to prevent spiking of the es-
timated activations for these muscles around foot flat to mid-stance. Easy choices
for removal are moving average or median filters applied around foot flat (easy to
identify using ankle angle patterns). We used a causal moving average with a 100 ms
time window. The window was chosen to be just high enough to filter out the artifact
without causing loss of information about shape of the activation estimates. The
moving average was time varying as it was only turned on between 8−30% gait cycle
for the Soleus, and 15− 30% gait cycle for the Gastrocnemius.

25d is 99.999% of the data, if we assume a normal distribution.
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Activation Dynamics: With x(t) estimated, we can apply calcium-activation dy-
namics by solving the equation 3.3 in MATLAB Simulink. The activation and de-
activation time constants governing the calcium dynamics were set to average values
specified in [14]. The average activation and deactivation time constants for the ankle
muscles range between 9− 10 ms and 45− 50 ms respectively3. The specific values of
the constants do not matter as much as the ratio between the activation and deacti-
vation constants. The time constants were not scaled to be subject-specific, but the
muscle-specificity allows the estimation to factor in variations arising from differences
in fast-slow fiber compositions of muscles. Since the bilinear equation can amplify
the noise floor, we dealt with any noise-floor by setting the minimum value of the
activation estimate to 10% of the standard deviation when the muscle is on.

The implementation, like in Sanger’s article, was ensured to be causal, recursive
and vectorized for efficiency - with a view to real-time applications that will be out-
lined in Chapter 6. The bilinear differential equation can be implemented using a
difference equation in a micro-controller for speed.

3.4.4 Results

Figure 3-4 differentiates the results of the several implementation steps outlined
above. The figure shows the effect of the activation dynamics on the Sanger esti-

Figure 3-4: Steps between raw EMG data and muscle activation estimate. Gray bursts are
preprocessed EMG data, green solid line shows x, and red dashed line indicates α.

mate x (green). The active state α (red) rises much faster than x - highlighting the

3Time constants were calculated with reference to firing at the neuro-muscular junction
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history dependence of the rise rate. Further the fall in α is slower than the rise show-
ing the difference between activation deactivation rates. The need for the extra rise
and the rising time constant offered by the hybrid approach will become clearer in
the system ID section ( 3.5).

The jumps in the jump-diffusion process model help inform the model with both
sharp rises in the data as well as firing rate changes (recruitment frequencies). This
is a feature that is emergent to trends in the data, that would not arise from simple
filters like integrators with fixed or adaptive window sizes.

Figure 3-5: Activation estimates for 3 ankle muscles for 5 subjects.

Figure 3-5 shows average estimates (across trials) for each muscle for all 5 subjects.
The trial-to-trial variability of phasic trends in the activation estimates is generally
low. Variability in amplitude features is low when activation is close to 0, and rises
when activation is high. The method appears to capture a repeatable average with
as few as 4-5 trials, and even lower in cases of minimal motion artifact.

3.4.5 Active State Estimation Summary

In summary, this section focused on estimating muscle active state from EMG data to
overcome the redundancy arising from joint over-actuation and muscle co-activation.
We reviewed (mainly three) existing approaches to EMG-muscle activity estimation,
and found that current algorithms do not consistently address both biophysical and
statistical aspects of the problem. We described the Sanger algorithm ([23]) that
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comes close to this consistency, interpreted the biophysical relevance of the approach
for our problem, and identified limitations of using the approach as laid out by Sanger.
To overcome the limitations, we proposed that the statistical power of the Sanger
approach be integrated with mechanistic calcium-activation dynamics for estimation
of muscle active state from raw EMG data. Finally we described our implementation
of this hybrid approach and the resulting active state estimates.

3.5 Influence of Tendon Morphology on Muscle

Action

By obtaining information about the neurally controlled active state of individual
muscles, we have addressed the first joint-level redundancy outlined at the start of
this chapter. The second muscle-tendon level redundancy needs to be addressed to
estimate muscle length/velocity profiles and obtain a complete picture of individual
muscle state. For this, we constrained the extra degree of freedom that tendons
provide to muscle action within the muscle-tendon complex.

We accomplished this by identifying key tendon morphological parameters through
a system ID procedure. The next few subsections describe (a) the system ID problem,
(b) the muscle-tendon system models we used, (c) model inputs, (d) the formulation
of our approach to the problem, (e) the optimization technique and (f) the results.

3.5.1 System ID Problem

As outlined in Section 2.5, tendon morphology mediates the neural-mechanical link
in locomotion. The tendon parameters influencing (a) muscle actuation and (b) com-
munication of perception of load to the nervous system were identified in Section 2.4.
Knowledge of these parameters is important to dissecting the length and velocity of
the muscle, given the length and velocity muscle-tendon unit (Section 3.2.2).

It is difficult to measure these parameters in vivo even though some attempts have
been made [26]. As such, cadaver studies are the primary source of information on
these parameters. However, the standard deviations on the measurements are rather
large, and there is no reliable procedure for subject-specific scaling of any nominal
parameters. Therefore, a technique to identify these morphological parameters, in
a way that can explain the gait data of a given subject is necessary. To define the
problem mathematically, it is important to first describe the system dynamics and
available inputs for our system ID problem.

3.5.2 System Model

We defined the system as comprising the major muscle-tendon units contributing to
ankle joint rotation in the sagittal plane: the mono-articular Soleus and bi-articular
Gastrocnemius 4 plantar flexors, the mono-articular Tibialis Anterior dorsiflexor, and

4spanning knee and ankle joints
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the Achilles tendon (Figure 3-6).

.

.
Tibialis Anterior

Soleus
Gastrocnemius

knee

ankle

Achilles
Tendon

Figure 3-6: Modeled ankle muscle-tendon units. Simplification of Figure 2-2.

Two simplifications of the anatomy drive this system definition:

1. We did not explicitly model the influence of knee muscles and knee joint dynam-
ics on the dynamics of the bi-articular Gastrocnemius muscle. This is reasonable
because the problem tackled here is the inverse problem, where the data already
represents that coupling and can be used to extract relevant information. Fur-
ther, the gastrocnemius is known to not transfer much work down from the knee
to the ankle [27] and hence its effect at the ankle can be considered in isolation
from the knee joint state and musculature.

2. We represented both the medial and lateral heads of the Gastrocnemius muscle
as one effective muscle for simplicity, since the two heads act synergistically.

We model the action of the three muscle-tendon units using Hill type muscle dynamics
and tendon functional forms from literature as detailed below.

Muscle Dynamics

The concepts governing the Hill type muscle dynamics were reviewed in the Sec-
tion 2.3. Here we describe our implementation of these dynamics, that is based on
that of [9]. The Hill type muscle model contains a contractile element (CE) represent-
ing the active muscle fascicle fibers and a parallel elastic component (PE) representing
elastic tissue surrounding the contractile fibers.

As in Section 2.3, muscle contractile force is a function of muscle active state α,
muscle length lCE and contractile velocity vCE = ˙lCE.

FCE(α, lCE, vCE, t) = Fmaxα(t)fl(lCE)fv(vCE) (3.4)
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fl and fv are dimensionless relations given below:

fl(lCE) = exp

[
c
|lCE − lopt|
loptw

3
]

(3.5)

fv(vCE) =


vmax − vCE

vmax +KvCE

vCE < 0

N + (N − 1)
vmax + vCE

7.56KvCE − vmax

vCE ≥ 0
(3.6)

The parallel elasticity introduced in Section 2.6is modeled as a unidirectional non-
linear spring:

FPE(lCE) =

 Fmax

(
lCE − lopt

loptw

)2

lCE > lopt

0 otherwise

(3.7)

A low limit parallel elasticity (BE) was modeled to handle the unlikely numerical case
of the muscle tendon unit becoming slack. This is a numerical tool and not a physical
element of the model.

FBE(lCE) =

 Fmax
2

w

(
lCE − lopt(1− w)

lopt

)2

lCE ≤ lopt(1− w)

0 otherwise

(3.8)

The overall force from the muscle is a sum of all these forces:

Fm(α, lCE, ˙lCE, t) = FCE(α, lCE, vCE, t) + FPE(lCE, t)− FBE(lCE, t) (3.9)

Table 3.2: Parameters defining Hill muscle model equations [9]

Parameter Description Value

w width of the bell shaped f-l curve 0.56

c shape of bell shaped curve near the
extremes of the bell

0.05

N muscle force (in units of Fmax)
at maximum lengthening velocity
vCE = −vmax

1.8

K curvature constant 5

General model parameters defining this implementation are in table 3.2. Muscle
specific parameters are as follows:

1. Maximum isometric force Fmax

2. Optimum fiber length lopt at which muscle provides maximum isometric force
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α · Fmax for activity level α

3. Maximum contractile velocity of the muscle vmax

Tendon Dynamics

As reviewed in Section 2.4, the tendon is a non-linear elastic element in series with
the contractile fibers. Of the several approximations to tendon functional form in the
literature, we chose the most general one:

FSE = Fmax

exp

(
Ksh

λref

λ

)
− 1

exp(Ksh)− 1
∀λ > 0 λ =

lSE − lsl
lsl

(3.10)

FSE is tendon force, lSE is tendon length and λ is tendon strain with respect to slack
length lsl. Ksh determines the shape of the length-tension curve, and impacts when the
tendon force becomes approximately linear in strain. Parameter λref is the reference
strain at which FSE = Fmax.

All parameters defining this tendon model lsl, Ksh, λref, Fmax are morphological. lsl
and Fmax capture the dimensions, cross-sectional areas and space organization in the
muscle-tendon unit. λref and Ksh depend on the material properties and influence
tendon stiffness. The upcoming sections detail how these parameters were found.

Muscle-Tendon Unit Dynamics

Since the muscle and tendon are connected in series, at pennation angle θ with each
other, the muscle-tendon unit dynamics obey the first-order implicit nonlinear differ-
ential equation below:

FMTC = FSE = Fm(α, lCE, ˙lCE, t) cos θ (3.11)

lMTC = lSE + lCE cos θ (3.12)

Joint Dynamics

Like in equation 2.2, the overall ankle torque resulting from the three muscle-tendon
units in the model is:

τmod(t) =
∑
i

FMTC,i(t)ri(t) i refers to muscle index (3.13)

ri is a time varying moment arm, estimated as described in Section 2.6. Further, the
Achilles tendon connecting the Soleus and Gastrocnemius to the heel imposes the
following force relation:

Fachi(t) = FMTC,SOL(t) + FMTC,GAS(t) ∀t (3.14)

With the system defined thus, FMTC,i(t) and τ can be calculated if (a) all the param-
eters are specified, and (b) the lMTC,i(t), αi(t), ri(t time series are known. We now
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explore system behavior by collating inputs from the literature and our data-driven
estimates of joint state, muscle-tendon state and muscle active state.

3.5.3 Inputs to Muscle-Tendon Model

The inputs are of two types: (a) parameters defining the above dynamics models, and
(b) estimates of lMTC(t), α(t), r(t) from the data.

Parameters

First, we input nominal values of all muscle-tendon parameters for an average adult
male from literature [19]. The parameters are listed in Table 3.3. The vmax and
pennation angles are fixed across all subjects. The lopt, lsl and Fmax depend on subject-
dimensions, and the nominal values are scaled to subject dimensions. The issue of

Table 3.3: Parameters defining muscle-tendon dynamics [9]

Muscle lopt vmax pennation Fmax lsl
[cm] [lopt/s] [degrees] [N] [cm]

Soleus 3.0 6 25 4176 26.8

Gastrocnemius 6.4 12 17 1113 + 488 = 1601 40.8

Tibialis Ante-
rior

9.8 12 5 603 22.3

scaling muscle parameters to subject dimensions is quite controversial [28]. We chose
the scaling algorithm used in SIMM to stay consistent with the algorithms used for
inverse dynamics, joint state and muscle-tendon length estimation (as described in
Section 3.2.2). This algorithm scales parameter values as follows:

subject specific value = nominal value× nominal muscle tendon length

subject specific muscle tendon length
(3.15)

The subject-specific scaled parameters are in table 1. The subject-specific lsl and Fmax

values are starting points in the identification of the tendon morphological parameters
(detailed in upcoming Section 3.5.4).

Since the Gastrocnemius muscle was modeled as an effective representation of the
two heads, all parameters were picked for the bigger, more pennate medial head. The
only exception was the nominal Fmax value - which was set as the sum of medial and
lateral head Fmax’s - to account for the net effect of the two heads.

In addition to the above parameters, the Achilles tendon slack length was also set
at 3 cm since literature values for this parameter range from 2−7 cm. The actual value
of this parameter does not influence the muscle dynamics: it is purely a geometric
aspect of the model.
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Data

Since we desire that morphological parameters identified with our system ID technique
be able to explain the gait data of a given subject, it is important to inform the model
with the information we gathered from our human studies (Sections 3.1-3.4). As such,
we fed in the muscle-tendon length and muscle active state estimated from in vivo
data to constrain the FMTC(t) and the relation between lSE(t) and lCE(t).

Since the model is a simplified representation of the in vivo mechanics, and the
input parameters are set from crudely scaled, average literature values, we thought the
model would better cope with average profiles of estimates than with individual trial
profiles. Therefore we used the ensemble average profiles of muscle-tendon lengths
and muscle activation (Figures 3-3, 3-5) as inputs to the model. Estimates from all
steady-state gait cycles in each trial were considered for the averaging to inform the
model with lengths and activations best representing a subject’s gait.

With these data-based estimates input to the model, there are two independent
unknowns in the non-linear muscle-tendon dynamics equations (Section 3.5.2). These
are the lCE time series and the time invariant morphological parameters. For a given
choice of the morphological parameters, equations 3.11 can be solved numerically5 to
obtain the muscle length, lCE(t) and muscle velocity, vCE(t) = ˙lCE(t) that we seek to
estimate.

The key question now is how to choose the morphological parameters. As sug-
gested at the start of this section, in vivo measurements of these parameters are
unavailable and/or unreliable. [29] states that no reliable experimental data exist
for tendon slack lengths, and that cross-sectional area measures determining Fmax

are highly variable. Ksh and λref for specific tendons are inaccessible and often large
ranges are reported from cadaver studies [14]. In the next Section, we introduce an
identification scheme for these parameters.

3.5.4 Parameter ID Problem

It is now apparent that the problem of constraining tendon influence on muscle action
is mathematically a parameter ID problem. We solve this problem by hypothesizing
that neural control and leg morphology have co-evolved to optimize the metabolic
economy of level ground self selected speed walking. The optimality of locomotion
economy that is the basis of this hypothesis was discussed in Section 2.1.2. With
this hypothesis, we can reframe the parameter ID as a data-driven, biologically and
physically motivated optimization problem:

~m = arg min(net metabolic energy consumed by 3 ankle muscles) (3.16)

~m is a 14-dimensional vector. Each dimension corresponds to the key tendon mor-
phological features (slack length, reference strain and force, and shape factor) for the
three muscle-tendon units, and the Achilles tendon.

5We used the MATLAB Simulink implementation in [9] for numerical solutions.
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To ensure the morphological parameters can explain the data from human studies,
we constrain the parameter ID as follows:

|τmod(~m, t)− τbio(t)| < τbio,sd(t) ∀t (3.17)

τbio is the empirical torque from inverse dynamics on our human subjects. τbio,sd is
the standard deviation in τbio, computed across multiple walking trials for a given
subject (Section 3.2.1).

This framing of the parameter ID problem ensures that the tendon morphology
captures the following features of the data: (a)dynamic characteristics, (b)neural
control, (c) joint and muscle-tendon state and (d) the energetic optimality of self-
selected walking. The next couple of sections detail the cost and constraint.

Energetic Cost

There are several approaches in the literature to evaluate metabolic consumption of
muscle. Most of them rely on elaborate models of the heats of activation, maintenance,
shortening and resting accounting for the many molecular processes involved in muscle
force generation [6, 16]. While these models are biophysically quite comprehensive,
and can qualitatively match up with empirical data, they have many parameters
influencing the cost. Ballpark numbers of many of these parameters exist in the
literature, but it is hard to quantify how exactly they vary across muscles and subjects.
We chose to avoid the accuracy and sensitivity issues that could arise from a multi-
parameter, model-based metabolic cost calculation. Instead, we used an elegant,
empirically based cost measure to evaluate metabolic consumption of the muscles in
our model.

Empirical studies in isolated muscle have proven that the metabolic consumption
of muscle depends primarily on the velocity at which it operates. In fact, it was
these empirical studies that defined the Hill type muscle model influencing muscle
dynamics[12]. Thus, a cost measure using data from these empirical studies is valuable
for our study. Figure 3-7 summarizes empirical relations between muscle metabolic
consumption rate and contractile velocity.

The data for shortening came from Hill’s original experiments, which have been
validated several times and are widely accepted as accurate. The metabolic cost
dominates during shortening. For lengthening, we obtained data from biochemical
studies of ATP hydrolysis as given in [30]. In general, empirical sources at high
lengthening velocities are sparse but the common trends are accepted.

The in vitro metabolic power curves in figure 3-7 cannot be integrated as is, to
estimate metabolic energy consumed by muscles in vivo during natural gait. This is
because the data above (and in most empirical plots) is normalized by Fmax·vmax. This
normalization assumes unit activation (or that all cross-bridges are involved in force
generation), as most empirical studies are performed in vitro under unit activation
conditions [16]. In vivo operation of muscles during walking, as we know from our
estimates in Section 3.4.4, is not at maximal activation. Therefore, to apply the
empirical data to gait data analysis, we scaled the metabolic power by activation.
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Figure 3-7: Empirically based muscle metabolic power as a function p(vCE) of velocity (adapted
from [16]).

This is reasonable because the true maximum isometric force of a muscle at any time
t is α(t) · Fmax. When activation is zero, and the muscle is ’off’, the metabolic power
should be zero (or at basal levels).

Thus, the muscle metabolic cost can be calculated as follows:

P (t) = p(vCE(~m, t)) · α(t) · Fmax · vmax Metabolic Power (3.18)

C(~m) =

∫
P (t) dt ∀t such thatα(t) > 0.01 (3.19)

Since vCE(t) is implicitly a function of ~m (due to the muscle-tendon dynamics), C is
also a function of ~m.

Metabolic power was only accounted for when activation estimates are > 0.01.
This was imposed for numerical reasons. When activation is very low, Simulink
causes the velocities to spike for a time step or two, after which it rescues itself back
to appropriate values. Since the spike in velocity could cause a momentary spike in
metabolic power and add artificial cost, we only considered cost when activation built
up a little. Further, we found that swing cost is small and rather flat in the parameter
space. Therefore, we only calculated C for times t corresponding to the stance phase
of the gait cycle.
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Constraint and Feasibility

To keep constraint and cost consistent, we implemented the constraint specified in
equation 3.17 only over stance phase of the gait cycle. Further, we discounted con-
straint violations between 0-5% gait cycle as we sometimes found high variability in
the estimated inputs during the initial loading phase (probably due to variability in
splitting up gait cycles).

The constraint essentially imposes stance phase torque tracking while allowing for
the natural variability in the data. Restricting model torque to 1 standard deviation
of the empirical torque is like restricting the model-data agreement to R2 ≥ 0.97.
The feasible region is the set of morphological parameters that can provide human-
like torques. We observed that feasibility is mainly a function of phase differences
between the peaks of the model input and model torque output.

It may appear striking that the tendon parameters of the biarticular gastrocnemius
were constrained only to produce human-like ankle torque, and not to provide human-
like knee torque as well. This simplification was motivated by facts indicating that
the Gastrocnemius contributes only a small percent of total knee torque[10], as its
moment arm at the knee is approximately half the moment arm at the ankle (Figure
3-2). To check, we evaluated feasible sets for the Gastrocnemius tendon parameters
satisfying (a) both knee and ankle torque constraints, and (b) only an ankle torque
constraint. A comparison found the two sets to be roughly the same, validating our
simplification.

There were sometimes cases when the standard deviation in the inverse dynamics
torque constraining the model torque output was low but the standard deviations in
the muscle-tendon lengths and active state estimates driving the model were higher. A
high input variance and a low output variance could make it difficult for the optimizer
to chance upon a set of model parameters that are feasible. This was found to
be especially true if there was high variability in input phase (e.g. the %GC at
which muscle-tendon length started to increase or decrease). The difficulty comes
about because our method of feeding in the input estimates from data into the model
(Section 3.5.3) did not explicitly account for the variability within the estimates
themselves.

To account for variability in input phase, and feed in profiles of the estimates that
can best represent the empirical torque output, we performed the following steps:

• We identified points where the standard deviation in input estimate profiles was
high.

• Then we evaluated the maximum standard deviation s along the phase axis at
these points.

For example, if the average Soleus muscle-tendon length peaked at 54 %GC and if the
average ± 1 standard deviation length peaked at 52 %GC and 60 %GC respectively,
we evaluated a maximum phase standard deviation s = 6 %GC. Then we iteratively
performed circular shifting of the input estimates by 0 to s units to check whether
this would help the optimizer find a feasible solution. The circular shifting of input
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estimates was applied to all estimates for consistency in designation of start and end
of gait cycle.

While this method helped to account for the input phase variability and find
feasible regions for all our data, it would be better in a future effort to come up with
a better technique to propagate variances within the model.

3.5.5 Implementing Optimization

With cost and constraint defined, we can now describe technical details such as (a)
bounds, (b) optimization algorithm, and (c) enforcement of constraint.

Bounds

The choice of bounds was motivated by literature and characteristics of the data. The
bounds were made large enough to (a) prevent the optimization from hitting the roof
or floor and (b) to ensure feasibility for all subjects. If the range is very large, the
optimization will converge very slowly, but that is merely an inconvenience. Some
specific considerations that informed the bounds on different parameters are:

• Absolute numerical bounds for the 8 λref and Ksh parameters are motivated
from literature reports [14, 17]. For all the 8 parameters, bounds were set as in
Table 3.4 across all subjects.

• Bounds for tendon slack lengths were based on the nominal values listed in
Table 3.3. These bounds were derived from the data, so as to prevent muscles
from generating force aphysically under slack (i.e. FMTC is never purely from
the artificial BE element).

• Fmax bounds were also based on nominal values listed in Table 3.3. The scaling
of the nominal values was set to be large enough to ensure feasibility for all
subjects, regardless of height, weight and dimensions.

Table 3.4: Optimization Bounds for Tendon Morphological Parameters

Parameter Description Lower Bound Upper Bound Model Elements

Fmax [N] Muscle Maximum
Isometric Force

0.8×nominal value 4×nominal value S, G, T

λref Tendon Reference
Strain

0.02 0.09 S, G, T, A

Ksh Tendon Shape Fac-
tor

1 5 S, G, T, A

lsl [cm] Tendon Slack
Length

0.7×nominal value
min(lMTC − 0.5lopt)

cos(θ)
S, G, T

Table 3.4 summarizes these considerations. The bounds on tendon slack lengths
and muscle Fmax depend on the scaled subject-specific nominal values (introduced
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in inputs Section 3.5.3). The subject-specific bounds calculated from the formulae
using the literature values are listed in appendix Table 2. The last column shows the
breakdown of 14 optimization variables across model elements S, G, T, A (Soleus,
Gastrocnemius, Tibialis Anterior and Achilles tendon respectively).

Optimization Algorithm

Since the objective function is rather bumpy, a stochastic optimization method was
deemed necessary to prevent the optimizer from getting trapped in local minima. The
desired global minimum for this problem was implemented using a genetic algorithm
(Direct Search Toolbox, MATLAB, Mathworks).

Table 3.5: Genetic Algorithm Optimization Settings

Option Population
Size

Elite
Count

Crossover
Fraction fc

Initialize Vectorized

Value 150 5 0.8 Nil On

Value when Seeding 150 2 0.4 Seed
Value

On

Most optimization runs were started from a random point (no seeding). The ob-
jective function was vectorized for speed so that many populations could be evaluated
in parallel. The population size, elite count and crossover parameters were chosen to
ensure diversity by preventing the optimization from getting stuck in specific infeasi-
ble or feasible regions. Some tradeoffs considered are outlined below:

1. Elite count specifies how many high fitness individuals are guaranteed survival
to subsequent iterations. A low elite count would allow more diversity but would
result in a very slow convergence. In contrast, a high elite count would speed
up convergence, but would also make it more likely that the optimization gets
stuck in infeasible regions early on and never hits a feasible space. The tradeoff
was resolved by capping the elite count at about 3% of the population size.

2. The crossover fraction fc determines the fraction of progeny that result from
combinations of parameters within the parent population. A high crossover
fraction prevents the optimization from getting stuck in feasible or infeasible
region - since it allows mixing of the feasible and infeasible solutions in the
population. But a high crossover fraction also limits diversity in evolution, as
fm = 1 − fc is the fraction of progeny resulting from random mutation-like
factors. This tradeoff was resolved by capping the crossover fraction at 80%.

In rare cases, the algorithm was seeded with a randomly chosen feasible value to
help it achieve feasibility faster. This value only restricts the initial population. To
counter any restrictions on population diversity imposed by this seeding, the random
mutation fraction was increased (by reducing the cross over fraction), and elite count
was decreased (Table 3.5).
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Handling Constraints

Many ways to handle non-linear constraints with genetic algorithms are actively dis-
cussed in the literature [31]. We chose to use the simple and efficient penalty method
to enforce our non-linear constraint [32]. A static penalty of 1000 ·Stance RMS Error
was imposed when the modeled stance-phase ankle torque was off from the empirically
obtained in vivo ankle torque by more than 1 standard deviation. The proportion-
ality of the penalty with RMS Error between model and human torques drives the
optimization down an RMS error gradient toward a feasible region. Mathematically,
if there are n points over the stance phase:

cost =


C if constraint satisfied

1000

√√√√(∑i=n
i=1 (τmod(i)− τbio(i))2

n

)
otherwise

(3.20)

The static penalties of 1000 worked well for our optimization most of the time. It
allowed the algorithm to enter feasible regions, and leave unfavorable feasible regions
for more favorable ones as and when needed. In the event that the optimization got
stuck in a specific feasible region early on and did not randomly procreate infeasi-
ble individuals along the way, we helped it diversify using a population segregation
approach outlined in [33]. In this approach, infeasible individuals within half the pop-
ulation suffer from a soft penalty of 10, while those within the other half are hit with
a steeper penalty 100000. This, along with the crossing over feature of the genetic
algorithm, allows the optimizer to leave energetically unfavorable feasible regions,
and traverse through infeasible regions toward more favorable feasible regions as and
when required.

3.5.6 Optimization Results

We summarize in this last section the results of the optimization procedure. Figure 3-8
shows convergence of a typical optimization run. There is no definite way of checking
the optimization converges on a globally optimum solution. To test the accuracy of
the minimum, we started a gradient descent6 at the optimized values for one subject’s
data. This did not change results significantly suggesting that the genetic algorithm
may have found a reasonably accurate minimum.

To improve speed and accuracy, the population diversity could be increased as
this may encourage quick convergence with lower population size and/or generations.
Further, feasible regions could be tightened by reducing standard deviation in ankle
torque profiles by excluding outlier torque profiles. Finally, hardening the penalty in
proportion to generation number can enforce the population to stay within feasible
regions, prevent random time consuming searches and enable faster convergence as
the optimization progresses. Of course, all these techniques trade-off the diversity and
randomness which are deemed valuable to finding a global solution for our problem.

6using ‘fmincon’ in MATLAB
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Figure 3-8: Convergence of the constrained genetic algorithm optimization. Search starts out in
an infeasible space, and converges to a feasible region. Inset zooms in to feasible space.

Figure 3-9: Agreement between trained model ankle torque and empirical ankle torque for a typical
subject - on training data. The breakdown of different muscle contributions to the ankle torque is
also displayed.
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Model and empirical torques from this run are overlaid in Figure 3-9 to show that
the constraint is satisfied. Table 3.6 displays the optimized morphological parameters
and constraint agreement metrics for each subject. RMS Error torques were normal-

Table 3.6: Optimization Results

Subject JS KE RS EJ* AS

Fmax, SOL[N] 5661 4520 4353 3974 7142

Fmax, GAS[N] 1847 1801 1786 1520 1759

Fmax, TA[N] 698 1243 1092 1245 2055

λref, SOL 0.073 0.082 0.086 0.080 0.083

λref, GAS 0.060 0.062 0.037 0.066 0.042

λref, TA 0.057 0.054 0.037 0.030 0.058

λref, ACHI 0.078 0.068 0.066 0.030 0.026

Ksh, SOL 4.38 3.35 4.05 3.51 2.25

Ksh, GAS 4.62 3.49 1.20 4.70 2.81

Ksh, TA 1.90 2.14 3.92 4.00 1.12

Ksh, ACHI 1.57 4.33 2.94 1.00 4.27

lsl, SOL[cm] 27.9 25.8 26.5 21.8 25.8

lsl, GAS[cm] 44.9 40.1 43.9 34.0 41.4

lsl, TA[cm] 27.8 25.2 23.8 22.0 21.4

Stance R2 0.990 0.971 0.994 0.996 0.972

R2 0.993 0.972 0.990 0.993 0.947

ized by BWLL or ‘body-weight leg-length’ calculated from values given in Table 3.1.
For subject EJ(*), the optimization procedure had to be modified a little as the an-
kle torque from inverse dynamics had very high variability, allowing the optimizer to
settle on parameter values and metabolic cost not representative of the mean profiles7

7High standard deviation allowed a large range in feasible values of Fmax. The opti-
mizer settled in on the lower values within this range, corresponding to a feasible torque
much lower than the mean. To overcome this, we (a) had the optimizer choose Fmax to
only influence feasibility and enforce a match with mean torque profile and (b) minimized∑

i

[
Fmax,nom,i∑
i Fmax,nom,i

muscle costs unscaled byFmax

]
where Fmax,nom,i were the nominal values for EJ

in Table 1
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There is some repeatability in ranges of the parameters across subjects. The high
R2 value indicates the efficacy of the optimization procedure, and shows that our
method can find tendon parameters to explain the training data. With all parameters
governing muscle state evolution identified, the system dynamics are fully determined.
The muscle length and velocity profiles can be obtained from the Simulink solutions
to the system with the optimized morphological parameters.

3.5.7 System ID Summary

To summarize this section, we focused on the overcoming the redundancy within the
muscle-tendon complex to estimate muscle length and velocity. First, we defined the
system dynamics, identified available inputs and framed the problem as a parameter
ID problem. Then, we put forth a hypothesis based on known facts about locomotion
energetics. We used it to develop an optimization technique for identification of key
tendon morphological parameters influencing muscle length and velocity. Finally,
we showed that the algorithm converges on a set of parameters within physiological
ranges that capture the dynamic characteristics of the empirical data from our human
subjects that was used for training. Henceforth in this thesis, “trained model for
subject X” will be used to refer to the Simulink implementation of the muscle-tendon
system, with dynamics defined by morphological parameters optimized for a training
dataset from subject X.

3.6 Chapter Summary

This chapter summarized the many steps undertaken to use gross ankle gait data and
obtain finer details regarding the neuromuscular and morphological functions govern-
ing ankle motion. All the techniques were based on information about biophysical
mechanisms and/or statistical features in the data. As such, our framework is es-
sentially a data-driven design optimization of the ankle musculo-skeletal structures
for achieving human-like ankle dynamics in an energetically optimum manner. Our
approach captures important features of both neural and morphological aspects of
ankle motion during level ground walking. It also gives us estimates of muscle state
evolution governed by these two interacting aspects. Before we can delve more into
predictions about how these two aspects interact to move the ankle during gait, we
must first validate the efficacy of the approach.
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Chapter 4

Efficacy of Approach

In this chapter, we analyze the efficacy of the technical components of the approach
developed in Chapter 3. First we show the robustness of the EMG analysis technique,
present failure modes and suggest ways to overcome them in future studies. Second
we discuss the accuracy of the system ID technique, and present observations about
the uniqueness and invariance of the optimized morphological parameters. Finally
we cross-validate the overall modeling approach by showing efficacy on independent
test data sets.

4.1 EMG-Activation Estimation Technique

This section will describe both successes and limitations of the hybrid biophysical-
statistical approach proposed in Section 3.4.

4.1.1 Robustness

Two problems have prevented the use of EMG as a quantitative driving signal to
mechanistic models:

1. The noisy nature of the signal and differences arising from day-to-day conditions
and placement variations.

2. Difficulty in matching joint torque measurements in normal (non-isometric, non-
maximal contraction) movements.

Here we point out the successes of our approach on these two fronts.
Firstly, the activation estimation technique is not easily led astray by random

spikes in the EMG signal (Figure 4-1). A purely deterministic technique would not
be able to accomplish this, and the Sanger statistical method becomes useful here.
Further, the approach is quite robust. We tested how the algorithm responds to
day-to-day variations in signals from the same subject, and saw that the resulting
estimates looked quite repeatable. The approach also shows a lack of sensitivity to
subject anatomy and works well across subjects with varying height, weight, size and
definition of lower limb muscles. Finally, variations in electrode placement did not
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Figure 4-1: Activation estimates cope with stray spikes (circled) for all 3 ankle muscles.

much matter, as long as electrodes were placed approximately at the muscle belly,
and oriented along the fibers.

The second success is evident from the optimization results in Section 3.5.6 which
show that the estimates can drive a model to generate ankle torque matching human
gait data. While this agreement does not validate the accuracy of the estimation
procedure directly, it is one indicator of accuracy of the estimates. This indication
is strengthened by other model predictions, which will be detailed in Chapter 5. A
more direct validation would be possible if there were a way to measure EMG data
along with the ground truth active state to check the estimator against. While this
is hard to do in vivo, a setup reported by [34] helps make this possible in vitro, and
this may help ascertain better the biophysical accuracy of our method.

4.1.2 Limitations

While the EMG method does well for most trials, it does not guarantee a good esti-
mate for every trial. The averages presented and used in the system ID of Chapter 3,
were only over trials where the EMG data seemed to fit the generally expected phasic
trends. We left out extreme outliers that may have arisen from the unpredictability
of the EMG measurement itself. An example of a failure mode is shown in Figure 4-2.
The statistical part of the EMG algorithm fails when the data has a high noise floor.
For instance, if the pre-processed EMG data has a high noise floor (greater than
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Figure 4-2: Main limitation of activation estimation algorithm - resulting in a non-phasic, aperiodic
estimate when applied on non-bursty EMG data.

about 0.1), followed by a random spike-train like process, the statistical algorithm
will struggle to rise up and go down. The challenge is to enable emergent adaptation
of the algorithm to cases, like in the figure, where the phasic nature of the data is
not completely clear from visual inspection. This problem is one of distinguishing
between noise and signal bands that are both significantly stochastic, but may come
from different distributions.

4.1.3 Future Work

The problem of distinguishing two stochastic processes can simply be thought of as
a two-state model - noise state or signal state. The estimation algorithm would then
have to detect changes in features like variance or zero crossing frequency. Change-
point detection techniques take advantage of such features, and have been applied
on EMG data [35]. But change-point techniques focus primarily on phasic features
corresponding to state-transitions, and do not address the issue of estimating am-
plitude profiles. Detailed models of the two state dynamics would be necessary to
define amplitude profiles of estimates. Given that we want to capture the biophysics,
the best method would be to use Monte Carlo simulations on Sanger-like stochastic
models that have state-dependent parameters.

This is conceptually similar to the problem - described in Section 3.4.2 - of using
a stochastic model with time-varying jump and diffusion rates. The difference is that
the source of the problem in this case is the noise band in the signal, and not the
earlier need to capture history dependencies in the biophysics. Yet, the mathematical
likeness may mean that both problems could be dealt with a similar technique. The
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activation signal could be modeled as one that has a time varying rate and amplitude.
The rate and amplitude could be parametric functions of both the instantaneous
amplitude and frequency in the EMG data. The parameters defining these rate and
amplitude functions, being time invariant, could be estimated with a particle filter
approach.

4.2 System-ID Procedure

Having placed the estimates in practical context, we attempt to analyze the validity
and shortcomings of the system ID procedure in this section. Since benchmark in
vivo values of the morphological parameters are sparse and highly variable, we chose
to test the efficacy using other metrics.

4.2.1 Speed Invariance

Since we are optimizing for invariant morphological parameters, the efficacy would be
evident if we were to find the same parameters by applying our model identification
framework on data of two distinct speeds.

For one subject, we applied the framework on data from two sets of trials where
the subject was asked to target speeds of 1.25 m/s and 1.50 m/s respectively. The
results are reported in the Table 4.1. We see low percentage variations between
optimized parameters obtained from training the model on different speed walking
data. Further we see good agreement between model and ankle torque, showing that
the constraint has been fulfilled in both cases.

Table 4.1: Invariance of Morphological Parameters Across Speed

% Variation Fmax λref Ksh lsl Stiffness

SOL −1.0 −3.5 −52.1 −4.1 11.7

GAS −0.91 5.3 11.5 −0.18 8.9

ACHI −7.0 7.0 6.1

Agreement Stance
R2

R2 Stance
RMS Error
[N]

RMS
Error[N]

KE125 0.971 0.972 7.28 7.28

KE150 0.928 0.922 9.21 11.2

A note on KE150 training: The feasibility condition was enforced only for
times when ankle torque was positive, as one standard deviation of dorsiflexor torque
was slightly off from all model predictions. We believe this happened because faster
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walking demands faster rise of ankle torque, that may have demanded smaller plan-
tar flexor muscles to be on earlier, and a different dorsiflexor action to ensure these
muscles did not over extend the ankle. Since the other muscles were not modeled or
measured in our study, we had problems in fitting the early stance dorsiflexor con-
straint. The system ID for the plantar flexor muscles is consistent with that applied
to the 1.25 m/s data. Due to this difference, the table only displays comparisons for
the plantar flexor muscles.

Most optimized morphological parameters have very small variations between the
two speeds. This lends credence to the approach. The table also shows that the
Ksh parameters have wide variations across speed, but the resulting stiffness values
(calculated as the linear slope of the high force regions of the tendon force-length
relation) are conserved more than the Ksh values are. This suggests that the optimizer
may be operating for a unique solution in tendon stiffness space instead of in individual
tendon parameter space. A future method that adapts our technique to capture
individual trial to trial variability would help understand better what functions of
these parameters are conserved across steps. These observations raise the question of
uniqueness of the optimizer solution, which is explored in detail in the next section.

4.2.2 Uniqueness of Optimizer Solution

To understand better the uniqueness of the optimizer solution, we repeated the system
ID runs on self-selected speed data for one of our subjects (JS). The results across
five separate runs on the same data are documented in Table 4.2 and Figure 4-3.

Table 4.2: Uniqueness of Solution: Soleus Tendon Parameter Trends

Run # 1 2 3 4 5 Average Standard
Deviation

Fmax,SOL [N] 5026 7642 5716 6282 5801 6093 975

lsl,SOL [cm] 28.2 27.6 28.3 28.9 28.5 28.3 0.48

λref,SOL 0.066 0.079 0.069 0.055 0.070 0.068 0.009

Ksh,SOL 4.08 4.05 4.64 3.66 4.21 4.13 0.35

The question is whether the unique values of these morphological parameters came
from the imposition of the energetic minimum, or if the repeatability was imposed by
the feasibility constraint alone. By hardening and relaxing the feasibility constraint,
and checking changes in the optimized parameters, it was found that the slack lengths
were mainly determined by the feasibility constraint. This is reasonable because the
ankle torque data dictates when the muscles can be on and off. In other words, the
data tells us when the tendon had to be stretched beyond slack for force genera-
tion. The Soleus Fmax, Ksh and λref parameters, on the other hand, depended on the
metabolic cost for their repeatability. This lends credence to the driving hypothesis
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Figure 4-3: Soleus tendon force-length curves. Soleus stiffness is calculated as derivative of the
higher force regions of the force-length relation where linearity is more likely. Like the soleus pa-
rameters, is very repeatable across runs 0.290± 0.028 MN/m. The lower graph shows all the curves
normalized to the same scale for easy comparison.

that the morphological parameters (along with neural control) are tuned uniquely for
minimum metabolic cost of muscle operation during walking.

To probe further the uniqueness of parameter values obtained, we provide in
Table 4.3 optimized parameters for other muscle-tendon units from the five repeat
runs on subject JS discussed earlier.

The average and standard deviation values across five runs give a sense of the
variability in optimized parameters. The values for most parameters in Table 4.3
have greater variability than the Soleus parameters. The relevant question here is
whether this variability is because our hypothesis only imposes uniqueness of Soleus
parameters, or if the lack of repeatability arises from a technical limitation of the
optimization. We believe the latter case is more likely. This is because the parameters
having high variability correspond to muscles that have small contributions to the
optimized cost - in contrast with the Soleus which dominated the metabolic cost for
this subject1. Mathematically, if

[x1, x2] = arg min(C1(x1) + C2(x2)) and C1 � C2 (4.1)

the optimization will be driven mainly by x1 not x2. This may appear contradictory
with the slack length repeatability (dark shaded cells) seen for all muscles - even the
Tibialis Anterior which has very low cost contribution. But it must be noted that

1Soleus does not dominate cost for all subjects
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Table 4.3: Uniqueness of Solution: Other Muscle-Tendon Units?

Run # 1 2 3 4 5 Average Standard
Deviation

Fmax,GAS [N] 2322 1747 1858 2580 1766 2054 376

lsl,GAS [cm] 45.9 47.4 44.8 47.2 44.8 46.0 1.3

λref,GAS 0.055 0.053 0.041 0.027 0.031 0.041 0.013

Ksh,GAS 4.15 4.61 2.27 4.26 3.85 3.83 0.91

Fmax,TA [N] 1465 1525 1504 1548 1480 1504 34

lsl,TA [cm] 28.7 28.2 28.6 29.2 28.8 28.7 0.35

λref,TA 0.023 0.023 0.033 0.065 0.038 0.037 0.017

Ksh,TA 4.93 3.45 1.62 2.00 3.39 3.08 1.32

slack lengths repeat due to the constraint not the cost, and the constraint applies
equally to all muscles. The constraint-induced repeatability is also seen in the Fmax

values (dark shaded cell) for low-force muscles like the Tibialis Anterior.

To overcome the technical limitation causing variations in some of the morpholog-
ical parameter results, each muscle could be optimized separately in a step-by-step
fashion. The key would be to consider the net ankle torque matching constraint at
each step, while only optimizing for single element cost contributions, and then using
those optimized values to constrain the solutions of subsequent elements.

Finally, we discuss the effect of the optimization on parameters of passive struc-
tures (like Achilles tendon, and in more elaborate models ligaments), which do not
contribute directly to the metabolic cost.

Table 4.4: Uniqueness of Solution - Achilles Tendon Parameter Trends

Run # 1 2 3 4 5 Average Standard
Deviation

λref,ACHI 0.046 0.029 0.060 0.032 0.036 0.041 0.013

Ksh,ACHI 3.63 1.87 4.61 1.34 3.33 2.96 1.33

kACHI [MN/m] 4.87 7.19 4.26 6.78 5.92 5.81 1.24

The Achilles tendon parameters are highly variable. The key conserved trend
is that the Achilles tendon is much stiffer than other tendons. We found that this
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high stiffness trend is primarily imposed by feasibility constraints2. The high stiffness
is consistent with literature reports showing that the Achilles is among the stiffest
tendons in the body [36]. However, the optimization often converges on stiffness values
larger than cadaver reports. This could be because the mathematical bounds set in the
optimization do not necessarily reflect space and material properties constraining the
physical bounds. Discrepancies could also arise from the stiffness calculation itself
- which is a linear approximation of the changing slope of the tendon force-length
relation. Regardless of actual values, it is meaningful that the feasibility constraint
imposes a high stiffness on the Achilles tendon, and insights gained from this trend
are discussed in Chapter 5.

4.3 Cross-Validation

Having discussed the efficacy and limitations in the estimation and system ID parts,
we now evaluate the predictive power of the overall approach. A good measure of
this is the performance of the entire framework on independent test datasets. To test
this, we performed cross-validation trials that test the trained model for each subject,
with mutually exclusive testing datasets from the same subject. We split all gait data
for a given subject into training and testing categories. So for a given input variable,
its train data and test data were from mutually exclusive sets of gait cycles.

Figure 4-4: Comparison of training and testing active-state estimates since these were more vari-
able than other model inputs.

2from experiments similar to those described earlier for slack lengths
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Figure 4-4 shows an example of differences in the training data used to identify the
system, and the testing data used to validate the system ID. Testing-training devia-
tions in muscle-tendon length estimates are low due to the phasic patterns governing
gait data. Figure 4-5 and Table 4.5 summarize the cross-validation results.

Figure 4-5: Agreement of ankle torque from an independently trained model with test data for a
typical subject. The individual muscle contributions to ankle torque are also displayed.

Table 4.5: Cross-Validation of Model: Agreement with Test Data

Subject Stance R2 R2 Stance
RMS Er-
ror[Nm]

RMS Er-
ror [Nm]

Stance
RMS
Error
[BWLL]

RMS
Error
[BWLL]

JS 0.991 0.994 4.23 3.86 0.050 0.046

KE 0.931 0.940 11.6 10.9 0.161 0.151

RS 0.955 0.950 8.93 7.67 0.118 0.101

EJ 0.982 0.982 4.70 4.41 0.075 0.070

AS 0.968 0.945 10.1 10.6 0.120 0.126

Average 0.965 0.962 0.105 0.099

KE150 0.916 0.901 14.9 13.3 0.206 0.184
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The table summarizes metrics quantifying agreement of ankle torque from an
independently trained model with test data. Even though the model was trained
only till stance end, the full gait cycle agreement metrics are as good as the stance
agreement metrics. Since the R2 value is consistently high, the RMS Error is also
provided to quantify match in physical units. For one subject, agreement with test
data from a faster walking trial was evaluated. The results of this faster speed are
listed as KE150 metrics. They are obtained by training the model with KE 1.25 m/s
data, and then cross-testing it on KE 1.50 m/s data. The good agreement even with
faster speed testing data shows the model is predictive outside of speeds for which it
is trained.

4.4 Chapter Summary

In this chapter, we discussed steps taken to analyze the success and limitations of our
(a) estimation technique and (b) system ID methods in view of the goals underlying
their development. For the former case, we showed that the approach is robust to noise
and electrode placement variations. For the latter case, we showed the power of the
approach to converge on unique solutions for morphological parameters. Overall, we
showed that there is good model-empirical ankle torque agreement and high predictive
power in cross-validation trials. While this validates the hypothesis, techniques and
simplifications underlying our framework, it is also to be expected since the model
was trained to produce human-like ankle torque during walking. The real value of a
model stems from its ability to predict aspects that were (a) not constrained in model
identification and (b) not evident from simple functions of the inputs. Examples of
such predictions include muscle length/velocity profiles, and insights into neural and
morphological interactions governing muscle action during walking. These predictions
are the topic of the next chapter.
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Chapter 5

Results and Discussion

This chapter is about the value of the framework developed and validated in Chap-
ters 3-4, in providing non-apparent insights into muscle action, neural control and leg
structure. First, we present model predictions of ankle plantar flexor muscle length
and velocity profiles. Then we analyze the estimated muscle states to extract insights
about the interplay between neural control and leg structure that we set out to under-
stand. Specifically we discuss the influence of structure, control and the interactions
between the two on (a) the distinct roles of the ankle plantar flexor muscles, and (b)
metrics relating to the performance of these muscles. We end with a summary of
the key contributions to the gait modeling literature, with reference to our goal of
resolving neural-structural interactions.

5.1 Muscle Length and Velocity

Muscle length and velocity are central to understanding interactions between tendon
structures and the neural controller. This is because length and velocity are (a)
influenced by tendon morphology due to muscle-tendon dynamics and (b) fed back
to the spinal cord through muscle spindle sensors to excite neural reflex pathways.

While there have been reports of ultrasound scans of human ankle plantar flexor
length [37, 38, 39], there are no reports of model-based estimates of these profiles.
This is probably due to the complex, non-linear and history dependent nature of the
biophysics governing their evolution. In this section, we present our model-based
estimates of muscle length velocity. Since the model was trained for minimum ankle
metabolic cost, and this cost is dominated by the stance-phase activity of the powerful
Soleus and Gastrocnemius muscles, we only discuss predictions for these two muscles.
We compare our length estimates with empirical data reported in the literature, and
discuss some observations regarding trends in the length and velocity profiles.

All estimates presented were evaluated by applying subjects’ testing dataset(s)
(Section 4.3) on their trained model(s) (Section 3.5.7). Since it only makes sense to
evaluate muscle state when muscles are ‘on’ and working, all figures are presented for
stance phase only. The variation in estimated profiles was calculated by propagating
kinematic and kinetic variability - which are dominated by variations in muscle-tendon
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length and activation estimates respectively1.

5.1.1 Length

Muscle length and tendon length estimates were obtained from the solution to the sys-
tem equations parameterized by optimization results. Figures 5-1 and 5-2 show that
the model-based Soleus length predictions agree qualitatively with in vivo evidence.

Figure 5-1: Model Predictions of Soleus muscle (Fascicle), tendon (TT) and muscle-tendon unit
length (MTU). Standard deviations are propagated from those of estimates. After early stance,
muscle lengthens till the end of single stance and shortens till toe off.

Figure 5-2: In vivo empirical measurement of Soleus lengths provided for comparison. Source [37].
Y-axis is percent change from heel strike.

1an error propagation analysis considering correlations of different errors will be better
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It is clear that there is high quantitative agreement between model and in vivo
tendon and muscle-tendon lengths. It is striking that this does not translate to a
high quantitative agreement between model and in vivo muscle lengths since muscle
length is essentially:

lCE = (lMTC − lSE)/ cos(θ) θ = pennation angle (5.1)

This leads us to believe that the quantitative differences in muscle length may be
because of inconsistencies between the model’s geometry and the complex in vivo
geometry. There are a few sources for discrepancy:

1. Differences between dimensions of the subject AS and the subject studied in
[37]

2. Differences in Achilles tendon geometry arising from our lumped element model,
and the fact that we set the slack length at 3 cm2.

3. Differences in pennation angle - we set constant pennation angles in our model,
while there are changes in this angle during movement as the muscle contracts
and surrounding structures move.

Further, the peak stretch/contraction magnitudes reported in [37] are small (within
6-8%). Literature reports suggest that it is reasonable for the Soleus muscle to have
high magnitudes of stretch and contraction during walking as the muscle fibers are
short relative to the muscle moment arm [29]. The numbers in our model follow this
latter trend.

The Gastrocnemius muscle length estimates for the same subject look quite dif-
ferent from the Soleus length estimates - even though the two muscles are known to
act synergistically in gait. Figure 5-3 and 5-4 show the Gastrocnemius estimates,
and the in vivo evidence from [37] respectively.

Comparing figures 5-1 and 5-3, we observe that the Soleus has higher length
changes than the Gastrocnemius during most of stance. From Figures 5-3 and 5-4,
we also see that the model-based Gastrocnemius length predictions agree qualitatively
with in vivo evidence - for muscle, tendon and the muscle-tendon unit. The model
reliably captures the key features of (a) early stance shortening and lengthening, (b)
stance-phase isometric action and (c) the shortening right before toe-off.

Again, there is a disparity in quantitative metrics such as peak muscle shortening
with respect to heel strike. The data in [37] predicts a value of 10%, while our model
predicts 27%.

2we fixed this as it is a geometric feature, with no influence on any feasible metabolic costs
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Figure 5-3: Model Predictions of Gastrocnemius muscle (Fascicle), tendon (TT) and muscle-tendon
unit length (MTU).

Figure 5-4: In vivo empirical measurement of Gastrocnemius lengths provided for comparison.
Source [37]. Y-axis is percent change from heel strike

While this may also be due to geometric discrepancies similar to those mentioned
earlier for the Soleus, it may also be due to subject-subject differences and variations
in the in vivo measurement itself. Figures 5-5 and 5-6 compare model predictions
for a different subject with a different in vivo measure [38] to illustrate this latter
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possibility.

Figure 5-5: Model Predictions of Gastrocnemius muscle (Fascicle), tendon (TT) and muscle-tendon
unit length (MTU) for subject JS. The fascicle length is largely isometric between 30− 60 %GC.

Figure 5-6: Lichtwark in vivo empirical measurement of Gastrocnemius lengths provided for
comparison. The different curves are measurements at three ultrasound sites (distal is dotted,
medial is solid and proximal is dashed. Source [38].
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A comparison of Figures 5-5 and 5-6 reveals that the model estimate is quantita-
tively consistent with the in vivo measure, in addition to the qualitative agreement
seen from Figures 5-3 and 5-4. This is due to differences between Lichtwark [38] and
Ishikawa [37]) ultrasound scans respectively.

The Lichtwark scan reports a peak shortening of around 20%, as opposed to the
Ishikawa scan where the peak is below 10%. The former looks closer to our model
estimates both for subjects JS and AS. Further, the early stance muscle action in the
Lichtwark scan is different from the Ishikawa early stance action. Both these different
trends are captured by the model, for subjects JS and AS respectively.

Thus empirical measurements show a disparity in peak shortening and early stance
action for the Gastrocnemius muscle. Our model suggests that this disparity may be
due to differences between individual walking data. Out of the model-based Gas-
trocnemius length estimates for 5 subjects: 2 show the trends in Ishikawa, 2 show
the trends in Lichtwark, while 1 is an outlier. The outlier subject was a professional
athlete, had ACL injuries and had a large standard deviation in his ankle torque data
(which could have impacted the training procedure).

Regardless of these differences in early stance action and peak shortening, the
stance phase isometric action is a conserved feature - in both the in vivo estimates
and in our model predictions for subjects AS and JS.

5.1.2 Velocity

The conserved features, such as isometric action, are easier to see in estimated muscle
velocity profiles. Further, muscle velocity has been a corner-stone of many empirical
studies vital to understanding muscle operation [12, 13]. This makes velocity a valu-
able source of information for quantifying what performance levels are demanded of
muscle by the neural controller and the movement apparatus.

Muscle velocity was calculated as a smoothed derivative of the muscle length
estimates obtained from the model above. The length standard deviation lsd was
propagated with the partial derivative formula to find the velocity standard deviation
vsd:

vsd(t) =
lsd

(t− t0) · vmax · lopt

(5.2)

Figures 5-7 and 5-8 show the Soleus and Gastrocnemius velocity estimates re-
spectively. It appears that both plantar flexors are operating at almost 0 velocities
for most of stance. There are small lengthening and shortening phases but the mus-
cles hardly ever operate at high velocities. The Soleus muscle length changes a lot
but given that the Soleus fibers are so short and that the muscle is slow, the rate of
length change is tiny. This makes sense because these muscles deliver high forces and
high powers to propel the body forward during stance, and the muscle dynamics tells
us that high velocity operation would make this impossible. Further, the metabolic
cost of near-isometric muscle operation is very low (Figure 3-7). So the trends in the
velocity profiles indicate that muscles are operating to produce high forces at low cost
for most of stance phase.
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Figure 5-7: Model predictions of Soleus muscle (Fascicle) velocity for different subjects.

Figure 5-8: Model Predictions of Gastrocnemius muscle (Fascicle) velocity for different subjects.
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The near-isometric action in stance and the end of stance shortening are common
features of the operation of both Soleus and Gastrocnemius muscles. However, there
is a key difference in the action of these two muscles during peak shortening (highly
negative velocity) just before toe-off. The Soleus is operating at a peak velocity of
0.15vmax−0.20vmax, while the Gastrocnemius operates at a peak velocity of 0.28vmax−
0.35vmax. The significance of these numbers is apparent from the results of the in vitro
studies reported in [40]. This paper found that muscle efficiency peaks at 0.44 when
FCE

Fmax

= 0.45− 0.50 or equivalently v ≈ 0.17vmax
3, while muscle mechanical power

peaks around v = 0.3vmax. Further, at velocity of 0.3vmax, the efficiency is about 0.40
- only less than maximum efficiency by 3 − 5%. Thus the model suggests that the
Soleus operates around peak efficiency just before toe-off, while the Gastrocnemius
operates synergistically in its peak mechanical power regime.

5.1.3 Section Summary

In this section, we presented ankle plantar flexor length and velocity estimates, and
discussed them in light of in vivo and in vitro empirical measures respectively. We
then compared the two muscles in view of their length profiles and operating regimes.
The commonalities and differences found suggest that a detailed discussion of the roles
and performance of the two muscles may help understand better their co-operation
in gait.

5.2 Roles of Soleus and Gastrocnemius Muscles

The above observations regarding distinct roles for the plantar flexor muscles are
consistent with several structural and neural features distinguishing their actions. In
this section, we reflect on some of these features, and use the model to obtain a
quantitative metric of role division between the two muscles.

5.2.1 Structure

Histological features of the plantar flexor muscles support the observation about the
distinct peak efficiency-peak power operating regimes of the Soleus and Gastrocne-
mius at end of stance. Soleus muscle fiber composition estimates suggest that it is
a muscle dominated by slow oxidative fibers [20]. Thus it can function steadily with
low metabolic consumption, contributing to its ability to work at high efficiency. The
Gastrocnemius, on the other hand, is a faster muscle and has more anaerobic fibers
[41]. This means that it can activate faster than the Soleus, and generate mechan-
ical work quickly which may be the reason for its high mechanical power operation
[20, 25]. Being able to generate high power via quick increases in activation may
mean that the Gastrocnemius can operate isometrically as it does not need to work

3for a wide range of muscle lengths
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at high shortening velocity for quick power generation. This isometric operation is
more economical too.

The differences in articulation of the two muscles may also be contributing to this
role division. It is acknowledged in the literature that the Soleus is a mono-articular
steady energy source to help maintain vertical position and power forward propulsion
[10]. In contrast, the Gastrocnemius is a biarticular muscle spanning both knee and
ankle. Therefore it has a key role as a burst energy source both at the knee and ankle
- to help initiate the leg into swing phase [10].

5.2.2 Control

The same observation about operating regimes can be discussed in view of neural
control or effectively the muscle activation estimates (Figure 3-5). The activation
estimates tell us that the Soleus is the steady, basal muscle. It turns on first, right
around when the ankle joint starts to extend, and stays on till end of stance. The
Gastrocnemius on the other hand, is turned on after the Soleus, just in time so that
it can help pump up plantar flexor power - making it the power muscle. This theory
also has support from the fact that the Gastrocnemius is much more active than the
Soleus during faster walking and running.

5.2.3 Structure and Control

While there are trends in the structural and control features, there is an interesting
trend in the roles of the two muscles that is not independently due to either factor,
but may be arising from co-operation of the two aspects.

By applying our trained model on data for all five subjects, we obtained the ratios
of peak torques delivered by the Soleus and Gastrocnemius. As shown in table 5.1,
this ratio (SOL to GAS) is quite consistently around 2 : 1 (in one subject’s case it
was 5 : 2, but that subject was distinct because he was tall and stocky).

Table 5.1: Plantar Flexor Ankle Moment Breakdown

Subject JS KE RS EJ AS Average Standard
Deviation

Ratio of
Peak Forces

2.26 1.94 2.28 2.11 2.56 2.23 0.230

Ratio of
Metabolic
Costs

0.726 2.47 0.841 0.764 1.65 1.29 0.761

The trend is significant since the ratios of the optimized Fmax of these two muscles
varies from 2 to 4 (table 3.6). This suggests that morphological features alone would
fail to explain this trend in the roles of the individual muscles. Further the ratios in
peak activation of Soleus and Gastrocnemius varies across subjects too (Figure 3-5)
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- suggesting that neural control alone is not responsible for this trend. While the
ratios of the metabolic costs displayed in the above table are quite variable too, we
know that the optimized solutions corresponded to a minimum of total plantar flexor
metabolic cost (approximately since the Tibialis Anterior contribution is small).

Whether this ratio is a cause or result of enforcing that minimum metabolic cost is
unclear. But the optimizer’s breakdown of net ankle torque required by the constraint
of matching the empirical torque may be understood as follows:

• Given the neural activation and muscle tendon length estimates, there is a dy-
namical limitation on the maximum Soleus torque across all possible Soleus
tendon parameters. The Gastrocnemius now has to compensate for the remain-
ing ankle torque. So this ratio is known.

• But maybe it is too expensive for the Soleus to generate that maximum torque,
and it may be cheaper for the Gastrocnemius to generate a little more. Then
the tendon parameters will be adjusted accordingly.

• And more adjusting of tendon parameters will follow - till convergence to a
minimum which may coincide with the peak torque ratios in the table.

How this peak ratio is maintained in the body so consistently is an open question,
which could be explored in a future study or through a clever empirical approach.

5.2.4 Section Summary

This section discussed the distinct roles of the Soleus and Gastrocnemius muscles in
view of their structure (composition and articulation) and neural control. We pre-
sented a conserved metric suggesting quantitative breakdown of the torque-generating
roles of the two muscles, and suggested that it may be correlated with a minimum net
plantar flexor metabolic consumption. With the roles designated, we can now study
features impacting metabolic and mechanical performance of the plantar flexors.

5.3 Ankle Plantar Flexor Performance

In this section, we discuss predictions regarding features of leg structure (tendon
stiffness and slack length) and neural control that could impact muscle energetics.
We then show how these features may be helping these powerful muscles perform
with high efficiency by evaluating the net plantar flexor efficiency using our model.

5.3.1 Structure - Conserved Morphological Features

Tendon Compliance

Our system ID procedure found low Soleus and Gastrocnemius tendon stiffness and
a high stiffness for the common Achilles tendon connecting the two plantar flexor
muscles to the heel.
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Table 5.2: Stiffness of Different Tendons in the Model

Subject JS KE RS EJ AS

kSOL [MN/m] 0.291 0.214 0.245 0.337 0.228

kGAS [MN/m] 0.103 0.096 0.103 0.150 0.111

kTA [MN/m] 0.029 0.062 0.099 0.114 0.125

kACHI
[MN/m]

2.62 3.97 3.10 3.26 10.6

A compliant tendon in a muscle-tendon unit allows economic force generation. A
compliant tendon allows the muscle to operate at low velocities vm for a given load
velocity vMTC [42]. This is clear from the following equation relating muscle velocity
to tendon and muscle stiffness (kt and km), and load velocity:

vm =
kt

(kt + km)

vMTC

cos(α)
(5.3)

For a given vMTC, vm is low when kt is low i.e. when tendon is compliant. As discussed
in Section 5.1.2, lower velocity operation is metabolically favorable.

But one may argue that the stiff Achilles tendon common spring could compromise
this metabolic advantage of tendon compliance. On average the Achilles tendon is
about an order of magnitude stiffer than the Soleus and Gastrocnemius tendons. The
value of the stiff tendon can be discussed in terms of helping the two-muscle-tendon
unit combination achieve fine control, without compromising energetics.

In general, muscles with compliant tendons, like series elastic actuators, have low
bandwidth and lack of ability to perform fine position control. However, having two
muscle-tendon units loading a stiff spring may allow them to act synergistically and
achieve finer control over the foot positions, while still benefitting from the catapult
effects of their individual series compliances. This can be seen by imagining that
even if the two muscle-tendon units move significantly due to their individual tendon
compliances, they would have to produce very high forces to overcome the stiff load
spring and change foot position significantly, and these high forces may be unlikely in
physiological ranges given the neural control and muscle-tendon unit dynamics. This
is an especially interesting observation in light of the previously mentioned studies
reporting kinematic repeatability of foot motions [3].

Thus the architecture of the Soleus, Gastrocnemius and Achilles tendon units
appears to give the combination the best of both worlds - by providing both the
fine position control of stiffness and the energetic advantages of compliance. To
understand these energetic advantages further, we look at another conserved trend in
the optimization results.
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Muscle Rest Length to Tendon Slack Length Ratio

Our system ID optimization consistently settled on tendon slack length values that
yield repeatable muscle optimum length to tendon slack length ratios - for all muscles
and subjects - suggesting that these ratios are conserved. Optimized values agree with

Table 5.3: Muscle Rest Length to Tendon Slack Length Ratios

Subject Soleus Gastroc TibAnt

lopt[cm] lsl [cm] Ratio lopt[cm] lsl [cm] Ratio lopt[cm] lsl [cm] Ratio

JS 3.62 27.9 0.130 5.44 44.9 0.121 11.8 27.8 0.423

KE 3.27 25.8 0.127 4.91 40.9 0.120 10.6 25.2 0.423

RS 3.42 26.5 0.129 5.14 43.9 0.117 11.1 23.8 0.468

EJ 2.85 21.8 0.130 4.27 34.0 0.128 9.41 22.0 0.428

AS 3.28 25.8 0.127 4.91 41.4 0.119 10.7 21.4 0.503

Average
(SD) Ratio

0.129 (0.002) 0.121 (0.004) 0.449 (0.036)

Delp 1990
Ratio

0.112 0.128 0.454

a literature report based on cadaver data for lopt and manual tuning of slack lengths
based on kinematic and kinetic data. Differences may have arisen from geometric
variations like in Section 5.1.1.

The ratios are significant in view of muscle performance. For a given muscle-
tendon unit motion and force, muscle active-state and tendon stiffness, the ratio
of lopt to lsl determines whether the muscle will operate in isometric, concentric or
eccentric contraction. Thus, during a movement, the ratio of lopt to lsl determines the
muscle fiber contractile velocity and the muscle metabolic consumption. This feature
of the ankle plantar flexor system dynamics has been discussed in [29]. We use our
estimates of neurally commanded muscle active state to provide another dimension
to this discussion.

5.3.2 Control - Timing Elastic Storage and Release

Another way to look at the
lopt
lsl

ratio is that it determines the optimum timing of

elastic energy storage and release. For a given ratio and the known system dynamics,
there is an optimum time in gait cycle when the muscle can start to slowly store energy
in the tendon, and a time after which a release in rapid recoil of stored elastic energy
would become the most efficient action. We posit that these times are related to the
timing and shape of the muscle activation profiles - because muscle activation has
to rise above zero when the tendon stretches above slack (MTU dynamics). We see
this trend in the solutions to our system model using data-based estimates of muscle
activation. This attests to the so-called catapult effect discussed in the literature
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- where a mechanism of controlled storage and release of elastic energy results in
metabolic energy savings [37].

5.3.3 Structure and Control: Efficiency

Having described the independent effects of structural and control aspects on metabolic
savings, we now show the efficiency performance metrics resulting from both these
aspects. To illustrate the point that neural-structural interplay is needed for efficient
operation, we calculate two efficiencies: (a) one that involves the neural aspect alone
and does not account for tendon morphological effects on mechanical work outcomes,
and (b) one that involves both neural and tendon effects. We discuss these ‘tendon
unaccounted’ and ‘tendon accounted’ calculations in order.

Tendon Unaccounted

Our model allows us to calculate efficiency of plantar flexor muscle operation - since
we have (a) individual muscle state profiles, (b) individual muscle force profiles and (c)
metabolic cost. We accounted for mechanical work and metabolic cost during positive
mechanical work phase of muscle operation (i.e. when the muscle is shortening):

eno tendon =

∫
F dl∫

a(t) · Fmax · vmax · p(vCE(t)) dt
∀dl < 0 (5.4)

Table 5.4: Plantar Flexor Muscle Efficiency During Positive Mechanical Work Phases (Tendon
Unaccounted)

Subject JS KE RS EJ AS

Train Data
Metabolic Cost 9.5 6.8 2.0 4.4 7.1

Mechanical Work 2.6 1.3 0.43 1.4 1.7

Muscle Efficiency 0.28 0.19 0.21 0.32 0.25

Test Data
Metabolic Cost 11.9 5.7 2.6 5.0 16.0

Mechanical Work 3.4 1.2 0.55 1.7 3.2

Muscle Efficiency 0.29 0.20 0.21 0.33 0.20

Test-Train Average 0.28 0.20 0.21 0.32 0.22

Average efficiency for each subject was calculated across test and train data. We
see that the average efficiency of muscles doing positive work (across subjects) is
0.25 ± 0.052. This is consistent with empirical measures of performance of skeletal
muscle doing positive work [43].

The agreement of numbers, in addition to validating our calculation, shows that
the Soleus and Gastrocnemius muscles by themselves are not able to perform at more
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than average efficiency. However, this calculation discounts (a) the roles of tendon
compliance and (b) the tuning of neural command timings to catapulting effects
outlined above.

Tendon Accounted

We did a second efficiency calculation that accounts for both the effects neglected in
the previous case.

We calculated the net mechanical work performed by the plantar flexor muscle-
tendon units in stance phase (these units perform negligible work in swing). This net
mechanical work is equivalent to work at the load (joint in this case):

Wmech =

∫
τbio dθ (5.5)

The ankle torque and angle for the work calculation were taken from the human
gait data, because we did not explicitly model joint angles (only has muscle-tendon
state). The model and data mechanical work should be quite close since there is a
high agreement between model and data torques, and hence this approximation is
valid.

Metabolic work was calculated as:

Wmet =
∑
i

∫
αi(t) · Fmax,i · vmax,i · p(vCE,i(t)) dt ∀t ε stance (5.6)

In the case of subject RS (starred in table), the Tibialis Anterior was highly active
and working hard during mid-stance in addition to plantar flexors, and therefore the
TA metabolic cost was included in the sum too.

It is worth mentioning that the metabolic and mechanical calculations above are
not restricted to muscle positive work phases, because tendon can be performing
positive mechanical work when muscle is working in negative work phase and vice
versa.

We defined efficiency as:

etot =
Wmech

Wmet

(5.7)

The calculations are summarized in table 5.5. Across subjects the average efficiency
was 0.69 + / − 0.12. This may be a slight over-estimate since we did not take into
account any viscous losses in tendon action. Typically, tendons lose 6− 15% of their
energy to viscous effects. Such losses would cause a decrease in the mechanical work
obtained per unit metabolic energy consumed. For a ballpark of the over-estimation,
we account a nominal 10% loss in tendon, and recalculate the efficiencies using the
numbers in Table 5.5 to arrive at a 0.62 +/−0.10 efficiency, or a 7% over-estimation.

Regardless of the tendon losses, the efficiencies in the tendon ’accounted’ case are
approximately three times higher than the muscle positive work efficiencies from the
‘tendon unaccounted’ calculation. This shows that the tendon effects are key to high
performance. Further, such high gains in efficiency would be unlikely if the neural
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Table 5.5: Plantar Flexor Muscle Efficiency (Tendon Accounted)

Subject JS KE RS EJ AS

Net Mechanical Work 11.6 11.5 10.5 7.8 13.9

Train Data

Soleus Metabolic Cost 12.4 5.0 6.2 5.3 6.1

Gastroc Metabolic Cost 9.0 10.7 7.1 4.1 10.1

Net Metabolic Cost 21.5 15.7 17.3∗ 9.4 16.2

Mechanical Efficiency 0.54 0.73 0.61 0.83 0.86

Test Data

Soleus Metabolic Cost 14.5 4.9 5.3 5.7 5.9

Gastroc Metabolic Cost 9.9 12.2 4.4 4.3 14.9

Net Metabolic Cost 24.4 17.1 14.2∗ 9.9 20.7

Mechanical Efficiency 0.48 0.67 0.74 0.79 0.67

Test-Train Average 0.51 0.70 0.67 0.81 0.76

control were not timed for catapult-like action. Thus, the morphological features, the
timing of neural commands and muscle dynamics all complement each other to allow
for this high metabolic efficiency.

The high plantar flexor efficiencies calculated here are consistent with the 0.61
apparent efficiency obtained empirically in [43]4. It is worth mentioning that the
efficiencies in [43] were ‘apparent’ estimates since they had to use an exoskeleton,
and could not really probe the metabolic cost in vivo. Our model adds to their
result by calculating these metrics from normal, level ground walking (without any
exoskeleton) data and first principles. Further, the analysis in this section highlights
the different quantitative features contributing to the large efficiency, and gives us a
better understanding of the metabolics of plantar flexor operation.

5.3.4 Section Summary

This section brought together key features of plantar flexor performance arising from
(a) tendon morphology, (b) neural control timing and (c) the interplay between the
two. For all three cases, we showed model predictions indicating metabolic savings and
high efficiency operation in the big, powerful plantar flexor muscles. Our observations
are consistent with empirical reports in the literature, and add many new perspectives
to these reports.

4We can compare our calculation with those in [43] because our calculation of net mechanical
work is similar to their exoskeleton work.
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5.4 Discussion

This section places the contributions detailed in this chapter in context with the state
of the neuromuscular modeling field. Specifically, we discuss differences between our
approach and the two classes of inverse approaches to neuromuscular models outlined
in Chapter 1.

5.4.1 Dynamic Optimization Studies

First, we discuss comparisons with approaches based on dynamic optimization of
neural control [6, 7]:

As introduced in Chapter 1, reference [6] dynamically optimized muscle activations
on a full body gait model with set morphological parameters, to minimize a model-
based metabolic cost function. Their optimized Soleus and Gastrocnemius activations
had peaks close to 1, while the peak active states we estimated from gait EMG data
were in the range of 0.4− 0.5. Our estimates appear more reasonable as it is strange
for the plantar flexors to fully activate in common tasks like level ground self selected
speed walking (as opposed to more demanding tasks like running).

We believe that our model captured kinetic trends in the ankle torque with low
muscle activity because of our emphasis on the mechanical work benefits of tendon
action. When tendon morphology is not identified appropriately, the optimized muscle
activities are high, and in turn, the proportional metabolic cost is high too. This is
seen in [7] where positive muscle work values are almost two times the numbers
expected from empirical estimates in [44]. While we did not model the full leg in this
study, we have showed in the previous section that our muscle efficiencies agree with
empirical estimates ([43]).

Thus, estimating neural control from data and emphasizing tendon morphology
effects gave us more reasonable metrics than dynamically optimizing neural control
with set morphology.

5.4.2 Simple Mechanistic Muscle-Tendon Models

Second, we compare the predictive power of our approach with an approach based on
simplified, mechanistic representations of muscle-tendon units [8].

This paper represented the Gastrocnemius muscle-tendon unit as a clutch-spring
unit. Our length estimates for this muscle predict - from data and first principles -
the clutch-like muscle operation of the Gastrocnemius hypothesized in [8]. Further,
our modeling effort also provided quantitative insight into the neural control and
efficiency metrics that might be driving the isometric operation of this muscle.

The spring in the paper lumps the tendon stiffness as well as the muscle stiffness.
Our model decoupled this lumped stiffness into its actively controlled muscle and
passive tendon elements. This decoupling allows the model to predict behavior across
speed without the parameter modifications that would be necessary with a lumped
spring. As a check, we tested a model trained on 1.25 m/s walking data for subject KE,
against his 1.50 m/s data. We observed R2 values of 0.92, showing good agreement
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of model torque with the 1.50 m/s empirical ankle torque. This suggests that the
neural control actively modulates the muscle stiffness for the higher power needed at
greater speeds (consistent with [45]). The emergent property of the optimized tendon
parameters is consistent with the parameter invariance resulting from training the
model separately on 1.25 m/s and 1.50 m/s data from this subject (Section 4.2.1).

Thus, estimating neural control from data and emphasizing tendon morphology
effects gave us (a) quantitative understanding of features driving Gastrocnemius op-
eration, and (b)a preliminary result on emergent adaptability of the model to speed
increases in walking.

5.4.3 Section Summary

In summary, our modeling approach adds to the two main categories of inverse neuro-
muscular models aimed at gaining mechanistic insight into principles governing gait.
The key value of this work lies in the ability to decouple muscle and tendon action,
and to study impedance modulation resulting from variations in neural control, all
while capturing accepted performance metrics such as energetic economy.

5.5 Chapter Summary

This chapter showed that our framework captures many empirical results under an
integrated approach derived from first principles. We discussed model predictions
about plantar flexor muscle state, tendon structure and energetic performance. Fi-
nally, we analyzed these metrics to elucidate some insights regarding structure and
control of the ankle plantar flexors with a view to their function and performance in
walking. We summarize the key contributions:

1. Plantar flexor length and velocity predictions highlight the role of the Soleus
as a steady efficient force generator and that of the Gastrocnemius as a burst
mechanical power source. The model captured the differences and similarities
in two sets of in vivo measurements for the Gastrocnemius length - showing that
subject to subject differences may have led to disparities in empirical measures.

2. We discussed how metabolic savings and increased performance result from (a)
long, compliant plantar flexor tendons with conserved slack lengths and (b)
catapulting effects arising from controlled storage and release of energy. We
demonstrated the high energetic performance of these muscles by evaluating
operating efficiencies of 0.69± 0.12.

Our results about muscle state, morphological features, in vivo efficiencies and impedance
variations showcase the model’s potential as a means for obtaining empirically inac-
cessible measures of the roles of neural control and leg structure in locomotion.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The thesis set out to develop an inverse computational framework to capture insights
about co-operation of neural control and musculo-skeletal structures spanning the
ankle joint during walking. It provided arguments to reframe this problem as one of
estimating the evolution of individual muscle state during gait.

The key contribution of this thesis is a hybrid mechanistic-statistical approach
that (a) explains human gait data, (b) estimates individual ankle muscle state profiles
and (c) predicts quantitative metrics consistent with independent empirical studies.
The modeling exercise undertaken provided insight into the complementary nature of
neural control and leg structure manifest in (a) the roles of individual ankle plantar
flexor muscles and (b) the energetic performance of these muscles.

The results demonstrate the viability of our hypothesis that neural control and leg
morphology have co-evolved for energetically optimal walking motions. The model
predictions underscore the importance of neural-structural interactions in locomotion.

6.2 Scientific Applications

Impedance modulation of muscle is a key feature that captures both intent and feel
(feed-forward and feed-back control) as detailed in Chapter 2. The framework de-
scribed in this thesis gives us access to impedance variations in the ankle muscle-
tendon unit (since individual muscle state and dynamics have been estimated). These
profiles could be studied to elicit quantitative insights about the roles of neural control
circuits, muscle function and leg design in level ground and non-level ground walking.

Ankle Behavior across Speed and Terrain: How do the plantar flexors behave
during speed variations in walking? Suggestions about adaptability of the model
across speed were made in Chapters 4-5. Are there ways to generalize this to slower
speeds in addition to faster speeds? The challenge with slower speeds could stem from
the high variability of muscle activation profiles during conscious targeted walking.
What is the role of the dorsiflexor during terrain variations in walking? The dorsiflexor
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tendon morphology did not have much importance in this optimization as the plantar
flexor cost dominated over the dorsiflexor cost. However, if the optimization were
to be performed in the nested fashion suggested in Section 4.2.1, with cost including
both stance and swing, we may get more insight into dorsiflexor behavior.

Reflexes and Intent: In addition to overall impedance modulation of muscle, mod-
ifications of the modeling approach advanced in this thesis could be used with addi-
tional empirical data or perturbation studies to elucidate separation of the effects of
feed-forward and feedback circuits.

For example, nerve cooling or other agents could be used to block ankle reflex
circuits [46] in humans while collecting gait data. Then our modeling framework
could predict differences in net active state and joint dynamics arising from blocking
specific reflexes. This could shed light on the roles of feed-forward components and/or
specific reflexes in muscle and joint dynamics. Interesting questions regarding these
feed-forward and feedback components could range from when they are active to how
much they influence muscle action.

Another alternative is to apply different perturbations to the joint motion, dynam-
ics and/or muscle state estimates in silico, and test classes of reflex circuits (positive
force feedback, negative velocity feedback, stretch reflexes or others?) for those that
help deal best with the perturbations. Such an approach could help elucidate the
kinds of “environmental” variations dealt with by different reflex circuits, and sug-
gest experiments to verify insights. Further it may reveal whether reflex circuits cause
adaptation by forcing return to the base strategy, or in some other fashion.

Full Leg Models: Extending this modeling framework to the full leg could poten-
tially capture features such as energy flows between the different elements. Further
it could give physical insight into key mechanistic features (force source, strut, brake
etc) representing functions of different muscles in walking. Challenges here could be
both empirical and analytical.

The model’s predictive power is as good as the information content of the data
driving it. Surface EMG data for small, deep1 muscles, or overlapping muscles (ex-
ample Rectus Femoris and Vasti muscles) is generally low in information content.
Particle-filter or other Monte Carlo based techniques as described in Chapter 4 could
be attempted to better the accuracy and reliability of active-state estimates obtained
from EMG of such muscles. Needle EMG could also help in these cases.

Further, enforcing the torque-constraints as proposed in Chapter 3 may turn out
to be difficult for joints that are spanned by a multitude of small muscles (e.g. knee
joint). Finally, there may be no easily apparent role divisions for muscles that are
not big, well-defined and phasic in activity.

Impedance Matching: It has been shown that the optimal synergistic activation
of power-generating muscles interacting with a load corresponds with muscle-load
impedance matching [34]. In this thesis, we suggested that neural control comple-

1EMG signals are generally better for shorter muscles since they are driven by the nervous system
with higher amplitudes and more distinct phasic features
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ments the tendinous loading on a muscle for optimal economy of muscle operation
during walking. An interesting question is whether this energetic optimality extends
to an impedance match between muscle-tendon unit and load.

A simple example where this holds is the actuator-spring-mass system, where the
minimum energy consumed by the actuator driving a mass, is at resonance (impedance
match) between the spring and mass.

Does the neural control of powerful muscles during walking cause an impedance
match between muscle and tendon, or between muscle and tendon + joint load, or
groups of muscle-tendon units? Is this the way it ensures maximal power transfer
and energy savings? If the match exists, is it instantaneously imposed or as an
‘average’ feature over time? In other words, are neural control and morphology co-
tuned for an impedance match between tendon and muscle during walking (or some
other task)? The setup in [34] could be modified to perform some in vitro experiments
and optimization studies to test this hypothesis.

6.3 Engineering Applications

Insights obtained from our modeling approach could be valuable in the design and
control of biologically inspired prosthetic and orthotic devices.

Design: The framework in this thesis offers a rigorous way to derive mechanistic in-
sight into operational modes of different muscles (e.g. the clutch-spring approximation
of the Gastrocnemius muscle). This could be valuable in the design of bio-mimetic
prostheses and orthoses. Similarly, the tendon compliances obtained and insights on
role divisions between muscles could serve useful to a device designer.

Encoding Human-Like Control: Further, the neural control information gained
from this approach could inform strategies for controlling these devices. Recently a
neuromuscular model-based controller was used to encode a reflexive adaptation to
slopes in a powered ankle prosthesis [47]. Neural control information gained from the
study in this thesis could be used to encode adaptation to other terrain variations
and/or speeds in similar powered ankle prostheses. Similar to work in [47], the state
of the prosthesis could be fed into a virtual neuromuscular model based on a height-
weight matched intact limbed individual. The model could then compute responses to
ground and task variations, and command dynamics that mimic a healthy individual’s
response.

Myo-electric Control: In addition to encoding adaptation to environmental vari-
ations, our framework provides a mechanistic way to interface assistive devices with
the wearer’s ‘intent’ (as encoded in EMG signals from the user). Most myo-electric
interfaces in the literature are black box models [48, 49]. Our approach, on the other
hand, uses the physics of the system to compute individual muscle forces from myo-
electric data and joint motion recordings. The preliminary result on speed variations
in Chapters 4-5 shows promise for the model’s ability to resolve task-based changes
in torque resulting from individual muscle impedance modulations. This emergent
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adaptability of the model, if seen on tasks other than walking, may add a natural
myo-electric interfacing capability to prostheses (as opposed to the more common
volitional control).

There, however, is the interesting challenge of understanding (or having an au-
tomated controller understand) the differences in EMG data obtained from healthy
intact limbed patients (on which the model would be based), and from the amputee
or orthotic patient using the device.

EMG data from amputees may be unreliable and activation profiles fed into the
model may need to be normalized to amputee stump muscle size. Further, the EMG
data fed into the framework described here contains information about feed-forward
and feedback contributions to muscle activity. The latter may be lacking in amputees,
or at least the feedback going back to the spine in an amputee may depend on different
features - such as interactions between the stump and socket. For example, the EMG
data from stump muscles could be representative of the instability of the stump on
the socket (as amputees tend to fire their muscles a lot to stiffen them and counter
the instability). There are possibilities to use good sensors of these interactions to
understand this feedback, and inform the use of the framework outlined here in such
cases.

Clinical Value: Finally, the framework could help quantitatively evaluate gait
pathologies resulting from neurological or musculoskeletal disorders. With modifi-
cations tailored toward specific disorders, it could enable an extension of the com-
monly used clinical electro-myographic measure to the realm of differences in indi-
vidual muscle dynamics. Having a tool to quantitatively compare impedance mod-
ulation/dynamics in patients against the template of a healthy individual could be
clinically valuable. Further, the same tool could inform the design/control of assistive
devices that can appropriately compensate for specific pathologies to achieve clinical
goals.
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Appendix A

Muscle-Tendon Parameters

Average adult male muscle parameters from Table 3.3 scaled to subject dimensions
using SIMM’s scaling algorithm [29]. The scaled parameters for left and right legs

Table 1: Subject-Specific (Scaled) Muscle-Tendon Parameters

Subject lopt [cm] Fmax [N] lsl [cm]

SOL MG TA SOL GAS TA SOL MG TA

JS 3.6 5.4 11.8 5045 1935 723 32.4 49.3 26.8

KE 3.3 4.9 10.6 4554 1746 654 29.2 44.5 24.2

RS 3.4 5.1 11.1 4765 1829 683 30.6 46.6 25.3

EJ 2.8 4.3 9.4 3974 1520 579 25.5 38.7 21.4

AS 3.3 4.9 10.7 4563 1747 661 29.3 44.5 24.5

are averaged to obtain the values fed into the model. As stated in Section 3.5.3,
the Fmax values of the medial and lateral Gastrocnemius heads are summed to find
the Fmax of the modeled effective Gastrocnemius. Values listed for muscle isometric
forces Fmax and tendon slack lengths lsl are the nominal values scaled with optimized
factors during system ID (Section 3.5.5, Table 3.4).
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Optimization Bounds

For the System Identification, we used the subject specific optimization bounds listed
in Table 2. The bounds listed are influenced by the subject specific nominal values

Table 2: Subject-Specific Optimization Bounds

Subject JS KE RS EJ AS

Parameter Min Max Min Max Min Max Min Max Min Max

Fmax,SOL [N] 4036 20180 3643 18214 3812 19060 3179 15896 3650 18251

Fmax,GAS [N] 1548 7740 1397 6986 1463 7315 1216 6081 1398 6990

Fmax,TA [N] 579 2895 524 2618 547 2735 463 2317 529 2644

lsl,SOL [cm] 19.7 33.2 17.5 30.1 18.4 31.0 14.9 25.8 17.5 29.3

lsl,GAS [cm] 31.5 51.4 28.2 46.6 29.6 47.9 24.1 40.2 28.2 46.0

lsl,TA [cm] 18.7 29.4 16.9 27.1 17.7 27.4 15.0 23.8 17.1 27.9

in Table 1. The setting of bounds for the optimization is detailed in Section 3.5.5,
Table 3.4.
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