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ABSTRACT 
 
Meiosis is the process by which haploid gametes are produced from a diploid progenitor 
cell. Accurate completion of the meiotic divisions requires a variety of modifications to 
the mitotic chromosome segregation machinery, which allow the reductional meiotic 
chromosome segregation program to occur. Oscillations in the activity of Cyclin-
Dependent Kinases (CDKs) drive virtually every event in the mitotic cell cycle, including 
events such as cell cycle entry, DNA replication, and chromosome segregation. While 
much is known about the activity of CDKs, the regulation of CDK activity, and the 
mechanisms by which CDK activity promotes cell cycle events during vegetative growth 
in Saccharomyces cerevisiae, relatively little is known about the roles of CDKs during 
the meiotic divisions.  This work examines CDK activity during meiosis, the regulation 
of CDK activity during meiosis, and mechanisms by which CDKs regulate proper 
meiotic chromosome segregation.  First, a striking diversity in Clb-CDK activity is 
observed during meiosis, including the identification of Clb1-CDK, and Clb3-CDK as 
meiosis I and meiosis II specific Clb-CDKs respectively.  Second, Clb3 protein is shown 
to be restricted to meiosis II by translational control mediated by the 5’UTR of the CLB3 
message.  Finally, premature production of Clb3 results in the premature separation of 
sister-chromatids during meiosis I. 
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The Significance of Meiosis 

Evolutionary success relies on the ability of an organism to survive, reproduce, and pass 

on its genetic material to subsequent generations. An organism carrying an adaptive 

mutation will, on average, survive longer, and thus produce more offspring than an 

organism lacking such a mutation. There are two major reproductive strategies used to 

pass on genetic material, asexual reproduction and sexual reproduction. 

 

In asexual reproduction, an organism reproduces clonally, resulting in the production of 

offspring that are nearly genetically identical to the parent. Many single celled organisms 

primarily reproduce clonally through successive rounds of cell division. In eukaryotes the 

ordered process of cell division is termed the mitotic cell cycle. During the cell cycle a 

cell will undergo DNA replication to produce two copies of its genome, will partition the 

two copies, and will then divide, forming two genetically identical daughter cells. In 

clonally reproducing populations genetic variation arises when an error occurs during 

DNA replication, during partitioning of genetic material, or due to environmental insult. 

 

Sexual reproduction relies on the fusion of gametes produced by the parental organism(s) 

to produce offspring that are genetically distinct from the parent(s). Meiosis is the 

specialized cell division that produces gametes that are genetically distinct from the 

progenitor cell in two ways. First, progenitor cells are generally diploid, whereas gametes 

are generally haploid. This maintains the ploidy of the organism, by allowing the diploid 

state to be restored by fusion of two gametes. Second, genetic information is exchanged 

between homologous chromosomes, which along with the fusion of parental gametes, 
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allows for the production of new combinations of genetic material. While mutation can 

lead to the appearance of new alleles, this meiotic exchange of genetic material allows for 

the production of new combinations of alleles. Meiosis is thus a process central to the 

generation of genetic diversity, and its conservation reflects this fact.  Below is an 

overview of differences between mitosis and meiosis, followed by a more detailed 

discussion of the meiotic program of Saccharomyces cerevisiae.  

 

An Overview of Mitosis and Meiosis 

The production of genetically identical daughter cells is accomplished by alternating 

rounds of genome duplication (S phase) and chromosome segregation (M phase), which 

are punctuated by G1 and G2, gap phases. Following G1, cells enter S phase and replicate 

their DNA, pass through G2 phase, and finally enter M phase. During M phase the 

genomic copies are segregated, after which cells divide, producing two daughter cells, 

both in G1. How does the cell accurately partition both copies of its genome? Physical 

linkages between sister-chromatids provide the key. These linkages (sister-chromatid 

cohesion) are provided by ring-shaped protein complexes called cohesins. Cohesins, 

along with attachment of sister-kinetochores to microtubules emanating from opposite 

poles of the mitotic spindle, a situation called bi-orientation, allow sister-chromatids to 

come under tension on the spindle (Figure 1A). This tension ensures that sisters are 

segregated towards opposite poles. 

 

Meiosis results in the production of four genetically non-identical, haploid gametes. This 

reduction in ploidy is accomplished by carrying out two rounds of chromosome 
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segregation following a single round of DNA replication. The first meiotic division is 

reductional (homologs are segregated), while the second meiotic division is equational, 

(sister-chromatids are segregated) (Figure 1B). Though much of the chromosome 

segregation machinery is shared between mitosis and meiosis, there are four 

specializations that occur. First, homolog pairs are physically linked during meiosis I, 

through a process called recombination, in which genetic material is exchanged between 

homologs. Crossovers, or chiasmata, the physical manifestations of these sites of 

exchange, along with distal cohesion, provide these linkages, which allow homolog pairs 

to come under tension on the meiosis I spindle. However, in some organisms, such as 

male Drosophila, homologs are accurately segregated despite the absence of 

recombination. Second, sister-chromatids must remain linked until meiosis II. This is 

accomplished through stepwise loss of cohesion. Arm cohesion is lost during meiosis I, 

allowing segregation of homologs, and centromeric cohesion is lost during meiosis II, 

allowing segregation of sisters. Stepwise loss of cohesins requires that the mitotic cohesin 

subunit Scc1 be replaced by the meiosis-specific subunit Rec8. Third, sister-kinetochores 

must attach to spindle microtubules emanating from the same spindle pole during meiosis 

I, a process called co-orientation, ensuring that sisters travel to the same pole during this 

division.  Finally, DNA replication must be suppressed between meiosis I and meiosis II 

(Marston and Amon, 2004). 

 

Meiotic Entry 

In S. cerevisiae meiotic entry reflects commitment to a developmental program leading to 

the formation of robust and stress-resistant spores. As such, it is a highly regulated 



	   14	  

process controlled by multiple input signals. There are several requirements for meiotic 

commitment: the absence of glucose; the absence of a key nutrient, such as nitrogen; the 

presence of a non-fermentable carbon source; and cells must be diploid and respiration 

competent. These signals are integrated at the promoter of IME1, a transcription factor 

required for meiotic entry (Honigberg and Purnapatre, 2003; Kassir et al., 1988).    
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Figure 1: Mitotic Chromosome Segregation versus Meiotic Chromosome 

Segregation. 

A) During S phase cohesins (orange rings) are loaded onto chromosomes, and physically 

link sister-chromatids. During metaphase sisters bi-orient on the spindle (green bars), and 

during anaphase sisters are pulled towards opposite poles. 

B) During pre-meiotic S phase cohesins are loaded onto chromosomes. During meiotic 

prophase physical linkages between homologs are established through recombination.  

Homologous chromosomes are segregated away from each other during meiosis I, and 

sister chromatids are segregated away from each other during meiosis II.  
 

 

The transcriptional repressor RME1 prevents expression of IME1 in haploid cells, thus 

restricting meiosis to diploid cells.  This transcriptional repression is relieved in diploid 

cells through the action of the MATa1 and MATα2 gene products, which form a complex 

that represses RME1 (Covitz et al., 1991). The IME1 promoter also contains distinct 

regulatory sites for each of the nutritional stimuli above (Sagee et al., 1998). Ime1 

activates transcription of early meiotic genes, which are involved in pre-meiotic DNA 

replication and recombination, including IME2 a protein kinase required for entry into 

pre-meiotic S-phase (Chu et al., 1998; Primig et al., 2000). Interestingly, asynchrony in 

meiosis is predominantly due to variation in the timing of IME1 expression, suggesting a 

populational bet-hedging strategy, preventing the entire population from committing to 

meiosis in response to transient environmental fluctuations (Nachman et al., 2007).  

 

Though meiosis is well conserved, there is considerable divergence in the mechanisms 

regulating meiotic initiation. This is perhaps not surprising, given the varied 

environments and conditions under which meiosis is induced in eukaryotes. S. cerevisiae 
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evolved to undergo meiosis in response to nutrient-poor environmental conditions; 

however, other single-cellular organisms enter meiosis in response to a variety of 

environmental stimuli  (Honigberg and Purnapatre, 2003).  In multi-cellular organisms, 

the decision of a cell to undergo meiosis is largely controlled by stimuli from the 

surrounding tissues. In mouse for example, retinoic acid induces meiotic initiation 

through Stra8 (Anderson et al., 2008). 

 

Pre-Meiotic DNA Replication 

The general mechanisms regulating entry into both pre-mitotic and pre-meiotic S phase 

are similar, however the specific regulators used are different.  In both mitosis and 

meiosis activation of Clb5, Clb6-Cyclin Dependent Kinases (CDKs) promotes entry into 

S phase. This activation occurs when the CDK inhibitor (CKI) Sic1 is phosphorylated 

and targeted for degradation. During G1 the accumulation of Cln-CDKs results in the 

phosphorylation of Sic1 and entry into pre-mitotic S phase. However, since Cln-CDKs 

prevent meiotic entry through repression of IME1, they cannot promote pre-meiotic S 

phase (Colomina et al., 1999). Instead the meiosis specific kinase Ime2 targets Sic1 for 

degradation (Dirick et al., 1998). Interestingly, in the absence of CLB5 and CLB6, 

vegetative cells can initiate DNA replication due to the accumulation of other CLBs. 

However, in the absence of CLB5 and CLB6 meiotic cells cannot initiate DNA replication 

despite the accumulation of other CLB transcripts (Schwob and Nasmyth, 1993; Stuart 

and Witterberg, 1998; Dirick et al., 1998). The reason for these differences is not clear. 

CLB1, CLB3, and CLB4 are targets of NDT80; perhaps cells are no longer competent to 

initiate DNA replication by the time NDT80-dependent transcription is activated. 
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The same mechanisms are used for both pre-mitotic and pre-meiotic replication initiation. 

Sequences at origins of replication are bound by the origin-recognition-complex, which 

recruits the replication factor Cdc6. Cdc6 then recruits the Mcm2-7 complex, the 

replicative helicase, to form the pre-replicative complex (pre-RC). Initiation of DNA 

replication depends upon phosphorylation of replication machinery components by both 

CDK and Dbf4-Dependent Kinase (DDK), a complex of the kinase Cdc7 and activating 

subunit Dbf4 (Bell and Duta, 2002). Pre-meiotic S phase depends on many of the same 

components as pre-mitotic S phase, such as CDC6 (Ofir et al., 2004; Hochwagen et al., 

2005). Interestingly, various studies have suggested that CDC7 is not absolutely required 

for pre-meiotic DNA replication (Schild and Byers, 1978; Wan et al., 2006).  However, 

the alleles used may be leaky, and thus may obscure a role for DDK in pre-meiotic DNA 

replication. DDK has also been shown to be required for a variety of post-replicative 

meiotic events, suggesting that DDK coordinates the ordered events of meiosis (Matos et 

al., 2008; Wan et al., 2008; Lo et al., 2008). The same origins of replication are used 

during both pre-mitotic and pre-meiotic DNA replication, and the rate of replication fork 

progression is the same (Collins and Newlon, 1994; Johnston et al., 1982). Despite these 

similarities in origin use and fork progression, pre-meiotic DNA replication takes two to 

three times as long as pre-mitotic DNA replication (Williamson et al., 1983). One 

explanation for this difference is based on the observation that passage through pre-

meiotic DNA replication is required for later meiotic prophase events. For example, 

meiotic cohesins are loaded onto chromosomes during DNA replication, and are required 

for recombination (Klein et al., 1999). However, there is conflicting evidence as to 
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whether progression through S phase is required for double-strand break (DSB) 

formation (Borde et al., 2000; Hochwagen et al., 2005).  

 

Meiotic Prophase 

Perhaps one of the most striking differences between mitosis and meiosis is the 

occurrence of reciprocal recombination between homologs, which promotes their 

accurate disjunction at meiosis I and produces new combinations of alleles. 

Recombination occurs in concert and interdependently with the formation of a 

proteinaceous structure between homologs called the synaptonemal complex (SC). Below 

is a discussion of meiotic prophase events in S. cerevisiae. 

 

Initiation of recombination occurs when the topoisomerase-like protein Spo11 catalyzes 

formation of DSBs in the genome (Keeney et al., 1997). Spo11 remains covalently linked 

to DNA, and its removal is dependent on Mre11, Rad50, and Xrs2 (Alani et al., 1990; 

Neale et al., 2005). Exonucleolytic resection of DSBs produces single-stranded 3’ 

overhangs that are bound by Rad51 and Dmc1, which promote homolog-directed strand 

invasion and homology search (Bishop, 1994; Schwacha and Kleckner, 1997). DSBs are 

processed via two pathways, the first produces non-crossovers (NCOs), and the second 

produces crossovers (COs). The NCO pathway repairs DSBs via synthesis-dependent-

strand-annealing, in which a resected end invades the homolog, and is ejected after a 

short patch of DNA synthesis. NCO formation does not lead to homolog linkage, and can 

sometimes be observed as gene conversion events. The CO pathway proceeds via stable 

invasion of the homolog by a resected end. Repair leads to the formation of a Double 
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Holliday Junction (DHJ), which is resolved as a CO (Figure 2). The presence of alternate 

DSB repair pathways is supported by zmm mutants, in which CO levels are reduced, 

despite high DSB and NCO levels (Bishop and Zickler, 2004; Börner et al., 2004). 

 

During meiotic prophase chromosomes condense and pair, SCs form between homologs, 

and recombination occurs. These processes are intimately linked and are interdependent. 

SC consists of lateral elements (LEs), which include Hop1 and Red1, and form along 

individual chromosomes, joined by central elements (CEs), consisting of Zip1, that join 

the LEs along the length of a homolog pair. SC morphogenesis begins with the formation 

of LEs along the length of individual chromosomes during leptotene, and is dependent on 

meiotic cohesins (Klein et al., 1999). Interhomolog interactions that are destined to 

become COs mature into axial associations, and nucleate the formation of SC between 

homologs, which eventually forms along the entire length of the homolog pair (Page and 

Hawley, 2004; Zickler and Kleckner, 1999). The ZMM proteins Zip1, Zip2, Zip3, Mer3, 

and Msh5 are required for both processes, demonstrating that recombination and SC 

formation are intimately linked (Bishop and Zickler, 2004, Börner et al., 2004). Finally, 

upon exit from prophase DHJs are resolved into COs, and SC is disassembled. 
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Figure 2: Meiotic Recombination 

DSBs are processed via two pathways, which result in the formation of two types of 

products, NCOs and COs. In COs flanking sequences are exchanged, while flanking 

sequences in NCOs have the parental configuration. The major CO pathway proceeds 

through a DHJ intermediate, while the minor CO pathway (dashed arrow) may not. 

Adapted from (Bishop and Zickler, 2004).  
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Recombination involves the regulated introduction of damage to the genome. The 

pachytene checkpoint prevents meiotic progression until DSBs are repaired and synapsis 

is complete. Components of the pachytene checkpoint that sense and signal DNA damage 

are shared with the mitotic DNA damage checkpoint, including Rad24, Rad17, Mec3, 

Ddc1 and Mec1, but not Rad9, Rad53 or Chk1. Other proteins required for checkpoint 

function include the chromosomal proteins Red1 and Hop1, the silencing factors Sir2 and 

Pch2, the protein phosphatase Glc7, and the proline isomerase Fpr3. Checkpoint 

activation impinges upon two factors necessary for progression into the meiotic divisions, 

CDK (through the inhibitory kinase Swe1), and Ndt80 (Roeder and Bailis, 2000; 

Hochwagen et al., 2005). 

 

Meiosis I Chromosome Segregation 

Entry into the meiotic divisions requires the activity of the transcription factor Ndt80, 

which activates expression of meiotic middle genes allowing progression into the meiotic 

divisions. Key Ndt80 targets include the cyclins CLB1, CLB3, CLB4, and the polo-like 

kinase CDC5 whose expression allows sufficient CDK activity to progress through both 

meiotic divisions (Chu et al., 1998; Chu and Herskowitz, 1998; Hepworth et al., 1998). 

 

During meiosis I homologs are segregated away from each other, meaning sister-

chromatids are co-segregated. Accurate homolog segregation requires linkages between 

homologs, which are conferred by recombination, and cohesion distal to crossovers. In 

cells that fail to undergo recombination homologs randomly segregate at meiosis I 

(Figure 3A; Keeney et al., 1997; Klein et al., 1999). During metaphase I the kinetochore-

localized monopolin complex, consisting of the proteins Mam1, Lrs4, Csm1, and Hrr25, 
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mediates co-orientation of sister-kinetochores (Figure 3B; Tóth et al., 2000; Rabitsch et 

al., 2003; Petronczki et al., 2006). Monopolin is thought to act by limiting the attachment 

of spindle mictrotubules to one per pair of sister-kinetochores (Winey et al., 2005; 

Monje-Casas et al., 2007). Spo13, a meiosis specific protein, and Cdc5, the polo-like 

kinase, promote co-orientation by recruiting and maintaining monopolin at kinetochores 

(Lee and Amon, 2003; Katis et al., 2004b; Lee et al., 2004). The kinase Aurora B/Ipl1 

destabilizes kinetochore-microtubule attachments that fail to generate tension on the 

meiosis I spindle, thus promoting attachment of homologs to opposite spindle poles 

(Monje-Casas et al., 2007). Once all homolog pairs are properly attached to the 

metaphase I spindle the anaphase promoting complex/cyclosome (APC/C), a multi-

subunit E3 ubiquitin-ligase, with its specificity factor Cdc20 promotes anaphase entry. 

The key APC/CCdc20 target is Pds1 (securin), an inhibitor of Esp1 (separase), the protease 

that cleaves the Rec8 subunit of cohesins. The Esp1-mediated removal of arm-cohesins 

distal to crossovers allows homolog segregation at the metaphase I to anaphase I 

transition (Buonomo et al., 2000). Accurate disjunction of sister-chromatids at meiosis II 

requires that centromeric-cohesins be retained until metaphase II. Protection of 

centromeric-cohesins is mediated by MEI-S332/Sgo1, which localizes to kinetochores 

and pericentric chromatin during meiosis I, and recruits protein phosphatase 2A, 

protecting centromeric-cohesins from removal, thus allowing sister-chromatids to remain 

linked until meiosis II (Figure 3C; Kerrebrock et al., 1995; Kitajima et al., 2004; Katis et 

al., 2004a; Marston et al., 2004; Kiburz et al., 2005; Riedel et al., 2006). These 

specializations ensure segregation of homologs at meiosis I, and linkage of sister-

chromatids until meiosis II.  
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The Meiosis I to Meiosis II Transition 

The transition from meiosis I to meiosis II is unique in that two consecutive rounds of 

chromosome segregation occur without intervening DNA replication. This transition is 

less well studied than the mechanisms governing meiotic chromosome segregation. 

However, it is clear that the cell must accomplish two seemingly contradictory tasks: the 

cell must disassemble its spindle, a process requiring low CDK activity, and it must 

prevent DNA re-replication, a process requiring high CDK activity. Work in Xenopus 

suggests that the cell performs a balancing act by inactivating CDKs enough to allow 

spindle disassembly, but preserving enough CDK activity to inhibit the reformation of 

pre-RCs (Furuno et al., 1994; Iwabuchi et al., 2000). The evidence for regulation of this 

transition in budding yeast by modulation of CDK activity is discussed below. 

 

Meiosis II Chromosome Segregation 

During meiosis II sister-chromatids are segregated away from each other, in this respect 

meiosis II is a mitosis-like division. Mam1 disappears from chromosomes at the 

metaphase I to anaphase I transition, allowing sister-chromatids to bi-orient on the 

meiosis II spindle (Toth et al., 2000). Aurora B/Ipl1 promotes proper attachment of sister-

kinetochores to the meiosis II spindle by destabilizing kinetochore-microtubule 

attachments that fail to generate tension (Monje-Casas et al., 2007). Interestingly, Sgo1 is 

removed from chromosomes at the metaphase II to anaphase II transition, and may serve 

to help bias sister-chromatids towards bi-orientation (Katis et al., 2004a; Kiburz et al., 

2008). Once all chromosomes are properly attached to the metaphase II spindle the 
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APCCdc20 promotes Esp1-mediated cleavage of centromeric-cohesins allowing 

segregation of sister-chromatids.  

 

Spore Formation and Morphogenesis 

In budding yeast after completion of meiosis each of the four nuclei are packaged into 

spores, and remain enclosed in the mother cell, which matures into an ascus that holds 

them together in a tetrad.  During meiosis II, the outer plaque of spindle pole bodies 

(SPBs) is modified. These modifications allow recruitment of vesicles that fuse to form 

double layered prospore membranes, which expand during meiosis II, and enclose each 

nucleus after the meiosis II division. After membrane closure, the spore wall is deposited 

between the layers of the prospore membrane. During this process the outer prospore 

membrane disappears, leaving the inner prospore membrane, which serves as the spore 

plasma membrane.  Maturation of the ascus results in the formation of a mature tetrad 

(Neiman, 2005). 
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Figure 3: Specializations allowing Meiotic Chromosome segregation. 

A) Linkages between homologs allow their accurate segregation at MI.  In cells defective 

for recombination (spo11∆) the absence of linkages causes random segregation at MI. B) 

The monopolin complex forces co-orientation of sisters during MI. In monopolin mutants 

(mam1∆) sisters bi-orient during MI. C) Sgo1 protects centromeric cohesion during MI.  

In sgo1∆ mutants centromeric cohesion is lost during MI, and the absence of cohesion 

during MII causes the random segregation of sisters at this division. 
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Cyclin-Dependent Kinases 

The mitotic cell cycle, at its heart, consists of alternating rounds of genome duplication 

and chromosome segregation.  CDKs, the underlying oscillator, drive these events. CDK 

was identified as Maturation/Mitosis Promoting Factor (MPF), a protein that promoted 

mitosis in Xenopus oocyte extracts (Masui and Markert, 1971).  Cyclins were discovered 

as proteins that cyclically appeared and disappeared with cell divisions in sea urchin 

embryos, suggesting their involvement in the cell cycle (Evans et al., 1983). A large body 

of subsequent work demonstrated that MPF was a kinase whose activity depended on 

cyclin binding (Jackson, 2008).  Below is a discussion of the regulation of CDKs, and an 

overview of the events that they regulate during both mitosis and meiosis in S. cerevisiae. 

 

Cyclin-Dependent Kinases in Budding Yeast 

CDKs in budding yeast consist of a single CDK, Cdc28 (also called Cdk1), which is 

bound and activated by nine cyclin subunits (Hartwell et al., 1973; Reed et al., 1985; 

Richardson et al., 1989).  There are three G1 cyclins, CLN1 to CLN3, and six B-type 

cyclins, CLB1 to CLB6, which can be grouped into three pairs according to similarity, 

timing of expression, and function: CLB1 to CLB2, CLB3 to CLB4, and CLB5 to CLB6.  

In this text Clb5 and Clb6 will be referred to as S phase Clb-CDKs, and Clb1 to Clb4 will 

be referred to as M phase Clb-CDKs (Figure 4A).  During meiosis Cdc28 is activated by 

all Clbs, except Clb2, and Cln-CDKs are replaced by a monomeric kinase, Ime2 (Figure 

4B). 
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Activation of CDK during G1 and progression into the cell cycle depends on Cln1, Cln2, 

and Cln3 (Hadwiger et al., 1989; Cross, 1988; Nash et al., 1988).  After entry into the cell 

cycle, activation of CDK depends on successive waves of CLB cyclins. The cyclins CLB5 

and CLB6 are first expressed in late G1, and become active at the G1 to S transition 

(Schwob and Nasmyth, 1993). CLB3 and CLB4 appear near the beginning of S phase, 

and CLB1 and CLB2 appear during mitosis (Ghiara et al., 1991; Surana et al., 1991; Fitch 

et al., 1992; Richardson et al., 1992).  Below is a discussion of CDK regulation, followed 

by a discussion of the regulation of mitotic and meiotic events. 

 

Regulation of Cyclin-Dependent Kinases 

As a key component of the cell cycle machinery CDK activity is highly regulated, 

especially given the relatively constant levels of Cdc28 present through the cell cycle.  

There are three major modes of regulation that take place: by the binding of cyclin 

subunits to Cdc28, which are themselves regulated at the levels of synthesis 

transcriptionally and translationally, and, predominantly, at the level of degradation; 

positive and negative regulation of Cdc28 by phosphorylation; and by binding of cyclin-

Cdc28 complexes by CDK Inhibitors (CKIs). 

 

The most striking level of regulation of CDK activity is its activation by cyclin binding 

(Figure 5b). The formation of the cyclin-CDK complex is largely regulated by the 

presence or absence of a particular cyclin. Structural work on mammalian CyclinA-Cdk2 

reveals that cyclin binding activates CDK by contributing to the proper positioning of a 

catalytic glutamic acid residue, and by positioning the T-loop of CDK away from the 
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catalytic cleft (Pavletich, 1999). In addition to cyclin binding, full activation of Cdc28 

requires phosphorylation on Thr169 of the T-loop by the CDK activating kinase (CAK), 

Cak1 (Figure 5a; Mendenhall and Hodge, 1998). 

 

 

 

Figure 4: CDK Activity During Mitosis and Meiosis 

A) G1 cyclins accumulate during G1 and lead to the G1 to S transition. S phase CDKs are 

activated in S phase, and persist until the metaphase-anaphase transition. Clb3 and Clb4 

appear during S phase, and Clb1 and Clb2 appear during mitosis. M phase CDKs are 

inactivated during mitotic exit. B) Ime2 controls entry into pre-meiotic S phase, and has 

another peak of activity during the divisions. S phase CDKs appear during pre-meiotic S 

phase, and accumulate further during the divisions. The M phase CDKs Clb1, Clb3, and 

Clb4 appear during the divisions. Clb-CDK activity is thought to have two peaks during 

meiosis, one during M I and one during M II.  Adapted from (Marston and Amon, 2004). 
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CDK is also negatively regulated by phosphorylation, and by the binding of CKIs.  

However, inhibition of CDK by phosphorylation plays a much more important role in cell 

cycle control in other organisms than it does in S. cerevisiae.  Phosphorylation of residues 

corresponding to Thr18 and Tyr19 of Cdc28 exerts an inhibitory effect upon CDK. In S. 

pombe this regulates mitotic entry, is mediated by the kinase wee1+ (Swe1 in S. 

cerevisiae), and is reversed by the phosphatase cdc25+ (Mih1 in S. cerevisiae). In 

budding yeast Swe1 and Mih1 regulate CDK activity in response to defects in bud 

formation (Figure 5c; Mendenhall and Hodge, 1998).  Binding of the two budding yeast 

CKIs, Sic1 and Far1, potently inhibit CDKs (Figure 5d). Far1 inhibits Cln-CDK 

complexes, preventing entry into the cell cycle in response to mating pheromone (Tyers 

and Futcher, 1993; Peter and Herskowitz, 1994; Jeoung et al., 1998). Sic1 inhibits entry 

into S-phase by restraining the activity of Clb-CDK complexes (Mendenhall, 1993).  

 

Although the regulation of CDKs plays an important role in cell cycle control, in an 

unperturbed cell cycle the most striking regulation of kinase activity occurs at the level of 

synthesis and degradation of the cyclin subunits. Though the accumulation of CLN3 

transcript is not strongly periodic, Cln3 protein accumulation is regulated by a small 

upstream open reading frame (uORF) in the 5’UTR of the message, which negatively 

affects the translational efficiency of the message in nutrient poor conditions, thus linking 

cell growth to the cell cycle (Polymenis and Schmidt, 1997).  For the rest of the cyclins, 

regulation of accumulation occurs at a transcriptional level, which is itself controlled by 

CDKs. The accumulation of early cyclin-CDKs activates expression of later cyclins, and 



	   30	  

late cyclin-CDK activity inhibits expression of early cyclins (Figure 5e-f; Mendenhall 

and Hodge, 1998; Bloom and Cross, 2007).  

 

 

Figure 5: Regulation of Cyclin-CDKs 

This figure illustrates the modes of regulation of Cyclin-CDKs.  Inactive Cdc28 is 

represented in grey, active in orange. a) Phosphorylation Cdc28 on of Thr169 by Cak1 is 

required for activation, b) as is cyclin binding.  CDKs are also negatively regulated in 

two ways: c) first inhibitory phosphorylation on Thr18 and Tyr19 is mediated by Swe1, 

and is reversed by Mih1, and d) second cyclin-CDK complexes are bound and inhibited 

by CKIs.  Cyclin abundance is also regulated in three ways: e) both positive and negative 

signals act at the level of cyclin transcription, and are often regulated by CDKs f) the 

accumulation of protein is regulated for some, but not all cyclins, and g) cyclins are 

targeted for ubiquitin-mediated degradation by either the APC or the SCF, depending 

upon the cyclin. Adapted from (Morgan, 1995). 
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CDK inactivation is an important step in cell cycle control, and regulated degradation by 

ubiquitin-mediated proteolysis is largely how inactivation is accomplished (Figure 5g).  

There are two major E3 ligases, the APC/C and the SCF, each activated by different 

specificity factors. APC/C mediated degradation is modulated by specificity factor 

regulation, and SCF mediated degradation is modulated by substrate phosphorylation 

(generally by CDKs). SCF targets include Cln3, Cln1, Cln2, and Clb6. While SCFGrr1 

targets Cln1 and Cln2, and SCFCdc4 targets Clb6, the adaptor protein for Cln3 is not 

known.  The E3 responsible for Clb4 degradation has not been identified; however, Clb1-

Clb3, and Clb5 are APC/C targets. At the metaphase-anaphase transition the APC/CCdc20 

targets Clb5 and a subset of Clb2, and at exit from mitosis the APC/CCdh1 targets Clb1, 

Clb3, and the remaining Clb2 (Barral et al., 1995; Yaglom et al., 1995; Irniger and 

Nasmyth, 1997; Skowyra et al., 1997; Shirayama et al., 1999; Schwab et al., 2001; 

Jackson et al., 2006). Given the importance of CDKs in proper timing of cell cycle it is 

not surprising that the degradation machinery itself is under tight control. 

 

The Control of Mitotic Events by Cyclin-Dependent Kinases 

The ordered progression of the cell cycle is driven by both increasing CDK activity and 

the sequential accumulation of different cyclin-CDK complexes. CDKs control major cell 

cycle events including DNA replication, SPB duplication, spindle formation, and 

chromosome segregation, as well as regulating other cellular events (Figure 6A). 

 

G1 is characterized by low Clb-CDK activity, and the G1 to S transition is marked by 

activation of Clb-CDKs. Growth dependent accumulation of Cln3-CDKs results in the 
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phosphorylation and nuclear exit of Whi5, an inhibitor of G1 transcription, allowing 

CLN1 and CLN2 expression (Costanzo et al., 2004; de Bruin et al., 2004). Cln1, Cln2-

CDKs phosphorylate the CKI, Sic1, during late G1, which targets it for SCFCdc4 mediated 

degradation, thus allowing activation of Clb5, Clb6-CDKs and entry into the cell cycle 

(Mendenhall, 1993; Nash et al., 2001). 

 

DNA replication is controlled by Clb-CDKs in two ways: in a direct fashion, and in a 

regulatory fashion. Most proximally, Clb5, Clb6-CDKs phosphorylate replication factors 

including Sld2, and Sld3, allowing recruitment of DNA polymerases to origins (Bloom 

and Cross, 2007; Tanaka et al., 2007; Zegerman and Diffley, 2007). Additionally, Clb-

CDKs ensure that DNA replication occurs only once per cell cycle. Clb-CDK activity, 

through a variety of mechanisms, inhibits pre-RC formation, thus ensuring that pre-RCs 

form only in G1, limiting DNA replication to once per cell cycle (Bell and Dutta, 2002). 

 

CDKs also regulate SPB duplication and separation, and mitotic spindle assembly.  

Phosphorylation of the SPB component Spc42, and Mps1, a kinase required for SPB 

duplication, by Cln1, Cln2-CDKs promotes SPB duplication during G1 (Jaspersen et al., 

2004). Additionally, through mechanisms that are not clear, M and S phase Clb-CDKs 

promote SPB maturation and separation, and M phase Clb-CDKs, but not S phase Clb-

CDKs, prevent SPB reduplication (Haase et al., 2001). 

 

CDKs also regulate spindle formation, morphogenesis, and chromosome segregation. M 

phase Clb-CDKs control the association of Kar9 and Dyn1, proteins involved in spindle 
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orientation and positioning, with SPBs (Bloom and Cross, 2007). Clb-CDKs 

phosphorylate and inhibit the APC subunit Cdh1, thus preventing APCCdh1 mediated 

proteolysis of the microtubule associated proteins Cin8, Kip1, and Ase1, the stabilization 

of which allows spindle assembly to occur (Crasta et al., 2006; Crasta et al, 2008).  

Additionally, M phase Clb-CDKs promote spindle elongation, and trigger anaphase 

through activation of the APCCdc20 (Rahal and Amon, 2008). 

 

Mitotic exit and entry into the next cell cycle requires inactivation of Clb-CDKs. During 

anaphase two networks, the Cdc14 Early Anaphase Release (FEAR) network and the 

Mitotic Exit Network (MEN), promote the release of the phosphatase Cdc14 from its 

inhibitor Cfi1/Net1. Once released Cdc14 dephosphorylates and stabilizes Sic1, and 

dephosphorylates and activates Cdh1, allowing Clb-CDK inactivation (Stegmeier and 

Amon, 2004). Ultimately accumulation of Clb-CDK activity triggers Clb destruction.  M-

phase Clb-CDKs trigger anaphase entry (which promotes MEN activation) and 

phosphorylate Cfi1/Net1, promoting the release of active Cdc14 (Stegmeier and Amon, 

2004; Bloom and Cross, 2007). 

 

The Control of Meiotic Events by Cyclin-Dependent Kinases  

Compared to mitosis, there is a paucity of knowledge about how CDKs promote and 

regulate meiotic events. Though it is largely assumed that they promote analogous events 

by the same general mechanisms, and it has long been known that genes involved in 

mitosis, including CDC28, play important roles in meiosis (Shuster and Byers, 1989). 

One of the most obvious differences in CDK regulation between mitosis and meiosis 
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occurs at the level of cyclin expression. The CLN cyclins are not expressed during 

meiosis, and their functions are replaced by the protein kinase Ime2. The timing of early 

expression of CLB5 and CLB6 is similar to mitosis. However, regulation of expression of 

the M phase cyclins CLB1, CLB2, CLB3, and CLB4 is quite different. CLB2 is not 

expressed during meiosis, and CLB1, CLB3, and CLB4 are expressed as cells enter the 

meiotic divisions in an NDT80-dependent manner. Additionally, CLB5 and CLB6 are also 

transcriptionally up-regulated in an NDT80-dependent fashion as cells enter the meiotic 

divisions (Figure 6B; Grandin and Reed, 1993; Chu et al., 1998; Primig et al., 2000). 

 

While Ime2 is essential for entry into pre-meiotic S, Clb5, Clb6-CDKs also promote pre-

meiotic DNA replication. Though their essential targets during meiosis are unknown, it 

seems likely that the mitotic and meiotic targets would be the same (Stuart and 

Witterberg, 1998; Dirick et al., 1998; Benjamin et al., 2003). Additionally, Clb5, Clb6-

CDKs phosphorylate Mer2, a component of the recombination machinery, a step that is 

essential for DSB formation (Henderson et al., 2006). 

 

Interestingly, SPB duplication occurs twice during meiosis, once prior to each division. 

However, little is known about how these duplication events are regulated with respect to 

meiotic CDK activity. Meiosis I SPBs resemble mitotic SPBs ultrastructurally; however, 

meiosis II SPBs have a structurally distinct outer plaque (Jaspersen and Winey, 2004; 

Neiman, 2005). The first round of meiotic SPB duplication presumably occurs 

concomitant with pre-meiotic DNA replication, and it seems likely that Ime2 might be 

required in analogy to the roles of Cln-CDKs. Little is known about the regulation of the 
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second round of SPB duplication. Some IME2 mutants fail to undergo meiosis II, 

consistent with a role for Ime2 in promoting this duplication event (Benjamin et al., 

2003). Additionally, it seems that down-regulation of CDK activity between meiosis I 

and meiosis II is required for the second round of SPB duplication to occur. FEAR 

network mutants, which fail to down-regulate CDKs between meiosis I and meiosis II, 

show a varied ability to undergo the second round of SPB duplication. spo12∆ mutant 

cells largely fail to form four SPBs, while the majority of  slk19∆ mutant cells form four 

SPBs (Buonomo et al., 2003). These results suggest that CDK down-regulation during 

the transition may play a role in the second round of SPB duplication. However, further 

experiments are needed to fully elucidate the role of CDK down-regulation in the second 

round of SPB duplication. As in mitosis, both rounds of SPB separation require Clb-

CDKs (Shuster and Byers, 1989).  

 

CDKs are also key regulators of meiotic chromosome segregation, and spindle dynamics. 

The mechanisms by which CDKs promote and regulate these events in meiosis are 

unknown, however they are likely similar to those in mitosis. Clb-CDK activity is 

required for exit from the pachytene stage of meiosis and entry into the meiotic divisions 

(Shuster and Byers, 1989; Benjamin et al., 2003). Clb-CDK activity is also required for 

meiosis II, as clb1∆ clb3∆ clb4∆ undergo meiosis I but not meiosis II (Dahmann and 

Futcher, 1995). Ime2 activates NDT80 transcription, and phosphorylates Ndt80, which 

promotes entry into meiosis I. Additionally, Ime2 is required for meiosis II (Benjamin et 

al., 20003).  Thus, Clb-CDKs and Ime2 promote both meiotic divisions. 
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Figure 6: Regulation of Mitotic and Meiotic Events by CDKs 

A) A schematic of the mitotic events that are controlled by different cyclin-CDK 

complexes. Events promoted by CDKs are indicated with arrows, and events inhibited by 

CDKs are indicated with T-arrows. 

B) A schematic of the meiotic events that are controlled by different cyclin-CDK 

complexes. Events promoted by CDKs are indicated with arrows, and events inhibited by 

CDKs are indicated with T-arrows.  Events indicated in grey are assumed to be regulated 

by CDKs based on analogy to mitosis, and those events that are more speculative are 

indicated by a “?”. 
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Clb-CDKs also regulate the meiosis I to meiosis II transition. Several observations 

suggest that in S. cerevisiae CDKs play an important role in the meiosis I to meiosis II 

transition. First, clb1∆clb3∆clb4∆ mutants undergo meiosis I, but not meiosis II 

(Dahmann and Futcher, 1995). Second, meiotic expression of a non-degradable cyclin 

prevents meiosis I spindle disassembly (Marston et al., 2003). Finally, the FEAR network 

but not the MEN is required for this transition (Buonomo et al., 2003; Marston et al., 

2003; Kamieniecki et al., 2005). Since the MEN is a more potent Cdc14 activator than 

the FEAR network this suggests that CDK activity may be only partially down-regulated 

between meiosis I and meiosis II, or may be inactivated for less time than is required for 

complete exit. Additionally, Ime2 is both required for the meiosis I to meiosis II 

transition, and seems to exert an inhibitory effect on Cdh1, and on pre-RC formation 

similar to that of CDK (Bolte et al., 2002; Benjamin et al., 2003; Holt et al., 2007). The 

full range of mechanisms by which CDK and Ime2 collaborate to prevent pre-RC 

reformation and DNA rereplication between meiosis I and meiosis II has yet to be 

determined. 

 

Cyclin Specificity 

There is strong evidence for differences in specificity between Cln-CDKs and Clb-CDKs, 

and there is also evidence for specialization of Clb-CDKs. There are four general 

mechanisms by which cyclin specificity could be achieved: differential timing of 

expression, differential subcellular localization, differential susceptibility to inhibition, 

and differences in intrinsic substrate specificity. The timing of cyclin expression can 
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explain much of the observed cyclin specificity, however it is clear this cannot explain all 

observed differences in Clb-CDK function. 

 

Differential function of Clb2-CDKs and Clb5-CDKs is one of the most well studied 

examples of cyclin specificity. Deletion of both CLB5 and CLB6 leads to a delay in pre-

mitotic DNA replication (Schwob and Nasmyth, 1993). One explanation for these results 

is that this replication delay is due to a delay in accumulation of sufficient Clb-CDK 

activity. However, replacing CLB5 with CLB2 allows early accumulation of Clb-CDKs, 

but fails to rescue the replication defect, indicating that Clb5-CDK has an intrinsic ability 

to promote DNA replication that Clb2-CDK lacks (Cross et al., 1999). Indeed, Clb5-

CDKs are better able to phosphorylate substrates involved in DNA replication than are 

Clb2-CDKs, and this difference is conferred by a hydrophobic patch on Clb5 (Loog and 

Morgan, 2005).  There are many other examples of cyclin specificity, for an excellent 

review see (Bloom and Cross, 2007).  

 

Translational Regulation of Cyclins 

In budding yeast cyclin transcription is periodic, but cyclin protein levels are regulated 

predominantly post-translationally by regulated proteolysis. However, there are examples 

of translational regulation of cyclins in budding yeast and higher eukaryotes. In yeast, 

CLN3 translation is regulated by an uORF, which serves to link cell cycle entry with cell 

growth, and in higher eukaryotes cyclin translation is regulated during meiosis. The 

paragraphs below will discuss translation initiation, translational regulation in yeast, and 

regulation of cyclin translation during meiosis in higher eukaryotes. 



	   39	  

Translational Regulation 

Regulation of gene expression occurs predominantly at the level of transcription; 

however, translational regulation is employed in various circumstances, or for various 

genes to further control protein accumulation. This can allow for regulation in response to 

changes in the cell’s translational capacity, and can allow for rapid changes in protein 

accumulation. Below is an overview of the process of translation, a discussion of known 

mechanisms of translational regulation in S. cerevisiae, followed by a discussion of 

translational regulation during meiosis in higher eukaryotes. One key difference between 

translational regulation in budding yeast and translational regulation in higher eukaryotes 

is that in budding yeast cis regulatory sequences are more commonly located in the 

5’UTR of the message, while in higher eukaryotes cis regulatory sequences are more 

commonly located in the 3’UTR of the message. 

 

Translational Initiation, Elongation and Termination 

Translation can be divided into three phases: initiation, elongation, and termination. 

Initiation is a multistep process that involves binding of initiation factors (IFs) to the 

mRNA to be translated (Figure 7a), binding of IFs to the 40S ribosomal subunit to form 

the pre-initiation complex (PIC) (Figure 7b), assembly of the PIC and activated mRNA 

into a complex (Figure 7c), ribosomal scanning, recognition of the cognate start codon by 

the PIC, and 60S subunit joining. The PIC consists of the 40S ribosomal subunit, eIF1, 

eIF1A, eIF3, eIF5, and the ternary complex (TC) consisting of the initiator tRNA (Met-

tRNAi
Met)•eIF2•GTP. The m7G cap of the mRNA is bound by eIF4F, a complex of eIF4A 

(DEAD-box helicase), eIF4E (cap-binding protein), and eIF4G.  Binding of the cap by 
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eIF4F, and the poly(A) tail by poly(A) binding protein (PABP) facilitates eIF4B binding 

and mRNA circularization (Figure 7a). Interactions between eIF3/eIF5 in the PIC and 

mRNA bound eIF4G/eIF4B facilitate assembly of the PIC and mRNA into the 48S 

complex (Figure 7c). eIF1/eIF1A promote 5’UTR scanning, and proper start codon 

selection. Messages with structured 5’UTRs require the helicase activity of eIF4A for 

ATP dependent scanning (Figure 7d). When an AUG codon is encountered, scanning 

halts, and the TC hydrolyzes GTP, promoting dissociation of eIF2•GDP, Pi, eIF1, eIF3 

and eIF5 (Figure 7e). eIF1A then recruits eIF5B•GTP, which hydrolyzes GTP, resulting 

in 60S subunit joining and release of eIF1A and eIF5B, leaving the Met-tRNAi
Met in the P 

site of the ribosome (Figure 7f; Soneneberg and Hinnebusch, 2009). 

 

During elongation aminio-acyl tRNAs (aa-tRNAs) are delivered to the vacant A site of 

the ribosome complex consisting of aa-tRNA•eEF1A•GTP. Codon-anticodon base 

pairing activate GTP hydrolysis by eEF1A, allowing dissociation of eEF1A•GDP, 

leaving the aa-tRNA in the A site. The ribosomal peptidyl transferase activity then 

catalyzes transfer of the nascent peptide to the aa-tRNA in the A site. eEF2 then catalyzes 

ribosomal translocation along the mRNA in a GTP dependent manner, moving the tRNA 

formerly in the P site to the E site, and moving the aa-tRNA, now carrying the nascent 

peptide, into the P site. Release of the deacylated tRNA from the E site requires ATP 

hydrolysis by eEF3, a Fungi specific elongation factor. Recycling of eEF1A•GDP to 

eEF1A•GTP requires the GEF eEF1B. This process then repeats until a stop codon is 

encountered. In eukaryotes the release factor eRF1 seems to recognize all three stop 

codons, and is bound and stimulated by the GTPase eRF3. eRF1 stimulates peptidyl 
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transferase-catalyzed hybrolysis of the peptide-tRNA bond, allowing release of the 

peptide (Noble and Song, 2008). Following termination, ribosomes are recycled, a 

process poorly understood in eukaryotes. 

 

Figure 7: Translation Initiation 

a) mRNA is activated and circularized by the binding of the eIF4F complex. b) eIFs and 

TC bind the 40S subunit to form the PIC. c) The activated mRNA and PIC assemble into 

the 48S complex, and d) begin scanning the 5’UTR until an AUG is recognized. e) AUG 

recognition causes the TC to hydrolyze GTP, promoting release of eIFs. f) Subsequently 

the 60S subunit and eIF5B•GTP are recruited, and GTP hydrolysis by eIF5B catalyzes 

60S subunit joining. Steps regulated by nutrient availability are marked with an “*”. 

Adapted from (Soneneberg and Hinnebusch, 2009). 
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Global Translational Regulation in Budding Yeast 

In general, translational regulation occurs at the initiation step. There are two major types 

of regulation that occur, global regulation, and gene specific regulation, which are often 

linked. Translational activation of some mRNAs occurs during times of global 

translational down-regulation. One mode of global translational repression occurs at the 

level of TC formation. Recycling of eIF2•GDP to eIF2•GTP is catalyzed by the GEF 

eIF2B, and this step is a point of regulation of global translation. Gcn2 phosphorylates 

eIF2 in response to uncharged tRNAs (Garcia-Barrio et al., 2000).  Phosphorylated eIF2 

then acts as an inhibitor of the GEF activity of eIF2B, reducing  eIF2•GTP levels, and 

therefore TC levels, acting to reduce global translation initiation (Figure 7g; Dever, 

2002). The TOR kinases are master regulators of cell growth and proliferation, which 

serve as integrators of nutrient, energy, and stress signals. TOR activation promotes 

various biosynthetic processes, while TOR activity inhibits processes such as autophagy 

and protein degradation (Rhode et al., 2008). The TOR pathway regulates translational 

initiation in several ways, including by modulating the eIF2 pathway. TOR signaling 

promotes the stability of eIF4G, an eIF4F component, and positively regulates the 

activity of eIF4E by inhibiting Eap1, an eIF4E inhibitor (Berset et al., 1998; Cosentino et 

al., 2000). Thus, regulation of eIF activity at several levels serves as a mechanism to 

regulate translation globally in response to changes in nutrient availability.   

 

P bodies are also involved in global translational repression.  They are cytoplasmic foci 

that are the sites of mRNA decapping, deadenylation, and mRNA decay, they are 

involved in global translational repression in response to glucose limitation, and are 
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thought to act as sites of storage of non-translating mRNAs, which later reenter 

translation (Brengues et al., 2005; Coller and Parker, 2005). The fate of mRNAs that 

enter P bodies, either degradation or eventual release back into the translating pool of 

mRNAs, is thought to be mediated by factors associated with specific mRNAs. The 

mechanisms involving shuttling of specific mRNAs to and from P bodies are poorly 

understood, however they are thought to involve competition between the translation and 

P body aggregation (Parker and Sheth, 2007). 

 

Gene Specific Translational Regulation in Budding Yeast 

In nutrient-poor conditions global translation is down-regulated, however cellular 

response to nutrient deprivation requires translation of a subset of messages. Activation 

of translation of these messages is accomplished by a variety of mechanisms. Two 

examples of which are uORFs and internal ribosome entry sites (IRESs). 

 

The transcription factor Gcn4 activates transcription of amino acid biosynthetic genes in 

response to amino acid starvation, and Gcn4 activity is controlled at the levels of 

transcription and translation. Translation of GCN4 mRNA is controlled by four uORFs in 

the 5’UTR that sensitize it to TC levels. Ribosomes scan the GCN4 5’UTR, and 

encounter and translate uORF1. uORF1 associated sequences then promote resumption of 

scanning following translation. If nutrient levels are high, the TC concentration is high, 

and the scanning ribosome will bind TC prior to encountering one of the three 

downstream uORFs. Translation of one of the three downstream uORFs promotes 

dissociation of the ribosome, and thus prevents translation initiation at the GCN4 AUG. 
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However, if nutrient levels are low, the TC concentration is low, and the scanning 

ribosome is less likely to bind TC prior to encountering one of the three downstream 

uORFS. Bypass of the downstream uORFs allows translation initiation at the GCN4 

AUG by ribosomes that bind TC between uORF4 and the start codon (Hinnebusch, 

2005). Thus, uORFs provide a way to sensitize a specific message to the translational 

capacity of the cell. The CLN3 message is also regulated by a uORF. However, this 

uORF modulates translation through a leaky scanning mechanism, and functions to 

reduce translational efficiency in nutrient poor conditions (Polymenis and Schmidt, 

1997). During glucose deprivation cells down-regulate global translation, and undergo a 

developmental program leading to invasive growth. Invasive growth mRNAs contain 

IRESs in their 5’UTRs, consisting of unstructured poly(A) tracts. These poly(A) tracts 

recruit PABP (Pab1 in yeast) to the 5’UTRs. PABP then recruits eIF4G to promote cap-

independent translation (Gilbert et al., 2007). Thus cells employ a variety of methods to 

up-regulate translation of specific messages when global translation is down-regulated. 

 

Translational regulation is also employed to spatially restrict the accumulation of specific 

proteins. In budding yeast mRNAs encoding bud specific proteins are translationally 

repressed outside of the bud, in a process that is linked bud-directed transport of these 

mRNAs. The ASH1 gene encodes a transcription factor that inhibits HO transcription, 

and localized translation of ASH1 mRNA prevents HO transcription in the bud. The 

She2-She3-Myo4 complex transports the ASH1 mRNA to the bud, along the actin 

cytoskeleton, and binding of Puf6 and Khd1 repress translation during transport. 

Repression is relieved when the ASH1-Khd1-Puf6 complex reaches the bud, and the 
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membrane-associated kinase Yck1 phosphorylates Khd1, allowing localized translation 

of ASH1 (Paquin and Chartrand, 2008). Additionally, a recent analysis of a large set of 

RNA binding proteins (RBPs) shows widespread interaction of the transcriptome with 

RBPs, and binding of individual RBPs to functionally related mRNAs (Hogan et al., 

2008). Thus, mRNA-RBP interactions may represent a widespread and underappreciated 

mechanism of regulation of gene expression. 

  

Translational Regulation During Meiosis in Higher Eukaryotes 

In many higher eukaryotes early embryonic development is driven by a series of 

extremely rapid cell divisions that utilize stored maternal mRNAs. As such, translational 

regulation, rather than transcription, is heavily utilized to control protein accumulation 

during these divisions. Additionally, oocytes undergo the first stages of meiosis, and then 

enter a prolonged arrest that can last for days to decades, depending upon the organism. 

Relief of this arrest is associated with translational activation of a variety of mRNAs 

required for meiotic progression. Such regulation has been observed in diverse organisms 

including Xenopus, Drosophila, and C. elegans, where cyclin mRNAs are common, 

conserved targets of translational activation (Hake and Richter, 1994; Stebbins-Boaz et 

al., 1999; Mendez and Richter, 2001; Sugimura and Lilly, 2006; Vardy and Orr-Weaver, 

2007a; Biedermann et al., 2009). The specific mechanisms of translational regulation 

vary from transcript to transcript, and organism to organism. However, the general 

themes of translational regulation used are the same. The 3’UTRs of these messages are 

bound by RBPs, which in turn regulate the association of eIF4E and eIF4G with the 

message, and modulate poly(A) tail length (Vardy and Orr-Weaver, 2007b).  
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Conclusions 

Active research into meiosis has led to insights into the mechanisms of meiotic 

chromosome segregation, and into the processes that are required for accurate segregation 

such as recombination, co-orientation of sisters during meiosis I, and protection of 

centromeric cohesion during meiosis I. However, comparatively little was known about 

how CDK activity was regulated during meiosis, and how meiotic events were regulated 

by CDKs. The following chapters will discuss the regulation of CDKs during meiosis in 

budding yeast, specifically through regulation of cyclin translation, and how this 

regulation of CDK activity affects meiotic progression. 
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Summary 

In budding yeast key meiotic events such as DNA replication, recombination, and the 

meiotic divisions are controlled by Clb cyclin-dependent kinases (Clb-CDKs).  Using a 

novel synchronization procedure, we have characterized the activity of these Clb-CDKs 

and observed a surprising diversity in their regulation during the meiotic divisions.  Clb1-

CDK activity is restricted to meiosis I, and Clb3-CDK activity to meiosis II through 

5’UTR-mediated translational control of its transcript. The analysis of cells 

inappropriately producing Clb3-CDKs during meiosis I furthermore defines Clb3 as an 

inhibitor of the meiosis I chromosome segregation program. Our results demonstrate an 

essential role for Clb-CDK regulation in establishing the meiotic chromosome 

segregation pattern. 
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Introduction 

Meiosis is a specialized cell division used by sexually reproducing organisms to produce 

haploid gametes from diploid progenitor cells. Pre-meiotic DNA replication is followed 

by two chromosome segregation phases, meiosis I and meiosis II. During meiosis I 

homologous chromosomes are segregated, while during meiosis II sister chromatids are 

split. As during the mitotic cell cycle, cyclin-dependent kinases (CDKs) promote 

progression through the meiotic program. Budding yeast contains six B-type cyclins, 

Clb1 – Clb6 (reviewed in Bloom and Cross, 2007). Clb5 and Clb6, in conjunction with 

the sole CDK, Cdc28, are essential for the initiation of pre-meiotic S-phase (Dirick et al., 

1998; Stuart and Wittenberg, 1998) and the initiation of homologous recombination 

(Henderson et al., 2006). B-type cyclins and Cdc28 are also required for the two meiotic 

divisions (Benjamin et al., 2003). The major mitotic cyclin CLB2 is not expressed during 

meiosis. Instead, CLB1, CLB3 and CLB4 promote progression through the meiotic 

divisions (Dahmann and Futcher, 1995). Deletion of any two of these three cyclins results 

in cells executing only a single meiotic division. During this single division, homologous 

chromosomes are segregated (Dahmann and Futcher, 1995), but meiosis II events such as 

loss of Sgo1, the sister chromatid cohesion control factor, from chromosomes occur 

(Kiburz et al., 2008).  

 

Studies of Clb-CDKs during mitosis revealed that these kinases are regulated at multiple 

levels. Transcription of the CLB genes is periodic during the cell cycle, with their 

expression typically confined to those cell cycle stages when their activity is needed. In 

addition to transcriptional control, cell cycle regulated degradation of Clb cyclins is 
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essential for restricting Clb-CDK activities to the appropriate stages of the cell cycle 

(reviewed in Mendenhall and Hodge, 1998). At the metaphase – anaphase transition an 

ubiquitin ligase known as the Anaphase Promoting Complex or Cyclosome (APC/C), 

together with the specificity factor Cdc20, degrades Clb5 and a fraction of Clb2. During 

late anaphase another APC/C specificity factor called Cdh1 degrades Clb1, Clb3 and the 

remaining pool of Clb2. Down-regulation of Clb-CDK activity at the end of mitosis is 

primarily brought about by degradation of the Clb proteins, but the Clb-CDK inhibitor 

Sic1, which directly binds to the cyclin-CDK complex, helps restrain Clb-CDK activity 

during exit from mitosis and G1 (reviewed in Bloom and Cross, 2007).  

 

CDK activity associated with the different Clb cyclins has been characterized extensively 

during the mitotic cell cycle. However, the asynchrony with which sporulating cultures of 

S. cerevisiae proceed through the meiotic divisions has prevented the detailed 

characterization of CDK activity during meiosis. We developed a novel synchronization 

method that produces meiotic cultures that proceed through the meiotic divisions with a 

high degree of synchrony, comparable to that of synchronized mitotic cultures. Using this 

synchronization method we characterized Clb1-, Clb3-, Clb4- and Clb5-CDK activity and 

observed a striking diversity in their regulation during meiosis. Clb1-CDK activity, but 

not Clb1 protein, is restricted to meiosis I. Clb3-CDK activity, on the other hand, is 

meiosis II-specific because Clb3 protein is not translated during meiosis I. This meiosis I-

specific translational inhibition is mediated by the 5’ untranslated region (UTR) of the 

RNA. Finally, we show that restricting Clb3 protein to meiosis II is essential for 

establishing the meiosis I chromosome segregation pattern. Our results demonstrate a 
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high degree of specialization of Clb-CDK regulation during meiosis and demonstrate an 

essential role for Clb-CDK regulation in establishing the meiotic chromosome 

segregation pattern.  
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Results  

A method to generate synchronous meiotic cultures in budding yeast.  

In budding yeast, the resolution with which meiotic events can be observed is limited by 

the relative asynchrony of meiotic cultures, much of which stems from variations in the 

timing of entry into the meiotic program (Nachman et al, 2007). We eliminated this 

source of asynchrony by developing conditions that arrest cells reversibly in prophase I, 

prior to the two meiotic divisions. NDT80 is a transcription factor that is required for 

progression out of the pachytene stage of meiosis and into meiosis I (Xu et al., 1995; Chu 

et al., 1998). To arrest cells reversibly in pachytene, the NDT80 open reading frame was 

placed under the control of the inducible GAL1-10 promoter (GAL-NDT80; Benjamin et 

al., 2003). In cells producing a Gal4-estrogen receptor fusion protein (Gal4.ER), 

transcription from the GAL1-10 promoter can be induced by the addition of estrogen to 

the medium (Picard et al., 1999; Benjamin et al., 2003; Figure 1A).  

 

In the absence of β-estradiol GAL4.ER GAL-NDT80 cells failed to undergo any meiotic 

divisions (Figure 1B, C).  However, when 1 µM β-estradiol was added 5 hours after 

transfer into meiosis-inducing conditions (henceforth called the GAL-NDT80 block), 

GAL4.ER GAL-NDT80 cells underwent both meiotic divisions synchronously (Figure 1B, 

C).  Cells initiated meiosis I one hour post release, and approximately 80% of cells had 

undergone this division one hour later (Figure 1B, left panel). Meiosis II occurred with a 

similarly high degree of synchrony (Figure 1B, right panel).  In contrast, cultures of cells 

that expressed NDT80 from its native promoter took approximately four hours to 

complete the first division and another four hours to complete meiosis II with the peaks 
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of meiosis I and meiosis II largely overlapping (Figure 1B). The high degree of 

synchrony of meiotic cultures that were blocked in pachytene and then released from the 

block was particularly evident when the percentages of cells in metaphase I, anaphase I, 

metaphase II and anaphase II were examined (Figure 1C). More than 40% of cells 

progressed through the different cell cycle stages simultaneously, whereas only 10% of 

cells with NDT80 under its native promoter did (Figure 1C). This analysis also showed 

that cells spent longer periods of time in metaphase II and anaphase II, compared to their 

meiosis I counterparts (Figure 1C). Why progression through meiosis II takes longer than 

progression through meiosis I is at present unknown. 

 

Tetrad analysis confirmed that the pachytene arrest caused by the depletion of NDT80 

and the release from the block did not interfere with meiotic progression. Sporulation 

efficiency and spore viability were high (96.5% and 95.5% respectively; Figure 1D). We 

conclude that modulating the production of Ndt80 can be used to generate meiotic 

cultures that progress through the meiotic divisions with a high degree of synchrony. 
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Figure 1: A meiotic block-release synchronization system 

(A) A method for synchronizing meiotic cells using an inducible allele of NDT80. See 

text for details. 

(B and C) GAL4.ER (A14200; circles) and GAL4.ER GAL-NDT80 strains (A14201; 

squares) were induced to sporulate at 30°C by transfer into SPO medium. After 5 hours 

either ethanol (open symbols) or 1µM β-estradiol was added (closed symbols). The 

percentages of bi- and tri- or tetranucleate cells ([B], left graph), of tri- or tetranucleate 

cells ([B], right graph), and of cells with metaphase I ([C], upper left graph), anaphase I 

([C], upper right graph), metaphase II ([C], lower left graph) or anaphase II spindles ([C], 

lower right graph) were determined at the times indicated after transfer into SPO 

medium. 

(D) GAL4.ER (A14200) and GAL4.ER GAL-NDT80 strains (A14201) were grown as 

described in Figure 1B. Samples were taken after 28 hours (n=40 tetrads). 
 

 

Clb1-CDK activity is restricted to meiosis I, Clb3-CDK activity to meiosis II. 

To determine how Clb-CDK activity is controlled during the meiotic divisions we 

examined the expression and activity of four of these cyclins, CLB1, CLB3, CLB4 and 

CLB5 using the synchronization procedure described above. Consistent with the role of 

CLB5 in pre-meiotic DNA-replication, both Clb5 protein and associated kinase activity 

were present upon release from the NDT80 block, peaked during metaphase I, declined in 

anaphase I and peaked again as cells formed metaphase II spindles (Figure 2A, D; Figure 

3C; Figure 4A).  Comparison of Clb5 protein levels and Clb5-associated kinase activity 

showed that Clb5-CDK activity paralleled Clb5 protein levels (Figure 2D).  We conclude 

that Clb5-CDK activity is regulated primarily at the level of Clb5 protein abundance and 

that Clb5 protein and associated kinase activity appear in two waves, one during meiosis 

I and one during meiosis II.  
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Figure 2: Cyclin expression and activity during the meiotic divisions.   

GAL4.ER GAL-NDT80 strains carrying tagged versions of cyclins CLB5-3HA (A15804), 

CLB4-3HA (A15090), CLB1-9Myc (A15591) and CLB3-3HA (A15802) were induced to 

sporulate at 30°C, and were released from the GAL-NDT80 block at 6 hours. 

(A, E, I and M) The amount of protein and associated Histone H1 kinase activity for the 

indicated cyclin ([A] Clb5-3HA, [E] Clb4-3HA, [I] Clb1-9Myc and [M] Clb3-3HA) is 

shown. Pgk1 or Cdc28 were used as loading controls. MetaI, AnaI, MetaII and AnaII 

signify the peaks of cells with metaphase I, anaphase I, metaphase II and anaphase II 

spindles, respectively (all time points are shown in Figure 4A – D). 

(B, F, J, N) Transcript levels for the indicated cyclins ([B] CLB5-3HA, [F] CLB4-3HA, 

[J] CLB1-9Myc and [N] CLB4-3HA). TEF1 and rRNA are shown as loading controls.  

(C, G, K, O) Quantifications of cyclin transcript levels normalized to the rRNA (open 

symbols, left axis) and cyclin protein levels normalized to the loading control (closed 

symbols, right axis) for the indicated cyclins ([C] Clb5-3HA, [G] Clb4-3HA, [K] Clb1-

9Myc and [O] Clb3-3HA). 

(D, H, L, P) Quantifications of cyclin associated Histone H1 kinase activity (open 

symbols, left axis) and cyclin protein levels normalized to the loading control (closed 

symbols, right axis) for the indicated cyclins ([D] Clb5-3HA, [H] Clb4-3HA, [L] Clb1-

9Myc and [P] Clb3-3HA). 

 

 

Clb4-CDKs displayed a more complex pattern of regulation. CLB4 RNA and protein 

accumulated as cells entered meiosis I and remained high throughout the two meiotic 

divisions (Figure 2E, F, G; Figure 4B). Comparison of Clb4 protein levels with Clb4-

CDK activity showed that the two correlated well until metaphase I. Thereafter, the 

decline in Clb4-CDK activity was not paralleled by a decline in Clb4 protein. This was 

particularly evident during exit from meiosis II (Figure 2E, H; Figure 3A). The loss of 

Clb4-CDK activity was not due to a failure to immunoprecipitate Clb4 during late stages 
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of meiosis (data not shown) indicating that during exit from meiosis I and meiosis II 

posttranslational mechanisms other than degradation of Clb4 protein down-regulate Clb4-

CDK activity.   

 

 

Figure 3: Kinase assay controls for tagged cyclins shown in Figure 2. 

 (A-C)  Kinase assays were performed on samples from wild-type cycling cultures 

carrying the tagged cyclins shown: no tag ([A-C] A4841), CLB4-3HA ([A], A4736), 

CLB3-3HA ([A], A11955), CLB1-9Myc ([B], A7057) and CLB5-3HA ([C], A15109). 

(D) A strain carrying GAL4.ER GAL-NDT80 CLB1-9Myc (A15591) was induced to 

sporulate at 30°C, and was released from the GAL-NDT80 block at 6 hours with the 

addition of 1µM β-estradiol.  Clb3 protein as detected by an anti Clb3-antibody (Santa 
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Cruz) is shown with Pgk1 as a loading control. Progression through meiosis for this 

experiment is shown in Figure 4C. 
 

 

CLB1 mRNA and Clb1 protein levels rose during meiosis I and remained high until exit 

from meiosis II (Figure 2I, J, K; Figure 4C). A slower migrating form of Clb1 was only 

detected during meiosis I and correlated with Clb1-CDK activity (Figure 2I; Figure 3B, 

Figure 4E) suggesting that this form of Clb1 signifies active Clb1-CDK complexes. 

Quantification of Clb1 protein and associated kinase activity confirmed this result and 

demonstrated that Clb1-CDK was only active during meiosis I (Figure 2L; Figure 4E). 

The loss of Clb1-CDK activity during meiosis II was not due to an inability to 

immunoprecipitate Clb1 (data not shown), excluding the possibility that degradation of 

Clb1 in extracts or insolubility of the protein were responsible for the lack of Clb1-CDK 

activity during meiosis II. Our results show that during the meiotic divisions Clb1-CDK 

is a meiosis I-specific CDK. The finding that Clb1, which is an APC/C-Cdh1 substrate 

during the mitotic divisions (J. Simpson and M. Brandeis, personal communications), is 

not degraded during exit from meiosis I further indicates that APC/C-Cdh1 is inactive 

during this transition. The observation that Clb1-CDK activity is nevertheless low during 

meiosis II demonstrates that posttranslational mechanisms other than protein degradation 

inhibit Clb1-CDK activity during exit from meiosis I and during meiosis II. 
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Figure 4: Kinetics of meiotic divisions for strains shown in Figure 2. 

(A-D) Meiotic progression was monitored in the strains shown in Figure 2, CLB5-3HA 

([A], A15804), CLB4-3HA ([B], A15090), CLB1-9Myc ([C], A15591) and CLB3-3HA 

([D], A15802). The percentages of bi- and tri- or tetranucleate cells (open symbols) or the 

percentages of tri- or tetranucleate cells (closed symbols) were determined at the times 

indicated after inoculation into SPO medium [A-D, left panels].  The percentages of cells 

with metaphase I (open circles), anaphase I (closed circles), metaphase II (open squares) 

or anaphase II spindles (closed squares) were determined at the times indicated after 

inoculation into SPO medium [A-D, right panels]. 

(E) Quantification of Clb1-9Myc associated Histone H1 kinase activity (open symbols, 

left axis) and levels of the slower migrating form of Clb1-9Myc normalized to the 

loading control (closed symbols, right axis). 
 

 

The CLB3 transcript accumulated somewhat later than that of CLB1 and CLB4 but 

nevertheless reached high levels during meiosis I and peaked during meiosis II (Figure 

2N, O; Figure 4D).  Interestingly, a 3HA tagged version of Clb3 protein and its 

associated kinase activity did not appear until the onset of meiosis II (Figure 2M, P; 

Figure 3A; Figure 4D). Untagged Clb3 also did not accumulate until the onset of meiosis 

II (Figure 3D; Figure 4C). This data shows that during the meiotic divisions Clb3 is a 

meiosis II-specific cyclin, and that post-transcriptional mechanisms restrict the protein to 

meiosis II.  

 

Protein degradation is not responsible for restricting Clb3 to meiosis II.  

Clb3 is an APC/C substrate (Zachariae et al., 1996), and in chicken cells APC/C-Cdh1 is 

active during G2 (Sudo et al., 2001). It was therefore possible that during the prolonged 
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pre-meiotic G2 arrest induced by the NDT80 block APC/C-Cdh1 was activated leading to 

the degradation of Clb3, or that a novel-degradation pathway was responsible for keeping 

Clb3 protein levels low during meiosis I. To test this hypothesis we examined the effects 

of inhibiting the 26S proteasome and the APC/C on Clb3 levels during meiosis I.  
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Figure 5: Clb3 does not accumulate during meiosis I in proteasome inhibited cells or 

in APC mutant cells. 

(A-C) Duplicate cultures of GAL4.ER GAL-NDT80 pdr5∆ CLB3-3HA (A16011) were 

sporulated at 30°C, and were released from the GAL-NDT80 block at 6 hours. Either 

DMSO (open symbols) or 20 µM MG-132 (closed symbols) was added at 6.5, 8.5 and 

10.5 hours after transfer into SPO medium.  Cells lacked the PDR5 gene to prevent 

export of MG-132. 

(D-F) Wild-type (A17946, open circles), PCLB2-CDC20 (A17855, closed circles) and 

PCLB2-3HA-CDC27 (A17856, open squares) cells carrying GAL4.ER, GAL-NDT80, 

PDS1-18Myc and CLB3-3HA alleles were sporulated at 30°C, and were released from the 

GAL-NDT80 block at 6 hours. 

(G-I) CDC23 (A17946, open symbols) or cdc23-1 (A17947, closed symbols) cells 

carrying GAL4.ER, GAL-NDT80, PDS1-18Myc and CLB3-3HA alleles were induced to 

sporulate at room temperature, were released from the GAL-NDT80 block at 7 hours, and 

were shifted to 34°C at 8 hours to inactivate the cdc23-1 allele. 

(A) Western blots for Clb3-3HA. 

(D, G) Western blots for Clb3-3HA and Pds1-18Myc.  

(B, C, E, F, H, I) The percentages of bi- and tri- or tetranucleate cells ([B, E, H], upper 

graphs), of tri- or tetranucleate cells ([B, E, H], lower graphs), and of cells with 

metaphase I ([C, F, I], upper left graphs), anaphase I ([C, F, I], upper right graphs), 

metaphase II ([C, F, I], lower left graphs) or anaphase II spindles ([C, F, I], lower right 

graphs) were determined at the times indicated after transfer into SPO medium. 

 

 

Addition of MG-132 to cells inhibits the proteasome. When added to meiotic cultures, 

15% of cells arrested in metaphase I (Figure 5C) and progression through the meiotic 

divisions was somewhat hampered (Figure 5B) indicating that the proteasome was only 

partially inactivated by MG-132 in these experiments. This partial inhibition was 

nevertheless sufficient to prevent degradation of Clb3 during exit from meiosis II (Figure 



	   76	  

5A). However, treatment with MG-132 did not lead to accumulation of Clb3 during 

meiosis I (Figure 5A) suggesting that proteasome-mediated protein degradation was not 

responsible for keeping Clb3 protein levels low during meiosis I. 

 

Inactivation of the APC/C by depleting the APC/C component Cdc27 or the APC/C 

activator Cdc20, or by employing a temperature sensitive allele of the APC/C subunit 

Cdc23 (cdc23-1) did not allow Clb3 to accumulate during meiosis I. Meiotic depletions 

of Cdc20 and Cdc27 were achieved by placing these genes under the control of the 

mitosis specific CLB2 promoter (Lee and Amon, 2003). Cdc20-depleted cells (cdc20-mn 

cells) arrested in metaphase I (Figure 5E, F), and Cdc27-depleted cells (cdc27-mn cells) 

were delayed in metaphase I (Figure 5E,F) indicating that Cdc27 depletion was not 

complete or that Cdc27 was not essential for the metaphase I – anaphase I transition.  

cdc23-1 cells were delayed in metaphase I, but some cells completed meiosis I before 

arresting in metaphase II (Figure 5H,I).  In cdc20-mn, cdc27-mn and cdc23-1 cells Pds1-

18Myc, an APC/C target whose degradation is required for anaphase I and anaphase II 

onset, was stabilized during exit from meiosis II indicating that APC/C function is 

impaired in these mutants (Salah and Nasmyth, 2000; Figure 5D and 5G).  However, 

Clb3 did not accumulate during meiosis I in any of these strains (Figure 5D and 5G).  In 

fact its accumulation was greatly delayed in the APC/C mutants that are defective in 

progressing through meiosis I further confirming that Clb3 is indeed a meiosis II-specific 

cyclin. Our results do not rule out a minor role for APC/proteasome dependent 

degradation in preventing Clb3 accumulation during meiosis I, but they indicate that 
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other posttranscriptional mechanisms are primarily responsible for preventing the 

accumulation of Clb3 protein during meiosis I. 

 

The 5’UTR of CLB3 is required to restrict Clb3 protein to meiosis II. 

Although Clb1-, Clb3-, and Clb4-CDK activity all appeared to be regulated in an 

interesting manner during the meiotic divisions, we chose to further study Clb3 

regulation because our results raised the possibility that translational control restricts 

Clb3 protein to meiosis II. This form of regulation would represent a novel mechanism of 

controlling Clb-CDKs in yeast.  

 

To investigate the possibility that translational control confines Clb3 protein to meiosis 

II, we tested whether the UTRs of the mRNA mediate such regulation.  Because the Clb3 

protein employed in this study carries a tag at its C-terminus resulting in the disruption of 

the native 3’UTR of CLB3 (Longtine et al., 1998) we examined the role of the 5’UTR in 

preventing Clb3 accumulation during meiosis I by replacing the promoter and 5’UTR of 

CLB3 with that of the GAL1-10 gene.  Thus cells carrying the GAL4.ER fusion express 

CLB3 upon addition of β-estradiol. Upon release from the GAL-NDT80 block GAL-CLB3 

was expressed within 30 minutes (Figure 6B). The amount of CLB3 RNA generated from 

the GAL1-10 promoter was significantly lower than that produced by the native CLB3 

promoter. This was best seen when the amounts of CLB3 RNA at the 7.5, 7.75 and 8 hour 

time points of the wild-type were compared to that of the 6.5, 6.75 and 7 hour time points 

of the GAL-CLB3 carrying strain (Figure 6B). Clb3 protein however was undetectable in 

wild-type cells at the 7.5, 7.75 and 8 hour time points but the protein was highly 
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produced at the 6.5, 6.75 and 7 hour time points of the GAL-CLB3 carrying strain (Figure 

6A).  

 

Quantification of the amount of Clb3 protein produced by CLB3 mRNA demonstrated 

that the promoter and 5’UTR of CLB3 affected Clb3 protein levels in at least two ways. 

First, it functions to restrict Clb3 protein to meiosis II. The ratio of Clb3 protein/CLB3 

mRNA was low during meiosis I but high during meiosis II (Figure 6E, left panel). 

Second, the 5’UTR prevents efficient translation. This was evident when we compared 

the amount of Clb3 protein generated per CLB3 mRNA in wild-type cells with the 

amount of Clb3 protein generated from CLB3 mRNA carrying the GAL1-10 5’UTR 

(Figure 6E, right panel). The amount of Clb3 protein produced per RNA was much 

higher in the GAL-CLB3 expressing strains than in wild-type cells. Similar results were 

obtained when CLB2 was controlled by the CLB3 promoter and 5’UTR (Figure 7A). We 

conclude that the promoter and 5’UTR of CLB3 are required for restricting translation of 

Clb3 protein to meiosis II.  
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Figure 6: The CLB3 promoter and 5’UTR are required to prevent Clb3 

accumulation during meiosis I. 

CLB3-3HA (A15055, open symbols) and GAL-CLB3-3HA (A18095, closed symbols) 

cells carrying GAL4.ER and GAL-NDT80 were sporulated at 30°C, and were released 

from the GAL-NDT80 block at 6 hours by the addition of 1 µm β-estradiol. 

(A) Western blots for Clb3-3HA protein. 

(B) Northern blots for CLB3.  

(C and D) The percentages of bi- and tri- or tetranucleate cells ([C], left graph), of tri- or 

tetranucleate cells ([C], right graph), of cells with metaphase I ([D], upper left graph), 

anaphase I ([D], upper right graph), metaphase II ([D], lower left graph) or anaphase II 

spindles ([D], lower right graph) were determined at the times indicated. 

(E) Quantifications of the ratio of Clb3-3HA protein to CLB3 mRNA 

([Clb3p/Pgk1]/[CLB3/TEF1]).  Quantifications of Clb3 protein/CLB3 RNA for wild-type 

are shown in the left graph. The same data was then compared with the amount of 

Clb3protein/CLB3 RNA generated from the GAL1-10 promoter (right graph). 
 

 

The 5’UTR of CLB3 is sufficient to prevent accumulation of proteins during meiosis 

I.  

To determine whether the CLB3 promoter and 5’UTR were sufficient to restrict 

accumulation of proteins to meiosis II we replaced the open reading frame and 3’UTR of 

CLB3 with that of CLB2 and ADH1, respectively (see Experimental Procedures). As a 

control, we also placed CLB2 fused to the ADH1 3’UTR under the control of the CLB4 

promoter. Expression of CLB2 from the CLB3 or CLB4 promoters did not significantly 

interfere with progression through meiosis, although exit from meiosis II appeared 

slightly delayed in PCLB4-CLB2 strains (Figure 7C-D).  
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Figure 7: The CLB3 promoter and 5’UTR are sufficient to prevent protein 

accumulation during meiosis I. 

PCLB3-CLB2 CLB3-3HA (A18574, open symbols) and PCLB4-CLB2 CLB4-3HA (A18578, 

closed symbols) cells carrying GAL4.ER and GAL-NDT80 alleles were cultured as 

described in Figure 4. 

(A) Western blots for Clb2, Clb3-3HA and Clb4-3HA. vATPase is shown as a loading 

control. 

(B) Northern blots for CLB2, CLB3 and CLB4. 

(C and D) The percentages of bi- and tri- or tetranucleate cells ([C], left graph), of tri- or 

tetranucleate cells ([C], right graph) and of cells with metaphase I ([D], upper left graph), 

anaphase I ([D], upper right graph), metaphase II ([D], lower left graph) or anaphase II 

spindles ([D], lower right graph) were determined at the times indicated times.  
 

 

As expected, in both PCLB3-CLB2 and PCLB4-CLB2 strains CLB2 transcript levels mirrored 

those of CLB3 and CLB4, respectively (Figure 7B).  However, despite the presence of 

CLB2 transcript during meiosis I in PCLB3-CLB2 cells, Clb2 protein did not accumulate 

during meiosis I, but was, as Clb3, present only during meiosis II (Figure 7A).  In PCLB4-

CLB2 strains Clb2 appeared during meiosis I, indicating that Clb2 protein can accumulate 

during the first division (Figure 7A). Our results indicate that the promoter and 5’UTR of 

CLB3 are sufficient to confine translation of proteins to meiosis II.  

 

To further define the sequences that bring about translational control to CLB3 we 

determined the length of the CLB3 5’UTR. This analysis revealed a start site at 130 bp 

upstream of the ATG and additional transcriptional initiation between 130 bp and 156 bp 

upstream (Figure 8). Thus, the 5’UTR has a maximal length of 156 bases, which is in 

good agreement with a recent genome-wide analysis of the yeast transcriptome (David et 
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al., 2006). Importantly, the length of the 5’UTR was the same during vegetative growth, 

meiosis I and meiosis II (Figure 8) indicating that changes in 5’UTR length are not likely 

to be responsible for the differences in translation observed between meiosis I and 

meiosis II. 

 

Figure 8: 5’RACE Analysis of CLB3 transcript from cycling,  

meiosis I and meiosis II cells. 

CLB3-3HA (A15055) cells carrying GAL4.ER GAL-NDT80 alleles were sporulated at 

30°C, and were released from the GAL-NDT80 block at 6 hours with the addition of 1µM 

β-estradiol.  Samples were also taken from cycling cultures of CLB3-3HA (A15055). 

(A) The percentages of cells with either MI or MII spindles was determined at the times 

indicated after inoculation into SPO medium. 

(B) Northern blot showing CLB3. rRNA is shown as a loading control. 
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(C) Western blot for Clb3-3HA. Samples were taken from cycling cells (cyc) or from 

meiotic cultures at the times indicated after inoculation into SPO medium. 

(D) Products from 5’RACE analysis of CLB3 transcript in cycling cells or at the indicated 

times after inoculation into SPO medium. Arrow indicates expected size of 5’RACE 

product. 

(E) Schematic showing obtained lengths of the CLB3 5’UTR. Similar results were 

obtained for cycling, MI and MII samples.  

 

 

To determine whether the CLB3 5’UTR is sufficient to restrict translation of proteins to 

meiosis II, we placed CLB2 under the control of a fusion between the GAL1-10 promoter 

and 153 bases of the 5’UTR of CLB3 (GAL-5’UTRCLB3-CLB2). Cells that carry CLB2 

under the control of the GAL1-10 promoter and GAL1 5’UTR (GAL-CLB2) were used as 

a control.  Expression of CLB2 RNA was similar in the two strains (Figure 9B). In 

contrast, Clb2 protein accumulated during meiosis I in GAL-CLB2 cells, but did not 

accumulate until meiosis II in GAL-5’UTRCLB3-CLB2 strains (Figure 9A).  Furthermore, 

consistent with our analysis of Clb3 translation, Clb2 translation was significantly less 

efficient when the 5’ UTR of CLB3 was employed to drive CLB2 expression (Figure 9A). 

Our results show that the CLB3 5’UTR is sufficient to prevent protein accumulation 

during meiosis I. 
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Figure 9: The CLB3 5’UTR is sufficient to prevent protein accumulation during 

meiosis I. 

Wild-type (A15802, open circles), GAL-CLB2 (A19060, closed circles) and GAL-

5’UTRCLB3-CLB2 (A19026, open squares) cells carrying GAL4.ER, GAL-NDT80 and 

CLB3-3HA alleles were cultured as described in Figure 6. 

(A) Western blots for Clb2 and Clb3-3HA. 
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(B) Northern blots for CLB2 and CLB3. 

(C and D) The percentages of bi- and tri- or tetranucleate cells ([C], upper graph), of tri- 

or tetranucleate cells ([C], lower graph), and of cells with metaphase I ([D], upper left 

graph), anaphase I ([D], upper right graph), metaphase II ([D], lower left graph) or 

anaphase II spindles ([D], lower right graph) were determined at the times indicated.  
 

 

Consequences of translating Clb3 during meiosis I. 

To determine whether preventing Clb3 accumulation during meiosis I was important for 

the successful execution of this division we produced Clb3 during meiosis I by placing 

the gene under the control of the GAL1-10 promoter. Importantly, the amount of Clb3 

produced from this promoter during meiosis I was less than the amount of Clb3 that 

accumulates during meiosis II in wild-type cells (Figure 6A) indicating that the protein 

was not significantly overproduced when expressed from the GAL1-10 promoter. To 

follow the fate of chromosomes during the meiotic divisions we integrated a tandem 

array of tetO sequences at LEU2 on both copies of chromosome III (homozygous LEU2-

GFP dots). These cells also expressed a tetR-GFP fusion, which binds to tetO, to 

visualize the repeats (Michaelis et al., 1997).  

 

Wild-type and GAL-CLB3 cells carrying NDT80 under its native promoter were induced 

to enter meiosis. Three hours thereafter, when most cells had completed DNA replication, 

β-estradiol was added to induce expression of CLB3 in the GAL-CLB3 cells. In wild-type 

cells, homologous chromosomes segregated during meiosis I giving rise to binucleate 

cells with a LEU2-GFP dot in each nucleus (Figure 10A, left panel). In contrast, 17% of 

GAL-CLB3 cells missegregated homologs to the same pole during meiosis I leading to 
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binucleate cells with a LEU2-GFP dot in only one of the two nuclei (Figure 10A, left 

panel). The distribution of LEU2-GFP dots was also abnormal in cells that had completed 

meiosis II  (Figure 10A, right panel). Despite these segregation abnormalities, both 

meiotic nuclear divisions occurred in GAL-CLB3 cells to the same extent as in wild-type 

cells (65% tetranuclate cells in GAL-CLB3 cultures compared to 57% in wild-type 

cultures; n=200). Tetrad formation was however reduced (30.5% tetrads in GAL-CLB3 

cells compared to 59% in wild-type cells; n=200). Analysis of the spore viability revealed 

that in cells that were able to form spores chromosome segregation was little affected. 

66% of spores of GAL-CLB3 strains were viable compared to 93% of the wild-type 

(n=160).  

 

Next we examined whether production of Clb3 during meiosis I affected sister chromatid 

segregation by analyzing the behavior of strains in which only one of the two homologs 

carried LEU2-GFP dots (heterozygous LEU2-GFP dots). In this situation, a wild-type 

meiosis I chromosome segregation pattern gives rise to binucleate cells with a LEU2-

GFP dot in one of the two nuclei. In GAL-CLB3 cells, 30% of binucleate cells contained a 

GFP dot in both nuclei (Figure 10B; left panel). This outcome was not due to increased 

recombination between the centromere and the LEU2 locus because GFP dots at the 

centromere of chromosome V (CENV-GFP dots) behaved similarly (Figure 10B, right 

panel). Our results show that expression of Clb3 prior to and during meiosis I interferes 

with homolog disjunction and causes cells to segregate sister chromatids during the first 

nuclear division. 
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Are the effects of expressing Clb3 on meiosis I chromosome segregation specific to this 

cyclin or does any high Clb-CDK activity interfere with meiotic chromosome 

segregation? To address this question we examined the consequences of producing Clb2, 

another cyclin that is normally not expressed during meiosis I. Sister chromatid 

separation during the first meiotic division also occurred in cells expressing CLB2 from 

the GAL1-10 promoter but at a lower frequency (12% in GAL-CLB2 cells compared to 

51% in GAL-CLB3 cells; Figure 10B, C). In contrast, replacing the promoter of a cyclin 

that is normally expressed during meiosis I (CLB4) with the GAL1-10 promoter did not 

interfere with meiotic chromosome segregation (Figure 10C), sporulation efficiency and 

spore viability (94.5%; n=160). Our results show that expression of a cyclin that is 

normally expressed during meiosis I from the GAL1-10 promoter (Clb4) does not affect 

meiosis I chromosome segregation. In contrast, expression of a cyclin that is not normally 

expressed during meiosis I such as Clb2 or Clb3, which likely results in an increase in 

overall Clb-CDK activity during meiosis I, interferes with meiotic chromosome 

segregation. Furthermore, it appears that Clb3 is a more potent inhibitor of meiosis I 

chromosome segregation than Clb2.   

 

Production of Clb3 during meiosis I causes premature sister chromatid separation. 

Production of Clb3 prior to and during meiosis I caused the appearance of bi-nucleate 

cells that had separated their sister chromatids. To determine whether this was due to 

premature sister chromatid separation during meiosis I we examined the behavior of 

heterozygous CENV-GFP dots in cells that were arrested in metaphase I, due to the 

depletion of Cdc20. During metaphase I kinetochores of sister chromatid pairs attach to 
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microtubules emanating from the same pole (co-orientation). Thus the sister kinetochores 

are not under tension and only one CENV-GFP dot is visible (Figure10D, Lee and Amon, 

2003). In contrast, when sister chromatids are bi-oriented, their kinetochores attach to 

microtubules from opposite poles. The pulling force of the spindle then leads to the 

appearance of two CENV-GFP dots (Lee and Amon, 2003).  

 

Production of Clb3 in Cdc20-depleted cells led to separation of sister chromatids as 

judged by the appearance of two GFP dots (Figure 10D). Interestingly, expression of 

Clb3 also suppressed the metaphase I arrest caused by the depletion of Cdc20. GFP-dots 

integrated at URA3 also separated in GAL-CLB3 cells and spindle elongation and the 

formation of binucleate cells occurred (Figure 10D-F). Our results show that production 

of Clb3 suppresses the need for high levels of Cdc20 in promoting entry into anaphase I 

and causes premature sister chromatid separation during meiosis I.  
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Figure 10: Production of Clb3 or Clb2 during meiosis I causes premature sister 

chromatid separation. 

The strains listed below were sporulated at 30°C. 1µM β-estradiol was added at 3 hrs 

after inoculation into SPO medium to induce CLB3 expression. 

(A) CLB3-3HA (A18655) and GAL-CLB3-3HA (A18656) strains carrying GAL4.ER and 

homozygous LEU2 dots were used. The percentage of binucleates with either one or two 

dots was determined at 7 hrs after inoculation into SPO ([A] left panel, n=200). The 

percentage of tetranucleates with one, two, three or four dots was determined at 12 hrs 

after inoculation into SPO ([A] right panel, n=200).  

(B) CLB3-3HA (A18686) and GAL-CLB3 (A18687) strains carrying GAL4.ER and 

heterozygous LEU2 dots, and CLB3 (A19396) and GAL-CLB3 (A19400) strains carrying 

GAL4.ER and heterozygous CENV dots were used. The percentage of binucleates with 

either one or two dots was determined at 8.5 hrs after transfer into SPO (n=200). 

(C) Wild Type (A19397), GAL-CLB4 (A19399) and GAL-CLB2 (A19687) strains 

carrying GAL4.ER and heterozygous CENV dots were used. Binucleate cells were 

examined 7 hrs after transfer into SPO (n=200). 

(D-F) CLB3 (A19402, open circles) and GAL-CLB3 (A19406, closed circles) strains 

carrying cdc20-mn, GAL4.ER and heterozygous CENV dots, and CLB3 (A19408, open 

squares) and GAL-CLB3 (A19410, closed squares) strains carrying cdc20-mn, GAL4.ER 

and heterozygous URA3 dots were used. The percentage of cells with separated GFP dots 

[D], spindles past metaphase I [E], and two DAPI masses [F] were determined at the 

times indicated.  
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Discussion 

Clb-CDK control during meiosis. 

We developed a method to produce budding yeast cultures that proceed through the 

meiotic divisions with a high degree of synchrony. The examination of Clb-CDKs using 

this system revealed a surprising diversity in the regulation of the different cyclin-CDK 

complexes that was not appreciated previously because of the poor synchrony of meiotic 

cultures generated by standard conditions. During vegetative growth, transcription and 

ubiquitin-dependent protein degradation are primarily responsible for controlling Clb-

CDK activity (reviewed in Bloom and Cross, 2007). Clb6 is a substrate of the SCF 

ubiquitin ligase, and Clb5 and a fraction of Clb2 are degraded by APC/C-Cdc20 at the 

metaphase – anaphase transition. Clb1, Clb2 and Clb3 are degraded later during mitosis 

by APC/C-Cdh1. The ubiquitin ligase responsible for degrading Clb4 has not been 

identified. During meiosis only Clb5-CDK activity is regulated at the level of Clb5 

protein abundance. Clb3-CDKs are regulated at the level of Clb3 translation. Clb1-CDKs 

and Clb4-CDKs are restricted to specific meiotic stages by posttranslational mechanisms 

other than protein degradation.  

 

Which post-translational mechanisms could be responsible for down-regulating Clb4-

CDKs after metaphase II and Clb1-CDKs during all of meiosis II? CDK inhibition by 

tyrosine 19 phosphorylation on Cdc28 or binding of the CDK inhibitor Sic1 could inhibit 

Clb4-CDKs during exit from meiosis II. One of the two pathways or both could also be 

responsible for preventing Clb1-CDKs from being active throughout meiosis II. This, 

however, would require a high degree of Clb-CDK specificity for these regulatory 
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mechanisms that has not been observed previously. We therefore believe it to be more 

likely that a novel Clb1-CDK specific mechanism exists that prevents this particular 

kinase from being active during meiosis II. Such a mechanism could involve a selective 

inhibitor of Clb1-CDKs or preventing the association of Clb1 with Cdc28. In this regard 

it is interesting to note that Clb1 protein is not degraded during exit from meiosis I but 

exported out of the nucleus (Buonomo et al., 2003; Marston et al., 2003). Perhaps this 

nuclear export of Clb1 is important for maintaining Clb1-CDKs inactive during meiosis 

II. 

 

Translational control in meiosis. 

Clb3 expression is restricted to meiosis II through translational control. In higher 

eukaryotes, translational control of B-type cyclins plays a key role in controlling meiotic 

progression. In Xenopus, progesterone mediated oocyte maturation relieves the 

translational inhibition of a number of mRNAs including that of cyclin B1 by promoting 

their polyadenylation (Stebbins-Boaz et al., 1996). Translational control of cyclin B 

mRNA is also observed in Drosophila. There, the PAN GU kinase promotes translation 

of the cyclin B message during exit from meiosis II by antagonizing the translational 

repressor Pumilio (Vardy and Orr-Weaver, 2007).  Translational control of Clb3 appears 

to be meiosis I specific. CLB3 mRNA is translated during meiosis II and also during 

mitosis, because Clb3 protein accumulates as soon as cells enter the cell cycle (as judged 

by bud formation) and APC/C-Cdh1 activity is turned off (Figure 11). The simplest 

interpretation of this data is that CLB3 translation is controlled by a meiosis I-specific 

translational repressor. 
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Figure 11: CLB3 transcript and Clb3 protein levels during mitosis. 

CLB3-3HA (A11955) cells were synchronized in G1 by treatment with 5 µg/mL alpha-

factor. Cells were released from this arrest by washing and allowed to proceed through 

mitosis at room temperature.  10 µg/mL alpha-factor was added at 90 minutes to prevent 

a second cell cycle.  Timepoints were taken at the times indicated. 

(A) Western blot for Clb3-3HA. vATPase is shown as a loading control. 

(B) Northern blot showing CLB3. ACT1 is shown as a loading control. 

(C) The percentages of budded (n=100), metaphase (n=200) and anaphase (n=200) cells 

were determined at the times indicated after release into the cell cycle.  
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The 5’UTR affects translation of Clb3 in at least two ways. The 5’UTR decreases 

translational efficiency and restricts translation to meiosis II. Whether these two effects 

are linked or are brought about by separate mechanisms remains to be determined. 

Translational control occurs in budding yeast, but to date has not been observed during 

meiosis. Small upstream open reading frames (uORFs) regulate the translation of the 

GCN4 mRNA.  These uORFs are thought to serve as a measure of the translational 

capacity of the cell, preventing translation of GCN4 mRNA when the translational 

capacity is high (Hinnebusch, 2005). The 156 bp 5’UTR of CLB3 does not contain 

uORFs (T. M. C. unpublished observations). It is therefore not likely that translation of 

CLB3 is governed by such a mechanism. Processing bodies (P-bodies) are cytoplasmic 

foci that are sites of mRNA degradation and of storage of non-translating mRNAs, which 

can later reenter translation (reviewed in Parker and Sheth, 2007). PAT1 and DHH1 have 

been implicated in regulating mRNA stability and translation in P-bodies (Coller and 

Parker, 2005). Deletion of neither gene allowed Clb3 protein to accumulate during 

meiosis I (T. M. C., unpublished observations) indicating that this pathway was not 

responsible for controlling Clb3 translation. Identifying the mechanisms that prevent 

translation of Clb3 during meiosis I and determining whether other RNAs are regulated 

in this manner will be an important question in the future. Furthermore we note that the 

156 bp CLB3 5’UTR sequence will prove useful in studying the effects of expressing 

genes specifically during meiosis II. 
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Importance of translational control of Clb3. 

During meiosis I, homologous chromosomes rather than sister chromatids segregate from 

each other. For this unusual chromosome segregation to occur several meiosis specific 

events must take place (reviewed in Marston and Amon, 2004).  First, reciprocal 

recombination between homologs generates linkages between them, which ensure that 

homologs are accurately aligned on the metaphase I spindle.  Second, mediated by the 

monopolin complex, sister kinetochores attach to microtubules emanating from the same 

pole (co-orientation) to facilitate sister chromatid co-segregation during anaphase I. 

Lastly, cohesin complexes that hold sister chromatids together are lost in a step-wise 

manner.  Loss of arm cohesion allows for the segregation of homologs during meiosis I. 

Retention of centromeric cohesion ensures that sister chromatids properly align on the 

meiosis II spindle. Inhibition of Clb3 production during meiosis I is critical for 

establishing the meiosis I chromosome segregation pattern. In cells producing Clb3 

during meiosis I, sister kinetochore co-orientation and the step-wise loss of cohesion 

appear to be disrupted. Clb3 could interfere with sister kinetochore co-orientation by 

preventing the association of the monopolin complex with kinetochores. How could Clb3 

interfere with the step-wise loss of cohesion? During meiosis I, Sgo1 associates with 

kinetochores where it prevents loss of cohesins (reviewed in Ishiguro and Watanabe, 

2007). Clb3 could inhibit the association of Sgo1 with kinetochores or prevent the protein 

from recruiting the protein phosphatase PP2A, which renders cohesins resistant to 

removal.   
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Figure 12: Spore Viability and GFP dot segregation in GAL4.ER GAL-NDT80 GAL-

CLB3 strains. 

(A) CLB3-3HA (A15055) and GAL-CLB3-3HA (A18095) cells carrying GAL4.ER, GAL-

NDT80 were induced to sporulate at 30°C. After 6 hours in SPO medium 1µM β-

estradiol was added. Samples were taken after 24 hours and tetrads were dissected 

(n=44). 

(B) CLB3-3HA (A18185) and GAL-CLB3-3HA (A18206) cells carrying GAL4.ER, GAL-

NDT80 and heterozygous LEU2 GFP-dots were induced to sporulate at 30°C. After 6 

hours in SPO medium 1µM β-estradiol was added. Sister-chromatid separation was 

scored at 7.75 hours after inoculation into SPO (n=200). 
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(C and D) CLB3-3HA (A18186) and GAL-CLB3-3HA (A18207) cells carrying GAL4.ER, 

GAL-NDT80 and homozygous LEU2 GFP-dots were induced to sporulate at 30°C. After 

6 hours in SPO medium 1µM β-estradiol was added. Chromosome separation was scored 

at 7.75 hours after inoculation into SPO (n=200) for binucleates (C) and at 13 hours for 

tetranucleates (n=100).  
 

 

The phenotype of cells expressing CLB3 during meiosis I is reminiscent of that of cells 

lacking the meiosis I specific gene SPO13. In both, GAL-CLB3 cells and spo13∆ cells, 

sister chromatids separate during meiosis I. In both strains, the metaphase I arrest brought 

about by Cdc20 depletion is suppressed (Shonn et al., 2002; Katis et al., 2004) and 

delaying progression through early meiosis suppresses premature sister chromatid 

separation (McCarroll and Esposito, 1994; Figure 12). SPO13 is, however, not required 

for regulating CLB3 translation. In cells lacking SPO13 translation of CLB3 did not occur 

prematurely (Figure 13).  Whether Clb3-CDK activity inhibits Spo13 function remains to 

be determined.  
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Figure 13: SPO13 is not required for translational repression of CLB3. 

Wild-type (A15505, open circles) and spo13∆ (A19503, closed circles) cells carrying 

GAL4.ER, GAL-NDT80 and CLB3-3HA alleles were sporulated at 30°C, and were 

released from the GAL-NDT80 block at 6 hours with the addition of 1µM β-estradiol. 

(A) Western blots for Clb3-3HA. vATPase is shown as a loading control. 

(B and C) The percentages of bi- and tri- or tetranucleate cells ([B], left graph) or the 

percentages of tri- or tetranucleate cells ([B], right graph), and the percentages of cells 

with metaphase I ([C], upper left graph), anaphase I ([C], upper right graph), metaphase 

II ([C], lower left graph) or anaphase II spindles ([C], lower right graph) were determined 

at the times indicated after inoculation into SPO medium. 

 

 

Clb-CDK specificity during meiosis. 

Is Clb3 unique amongst the Clb cyclins in repressing meiosis I chromosome segregation? 

Consistent with this idea is the observation that Clb2 is not as effective in suppressing the 

meiosis I chromosome segregation pattern as Clb3. Several other observations, however 

argue against this notion. First, to date no CDK substrate has been identified that is 

phosphorylated exclusively by one Clb-CDK subtype (Loog and Morgan, 2005). Second, 

deletion of individual CLB genes does not interfere with progression through meiosis 

(Dahmann and Futcher, 1995). Finally, expression of CLB4 from the GAL1-10 promoter 

instead of its native promoter, which is not expected to substantially increase overall Clb-

CDK activity, does not interfere with meiotic chromosome segregation. On the other 

hand, moderate expression of Clb2 during meiosis I, which is expected to elevate overall 

Clb-CDK activity, causes some premature sister chromatid separation. Increasing Clb-

CDK activity levels even further through overexpression of a stabilized version of Clb2, 

leads to more than half of sister chromatids segregating during the first nuclear division, 
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which could not solely be explained by meiosis II events occurring on the anaphase I 

spindle (Marston et al., 2003). We therefore favor the idea that high Clb-CDK levels 

interfere with the meiosis I chromosome segregation pattern but will not exclude the 

possibility that some substrate-specificity exists among Clb1, Clb2, Clb3 and Clb4 

causing Clb3 to be better at inhibiting meiosis I than other Clbs. 

 

Aside from the issue of Clb-CDK specificity our studies raise the following question. 

Why do cells restrict different Clb-CDKs to different stages of meiosis and employ such 

diverse strategies to accomplish this? We propose that the answer may lie in the unique 

feature of meiosis that is the occurrence of two consecutive chromosome divisions. One 

division immediately following another one requires a balancing act between the 

necessity to down-regulate Clb-CDKs to bring about exit from meiosis I and ensuring 

that a sufficient amount of Clb-CDKs are present to execute the second meiotic division. 

Employing APC/C-mediated protein degradation to bring about Clb-CDK down-

regulation during exit from meiosis I as is done during mitosis would necessitate the re-

synthesis of Clb cyclins prior to entry into meiosis II, which may be a lengthy 

undertaking under the extreme nutrient-limiting conditions of meiosis. It may thus be 

advantageous for the cell to inhibit APC/C-Cdh1 during exit from meiosis I. Indeed, our 

data and that of others on Clb1 protein abundance (Marston et al., 2003; Buonomo et al., 

2003) indicate that this is the case. Instead, other mechanisms have evolved that down-

regulate Clb1-CDKs to promote exit from meiosis I. Following exit from meiosis I, 

maintaining a pool of CLB3 RNA ready for translation may ensure quick entry into 
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meiosis II. We suggest that the strategies governing progression through two consecutive 

meiotic divisions required novel ways of regulating Clb-CDKs.  
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Experimental Procedures 

Strains and Plasmids 

All strains are SK1 derivatives and are described in Table 1. GAL-NDT80 and GAL4.ER 

constructs are described in Benjamin et al. (2003). CLB3-3HA, CLB4-3HA, CLB5-3HA, 

pdr5∆, PCLB2-CDC20, PCLB2-3HA-CDC27, GAL-CLB3-3HA and GAL-CLB4-3HA were 

constructed using the PCR-based method described in Longtine et al. (1998). 

Endogenous CLB3 and CLB4 were replaced with CLB2 using the PCR-based method 

described in Longtine et al. (1998). The cdc23-1 allele was integrated at the CDC23 locus 

in SK1. GAL-5’UTRCLB3-CLB2 was created by cloning 153 base pairs of the CLB3 5’UTR 

into a GAL-CLB2 plasmid, and integrating at the CLB2 locus. 

 

Table 1: SK1 Derivatives 

Strain 
Number 

Relevant Genotype 

A4841 MATa 
A4736 MATa CLB4-3HA::KANMX6 
A7057 MATa CLB1-9Myc::TRP1 
A11955 MATa CLB3-3HA::KANMX6 
A15109 MATa CLB5-3HA::KANMX6 
A14200 
 

MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3  

A14201 
 

MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 

A15055 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 

A15090 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB4-
3HA::KANMX6/CLB4-3HA::KANMX6 

A15591 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB1-
9Myc::TRP1/+ 

A15802 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
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3HA::KANMX6/+ 
A15804 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-

GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB5-
3HA::KANMX6/+ 

A16011 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
pdr5::TRP1/pdr5::TRP1 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 

A17855 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
cdc20::pCLB2-CDC20::KanMX6/cdc20::pCLB2-CDC20::KanMX6 
CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 PDS1-18MYC::LEU2/+ 

A17856 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
cdc27:: pCLB2-3HA-CDC27::KanMX6/pCLB2-3HA-CDC27::KanMX6 
CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 PDS1-18MYC::LEU2/+ 

A17946 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 PDS1-18MYC::LEU2/+ 

A17947 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 cdc23-
1/cdc23-1 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 PDS1-
18MYC::LEU2/+ 

A18095 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 

A18185 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-
HIS3/+ 

A18186 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-
HIS3/leu2::tetR-GFP::LEU2::TetO-HIS3 

A18206 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A18207 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::tetR-GFP::LEU2::TetO-
HIS3/leu2::tetR-GFP::LEU2::TetO-HIS3 

A18485 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 clb4::pGAL-CLB4-
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3HA::KANMX6::HIS3MX6/clb4::pGAL-CLB4-
3HA::KANMX6::HIS3MX6 

A18486 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 

A18574 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/clb3::pCLB3-CLB2::HIS3MX6 

A18578 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB4-
3HA::KANMX6/clb4::pCLB4-CLB2::HIS3MX6 

A18655 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 
leu2::tetR-GFP::LEU2::TetO-HIS3/leu2::tetR-GFP::LEU2::TetO-HIS3 

A18656 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6/ 
clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6 leu2::tetR-
GFP::LEU2::TetO-HIS3/leu2::tetR-GFP::LEU2::TetO-HIS3 

A18686 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 
leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A18687 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A19026 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/+ CLB2::GAL-5'UTR(CLB3)-
CLB2::TRP1/CLB2::GAL-5'UTR(CLB3)-CLB2::TRP1 

A19060 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/+ CLB2::GAL-CLB2::TRP1(2 copies)/+ 

A19396 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/+ leu2::pURA3-TetR-
GFP::LEU2/+ CENV::TetOx224::HIS3/+ 

A19397 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 leu2::pURA3-TetR-GFP::LEU2/+ 
CENV::TetOx224::HIS3/+ 

A19399 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 clb4::pGAL-CLB4-
3HA::KANMX6::HIS3MX6/clb4::pGAL-CLB4-
3HA::KANMX6::HIS3MX6 leu2::pURA3-TetR-GFP::LEU2/+ 
CENV::TetOx224::HIS3/+ 

A19400 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/+ clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::pURA3-TetR-GFP::LEU2/+ 
CENV::TetOx224::HIS3/+ 
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A19402 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/+ cdc20::pCLB2-
CDC20::KanMX6/cdc20::pCLB2-CDC20::KanMX6 leu2::pURA3-TetR-
GFP::LEU2/+ CENV::TetOx224::HIS3/+ 

A19406 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/+ cdc20::pCLB2-
CDC20::KanMX6/cdc20::pCLB2-CDC20::KanMX6 clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::pURA3-TetR-GFP::LEU2/+ 
CENV::TetOx224::HIS3/+ 

A19408 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::TETOx224::URA3  
cdc20::pCLB2-CDC20::KanMX6/cdc20::pCLB2-CDC20::KanMX6 
leu2::pURA3-TetR-GFP::LEU2/+ 

A19410 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::TETOx224::URA3  
cdc20::pCLB2-CDC20::KanMX6/cdc20::pCLB2-CDC20::KanMX6 
clb3::pGAL-CLB3-3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::pURA3-TetR-GFP::LEU2/+ 

A19503 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 spo13::hisG/spo13::hisG 

A19687 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 CLB2::GAL-CLB2::TRP1(2 copies)/+ 
leu2::pURA3-TetR-GFP::LEU2/+ CENV::TetOx224::HIS3/+  

 

Sporulation Conditions 

Strains were grown to saturation in YPD, diluted in YPA (1% yeast extract, 2% 

bactopeptone, 1% potassium acetate) to OD600 = 0.3, and grown overnight. Cells were 

resuspended in sporulation medium (0.3% potassium acetate [pH 7], 0.02% raffinose) to 

OD600 = 1.9 and sporulated at 30°C. Meiotic cultures synchronized using the GAL-

NDT80 GAL4.ER system were prepared for sporulation as follows. Strains were grown 

on YPG (3% glycerol) plates at room temperature for 12 hours, were then transferred to 

YPD4 (YPD+4% glucose) plates for 24 hours, were then grown to saturation in YPD (24 

hrs at room temperature), diluted in YPA (1% yeast extract, 2% bactopeptone, 1% 

potassium acetate) to OD600 = 0.3 and grown overnight.  Cells were pelleted, washed with 

water and resuspended in sporulation medium (0.3% potassium acetate [pH 7], 0.02% 

raffinose) to a final OD600 =1.9. Following inoculation into sporulation medium, 
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GAL4.ER GAL-NDT80 strains were allowed to progress into the GAL-NDT80 block at 

30°C for 6 hours (unless otherwise noted; Fig1 [5h], Fig5G-I [7h]) in the absence of β-

estradiol. After 6 hours, β-estradiol was added to a final concentration of 1 µM (5mM 

stock in ethanol, Sigma E2758-1G) in order to induce expression of NDT80 from the 

GAL1-10 promoter by activating the Gal4.ER fusion protein.  Cells were then allowed to 

proceed through the meiotic divisions at 30°C.  Time points were taken for a further 7 

hours (13 hours total) by which time most cells had completed both meiotic divisions. 

 

Western Blot Analysis 

Samples were prepared as described in Moll et al. (1991), immunoblots as in Cohen-Fix 

et al. (1996). Antibody concentrations are described in Monje-Casas et al. (2007), except 

anti-Pgk1 (Molecular Probes) was used at 1:5000. Rabbit anti-Clb2 was used at a 

concentration of 1:2000, rabbit anti-Cdc28 at 1:1000 and rabbit anti-Clb3 (Santa Cruz, 

sc-7167) at 1:500. Sheep anti-mouse conjugated to HRP (GE Healthcare) was used as a 

secondary antibody at 1:5000. 

 

Immunofluorescence 

Indirect immunofluorescence was performed as described in Visintin et al. (1999).  Rat 

anti-tubulin antibodies (Oxford Biotechnology) were used at a dilution of 1:50, and anti-

rat-FITC antibodies (Jackson) were used at a dilution of 1:100.  Spindle morphologies 

were classified as in Lee et al. (2003).  Metaphase I cells were defined as cells with a 

single DAPI mass spanned by a short, thick, bipolar, meiotic spindle (approximately 2-3 

µm in length).  Anaphase I cells were defined as cells with two distinct (though not 
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always separated) DAPI masses, and a single long spindle that spans both DAPI masses.  

Metaphase II cells were defined as cells with two separate DAPI masses with each 

spanned by a bipolar, short, thick, meiotic spindle.  Anaphase II cells were defined as 

cells with four distinct (though not always separated) DAPI masses with two long 

spindles. 

 

Histone H1 IP Kinase Assays 

Histone H1 kinase assays were performed as described in Hochwagen et al. (2005). 25 

mls of meiotic culture were pelleted, transferred to a 2 ml tube and snap frozen in liquid 

nitrogen for later processing.  Cells were broken with glass beads in 200 µL NP40 Lysis 

Buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 1% NP-40) containing 1mM DTT and 

protease and phosphatase inhibitors (60 mM b-glycerophosphate, 0.1 mM sodium 

orthovanadate, 15 mM p-nitrophenylphosphate, 0.095U/ml aprotinin, 1mM pefablock, 

1X complete protease inhibitors (Roche 11873580001, 50X solution = 1 tablet in 1mL 

H2O).  After breaking, extracts were cleared twice by centrifugation and protein 

concentration was determined by Bradford assay. Immunoprecipitations were performed 

in 50 µl extract (500 µg total protein).  Clb1-9Myc was immunoprecipitated with an anti-

Myc antibody (Covance) at a concentration of 1:50; Clb3-3HA, Clb4-3HA and Clb5-

3HA were immunoprecipitated with an anti-HA.11 antibody (Covance) at a concentration 

of 1:50.  Extracts were incubated at 4°C with antibody for 1.5 hours, followed by 

addition of 20 µL of Protein G Sepharose (Pierce, 20398) and additional incubation with 

rotation at 4°C with for 2 hours.  Beads were washed 4 times with NP40 buffer followed 

by two washes with 25 mM MOPS (morpholinepropanesulfonic acid [pH 7.0]). For the 
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kinase reaction, beads were incubated with 6 µL buffer HBII (25 mM MOPS, 15 mM 

MgCl2, 5 mM EGTA, 1 mM dithiothreitol, 1mM PMSF, 0.02 mg/mL leupeptin, 0.04 

U/mL aproteinin, 0.1mM soudium orthovanadate, 15 mM p-nitrophenylphosphate) for 15 

min at room temperature, followed by the addition of 10 µL kinase reaction mixture (25 

mM MOPS, 2 mg/ml histone H1, 0.2 mM ATP) containing 50 nCi [g-32P]ATP. Kinase 

reactions were allowed to proceed for 15 minutes at room temperature before they were 

stopped by the addition of 10 µL 3X SDS loading buffer. Kinase samples were separated 

on a 15% SDS-PAGE gels, fixed in 10% methanol-10% acetic acid for 30 minutes, dried, 

and analyzed by autoradiography. 

 

Other Techniques 

Total RNA was isolated as described in Cross and Tinkelenberg (1991). Northern blots 

were performed as described in Hochwagen et al. (2005). GFP-tagged chromosomes 

were fixed for visualization as described in Monje-Casas et al. (2007). 200 cells were 

counted for each time point unless otherwise noted. Criteria for classifications of spindle 

morphologies are described in the Supplemental Online Material. Quantification of 

immunoblots, Northern blots and kinase assays were performed using NIH ImageQuant. 

To synchronize mitotic cultures in G1, a-factor was added to a concentration of 5 µg/ml. 

When fully arrested, cells were washed and resuspended in pheromone free media. Total 

RNA prepared for 5’RACE analysis as described in Collart and Oliviero (1993). 5’RACE 

was performed using the 5’RACE System Version 2.0 (Invitrogen, 18374-058). 
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The experiments in Figure 8 were performed in collaboration with Ana Oromendia. The 
method for construction of the UTR deletion strains was developed by Matt Miller. 
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Introduction 

In the course of characterizing Clb-CDK activity during the meiotic divisions, we 

observed that the cyclin Clb3 is restricted to meiosis II as is its associated kinase activity, 

while CLB3 transcript is present during both meiosis I and meiosis II. We subsequently 

demonstrated that the absence of Clb3 protein during meiosis I was not due to rapid 

protein turnover, but rather was due to regulation of translation mediated by the CLB3 

5’UTR (Carlile and Amon, 2008). While our experiments implicated the 5’UTR of CLB3 

in translational regulation, they did not address the mechanism by which this translational 

regulation occurs. The experiments presented in this chapter are aimed at elucidating the 

mechanism by which translation of CLB3 is controlled during meiosis. 

 

There are several known mechanisms of gene specific translational control in yeast. 

These include the regulation of translation of individual messages by the presence of 

small upstream open reading frames (uORFs), by the presence of internal ribosome entry 

sites (IRESs), and by the binding of RNA binding proteins (RBPs) to regulatory elements 

within the message. Small uORFs in the 5’UTRs of cellular messages are often used to 

modulate the translational efficiency of individual messages in response to changes in 

nutrient availability, which impacts the overall translational capacity of the cell. uORFs 

regulate the translation of many cellular messages, including the GCN4 and CLN3 

transcripts. Translation of GCN4 is regulated by the presence of four uORFs. As 

discussed in Chapter 1, these uORFs sensitize translation of the GCN4 message to the 

levels of ternary complex (TC), which reflect the nutritional status of the environment. In 

nutrient rich environments TC levels are high, which negatively affect GCN4 translation, 
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and in nutrient poor environments TC levels are low, which positively affect GCN4 

translation (Hinnebusch, 2005). However, the CLN3 uORF regulates CLN3 translation by 

leaky scanning of the uORF AUG, and reduces translational efficiency in nutrient poor 

conditions (Polymenis and Schmidt, 1997). In budding yeast cellular IRESs have been 

demonstrated to control translation of cellular messages required for invasive growth. 

These IRESs are located in the 5’UTRs of messages, and consist of short poly(A) tracts. 

These tracts are bound by Poly(A) Binding Protein (PABP), which is then thought to 

recruit the initiation factor eIF4G, promoting cap-independent translation (Gilbert et al., 

2007). Additionally, the translation of many messages is regulated by the binding of 

RBPs, which can modulate translation in response to a variety of factors. Indeed, a 

genome wide study suggests that much of the yeast transcriptome may be bound by a 

variety of RBPs, which themselves seem to bind sets of functionally related mRNAs. 

This suggests that translational regulation may represent a widespread and 

underappreciated mode of regulation of gene expression in budding yeast (Hogan et al., 

2008). Newly developed techniques that allow global profiling of translation have 

identified translational initiation at non-cognate start codons as a common mechanism of 

translational control. These techniques also have the potential to identify previously 

unknown examples of translational regulation in response to a variety of conditions 

(Ingolia et al., 2009). 

 

To further characterize the role of the CLB3 5’UTR in translational regulation we made a 

series of deletions of the 5’UTR to determine which regions were important for 

regulation, and additionally determined the chromosome segregation phenotype of these 
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mutants. Additionally, to determine the mechanism by which CLB3 translation was 

modulated, we first took a candidate based approach. We examined the possibility of 

translational regulation by both uORFs and IRESs. We then examined the roles of several 

RBPs known to be expressed during meiosis in budding yeast. Additionally, we 

performed a yeast three-hybrid (Y3H) assay to identify proteins that interact with the 

CLB3 5’UTR, and therefore may be candidate translational regulators.  
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Results 

Deletion analysis of the CLB3 5’UTR 

In order to determine which regions of the 156 base CLB3 5’UTR were involved in 

translational regulation, a series of deletions of the endogenous 5’UTR were made using 

a two-step transformation protocol (see Experimental Procedures). First, three 50 base 

pair deletions were made in the endogenous CLB3 5’UTR, which spanned from -150 to -

101 (∆-150-101) bases upstream of the  start codon, from -100 to -51 (∆-100-51) bases, 

and from -50 bases to -1 (∆-50-1) bases. The consequences of these deletions were 

examined in strains synchronously progressing through the meiotic divisions. Analysis of 

spindle and nuclear morphology revealed that none of these deletions affected either the 

kinetics of the meiotic divisions, or the efficiency of the meiotic divisions (Figure 1A; 

data not shown). This is consistent with our previous finding that premature accumulation 

of Clb3 protein in GAL-CLB3 strains does not interfere with meiotic progression in this 

strain background (Carlile and Amon, 2008). Clb3 was restricted to meiosis II in wild 

type strains, as expected, and was also restricted to meiosis II in strains carrying the 

deletion ∆-150-101, indicating that this region of the 5’UTR is not absolutely required for 

translational regulation (Figure 1B). However, strains carrying either the ∆-100-51 

deletion or the ∆-50-1 deletion allowed Clb3 accumulation during meiosis I (Figure 1B). 

In these strains Clb3 levels during meiosis I were lower than in meiosis II, which is 

consistent with the presence of lower levels of CLB3 transcript during meiosis I than in 

meiosis II (Figure 1B; Carlile and Amon 2008). These data indicate that the maximum 

region of the CLB3 5’UTR required to prevent Clb3 accumulation spans from -100 to -1 

bases upstream of the start codon. 
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Figure 1: Analysis of 50 base deletions of the CLB3 5’UTR. 

GAL4.ER, GAL-NDT80 strains with CLB3-3HA (A15055, open circles), 5’UTR∆-150-

101-CLB3-3HA (A22596, closed circles), 5’UTR∆-100-51-CLB3-3HA (A22597, open 

squares), and 5’UTR∆-50-1-CLB3-3HA (A22598, closed squares), were induced to 

sporulate at 30°C by transfer into SPO medium. At 6 hours 1µM β-estradiol was added. 

A) The percentages of cells with metaphase I spindles (top left), anaphase I spindles (top 

right), metaphase II spindles (bottom left), or anaphase II spindles (bottom right) were 

determined at the times indicated (n=100). 
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C) Western blots for Clb3-3HA. Samples were taken at the times indicated after 

inoculation into SPO medium. Pgk1 is used as a loading control. Times when cells were 

in meiosis I are indicated with a blue line, times when cells were in meiosis II are 

indicated with a red line. 
 

 

We wished to further narrow down the region of the CLB3 5’UTR required for 

translational control. The experiments above defined the maximum region required for 

translational regulation as spanning from -100 to -1 bases upstream of the start codon. 

Therefore four 25 base deletions were made that spanned from -100 to -76 (∆-100-76) 

bases upstream of the  start codon, from -75 to -51 (∆-75-51) bases, from -50 to -26 (∆-

50-26) bases, and from -25 to -1 (∆-25-1) bases. Additionally, a 50 base deletion in the 

middle of this region spanning -75 to -26 (∆-75-26) bases was made. As above, Clb3 

levels were examined in synchronous meiotic timecourses. Again, deletion of portions of 

the CLB3 5’UTR did not affect either the kinetics of the meiotic divisions, or the 

efficiency of the meiotic divisions (Figure 2A; data not shown). In wild type strains and 

in strains carrying the deletion ∆-25-1, Clb3 was restricted to meiosis II. This indicates 

that this region of the 5’UTR is not required for translational regulation (Figure 2B). 

However, strains with deletions spanning ∆-100-76, ∆-75-51, ∆-50-26, or ∆-75-26 bases 

allowed Clb3 accumulation during meiosis I (Figure 2B). Again, Clb3 levels during 

meiosis I were lower than in meiosis II, likely due to lower CLB3 transcript levels during 

meiosis I (Figure 2B; Carlile and Amon 2008). These data indicate that the maximum 

region of the CLB3 5’UTR that is required for translational regulation spans from -100 to 
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-26 bases upstream of the start codon (Figure 3). There are however, limitations of the 

analysis presented here (Figure 1,2), which will be discussed in detail below. 
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Figure 2: Analysis of 25 base deletions of the CLB3 5’UTR. 

GAL4.ER, GAL-NDT80 strains with the alleles CLB3-3HA (A15055, open circles), 

5’UTR∆-100-76-CLB3-3HA (A23342, closed circles), 5’UTR∆-75-51-CLB3-3HA 

(A23343, open squares), 5’UTR∆-50-26-CLB3-3HA (A23344, closed squares), 5’UTR∆-

25-1-CLB3-3HA (A23345, open triangles), and 5’UTR∆-75-26-CLB3-3HA (A23346, 

closed triangles) were induced to sporulate at 30°C by transfer into SPO medium. After 6 

hours 1µM β-estradiol was added. 

A) The percentages of cells with metaphase I spindles (top left), anaphase I spindles (top 

right), metaphase II spindles (bottom left), or anaphase II spindles (bottom right) were 

determined at the times indicated (n=100). 

C) Western blots for Clb3-3HA. Samples were taken at the times indicated after 

inoculation into SPO medium. Pgk1 is used as a loading control. Times when cells were 

in meiosis I are indicated with a blue line, times when cells were in meiosis II are 

indicated with a red line. 
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Figure 3: Region of the CLB3 5’UTR required for translational regulation. 

A) 153 bases of the CLB3 5’UTR. The maximum region required for translational 

regulation is highlighted in red. 

B) A summary of the deletions characterized in this analysis. A + indicates that 

translational regulation is intact, and a – indicates that translational regulation is 

abolished. 
 

 

Characterization of the phenotypes of CLB3 5’UTR∆ strains 

We wished to determine if early accumulation of Clb3 in the 5’UTR∆ strains was 

sufficient to cause the premature sister-chromatid segregation (PSCS) phenotype 

previously observed in GAL-CLB3 strains (Carlile and Amon, 2008). To follow sister-

chromatid segregation during meiosis we used a system in which a tandem array of tetO 

sequences was integrated at the LEU2 locus on one copy of chromosome III 

(heterozygous LEU2-GFP dots). These cells also expressed a tetR-GFP fusion, which 

binds to tetO, allowing visualization of the repeats (Michaelis et al., 1997). In wild type 

cells sister chromatids are co-segregated at meiosis I leading to the appearance of 

binucleate cells in which only one of the two nuclei contains a GFP dot (Figure 4A). 

When sister-chromatids are segregated away from each other at meiosis I, as is the case 

in GAL-CLB3 strains, this leads to the appearance of binucleate cells with a GFP dot in 

each nucleus (Figure 4A). In 5’UTR∆ cells, the majority of binucleate cells have GFP dot 

in only one of the two nuclei, indicating that sister-chromatids are cosegregated at 

meiosis I (Figure 4A). In order to determine if there were other phenotypes associated 

with premature accumulation of Clb3 owing to disruption of the CLB3 5’UTR, spore 

viability was determined. However, there were no significant reductions in spore viability 
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in 5’UTR∆ strains (Figure 4B). Together these data indicate that either the levels of Clb3 

that accumulate during meiosis I in some of the 5’UTR∆ strains are insufficient to cause 

PSCS or a decrease in spore viability, or that the PSCS observed in GAL-CLB3 strains is 

a result of accumulation of Clb3 prior to meiosis I. 

 

 

 

Figure 4: Premature accumulation of Clb3 in UTR∆ strains does not cause PSCS.  

GAL4.ER, heterozygous LEU2 GFP-dots strains with the alleles CLB3-3HA (A18686), 

GAL-CLB3-3HA (A18687), 5’UTR∆-150-101-CLB3-3HA (A24641), 5’UTR∆-25-1-

CLB3-3HA (A24647)5’UTR∆-100-51-CLB3-3HA (A24642), 5’UTR∆-50-1-CLB3-3HA 

(A24643),5’UTR∆-100-76-CLB3-3HA (A24644), 5’UTR∆-75-51-CLB3-3HA (A24645), 

5’UTR∆-50-26-CLB3-3HA (A24646), and 5’UTR∆-75-26-CLB3-3HA (A24648) were 

induced to sporulate at 30°C by transfer into SPO medium. After 3 hours 1µM β-estradiol 

was added to cultures labels +βE. 

A) Sister-chromatid separation was scored at 7 hours after inoculation into SPO (n=100). 

B) Samples were taken after 48 hours and tetrads were dissected (n=80 spores). 
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We reasoned that if the low Clb3 levels present during meiosis I were a result of only a 

partial relief of translational repression, then deletion of a larger portion of the CLB3 

5’UTR might allow further accumulation of Clb3 during meiosis I. To do this we deleted 

bases -153 to -1 of the 156 base 5’UTR. We examined heterozygous LEU2-GFP dot 

segregation in these strains, spore viability, and protein levels. 5’UTR∆-153-1 strains 

cosegregated sister-chromatids at meiosis I, to a similar extent as wild type, and showed 

no decrease in spore viability (Figure 5A-B). However, Clb3 protein levels were 

significantly lower in 5’UTR∆-153-1 strains than in wild type, which indicates that when 

the entire CLB3 5’UTR is deleted either CLB3 transcript is unstable, or that CLB3 

transcript is inefficiently translated (Figure 5C).  

 

Together the above data suggest that 75 bases of the CLB3 5’UTR from -75 to -26 bases 

upstream of the start codon represent the maximum region of the CLB3 5’UTR that is 

likely required for translational regulation of CLB3, and that elimination of translational 

regulation by deletion of portions of the 5’UTR allows some Clb3 to accumulate during 

meiosis I, but that this premature accumulation is insufficient to promote PSCS. 
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Figure 5: Chromosome segregation, spore viability, and Clb3 levels in strains with 

the entire CLB3 5’UTR deleted. 

GAL4.ER, heterozygous LEU2 GFP-dots strains with the alleles CLB3-3HA (A18686), 

and 5’UTR∆-153-1-CLB3-3HA (A24971) were induced to sporulate at 30°C by transfer 

into SPO medium. 

A) Sister-chromatid separation was scored at 7 hours after inoculation into SPO (n=100). 

B) Samples were taken after 48 hours and tetrads were dissected (n=80 spores). 

C) Western blots for Clb3-3HA. Pgk1 is used as a loading control. 
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CLB3 translation is not regulated by a uORF  

We first sought to determine if CLB3 translation was regulated by a uORF, or by 

differential transcriptional start sites. To do this we performed 5’RACE analysis of the 

CLB3 transcript from cycling, meiosis I, and meiosis II samples. This analysis revealed a 

maximal 5’ UTR length of 156 bases, and no differences in 5’UTR length between 

cycling, meiosis I, and meiosis II cells (Carlile and Amon, 2008). This length is in good 

agreement with a genome wide study of the yeast transcriptome, which assigned a 5’UTR 

length of 153 bases (David et al., 2006). Importantly this analysis allows us to rule out 

regulation of CLB3 translation by uORFs with canonical start codons, and of regulation 

by alternate transcriptional start sites. However, a recent genome-wide in vivo analysis of 

yeast translation has revealed uORFs with non-AUG start codons (Ingolia et al., 2009).  

Thus, it is still formally possible that CLB3 translation is regulated by a uORF with a 

non-cognate start codon, and examination of the CLB3 5’UTR reveals several possible 

non-cognate start codons, which will be further addressed in the discussion. 

 

CLB3 translation is not regulated by an IRES  

Next we sought to determine if CLB3 translation is regulated by an IRES in the 5’UTR of 

the message. The CLB3 5’UTR has a poly(A) tract, which is characteristic of yeast IRESs 

(Gilbert et al., 2007; Figure 6A). To determine if this poly(A) tract could support cap-

independent translation we employed an in vivo IRES reporter system. In this system 

firefly luciferase (F-luc) mRNAs are in vitro transcribed, and are electroporated into 

spheroplasted yeast cells. Translation of the reporter mRNAs can then be measured using 

luciferase assays. A reporter mRNA with a physiological cap (m7GpppG) and an 
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unstructured 5’UTR is translated efficiently, while a reporter mRNA with a non-

physiological cap (ApppG) and a stable stem-loop in the 5’UTR is translated very 

inefficiently (Figure 6B,C). However, if a 5’UTR containing an IRES sequence is 

inserted downstream of the stem-loop this allows cap independent translation (Gilbert et 

al., 2007; Figure 6B). Using this assay we tested the IRES activity of the CLB3 5’UTR, 

the reverse complement of the CLB3 5’UTR, and the 5’UTR of NCE102, which contains 

a known IRES. While the NCE102 5’UTR supported cap-independent translation, neither 

the CLB3 5’UTR nor its reverse complement supported cap-independent translation in 

vivo (Figure 1C). These results indicate that the CLB3 5’UTR does not contain an IRES 

sequence that can support cap-independent translation in mitotic cells.  However, it is still 

formally possible that the CLB3 5’UTR can support cap-independent translation in 

meiotic cells, which will be addressed further in the discussion. 
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Figure 6: The CLB3 5’UTR does not support cap-indeendent translation. 

Wild type W303 cells (A2587) were grown to mid-log phase, were spheroplasted, and 

were electroporated with in vitro transcribed F-luc reporter RNAs. 

A) The CLB3 5’UTR.  A potential poly(A) tract is indicated in red. 

B) The in vitro transcribed firefly luciferase reporters used in this experiment.  A reporter 

with a physiological cap and an unstructured 5’UTR is translated efficiently (top). A 

reporter with a cap analog and a stable stem-loop in the 5’UTR is not translated (middle). 

Addition of an endogenous 5’UTR to the reporter with cap analog and stable stem loop 

will be translated if the 5’UTR contains an IRES sequence. Adapted from (Gilbert et al., 

2007). 

C) F-luc activity normalized to F-luc RNA levels expressed as a percentage of control for 

control constructs ([B], top and middle). 

D) F-luc activity normalized to F-luc RNA levels expressed in arbitrary units for control 

ApppG reporter ([B], middle), and ApppG reporters containing the CLB3 5’UTR, the 

CLB3 5’UTR reverse complement, and the NCE102 5’UTR. 

 

 

Deletion of RBPs that are candidate modulators of CLB3 translation 

Given that in higher eukaryotes the translation of cyclin mRNAs is modulated by the 

binding of RBPs (Vardy and Orr-Weaver, 2007), we hypothesized that the CLB3 5’UTR 

may be bound by an RBP that modulates CLB3 translation during meiosis. A priori there 

are two possible modes of translational regulation, repression during meiosis I, or 

activation during meiosis II. If an RBP encodes a translational repressor, then its deletion 

should lead to the accumulation of Clb3 protein during meiosis I. However, if an RBP 

encodes a translational activator, then its deletion should reduce or eliminate Clb3 

translation during meiosis II. We reasoned that an RBP involved in translational 

regulation of CLB3 would be non-essential, and would be expressed during meiosis. To 
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test this hypothesis we examined the effect of deletion of meiotically expressed RBPs on 

Clb3 protein levels in meiotic cells. A list of meiotically expressed RBP genes was 

compiled by pooling lists of genes obtained from meiotic expression data with a list of 

genes deleted in a screen that identified monopolin (Primig et al., 2000; Tóth et al., 

2000). PROSITE was then used to scan the amino acid sequences of these genes for 

known RNA interaction motifs (Sigrist et al., 2002). This approach led to a list of genes 

that included: YGR250C, HRB1, YDR374C, RRT5, MIP6, PES4, YLL032C, CBC2, SLF1, 

RIM4, TMA64, and PBP2. These genes encode proteins that represent a broad range of 

functions including Poly(A) binding, nuclear export, splicing, ribosome interactors, and 

proteins of unknown function (Figure 7A). Samples were taken at early (7.25, and 7.5 

hours), and late (8.75, and 9 hours) timepoints for each of these strains, which correspond 

to meiosis I and meiosis II respectively for most strains (Figure 7B). Most RBP deletions 

examined had no effect on Clb3 protein accumulation, indicating that the RBPs that they 

encode are not required for Clb3 translational control (Figure 7C). The deletion of 

YGR250C, CBC2, and RIM4 reduced the levels of Clb3 protein during late timepoints. 

However, these effects are likely not due an effect on CLB3 translation, as these strains 

failed to undergo the meiotic divisions efficiently, reducing the percentage of cells in 

meiosis II at late timepoints (Figure 7B,C).  
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Figure 7: Candidate RBPs are not involved in CLB3 translational regulation. 

GAL4.ER, GAL-NDT80, CLB3-3HA (A15055) strains with the deletions ygr250c∆ 

(A20531), hrb1∆ (A20532), ydr374c∆ (A20533), rrt5∆ (A20534), mip6∆ (A20535), 

pes4∆ (A20536), yll032c∆ (A20537), cbc2∆ (A20538), slf1∆ (A20539), rim4∆ (A20540), 

tma64∆ (A20541), and pbp2∆ (A20542) were induced to sporulate at 30°C by transfer 

into SPO medium. After 6 1µM β-estradiol was added. 

A) Genes in Clusters 1-5b were taken from (Primig et al., 2000), and “Monopolin” were 

taken from (Tóth et al., 2000). Motifs are: RNA Recognition Motif (RRM), YT521-B 

homology (YTH), (hnRNP) K homology (KH), La-type Helix-Turn-Helix (HTH_LA), 

PseudoUridine synthase (PUA), and SUI1 homolgy (SUI1). 

B) The percentages of cells with MI spindles were counted and averaged for early (7.25, 

and 7.5 hours, Early timepoints %MI, light blue bars), and late timepoints (8.75, and 9 

hours, Late timepoints %MI, dark blue bars). The percentages of cells with MII spindles 
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were counted and averaged for early (7.25, and 7.5 hours, Early timepoints %MII, light 

red bars), and late timepoints (8.75, and 9 hours, Late timepoints %MII, dark red bars). 

C) Western blots for Clb3-3HA. Samples were taken at the times indicated after 

inoculation into SPO medium. Pgk1 is used as a loading control. 
 

 

In S. pombe the Spo5 protein is an RBP required for normal meiotic progression, and its 

deletion affects multiple meiotic processes including recombination, spore formation, and 

timely occurrence of meiosis I (Kasama et al., 2006). We therefore searched for Spo5 

homologs in the S. cerevisiae genome. This analysis revealed the genes PAB1, PES4, 

MIP6, NSR1, and PUB1 to be Spo5 homologs. PAB1 was not included in this analysis as 

it encodes the budding yeast PABP, which is essential, and PES4 and MIP6 were 

analyzed above (Figure 7). Therefore Clb3 levels during meiosis were examined in nsr1∆ 

and pub1∆ mutants. NSR1 is a gene involved in pre-mRNA processing and ribosome 

biogenesis, and PUB1 encodes a Poly(A) BP involved in mRNA stability (Figure 8A). As 

above, samples were taken at early (7.25, and 7.5 hours), and late (8.75, and 9 hours) 

timepoints, which correspond to meiosis I and meiosis II respectively (Figure 8B). 

Deletion of either NSR1 or PUB1 failed to alter Clb3 accumulation during meiosis, either 

in the timing or the levels of accumulation (Figure 8C). This indicates that neither NSR1 

nor PUB1 are required for CLB3 translational regulation during meiosis.  
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Figure 8: Candidate RBPs are not involved in CLB3 translational regulation. 

GAL4.ER, GAL-NDT80, CLB3-3HA (A15055) strains with the deletions nsr1∆ (A21494), 

and pub1∆ (A21495) were induced to sporulate at 30°C by transfer into SPO medium. 

After 6 1µM β-estradiol was added. 

A) Genes in homologous to S. pombe Spo5. 

B) The percentages of cells with MI spindles were counted and averaged for early (7.25, 

and 7.5 hours, Early timepoints %MI, light blue bars), and late timepoints (8.75, and 9 

hours, Late timepoints %MI, dark blue bars). The percentages of cells with MII spindles 

were counted and averaged for early (7.25, and 7.5 hours, Early timepoints %MII, light 

red bars), and late timepoints (8.75, and 9 hours, Late timepoints %MII, dark red bars). 

C) Western blots for Clb3-3HA. Samples were taken at the times indicated after 

inoculation into SPO medium. Vph1 is used as a loading control. 
 

 

These data indicate that none of the genes examined play a role in regulating CLB3 

translation. There are several explanations as to why this approach may have missed a 

translational repressor of CLB3. First, it is possible that our list was not comprehensive, 

and that the relevant RBP is expressed during both mitotic growth and meiosis, but is not 

strongly up-regulated during meiosis. Second, it is possible that the regulator of CLB3 
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translation does not contain a recognizable RNA binding motif. Third, the regulator may 

be an essential gene with a non-essential function of modulating CLB3 translation during 

meiosis. Finally, redundant RBPs may regulate CLB3 translation during meiosis.  In all of 

the latter cases the genes involved would have been omitted from our analysis, and in the 

former case the gene or genes involved would not have been identified as regulators. 

 

Identification of candidate translational regulators by Yeast Three-Hybrid 

The Y3H system identifies RNA-protein interactions by a method analogous to the Yeast 

Two-Hybrid system. In both systems interaction between bait and prey constructs drives 

expression of a reporter gene. In the Y3H system the bait consists of an RNA-protein 

complex consisting of a LexA-MS2 fusion protein, which binds a fusion RNA consisting 

of three MS2 hairpins and an RNA of interest. Binding of the LexA-MS2 fusion protein 

to a LexA operator sequence tethers the fusion RNA upstream of HIS3 and LacZ reporter 

genes. The prey consists of a protein or library of proteins fused to a transcriptional 

activation domain (AD). Binding of the bait RNA by a prey protein brings the AD in 

close proximity to the reporter genes, and activates their transcription (Figure 1). The 

Y3H system also has a colony color assay to eliminate false positives due to RNA 

independent transcriptional activation. The plasmid from which the fusion RNA is 

expressed is marked with both URA3 and ADE2, and the Y3H is performed under 

conditions in which this plasmid is not directly selected for. Thus, the plasmid is only 

maintained if HIS3 expression depends on expression of the fusion RNA. Therefore RNA 

dependent HIS3 expression leads to the formation of white colonies (ADE2+), and RNA 
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independent expression leads to the formation of red colonies (ADE2-) (Kraemer et al., 

2000). 

 

 

 

Figure 9: The Yeast Three-Hybrid System 

A schematic of the Yeast Three-Hybrid system. “RNA X” consists of MS2 hairpins and 

an RNA of interest (blue). See text for details.  
 

 

To attempt to identify proteins that interact with the CLB3 5’UTR, and potentially 

regulate CLB3 translation, we performed a Y3H screen with the full-length CLB3 5’UTR 

fused to MS2 hairpins, and libraries of each reading frame of the yeast genome (C1, C2, 

C3) fused to the GAL4 AD (James et al., 1996). The Y3H assay was performed as 

described in Experimental Procedures. A total of 676 colonies that exhibited RNA 

dependent HIS3 expression were picked (392 from C1, 100 from C2, and 184 from C3). 

However, when expression of the LacZ reporter was tested for RNA dependence this 

number was reduced to 99 (57 from C1, 14 from C2, and 28 from C3). Library inserts 
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were PCRed from these isolates, and their identities were determined by sequencing or 

Southern blot analysis. Of these clones, 44 contained in frame fusions, which represented 

9 different genes RIM15 (18 hits), RPM2 (11 hits), PTK2 (5 hits), MSB1 (3 hits), SAP185 

(3 hits), CCT5 (1 hit), ENA1 (1 hit), KAP123 (1 hit), and VPS3 (1 hit) (Figure 10A). We 

chose to focus our analysis on the two top hits, RIM15 and RPM2, which are both 

transcriptionally induced during meiosis. Quantitative LacZ assays demonstrated that 

both Rim15-GAD (Gal4 Activation Domain) and Rpm2-GAD fusions activated LacZ 

reporter transcription to a higher extent in the presence of MS2-CLB3 5’UTR RNA than 

in the presence of negative control RNA (Figure 10B). However, compared to known 

interactions assayed by Y3H these differences are relatively small, though they do 

suggest some specific interaction of the GAD fusions with the CLB3 5’UTR.  
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Figure 10: RIM15 and RPM2 are candidate RBPs for the CLB3 5’UTR  

A) Candidate genes identified by Y3H, and the number of hits for each. 

B) ONPG assays performed for RIM15-AD (left) and RPM2-AD (right) fusions in strains 

expressing MS2 hairpins alone, or MS2-CLB3 5’UTR. 

C, D) Schematic diagrams of Rim15 and Rpm2 proteins, indicating the minimal 

interacting domains, and relevant domain structure. MTS is thought to be a mitochondrial 

targeting sequence that is cleaved upon import into the mitochondria. rpm2-100 indicates 

the amino acids that are deleted in the rpm2-100 mutant. 
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Characterization of Yeast 3-Hybrid Hits RIM15 and RPM2 

RIM15 encodes a 1770 amino acid serine/threonine kinase involved in stationary phase 

entry. Rim15 kinase activity promotes entry into G0 and expression of a variety of early 

meiotic genes including IME1, IME2, HOP1, and SPO13, and is negatively regulated by 

nutrient sensing pathways including the TOR pathway, the protein kinase A pathway, and 

the phosphate sensing Pho80-Pho85 pathway (Vidan and Mitchell, 1997; Roosen et al., 

2005; Wanke et al., 2005). The Rim15 Y3H interacting domain spans amino acids 1050 

to 1296, which overlaps with the kinase domain that spans amino acids 794 to 1254 

(Figure 10C). 

 

RPM2 is a nuclear gene that encodes the protein subunit of mitochondrial RNase P, 

which consists of Rpm2 and RPM1, a mitochondrially encoded RNA. Mitochondrial 

RNase P cleaves 5’ leader sequences from mitochondrially encoded tRNAs, and Rpm2 is 

also required for the maturation of RPM1 RNA (Morales et al., 1992; Stribinskis et al., 

2001b). In addition to its role in mitochondrial RNA processing Rpm2 has a variety of 

other functions. Rpm2 is involved in maintenance of the mitochondrial genome, as well 

as in mitochondrial biogenesis (Stribinskis et al., 2001a). It also transcriptionally 

activates nuclear genes, likely through its leucine zipper domain (Stribinskis et al., 2005; 

Figure 10D). There are also hints that Rpm2 may play a role in translational regulation. 

rpm2-100 mutants, which retain wild type RNase P activity, show altered translation rates 

for mitochondrial proteins. Additionally, Rpm2 interacts with the P body component 

Dcp2 by yeast two-hybrid assay, and localizes to P bodies when expressed at endogenous 

levels. Additionally, RPM2 interacts with P body components genetically. Specifically, 
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DHH1 is a high-copy suppressor of the temperature-sensitive growth of rpm2-100 strains, 

and over-expression of RPM2 inhibits P body disassembly (Stribinskis and Ramos, 

2007). These data suggest that Rpm2 has the ability to regulate translation independent of 

its RNase P activity. The Rpm2 Y3H interacting domain spans amino acids 66 to 251, 

which overlaps with the mitochondrial targeting sequence (MTS), and with the region 

deleted in the rpm2-100 allele (amino acids 146 to 246) (Figure 10D). 

 

We first sought to examine Rim15 and Rpm2 protein levels during meiosis to determine 

if either was present during meiosis. Strains carrying RIM15-TAP and RPM2-TAP alleles 

were induced to undergo meiosis, and westerns blots were used to assess Rim15-TAP and 

Rpm2-TAP levels. This analysis revealed that both Rim15 and Rpm2 are present 

throughout meiosis (Figure 11A-D). Interestingly a slower migrating form of Rpm2 

appeared as cells entered meiosis II (Figure 11D). This slower migrating form could 

represent a post-translational modification of Rpm2 that occurs or is stabilized during 

meiosis II, or it could represent full length Rpm2 that has not had its MTS cleaved, and is 

therefore presumably localized to either the cytoplasm or nucleus, but not the 

mitochondria. We reasoned that this form of Rpm2 might be the active form with respect 

to regulation of CLB3 translation, and that its appearance in samples taken from cycling 

cells and cells in meiosis II might indicate that it acts as a translational activator during 

both vegetative growth and meiosis II. If Rpm2 serves as a translational activator during 

mitosis, then in cycling cells Clb3 levels should be reduced in RPM2 mutants. Clb3 levels 

were compared in cycling cells in strains carrying RPM2 or rpm2-100 alleles in both the 

SK1 and W303 backgrounds. However no differences in Clb3 levels were seen (data not 
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shown), indicating that either Rpm2 does not act as a translational activator during 

vegetative growth, or that the rpm2-100 allele is still capable of modulating CLB3 

translation.  

 

 

 

Figure 11: Rim15 and Rpm2 levels during meiosis  

GAL4.ER, GAL-NDT80 strains with the tags RIM15-TAP (A23949), and RPM2-TAP 

(A23950) were induced to sporulate at 30°C by transfer into SPO medium. After 6 hours 

1µM β-estradiol was added. 

A,C) The percentages of cells with meiosis I spindles (open squares) or meiosis II 

spindles (closed squares) were determined at the times indicated (n=100). 

C) Western blots for Rim15-TAP and Rpm2-TAP. Samples were taken at the times 

indicated after inoculation into SPO medium. Lanes labeled “cyc” were taken from 

exponentially growing cultures. 
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We wished to analyze the consequences of disruption of the functions of both RIM15 and 

RPM2 on translational regulation mediated by the CLB3 5’UTR. If either protein acted as 

a translational repressor during meiosis, then RIM15 or RPM2 mutant cells would be 

expected to accumulate Clb3 during meiosis I. Conversely, if either protein acted as a 

translational activator, then RIM15 or RPM2 mutant cells would be expected to show 

lower levels of Clb3 during meiosis II. However, we were unable to delete RIM15 in the 

SK1 strain background, and the rpm2-100 allele failed to sporulate in the background 

used for synchronous meioses. This prevented our analysis of the roles of RIM15 and 

RPM2 in translational control of CLB3. 

 

Analysis of association of CLB3 transcript with Rim15 and Rpm2. 

The identification of Rim15 and Rpm2 by Y3H assay suggests that these proteins bind 

the CLB3 transcript. Additionally, the pattern of association of these proteins with CLB3 

transcript might suggest their potential mode of translational regulation. A translational 

repressor would be expected to associate with CLB3 transcript during meiosis I, and a 

translational activator would be expected to associate with CLB3 transcript during 

meiosis II, and possibly during vegetative growth.  

 

To determine if Rim15 and Rpm2 bind the CLB3 transcript, TAP-tagged versions of 

these proteins were immunoprecipitated (IPed) from exponentially growing, meiosis I 

(7.5 hours), and meiosis II (9 hours) cells (Figure 12A). Additionally, samples taken from 

strains lacking TAP-tagged versions of either protein were included in this analysis. RNA 

was isolated from total lysates and from IPed material, and CLB3 levels were assessed by 
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RT-PCR (Gerber et al., 2004). Additionally, the levels of TUP1 mRNA, a negative 

control that should not interact with either Rim15-TAP or Rpm2-TAP were analyzed as 

well. The fold enrichment of a transcript in IPed samples was calculated as the ratio of 

IPed transcript to total transcript. A fold enrichment value greater than one is interpreted 

as an interaction between an mRNA and the protein being IPed. The fold enrichment of 

CLB3 mRNA was first determined for samples from strains lacking either TAP-tagged 

protein to determine the level of background enrichment, which was 0.7 fold, 0.1 fold, 

and 0.2 fold for cycling, meiosis I, and meiosis II samples respectively, and the fold 

enrichment values for TUP1 mRNA were 0.2 fold, 0 fold, and 0.1 fold respectively 

(Figure 12B). These values were then used to normalize the fold enrichments for cycling, 

meiosis I, and meiosis II samples, giving a normalized fold enrichment values of 1.0 for 

all no tag samples (Figure 12C). For Rim15-TAP IPs the fold enrichment values for 

CLB3 were 0.8 fold, 1.2 fold, and 0.1 fold for cycling, meiosis I, and meiosis II samples 

respectively and the fold enrichment values for TUP1 mRNA were 0.2 fold, 0.2 fold, and 

0 fold respectively (Figure 12B). For Rim15-TAP the normalized fold enrichment values 

for CLB3 were 1.2 fold, 13.2 fold, and 0.5 fold respectively, and for TUP1 were 1.2 fold, 

10.2 fold, and 0.3 fold respectively (Figure 12C). For Rpm2-TAP IPs the fold enrichment 

values for CLB3 were 0.3 fold, 0.5 fold, and 0 fold for cycling, meiosis I, and meiosis II 

samples respectively and the fold enrichment values for TUP1 mRNA were 0.1 fold, 0.1 

fold, and 0 fold respectively (Figure 12B). For Rpm2-TAP the normalized fold 

enrichment values for CLB3 were 0.4 fold, 5.5 fold, and 0.1 fold respectively, and for 

TUP1 were 0.4 fold, 4.9 fold, and 0.1 fold respectively (Figure 12C). Importantly the fold 

enrichment values observed for CLB3 for Rim15-TAP and Rpm2-TAP IPs were not 
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significantly above one, and additionally the normalized fold enrichment values 

calculated for CLB3 and TUP1 are similar. Together these data suggest that neither 

Rim15, nor Rpm2 binds to CLB3 mRNA in vegetative, meiosis I, or meiosis II cells. 

However, this experiment has only been performed once, and should be repeated with 

further controls to demonstrate that Rim15 and Rpm2 are being efficiently IPed. 

Additionally, for Rpm2-TAP sample, the levels of RPM1 RNA could be analyzed as 

RPM1 is known to interact with Rpm2. 
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Figure 12: Association Rim15 and Rpm2 with CLB3 transcript.  

GAL4.ER, GAL-NDT80 (A14201, left graphs) strains with the tags RIM15-TAP (A23949, 

middle graphs), and RPM2-TAP (A23950, right graphs) were induced to sporulate at 

30°C by transfer into SPO medium. After 6 hours 1µM β-estradiol was added. Meiosis I 

samples were taken at 7.5 hours and meiosis II samples were taken at 9 hours. For 

cycling samples these strains were inoculated into YPD and were grown to mid-log phase 

before harvesting. 

A) The percentages of cells with meiosis I spindles (open squares) or meiosis II spindles 

(closed squares) were determined at the times indicated (n=100). Blue arrows indicate 

when the meiosis I timepoints were taken, and red arrows indicate when meiosis II 

timepoints were taken. 

B,C) Cells were lysed and the tagged proteins were IPed. RNA was isolated from either 

total lysate or IPed samples, and the levels of CLB3 transcript were determined by RT-

qPCR. Grey bars represent values for CLB3, and black bars represent values for TUP1. 

The fold enrichment [B] is calculated as the ratio of CLB3 transcript in IPed samples to 

CLB3 transcript in total lysate. The normalized fold enrichment [C] is calculated as the 

ratio of the fold enrichment (in [B]) to the fold enrichment for each type of sample 

(cycling, meiosis I, meiosis II) in wild type (no tag). Numbers above the bars represent 

fold enrichment [B], or normalized fold enrichment [C]. 
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Discussion 

Control of CLB3 translation in cis 

In order to gain insight into the mechanisms of CLB3 translational regulation we have 

also constructed a series of deletions of the CLB3 5’UTR in order to determine which 

regions are important for translational regulation. This analysis has revealed that the 

region of the 5’UTR spanning from -75 to -26 bases upstream of the start codon 

represents the maximal region required to prevent Clb3 accumulation during meiosis I, as 

deletions outside of this region do not allow Clb3 accumulation during meiosis I, and 

deletions inside of this region allow Clb3 accumulation during meiosis I.  

 

The observation that Clb3 levels were lower in the 5’UTR∆ strains in meiosis I than in 

meiosis II can be explained in several ways. First, the lower levels of Clb3 present in 

meiosis I reflect the lower CLB3 transcript levels present in meiosis I. Second, deletion of 

portions of the CLB3 5’UTR may reduce the stability of CLB3 transcript, thus lowering 

the maximum possible levels of Clb3 during meiosis I. Finally, the 5’UTR∆s constructed 

may only partially relieve translational regulation of CLB3, preventing either all CLB3 

mRNA molecules from entering translation, or allowing only a partial increase in the 

translational efficiency of CLB3 during meiosis I. To distinguish between these two latter 

possibilities the distribution of CLB3 transcripts in meiosis I polysomes could be 

examined, which would show if a subset of CLB3 transcripts were not entering 

translation. However, in the experiments above CLB3 transcript levels were not 

examined, and the levels of Clb3 that accumulate during meiosis I in these strains are 

low. Therefore it is difficult to draw firm conclusions regarding how these deletions 
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affect CLB3 translation. The fact that some Clb3 accumulates during meiosis I in some 

5’UTR∆ strains suggests that translational regulation of CLB3 is abolished in these 

strains. However, disruption of the 5’UTR may affect the stability of the message, the 

efficiency with which it is translated, or both. Therefore, given that CLB3 transcript 

levels are lower in meiosis I than in meiosis II, and without data pertaining to CLB3 

transcript levels in these strains, or a direct comparison of Clb3 protein levels with CLB3 

transcript levels it is difficult to fully assess the effects of disruption of portions of the 

5’UTR on CLB3 translation. Repeating these experiments with analysis of both Clb3 

protein levels and CLB3 transcript levels would give some insight into how these 

5’UTR∆s affect CLB3 translation. However, to fully control for differences in CLB3 

transcript levels between meiosis I and meiosis II the effects of the 5’UTR∆s should be 

examined in an isolated context that is independent of transcript levels. We have 

previously demonstrated that the CLB3 5’UTR is sufficient to prevent protein 

accumulation during meiosis I. Therefore, examining Clb2 protein levels in strains in 

which CLB2 has been placed under the control of the GAL1-10 promoter, and the CLB3 

5’UTR, or the CLB3 5’UTR∆s examined above would control for differences in 

transcript levels between meiosis I and meiosis II, and would allow direct assessment of 

the effects of deletion of portions of the CLB3 5’UTR on translation. 

 

What sequence elements in this region are involved in translational control? It is possible 

that it is solely the primary sequence of this region that recruits an RBP, to prevent 

translation. It is also possible that this region of the 5’UTR contains some secondary or 

tertiary structure that is either bound by an RBP, or is stabilized by an RBP. We have 
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examined this region to determine if there are secondary structures that may represent 

possible structural elements bound by RBPs. However, m-fold gives only two predicted 

structures for this region, each with relatively low predicted stabilities (Zucker, 2003). 

Additionally, we looked for evolutionarily conserved secondary structures in this region 

of the CLB3 5’UTR between S. cerevisiae, S. paradoxus, S. bayanus, S. mikatae, and S. 

kudriavzevii using FOLDALIGN (Havgaard et al., 2005). Comparison of S. cerevisiae 

with each of the other yeasts yielded a potentially conserved structure, but there was no 

structure conserved between S. cerevisiae and all four other yeasts. However, it is 

difficult to judge the relevance of these conserved predicted structures in the absence of 

data regarding the translational status of the CLB3 homologs during meiosis in the other 

yeasts. 

 

Redundancy in promoting accurate chromosome segregation during meiosis  

Why does premature accumulation of Clb3 in GAL-CLB3 strains promote PSCS, while 

premature accumulation of Clb3 in 5’UTR∆ strains fails to promote PSCS (Carlile and 

Amon, 2008; Figures 4-5)? There are two possible explanations. First, the levels of Clb3 

that accumulate during meiosis I in some 5’UTR∆ strains are insufficient to cause PSCS 

or a decrease in spore viability. This may be because CLB3 mRNA levels are lower 

during meiosis I than in meiosis II. It may also reflect an incomplete alleviation of 

translational repression of CLB3 during meiosis I. Second, the PSCS observed in GAL-

CLB3 strains might be a result of accumulation of Clb3 prior to meiosis I. If the GAL-

CLB3 phenotype is due to accumulation of Clb3 during meiosis I, then the low CLB3 

transcript levels might serve as a redundant mechanism to prevent enough Clb3 from 
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accumulating to promote PSCS during meiosis I, which would explain why no PSCS is 

observed in our 5’UTR∆ strains. However, CLB3 is an NDT80 target, and its levels are 

likely to be low prior to meiosis I. Thus, the PSCS phenotype observed for GAL-CLB3 

strains might be due to accumulation of CLB3 transcript and Clb3 protein prior to meiosis 

I. We propose that Clb3 is a potent inhibitor of the meiosis I chromosome segregation 

program, and that there exist redundant mechanisms (transcriptional and translational) to 

prevent excess Clb3 accumulation during meiosis I, and PSCS. This potential redundancy 

is perhaps not surprising, given that the existence of redundant regulatory mechanisms is 

a common theme in cell cycle control. However, whether the PSCS phenotype seen in 

GAL-CLB3 cells is due to Clb3 accumulation prior to or during meiosis I, it is interesting 

that overexpressed CLB3 (CLB3-UP) promotes PSCS, while other overexpressed CLBs 

(CLB-UP) fail to promote PSCS. This phenotype seems to be specific to CLB3, as total 

CDK activity is higher in other CLB-UP strains than in CLB3-UP strains (Carlile and 

Amon, 2008; E. Ünal, personal communication). 

 

Translational control of CLB3 during meiosis 

We have examined the roles of several known mechanisms of translational regulation in 

budding yeast in CLB3 translation. These mechanisms include the regulation of 

translation by uORFs, by IRESs, and by the binding of messages by RBPs. Our data rule 

out the use of canonical uORFs in regulation, as the first AUG in the CLB3 transcript is 

that of the CLB3 ORF. However it is still formally possible that CLB3 translation is 

regulated by a non-canonical uORF (Ingolia et al., 2009), and there are several potential 

uORFs with non-cognate start codons present in the CLB3 5’UTR. Indeed, genome wide 
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translational profiling during meiosis has revealed the presence of at least one uORF with 

a non-cognate start codon in the CLB3 5’UTR. However, this uORF is translated during 

both meiosis I and meiosis II (G. Brar, personal communication). How might such a 

uORF or uORFs regulate translation? One could imagine a situation in which translation 

of a single uORF prevents resumption of scanning, and thus prevents CLB3 translation. If 

this were the case, then one would expect that the uORF would only be translated during 

meiosis I, or that there is an increased frequency of leaky scanning of the uORF during 

meiosis I. If CLB3 translation were regulated by two or more uORFs then one might 

expect that CLB3 translation might be regulated in a manner analogous to that of GCN4.  

In this situation translation of the first uORF would allow resumption of scanning 

downstream, and whether ribosomes reinitiated at the next downstream uORF or at the 

CLB3 ORF would depend on TC levels in the cell.  Such a mode of regulation would 

predict that TC levels would be lower during meiosis II than in meiosis I, and that these 

lower TC levels would allow bypass of downstream uORFs. To determine if CLB3 

translation is regulated by a non-canonical uORF or uORFs the non-cognate start codons 

of these observed uORFs should be mutated, and the effects on CLB3 translation 

examined. 

 

It was tempting to speculate that CLB3 translation might be regulated by an IRES, as 

IRES dependent translation is up-regulated in nutrient poor conditions (Gilbert et al., 

20007), and meiosis in S. cerevisiae only occurs upon nutrient limitation. However, our 

data indicate that translation of CLB3 is likely not regulated by an IRES. Our analysis 

was performed in cycling cells in the W303 strain background using an in vivo reporter 
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system. Therefore this analysis does not definitively rule out regulation of translation by 

IRESs during meiosis in the SK1 strain background. The in vivo system requires that 

cells be spheroplasted, and subsequently recovered, which would be technically difficult 

to do at discreet timepoints in meiosis. To determine if the CLB3 5’UTR contains an 

IRES capable of promoting CLB3 translation during meiosis II a similar assay could be 

performed using translational extracts derived from either meiosis I or meiosis II 

samples. If CLB3 translation were regulated by an IRES during meiosis, then one would 

expect IRES reporter RNAs containing the CLB3 5’UTR to be translated in meiosis II 

extracts, but not meiosis I extracts. However, it may be technically difficult to perform 

these experiments, as SK1 may be infected with the L-A virus, which interferes with 

translation in these extracts (Iizuka and Sarnow, 1997). 

 

To attempt to determine the mechanism of CLB3 translational regulation we took a 

candidate gene based approach, in which we compiled a list of meiotically expressed 

RBPs. To do this we pooled a list of non-essential genes obtained from meiotic 

expression data with a list of genes deleted in a screen that identified monopolin, and 

subsequently used PROSITE to scan the amino acid sequences of these genes for known 

RNA interaction motifs (Primig et al., 2000; Tóth et al., 2000; Sigrist et al., 2002). This 

yielded a list of twelve genes, which represent a broad range of functions. We then 

examined the effects of deletion of each of these genes on Clb3 levels during meiosis. 

However, none of the genes examined seemed to have either a positive or negative effect 

on CLB3 translation. There are several reasons that our analysis may have omitted or 

missed proteins required for CLB3 translational control. First, there may be redundant 
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mechanisms of regulation, thus deletion of a single RBP that binds the CLB3 5’UTR may 

not be sufficient to relieve translational repression. Second, the true regulator of CLB3 

may be an essential gene, might lack a known RNA binding motif, or may not be strongly 

transcriptionally up-regulated during meiosis. Genes in this category would be omitted in 

our analysis. Indeed, an analysis of proteins that did not contain known RNA binding 

motifs revealed that they reproducibly associated with certain mRNAs (Hogan et al., 

2008). Finally, it is possible that CLB3 translation is not regulated by the binding of a 

protein, but may be regulated by some other mechanism, such as the association of a 

small non-coding RNA, or perhaps through an increased ribosome-intrinsic ability to 

translate the CLB3 message during meiosis II. 

 

The roles of Rim15 and Rpm2 in CLB3 translational control 

In order to identify proteins that interact with the CLB3 5’UTR, and thus represent 

potential translational regulators, we performed a Y3H assay with the CLB3 5’UTR. This 

assay revealed nine potential candidate regulators. However, we chose to limit our 

analysis to the top two hits, RIM15 and RPM2 since RIM15 is involved in meiotic entry, 

and RPM2 has been shown to interact genetically and physically with P bodies, which are 

known to play a role in translational regulation. Rim15 is a serine/threonine kinase 

involved in regulating meiotic entry in response to nutrient signals (Vidan and Mitchell, 

1997; Roosen et al., 2005; Wanke et al., 2005), and Rpm2 is the protein subunit of 

mitochondrial RNase P, which cleaves the 5’ leader sequences of mitochondrial tRNAs, 

and has several other functions in addition to its role in tRNA processing (Morales et al., 
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1992; Stribinskis et al., 2001a; Stribinskis et al., 2001b; Stribinskis et al., 2005; 

Stribinskis and Ramos, 2007).  

 

To attempt to verify that Rim15 and Rpm2 associate with the CLB3 mRNA TAP-tagged 

versions of Rim15 and Rpm2 were IPed samples taken from mitotically growing, meiosis 

I, and meiosis II cells, and the association of CLB3 mRNA was assessed by RT-PCR 

(Gerber et al., 2004). However, CLB3 transcript was not significantly enriched in Rim15-

TAP or Rpm2-TAP IPs taken from meiotic samples. This suggests that neither Rim15 nor 

Rpm2 physically interact with the CLB3 transcript during meiosis, further suggesting that 

neither protein likely regulates CLB3 translation during meiosis. However, these 

experiments were only performed once, and should be repeated with further controls to 

demonstrate that both proteins are being efficiently IPed. 

 

We were unable to determine if Clb3 protein accumulated during meiosis I in RIM15 or 

RPM2 mutants, and were thus unable to assess the effects of either mutant on CLB3 

translation. However, in the absence of data demonstrating a direct interaction between 

either Rim15 or Rpm2, and CLB3 mRNA the importance of these experiments is 

lessened. If a direct interaction of these proteins with CLB3 mRNA can be demonstrated, 

then a role in CLB3 translational regulation could be established using 

immunofluorescence (IF). Clb3 levels can be assessed during meiosis I and meiosis II by 

IF in rim15∆ mutants, provided that rim15∆ strains can be obtained, and in rpm2-100 

mutants, given that these mutants seem to sporulate relatively well outside of the GAL-

NDT80 background. In wild-type meiosis I cells Clb3 should not be observed by IF, but 
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should be observed in wild-type meiosis II cells. However, if either protein acts as a 

translational repressor during meiosis I, then Clb3 would be expected to be observed by 

IF in mutant meiosis I cells. Conversely, if either protein acts as a translational activator 

during meiosis II, then Clb3 would not be expected to be observed by IF in mutant 

meiosis II cells.  

 

 

The Mechanism of Translational Control of CLB3 

Our data suggest that Rim15 and Rpm2 do not bind to the CLB3 mRNA, and therefore 

are likely not translational regulators of CLB3. However, we still favor the hypothesis 

that CLB3 translational regulation is mediated by the binding of an RBP to the CLB3 

5’UTR. How might such an RBP or RBPs modulate CLB3 translation? If such an RBP 

were a translational repressor, it could bind to the CLB3 5’UTR during meiosis I and 

prevent translation in a variety of ways. First, binding might prevent the association of 

eIFs with the CLB3 message, thus preventing translational initiation. Second, binding 

might prevent the ribosome from scanning through to the start codon. Finally, binding 

might stabilize a secondary structure in the 5’UTR that inhibits scanning or some other 

aspect of translational initiation. If CLB3 translational regulation occurs through 

activation of translation during meiosis II (and possibly in vegetatively growing cells), an 

RBP might bind the CLB3 5’UTR and promote translation. First, such an RBP might 

promote the recruitment of eIFs to the message. Second, RBP binding might destabilize a 

secondary structure in the 5’UTR that prevents scanning. Finally, RBP binding might 

promote some other aspect of translational initiation. Additionally, it is possible that 
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either an activating RBP or a repressive RBP may regulate other transcripts in a similar 

manner, and such experiments are discussed further in Chapter 4. 

 

How might translational repression be restricted to meiosis I, or translational activation 

be restricted to meiosis II? One possibility is that the translational regulators, presumably 

RBPs, might be present only during meiosis I (if a repressor), or only during meiosis II (if 

an activator). Another possibility is that such regulators might be present in both meiosis 

I, meiosis II, and the mitotic cell cycle, but may be inhibited during meiosis II and 

mitosis (for a repressor), or activated during meiosis II and possibly mitosis (for an 

activator). Such stage specific activation or inhibition could occur through a variety of 

mechanisms, including post-translational modifications, or through differential regulation 

of subcellular localization. For example, a slower migrating form of Rpm2 is present at 

high levels in vegetatively growing cells, and during meiosis II. This might represent a 

post-translational modification of Rpm2, or might represent Rpm2 that has not had its 

MTS cleaved. Such a form of Rpm2 would presumably be localized in the nucleus or 

cytoplasm. If Rpm2 is a regulator of CLB3 translation, then this data might hint that 

Rpm2 is an activator of CLB3 translation. 
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Experimental Procedures 

Strains 

All strains are SK1 derivatives and are described in Table 1, except A2587 (W303), and 

strains used for the Y3H assay, which are described in Table 2. CLB3-3HA, RIM15-TAP, 

RPM2-TAP, and all candidate RBP deletions were constructed using the PCR-based 

method described in (Longtine et al. 1998). CLB3 5’UTR deletions were made by a two 

step transformation procedure. First, URA3 was PCRed from K. lactis genomic DNA 

with 40 bases of flanking homology for each desired deletion. This PCR fragment was 

then transformed into a CLB3-3HA tagged strain with selection on –URA. The resulting 

strains have deletions of the desired regions of the CLB3 5’UTR marked with URA3. 

Second, complimentary primers pairs were designed with 40 bases of flanking homology 

to the 5’UTR sequences on either side of the integrated URA3 gene. These primers were 

then annealed, resulting in an 80 bp fragment of DNA with homology to the genomic 

sequences on either side of the integrated URA3 gene. Annealed primers were then 

transformed into the 5’UTR∆::URA3 strains with selection on 5’FOA. URA- colonies 

obtained in the second transformation step were then screened by PCR and sequencing to 

verify that the K. lactis URA3 gene had been removed by the second transformation, and 

that no mutations were introduced into the 5’UTR during transformation. 

 

Table 1: Strains 

Strain 
Number 

Relevant Genotype 

A2587* MATa (W303) 
A14201 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-

GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1  
A15055 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
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GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6  

A20531 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 ygr250c∆::HIS3MX6/ 
ygr250c∆::HIS3MX6 

A20532 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 hrb1∆::HIS3MX6/ 
hrb1∆::HIS3MX6 

A20533 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 ydr374c∆::HIS3MX6/ 
ydr374c∆::HIS3MX6 

A20534 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 rrt5∆::HIS3MX6/ 
rrt5∆::HIS3MX6 

A20535 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 mip6∆::HIS3MX6/ 
mip6∆::HIS3MX6 

A20536 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 pes4∆::HIS3MX6/ 
pes4c∆::HIS3MX6 

A20537 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 yll032c∆::HIS3MX6/ 
yll032cc∆::HIS3MX6 

A20538 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 cbc2∆::HIS3MX6/ 
cbc2∆::HIS3MX6 

A20539 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 slf1∆::HIS3MX6/ 
slf1∆::HIS3MX6 

A20540 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 rim4∆::HIS3MX6/ 
rim4∆::HIS3MX6 

A20541 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 tma64∆::HIS3MX6/ 
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tma64c∆::HIS3MX6 
A20542 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-

GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 pbp2∆::HIS3MX6/ 
pbp2∆::HIS3MX6 

A21494 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 nsr1∆::HIS3MX6/ 
nsr1∆::HIS3MX6 

A21495 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 CLB3-
3HA::KANMX6/CLB3-3HA::KANMX6 pub1∆::HIS3MX6/ 
pub1∆::HIS3MX6 

A23949 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 RIM15-
TAP::HIS3MX6/ RIM15-TAP::HIS3MX6 

A23950 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 RPM2-
TAP::HIS3MX6/ RPM2-TAP::HIS3MX6 

A22596 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-150-101-CLB3-3HA::KANMX6/5’UTR∆-150-101-CLB3-
3HA::KANMX6 

A22597 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-100-51-CLB3-3HA::KANMX6/5’UTR∆-100-51-CLB3-
3HA::KANMX6 

A22598 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-50-1-CLB3-3HA::KANMX6/5’UTR∆-50-1-CLB3-
3HA::KANMX6 

A23342 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-100-76-CLB3-3HA::KANMX6/5’UTR∆-100-76-CLB3-
3HA::KANMX6 

A23343 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-75-51-CLB3-3HA::KANMX6/5’UTR∆-75-51-CLB3-
3HA::KANMX6 

A23344 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 URA3 
5’UTR∆-50-26-CLB3-3HA::KANMX6/5’UTR∆-50-26-CLB3-
3HA::KANMX6 

A23345 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
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5’UTR∆-25-1-CLB3-3HA::KANMX6/5’UTR∆-25-1-CLB3-
3HA::KANMX6 

A23346 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 
5’UTR∆-75-26-CLB3-3HA::KANMX6/5’UTR∆-75-26-CLB3-
3HA::KANMX6 

A18686 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 CLB3-3HA::KANMX6/CLB3-3HA::KANMX6 
leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A18687 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6/clb3::pGAL-CLB3-
3HA::KANMX6::HIS3MX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24641 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-150-101-CLB3-
3HA::KANMX6/5’UTR∆-150-101-CLB3-3HA::KANMX6 leu2::tetR-
GFP::LEU2::TetO-HIS3/+ 

A24642 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-100-51-CLB3-3HA::KANMX6/5’UTR∆-
100-51-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24643 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-50-1-CLB3-3HA::KANMX6/5’UTR∆-
50-1-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24644 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-100-76-CLB3-3HA::KANMX6/5’UTR∆-
100-76-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24645 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-75-51-CLB3-3HA::KANMX6/5’UTR∆-
75-51-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24646 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-50-26-CLB3-3HA::KANMX6/5’UTR∆-
50-26-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24647 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-25-1-CLB3-3HA::KANMX6/5’UTR∆-
25-1-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24648 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-75-26-CLB3-3HA::KANMX6/5’UTR∆-
75-26-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 

A24971 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 5’UTR∆-153-1-CLB3-3HA::KANMX6/5’UTR∆-
153-1-CLB3-3HA::KANMX6 leu2::tetR-GFP::LEU2::TetO-HIS3/+ 
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IRES Assays 

IRES assays were performed as described in (Gilbert et al., 2007). Transcripts were 

prepared by in vitro transcription from Ecl136II (Fermentas) cut reporter plasmid using 

T7 RNA Polymerase in the presence of 7mG(ppp)G cap (NEB), or A(ppp)G cap analog 

(NEB). RNAs were extracted using phenol-chloroform, ethanol precipitated, and 

resuspended in DEPC treated water. Cells were grown to mid-log phase, and were 

harvested and spheroplasted. 2 µg of RNA was electroporated into cells (800C, 25 µF, 

1000 Ω), which were recovered for 1 hr in YPD-1M Sorbitol. F-luc assays were 

performed using a Dual-Luciferase Reporter Assay System as per manufacturers 

instructions (Promega).  

 

Other Methods 

Sporulation conditions for GAL-NDT80 strains are as described in (Carlile and Amon, 

2008). Indirect immunofluorescence, GFP-Dot sample preparation, spindle counts, and 

western blots were performed as described in (Carlile and Amon, 2008). Mouse anti-

Pgk1 (Molecular Probes) was used at a 1:5000 dilution. Mouse anti-Vph1 (Molecular 

Probes) was used at a 1:2000 dilution. Mouse anti-HA (HA.11, Covance) was used at a 

1:1000 dilutions. Peroxidase anti-peroxidase (for TAP) was used at a 1:200 dilution. 

Sheep anti-mouse conjugated to HRP (GE Healthcare) was used as a secondary antibody 

at a 1:5000 dilution. 
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Library Amplification 

1 mL aliquots of the C1, C2, and C3 libraries in E. coli were inoculated into 1 L LBAmp. 

When the cultures reached an OD600 of 0.7 20 mL samples of each library were pelleted, 

resuspended in 10 mL 15% glycerol, and stored at -80ºC in 1 mL aliquots. When the 

cultures reached an OD600 of 1.0 cells were pelleted and stored at -20ºC overnight. 

Plasmid DNA was isolated by MAXI prep, and was titered by transformation into E. coli 

strain DH5α with 10-fold serial dilutions. A volume of each library sufficient to give 

approximately 10-fold library coverage was transformed into A20544, and was plated on 

selective media. The plates were incubated for one week at 30ºC, and were harvested 

with sterile scrapers. Cells were resuspended in 15% glycerol, divided into 1 mL aliquots 

and were stored at -80ºC. 

 

Yeast Three-Hybrid Screen 

The CLB3 5’UTR was cloned into pIIIA/MS2.2 to yield pA1702. This plasmid was 

transformed into the Y3H strain background to yield A21180. The GAL4 AD libraries 

C1, C2 and C3 were transformed into A20544. A21180 was mated with aliquots of each 

library in A20544.  Briefly, A21180 was grown to saturation in SC-URA, and aliquots of 

each library were grown to an OD600 of ~2.0 in SC-LEU. 75 OD units of each library in 

A20544 was then mixed with 50 OD units A21180.  Cells were pelleted and then 

resuspended in 100 mL YPD.  This mating mix was incubated at 30ºC overnight with 

shaking at a low rpm. 50 mL of each mating was then pelleted and resuspended in 0.5 L 

SC-URA-LEU, and was then grown for 10 hours at 30ºC. Cells were pelleted and 
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resuspended in 10 mL 15% glycerol. Serial dilutions of the matings were plated on SC-

URA-LEU and YPD. The enrichment for diploids = (# colonies on SC-URA-LEU) /(# 

colonies on YPD) (at least ~6%). 

 

The matings were then plated on –HIS, -LEU, Low Ade, 3-AT (from 1 to 25 mM) plates. 

White colonies were picked onto SC-URA-LEU from 10, 15, and 25 mM 3-AT plates 

beginning at day 4 and ending at day 13. Colonies were replica plates to 5-FOA to lose 

the bait plasmid, and a secondary screen was then performed using LacZ filter assays. 

The identities of inserts for colonies that exhibited RNA dependence for both HIS3 and 

LacZ reporters were determined by sequencing, and Southern blot analysis of library 

derived PCR fragments. All Y3H strains are described in Table 2. 

 

Quantitative ONPG Assays 

Cells were grown to mid-log phase in SC-URA-LEU. Cells were resuspended in 150 µL 

Breakage Buffer (0.1 M Tris [pH 8.0], 20% Glycerol, 1 mM β-mercaptoethanol, 2 mM 

PMSF), and were lysed by vortexing with glass beads, and clarified by centrifugation. 

Protein concentration was determined by Bradford assay. Equal amounts of protein were 

brought up to a final volume of 100 µL, to which 900 µL of Z Buffer (40mM 

Na2HPO4•7H2O, 60mM NaH2PO4•H2O, 10mM KCl, 1mM MgSO4, 50 mM β-

mercaptoethanol, [pH7.0]) was added. Samples were then pre-incubated at 28ºC, 

followed by addition of 200 µL ONPG solution (4mg/mL o-nitrophenyl-β-D-galacto-

pyranoside in Z buffer). Samples were incubated at 28ºC until they turned a pale yellow 

color. Reactions were stopped with the addition of 500 µL 1M Na2CO3, and the OD420 
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was measured. Miller units were calculated as ([OD420]x1.7)/(0.0045x[time in min]x[vol 

extract in mL]x[protein concentration in µg/µL]). 

 

Table 2: Y3H Strains 

Strain 
Number 

Relevant Genotype 

A20543 MATa, LYS2::(LexAop)-HIS3 ura3::(LexAop)-LacZ LexA-
MS2coat::TRP1 

A20544 MATα, LYS2::(LexAop)-HIS3 ura3::(LexAop)-LacZ LexA-
MS2coat::TRP1 

A21180 MATa, LYS2::(LexAop)-HIS3 ura3::(LexAop)-LacZ LexA-
MS2coat::TRP1 [2µ - 5'UTRCLB3-MS2Stems::URA3::ADE2] 

 

RNA Co-immunoprecipitation 

RNA Co-IPs were performed as in (Gerber et al., 2004). Briefly, cells were harvested and 

washed twice in Buffer A (20 mm Tris [pH 8.0], 140 mM KCl, 1.8 mM MgCl2, 0.1% 

NP-40, 0.02 mg/mL heparin). Cells were lysed by vortexing in Buffer B (Buffer A 

supplemented with 0.5 mM DTT, 1mM PMSF, 0.5µg/mL Leupeptin, 0.8 µg/mL 

Pepstatin, 0.2 mg/mL heparin) supplemented with 100 U/mL RNasin (Promega) and 20 

U/mL DNase I (NEB). Extracts were clarified by centrifugation, and equal amounts of 

protein were IPed with Rabbit IgG-Agarose beads (pre-equilibrated in Buffer A) (Sigma) 

at 4ºC for 2 hours. Beads were washed once in Buffer B, followed by three washes in 

Buffer C (20 mm Tris [pH 8.0], 140 mM KCl, 1.8 mM MgCl2, 10% glycerol, 0.5 mM 

DTT, 0.01% NP-40) supplemented with 10 U/mL RNasin. Beads were then resuspended 

in 1.5X bed volume Buffer C, and TEV-Protease (Invitrogen) was added to 0.15 U/µL. 

The TEV reactions were carried out at 15ºC for 2 hours. Eluates were collected, and, 

along with total RNA samples, were phenol:chloroform extracted, and ethanol 
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precipitated (IPs) or LiCl precipitated (total RNA). RT reactions were perfomed using 

SuperScript III (Invitrogen), and qPCRs were performed on a CFX96 Real-Time System 

(Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad). Primers used for CLB3 detection 

by qPCR are TC89_CLB3_RT1F (5’ - CGACGGAGAAAGCGAAGAGGATGAAG - 

3’) and TC90_CLB3_RT1R (5’ - TCGGCAACCATGACCACATCGTAC -3’). 
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Key Conclusions 

In S. cerevisiae major mitotic and meiotic events are controlled by the activity of cyclin-

dependent kinases (CDKs). Although CDK activity and regulation are well characterized 

in mitosis, they have, until now, remained poorly characterized in meiosis. The work 

described in this thesis has focused on the characterization of CDK activity, and on the 

regulation of CDKs during the meiotic divisions. First, a system was developed to 

synchronize cells during the meiotic divisions, and this system was then used to 

characterize CDK activity during the meiotic divisions. This analysis revealed a striking 

diversity in the regulation of Clb-CDK activities during meiosis. Each of the Clb-CDKs 

examined displayed a unique pattern of kinase activity. Next, the regulation of Clb3-

CDKs was further studied in detail. Clb3 protein and Clb3-CDK activity were found to 

be restricted to meiosis II, though CLB3 transcript was present during both meiosis I and 

meiosis II. Clb3 was then shown to be restricted to meiosis II through translational 

regulation mediated by the CLB3 5’UTR. Furthermore, premature accumulation of Clb3 

was shown to cause premature sister-chromatid segregation (PSCS). Finally, experiments 

were performed to ascertain the mechanism of translational regulation of CLB3. Rim15 

and Rpm2 were identified as potential interactors with the CLB3 5’UTR by yeast three-

hybrid assay (Y3H), but subsequent experiments suggested that they do not bind the 

CLB3 5’UTR, and thus likely do not represent potential translational regulators. The 

potential implications of this work, and future directions are discussed below. 
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Synchronization of meiotic cells in S. cerevisiae 

In budding yeast the events of mitosis are better understood than the events of meiosis. 

One reason for this disparity is the availability of more powerful tools to study mitosis. 

Budding yeast cells can be induced to undergo the mitotic cell cycle synchronously using 

a variety of synchronization techniques, which allow cells to be uniformly arrested in a 

particular cell cycle stage. Cells can then be released from the arrest allowing 

synchronous cell cycle progression. The power of these techniques lies in the fact that 

they allow one to enrich for cells in a particular phase of the cell cycle, which allows cell 

cycle events to be studied using population based assays. Synchronization techniques can 

reveal periodic accumulation of cell cycle regulated proteins, and cell cycle regulated 

transcripts. For example it was the synchronous early mitotic divisions in sea urchin 

embryos that allowed the identification of cyclins as cell cycle regulated proteins (Evans 

et al., 1983). 

 

The synchrony of sporulating cultures of S. cerevisiae is poor, and the lack of analogous 

synchronization protocols for meiosis has limited the study of meiosis in budding yeast. 

Even in the strain background SK1, which sporulates efficiently and relatively 

synchronously, meiosis I and meiosis II events cannot be distinguished using population 

based assays. For example, an early study aimed at comparing CDK activity in mitosis 

and meiosis demonstrated clear differences in the accumulation of Clb3 and Clb4 protein 

and kinase activity compared to Clb1 and Clb2 protein and kinase activity during mitosis, 

but was unable to detect differential regulation of cyclins between meiosis I and meiosis 

II (Grandin and Reed, 1993).  
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To date, the study of events of the meiotic divisions in budding yeast has largely relied on 

single cell based cytological assays such as immunofluorescence of whole cells and of 

spread nuclei, and the GFP-dot system to follow meiotic chromosome segregation 

(Straight et al., 1996; Michaelis et al., 1997). The use of these techniques has allowed 

elucidation of many of the key events and specializations that occur to establish the 

meiotic chromosome segregation program (Klein et al., 1999; Tóth et al., 2000; Lee and 

Amon, 2003; Rabitsch et al., 2003; Katis et al., 2004a). However, a meiotic 

synchronization system would greatly enhance the study of meiosis by allowing the 

resolution of meiosis I and meiosis II events using population based assays, and to study 

processes that are not readily amenable to study at the single cell level. 

 

Ndt80 is a transcription factor that promotes transcription of meiotic middle genes, and is 

required for progression out of the pachytene stage of meiotic prophase and into the 

meiotic divisions (Chu et al., 1998; Chu and Herskowitz, 1998; Primig et al., 2000). To 

reversibly arrest cells after meiotic entry, pre-meiotic DNA replication, and 

recombination, but before the meiotic divisions, an inducible allele of NDT80 was 

employed. NDT80 was placed under the control of the inducible GAL1-10 promoter, and 

its transcription is driven using a Gal4-Estrogen receptor (Gal4.ER) fusion protein that 

activates transcription from the GAL1-10 promoter in response to β-estradiol (Picard, 

1999; Benjamin et al., 2003). Cells can be arrested in pachytene in the absence of β-

estradiol, and can be released from this block with the addition of β-estradiol. This 

system allows cells to progress through the meiotic divisions far more synchronously 
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than do wild type strains, and allows the resolution of meiosis I and meiosis II events 

using population based assays. 

 

The use of the GAL-NDT80 GAL4.ER system to characterize meiotic CDK activity 

revealed differences in the activity of different Clb-CDKs during meiosis I and meiosis 

II. For example, Clb1-CDK activity is restricted to meiosis I and Clb3-CDK activity is 

restricted to meiosis II (Carlile and Amon, 2008). These experiments revealed 

unexpected levels of CDK regulation during meiosis, which would have been difficult to 

uncover without the use of population based assays enabled by the synchronization of 

meiotic cells. Therefore, the GAL-NDT80 GAL4.ER system could be employed to study a 

variety of meiotic events including regulation of the meiosis I to meiosis II transition, 

regulation of differential events governing exit from meiosis I and exit from meiosis II, to 

gain further insight into the regulation of meiotic chromosome segregation, and should 

prove to be a valuable tool in the study of meiosis in budding yeast. Additionally, the 

development of earlier synchronization techniques might provide additional insights into 

early meiotic events. Earlier synchronization techniques could be achieved by placing 

other meiotic regulatory genes under inducible promoters, including IME1 or IME2. For 

example, reversible inactivation of an inhibitor sensitive allele of CDC7 allows cells to be 

synchronized prior to meiotic recombination (Wan et al., 2006). 

 

Cyclin-dependent kinase activity in meiosis 

During vegetative growth the activity of Clb-CDK complexes is controlled by CLB 

transcription, by the binding and inhibition of Clb-CDKs by CDK inhibitors (CKIs), and 
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by the ubiquitin-mediated proteolysis of Clbs, of which the latter plays the most 

important role (Bloom and Cross, 2007). However, the characterization of Clb-CDK 

activity during the meiotic divisions revealed a striking diversity in the patterns of 

activity of different Clb-CDKs, and regulation of Clb-CDKs at previously unknown 

levels. 

 

There were two main patterns of CLB expression during the meiotic divisions. For CLB5, 

CLB4, and CLB1 transcript reaches peak levels during the meiosis I, and remains high 

during meiosis II. However, CLB3 transcript appears during meiosis I, but reaches peak 

levels during meiosis II (Figure 1). Several patterns of Clb-CDK activity were observed 

during the meiotic divisions. Clb5-CDK activity closely mirrored Clb5 protein levels, 

which appeared in two waves, one centered at meiosis I, and one centered at meiosis II. 

Clb1-CDK activity was found to be restricted to meiosis I, though Clb1 protein was 

present during meiosis II. Clb4-CDKs were found to be active during meiosis I and early 

meiosis II, though Clb4 was present during late meiosis II. Finally, Clb3-CDK activity 

and Clb3 protein were restricted to meiosis II, though CLB3 transcript was present during 

meiosis I (Figure 1). Thus, none of the Clb-CDKs examined had identical patterns of 

meiotic CDK activity. 
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Figure 1: CLB expression, Clb protein, and Clb-CDK activity during the meiotic 

divisions. 

CLB transcript levels are indicated with grey dashed lines. Clb protein levels are 

indicated by solid grey lines. Clb-CDK activities are indicated by solid black lines. The 

relevant Clb-CDK complexes are indicated to the left of the meiotic divisions. See the 

text for discussion. 

 

 

Why does the cell display such a diverse pattern of meiotic CDK? One possibility is that 

the two sequential chromosome segregation phases that occur during meiosis require 

fine-scale control of CDK activity, especially during the meiosis I to meiosis II transition. 

Another possibility is that the activity of specific Clb-CDK complexes must be confined 
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to specific times during meiosis. Premature production of Clb3, for example, causes 

PSCS. It is therefore possible that inactivation of Clb1-CDKs or Clb4-CDKs during 

meiosis II and late meiosis II respectively may be required for accurate completion of 

some aspects of the meiotic program. Additionally, over-expression of non-degradable 

Clb2 during meiosis prevents the meiosis I to meiosis II transition from occurring 

(Marston et al., 2003). Therefore, it is tempting to speculate that inactivation of Clb1 after 

meiosis I may play a role in promoting this transition. The identification of the 

mechanisms by which Clb1-CDKs and Clb4-CDKs are regulated during meiosis might 

provide a method to test the effects of activation of these CDKs during meiosis II and late 

meiosis II respectively. 

 

How are these various patterns of CDK activity established? Clb5 is an Anaphase 

Promoting Complex (APC)Cdc20 substrate, and the activation of the APCCdc20 promotes 

the metaphase I to anaphase I transition. Therefore it seems likely that the dip in Clb5 

protein and Clb5-CDK activity between meiosis I and meiosis II is due to an increase in 

the rate of Clb5 degradation compared to Clb5 synthesis. How are the activities of Clb1-

CDKs and Clb4-CDKs regulated? It seems likely that they are either specifically 

activated during meiosis I, or are specifically inactivated during meiosis II or late meiosis 

II respectively. It is possible that both are inhibited by either tyrosine 19 phosphorylation 

or by the binding of Sic1. It would therefore be interesting to examine Clb1-CDK and 

Clb4-CDK activities during meiosis in sic1∆ or swe1∆ strains. However, sic1∆ strains 

fail to undergo meiosis in the GAL-NDT80 background, complicating analysis of the role 

of Sic1 in the regulation of these Clb-CDKs (M. Miller, personal communication). It is 
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also possible that Clb1-CDKs and Clb4-CDKs may be bound by either novel activators 

during meiosis I, or by novel inhibitors during meiosis II. Proteins that differentially co-

purify with Clb1 in meiosis I and meiosis II could be identified by mass spectrometry, 

and would represent potential regulators of Clb1-CDK activity, and perhaps Clb4-CDK 

activity.  

 

The analysis of CDK activity presented in Chapter 2 included the cyclins Clb1, Clb3, 

Clb4, and Clb5. However, it omitted the cyclin Clb6, the meiosis specific kinase Ime2, 

and bulk CDK activity. It would therefore be interesting to further characterize the 

activity of CDKs during meiosis. In vegetative cells Clb6 is targeted for degradation by 

the SCF early in the cell cycle. Therefore, Clb6-CDKs may exhibit a unique pattern of 

activity during meiosis. Additionally, the characterization of bulk CDK activity during 

meiosis would give insights into how the meiosis I to meiosis II transition is regulated, 

and into differences between meiosis I and meiosis II in total CDK activity. Additionally, 

the meiosis-specific kinase, Ime2, functions in place of the Cln-CDKs in early meiosis, 

and has a role in promoting the second meiotic division (Benjamin et al., 2003). 

Characterization of Ime2-associated kinase activity during meiosis would also yield 

insights into how it is regulated during the meiotic divisions, and into how late meiotic 

events are regulated by Ime2. As with the characterization of Clb1, Clb3, Clb4 and Clb5-

CDK activities, characterization of Clb6-CDK activity, bulk CDK activity and Ime2 

activity is likely to suggest additional avenues of investigation of the regulation and roles 

of these proteins during meiosis. 
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The regulation of chromosome segregation by Clb3 

How does early accumulation of Clb3-CDKs promote PSCS? The data presented in 

Chapter 2, and subsequent experiments have shown that Clb3 is able to specifically 

promote PSCS. Only GAL-CLB3 strains, but not other GAL-CLB strains show this 

phenotype. The simplest explanation is that Clb3-CDKs, but not other Clb-CDKs, are 

able to specifically phosphorylate some factor required for the establishment of the 

meiosis I chromosome segregation pattern, and such phosphorylation interferes with the 

activity of these regulators. There are three main modifications to the mitotic 

chromosome segregation machinery that occur during meiosis that establish the unique 

meiosis I chromosome segregation pattern, and in principle premature accumulation of 

Clb3 could interfere with any of them. They are the linkage of homologous chromosomes 

through recombination, the co-orientation of sister-chromatids during meiosis I, and the 

protection of centromeric cohesins during meiosis I (Marston and Amon, 2004). 

Subsequent experiments have shown that in GAL-CLB3 strains recombination is 

unaffected, but that the localization of Mam1 to kinetochores is compromised, and 

centromeric cohesion is not protected at meiosis I, though Sgo1 localization seems 

normal (E. Ünal, personal communication). This suggests that monopolin function is 

compromised due to improper localization, and that Sgo1 may be unable to protect 

centromeric cohesins despite its proper localization in GAL-CLB3 strains. Together these 

results indicate that premature accumulation of Clb3 interferes with the function of 

monopolin and the function of Sgo1, and that the inability of cells to co-orient sisters and 

protect centromeric cohesion is the reason that GAL-CLB3 strains improperly segregate 

sisters during meiosis I. Additionally, more sensitive assays could be performed that 
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might allow characterization of subtle defects not readily apparent using cytological 

methods. For example, the use of chromatin immunoprecipitation could be employed to 

examine the association of Sgo1 with DNA. Such an analysis might reveal defects in the 

association of Sgo1 with pericentric chromatin, or may reveal quantitative defects in the 

association of Sgo1 with DNA. 

 

It is currently unclear how the functions of monopolin and Sgo1 are compromised in 

GAL-CLB3 strains. It seems likely that premature accumulation of Clb3-CDKs leads to 

the phosphorylation of a key substrate or set of substrates, and that the phosphorylated 

forms of these proteins interfere with the meiosis I chromosome segregation machinery. 

Many known regulators of meiotic chromosome segregation are phospho-proteins. It may 

therefore be informative to compare their phosphorylation status in wild type and GAL-

CLB3 cells, or between GAL-CLB3 and another GAL-CLB strain. An increase in 

phosphorylation of a given protein in GAL-CLB3 strains would suggest that it may be a 

target of Clb3, and could then be further investigated.  

 

The meiosis specific factor SPO13 coordinates the meiosis I chromosome segregation 

program by promoting protection of centromeric cohesion through Sgo1 localization and 

through co-orientation of sister-kinetochores at meiosis I (Lee et al., 2002; Shonn et al., 

2002; Katis et al., 2004b; Lee et al., 2004). GAL-CLB3 strains and spo13∆ strains share a 

variety of phenotypes including separation of sister-chromatids during meiosis I, 

suppression of the metaphase I arrest brought about by Cdc20 depletion, and suppression 

of PSCS by delaying progression through early meiosis (McCarroll and Esposito, 1994; 
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Shonn et al., 2002; Katis et al., 2004b; Carlile and Amon, 2008). Therefore, Spo13 may 

be phosphorylated and inhibited by Clb3 in GAL-CLB3 strains. Such inhibition would 

explain the common phenotypes exhibited by both spo13∆ and GAL-CLB3 mutants. Our 

preliminary data suggests that Spo13 may be hyper-phosphorylated in GAL-CLB3 strains 

(data not shown). However, these experiments need to be repeated with other GAL-CLB 

strains as controls. 

 

When does Clb3 function to promote PSCS? In GAL-CLB3 strains PSCS is only 

observed when experiments are performed in an unsynchronized background, when the 

timing of CLB3 expression cannot be precisely matched to entry into meiosis I. It is 

therefore possible that Clb3 exerts its function in promoting PSCS either prior to or 

during meiosis I. Additionally, the Clb3 that accumulates during meiosis I in some CLB3 

5’UTR∆ strains is insufficient to cause PSCS. There are two possible explanations for 

these data. First, the levels of Clb3 that in 5’UTR∆ strains during meiosis I are 

insufficient to cause PSCS. If this is the case, then the lower CLB3 transcript levels 

present during meiosis I may be a redundant mechanism to prevent large amounts of Clb3 

from accumulating during meiosis I. Second, the PSCS observed in GAL-CLB3 strains 

might result from accumulation of Clb3 prior to meiosis I. Since CLB3 is an NDT80 

target CLB3 transcript levels are likely to be low prior to meiosis I, thus the GAL-CLB3 

phenotype might be a result of both inappropriate transcription of CLB3 and 

accumulation of Clb3 prior to meiosis I. However, when CLB3 expression is induced 

prior to meiosis I in cells synchronized using the GAL-NDT80 system the levels of PSCS 

observed are dramatically lower than in unsynchronized strains (E. Ünal, personal 
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communication). These data indicate that delaying cells prior to the meiotic divisions 

suppresses the PSCS phenotype associated with premature accumulation of Clb3, which 

might explain why no PSCS phenotype is observed in GAL-CLB3 GAL-NDT80 strains. In 

order to determine if Clb3 acts during, or prior to meiosis I CLB3 could be placed under 

the CLB1 promoter, which would allow high levels of Clb3 protein to be produced 

specifically during meiosis I in unsynchronized meioses. 

 

The regulation of meiotic events by cyclin dependent kinases 

While a great deal is known about how CDKs control mitotic cell cycle events, much less 

is known about how they control meiotic events, and though it is largely assumed that 

analogous events are regulated in similar manners there is a relative paucity of studies 

directly demonstrating roles for CDKs in meiotic events. For example, it was only 

relatively recently that a direct role for CDKs in initiation of recombination was 

demonstrated (Henderson et al., 2006). While there are many meiotic events where the 

assumption that CDKs function analogously to the events of mitosis, such as DNA 

replication, there are several events unique to meiosis whose regulation by CDKs is either 

poorly characterized, or is almost entirely uncharacterized.  

 

For example, very little is known about how the duplication and separation of spindle 

pole bodies (SPBs) is regulated by CDKs during meiosis in budding yeast. In meiosis 

SPBs are duplicated twice, once prior to the meiotic divisions and once prior to meiosis 

II, and the second round of SPB duplication results in SPBs with modified outer plaques 

(Jaspersen and Winey, 2004). However, little is known about how either the first or 
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second round of SPB duplication is regulated during meiosis by either the G1-CDK-like 

kinase Ime2, or by Clb-CDKs. In mitosis Cln-CDKs promote SPB duplication, however 

it is not known if Ime2 promotes meiotic SPB duplication in an analogous manner. 

Additionally, it is not known how the down-regulaton of CDKs between meiosis I and 

meiosis II affects the second round of meiotic SPB duplication. 

 

How CDKs are regulated during the meiosis I to meiosis II transition, and how CDKs 

regulate this transition is also poorly understood. It is thought that CDKs must be only 

partially down-regulated between meiosis I and meiosis II (Marston et al., 2003; 

Kamienieki et al., 2005). The combined use of the GAL-NDT80 GAL4.ER 

synchronization system in concert with inhibitor sensitive alleles of both CDC28 and 

IME2 could be used to greatly enhance our understanding of the regulation of this 

transition by these two kinases (Bishop et al., 2000; Benjamin et al., 2003). This 

approach has been used to examine the role of CDKs in the meiosis I to meiosis II 

transition, and these preliminary data are presented in Appendix A. 

 

Translational regulation of CLB3 during meiosis 

How is CLB3 translation regulated during meiosis? A priori there are two possible modes 

of regulation. First, the CLB3 5’UTR may be bound by a translational repressor during 

meiosis I. Second, the CLB3 5’UTR may be bound by a translational activator during 

meiosis II, and possibly in vegetatively growing cells. The use of a Y3H screen to 

identify proteins that potentially interact with the CLB3 5’UTR yielded two candidate 

translational regulators, Rim15 and Rpm2, and subsequent preliminary experiments have 
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suggested that they may not bind CLB3 transcript, and thus may not be regulators of 

CLB3 translation. However, these experiments have only been performed once, and as 

such must be repeated. Additionally, we have been unable to examine the consequences 

of mutation of either RIM15 or RPM2 on CLB3 translation, because we have been unable 

to obtain deletions of RIM15 in the SK1 strain background, and because rpm2-100 strains 

fail to sporulate in synchronous meiotic timecourses. A detailed description of 

experiments that could be performed to analyze the effects of these mutants on CLB3 

translation is outlined in the discussion of Chapter 3. 

 

A variety of approaches can be taken to identify translational regulators of CLB3. First, 

proteins that interact with the CLB3 5’UTR could be identified by a purification strategy 

in which a CLB3 5’UTR-MS2 hairpin fusion RNA is bound to an MS2-MBP fusion 

protein. Purification of the MS2-MBP fusion protein should also result in the purification 

of the fusion RNA. Proteins that co-purify with the RNA could then be identified by mass 

spectrometry (Figure 2A). This approach has the advantage of identifying proteins that 

directly interact with the CLB3 5’UTR, and would be able to identify both positive and 

negative regulators of CLB3 translation.  

 

Second, a screen of the S. cerevisiae deletion collection could be performed to identify 

potential translational regulators. The deletion collection is a set of strains deleted for all 

non-essential yeast genes, which through a series of selection steps can have given 

mutations crossed in for the purposes of screening (Giaever et al., 2002). This screen 

would exploit the fluorescence of spores under UV light, and a meiosis I arrest. The 
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meiosis I arrest would be accomplished using a meiotic null allele of CDC20 (cdc20-mn) 

(Lee and Amon, 2003). cdc20-mn cells do not progress past meiosis I, and form monads 

instead of tetrads. The fluorescence of spores under UV light is the result of production of 

the spore wall compound dityrosine, the production of which is dependent on the gene 

DIT1 (Briza et al., 1994). We have observed that the pathway for dityrosine formation is 

intact in cdc20-mn cells, as they fluoresce under UV light (data not shown). DIT1 will be 

placed under the control of the HOP1 promoter to ensure its timely expression during 

meiosis I, and the CLB3 5’UTR to prevent DIT1 translation during meiosis I. cdc20-mn 

pHOP1-5’UTRCLB3-DIT1 cells should not progress past meiosis I, therefore translation of 

the DIT1 message should not occur, and these cells would not be expected to fluoresce 

under UV light. However, if a negative regulator of CLB3 translation is deleted, then in 

these cdc20-mn pHOP1-5’UTRCLB3-DIT1 rbp∆ cells DIT1 translation should occur 

during meiosis I, and cells should fluoresce under UV light (Figure 2B). This approach 

has the advantage of being able to identify both direct and indirect regulators of CLB3 

translation, but has the disadvantage that it would only be able to identify negative 

regulators of CLB3 translation. 
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Figure 1: Strategies for the identification of translational regulators of CLB3 

A) An approach to identify proteins that interact with the CLB3 5’UTR (blue) by mass 

spec. Purification of the CLB3 5’UTR-MS2 hairpin fusion RNA is accomplished through 

the binding of an MS2-MBP fusion protein. This protein can be purified on amylose 

resin, and proteins that co-purify with the RNA can then be identified by mass spec. 

B) A deletion collection screen to identify regulators of CLB3 translation. See the text for 

a detailed description. The DIT1 transcript is illustrated in red, and RBP that acts as a 

translational repressor is indicated in dark blue, ribosomes are illustrated in grey, and 

dityrosine fluorescence is indicated with light blue. In the top cell DIT1 transcript is 

bound by an RBP that acts as a translational repressor, therefore Dit1 is not produced and 

cells do no fluoresce under UV light. In the bottom cell the RBP is not present, and DIT1 

transcript is translated. The production of Dit1 in these cells leads to fluorescence under 

UV light (light blue glow). 
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How would an RBP or translational regulator identified by either of the above techniques 

be validated? Several additional experiments could be performed to demonstrate that an 

RBP is a direct regulator of CLB3 translation. First, it must be demonstrated that CLB3 

translation is altered in rbp∆ cells. This could be assessed by examining Clb3 levels in 

RBP mutant strains, or by examining Clb2 levels in GAL-5’UTRCLB3-CLB2 strains. If the 

RBP was an activator of CLB3 translation, then Clb3 or Clb2 levels would be reduced 

during meiosis II in RBP mutant strains, and if the RBP was a repressor of CLB3 

translation, then Clb3 or Clb2 would accumulate during meiosis I in RBP mutant strains. 

These experiments could be used to assess the effects of both direct and indirect 

translational regulators. Additionally, for direct regulators of CLB3 translation (RBPs), 

these proteins must be demonstrated to bind to CLB3 transcript. These experiments were 

described and performed for Rim15 and Rpm2 in Chapter 3. However, the association of 

an RBP with the CLB3 message should also be analyzed using CLIP (crosslinking and 

immunoprecipitation) (Jensen and Darnell, 2008). In CLIP, cells are crosslinked in vivo, 

and proteins of interest are subsequently immunopurified and RNase treated. Protected 

RNA fragments are then identified by sequencing. This method has the advantages of 

controlling for the formation of RNA protein complexes after lysis, gives positional 

information about the sequences bound by the RBPs, and can potentially lead to the 

identification of other targets that are translationally regulated by an RBP. 

 

How does some yet unidentified regulator of CLB3 translation function? Given that in 

eukaryotes most regulation of translation occurs at the level of initiation, it seems likely 

that CLB3 translation would be regulated at this level as well (Sonenberg and 
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Hinnebusch, 2009). How might a translational repressor prevent translation of CLB3 

during meiosis I? First, binding of such a repressor might prevent the association of any 

of a number of eIFs with the CLB3 message, preventing translational initiation. Second, 

binding of such a repressor might provide a block to scanning ribosomes, thus preventing 

them from reaching the start codon, and initiating translation. In principle any step of 

initiation may be regulated, including the binding of eIF4F to the message, 

polyadenylation of the message, binding of the pre-initiation complex to the message, and 

scanning of the 5’UTR of the message by the ribosome. However, given that much of the 

regulation of polyadenylation is mediated by the 3’UTR of the message, this seems 

unlikely for CLB3. In higher eukaryotes a common theme in translational regulation 

during meiosis and embryogenesis involves the binding of mRNAs by RBPs, which then 

either prevent the association of eIF4G with the message, or prevent the association of 

both eIF4E and eIF4G (Vardy and Orr-Weaver, 2007b). Therefore, it may be informative 

to assess the association of various eIFs, especially eIF4E and eIF4G, with the CLB3 

message during meiosis I to gain insight into the mechanism of CLB3 translational 

regulation. The association or lack of association of a given eIF with the CLB3 message 

would help to determine which step of translational initiation is regulated. 

 

It may also be interesting to determine the roles of P bodies in CLB3 translational 

regulation. P bodies are cytoplasmic foci that are sites of mRNA decapping, 

deadenylation, and decay. Additionally, they are involved in global translational 

repression, and are thought to act as sites of storage of non-translating mRNAs, which 

later reenter translation (Brengues et al., 2005; Coller and Parker, 2005). Potential 
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translational regulation of CLB3 by P bodies might be mediated by shuttling of the 

transcript into P bodies during meiosis I and out of P bodies during meiosis II. 

Interestingly, RPM2 has been shown to interact with P bodies by yeast two-hybrid, and 

genetically (Stribinskis and Ramos, 2007). Therefore, if Rpm2 is a translational regulator 

of CLB3 it may act by modulating the association of the message with P bodies. It would 

therefore be interesting to assess the function of P bodies in CLB3 translation in strains 

deleted for the P body components DHH1 and PAT1. Additionally, it might be 

informative to examine the localization of CLB3 transcript, and to determine if it co-

localizes with P bodies. 

 

Conservation and significance 

The control of the mitotic cell cycle by CDKs is evolutionarily well conserved, and 

though less well studied, it seems that the control of meiotic events by CDKs is as well. 

Our characterization of CDK activity during meiosis has revealed diverse regulation of 

different Clb-CDKs. We have proposed that this diversity in regulation reflects a need to 

finely control CDK activity during the meiotic divisions. Therefore, differential 

regulation of cyclin-CDK complexes during meiosis could be a common and 

evolutionarily conserved phenomenon. Indeed, studies in Xenopus suggest that there may 

be differential regulation of cyclin-CDKs during meiosis in this organism (Hochegger et 

al., 2001). Additionally, preliminary studies in Xenopus and budding yeast hint that 

coordination of the meiosis I to meiosis II transition by down-regulation of CDKs may be 

evolutionarily conserved (Iwabuchi et al., 2003; Buonomo et al., 2003; Marston et al., 

2003). Further studies of the roles of CDKs in meiosis in budding yeast, facilitated by the 
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GAL-NDT80 GAL4.ER system, may therefore give insight into how CDKs control 

meiotic events in higher eukaryotes. 

 

In higher eukaryotes the translation of cyclins and other mRNAs is highly regulated 

during both meiosis and embryogenesis, and has been well studied in Xenopus, 

Drosophila, and C. elegans. For example, during meiosis in Xenopus the proteins CPEB 

and Maskin collaborate to repress translation of cyclin B1 (Hake and Richter, 1994; 

Stebbins-Boaz et al., 1999). In Drosophila both the cyclin A and cyclin B mRNAs are 

translationally repressed by the RBPs Bruno and PUMILIO respectively (Sugimura and 

Lilly, 2006; Vardy and Orr-Weaver, 2007a). Finally, in C. elegans translational 

repression of cyclin E during meiosis by the RBP GLD-1 prevents premature entry of 

germ cells into mitosis (Biedermann et al., 2009). Our work demonstrates that the 

translational regulation of cyclins is not confined to metazoans, but also occurs in 

budding yeast, and may additionally suggest that translational regulation of cyclins has 

the potential to affect chromosome segregation during meiosis in other organisms. We 

observed that translational regulation of CLB3 is mediated by the 5’UTR of the message. 

However, the translational regulation of cyclins observed in higher eukaryotes is largely 

mediated by the binding of regulatory proteins to the 3’UTRs of these messages. Though 

there are differences in the mode of translational regulation during meiosis in yeast 

(5’UTR mediated) and higher eukaryotes (3’UTR mediated), there may be some 

conservation in the mechanisms by which the binding of these RBPs affects cyclin 

translation. 
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Introduction 

Alternating rounds of DNA replication (S phase) and chromosome segregation (M phase) 

characterize the mitotic cell cycle, and ensure that each daughter cell has the same ploidy 

as the parental cell. Unlike mitosis, the meiotic program is reductional, meaning that the 

ploidy of the meiotic products is half that of the progenitor cell. This reduction is 

accomplished by carrying out two consecutive M phases following a single round of 

DNA replication. The mechanisms ensuring accurate segregation during meiosis I and 

meiosis II are well characterized. However, the mechanisms governing the meiosis I to 

meiosis II transition in budding yeast are poorly understood. 

 

This transition is unique in that two consecutive M phases occur without intervening 

DNA replication. Between meiosis I and meiosis II the cell must accomplish two 

seemingly contradictory tasks: it must disassemble the spindle, a process requiring low 

cyclin-dependent kinase (CDK) activity, and it must prevent DNA replication, a process 

requiring high CDK activity. CDKs promote spindle stability by restraining APCCdh1 

mediated proteolysis of microtubule-associated proteins (MAPs), including Ase1, Cin8 

and Kip1. Thus, CDK inactivation during mitotic exit activates the APCCdh1, allowing 

MAP proteolysis. For example, deletion of ASE1 leads to premature spindle disassembly, 

and expression of a stabilized version delays spindle disassembly (Juang et al., 1997; 

Crasta et al., 2006).  

 

The cell uses oscillations in CDK activity to ensure that DNA replication occurs once per 

cell cycle. Licensing of DNA replication is limited to low-CDK states, while initiation of 
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DNA replication is limited to high-CDK states. Licensing requires the formation of pre-

replicative complexes (pre-RCs) at origins of replication during G1. The origin 

recognition complex (ORC), binds origins and during G1 recruits the pre-RC components 

Cdc6 and Cdt1, which in turn recruit the Mcm2-7 complex, the putative replicative 

helicase. Activation of Clb-CDKs upon cell cycle entry initiates DNA replication, and 

inhibits pre-RC reformation. Not surprisingly, Clb-CDKs inhibit pre-RC formation 

through multiple, redundant mechanisms. First, Clb-CDKS phosphorylate Cdc6 targeting 

it for SCFCdc4 mediated proteolysis. Second, Clb-CDKs promote nuclear export of Mcms. 

Finally, Clb-CDKs phosphorylate ORC subunits, inhibiting ORC activity (Nguyen et al., 

2001; Bell and Dutta, 2002). 

 

How does the cell accomplish these two tasks, one requiring low CDKs and one requiring 

high CDKs, during the same transition? Work in Xenopus oocyte extracts suggests that 

the cell only partially inactivates CDKs between meiosis I and meiosis II; inactivating 

CDKs enough to allow spindle disassembly, but preserving enough CDK activity to 

inhibit the pre-RCs formation (Furuno et al., 1994; Iwabuchi et al., 2000). There are also 

several lines of evidence that suggest that Clb-CDKs are important regulators of the 

meiosis I to meiosis II transition in S. cerevisiae. First, clb1∆clb3∆clb4∆ mutants arrest 

after meiosis I, and fail to undergo meiosis II (Dahmann and Futcher, 1995). Second, 

expression of a non-degradable cyclin during meiosis prevents meiosis I spindle 

disassembly (Marston et al., 2003). Third, the Cdc14 Early Anaphase Release Network 

(FEAR) but not the Mitotic Exit Network (MEN) is required for meiosis I spindle 

disassembly (Buonomo et al., 2003; Marston et al., 2003; Kamieniecki et al., 2005). In 
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mitosis both the FEAR Network and the MEN activate the phosphatase Cdc14 by 

promoting its release from the nucleolus. The MEN acts in late anaphase and promotes 

sustained release of Cdc14 from the nucleolus, which drives full Clb-CDK inactivation 

and mitotic exit. However, the FEAR Network acts in early anaphase and promotes a 

transient release of Cdc14 that is not capable of driving mitotic exit (Stegmeier and 

Amon, 2004). The requirement for the FEAR Network but not the MEN suggests that 

complete inactivation of Clb-CDKs by the MEN is restrained during the meiosis I to 

meiosis II transition. The CDK-like kinase Ime2 is also required for the meiosis I to 

meiosis II transition, and seems to exert an inhibitory effect on Cdh1, and on pre-RC 

formation similar to that of CDK (Bolte et al., 2002; Benjamin et al., 2003; Holt et al., 

2007). The full range of mechanisms restraining DNA re-replication during the meiosis I 

to meiosis II is unclear.  Here experiments are presented that were designed to investigate 

the role of CDKs in properly programming this transition. 
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Preliminary Results 

To examine the role of CDKs in the meiosis I to meiosis II transition the cdc28-as1 allele 

was used in conjunction with the GAL-NDT80 synchronization system (Carlile and 

Amon, 2008). In the cdc28-as1 allele a bulky hydrophobic amino acid in the ATP 

binding pocket has been mutated to glycine (F88G), rendering the kinase sensitive to 

inhibition by cell-permeable ATP analogs carrying a bulky, aromatic side-chain (1-NM-

PP1; Bishop et al., 2000). It has been previously reported that CDK activity is required 

for both meiotic divisions (Shuster and Byers, 1989; Grandin and Reed, 1993; Dahmann 

and Futcher, 1995; Benjamin et al., 2003). Therefore, we first sought to determine if 

these results could be recapitulated with the cdc28-as1 allele. To determine if CDKs are 

required for the first meiotic division GAL-NDT80 GAL4.ER cdc28-as1 cells were either 

mock treated with DMSO or with 5 µM 1-NM-PP1 5 hours after inoculation into 

sporulation media (SPO). Cells were then released from the GAL-NDT80 arrest at 6 hours 

with the addition of 1 µM β-estradiol. Mock treated cells formed both meiosis I and 

meiosis II spindles, and underwent both meiotic divisions (Figure 1A,B). However, cells 

treated with 1-NM-PP1 failed to form meiosis I or meiosis II spindles, and failed to 

undergo either meiotic division (Figure 1A,B). To determine if CDKs are required for the 

second meiotic division GAL-NDT80 GAL4.ER cdc28-as1 cells were released from the 

GAL-NDT80 block at 5 hours, and were subsequently either mock treated or treated with 

5 µM 1-NM-PP1 at 6.5 hours, after completion of meiosis I. As before mock treated cells 

underwent both meiotic divisions (Figure 1C,D), whereas inhibitor treated cells 

underwent the first meiotic division, but failed to undergo the second (Figure 1C,D). 

These results confirm that CDK activity is required for both meiotic divisions. 
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Figure 1: CDK activity is required for both meiotic divisions 

GAL4.ER GAL-NDT80 cdc28-as1 (A14737) strains were induced to sporulate at 30°C by 

transfer into SPO medium, and were treated as described below. 

(A,B) After 5 hours cells were treated with either DMSO (black symbols), or 5 µM 1-

NM-PP1 (red symbols). After 6 hours 1µM β-estradiol was added. 

(C,D) After 5 hours 1µM β-estradiol was added. After 6.5 hours were treated with either 

DMSO (black symbols), or 5 µM 1-NM-PP1 (red symbols). 

(A-D) The percentages of bi- and tri- or tetranucleate cells ([B,D], open symbols), of tri- 

or tetranucleate cells ([B,D], closed symbols), and of cells with metaphase I ([A,C], open 

symbols, left graphs), anaphase I ([A,C], closed symbols, left graphs), metaphase II 

([A,C], open symbols, right graphs) or anaphase II spindles ([A,C], closed symbols right 

graphs) were determined at the times indicated after transfer into SPO medium, n=200. 

Arrows [A,C] indicate timing of addition of DMSO or 1-NM-PP1. 

 

 

We next wished to test the hypothesis that CDKs are only partially down-regulated 

between meiosis I and meiosis II, and that the low level of CDK activity preserved 
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between the two divisions is important for meiotic progression. To do this we wished to 

treat cdc28-as1 cells with inhibitor just prior to the meiosis I to meiosis II transition, and 

subsequently wash out inhibitor as untreated cells were entering meiosis II. By treating 

cells with inhibitor in this manner we are able to transiently inhibit CDKs only during the 

meiosis I to meiosis II transition, and to leave CDK activity unaffected during the rest of 

meiosis. If preserving a modest amount of CDK activity between meiosis I and meiosis II 

is important for accurately coordinating the meiosis I to meiosis II transition, then in 

inhibitor treated cells defects in meiotic progression after inhibitor washout might be 

expected. However, first the efficiency of inhibitor removal was tested in cells treated 

prior to the meiotic divisions. cdc28-as1 cells were treated with 5 µM 1-NM-PP1 five 

hours after inoculation into SPO, and were then either released from the GAL-NDT80 

block in the presence of inhibitor (Figure 1A,B), or were washed to remove inhibitor 

prior to addition of β-estradiol (Figure 2 C,D). Cells exposed to 5µM inhibitor for the 

course of the experiment failed to undergo either meiotic division (Figure 1A,B). Cells 

washed to remove inhibitor underwent meiosis I, but did so with a delay and reduced 

efficiency, and largely failed to undergo meiosis II (Figure 2C,D). Cells were also treated 

as above, but with 0.5 µM 1-NM-PP1. Cells exposed to 0.5 µM inhibitor for the course of 

the experiment also failed to undergo either meiotic division (Figure 2A,B). However, 

cells washed to remove inhibitor underwent both meiotic divisions efficiently (Figure 

2E,F). Indicating that the second meiotic division is more sensitive to inhibition of CDKs 

than the first, that 0.5 µM 1-NM-PP1 inhibits both meiotic divisions (and data not shown) 

and that 0.5 µM 1-NM-PP1, but not 5 µM 1-NM-PP1 can be efficiently washed out of 

meiotic cells. 
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Figure 2: 0.5 µM 1-NM-PP1 can be washed out of meiotic cells efficiently. 

GAL4.ER GAL-NDT80 cdc28-as1 (A14737) strains were induced to sporulate at 30°C by 

transfer into SPO medium. After 5 hours cells were treated with either DMSO (black 

symbols), 5 µM 1-NM-PP1 ([C,D], red symbols), or 0.5 µM 1-NM-PP1 ([A,B,E,F], red 

symbols). After 6 hours 1µM β-estradiol was added [A,B], or cells were washed with 10 

volumes SPO +DMSO, followed by addition of 1µM β-estradiol. The percentages of bi- 

and tri- or tetranucleate cells ([B,D,F], open symbols), of tri- or tetranucleate cells 

([B,D,F], closed symbols), and of cells with metaphase I ([A,C,E], open symbols, left 

graphs), anaphase I ([A,C,E], closed symbols, left graphs), metaphase II ([A,C,E], open 

symbols, right graphs) or anaphase II spindles ([A,C,E], closed symbols, right graphs) 

were determined at the times indicated after transfer into SPO medium, n=200. Black 

arrows [A,C,E] indicate timing of addition of DMSO or 1-NM-PP1, red arrows [C,E] 

indicate timing of washes. 
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We next sought to determine the effect of transient inactivation of CDKs during the 

meiosis I to meiosis II transition on meiotic progression.  To do this cdc28-as1 strains 

were treated either with DMSO or with 0.5 µM 1-NM-PP1 at 6.5 hours, the anaphase I 

peak, and DMSO or inhibitor was washed out at 7.25 hours, the metaphase II peak in 

untreated cells. Mock treated cells underwent both meiotic divisions efficiently. 

However, cells treated with inhibitor between 6.5 and 7.25 hours underwent meiosis I, 

but failed to undergo the meiosis II (Figure 3A,B). This suggests that a low level of CDK 

activity must be preserved between the meiotic divisions. 

 

 

Figure 3: Inhibition of CDKs during the meiosis I to meiosis II transition prevents 

the second meiotic division. 

GAL4.ER GAL-NDT80 cdc28-as1 (A14737) strains were induced to sporulate at 30°C by 

transfer into SPO medium. After 5 hours cells 1µM β-estradiol was added. Cells were 

treated with either DMSO (black symbols), or 0.5 µM 1-NM-PP1 (red symbols) at 6.5 

hours. At 7.25 hours cells were washed with 10 volumes SPO media + DMSO + 1 µM β-

estradiol. The percentages of bi- and tri- or tetranucleate cells ([B], upper graph), of tri- 

or tetranucleate cells ([B], lower graph), and of cells with metaphase I ([A], top left 
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graph), anaphase I ([A] top right graph), metaphase II ([A], lower left graph) or anaphase 

II spindles ([A], lower right graph) were determined at the times indicated after transfer 

into SPO medium, n=200. Black arrows indicate addition of DMSO or 1-NM-PP1, red 

arrows indicate timing of washes. 
 

 

To determine if there was a minimum period of CDK inactivation during the meiosis I to 

meiosis II transition required to prevent the second meiotic division. To do this cdc28-as1 

strains were treated either with DMSO or with 0.5 µM 1-NM-PP1 at 7.5 hours, the 

anaphase I peak.  The cultures were then split and washed either 0 minutes, 15 minutes, 

30 minutes, or 45 minutes after addition of DMSO or 1-NM-PP1. The washes had no 

effect on meiotic progression in mock treated cultures (Figure 4A-I). Additionally, 

treatment of cells with inhibitor, followed by an immediate wash had no effect on meiotic 

progression (Figure 4A,B,I). Treatment of cells with 1-NM-PP1 for either 15 or 30 

minutes had a modest effect on the percentage of cells undergoing the second meiotic 

division (untreated ~80%; 15 and 30 min ~50%) (Figure 4C-F,I).  However, treatment of 

cells with 1-NM-PP1 for 45 minutes severely reduced the percentage of cells able to 

undergo the second meiotic division (untreated ~80%; 45 ~20%).  These results suggest 

that in addition to being sensitive to levels of CDK activity between meiosis I and 

meiosis II, cells are also sensitive to the timing of CDK inactivation between meiosis I 

and meiosis II.  
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Figure 4: Timing of inhibition of CDKs during the meiosis I to meiosis II transition. 

GAL4.ER GAL-NDT80 cdc28-as1 (A14737) strains were induced to sporulate at 30°C by 

transfer into SPO medium. After 6 hours 1µM β-estradiol was added. After 7.5 hours 

cells were treated with either DMSO (black symbols), or 0.5 µM 1-NM-PP1 (red 

symbols). After 7.5 ([A,B], 0 min), 7.75 ([C,D], 15 min), 8 ([E,F], 30 min), or 8.25 



	   207	  

([G,H], 45 min) hours portions of the culture were taken and were washed with 10 

volumes SPO +DMSO.  

A-H) The percentages of bi- and tri- or tetranucleate cells ([B,D,F,H], open symbols), of 

tri- or tetranucleate cells ([B,D,F,H], closed symbols), and of cells with metaphase I 

([A,C,E,G], open symbols, left graphs), anaphase I ([A,C,E,G], closed symbols, left 

graphs), metaphase II ([A,C,E], open symbols, right graphs) or anaphase II spindles 

([A,C,E,G], closed symbols, right graphs) were determined at the times indicated after 

transfer into SPO medium, n=200. Black arrows [A,C,E,G] indicate timing of addition of 

DMSO or 1-NM-PP1, red arrows [A,C,E,G] indicate timing of washes. Times in the 

bottom left corners indicate treatment length. 

I) The maximum percentages of tri- or tetranucleate cells are plotted for mock treated 

(black), and inhibitor treated (red) cells for the treatment lengths indicated. 
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Discussion 

We have examined to role of CDKs in the meiosis I to meiosis II transition using highly 

synchronous meiotic cultures, and an allele of CDC28 that can be reversibly inhibited. 

These results have shown that transient inhibition of CDKs during the meiosis I to 

meiosis II transition prevents the second meiotic division, suggesting that preservation of 

some CDK activity during this period is required for proper meiotic progression. 

Additionally, experiments examining the effects of modulating the timing of CDK 

inhibition during this period revealed that CDKs must be inactivated for between 30 and 

45 minutes to fully prevent the second meiotic division from occurring. This indicates 

that the timing of CDK inactivation between meiosis I and meiosis II may play a role in 

meiotic progression. 

 

Why does the length of time of CDK inhibition between meiosis I and meiosis II affect 

meiotic progression? The APCCdh1 is inhibited by Clb-CDK activity during both mitosis 

and meiosis (Zachariae et al., 1998; Holt et al., 2007). It is possible that reducing CDK 

activity below a certain threshold, for a certain amount of time may allow reversal of 

CDK mediated APCCdh1 inhibition; APCCdh1 could then target the Clbs for proteolysis, 

reducing Clb-CDK activity enough to promote exit from meiosis, thus preventing meiosis 

II. This hypothesis predicts that Clb protein levels will be lower in cells treated with 

inhibitor for 45 minutes compared to cells treated with inhibitor for 30 minutes, and cells 

not treated with inhibitor. It also predicts that deletion of CDH1 may be able to suppress 

the failure to undergo meiosis II. However, this interpretation may be complicated 
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because Ime2 also inhibits Cdh1, is thought to be active during the meiosis I to meiosis II 

transition, and is required for the second meiotic division (Bolte et al., 2002; Benjamin et 

al., 2003; Holt et al., 2007). This hypothesis would be consistent if CDK activity is 

required to maintain Ime2 activity, however there is currently no evidence that this is the 

case. Alternatively, inhibition of CDKs during the transition might prevent the second 

meiotic division through mechanisms other than Cdh1 activation. Perhaps CDK activity, 

but not Ime2 activity can prevent premature exit from meiosis. 

 

How is DNA re-replication prevented between meiosis I and meiosis II? Our results show 

a role for preservation of CDK activity between the divisions, which suggests that 

residual CDK activity may play a role in preventing DNA re-replication. However, we 

observed no evidence of DNA re-replication by flow cytometry in inhibitor treated 

cultures. How Clb-CDKs restrain pre-RC formation during meiosis has not been studied 

extensively, though CDKs prevent nuclear accumulation of Mcms during meiosis (Holt et 

al., 2007). We have also seen that Cdc6 is absent during the meiotic divisions, suggesting 

that Clb-CDKs target it for degradation (M. Miller, unpublished data). It therefore seems 

likely that CDKs may also phosphorylate ORC during meiosis, preventing pre-RC 

assembly. Additionally, Ime2 seems to regulate pre-RC formation in a manner analogous 

to Clb-CDKs; it can phosphorylate Cdc6, ORC, and Mcms, and its activity has been 

shown to prevent nuclear accumulation of Mcms (Holt et al., 2007). Thus Clb-CDKs and 

Ime2 seem to collaborate to restrain pre-RC formation between meiosis I and meiosis II. 

Restraint of APCCdh1 mediated proteolysis of Clbs by Ime2 could further inhibit pre-RC 

formation, and preserve sufficient Clb-CDK activity to promote the second division.  
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Analysis of cdc28-as1 ime2-as1 double mutants could thus prove to be a valuable tool to 

dissect how pre-RC formation is inhibited between meiosis I and meiosis II. 

 

How are other events of the meiosis I to meiosis II transition regulated? During this 

transition the meiosis I spindle is disassembled, and the second round of spindle pole 

body (SPB) duplication occurs. As in mitosis, high levels of CDK activity during the 

meiosis I to meiosis II transition inhibit meiosis I spindle disassembly (Buonomo et al., 

2003; Marston et al., 2003). This suggests that there is some similarity in the mechanisms 

by which CDKs regulate spindle assembly and disassembly in both mitosis and meiosis. 

However, the APCCdh1 is a regulator of spindle disassembly during mitosis, and is likely 

inhibited during the meiosis I to meiosis II transition. Therefore how CDK down-

regulation promotes meiosis I spindle disassembly may differ from how CDK down-

regulation promotes mitotic spindle disassembly. Interestingly, when cdc28-as1 cells 

were treated with inhibitor at the anaphase peak, anaphase spindles appeared to persist, 

albeit with some thinning of the spindle and breakdown in the spindle midzone. This may 

suggest that spindle stability is not fully dependent on CDK activity during the meiosis I 

to meiosis II transition, which is consistent with reports that mitotic anaphase spindles are 

more stable than pre-anaphase spindles, and may additionally suggest that the spindle 

midzone is most sensitive to loss of CDK activity (Saunders and Hoyt 1992). 

Additionally, these spindles remain relatively stable over the course of treatment with 

inhibitor, suggesting that CDK down-regulation alone is not sufficient for full spindle 

disassembly. The chaperone Cdc48 has been shown to regulate spindle disassembly 

during exit from mitosis in budding yeast, by binding and facilitating proteolysis of 
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spindle associated proteins (Cao et al., 2003). Perhaps Cdc48 plays a role in modulating 

the association of MAPs with the spindle independent of its role in promoting their 

degradation. How CDKs play a role in SPB duplication during meiosis has also not been 

studied extensively. During mitosis Cln-CDKs promote SPB duplication during G1 

(Jaspersen and Winey, 2004). Therefore it seems likely that Ime2 promotes both rounds 

of SPB duplication during meiosis. Additionally, different FEAR Network mutants show 

different abilities to undergo the second round of SPB duplication. spo12∆ mutant cells 

largely fail to form four SPBs, while the majority of  slk19∆ mutant cells form four SPBs 

(Buonomo et al., 2003). These results suggest that down-regulation of CDKs plays a role 

in the second round of SPB duplication, but that additional experiments may be needed to 

fully elucidate the role of CDK down-regulation in this process. 
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Experimental Procedures 

Strains 

All strains are SK1 derivatives and are described in Table 1. The cdc28-as1 allele was 

obtained from (Benjamin et al., 2003). 

 

Table 1: SK1 Derivatives 

Strain 
Number 

Relevant Genotype 

A14737 MATa/α ura3::pGPD1-GAL4(848).ER::URA3/ura3::pGPD1-
GAL4(848).ER::URA3 GAL-NDT80::TRP1/GAL-NDT80::TRP1 cdc28-
as1/cdc28-as1 

 

Meiosis Conditions 

Sporulation conditions for GAL-NDT80 GAL4.ER strains are described in (Carlile and 

Amon, 2008). 1-NM-PP1 was used from a stock of 5 mM in DMSO. To remove inhibitor 

cells were washed with 10 volumes SPO medium +DMSO (+β-estradiol if cells were 

washed after GAL-NDT80 release) on a Konte filtration apparatus, and were then 

resuspended in SPO medium +DMSO +β-estradiol. Indirect immunofluorescence was 

performed, and spindles were counted as described in (Carlile and Amon, 2008). 
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