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Abstract

Amorphous polymers are important engineering materials; however, their nonlinear, strongly
temperature- and rate-dependent elastic-viscoplastic behavior is still not very well under-
stood, and is modeled by existing constitutive theories with varying degrees of success. There
is no generally agreed upon theory to model the large-deformation, thermo-mechanically cou-
pled response of these materials in a temperature range which spans their glass transition
temperature. Such a theory is crucial for the development of a numerical capability for the
simulation and design of important polymer processing operations, and also for predicting
the relationship between processing methods and the subsequent mechanical properties of
polymeric products.

We have developed a large-deformation thermo-mechanically coupled elastic-viscoplastic
theory for thermoplastic amorphous polymers and shape memory polymers which spans
their glass transition temperature. The theory has been specialized to represent the major
features of the thermo-mechanical response of three technologically important thermoplastic
amorphous polymers - a cyclo-olefin polymer (Zeonex-690R), polycarbonate, poly(methyl
methacrylate) and a representative thermoset shape memory polymer - in a temperature
range from room temperature to approximately 40 C above the glass transition temperature
of each material, in a strain-rate range of ~ 10-4 to 101 s-1, and compressive true strains
exceeding 100%. Our theory has been implemented in the finite element program ABAQUS.
In order to validate the predictive capability of our constitutive theory, we have performed a
variety of macro- and micro-scale validation experiments involving complex inhomogeneous
deformations and thermal processing cycles. By comparing some key features, such as the
experimentally-measured deformed shapes and the load-displacement curves from various
validation experiments against corresponding results from numerical simulations, we show
that our theory is capable of reasonably accurately reproducing the results obtained in the
validation experiments.

Thesis Supervisor: Lallit Anand
Title: Rohsenow Professor of Mechanical Engineering
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Chapter 1

Introduction

Amorphous thermoplastic polymers are important engineering materials that are widely used
in a variety of applications because of their light weight and excellent physical, optical (light
transparency) and mechanical properties. However, their nonlinear, strongly temperature-
and rate-dependent elastic-viscoplastic behavior is still not very well understood, and is
modeled by existing constitutive theories with varying degrees of success. Polymer process-
ing operations, such as micro-hot-enbossing for the manufacture of microfluidic devices,
hot drawing of fibers and films, thermoforming, and blow-molding of various thin walled
containers take place at temperatures approximately 10 to 40 Cabove the glass transition
temperature, z9g of the polymer where it is easy to flow but has some "solid"-like charac-
teristics, and not yet a viscoelastic fluid. During hot processing, the polymer undergoes

large deformation and is subsequently cooled to a temperature below its glass transition
to lock-in the deformed shape. In the process of cooling, the polymer transitions from a
soft "rubbery-state" 1 to a solid "glassy- state" during which, the polymer's initial stiffness,
flow stress and strain hardening rate change by several orders of magnitudes. There is no
generally agreed upon theory to model the large-deformation, thermo-mechanically coupled,
elastic-viscoplastic response of these materials in a temperature range which spans their glass

transition temperature. Such a theory is crucial for the development of a numerical capa-

bility for the simulation and design of important polymer processing operations, and also

for predicting the relationship between processing methods and the subsequent mechanical
properties of polymeric products. A numerical simulation capability based on an accurate
theoretical model offers an excellent opportunity to cut cost by predicting material response
over a large range of conditions which could be very expensive to examine experimentally. It

'At temperatures above the glass transition, the polymer is easy to flow and behaves like an elastic-
viscoplastic "soft" solid with some "rubber"-like characteristics. Due to a lack of better terminology, at
temperatures above Vg, we refer polymers to be in a "rubberv-state" which is the terminology commonly
used in the literature. At temperatures below Og, the polymer behaves like an elastic-viscoplastic solid where
its elastic response and flow stress values are a few orders of magnitude higher than those above V). For
temperature below og, we refer polymers to be in solid a "glassy-state."



is the main objective of this thesis to develop a constitutive theory for amorphous polymers
that fulfills this need. Apart from its intrinsic theoretical importance from the viewpoint of
mechanics and physics of materials, we shall show that our new theory is practically use-
ful for modeling important polymer processing operations, such as micro-hot-embossing for
the manufacture of microfluidic devices and blow-molding of thin-walled containers. Fur-
thermore, for applications where amorphous polymers are used as structural materials to

resist impact (e.g. helmets and body armors), our theory may be used to predict thermo-

mechanically coupled large-deformation response of these structures under high strain-rate
loading conditions.

In addition, this thesis includes an important extension of our work on amorphous ther-
moplastic polymers by specializing the theory to model and numerically simulate the shape
memory response of thermally-actuated amorphous shape memory polymers. Shape mem-
ory polymers can be subjected to large deformations at a temperature above their Vg; the
deformed shape can be fixed by cooling the deformed body to a temperature below V9 under
active kinematical constraints; and the original shape is recovered when the material is heated
back to a temperature above 0 9 without the kinematical constraints.2 This phenomenon is
known as the shape-memory effect. If the shape recovery is partially constrained, the mate-
rial exerts a recovery force and the phenomenon is known as force- or constrained-recovery.
Although many novel applications for shape memory polymers ranging from self-deploying
stents for treatment of arterial disease (Wache et al., 2003; Yakacki et al., 2007; Baer et al.,
2007b), nanoscale-patterned surfaces for information storage and recovery (Vettiger et al.,
2002; Wornyo et al., 2007), and self-deployable reflectors for space applications (Campbell
et al., 2005) have been envisioned and demonstrated in the published literature, the practical
use of shape memory polymers and devices made from these materials is still quite limited.
The major reason for this is that an accurate thermo-mechanically-coupled constitutive the-
ory for shape memory behavior in polymers, and an attendant numerical implementation
for simulation-based design does not exist. To fill this need we have developed a consti-
tutive theory and numerical simulation capability to model the shape recovery behavior of
amorphous shape memory polymers.

2The amorphous shape memory polymers preserve heavy cross-linking and respond as viscoelastic rubber-
like materials above 'O. After loading and unloading at a temperature above 'g, these polymers show negli-
gible permanent set, which is an important characteristic for the shape memory behavior. On the contrary,
thermoplastic amorphous polymers such as Zeonex-690R, PC and PMMA show significant slippage of me-
chanical cross-links (due to physical entanglements) when deformed above their glass transition temperature.
Such polymers when deformed above V., cooled under kinematical constraint to a temperature below 7g,
and then heated back without constraints to a temperature above V., do not show complete recovery to their
original shape.



1.1 Background

1.1.1 Amorphous polymers

Over the past twenty-five years considerable effort has been devoted to develop constitu-
tive models to represent the large-deformation elastic-viscoplastic behavior of amorphous
polymers. One of the early seminal work was a simple one-dimensional rheological model
by Haward and Thackray (1968). In their paper, Haward and Thackray (1968) proposed
the essence of the large strain behavior of glassy polymers in a one-dimensional setting by
combining the features of both glass-like behavior and nonlinear rubber-like behavior. They
used a linear spring to represent the elastic intermolecular interactions, a viscous dashpot
with yield/flow based on Eyring (1936) theory to model rate-dependent macro-yielding, and
a nonlinear spring, the so-called rubber-elastic Langevin spring, to describe the subsequent
strain hardening due to the alignment of the macromolecular network built of entangled
polymer molecules. The alignment of the network chains gives rise to an entropic (rubbery)
restorative stress or a "back stress" in the material.

The simple one-dimensional model by Haward and Thackray (1968) has had substan-
tial influence on the construction of constitutive models for amorphous polymers. Their
approach was extended to three-dimensions by Bagepalli (1984). Parks et al. (1985), Boyce
et al. (1988), Wu and Van der Giessen (1993a), Govaert et al. (2000) and Anand and Gurtin
(2003a). Although differing in details, these models were able to reproduce the large de-
formation elastic-viscoplastic response of the glassy amorphous polymers in a reasonably
acceptable manner; however, these models were developed to primarily describe the isother-
mal deformation of polymers below their glass transition temperature.

A great deal of attention has been given to modeling the rate- and temperature-dependent
yield stress of polymers. There are many models for the yield strength of polymers in the
literature which consider plastic flow as a thermally-activated process (cf., e.g., Eyring, 1936;
Robertson, 1966; Argon, 1973). Most of these models rely on a single micromechanism for
the yield stress and give a reasonably acceptable representation of the variation of the yield
strength with temperature and strain rate over limited ranges of these variables. Mulliken
and Boyce (2006), have proposed an alternate model to describe the variation of the yield
strength of amorphous polymers over a wide range of strain rates and temperatures for tem-
peratures below the glass transition. Their model is a generalization of the model(s) proposed
by Bauwens, Bauwens-Crowet and co-workers (cf., e.g., Bauwens et al., 1969; Bauwens-
Crowet et al., 1969; Bauwens, 1972; Bauwens-Crowet, 1973) in which they introduced two
rheological micro-mechanisms designated as primary or a and secondary or 3 -- which
contribute to the yield strength of the material. The primary a-mechanism represents the
rotations of the main-chain segments of the polymer, and the secondary -mechanism rep-
resents the rotations of the side groups. These two mechanisms are rate-limiting in different
regimes of strain rates and/or temperatures; the a-mechanism is the dominant rate-limiting
mechanism at low rates (or high temperatures), and the 3-mechanism is the dominant rate-
limiting mechanism at high strain rates (or low temperatures). On the other hand, Richeton



et al. (2005a, 2006, 2007) have based their yield flow function on the so-called "cooperative"-
model of Fotheringhaim et al. (1976), Fotheringham and Cherry (1978), Povolo and Hermida
(1995) and Povolo et al. (1996). Richeton et al. have shown that instead of using two
different micromechanisms a and 3 for the yield strength, a flow function based on a
single micronechanisin and following the "cooperative"-nodel may be used to satisfactorily
represent the variation of the yield strength of amorphous polymers over a wide range of
strain rates and temperatures.

Thermo-mechanical coupling effects have also been studied for temperatures below the
glass transition temperature. Arruda et al. (1995) and Ames (2007) modeled and experimen-
tally verified the phenomenon of stress softening due to the internal heat generation from
the plastic dissipation for strain rates ? 0.01 s-1 under nominally homogeneous deforma-
tions; while Garg et al. (2008) measured temperature rise in polycarbonate due to adiabatic
heating at strain rates of the order of ~5000 s-1. Van der Giessen and coworkers (e.g. Basu
and Van der Giessen, 2002; Estevez et al., 2005; Estevez and Basu, 2008) have studied the
effects of adiabatic heating in the context of temperature changes on the fracture response
at cracks and notches under high-rate mode-I loading.

Theories to model the large-deformation response of amorphous polymers in a temper-
ature range which spans their glass transition temperature are still in their infancy. Con-
stitutive theories for this class of applications have been proposed by Boyce and coworkers
(Dupaix, 2003; Dupaix and Boyce, 2007), Buckley and coworkers (Buckley and Jones, 1995;
Dooling et al., 2002), and Richeton and coworkers (Richeton et al., 2007). Ames (2007) in
her recent thesis developed a model for PMMA for a strain level upto 100% and at tem-
peratures ranging from room temperature to temperatures ~ 50 Cabove 9g. These theories
though differing in details rely on two basic micromechanisms, one due to intermolecular
resistance and the other due to molecular network resistance to model the macroscopic poly-
mer response. Although most of these theories are able to predict the major rate- and
temperature-dependent trends under homogeneous deformation conditions, their predictive
capabilities are either limited to a certain range of strain and temperature or to a specific
polymer. Further, there exists no single theory that has been demonstrated to accurately
simulate a complete thermal-forming cycle (involving large, deformation above 79 and subse-
quent cooling to a temperature below toq) for a variety of amorphous polymers under complex
inhomogeneous deformation situations.

Following the imultimechanism approach of Buckley and Jones (1995), Dooling et al.
(2002), Dupaix (2003), Dupaix and Boyce (2007), Richeton et al. (2007) and Ames (2007),
we have developed a reasonably accurate theory for a wide variety of amorphous polymers
which spans their glass transition temperature. Our theory uses internal state variables
to macroscopically represent the important aspects of the mnicrostructural resistance to the
plastic flow. Some of the important new features that are proposed in our theory are:

* The number of microscopic relaxation mechanisms increase as the temperature in-
creases from below t99 to above id, therefore, we employ three micromechanisms to
reasonably accurately model the rate- and temperature-dependent response of amor-
phous polymers in a temperature range which spans their glass transition temperature.



The first micromechanism (a = 1) represents the intermolecular resistance and the see-
ond and third micromechanisms (a 2., 3) represent the molecular network resistance.

" For temperatures below og, our model reduces to a simpler two-micromechanism model
similar to the models proposed by Buckley and Jones (1995), Dooling et al. (2002),
Dupaix (2003), Dupaix and Boyce (2007), Richeton et al. (2007) and Ames (2007).
As in Ames (2007), one major difference here is that we employ a tensorial back-
stress which is used to phenomenologically capture the unloading and cyclic loading
phenomenon. In addition, it allows us to properly account for the energy dissipation
and temperature rise during plastic flow.

" In almost all the existing literature on amorphous polymers, the rapid nonlinear in-
crease in stress levels at large deformations for temperatures below dg has been at-
tributed entirely to elastic effects associated with the stretching of polymer chains.
However, our experience with experiments that involve both loading to large strains
and subsequent unloading, indicate that if in a corresponding theoretical model, the
rapid increase in stress levels during loading is attributed entirely to the elastic effects,
then the unloading response is incorrectly predicted - there is too much "elastic re-
covery" upon unloading. In our theory, we have introduced a macroscopic stress-like
internal variable to model a dissipative resistance to plastic flow which arises at large
strains as the chains are pulled taut between entanglements and there is increasing
interaction between long chains and pendant side-groups. This dissipative resistance
is in addition to any nonlinear elastic contribution from network chain stretching and
is effective at temperatures both below and above z9g.

" Based on the "cooperative"-model of Fotheringham et al. (1976), Fotheringham and
Cherry (1978), Povolo and Hermida (1995), Povolo et al. (1996) and the works of
Richeton et al. (2005a, 2006, 2007) for the yield strength, we have proposed a physically
motivated thermally-activated flow function for the plastic shear strain rate which
accounts for the increase in concentration of "flow-defects" and decrease in activation
energy as the temperature is increased through dg. This flow function satisfactorily
represents the variation of the yield strength of amorphous polymers over a wide range
of strain rates and temperatures.

1.1.2 Shape memory polymers

In the past decade, several efforts at experimental characterization of the thermo-mechanical
response of a wide variety of shape memory polymers have been published in the literature.
Some of the notable studies characterized thermo-mechanical properties (Tobushi et al.,
1996; Baer et al., 2007a), effect of process parameters on shape recovery behavior (Gall et al.,
2005), and fundamental trends between network chemical structure and mechanical response

(Yakacki et al., 2007; Safranski and Gall, 2008). Although these experimental studies provide
substantial understanding of the phenomenology of shape memory behavior, a relatively



complete set of experimental data which characterizes the large-deformation, strain-rate and
temperature-dependent stress-strain response for any given shape memory polymer, currently
does not exist. Recently Qi et al. (2008) have reported a set of rate- and temperature-
dependent large-deformation stress-strain data for a thermoset shape memory polymer, but
even this study lacks published details regarding the significant nonlinear hardening observed
at large strains and unloading response of these materials, which are crucial to properly model
the details of the recovery response.

In a typical thermo-imechanical shape memory cycle, the polymer transitions from a vis-
coelastic rubber-like material into an elastic-viscoplastic glassy solid during the fixation of the
deformed shape, and again into a viscoelastic rubber-like material when the shape-recovery
is actuated. Modeling this complex change in material behavior poses major challenges.
Significant modeling efforts have been carried out in the past several years. A few of the
notable published modeling studies are those of Liu et al. (2006), Chen and Lagoudas (2008),
Qi et al. (2008), and Nguyen et al. (2008). Liu et al. (2006) proposed a three-dimensional
constitutive model in the small strain limit with the phenomenological concept of coexisting
soft (rubbery) and frozen (glassy) phases within the glass transition regime where the evolu-
tion of the frozen state solely depended on the temperature. Based on this concept Chen and
Lagoudas (2008), and Qi et al. (2008) developed large deformation three-dimensional consti-
tutive models for shape memory polymers. The major drawback of these theories lies in the
fact that no physical evidence exists to support the arguments upon which these theories are
formulated. In our view, the recent thermo-viscoelastic model by Nguyen et al. (2008) is a
better approach to model shape memory behavior. However, this model relies on the limited
set of experimental data from the earlier study by Qi et al. (2008), and therefore lacks the
necessary details to accurately model the shape-recovery response of these materials.

Research on modeling the thermo-mechanical response of shape memory polymers is still
in its infancy, and a significant amount of experimental, theoretical, and computational work
needs to be conducted. Therefore, we have specialized our theory for amorphous polymers
to model the thermo-mechanically coupled large-deformation response of amorphous shape
memory polymers.

1.2 Contributions of this thesis

Amorphous polymers show a large number of similar characteristics irrespective of
their chemical composition. Consequently, a primary goal of this thesis is to develop
constitutive theories that are general enough to reasonably accurately model a variety
of amorphous polymers. Towards this goal, the thermo-mechanically coupled large-
deformation elastic-viscoplastic framework presented in Chapter 2 has been specialized
to develop the following thermo-mechanically coupled, large-deformation constitutive
theories: (i) a constitutive theory for amorphous polymers below their glass transition
temperature for a wide range of strain-rates; (ii) a constitutive theory for amorphous
polymers in a temperature range which spans their glass transition; and (iii) a consti-
tutive theory to model the shape memory response of shape memory polymers.



" We have generated a relatively complete set of stress-strain data for a technologically
important amorphous thermoplastic cyclo-olefin copolymer Zeonex-690R 3 by conduct-
ing a suite of simple compression experiments on Zeonex-690R to large strains exceed-
ing 130%, including loading and unloading; at strain rates of 3 x 10 s-1, 3 x 10 3 s
3 x 10-2 -1 and 3 x 101 s-', in a temperature range froi room temperature to ~ 40 'C
above the glass transition temperature of the material. The nominal glass transition
temperature of Zeonex-690R is 135 C.

" Stress-strain data for a chemically cross-linked shape memory polymer was generated
by conducting a suite of simple compression experiments to strains ~ 100%, includ-
ing loading and unloading; at strain rates of 10-3 s-, and 10-1 s 1 , in a temperature
range from room temperature to 30 0Cabove the glass transition temperature of the
material. The polymer was fabricated via photopolymerization of a tert-butyl acry-
late (tBA) monomer with the cross-linking agent poly(ethylene glycol) dimethacrylate
(PEGDMA). The nominal glass transition temperature of this tBA/PEGDMA shape
memory polymer is 37 C.

" We have presented calibration procedures for the material parameters that appear
in our theories and following these procedures, we have obtained material parame-
ter values for (i) three technologically important thermoplastic amorphous polymers
Zeonex-690R, PC and PMMA, and (ii) a tBA/PEGDMA thermoset shape memory
polymer.

Theories of the type considered in this thesis, even in the linear-viscoelasticity regime,
typically require a large number of Maxwell-elements (or Kelvin-Voigt/Zener-elements)
M, with an associated large number of spring-constants and viscosities, to fit exper-
imentally observed stress-relaxation, creep and other mechanical response character-
istics of polymers in the small strain regime. For the large deformation theory con-
sidered here, our goal was to choose the minimum number of micro-mechanisms M,
and thereby the associated number of material parameters, which can replicate the
experimentally-observed stress-strain curves in the strain, strain-rate, and tempera-
ture range of interest with reasonable accuracy. Nevertheless, the number of material
parameters for the polymers considered in this thesis is still quite large. Unfortunately,
this is a limitation of this class of phenomenological continuum-level theories. However,
once the material parameters are calibrated, we show in this thesis that the theory is
able to predict the response of the material in complex three-dimensional geometries
which are subjected to a variety of thermo-mechanical histories.

3 From Zeon Chemicals. Relative to conventional amorphous polymers such as PC and PMMA, Zeonex-
690R, a cyclo-olefin polymer is biocompatible, has lower moisture uptake, has better light transmittance
characteristics, and it is also chemical resistant to a wide variety of solvents. These characteristics make
Zeonex-690R an attractive material for several applications such as microfluidic devices and therefore a focus
of our study.



* An implicit time-integration procedure for our thermo-mechanically coupled theory was
developed and implemented by my colleague Shawn A. Chester to create a numerical
simulation capability for the finite element program ABAQUS/Standard (2009). Using
this simulation capability, polymer processing operations such as micro-hot-embossing,
thermoforming, and blow-molding as well as thermo-mechanical shape-recovery re-
sponse of shape memory polymers have been successfully simulated.

" We have presented results for the following macro-scale validation experiments in
this thesis which involved inhomogeneous deformations: (i) isothermal fixed-end re-
versed torsion test on PC; (ii) high-speed normal-impact of a circular plate of PC;
(iii) isothermal plane-strain cold- and hot-forming operations on PC; (iv) isother-
mal, axi-symmetric hot-forming operations on Zeonex-690R: (v) blow-forming of thin-
walled semi-spherical shapes in PC; (vi) force-recovery in a tBA/PEGDMA shape
memory polymer ring subjected to kinematical constraints; and (vii) unconstrained
shape-recovery in a diamond-shaped lattice geometry of tBA/PEGDMA shape mem-
ory polymer. In addition to validating the accuracy of our models and their numerical
implementations, experimental results presented in this thesis could also serve the pur-
pose of verifying the predictive capability of other models. Most of these validation
experiments were conducted in collaboration with Shawn A. Chester of our laboratory.

* We have used numerical simulations to successfully determine suitable temperature,
pressure and hold-time process conditions for micro-hot-embossing of various features
in Zeonex-690R. We have conducted corresponding micro-hot-embossing experiments
on Zeonex-690R to verify the predictive capability of our theory and its numerical
simulation capability. Numerical simulation approaches such as the ones demonstrated
in this thesis can be used to determine optimum processing conditions for micro-hot-
embossing without a need for costly experimentation.

1.3 List of publications related to this thesis

" Anand, L., Ames, N. M., Srivastava. V., and Chester, S. A., 2009. A thermo-mechanically
coupled theory for large deformations of amorphous polymers. Part I: formulation, In-
ternational Journal of Plasticity 25, 1474-1494.

" Ames, N. M., Srivastava, V., Chester, S. A., and Anand, L., 2009. A thermo-mechanically
coupled theory for large deformations of amorphous polymers. Part II: applications,
International Journal of Plasticity 25, 1495 1539.

* Srivastava, V., Chester, S. A., Ames, N. M., and Anand, L., 2009. A thermo-mechanically
coupled large-deformation theory for amorphous polymers which spans their glass tran-
sition. International Journal of Plasticity, submitted.



" Srivastava, V., Chester, S. A., and Anand, L., 2009. Thermally-actuated shape memory
polymers: experiments, theory, and numerical simulations, Journal of the Mechanics
and Physics of Solids, submitted.

" Srivastava, V., and Anand, L., Nov. 2008. On modeling the mechanical behavior of
amorphous polymers for the micro-hot-embossing of microfluidic devices, Proceedings
of ASME International Mechanical Engineering Congress & Exposition, Boston, MA.

* Henann, D., Srivastava, V., Taylor, H. K., Hale, M. H., Hardt, D. E., and Anand,
L., 2009. Metallic glasses: viable tool materials for production of surface microstruc-
tures in amorphous polymers by micro-hot-embossing, Journal of Micromechanics and
Microengineering 19, 115030 (10 pp).

1.4 Structure of thesis

The structure of this thesis is as follows. In Chapter 2, we present a large-deformation,
thermo-mechanically coupled elastic-viscoplastic theory. A specialization of this theoretical
framework to model the response of amorphous polymers below the glass transition tem-
perature is presented in Chapter 3. A material parameter calibration procedure that was
used to fit the experimental stress-strain data for Zeonex-690R, PC, and PMMA for the
theory presented in Chapter 3 is described in detail in Appendix A. Chapter 4 presents a
specialized constitutive theory to model the polymer response through the glass transition.
A material parameter calibration procedure used to fit the experimental stress-strain data
for Zeonex-690R, PC, and PMMA for the theory presented in Chapter 4 is described in
detail in Appendix B. The theory presented in Chapter 4 was specialized in Chapter 5 to
model the shape memory polymers. We close in Chapter 6 with some final remarks and a
discussion on future research directions.
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Chapter 2

Anand's thermo-mechanically coupled
large-deformation theory for isotropic

elastic-viscoplastic materials

2.1 Introduction

Amorphous thermoplastics are important engineering materials which are widely used in
a variety of applications. Over the past twenty-five years considerable effort has been de-
voted to develop constitutive models to represent the large deformation elastic-viscoplastic
behavior of these materials (e.g., Parks et al., 1985; Boyce et al., 1988; Govaert et al., 2000;
Anand and Gurtin, 2003a; Anand and Ames, 2006; Anand et al., 2009). These models
have been primarily used to describe the isothermal deformation of polymers below their
glass transition temperature, dg. There exists a major need to develop a large-deformation
thermo-mechanically coupled theory for amorphous polymers which spans their glass transi-
tion temperature. Such a theory would be useful for modeling important polymer processing
operations such as micro-hot-embossing for the manufacture of microfluidic devices, hot-
drawing, and blow-molding for manufacture of various thin walled container. Constitutive
theories aimed at this class of applications have been proposed by Boyce and co-workers

(e.g., Boyce et al., 2000; Dupaix., 2003; Dupaix and Boyce, 2007), as well as Buckley and co-
workers (e.g., Buckley and Jones, 1995; Dooling et al., 2002). Guided by the work of Boyce,
Buckley and their co-workers, a thermo-mechanically coupled large-deformation theoretical
framework for isotropic elastic-viscoplastic materials was recently developed by L. Anand.
It is the purpose of this chapter to present the unpublished theory of L. Anand which was
first presented in his plenary Khan International Medal lecture at the 2007 Plasticity con-
ference in Alaska. The reasonably general theoretical framework presented in this chapter is
specialized in Chapter 3 to model the salient features of thermo-mechanically-coupled strain
rate and temperature dependent response of amorphous polymers in the glassy region. A



constitutive theory for amorphous polymers which spans their glass transition temperature
is then presented in Chapter 4. Further this theory is specialized in Chapter 5 to model the
shape memory response of shape memory polymers.

2.2 Kinematics

Consider a homogeneous body B identified with the region of space it occupies in a fixed
reference configuration, and denote by X an arbitrary material point of B. A motion of B
is then a smooth one-to-one mapping x = X(X, t) with deformation gradient, velocity, and
velocity gradient given byl

F = VX, V , L = grad v = FF- 1. (2.1)

An essential kinematical ingredient of elastic-viscoplastic constitutive theories for amor-
phous polymers below their glass transition temperatures, is the classical Kr6ner (1960)- Lee
(1969) multiplicative decomposition

F = F"Fp (2.2)

of the deformation gradient F into elastic and plastic parts Fe and FP (e.g., Parks et al., 1985;
Boyce et al., 1988; Govaert et al., 2000; Anand and Gurtin, 2003a; Anand and Ames, 2006;
Anand et al., 2009). We wish to model the behavior of glassy polymers in the technologically
important range temperature range which spans their glass transition temperatures. Thus
since the number of microscopic relaxation mechanisms in these polymers increase as the
temperature is increased, the theory is based on "multi-mechanism" generalization of the
decomposition (2.2),

F = Fe (a)FP (a), a =1(2.3)

where each a denotes a local micromechanisnm of deformation. Such a multimechanism
generalization forms the basis of the recent work of Anand, Buckley, Boyce, and their co-
workers (Buckley and Jones, 1995; Boyce et al., 2000; Dooling et al., 2002; Dupaix, 2003;
Dupaix and Boyce, 2007; Ames, 2007). For each micromechanism indexed by a, we refer to

1 We use standard notation of modern continuum mechanics (e.g., Gurtin et al., 2009). Specifically: V and
Div denote the gradient and divergence with respect to the material point X in the reference configuration;
grad and div denote these operators with respect to the point x = X(X, t) in the deformed body; a superposed
dot denotes the material time-derivative. Throughout, we write F 1 = (F") 1 , FP~T = (FP)~T, etc. We
write trA, symA, skwA, AO, and symeA respectively, for the trace, symmetric, skew, deviatoric, and
symmetric-deviatoric parts of a tensor A. Also, the inner product of tensors A and B is denoted by A: B,
and the magnitude of A by |AI = v/A: A.



FI (") and Fe (() as the plastic and elastic parts of F.2 As is standard, we assume that

J = detF > 0,

and consistent with this we assume that

Je() ' det Fe (a) > 0, J( () l det FP (") > 0, (2.4)

so that Fe(') and FP(') are invertible.
Restrict attention to a prescribed material point X, and let x denote its place in the

deformed configuration at a fixed time t. Then, bearing in mind that (for X fixed) the linear
transformations Fe(a)(X) and FP(a)(X) at X are invertible, we let

Mx(a) - range of FP(a)(X) = domain of Fe(a)(X), (2.5)

and refer to Mx(a) as the intermediate space at X for the a-th micromechanism. Even
though we use this terminology, there is no actual physical space that may be associated
with an "intermediate structural space"- such spaces are purely mathematical constructs.

For each micromechanism indexed by a, we refer to FW(a) and Fe(a) as the plastic and
elastic parts of F. Physically, for each a,

* FP (a) (X) represents the local inelastic distortion of the material at X due to a "plastic
mechanism" such as the relative chain slippage of the long-chain polymer molecules,
or the cumulative effects of destruction of temporary mechanical cross-links. This
local deformation carries the material into - and ultimately "pins" the material to
- a coherent structure that resides in the intermediate space at X for each a (as
represented by the range of FP(a)(X));

" Fe (a)(X) represents the subsequent stretching and rotation of this coherent structure,
and thereby represents the corresponding "elastic distortion," such as stretching and
rotation of the intermolecular bonds and the long-chain polymer molecules.

Also, it is important to note from the outset, that each FP(a) is to be regarded as an
internal variable of the theory which is defined as the solution of the differential equation
(flow rule to be discussed later)

FP (a) = LP (a)FP (a) with det FP (a) = 1, and with the initial condition FP (a)(X, 0) 1.

(2.6)

2In a one-dimensional theory of linear viscoelasticity, which is based on a widely-used mechanical analog
of A Maxwell-elements assembled in parallel, the one-dimensioinal strain e is decomposed as

e e( ) + C (), = 1,..., M;

the decomposition (2.3) is a three-dimensional, large-deformation, generalization of such a decomposition.



The corresponding Fe(') is the defined by Fe (a) - FFP (a)-1. Hence the decomposition (2.3)
are not purely kinematical in nature as they are not defined independently of constitutive
equations; they are to be viewed as kinematical constitutive equations.

By (2.1)3 and (2.3),

L = grad v = Le(') + Fe (a)LP (a)Fe (a)- 1

Le- Fe(a)Fe (a)-i LP (a) = FP(a)FP (a)-1

As is standard, the total elastic and plastic stretching, and spin tensors are defined through

D = symL,

De (a) - sym Le (a)

DP (a) = sym LP (a)

W = skwL,

We (c) = skw Le(a)

WP (a) = skw LP (a)

so that L = D + W, Le (a) - De (a) + We (a), and LP (a) = DP(a) + WP (a)

The right and left and polar decompositions of F6 (a) are given by

Fe (a) = Re (a) Ue (a) - Ve (a) Re (4)

where Re(a) is a rotation (proper orthogonal tensor), while Ue(a) and Ve(a) are symmetric,
positive-definite tensors with

Ue (a) - vFe (a)T Fe (a),

Also, the right and left elastic Cauchy-Green tensors are given by

Ce(a) = Ue (a) 2 = Fe (a)T Fe (a)

and the right and left inelastic Cauchy-Green tensors by

Cp (a) = Up (a) 2
- FP(a)T FP (a) , BP (a) - VP (a) 2

- FP (a)FP (a)T

2.2.1 Incompressible, irrorational plastic flow

We assume that the plastic flow is incompressible so that

JP (a) = 1

and
tr LP (a) - tr DP (a) = 0

with

(2.7)

(2.8)

(2.9)

(2.10)

Ve (a) = VFe (a) Fe(a)T. (2.11)

Be (a) - Ve (a) 2 = Fe (a) Fe (a)T (2.12)

(2.13)

(2.14)

(2.15)



Hence
Je(a) = J for all a . (2.16)

Further, from the outset, we constrain the theory by limiting our discussion to circum-
stances under which the material may be idealized as isotropic (see later). For isotropic
elastic-viscoplastic theories utilizing the multiplicative decomposition (2.3) it is widely as-
sumed that the plastic flow is irrotational in the sense that3

WP (a) - 0. (2.17)

Then, LP(a) = DP(a), and
FC") - DP(a)FP(a). (2.18)

Thus, using (2.1), (2.7), (2.8). and (2.18), we may rewrite (2.7) for future use as

(V*)F -= e (a)Fe (a)-1 + Fe (a)DP (a)Fe(a). (2.19)

2.3 Frame-indifference

Changes in frame (observer) are smooth time-dependent rigid transformations of the Eu-
clidean space through which the body moves. The theory needs to be invariant under such
transformations, and hence under transformations of the form

X(X, t) -+ Q(t)(x(X, t) - o) + y(t) (2.20)

with Q(t) a rotation (proper-orthogonal tensor), y(t) a point at each t, and o a fixed origin.
Then, under a change in observer, the deformation gradient transforms according to

F - QF. (2.21)

Thus, F -+ QF + QF, and by (2.1)3,

L -QLQ + QQ-. (2.22)

Hence,
D -+ QDQT, W -+ QWQ' + QQ. (2.23)

Moreover, Fe(a)FP(a) - QFe(a)F( a), and therefore, since observers view only the de-
formed configuration,

Fe (a) -+ QFe (a), F (a) are invariant, (2.24)

3This assumption is based solely on pragmatic grounds: when discussing finite deformations a theory
without plastic spin is far simpler than with plastic spin. However, in the context of the single micro-
mechanism decomposition F = FeFP, see Boyce et al. (1989) and Gurtin and Anand (2005) for a detailed
discussion concerning irrotationality of plastic flow for isotropic materials.



and, by (2.8),
Le ( ) QLe (a)QT+ QQ7, (2.25)

and
LP ,D (a), and WP (a) are invariant. (2.26)

Further, by (2.10),

Fe (a) = Re (a)Ue (a - QFe (a) = QRe (a)Ue (a),

Fe (a) = Ve (a)Re (a) -QFe (a) - QVe (a)QT Re (a),

and it can be concluded from the uniqueness of the polar decomposition that

Re (a) - QRe (a)., Ve (c) - QVe (a)QT, Ue(a) are invariant. (2.27)

Hence, from (2.12), Be(o) and Ce(') transform as

Be (a) -+ QBe(a)QT, and Ce(') are invariant. (2.28)

2.4 Development of the theory based on the principle
of virtual power

Following the pioneering approach of Gurtin (2002), and previous work on modeling poly-
meric materials (Anand and Gurtin, 2003a; Anand and Ames, 2006), the theory is developed
based on the principle of virtual power.

Denote by P an arbitrary part of the reference body B with nR the outward unit normal
on the boundary OP of P. The power expended on P by material or bodies exterior to P
results from a macroscopic surface traction s(nR), measured per unit area in the reference
body, and a macroscopic body force bR, measured per unit volume in the reference body,
each of whose working accompanies the macroscopic motion of the body. The body force bR
is assumed to include inertial forces; that is, granted that the underlying frame is inertial,

bR bOR - PR, (2.29)

with bOR the noninertial body force, and pR > 0 the mass density in the reference body. We
therefore write the external power as

Wext (P) J s(nR> dAR + j bR - idVRI (2-30)

with s(nR) (for each unit vector nR) and bR defined over the body for all time.
We assume that power is expended internally by elastic stresses T'(') power-conjugate

to Fe(a), plastic stresses TP(a) power-conjugate to DP(a), and we write the internal power



(2.31)
M

Win (P) = j Y Te (a-) -e ( + TP (a): DP (a)) dV.
a=1

Here Te(a) and TP (a) are defined over the body for all time.

symmetric deviatoric, since DP() are symmetric deviatoric.
We assume that TP (0) are

2.4.1 Principle of virtual power

Assume that, at some arbitrarily chosen but fixed time, the fields x, Fe (O) (and hence F
and FP (a)) are known, and consider the fields j, N ("), and DP (a) as virtual velocities to

be specified independently in a manner consistent with (2.19); that is, denoting the virtual

fields by , , Fe(), and bP(a) to differentiate them from fields associated with the actual

evolution of the body. We require that

(vj)F-1 = Ne(a)Fe (a)-1 + Fe(a)bP(a)Fe(a)~ 1 for each a .

More specifically, we define a generalized virtual velocity to be a list

S= (,Ne(a), P(a))

consistent with (2.32). We write

Wet (P, V) =

Win (P, V) -

s(n) - i dAa +
J DP

b, -:' dVR,

(Te (a) .e(a) + TP (ca) : bP(a))
apX=1I

respectively, for the external and internal expenditures of virtual power, the principle of
virtual power consists of two basic requirements:

(i) (Power Balance) Given any part P,

for all generalized virtual velocities V. (2.34)

(ii) (Frame-Indifference) Given any part P and any generalized virtual velocity ,V,

Vin1t(P, V) is invariant under all changes in frame.

(2.32)

dV&~
(2.33)

W/ext (P,7 V) = Wint (P, V)

(2.35)



Consequences of frame-indifference

It is required that the internal power be invariant under a change in frame. Thus, consider
the internal power /Vint(P) under an arbitrary change in frame, and we require that

Wi*nt (P, V*) =Wi n (P, V) (2.36)

where V* is the generalized virtual velocity in the new frame. In the new frame the stresses

Te(a), and TP(() transform to Te(a)*, and TP()*, while Vj and N'e(') transform according

(V)* - QV ± QVx, (Ne("))* =Qge(a) + QFe (a)

and by(a) are invariant. Therefore, under a change in frame Wint(P, V) transforms to

Te (a)*
(Qe(") + QFe (a))

+ TP (a)*: bP(a)} dR,

{ Te (a)*: (Fe(a) + Q T QFe (a)) + TP(a)*: hPC" dVa .

Then (2.36) implies that

jz { QTTe(a)*. (Pe(a) + QTQFe (a)) + TP(a)*: 6P(a) } dVR

es (e) .ge(a) + TP(a) .h(a))dVR, (2.37)

and since the part P is arbitrary,

QTTCe (a)*: (Fe(a) + QTQFe (a)) + TP (a)*: b)P(a) = Te (a) . e(a) + TP(a) .5P(a), (2.38)

for each a. The change in frame is arbitrary; if we choose it such that Q is an arbitrary
time-independent rotation, so that Q = 0, we find that

(QT Te (a)* -- e (a)). ge(a) + (TP (a)* - TP (a)). bP(a) - 0.

Since this must hold for all Fe(a), and bP(a) we find that the stresses Te (a) transform ac-
cording to

while TP (a) are invariant

Te (a)* = QTe (a)

TP(a)* = TP(a).

(2.39)

(2.40)

Wi*nt (P, V*) =

jP E* M0=1



Next, if we assume that Q = 1 at the time in question, so that Q is an arbitrary skew tensor,
using (2.39) and (2.40), we find that

TC(")Fe(O)T: Q 0., (2.41)

or that the tensors Te (a)Fe (c) are symmetric,

Te (a)Fe (a)- Fe(a)T()T. (2.42)

Macroscopic force balance

In applying the virtual balance (2.34) we are at liberty to chose any V consistent with the
constraint (2.32). First consider a generalized virtual velocity which is strictly elastic in the
sense that

fh(a) 0, so that by (2.32) Fe(Q) - (Vk)FP(a)-. (2.43)

For this choice of V, (2.34) yields

Ms(nR{) -.kdAR +jbR -idVR J ( T'(QFP (4)T) :Vid ~ =jTR : VdVR,
BP P Pa=1

where we have written
M

TR Te (a)FP (a)T (2.44)
a=1

and note that on account of (2.42),

TRF' = FT-. (2.45)

Then, using the divergence theorem,

f(s(nR) - TRnR). X dAR + (Div TR+ bR) XdR 0-
P JP

Since this relation must hold for all P and all X, standard variational arguments yield the
traction condition

s(nR RR (2.46)

and the local force balance
Div TR + bR 0 (2.47)

Recall that it was assumed that bR, includes inertial body forces. Thus, recalling (2.29), the
local force balance (2.47) becomes

Div TR + boR pR , (2.48)



with bo,, the noninertial body force. Therefore, the stress T, plays the role of the macroscopic
Piola stress, and (2.48) and (2.45) represent the classical macroscopic force and moment
balances in the reference body.

Further, as is standard, the Piola stress is related to the symmetric Cauchy stress T in
the deformed body by

TR = JTF-T . (2.49)

thus
T = J- TFT . (2.50)

Then, using Fe(")T - FP( )TFT in (2.44) yields that the Cauchy stress admits the additive
decomposition

M

T - T(a), (2.51)

where each contribution
T(a) = -1Te(a)F-(a)T, (2.52)

to the total stress T on account of (2.42) is symmetric.

Microscopic force balances

Next, we choose a generalized virtual velocity field V for which

S-0, so that by (2.32) F-C) FeC"()bP(a). (2.53)

Then, the external power vanishes identically, so that, by (2.34), the internal power must
also vanish, and satisfy

M

Wint (P, V) =j (TP(a) - Fe (a)' (a)) bP(a) dVR 0.
0=1

Since this must be satisfied for all P and all deviatoric tensors TP(a), a standard argument
yields the microforce balance

M ) = TP(a), (2.54)

where
Me() f Fe (a)TTe(a) (2.55)

defines a Mandel stress for each a. The microscopic force balances (2.54) characterize the
interaction between internal forces associated with the elastic and plastic response of the
material for each micromechanism a.



2.5 Balance of energy.
sipation inequality

Let

d 9 > 0 denote the absolute temperature,

Entropy imbalance. Local dis-

e ER and 17R represent the internal eneryy and entropy densities, measured per unit volume
in the reference body,

" qR denote the heat flux, measured per unit area in the reference body, and

* qR denote the scalar heat supply, measured per unit volume in the reference body.

Then, balance of energy is the requirement that

I ER dVR -
JP

qRj -nRdAa{ + qR dVR+ Wext (P),

while the second law takes the form of an entropy imbalance

qRIIR dAR +R dR.

Thus, since W/et(P) = Vint(P) and since P is arbitrary, we may use (2.31)
forms of (2.56) and (2.57):

M

R= -DivqR + qR + E Te(k): Ne (a)

a-
1 1 q

R R -- Divq R 9- 9

(2.57)

to obtain local

Al

+ E TP(): DP(a}),
a=1 (2.58)

Let
R R R (2.59)

denote the specific (Helmholtz) free energy. Then (2.58) yields the local dissipation inequality

2//YR R R e (a): Pe (a) p (a) : DP (a) < 0.
a=1 a=1

(2.60)

Note that from (2.52),
Te (a) = JTce)Fe (a)-T (2.61)

and each Te (') represents a non-symmetric first Piola stress with respect to its local structural

space.

1 iR dVR

(2.56)



Let
S'(-) = Fe(O )Tc(a) = JFe(a) 1 T(a)Fe(a)-?, (2.62)

represent a second Piola stress with respect to the a-th structural space; these stress measures
are symmetric since T(a) are symmetric. The Mandel stresses defined in (2.55) are then
related to Sc(a) by

Me (a) - C ()Se (a). (2.63)

Next differentiating (2.12)1 results in the following expression for the rate of change of
Ce (a)

e (a) = Fe (a)TF N (a) + #e(IT Fe(, (2.64)

hence since S' (') are symmetric

( a) = 2S F F( - 2(F"(a)S" (a)) , (2.65)

or using (2.62), we obtain
__1

Te (a): Ne(a) Se (a): e (a). (2.66)
2

Then from (2.31) and (2.66), we note that the internal power per unit reference volume is

-Se (a) :e (a) + TP () : DP (a). (2.67)
2

Thus the energy balance (2.58)1 becomes

R -Divq, qR R I Se (a): & (a) + p (a : DP (a), (2.68)
a=1 a=1

while the free-energy imbalance (2.60) becomes

R + R -R - Se (a): & (a) TP (a): DP (a) < 0. (2.69)

a=1l a=1

Finally, we note that sR 17R, and - are invariant under a change in frame since they
are scalar fields, and on account of the transformation rules discussed in Section 2.3, the
transformation rules (2.39), (2.40), and the definitions (2.55) and (2.62), the fields

BP(a), CC(a), DP(a), ge(a), Me(a), Tp(a) (2.70)

are also invariant, as are the fields,
qR, V (2.71)

since they are referential vector fields.



2.6 Constitutive theory

To account for the major strain-hardening characteristics of materials observed during plastic

deformation, we introduce internal state variables which represent important aspects of

the microstructural resistance to plastic flow. Specifically we introduce

e A list of m scalar internal state-variables

(a) - ()(e

for each a. Since (") are scalar fields they are invariant under a change in frame.

" A list of symmetric and unimodular tensor fields

A (a) (X, t), A~Cf) = Ac"),. det A(") = 1.

Each such tensor field represents a dimensionless squared stretch-like quantity, which as

a linear transformation, maps vectors in the intermediate space for each a, into vectors

in the same space. Thus, A(c) is a structural tensor field4 , and therefore invariant under

a change in frame.

Guided by the dissipation inequality (2.69), and previous work by Anand and Gurtin

(2003a) and Anand and Ames (2006), we assume the following special set of constitutive

equations:

M

a=1aM

7/7(a) Ce (a), (a))

a=1

Se (a) - Se(a (Ce(a) ().
> (2.72)

TP (") = I'P(a) (DP ("), A(a)),

,(") =h~c "(DP "a), A((-")); -Rc A(,
dynamic evolution static recovery

A(a) - DP(a)A(a) + A(a)DP(a) - G(a)(AC"))d - Gc (A()),

dynamic evolution static recovery

where A(a) denotes the list

A(a) = (Ce (a), BP (a), A(a), g(a), d), (2.73)

4That is, a tensor defined in the intermediate structural space for each a.



and
d ef (2.74)

denotes a scalar flow rate for each a. To the constitutive equations (2.72), we append a
simple Fourier's relation for the heat flux,

qR K(,d) Vd , (2.75)

where K is a positive definite thermal conductivity tensor. Note that on account of the
transformation rules listed in Section 2.3, along with the paragraph containing (2.70) and
(2.71), and since ((, A()) are also invariant, the constitutive equations (2.72) and (2.75)
are frame-indifferent.

In the evolution equation (2.140) for the internal variables ( and A((", the terms
R (A()) and G(2 ti (AC')) represent static recovery (or time recovery, or thermal recovery),
since they do not depend on DP(00. Also, in (2.140)2, the term G(M)(A(C)) vP(a) represents
a dynamic recovery term. If both the dynamic and static recovery terms were to vanish,
then we may associate each Aa with the corresponding left Cauchy-Green tensor BP(") -

FP (a)FP()T, since then, for a constitutive theory with WP() 0,

EP -= DP BP( + BP (DP(. (2.76)

In the theory considered here, as in the classical small deformation theory of metal plasticity
with non-linear kinematic-hardening (e.g., Chaboche, 2008), we allow for recovery, that is we
allow for G() W(A')) vP(a) / 0 as well as G tic(A ) 0, and thus, in general, the internal
variables A(() are not the same as BP(a).

2.6.1 Thermodynamic restrictions

Since

O~a (Ce (a), A(a),:Cek + :u) :A() +,
' Ce (a)' +A +

and, using (2.72)6,

A() - : DP(A (a) + A(a)DP) - - Gstat (2.77)

= 2 " A ) :DP(a - 0," GC" ) d? - " G(a)
\ BAx \OA() / OA(-) static,



the free-energy imbalance (2.69) requires that the constitutive equations (2.72) and (2.75)
satisfy

F - d(a)(Ce A ( a) I d)j 8 s(a)(Ce (a). A(1), g) _ 0 ' ' : Ce ()
2 ' BCe (a)

a=1

( A a*)(Ce(a) (a) d)- gi)(Ce("), A C"), d) + R

a1.

+ T(a)(DP (a), A(a)) - (2 A(a) A()) :DP (a)

Bva) (C e (0, A-)g)(a) (C e (a) A a) )

+ V AA : GC(a)(A (a ) dP (a) + 0 BA IV' : G c(a C)

a=1 a=1

1
+ - V9 - K(d)V > 0, (2.78)

and hold for all arguments in the domains of the constitutive functions, and in all motions of
the body. Thus, sufficient conditions that the constitutive equations satisfy the free-energy
imbalance are

(i) the free enerqy determines the stress and the entropy via the stress relations and
entropy relations:

Oga(Ce(a). A"). 19)Se (a)(Ce (a), A(a), ) 2 OCR ,A(2i)
'Ce (a)

a -C(a ) Aa)g(Ce (a),A ), ) V- R (Ce (a), . (2.80)

(ii) the plastic distortion-rates DP (a) and the temperature gradient VO satisfy the reduced
dissipation inequality

TP(a)(DP (a), A(a)) - (2 0 A(Ce A(a), d) A(') : DP (a)

B(a) (Ce (ft). A(1). V) M B (a) (Ce (ce) ,A("e),d)
+ ZA( ) ' :G(a)(A(a))) dP(a) + (a)± (A (a)(AACo))

1
+ - V) - K(0)V9 > 0. (2.81)

We assume henceforth that (2.79) and (2.80) hold in all motions of the body, and that the
material is strictly dissipative in the sense that it satisfies



(i) the mechanical dissipation inequality

Y( (a)(Ce (O) A(a) .)YP (a) (DP (a), A(a)): DP (a) + OA' ' :,G(a) (A (a))) dP (a) > 0 (2.82)

whenever DP(c) / 0 for each a, where we have introduced symmetric deviatoric flow
stresses YP(c) defined by

-2 (a)(Ce (a) A(a) d)- 2 '0-1'11
OA(a)

(2.83)

(ii) the static recovery dissipation inequality

Z 0 (a)(C () A (a) V)
EBA(a) ':

(2.84)G tic(A"))> 0,

as long as G(atic(A a) ;

(ii) and that the material seriately satisfies the heat conduction inequality

1
7V -KQO)Vt9> 0 whenever Vo #0. (2.85)

The last inequality implies that the thermal conductivity tensor is positive definite.

From (2.82) we note that the stresses TP(a), which are conjugate to DP(a), may be split
into a dissipative part and an energetic part as follows:

T (o) - P(a) (DP (a) A(a)) - YP (a)(DP (-), A(a)) + 2 ' ' A(a)
OA(a) )0

dissipative ''
energetic

Further consequences of thermodynamics

In view of (2.72), (2.79) and (2.80), we have the first Gibbs relation,

L'1R = 2 S(a) Ce (a) - ?7R'O
a=1

: G(a)(A(a)))

+ 2
O A(a) A(a)

dP(a) - Z: G atic,

a=1a=1

(2.86)

(2.87)

YI) (a) (DP (c'), A ,") d -Pfa) (DP (a), A(a))



which, with (2.59), yields the second Gibbs relation.

OnR + 2
a=1

a=i

Se(a): Ce (a) +

OA(a:

2E
a=1

(a
(OA(a)

(2.88)Gstatic,

where gR is the internal energy density per unit reference volume.

Using the second Gibbs relation, the balance of energy (2.68) may be written as an
entropy balance

M

?wl. -Div qRp R

a=1

(YP (a): DP (a)) + a=Z O(a)a : G(a) (A=))) dP (a)+

Granted the thermodynamically restricted constitutive relations (2.79) and (2.80), this
entropy relation is equivalent to balance of energy.

Next, the internal energy density for each a is given by

")(Ce (0), A(a), i() o ,(a)(Ce (a), A(a), V) + o n(a)(Ce(a), A(a), V), (2.90)

so that the total internal energy is

(2.91)
a=1

Then, the specific heat is defined by

M
def

a=1

(2.92)
(a) e (a) (a)

Hence, from (2.90)

def
c =

O- D(a)

and use of (2.80) gives

def 2

a=1

G(a)
static

(2.89)

(2.93)

(2.94)

GC")(A C"))) d;P(a)

+ 1 (a + 0 a ,0



Next, from (2.80),

7 j Oj2a(a) e

86 1 L9Ce(a) ~

I 82&A(a) 021()
- A(a) -0

8id BA(o) oW2 ' (2.95)
0=1 a=1

Then, using (2.94) and (2.95) in (2.89) gives the following partial differential equation for
the temperature

cO = -Divq + qR +

+ :
1=1

SyP(a)

Ga) + t)

a=1

DP("t)) + : ___

82O(a)

O BA(a)

N!

+,
a=1

2.6.2 Isotropy

The following definitions help to make precise our notion of an isotropic material:

(i) Orth+ = the group of all rotations (the proper orthogonal group);

(ii) the symmetry group g, is the group of all rotations of the reference configuration that
leaves the response of the material unaltered;

(iii) the symmetry group g,") at each time t, is the group of all rotations of the intermediate
structural space for each a, that leaves the response of the material unaltered.

We now discuss the manner in which the basic fields transform under such transforma-
tions, granted the physically natural requirement of invariance of the internal power (2.31),
or equivalently, the requirement that

and TP (a): DP (a) be invariant.

Isotropy of the reference space

Fix attention on a given micromechanism a, and let Q be a time-independent rotation of the
reference configuration. Then F -+ FQ, and hence

and F'(") are invariant, (2.98)

so that, by (2.8) and (2.12), DP(') and & (a) are invariant. We may therefore use (2.97) to
conclude that Se(a) and TP(a) are invariant. Also, by (2.12) and (2.13)

are invariant.

2 (a)

0 ace (a) :

O (a) (2.96)

Se(a):a&(a) (2.97)

FP(C") -+ FP(a-)Q

Cc"(a), and (2.99)



Further, since the tensor A(') maps vectors in the intermediate space into vectors in the
same space, A(') is invariant, and since () are scalars, they too are invariant.

Turning our attention next to the constitutive equation (2.75) for the heat flux, a standard
result from the theory of finite thermoelasticity is that under a symmetry transformation Q
for the reference configuration, the temperature gradient Vi9 and the heat flux q, transform
as

Vt9 -> Q V't, q- QqR.

Hence, from (2.75) the thermal conductivity tensor must obey

K(79) = QT K (z9)Q (2.100)

for all rotations Q E 9R.
We refer to the material as initially isotropic if

9R = Orth+, (2.101)

so that the response of the material is invariant under arbitrary rotations of the reference
space for each a at each time t.

Isotropy of the intermediate structural space

Next, fix attention on a given micromechanism a, and let Q, a time-independent rotation of
the corresponding intermediate space, be a symmetry transformation. Then F is unaltered
by such a rotation, and hence

F*(a) -+ Fe (a)Q and FP ( QT FP (a), (2.102)

and also

BP Ca) - Q. BP (a)Q, Ce(a) -+ QrCe(O)Q, a ) QT de (a)Q, DP(a) , QT DP (a)Q

(2.103)
Further, since the tensor A(a) maps vectors in the intermediate space into vectors in the
same space, we assume that A(a) transforms as

A(a) , Q. A(a)g

and hence
, Q: AWQ)

Then (2.103) and (2.97) yield the transformation laws

Se(a) -+ QTSe(a)Q, T() ___ QT TP Ca)Q. (2.104)



Thus, with reference to the constitutive equations (2.72) we conclude that

?I()(Ca(), ACa), )) = jIf)(QT Cc (a)Q, QTAC")Q P),

9(4)(Cc("), A (a), ) = ()(Ce(a)Q, Q, 0),

QT se (a)(Ce(a ) )Q =e (a)(QT Ce (a)Q QTA(OQ 0),

QT TP(')(DP(a), A"))Q =- P (a)(QDP(a)Q, QT A(a)Q,),

h() (DP (a), A ()) - h() (Q DP ()Q, QTA(a)Q), (2.105)

R "(A(c)) - A)(TAC)Q),

QT GC")(AC"))Q =G(a) (QT A((')Q),

QT Gdat.c(A(('))Q =G i(Qa AC)Qstati stti(Q=A(a)Q)

with
QTA(c)Q = (QCe(")Q QTBP()QQT A(,)Q, (Q),'0), (2.106)

must hold for all rotations Q in the symmetry group !9") at each time t.
We refer to the material as continually isotropic (and to the reference configuration and

intermediate spaces as undistorted) if

g!") = Orth+, (2.107)

so that the response of the material is invariant under arbitrary rotations of the reference
and intermediate space for each a at each time t.5 Henceforth

9 we restrict attention to rraterials that are isotropic, initially, and continually.

In this case,

the response functions -(C), (a), 5e("), TP(0), h "), R "), G(a), and G ti must each
be isotropic,

and that the thermal conductivity has the representation

K(d) = K()1, with K(0) > 0, (2.108)

a scalar thermal conductivity.

'For polymer glasses this notion attempts to characterize situations in which the material has a completely
disordered molecular structure.



2.6.3 Separability hypothesis for the free energy

We assume that the free energy has the separable form

M M

eR Z e(a) (Ce (at),) + L"7 v(a) (A (c),,d) (2.109)
a=1 a=1

with e(0 ) an elastic energy, and ff a defect energy associated with plastic flow, for each
a.

Consequences of isotropy of the elastic energy

Since ge(a)(Ce(a), ') is an isotropic function of Ce(, it has the representation

e (a)(Ce (a), d) = e()(Ice, ) (2.110)

where
ce 1) (Ce (Ce)), 1 2 (CC(a)), 13 (Ce (a)))

is the list of principal invariants of Ce (a). Thus, from (2.79)

Se (a) =2 "e( (2.111)
ace (a)'

and we note that Se (a) are isotropic functions of Ce (a). Then since (cf. (2.63))

Me (a) = Ce (a)Se (a)

and Se (a) are isotropic, we find that S () and C' (') commute,

Ce (a)ge (a) - ge (a)Ce (a), (2.112)

and hence that

* the Mandel stress Me (a) for each a is symmetric.

Consequences of isotropy of the defect energy

Let
'Ay'' - (i (A(a)), 12 (A(a)), 13 (A(a)), i)

denote the list of principal invariants of A(a), then the defect free energy has a representation

V7 p~a - ' <(a)(ITA(-), 79), 213(2.113)



and this yields that

(2.114)

are symmetric tensors.

2.7 Flow rule

Recall from (2.86) that the constitutive equation for TP (a) is

TP(") = ''(a)(DP (0), A(a)) - YP (")(DP ("), A(I))

dissipative

We denote the energetic part of TP (a) by

+ 2 ( P(a) AC") )

energetic

(2.115)

(2.116)back V 2 A K
and call them back-stresses, and denote effective Mandel stresses by

Me (a) def Me (a) - Mda.eff -back~ (2.117)

Then, upon using the constitutive relation (2.115) and the microforce balance (2.54), together
with the symmetry of the Mandel stresses, a central result of the theory are the flow rules

(2.118)

We now make two major assumptions concerning the plastic flow of isotropic materials:

(i) Let

(2.119)cdf DP (a)
NI - d (a)

denote the direction of plastic flow for each a whenever DP () / 0. Then the mechan-
ical dissipation inequality may be written as

LYP (a)(dP(a),
N A (a), A (a)): NP(a) + ( A :G(a)(A(a)) dP (c) > 0

(2.120)
when DP() f 0. Guided by (2.120), we assume henceforth that the dissipative flow
stresses YP (.) are parallel and point in the same direction as the NP (a), so that 6

YP (a)(dP(a), NP (a), A (a)) = Y (a)(d-(a), NP (a), A (a))NP (a)

6This assumption leads to the classical notion of maximal dissipation.

(2.121)

A (a) A"1 9A(a)
OA(*)

(Me "c))o = YP (a) (DP (a), A C")).



where
Y(a)(dP(a), NP (a), A(a)) YP () (dP ("), NP ("), A) NP(a) (2.122)

represents a scalar flow strength of the material for each a.

(ii) We also assume that the scalar flow strength Y(C') (dP (), NP (a), A(a)) and the function

h (dP (a), NP(a), A(A)) characterizing the evolution of the scalar internal variables (")
are independent of the flow directions NP(a) so that,

Y(a) (dP (a), A(a)), h(a)(dP(a), A(a)). (2.123)

Thus using (2.123) and (2.121), the flow rules reduce to

(Me ) (a) (dP (a), A (a))NP (a) (2.124)

which immediately gives

NP(a) - (Me ")), (2.125)
(M a))o

and
(M a)) 0  Y(a) (dp(a) A(a)). (2.126)

When M'("), and A(') are known (2.126) serve as implicit equations for the scalar flow
rates dP((). Finally, using (2.121), (2.123)1, and (2.126), the mechanical dissipation inequality
(2.120) reduces to

(M )0 + : (Gaa(A a)) dP(a) > 0 when dp(") # 0, (2.127)

for each a.

2.8 Summary of the constitutive theory for isotropic
materials

Although no real material is composed of springs and dashpots, as a visual aid, Fig. 2-1
shows a schematic "spring-dashpot" -representation of the generalized micromechanism based
model. The underlying constitutive equations relate the following basic fields:

x = x(X, t), motion;

F = VX, J = det F > 0. deformation gradient;

F=Fe(a)FP(), a= 1, ... M elastic-plastic decomposition of F;

Fe (a) Je (a) = det Fe (a) = J > 0, elastic distortions;



PF (" 1)

A(,")

F, T

Figure 2-1: A schematic "spring-dashpot"-representation of the general multi-mechanism based
theory (generalization of the Zener model).

FP (a), JP (a) = det FP (a) 1,

Fe (a) = Re (a) Ue (a),
Ce (a) - Fe (O)T Fe (a)

BP (a) = FP (a)FP ()T,

T - T(a), TC) T(a)T

TR = JTF-,

IVR I

) > 0.

Vt9,

qR,

qR,

inelastic distortions;

polar decomposition of Fe (a);

elastic right Cauchy-Green tensors;

plastic left Cauchy-Green tensors

Cauchy stress;

Piola stress;

free energy density per unit reference volume;

entropy density per unit reference volume:

absolute temperature;

referential temperature gradient;

referential heat flux vector;

scalar heat supply.

2.8.1 Constitutive equations

1. Free energy:

We assume that the free energy has the separable form

M M

Re (a) (ICe ( ) -A

a=1 a=1

(2.128)

Fe(l)

FPO) (1)



with e(") an elastic energy, and ifP() a defect energy associated with plastic flow, for

each a. Also, Icc->and IA(c represent lists of the principal invariants of C'(') and

A(a), respectively.

2. Cauchy stress:

The Cauchy stress in the deformed body is the sum of the contributions from each
micromechanism,

M

T = T (2.129)

with
T(a) ci J 1 (Fe()Se (a)FC( T(a) -T Tc"T, (2.130)

where

S(a) = 2 a GT( (1 ce (a9). (2.131)
aCe (a)

is a symmetric second Piola stress defined with respect to the local intermediate struc-

tural space for each a.

3. Driving stresses for plastic flow:

With
Me(a) - C"(a)Se(a) (2.132)

denoting the symmetric Mandel stress,

M (a) ( i (a)(IA( ,) )3
back - 2 y A() A(a )) (2.133)

a symmetric deviatoric back stress, and

Me (a) d Me (a) - M(a) (2.134)
eff -back'

an effective Mandel stress, the driving stress for plastic flow for each a is taken as

(M a))_ = M "(a) - M ak, (2.135)

which is symmetric and deviatoric.

4. Flow rules:

The evolution equation for each FP (C), with WP'(a) - 0,7 is

-P (a) = DP (a) FP (a), (2.136)

'For a detailed discussion and justification of the WP = 0 assumption in a single micro-mechanism
isotropic theory see Gurtin and Anand (2005); we adopt it here as well.



with the plastic stretching given by

DP (a) - d' (a) NP ( ) (Me ()
NP (a) = f )0'",

|(Meef"C))o|

(2.137)

(2.138)
where, with

A(a) = (C(a), BP (a), A a), ("), 1),

denoting a list of constitutive variables, the scalar flow rates dP(') are obtained by
solving the scalar strength relations

(Me")) = Y(a)(A (a), dP (a)) (2.139)

for given M a) and A("), with the strength function Y(a) (A(a), I (")) is an isotropic
function of its arguments.

5. Evolution equations for internal variables:

The internal variables (") and A(') are presumed to evolve according to the
equations

dynamic evolution

differential

static recovery

(2.140)
A(a) - DP(a)A(a) + A(a)DP(a) - G(")(A(a)) 1P(a)

dynamic evolution

- Gsttic(A(a)),
static recovery

with the functions h "), Ra). G(O), and G(ac isotropic functions of their arguments.

The evolution equations for F ) ((), (a) and A(O) need to be accompanied by initial
conditions. Typical initial conditions presume that the body is initially (at time t = 0,
say) in a virgin state in the sense that

F(X, 0) - FP (a)(X, 0) = A(a)(X, 0) - 1,

so that by F = Fe (a)FP(a) we also have Fe (a)(X,0) 1.

6. Entropy relation. Fourier's Law:

Finally, we have the entropy relation

M

IR = E r, (a)

a=1

- e (a) (GCe (ce), 19 )

- 897
a D p (a)(A(),

+80 ) 9
Old -

"(X, 0) - .(a") (= constant), (2.141)

(2.142)

'()-hce "(A (a) , DP (a)) _ g )(A(()),



together with Fourier's law
qR, = -K VO, (2.143)

with <(d) > 0 the thermal conductivity.

2.8.2 Partial differential equations for the deformation and tem-
perature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR + boR pR-, (2.144)

where boR is the non-inertial body force per unit volume of the reference body, pR > 0 is the

mass density, and
(2.145)TR =JTF-:

is the standard first Piola stress, with T given by (2.129) through (2.131).
The specific heat in the theory is given by

def M 2 ( C(
c= - o 90)

M 0 _ (a) d~ )
/D09 2  I

a=1

and balance of energy gives the following partial differential equation for the temperature

cm = -DivqR + qR -
a=1

+ -)A(a)

a=1

Al &2LeaM

+ 9 : 9&Ce(a) + F89E 0) Ce (") *
a=1

802A(a)'

"thermoelastic" coupling terms

with qR given by (5.59).s

8 Classically, only the term V :'(") a e 'e (a) in (2.147) is called the "thermoelastic coupling"' term.

Here, for lack of better terminology, we use this terminology to also include the term A E 2 ; : A(a)

(2.146)

G (a)static

(aX=1

(2.147)

:

0

+ / : G (a) dP (a)
OA(a)





Chapter 3

A constitutive theory for amorphous
polymers below their glass transition

temperature

3.1 Introduction

Over the past twenty-five years considerable effort has been devoted to develop constitutive
models to represent the large deformation elastic-viscoplastic behavior of glassy amorphous
polymers (e.g.. Parks et al., 1985; Boyce et al., 1988; Govaert et al., 2000; Anand and Gurtin,
2003a; Anand and Ames, 2006). Although differing in detail, these models combine three-
dimensional representations of linear elasticity, of non-Newtonian viscoplastic flow arising
from the motion of polymer segnents, and of stiffening arising due to the alignment and
locking of the long-chain polymer molecules at large strains, in a manner similar to that
which was originally proposed in a one-dimensional setting by Haward and Thackray (1968).
These models have been primarily used to describe the isothermal deformation of polymeric
components below their glass transition temperatures. However, thermo-mechanical coupling
effects have also been studied; for example, Arruda et al. (1995) and Ames (2007) have
studied the effects of adiabatic heating under nominally homogeneous deformations, while
Van der Giessen and co-workers (e.g., Basu and Van der Giessen, 2002; Estevez et al., 2005;
Estevez and Basu, 2008) have studied the effects of adiabatic heating in the context of effects
of temperature changes on the fracture response at cracks and notches under high-rate mode-I
loading.

It is the purpose of this chapter to specialize the general thermo-mechanically coupled
theory presented in Chapter 2 to model the strain-rate and temperature dependent large
deformation mechanical response of amorphous polymers below their glass transition tem-

perature. The plan of this chapter is as follows. In @3.2 we describe experiments on cyclo-



olefin amorphous polymer Zeonex-690R' in a temperature range spanning room temperature
to slightly below its glass transition temperature, in a strain rate range of 3 x 10-1 s-1 to
3 x 10-1 s-1, and compressive true strains exceeding 130%. In §3.3 we present our specialized
constitutive theory to capture the salient features of the experimentally-measured miechan-
ical response of Zeonex-690R, PC and PMMA. The compression experiments on PC were
conducted by our colleague Shawni A. Chester and the experimental data for PMMA was
obtained from Ames (2007). In Appendix A, we describe in reasonable detail our proce-
dure to calibrate the material parameters/functions appearing in our constitutive theory.
The quality of the fit of the specialized model to the experimentally-measured stress-strain
curves for Zeonex-690R, PC and PMMA is discussed in §3.5. For the three amorphous poly-
mers, the specialized constitutive model presented in this chapter is shown to perform well in
reproducing the following major intrinsic features of the macroscopic stress-strain response
of these materials: (a) the strain rate and temperature dependent yield strength (b) the
transient yield-peak and strain-softening which occurs due to deformation-induced disorder-
ing; (c) the subsequent rapid strain-hardening due to alignment of the polymer chains at
large strains; (d) the unloading response at large strains; and (e) the temperature rise due to
plastic-dissipation and the limited time for heat-conduction for the compression experiments
performed at strain rates | 0.01 s- 1 .

We have implemented our thermo-mechanically-coupled constitutive model by writing
a user material subroutine for the finite element program ABAQUS/Explicit (2009). In
§3.6, we present results of a suite of experiments that we have conducted in collaboration
with Shawn A. Chester to validate the predictive capabilities of our constitutive theory and
its numerical implementation. We have performed the following validation experiments:
(i) isothermal fixed-end large-strain reversed-torsion tests on PC; (ii) macroscale isother-
mual plane-strain cold- and hot-forming operations oil PC; (iii) inacroscale isothermal, axi-
symmetric hot-forming operations on Zeonex; (iv) microscale hot-embossing of Zeonex-690R;
and (v) high-speed normal-impact of a circular plate of PC with a spherical-tipped cylindri-
cal projectile. By comparing the results from this suite of validation experiments of some key
macroscopic features, such as the experimentally measured deformed shapes and the load-
displacement curves, against corresponding results from numerical simulations, we show that
our theory is capable of reasonably accurately reproducing the experimental results obtained
in the validation experiments.

3.2 Simple compression experiments on Zeonex-690R

Relative to conventional amorphous polymers such as PC and PMMA, Zeonex-690R, a cyclo-
olefin polymer is biocompatible, has lower moisture uptake, has better light transmittance
characteristics, and it is also chemical resistant to a wide variety of solvents. These character-
istics make Zeonex-690R an attractive material for several applications such as microfluidic
devices and therefore a focus of our study. To the best of our knowledge, comprehensive

'From Zeon Chemicals.
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stress-strain data for Zeonex-690R does not exist in the current literature. Therefore, we have
conducted simple compression experiments on Zeonex-690R: (i) to large strains exceeding
130%, including loading and unloading; (ii) at a variety of strain rates in the range 3 x 104

to 3 x 10- s-1, achievable in modern servo-hydraulic testing machines; and (iii) in a temper-
ature range from room temperature to 130 C. The nominal glass transition temperatures of
Zeonex-690R, is 135 C.

Cylindrical compression test specimens were 10.2 mm diameter and 10.2 mm tall, and
were annealed before and after machining to final shape by heating in a furnace at a tem-
perature about 10 C above the glass transition temperature, and holding at that temper-
ature for two hours, before quenching the specimens in ice-water. The experiments were
conducted using a servo-hydraulic Instron testing machine, fitted with a high-temperature
furnace. Amorphous polymers are poor thermal conductors; accordingly, in order to heat
the compression specimens uniformly, we also used heated steel compression platens in ad-
dition to the furnace. The platens were heated with cartridge heaters, and thermocouples
inserted into each platen were used to control the temperature. The top compression platen
also had an integrated spherical seat to help minimize any effects of misalignment during
compression testing. To reduce friction at the platen/specimen interface, the platens were
polished, and thin Teflon (PTFE) films were used as lubricating layers between the speci-
men and the platens.2 Before a given experiment, each specimen was allowed to anneal at
the testing temperature for one hour prior to testing. The compression tests were carried
out at constant true strain-rates to compressive true strains exceeding ; 130%; all strain
measurements were made using an extensometer.

Fig. 3-1 shows true stress-strain curves 3 for Zeonex-690R at strain-rates of 3 x 10-4.

3 x 10-3 3 x 10-2 and 3 x 10-3 s- 1 at temperatures ranging from 25 C through 130 C.
Fig. 3-2 shows a more extensive set of stress-strain curves for Zeonex-690R at strain rates of
3 x 10- 4, 3 x 10- 3, 3 x 102, and 3 x 10-1 s- and temperatures of 25'C through 130 C. In
Fig. 3-1, we see that in the glassy region:

(i) The stress-strain curves exhibit a well-defined yield-peak, followed by strain-softening,
and eventual strain-hardening at large strains due to the limited extensibility of the
polymer chains.

(ii) As the temperature increases in the glassy region from 25 C to 130 GC the magnitude
of the yield-peak diminishes, the yield strength decreases with temperature from
65 MPa to 15 MPa, and the amount of strain-hardening observed at large strains
diminishes.

(iii) Upon unloading after compression to strains exceeding 125%, approximately 5% of the
strain is recovered, and there is permanent-set.

2For true strains up to 100% our compression specimens showed very little or no bulging; however, for

larger strain levels, in spite of our precautions to minimize friction, small bulging did occur.
3As is customary, in order to calculate the deformed cross-sectional area (and thence the true stress),

we have assumed plastic incompressibility to estimate the stretch in the lateral direction of the compression
specimens.
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Figure 3-1: Stress-strain curves in simple compression for Zeonex-690R at various temperatures
ranging from 25'C, to 130'C; at strain rates of (a) 3x10~ 4 s- 1, (b) 3x10 3 s-, (c) 3x10-2s-,
and (d) 3x 10 1 s.

Referring to Fig. 3-2 which shows stress-strain curves for Zeonex-690R at various fixed
temperatures below Vg and four different strain rates., we see obvious strain-rate dependent
features of the material response. The yield strength of the material increases by about
10% for a one-decade increase in strain-rate at any given temperature. Another important
strain-rate dependent feature is the softening observed at large strains at the highest strain
rate of 3 x 10-1 s at temperatures of 25 C, 70 C, 120'C and 130'C. This softening is
attributable to (near) "adiabatic" heating at the high strain rates. 4

4While we did not measure the actual temperature rise in our specimens, Arruda et al. (1995) have shown
that the surface temperature of a compression specimen of an amorphous polymer, for a test carried out at
20 C, could increase by as much ~ 20 C after a 100% compressive strain at a strain rate of 10-1 s-1.
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Figure 3-2: Stress-strain curves in simple compression for Zeonex-690R at strain rates of 3x 10-4.

3x 10-4 , 3x 10- 4 and 3x 10-4 S-1, and at temperatures of (a) 25'C, (b) 70'C, (c) 120'C, and (d)
130'0C. Note change in scale for the stress axis between various figures.



3.3 Constitutive Theory

The fewer the "number of micromechanisms," M, which are needed to phenomenologically
describe the response of a material, then the fewer the number of "material parameters" that
are needed to flesh-out the constitutive theory delineated in Chapter 2. In order to model
the response of amorphous polymers below 'g0 , we find that a theory with M = 2 is quite
adequate. Although no real material is composed of springs and dashpots, as a visual aid,
Fig. 3-3 shows a schematic "spring-dashpot"- representation of these two micromechanisms:

Stiffness
Network Molecular

Intermolecular Stretching & Network
Resistanc Flow with Orientation Resistance

Back-stress

Figure 3-3: A schematic "spring-dashpot" -representation of the constitutive model for tempera-
tures below 01g.

" The first micromechanism (a = 1): (a) The nonlinear spring represents an "elastic"
resistance to intermolecular (and perhaps intramolecular) energetic bond-stretching.
(b) The dashpot represents thermally-activated plastic flow due to "inelastic mech-
anisms," such as chain-segment rotation and relative slippage of the polymer chains
between neighboring mechanical cross-linkage points. (c) The nonlinear spring in par-
allel with the dashpot represents an "energy storage" mechanism due to the local
elastic incompatibilities caused by the viscoplastic flow mechanisms. We introduce a
defect energy only for micromechanism a = 1. via an internal variable A; even for this
micromechanism, the role of such a stored energy decreases as the molecular mobility
increases when the temperatures approach 79g.

" The second micromechanism (a = 2): The nonlinear spring represent resistance
due to changes in the free energy upon stretching of the molecular chains between the
mechanical cross-links. We neglect any slippage in the molecular networks formed by



the "mechanical" cross-links for temperatures below 'O; therefore there is no dashpot
in micromechanism a = 2. There is also no defect energy associated with a = 2.

Polymeric materials exhibit a pronounced Bauschinger-like effect 5 upon unloading, even
at moderate strain levels which are much smaller than those associated with the locking of
polymeric chains at large strains (cf., e.g., Hasan and Boyce, 1995; Anand and Ames, 2006:
Ames, 2007). In order to allow for important energy storage mechanisms due to plastic
deformation, the development of an internal back-stress, and to account for Bauschinger-
like phenomena on unloading and reverse loading, we have introduced a symmetric and
unimodular tensor field

A(X, t), A =_ AT, det A = 1,

which represents a dimensionless squared stretch-like quantity.

Note that for the special case of temperatures below i 0g, from our constitutive assumption,
the plastic deformation for micromechanism a = 2 is neglected so that

(3.1)

for all motions and all times. Therefore, for ease of notation, we introduce

FP(2)= 1

- Fl, Fe(1) = Fe, Fe(2 ) = F,

and suppress the super-script a denoting micromechanisms wherever it is convenient

SO.
The underlying constitutive relations relate the following basic fields:

x = x(X, 0)

F=VX, J=detF>0,

F - FFPI,
F, Je = detFe = J>0,

FP, JP = detFP = 1.
F RU = VR,

Fe ReUe = VeRe,

FP RPUP = VPRP,

C=F T F, B=FF,
Ce FeTFe, Be FeFeT,
CP = FPT FP, BP FPFPT,

motion;

deformation gradient;
elastic-plastic decomposition of F;
elastic distortion;

inelastic distortion;
polar decomposition of F;
polar decomposition of Fe;
polar decomposition of F";
right and left Cauchy-Green tensors;
elastic right and left Cauchy-Green tensors;
plastic right and left Cauchy-Green tensors;

5The term "Bauschinger-effect" is used to describe a phenomenon first observed in metals by Bauschinger
(1886). He reported that a metal specimen after receiving a certain amount of axial extension into the plastic
range, showed a decrease in the magnitude of the yield strength upon subsequent compression. The origins
of a Bauschinger-like effect are typically attributed to the generation of internal strains and corresponding
stresses during deformation; the causes for such internal stresses are clearly different in polymers from those
in metals (for which the term Bauschinger-effect was first coined).

(3.2)

to do



T= T T .
T1 = JTF-

( 6 2 (1, .2. ..,Gm)

A, A = AT , detA - 1
79 > 0.

qR,

3.3.1 Free energy

The free energy is given by

aR = (c, )) + N, ( A, 9) + (

Cauchy stress;
Piola stress:
free energy density per unit reference volume;
m scalar internal variables:
tensorial internal variable;
absolute temperature;
referential temperature gradient:
referential heat flux vector.

(3.3)

where Ice, Ic, and IA are the lists of the principal invariants of Ce, C, and A, respectively.
In (3.3), 1 e (1) is an energy associated with intermolecular interactions and modeled using
the elastic Cauchy-Green tensor C6; N N is an energy associated with plastic deformation,
and assumed to depend on the internal variable A; and 72) is an energy associated with
the stretching of the polymer chains and modeled using the total Cauchy-Green tensor C.
The energy O(P), also referred as "defect energy" leads to the development of a back-stress,
and allows one to phenomenologically account for Bauschinger-like phenomena; in addition,
it contributes in an important manner to the plastic source term in the balance of energy.

Free energy ve (

The spectral representation of C' is

3

Ce = ori o i, with w = Ae2 (3.4)

where (r',r',r') are the orthonormal eigenvectors of C' and U', and (A', A', A') are the
positive eigenvalues of U'. Instead of using the invariants Ice, the free energy ) for
isotropic materials may be alternatively expressed in terms of the principal stretches and
temperature as

Let

(3.6)Ee d lnUe = Ei ri o ri,
i1



denote the logarithmic elastic strain with principal values

(3.7)E. - In A',

and consider an elastic free energy function of the form

e () (A, Ae, Ae, d) = c() E (3.8)

We consider the following simple generalization of the classical strain energy function of

infinitesimal isotropic elasticity which uses a logarithmic measure of finite strain6

I K 2
9)(E", 1) =G|Ee| 2 + 2 SG) (tr Ee) 2 - (79 - ido)(3 K a)(tr Ee) + f (7)), (3.9)

where f(19) is an entropic contribution to the free energy related to the temperature-dependent

specific heat of the material. The temperature-dependent parameters

(3.10)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and

do is a reference temperature.

Free energy P1)

The spectral representation of A is

A - Z ali i

where (a1, a 2 , a3) are the positive eigenvalues, and
of A. The principal invariants of A are:

(11,12,13) are the orthonormal eigenvectors

11(A) ai + a2 + a3 ,

12 (A) = aia 2 + a2a3 + a3 ai,

13 (A) - a1 a 2a 3 = 1 (since det A = 1).

Using (3.12), we express the defect energy as

V A) P ()(IA,)=P(1)(1, a2, a39).

6This is a useful free energy function for moderately large elastic stretches, Anand (1979, 1986).

(3.11)

(3.12)

(3.13)

G (V) > 0,1 K (d) > 0. , a(V) > 0, 1
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Next, we consider the following simple defect energy:

" (ai, a 2 , a3 , '9) =B + (ln a2 )2 + ( (3.14)B [(In a,) (in a 3)2

where B(d) > 0 is a positive-valued temperature dependent parameter called back-stress
modulus.

Free energy (2

Since Je = J, and we have already accounted for a volumetric elastic energy for e(1), we do
not allow for a volumetric elastic energy for N2 . We denote the distortional part of F by

Fdis dfj-1/3 F, det Fdi, = 1. (3.15)

Correspondingly, let
def j23..6

Cdis =' (Fais)-Fdis -- J23,(3.6

denote the distortional (or volume preserving) right Cauchy-Green tensor, and consider a
free energy function in the special form

= b2 ( 2 c1 s, ), (3.17)

where Icdis are the principal invariants of Cdi,.

In order to model the stress increase due to the stretching and locking of polymer chains at
large strains, most previous theories for amorphous polymers (e.g., Parks et al., 1985; Boyce
et al., 1988; Arruda and Boyce, 1993b; Wu and Van der Giessen, 1993a; Anand and Gurtin,
2003a) presume that polymer glasses behave like crosslinked rubber and use a free energy
based on entropic-network models. There is a conceptual difficulty with using statistical-
mechanical ideas of the theory of entropic rubber elasticity to describe the strain hardening
due to chain-alignment at temperatures below the glass transition temperature, because
at these temperatures the chains do not have sufficient mobility in the amorphous state
to sample all possible molecular conformations, as visualized in the statistical-mechanical
models of rubber elasticity. Here, we employ a simple phenomenoloqical form for the free
energy function () due to Gent (1996). This model has been shown by Boyce (1996) to yield
predictions for the stress-strain response similar to the entropic-network model of Arruda
and Boyce (1993a). With

def
I1 - tr Cdis (3-18)

denoting the first principal invariant of Cdis, the Gent free energy has the form

-) j I ln (1 - 1 3 (3.19)



which involves two temperature-dependent material parameters

(3.20)

In particular, y represents the ground state rubbery shear modulus of the material, and Im,

represents the upper limit of (I1 - 3), associated with limited chain extensibility of polymeric

molecules.

3.3.2 Stress

Cauchy stress

The Cauchy stress is given by
T - T(1 ) + T (2)

where

T(1 f j- (FeSeFe:),
and

(2) def -1 TT -= J-(FSF , I

with Se - 2 (ce

wih(2) (Cwith S -=2 .

In (3.22) and (3.23), Se and S are symmetric; Se represents a second Piola stress

respect to the intermediate structural space, while S represents a second Piola stress

respect to the reference space.

Mandel stress. Contribution T to Cauchy stress

By the chain-rule and (3.22)2, the stress Se is given by

3~ e eeZ
Se = 2 1~ =,3 2 14 2, A3

Assume that the squared principal stretches of are distinct,
directions r' may be considered as functions of C'; then

3
1 Joe ()(A, A, 7) Owi

Z=1 aCe

(3.24)

so that the of and the principal

= reo r,
Ce i

and, granted this, (3.25) and (3.24) imply that

se 3 1 B'0e(1)(Ae Ae ,A d)
Se A = Aori

(3.25)

(3.26)

(3.21)

(3.22)

(3.23)

with
with

p (d) > 0, 1mn(d) > 3.



Further, from (3.22)1,

T(1) = JIFSeF T = J--ReUeSeUeR T = J-lRe(Z Ae(1., 2 3 re & re Re.

(3.27)

Next, since M' = C'S' (cf. (2.132) in Chapter 2), use of (3.4) and (3.26) gives the Mandel
stress as

3

M -= ~ ~ (~, 3~ r~ 0r , (3.28)

which with (3.8) gives

Me3
Me = E re (9re. (3.29)

i=1 - I

Then, for the free energy considered in (3.9), we have

me = 2GEe + K (tr Ee)1 - 3Ka(' -do)1,

and on account of (3.27), (3.29), and (3.30),

T = J- ReMeR"T .

Back-stress. Effective stress

For the defect energy as (3.13), by chain rule we have

OOP ((,, a2, a3,'d)
OA

(3.30)

(3.31)

(3.32)
3v (')W(a1, a2, a3, '9) 0aj

i=1

Assume that ai are distinct, so that the ai and the principal directions l may be considered
as functions of A. Then,

= A li & 1i,
UA

(3.33)

and, granted this, (3.32) implies that

LDWP ()(ai, a2, a3 ,19)
OA

3 qpz ( (ai, a2 a ,79)
Baj

(3.34)

0'e (i) (Ec E , Ee, d)



Also, use of (3.11) and (3.34) in (2.133) gives the deviatoric back-stress as

3 - ( ) (a i, a 2 a s, )
1Vback =2Ea 1 @

For the simple defect energy assumed in (3.14)

t"') (1, a 2 , a 3 .

OA
1 In a
2 B ai ij(, IB(In A)A

2
1, (3.36)

where
3

In A E ln a 10 li, (3.37)

and

A = a Iig 1j. (3.38)
i=1

Then, using (3.36) in (3.35) gives

Mback B(ln A) 0 . (3.39)

Note that since a1 a2a 3 = 1 (cf. (3.12)3),

tr (In A) = ln ai + In a2 + In a3  ln(ai a2a3 ) = 0-

Hence the defect strain tensor (In A) is traceless, and therefore a symmetric and deviatoric
back-stress is

Mback = B In A. (3.40)

With an effective stress defines as

Me= e M - Mback, (3.41)

the driving stress for the plastic flow is taken as the stress difference

(Mff)o = M - Mback. (3.42)

Contribution T (2 to Cauchy stress

Using (3.23)2, the stress S for a free energy of the form in (3.17) is

2C(is
S -2 25 (:Cdi, I d)C

0C

(3.35)14 )0."

-=2 OCdis

0C
(3.43)



Next, since J = Vdet C, and since

8det C
C (det C)C 1 J2 C 1 ,

DJ 1-- =- J C- 1
DC 2

OCais

OC
D(J-2/3C)
OC

and = J-2/3C-1
BC 3

8J2/3
j-2/3 ( + J-2/3C @ ).

a-C '

_ j-2/3 I C C
3

where II is the fourth-order identity tensor. Thus, using (3.44)1 and (3.45) in (3.43), the
stress S has the form

S = 2J- 2/3 ( - iCd- 0 Cis) 2)3 dis Cdis

- ( dis: 0 ( Cdis,
3 BCais

For the Gent free energy in (3.19), we note

0( 2 ) , -

OCdis 2
pR (I

11-3 oi 1  I

Cdis 2
11-3>1

Using (3.47) in (3.46) gives

r /

S = PJ-2/3 ( - 1 1 -(trCdis)

Next, from (3.23)1, the contribution T(2 ) to the Cauchy stress is

T (2) J 1 FSF J-11 3 FdisSFdis

C].

and hence, using (3.48),

- 11-3y
tr Cdis FdisCd FdisT

we have

Also,

or using (3.44)2,

(3.44)

OCdis
OC

1 
J_

-2/3 ( -
1Cis

3
oC-,) (3.45)

Cr] (3.46)

(3.47)

(3.48)

(3.49)

2 -2/3 (2)( Cis

BCais

T = - pR 1 P I FdisFaiST 
- I



Then with

T () = j-IIR
I -3

- -

T(2 ) - J1 P1 ( I

3.3.3 Flow Rule. Internal variables

The evolution equation for FP is

with initial condition

and with DP given by

where with

_(Meffo

dP NP, NP =(ego.
I(Meff)ol'

def
A { fCe, BP, ., - }

denoting a list of constitutive variables, the scalar flow rate dp is obtained by solving the

scalar strength relation
(Mff)o= Y(d, A), (3.55)

for given (M'ff)o and A, where Y(dP, A) is the strength function, which is an isotropic
function of its arguments.

First, we define an equivalent shear stress by

clef 1 ( ef)IT * (Mef)ol,
v12

and an equivalent shear strain rate by

v= vf2 d? = v/ 2|DP I ,

(3.56)

(3.57)

respectively.
Next, recalling (3.30) for the Mandel stress M', we define the mean normal pressure by

-def 1 mP -- trM= - K {trEe -
3

Also let
\ /tr C/3 = C : B/3,

(3.58)

(3.59)

Bdas 1 FdasFdis, (3.50)

[Bis -
11- 3 -1
-n )

3 trB i,
3(

(Bdis)o.

1 i

(3.51)

FP(X, 0) = 1, (3.52)

(3.53)

(3.54)

F P = DP FP,

3 a (V - do)} = - I tr (In Ce) - 3 a (0 - 79o)



define an effective plastic stretch. Then, as an (enormous) simplification of the theory, we
assume that the strength function Y is independent of A, and depends on Ce and BP only
through p and A.

Further, we restrict the list ( of internal variables to three scalars

(, Sa, and Sb.

The two parameters o and S are introduced to model the "yield-peak" of glassy polymers. A
key microstructural feature controlling the strain-softening associated with the "yield-peak"
is the deformation-induced disordering of glassy polymers.7 The variable o, a positive-valued
dimensionless "order"-parameter, is introduced to represent such deformation-induced disor-
dering; and Sa, a stress-dimensioned internal variable, represents the corresponding transient
resistance to plastic flow accompanying the microstructural disordering. The parameter Sb,
another positive-valued stress-dimensioned internal variable, is introduced to model addi-
tional "isotropic" -hardening aspects of the stress-strain response of these material as the
chains are pulled taut between entanglements at large strains.

With these simplifications and internal variables, and using the definitions (3.56) - (3.59),
we rewrite the strength relation (3.55) as

- = g(vP, , , A, (,Sa, S), (3.60)

and assume further that at a fixed state ('0, P, A, (, Sa, Sb) the strength relation (4.72) is
invertible, with inverse

VP f (, ,p, A, y, So, Sb) 0. (3.61)

Finally, guided by the literature (cf., e.g., Fotheringham et al., 1976; Fotheringham and
Cherry, 1978; Povolo and Hermida, 1995; Povolo et al., 1996; Richeton et al., 2005a, 2006,
2007), for the flow function f in (4.83) we choose a thermally-activated relation in the specific
form

0 if T < 0,
jvo exp smh V 1 / if Te > 0, (3.62)

kB 'd _2kB'

where
e t - (S + S + ap) (3.63)

denotes a net shear stress for thermally activated flow, and where ap > 0 is parameter
introduced to account for the pressure sensitivity of plastic flow. Additionally, y/ is a pre-

7The deformation-induced disordering is often associated with the change in "free-volume" of glassy
polymers. The "free-volume" terminology was introduced by Cohen and Grest (1979) for simple atomic
glasses (amorphous metals), and there is a corresponding way to define it in glassy polymers (Shah et al.,
1989). The deformation-induced disordering and its role in the yield drop in amorphous materials has also
been discussed recently by Argon and Demkowicz (2008) (in the context of amorphous silicon).



exponental factor with dimensions of s, Q is an activation energy, kB is Boltzmann's
constant, V is an activation volume, and n is a strain rate sensitivity parameter.

Some remarks: There are many models for the rate and temperature-dependent yield
strength of polymers in the literature which consider plastic flow as a thermally-activated
process (cf., e.g., Eyring, 1936: Robertson, 1966; Argon, 1973). Most of these models give a
reasonably acceptable representation of the variation of the yield strength with temperature
and strain rate, but over limited ranges of these variables. The flow function (3.62) used here
is motivated by the recent work of Richeton et al. (2005a, 2006, 2007), who in turn base their
model on the so-called "cooperative"-model of Fotheringham et al. (1976), Fotheringham and
Cherry (1978), Povolo and Hermida (1995) and Povolo et al. (1996). Richeton et al. have
shown that a flow function of the form (3.62) may be used to satisfactorily represent the
variation of the yield strength of amorphous polymers over a wide range of strain rates and
temperatures.8 The major difference between the flow function proposed by Richeton et al.
and the one considered here, is that instead of a tensoria-l back-stress Mback (Cf., (3.40)) to
define an effective stress which drives plastic flow (cf. (3.42)), they consider a temperature
dependent scalar internal stress in their theory. This results in a profound difference between
their model and the one considered here, specially in the ability of the two models to capture
unloading and cyclic loading phenomena, as well as in a proper accounting of the energy
dissipated during plastic flow. Also. the three-dimensional theory that they present in @ 3 of
their 2007 paper is substantially different in its mathematical structure from that considered
here.

Mulliken and Boyce (2006), have recently proposed an alternate model to describe the
variation of the yield strength of amorphous polymers over a wide range of strain rates
and temperatures, albeit still for temperatures below the glass transition. Their model is a

generalization of the model(s) proposed by Bauwens, Bauwens-Crowet and co-workers (cf.,
e.g., Bauwens et al., 1969; Bauwens-Crowet et al., 1969; Bauwens, 1972; Bauwens-Crowet,
1973), in which they introduce two rheological micro-mechanisms designated as primary
or a and secondary or ,3 which contribute to the yield strength of the material. The
primary a-mechanism represents the rotations of the main-chain segments of the polymer,
and the secondary 3-mechanism represents the rotations of the ester side groups in PMMA,
and the rotations of the phenyl groups in the main chains of PC. These two mechanisms are
rate-limiting in different regimes of strain rates and/or temperatures; the a-mechanism is the
dominant rate-limiting mechanism at low rates (or high temperatures), and the 3-mechanism
is the dominant rate-limiting mechanism at high strain rates (or low temperatures). Mulliken
and Boyce assume that the a and ,3 molecular processes are sufficiently decoupled, so that the
overall material response may be described by a simple superposition of the two mechanisms.
They develop a theory which employs a decomposition of the form F = F'FP = F'FS to
account for the a and /3 mechanisms for the yield strength (instead, we have employed only
one micromechanism a = 1 for the yield). This results in a substantially different and

8Richeton et al. extend the flow rule (3.62) through the glass transition temperature, but in this paper
we fix our attention in the regime of temperatures below V).



more complex constitutive theory than that considered in this chapter, and also results in a
doubling of the material parameters concerning pre-exponential factors, activation energies,
deformation resistances, press-sensitivity parameters, and so on.

There maybe some physical merits of the multi-mechanism (a, 3)-based model of Mulliken
and Boyce, for operational economy our preference here is not to follow their approach, but
instead to adopt a variant of the "cooperative" -model of Richeton et al. (2007), which from
a macroscopic point of view appears to achieve the same goal of being able to represent the
variation of the yield strength of amorphous polymers over a wide range of strain rates and
temperatures.

3.3.4 Evolution equations for the internal variables

Evolution of o and Sa

We assume that the material disorders, and is accompanied by a microscale dilatation as
plastic deformation occurs, resulting in an increase of the order-parameter P,9 and this
increase in disorder leads to a change in the resistance Sa, causing a transient change in the
flow stress of the material as plastic deformation proceeds. Accordingly, the evolution of the
resistance Sa is coupled to the evolution of the order-parameter p. Specifically, we take the
evolution of Sa to be governed byi"

Sa = Ha VP with initial value Sa (X, 0) = SaO ,61

Ha ha (S* - Sa) , and S S(vPI, (3.6P),
and we assume that

= 3vP with initial value p(X, 0) (Po,
# = g (O* - ) , with * = *(vP, ) > 0;

here 3 is a shear-induced disordering function.n In these coupled evolution equations for Sa
and cp, the parameters h,, g, Sa0 and oo are constants (possibly teniperature-dependent).
The function H represents the strain-hardening/softening function for the resistance S,
during plastic flow: the material hardens (Ha > 0) if Sa < S*,, and softens (Ha < 0) if
Sa > S*. The critical value S* of Sa controlling such hardening/softening transitions is
assumed to depend on the current values of the plastic strain rate, temperature, and the
order-parameter o. In the disordering function 3, the parameter 0* represents a strain rate
and temperature dependent critical value for the order-parameter: the material disorders

9The microscale dilatation is extremely small, and at the macroscopic level we presume the plastic flow
to be incompressible.

10Coupled differential evolution equations of this type have previously been used to model yield peaks in
granular materials (Anand and Gu, 2000), as well as amorphous polymeric materials (Anand and Gurtin,
2003a; Ames, 2007) and amorphous metallic glasses (Henann and Anand, 2008).

"We concentrate only on deformation-induced disordering, and neglect any decrease in the degree of
disorder due to temperature-dependent recovery effects in the absence of macroscopic plastic deformation.



(3 > 0) when p < * and becomes less disordered (,3 < 0) when o > p*. In a monotonic
experiment at a given strain rate and temperature, the shear-induced disordering vanishes
(B =0) when 'o = *. However, in an experiment in which the strain rate and temperature
are varying (e.g. strain rate or temperature jump experiments), the material will in general
increase or decrease in disorder, depending on the strain rate and temperature history, and
because of the coupling between the evolution equations for Sa and p, the resistance S will
also vary.

Particular forms for the function * (vP, V) and 5* (vP, V, o) need to be specified. The
function -* controls the amount of disordering the material undergoes during deformation
and is both strain rate and temperature dependent. The strain rate and temperature de-
pendence of o* is quite nonlinear; o* is expected to decrease with increasing temperature
at a fixed strain rate, and increase with strain rate at a fixed temperature. Ve model this
temperature and strain rate dependence of p* using the following phenomenological form

z(1 - +-) -P if (d < 0c) and (vP > 0),
03*(v1P, 19) = 'dc v, (3.66)

0 if (O ;> c) or (vP = 0),

where dc is as strain rate dependent function given by' 2

9g + nn (- for vP > v, (3.67)

for vP < v,

with {z, r, s. r, n} as constants.
Further, the function S*, which controls the magnitude of the stress-overshoot, is taken

as
S*- ) , (3.68)

so that the value of S* depends linearly on the difference between the current value of O and
the parameter 0*.

Thus, gathering the number of material parameters introduced to phenomenologically
model the yield-peak, we have the following rather large list

{ha, b, Sao, g, po z, r, s, vr, n} ,

with some of these parameters possessing additional temperature-dependence. We note
that modeling the temperature and rate-sensitivity of the yield-peak over a wide-range of
temperatures and strain rates is known to be very complex. If a simpler theory with fewer
material parameters is desired, and if it is deemed that modeling the yield-peak is not of
interest, then there is no need to introduce the internal variables o and Sa, and thereby also
the attendant constants in their evolution equations.

12This approximately models the rate-dependence of the glass transition temperature of the material.



Evolution of Sb

The evolution of Sb is taken to be governed by

Sb - hb (A -1) (S* - Sb) V1P with initial value Sb(X, 0) = So > 0,

where hb is assumed to be constant and S*(19) is a temperature dependent material param-
eter. The resistance Sb increases and the material hardens as long as Sb < S*.

Evolution of A

Finally, the evolution equation for A is taken as

A = DPA + ADP - -yA lnA vp, A(X, 0) = 1,

where - > 0 is a constitutive parameter which governs the dynamic recovery of A. This
evolution equation is a generalization of the non-linear kinematic-hardening rule (Armstrong
and Frederick, 1966) of the small deformation theory of classical metal viscoplasticity,1 3 but
here applied to polymer-viscoplasticity.

3.3.5 Fourier's law

The heat flux is taken to be governed by Fourier's law

q -K (3.7 1)

where K(19) > 0 is the thermal conductivity.

3.3.6 Partial differential equations for the deformation and tem-
perature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR + boR pR - (3.72)

"Cf., e.g., Chaboche (2008) for a recent review of the large variety of kinematic-hardening rules in classical
small deformation metal-viscoplasticity.

(3.69)

(3.70)



Also, balance of energy (cf. (2.147) in Chapter 2), when specialized, gives the following
partial differential equation for the temperature,

cO -Div q, + q1a + + B |ln A| 2  p

rate of plastic dissipation

+ o (Ce-i +1: e + a C + - . (n A)A : A, (3.73)

"thermoelastic-coupling" terms

where

am"' 2_ OG(d) E + () (tr E)1 - 3 (K(d)a(d)(O- do) 1,
80d 0 0 08 a (3.74)

OS ( 11 -3 ) - 1 (Bdi)oF T ,
-- = -- p(d) (1 -M F-(B9)oF

and the specific heat in the theory is given by

C = c(IceIc, IA, = - + ' 2 (3.75)

At this stage of the development of the theory and the concomitant experimental database,
the "thermoelastic-coupling" terms in (3.73) which give rise to a temperature change due to

variations of Ce, C and A are not well-characterized, nor is the dependence of the specific
heat c on these quantities. Much work needs to be done to characterize these dependencies.
Here, as approximations, (i) we assume that c ~ 9() (independent of Ce, C and A), and
may be obtained from experimental measurements; and (ii) we neglect the thermoelastic
coupling terms, and assume instead that only a fraction 0 w w $ 1 of the rate of plastic

dissipation contributes to the temperature changes. Under these approximative assumptions
(3.73) reduces to

c) = -DivqR- qa+ r + B y I ln A 1 vP. with c = 4(9). (3.76)

3.3.7 Temperature dependence of material parameters

Temperature dependence of the thermo-elastic moduli G, K, and a:

For polymeric materials the magnitude of the elastic shear modulus G decreases as the tem-

perature increases, and then decreases drastically as the temperature increases through the

glass transition temperature dg of the material. For temperatures below z9, we approximate
the change of G with temperature by

G(V) = Go - M(O - g) for O < Vg, (.77



where Go and Al are constants, and d is the glass transition temperature.
Below the glass transition temperature, the Poisson's ratio of the material is approxi-

mated as a constant
vpoi ~ constant,

and the temperature dependence of the bulk modulus K is then obtained by using the
standard relation

K (t9) = G (9) x 2(1 + vpo0 ) (3.78)
3(1 - 2v1oj)(3

In the temperature range of interest, the coefficient of thermal expansion is also approx-
imated to be constant

a ~ constant.

Temperature dependence of the back-stress modulus B:

The back-stress modulus B is assumed to decrease linearly with temperature,

B(i) = X(Vg - 0) for 9 < Pg, (3.79)

where X > 0 is a constant.

Temperature dependence of the plastic flow parameters Q, V and m:

For temperatures below 79g, the activation energy Q, the activation volume V. and the strain
rate sensitivity parameter n appearing in the thermally activated model (3.62) are assumed
to be constants.

Temperature dependence of the material parameters in the evolution equations
for 9, Sa, Sb, and A:

In the coupled evolution equations (3.64) and (3.65) for Sa and V, the material parameters
are

{hi, b, Sao, g, Po, Z, r, s, vr, n}.

We assume that all but g are independent of temperature. The parameter g in (3.65)
controls the width of the yield-peak where a higher values of g results in a narrower peak;
this parameter is assumed to increase linearly with temperature

g(79) =g1+g2,d for 9 < og. (3.80)

In the evolution equation (3.69) the material parameters are hb and S. We take hb to
be a temperature indepedent constant, while the saturation value S* is taken to decrease
linearly with temperature, with S* vanishing above 79g:

S*(0) = l1 - l 2 ) for <)g, (38(3.81)
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with 11 and 12 constant.
In the evolution equation (3.106), the only material parameter is /; we take this to be

temperature independent.

Temperature dependence of p and Im,:

For the two material parameters yt and Im in (3.20), experimental results indicate that the
rubbery shear modulus y decreases with increasing temperature, and the parameter Im,
which is related to limited chain extensibility, is approximately constant. The empirical
function chosen to fit the experimentally-observed temperature dependence of p is

t(0) = po - N('O - Og) for 0 < Og, (3.82)

where to and N are constants.

Temperature dependence of specific heat c and thermal conductivity r,:

For temperatures below dg, the specific heat c and the thermal conductivity K are assumed
to have the following empirical temperature dependencies (cf., e.g. Van Krevelen, 1990;
Bicerano, 1993):

c(d) = co - c1(, -og) for O < O), (3.83)

) o for < dg. (3.84)

3.4 Summary of the constitutive model

In this section, we summarize the specialized form of our thermo-mechanically coupled large-
deformation theory for temperatures below t9.

3.4.1 Free energy

We consider the free energy to have a separable form as

- )e (1) + p(1) + 4,(2) (3.85)

With
3

Ue = A r o re, (3.86)
i=1

denoting the spectral representation of U', and with

3

E' = E r' & r', E= In A', (3.87)



denoting an elastic logarithmic strain measure, we adopt the following special form for the
free energy e(1):

2
SGEe 12 + !(K - 2G)(tr Ee) 2 - (9 - do)(3 K a)(tr Ee) + f(d),

2 3
where f (9) is an entropic contribution to the free energy related to the temperature-dependent
specific heat of the material. The temperature-dependent parameters

G(1) > 0, K (d) > 0, a (19) > 0, (3.89)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and
,do is a reference temperature.

Further, with

(3.90)

denoting the spectral representation of A, we adopt a free energy OP() of the form

(3.88)

1() =I B [(ln ai)2 + (ln a2)2 + (in a3 )2 ] ,

where the positive-valued temperature-dependent parameter

B(d) > 0,

is a back-stress modulus.

Next, with

I1 - tr Cdis

denoting the first principal invariant of Cdis. We adopt the
energy V)

- _p Im ln (1

(3.93)

following special form for free

- 13)
Tn )

(3.94)

(3.95)
where

p (d) > 0, Im(0) > 3

are two temperature-dependent material constants. In particular, y represents the ground
state rubbery shear modulus of the material, and I, represents the upper limit of (I1 - 3),
associated with limited chain extensibility.

(3.91)

(3.92)

A = Eai 1i 0 1j,



3.4.2 Stress

Corresponding to the special free energy functions considered above, the Cauchy stress is

given by
T T(1) + T(2

with
T(1) - J 1 R"MeRe"

where
m -= 2GEe + K (tr Ee)1 - 3Ka(d - do)1,

is the Mandel stress. The symmetric and deviatoric back-stress is defined by

Mback= B In A,

and the driving stress for plastic flow is the effective stress given by

(Meff)o = Me - Mback. (3.100)

The corresponding equivalent shear stress and mean normal pressure are given by

- def 1
T=/2 IM ff)o

def 1
and p - -3tr Me,3

respectively.

Also,

(3.102)T J y (1 - Im1 3 (Bdis)o.

3.4.3 Internal variables

The internal variables of the theory

O>0, Sa >0, SbO0,

represent aspects of the intermolecular shear resistance to plastic flow. The parameter p is
a dimensionless order-parameter representing a local measure of disorder of the polymeric
glass; Sa and Sb have dimensions of stress and, respectively, represent aspects of a transient
shear resistance accompanying inicrostructural disordering, and aspects of increased shear
resistance to plastic flow as the chains are pulled taut between entanglements at large strains.

(3.96)

(3.97)

(3.98)

(3.99)

(3.101)



3.4.4 Flow rule

The evolution equation for FP is

FP DP FP, FP(X, 0) = 1,

D vP (Me)o)
\ 2-r '

re = r- (Sa + Sb -+ app),

0e

vo exp -
Q

kB 1

where 7e denotes a net shear stress for thermally-activated flow; a, is a pressure-sensitivity
parameter; vo is a pre-exponential factor with units of 1/time; Q is an activation energy;
kB is Boltzmann's constant; V is an activation volume; and in is a strain rate sensitivity
parameter.

3.4.5 Evolution equations for the internal variables

The internal variables Sa and W are taken to obey the coupled evolution equations:

Sa =ha1 (S* - Sa) vP,

and = g (p* - o) vP,

with S* = b (o* - p),

with

and Sa(X, 0) = So;
0(X, 0) - o,

where o* = 0*(vP, 9).

The evolution of Sb is taken to be governed by

S = hb (A - 1) (S* - Sb) vP, with Sb(X, 0) = SbO > 0,

where hb is a constant and and S*(d) is taken to be temperature dependent.
Also, the evolution equation for A is taken as

A = DPA + ADP -A n A vP, with A(X, 0) = 1, (3.106)

where - > 0 is a constitutive parameter which governs the dynamic recovery of A.

3.4.6 Partial differential equation for temperature

c- = -Divq, +qR + w w ) +( I B In
2

[sinli
(eV)] 1/V i

2kBO _

(3.103)

if Te < 0

if Te > 0,

(3.104)

(3.105)

A 12 vP, with c = (9). - (3.107)



3.5 Fit of the stress-strain curves and material param-
eters for Zeonex-690R, PC, and PMMA

WTe have implemented our therno-mechanically-coupled constitutive model by writing a
user material subroutine for the finite element program ABAQUS/Explicit (2009). The
material parameters appearing in the model were calibrated by fitting the experimental
stress-strain data for Zeonex-690R, PC and PMMA. The data for PMMA was obtained
from Ames (2007) while the compression experiments on PC were performed by our colleague
Shawn A. Chester. A one-dimensional version of the model is detailed in the Appendix A.
The material parameters were calibrated with the help of a MATLAB implementation of
the one-dinensional model, as well as three-dimensional finite element simulations using a
single element. Under certain circumstances, when it became necessary to account for heat
generation and thermal conduction in the simple compression experiments,14 fully thermo-
nechanically-coupled multi-element simulations were required (cf. Ames, 2007). A heuristic
material parameter calibration procedure for our model is described in the Appendix A. The
material parameters for Zeonex-690R, PC and PMMA determined by using this procedure
are listed in Table 3.1.

The graphical fit of the constitutive model to the experimental stress-strain curves for
Zeonex-690R at various temperatures ranging from 25 C to 130 C and strain rates ranging
from 3 x 10-4 to 3 x 10-1 s1 is shown in Fig. 3-4.

The fit of the constitutive model to experimental stress-strain curves for PC at various
temperatures ranging from 25 C to 130 C and strain rates ranging from 10-3 to 10-1 s is
shown in Fig. 3-5.

The fit of the model to the high strain rate experimental stress-strain data from Garg et al.
(2008) for PC at rates of 0.5 s-l and 3400 s-1, at an initial temperature of 25 C, is shown in
Fig. 3-6a. 5 The corresponding rise in the surface temperature of the compression specimens,
as measured by Garg et al., and that predicted by the model are shown in Fig. 3-6b.

Finally, Fig. 3-7 shows the fit of the constitutive model to the experimental stress-strain
curves for PMMA at various temperatures ranging from 25 C to 100 C and strain rates
ranging from 3 x 10-4 to 10- S-1.

For all three amorphous polymers (Zeonex-690R, PC and PMMA), our continuum-
mechanical, thermodynamically-consistent, large deformation constitutive model performs
acceptably in reproducing the following major features of the macroscopic stress-strain re-
sponse of these materials: (a) the strain rate and temperature dependent yield strength; (b)
the transient yield-peak and strain-softening which occurs due to deformation-induced disor-
dering; (c) the subsequent rapid strain-hardening due to alignment of the polymer chains at
large strains; (d) the unloading response at large strains; and (e) the temperature rise due to
plastic-dissipation and the limited time for heat-conduction for the compression experiments
performed at strain rates ; 0.01 s-1. Of particular note is the feature of the constitutive

14Typically to fit the experimental data at a strain rate of 0.01 s-1.
"Also see Bjerke et al. (2002) who report on temperature rise measurements in high rate experiments on

PC.
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Figure 3-4: Fit of the constitutive model to the experimental stress-strain curves for Zeonex-690R

at various temperatures ranging from 25 C to 130 C, and strain rates ranging from 3 x 10-4 to

3 x 10- s-1. The experimental data is plotted as solid lines, while the fit is shown as dashed lines.

model to acceptably
rates: 16 from 10-3 to

capture the deformation response of PC over a large range of strain

3.4 x 103 s-I.

16High rate data for Zeonex-690R is not currently available. Split-Hopkinson-pressure-bar high rate com-
pression experiments for PMMA have been conducted by Mulliken and Boyce (2006), but the data is unre-
liable because the material crazes after relatively small strains.



Table 3.1: Material parameters for Zeonex-690R, PC and PMMA

Parameter Zeonex-690R PC PMMA
dg (K)
p (kg m- 3)
a (K- 1)

Go (MPa)
MV (MPa K-1)

vpoi

X (MPa K- 1)

a,
vo (s-')
m

Q (J)
V (M3 )

Sea (MPa)
h,
b (MPa)

91
92 (K- 1)
(po
z
r

s

Vr (s-')
n (K)

Sbo (MPa)
hb

11 (MPa)
12 (MPa K- 1 )

po (MPa)
N (MPa K- 1 )

Im

co (J kg'1 K- 1)
ci (J kg- 1 K- 2 )
K!o (WINatt m-1 K-1)

408
1010
7 x 10-5

482
0.16
0.40

0.7
6.92

0.116
3.2 x 1011
0.16
1.81 x 10-19
1.97 x 10-27

0
173
5850
-16.17
0.0693
0
0.0055
0.24
0.042
5.2 x 10-4
1.6

0
3.6
75
0.16

3.0
6.2 x 10-2
6.2

2120
8
0.467
0.46
0.8

418
1200
6.5 x 10- 5

638
0.74
0.37

1.5
26.0

0.116
2.1 x 1016
0.08
1.46 x 10-19
2.95 x 10-28

0
58
5850
-5.66
0.0381
0
0.0058
0.2
0.0
5.2 x 10-4
0.5

0
0.12
300
0.35

4.0
11.4 x 10-2
7.8

1630
3.6
0.187
0.22
0.8

388
1200
7 x 10-5

296
10
0.35

9.4
34.6

0.2
2 x 1016
0.218
1.81 x 10-19
3.655 x 10-28

0
70
5850
-4.92
0.0318
0
0.01
0.62
0.052
5.2 x 10- 4

1.0

0
0
0
0

0.2
20.0
5.5

x 10-2

1710
4.1
0.190
0.22
0.65
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Figure 3-5: Fit of the constitutive model to the experimental stress-strain curves for PC at various
temperatures ranging from 25'C to 130 C, and strain rates ranging from 10-3 to 10-1 s- 1 . The
experimental data (courtesy Shawn A. Chester) is plotted as solid lines, while the fit is shown as
dashed lines.
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Figure 3-6: (a) Fit of the constitutive model to the high strain rate experimental stress-strain

curves for PC at rates of 0.5 s-1 and 3400 s- 1, at an initial temperature of 25 C. (b) The cor-
responding rise in the surface temperature of the compression specimens. The experimental data
(from Garg et al., 2008) is plotted as solid lines, while the fit is shown as dashed lines.
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Figure 3-7: Fit of the constitutive model to the experimental stress-strain curves for PMMA at
various temperatures ranging from 25 C to 110 C, and strain rates ranging from 3 x 10-4 to 10-1
s-1. The experimental data (from Ames (2007)) is plotted as solid lines, while the fit is shown as
dashed lines.



3.6 Validation experiments and simulations

In order to validate the predictive capabilities of our constitutive theory and its numeri-
cal implementation, in this section we show results of some non-homogeneous experiments
(which were not used to determine the material parameters in our theory), and compare the
results of some key macroscopic features of the experimental results against those from the
corresponding numerical simulations. Our validation experiments have been performed on
either Zeonex-690R or PC. The particular validation experiments considered below are: (i)
isothermal fixed-end large-strain reversed-torsion on PC; (ii) macro-scale isothermal plane-
strain cold- and hot-forming operations on PC; (iii) macro-scale isothermal, axisymmetric
hot-forming operations on Zeonex-690R; (iv) a micro-scale hot-embossing of Zeonex-690R;
and (v) high-speed normal-impact of a circular plate of PC with a spherical-tipped cylindrical
projectile.

3.6.1 Fixed-end large-strain reversed-torsion on PC

The torsion of a solid circular bar is a seemingly simple deformation mode. However, when
the large-strain torsion is conducted with axially traction-free ends, a measurable axial ex-
tension also develops; this fascinating and complex nonlinear phenomenon is known as the
Swift-effect.' A complementary phenomenon is the development of an axial force when the
ends of the bar are axially fixed during the large-strain torsion.

Free- or fixed-end large-strain torsion experiments provided simple yet effective means for
assessing the validity of large-strain constitutive models for elastic-plastic materials.18 Large-
strain inelastic torsion of amorphous polymeric materials has been previously numerically
studied by Wu and Van der Giessen (1993b). Here, for purposes of validating our constitutive
theory, we study fixed-end large-strain reversed torsion of a solid cylindrical specimen. The
torsion experiment was conducted at room temperature on a PC specimen with geometry
shown in Fig. 5-10a. In the gage section, a torsion specimen has a diameter Do = 31.75 mm,
and a gage length of Lo = 8.89 mm. With # denoting the angle of twist in radians, the
shear-strain at the outer surface of the gage section of such a specimen is

F = . (3.108)
2Lo

The reversed-cycle torsion experiment was performed on an Instron tension-torsion servo-
hydraulic machine, equipped with precision-aligned hydraulic grips. The machine was pro-

grammed to fix the axial displacement, and twist the specimen by rotating the grips relative
to each other at an angular velocity of ±0.25 deg/sec, which corresponds to surface shear

1 7First studied by Swift (1947) for metals.
18 For metallic materials it has been firmly established in recent years that these axial effects in large-

strain torsion arise due to the development of crystallographic texture, and that the predictions of the axial
effects during torsion are strongly dependent on the constitutive model used to predict such effects (cf., e.g.,
Bronkhorst et al., 1992).



strain rate of 1 i7.8 x 104 s-- during the reversed-torsion experiment. The maximum
surface shear strains achieved during the experiment, without initiating fracture, is F 5 ±1.4.

For the corresponding finite element simulation, we have modeled only the gage section
and the chamfered-section of the specimen leading into the gage section. The finite element
mesh, consisting of 4,801 ABAQUS-C3D8R elements, is shown in Fig 5-10b. The deformed

geometry at a surface shear strain of F = 1.4 is shown in Fig 5-10c. Note that for the specific
geometry of the torsion specimen used here, the deformation is essentially confined to the

gage-section of the specimen.
Fig. 5-10d shows an excellent agreement between the numerically-predicted and the

experimentally-measured torque versus surface shear-strain response for both forward and
reversed straining. Further, Fig. 5-10e shows the ability of our constitutive theory to capture
the major trends of the induced axial-force versus the surface shear-strain response for both
forward and reversed torsional straining. Although the precise magnitudes of the axial forces
are not as well-predicted as the torque response, the prediction of the actual trends for the
variation of the axial forces as the shear strain is cycled, is quite remarkable.

3.6.2 Plane-strain, cold- and hot-forging of PC

Channel-die, plane-strain, cold- and hot-forging experiments were performed on PC speci-
mens. The plane-strain forming operation under consideration converts a cylindrical speci-
men with a circular cross-section into a specimen with a cross-section which is in the shape of
a cruciform". A schematic of a forging experiment is shown in Fig. 5-11. The PC specimens
had anl original diameter of 12.7 mm, and were 12.7 mn deep in the plane-strain direction,
which is into the plane of the paper. The split-dies which impart the cruciform shape to the
workpiece were made from hardened tool steel, and the interfaces between the workpiece and
the dies were lubricated to minimize frictional effects. The forging experiments were carried
out at 25 'C and 120 'C, at a constant die-closing velocity of 0.02 mm/s. The forging experi-
ments at 25 'C were carried to three different die-displacement levels of 2.8 mm, 4.6 mm and
5.4mm, while the experiment at 120 0C was only carried out to a final die-displacement of
5.4 mm.

For the finite element simulation of such a process, we make use of the symmetry of
the geometry and only mesh one-quarter of the geometry, as shown in Fig. 5-12a. The
quarter-circle of the workpiece cross-section is meshed with 976 ABAQUS-CPE4R elements,
and the cruciform-die is modeled as a rigid surface. Since the physical experiment was
well-lubricated, the contact between the die and the workpiece was modeled as frictionless.

Fig. 5-12b compares the numerically-predicted and the experimentally-measured, load-
unload force versus displacement curves for the cruciform-forging processes at 25 'C and
120 C. The agreement between the predicted and the measured force-displacement responses
at 25 0C for die displacements of 2.8 mm, 4.6 mm, and 5.4 mm is very good, as is the agreement
between the prediction and the experimental result for the experiment at 120 C for a die
displacement of 5.4 mm.
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Figure 3-9: Schematic of the plane-strain cruciform-forging experiment.

After unloading, each forged specimen was sectioned, polished, and then photographed.
Fig. 5-13a and Fig. 5-13b compare the numerically-predicted and the experimentally-measured
deformed shapes after unloading the test specimens at 5.4 mm of die displacement for the
forgings at 25 C and 120 C. The agreement between numerically-predicted and experimentally-
measured deformed geometries is also quite good.

3.6.3 Axisymmetric, hot-forging of Zeonex-690R

Axisymmetric, hot-forging experiments were performed on Zeonex specimens. The axi-
symmetric forming operation under consideration converts a cylindrical specimen with a
circular cross-section into a specimen with a circular base, a bulged-middle, and a tapered
neck. A schematic of a forging experiment is shown in Fig. 5-14. The Zeonex specimens
had an original diameter of 10.16 mm, and were 10.16 mm tall. The split-dies which impart
the particular shape to the workpiece were made from hardened tool steel, and (in con-
trast to the lubricated plane-strain forging experiments for PC) the interfaces between the
Zeonex workpiece and the dies were not lubricated. The axi-symmetric forging experiments
were carried out at 90 C and 120 C, at a constant die-closing velocity of 0.02mm/s. The
forging experiments at 90 C were carried out to a final die-displacement of 4.5mm, while
the experiments at 120 'C were carried to two different die-displacement levels of 2 mm and
4.5 mm.

For the finite element simulation of such a process we make use of the axial-symmetry of
the geometry, and mesh only a slice of the geometry, as shown in Fig. 5-15a. The workpiece
was meshed with 802 ABAQUS-CAX4R elements, and the top and bottom forging dies were
modeled as rigid surfaces; the axis of symmetry is labelled in Fig. 5-15a. Since no lubricant
was used in the physical experiment, the contact between the die and the workpiece was
modeled as "rough" with full-sticking.

Fig. 5-15b compares the numerically-predicted and the experimentally-measured, load-
unload force versus displacement curves for the axisymmetric-forging processes at 90 C and
120*C. The fact that numerically-predicted loads are slightly higher than the experimentally-
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Figure 3-10: (a) Quarter-symmetry finite element mesh for the workpiece and the rigid surface
used in the plane-strain cruciform-forging simulations for PC. (b) Comparison of numerically-
predicted and experimentally-measured force-displacement curves for forgings at 25 C and 120 C.

measured loads is to be expected because the numerical simulation assumed perfect-sticking,
while in the physical experiment the frictional conditions are less severe. Given the uncer-
tainty in the precise frictional conditions at the interface between the dies and the workpiece
in the physical experiment, the agreement between the predicted and the measured load-
displacement responses at both temperatures is quite reasonable.

After unloading, the specimens that were forged at 120 C to die-displacement levels of

2 mm and 4.5 mm. were photographed. Fig. 5-16 compares the numerically-predicted and the
experimentally-measured deformed shapes after die-displacements of 2 mm and 4.5 mm. The
numerically-predicted shapes are quite similar to those which were experimentally-measured.

3.6.4 Micro-scale hot-embossing of Zeonex-690R

As a simple example of a micro-hot-embossing process, we consider the embossing of a se-
ries of long channels into a Zeonex-690R substrate. The pattern consists of channels which
are 55pm wide, 43.5pm deep, and are spaced 92pm apart. To carry out the micro-hot-
embossing in the polymer, a Zr-based metallic-glass tool with a negative of the desired chan-
nel pattern was manufactured by micro-scale thermoplastic forming (Henann and Anand,
2008). Fig. A-la shows a schematic of the pattern of the tool, and Fig. A-lb shows a SEM
photomicrograph of a portion of the metallic glass tool.

The hot-embossing experiment was carried out on a servo-hydraulic Instron testing ma-

chine equipped with heated compression platens. The details of our micro-hot-embossing
set-up are provided in Appendix D. A 25.4 mm square and 2 mm thick sheet of Zeonex,
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Figure 3-11: Comparison of numerically-predicted and experimentally-measured unloaded de-
formed shapes for the cruciform-forging. (a) For a forging at 25 'C at a die-displacement of 5.4 mm.
(b) For a forging at 120 C at a die-displacement of 5.4 mm. (i) experimental macrographs; (ii)
deformed meshes; and (iii) outlines of simulated shapes (thick black lines) superimposed over the
experimentally-measured shapes.

Figure 3-12: Schematic of the axi-symmetric forging experiment.
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Figure 3-13: (a) Half-symmetry finite element mesh for the workpiece and the rigid surfaces used
in the axi-symmetric cruciform-forging simulations for Zeonex. (b) Comparison of numerically-
predicted and experimentally-measured force-displacement curves for forgings at 90*C and 120 C.
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Figure 3-14: Comparison of numerically-predicted and experimentally-measured unloaded de-
formed shapes for the axi-symmetric forgings at 120 0C after die displacements of 2 mm (top) and
4.5 mm (bottom).
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Figure 3-15: (a) Schematic of the plane-strain tool (not to scale), and (b) SEM micrograph of a
portion of the metallic glass tool.

and a 11.7mm square patterned metallic glass tool were aligned and placed between the
heated compression platens. The embossing experiment was conducted under nominally
isothermal conditions at a temperature of 130'C in air. The load was ramped up to 13 kN
to produce a nominal pressure of 95 MPa in 10 seconds, and held for 2 minutes before un-
loading, after which the tool was quickly removed from the substrate. The force-cycle for
the micro-hot-embossing process is schematically shown in Fig. 4-17a.

Since the channels are long relative to their width, and there are a large number of them
aligned in parallel, we employ a plane-strain idealization in our numerical simulation, and
consider only a single half-segment, with suitable boundary conditions. Fig. 4-17b shows
the finite element mesh. The Zeonex substrate is modeled using a mesh consisting of 849
ABAQUS-CPE4R plane strain elements, and the metallic glass tool is modeled using an
appropriately shaped rigid surface. Contact between the substrate and tool was approxi-
mated as frictionless. The displacement boundary conditions on the portions AD and BC
of the mesh boundary are ni = 0, while on the portion CD of the mesh, Ui = U2 = 0 are
prescribed. The predicted embossed pattern in the Zeonex after hot-embossing is shown in
Fig. 4-17c. The numerically-predicted pattern shown in Fig. 4-17c has been mirrored and
repeated during post-processing to ease comparison with the corresponding experimental
result, which is shown Fig. 4-17d. The final geometry of the embossed channels predicted by
the simulations agrees well with the result from the micro-hot-embossing experiment. The
simulation, Fig. 4-17c, predicts that at the embossing temperature of 130 C and nominal
pressure of 95 MPa, the micro-hot-embossing should result in channel heights which are the
same as the depths in the embossing tool, but there is incomplete die-filling and the edges of
the channels are rounded: this is also the result seen in the physical experiment, Fig. 4-17d.19

91n order to get complete die-filling, it would be ideal to conduct the hot-embossing at temperatures
above the glass transition temperature of the polymer, a regime that is of considerable practical interest for
the manufacture of microfluidic devices by micro-hot-embossing.



We further investigated the quality of the embossed features by using optical profilometry
methods. Figure 4-17e compares representative cross-sections of the embossed features in
the Zeonex (circles), against the numerically-predicted channel profile (dashed line). The

depth of the embossed features closely match with the numerical prediction; note that the

optical profilometry method that we used to measure the channel profile is not capable of
providing data for the sharp vertical features.

3.6.5 Normal impact of a clamped circular plate of PC by a sphe-
rical-tipped cylindrical projectile

As a final validation experiment one which is not quasi-static, conducted at high strain
rates, and is not isothermal we consider the normal impact of a circular plate of PC with

a spherical-tipped cylindrical projectile. Experiments of this type are of substantial practical
interest in the design and testing of transparent lightweight armor.

The circular plate specimen of PC, 203.2 mm in diameter and 5.334 mm thick (with bolt-
holes for clamping), was fabricated using a water-jet machine. The PC plate was clamped

(using steel clamping plates and bolts) in an Instron Dynatup testing machine, and subjected
to normal impact by a spherical-tipped cylindrical steel projectile with a mass of 80 kg at an
impact velocity of 3.6 m/s. The impact conditions were specially chosen such that the plate
only deforms plastically at the high rates, and does not fracture. The force versus time was
recorded during the impact, and the impacted plate specimen was recovered.

For the finite element simulation we make use of the axial-symmetry of the geometry,
and mesh only a slice of the geometry, as shown in Fig. 4-18. The PC plate is modeled
using 304 ABAQUS-CAX4RT reduced-integration, thermo-mechanically-coupled, axisym-
metric elements. The actual clamping boundary conditions are modeled by rigid surfaces
representing the clamping plates, but instead of individual clamping bolts, the surface in-
teraction between the rigid surfaces representing the clamping plates and the PC plate is
modeled using a high Coulomb friction coefficient of 0.75; thus the polymer is not completely
constrained to remain in contact with the clamping surfaces. The spherical-tipped cylindri-
cal steel projectile is modeled as a rigid body with a mass of 80 kg, and given an initial
velocity of 3.6 m/s towards the plate specimen. The projectile/polymer interface is modeled
as frictionless.

Fig. 4-19a shows an image of a sectioned one-half the specimen after the experiment, while
Fig. 4-19b shows the corresponding numerically-predicted result. The predicted deformed

profile of the polycarbonate plate is qualitatively very similar to that in the experiment. ITMore
quantitatively, Fig. 4-19c shows a comparison of the traced surface profile of the specimen
after impact with the numerically calculated profile - the two compare very favorably.
Fig. 4-20a shows the excellent agreement between the experimentally measured, and the
simulated force-time response on the projectile - up to the time for which the experimental
data was available. Lastly, Fig. 4-20b shows the temperature distribution in the plate 25 ms
after the impact, when the projectile has rebounded and lost contact with the plate. As
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Figure 3-16: (a) The micro-hot-embossing was carried out at 130 C under load control; the

process force history is shown. (b) Finite element mesh for a plane strain simulation showing the

meshed substrate and the tool modeled as a rigid surface. The displacement boundary conditions

on the portions AD and BC of the mesh boundary are ui = 0, while on the portion CD of the mesh,

U1 = U2 = 0 are prescribed. (c) Predicted deformed shape. (d) SEM image of the micro-channels

embossed in Zeonex-690R. (e) Comparison of numerically-predicted channel profile (dashed line)

with corresponding profilometer measurements.
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Figure 3-17: Finite element mesh used in the thermo-mechanically-coupled analysis of the plate
impact experiment.
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Figure 3-18: (a) Final shape of the impacted plate from the experiment. (b) Corresponding
numerical prediction. (c) Comparison of traced surface profile of the specimen after impact with
the numerically-calculated profile.

expected, the temperature rise is largest under the tip of the projectile, where it increases
by approximately 45 K, from 298 K to 343 K.
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immediately after the impact.



Chapter 4

A constitutive theory for amorphous
polymers in a temperature range
which spans their glass transition

4.1 Introduction

Strongly temperature- and rate-dependent elastic-viscoplastic nonliear behavior of amor-
phous polymers is not very well understood, and is modeled by existing constitutive theories
with varying degrees of success. There is no generally agreed upon theory to model the large-
deformation, thermo-mechanically-coupled, elastic-viscoplastic response of these materials in
a temperature range which spans their glass transition temperature. Such a theory is crucial
for the development of a numerical capability for the simulation and design of important
polymer processing operations, and also for predicting the relationship between processing
methods and the subsequent mechanical properties of polymeric products. There exists a
major need to develop a thermo-mechanically-coupled theory which can model the glassy
response as well as extends to a temperature range which includes temperatures above the
glass transition temperature of these materials - a range extending to $ 50 C above the
og of the material, where the material response still has some "solid"-like characteristics.
and is not quite yet a viscoelastic fluid. Such a theory would be useful, for example, for
modeling certain important polymer processing operations, such as micro-hot-embossing for
the manufacture of imicrofluidic devices. hot-drawing of fibers and films, and thermoforming
and blow-molding for manufacture of various thin-walled containers and bottles.

Constitutive theories aimed at this class of applications have been proposed by Boyce
and co-workers (e.g., Boyce et al., 2000; Dupaix and Boyce, 2007), as well as Buckley and
co-workers (e.g., Buckley and Jones, 1995; Dooling et al., 2002). Guided by the work of
Boyce, Buckley and their co-workers, and our own constitutive theory presented in Chapter
3 for the mechanical behavior of polymers below og, it is the purpose of this chapter to:
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" Specialize the general framework presented in Chapter 2 to model the response of
three representative amorphous polymeric materials - Zeonex-690R (a cyclo-olefin
polymer), polycarbonate (PC), and poly(methyl methacrylate) (PMMA) in a tem-

perature range from room temperature to approximately 50 C above the glass tran-
sition temperature of each material, in a strain rate range of 10-4 to 10-1 s 1 , and
compressive true strains exceeding 100%. The constitutive theory for the response of
Zeonex-690R, PC, and PMMA reported in this chapter, represents an important ex-
tension of our work in Chapter 3 on the response of these materials for temperatures
below Vg.

* Demonstrate that apart from its intrinsic theoretical importance from the viewpoint of
mechanics and physics of materials, our new theory is useful for modeling important
polymer processing operations, such as micro-hot-embossing for the manufacture of
icrofluidic devices, hot-forging of complex shapes and blow-molding of thin-walled

semi-spherical shapes.

The plan of this chapter is as follows. In §4.2 we briefly describe our simple compression
experiments on Zeonex-690R. In §4.3 we present the major constitutive and field equa-
tions of our specialized theory so that it is capable of reproducing the salient features of
the experimentally-measured mechanical response of Zeonex-690R, PC and PMMA. In Ap-
pendix B, we describe in reasonable detail our method to calibrate the (numerous) material
parameters/functions appearing in our constitutive theory. The quality of the fit of the

specialized model to the experimentally-measured stress-strain curves is discussed in §4.4,
where we show that the model reproduces the major features of the macroscopic response of
these materials in a reasonably acceptable fashion.

Our thermo-mechanically-coupled constitutive theory was implemented by our colleague
Shawn A. Chester by writing a user material subroutine for the finite element program
ABAQUS/Standard (2009). In order to validate the predictive capabilities of our theory and
its numerical implementation, we have performed the following validation experiments: (i) a
plane-strain forging of PC at a temperature below dg, and another at a temperature above
7g; (ii) blow-forming of thin-walled semi-spherical shapes of PC above Pg; and (iii) micro-
scale, hot-embossing of channels in Zeonex-690R above Pg. In §4.5, by comparing the results

from this suite of validation experiments of some key features, such as the experimentally-
measured deformed shapes and the load-displacement curves, against corresponding results
from numerical simulations, we show that our theory is capable of reasonably accurately

reproducing the experimental results obtained in the validation experiments.

4.2 Simple compression experiments on Zeonex-690R

Following the procedure described in Chapter 3, we have conducted simple compression

experiments on Zeonex-690R: (i) to large strains exceeding 130%, including loading and

unloading; (ii) at a variety of strain rates in the range 3 x 10-4 to 3 x 10- s-i , achievable
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in modern servo-hydraulic testing machines; and (iii) in a temperature range from room
temperature to ~ 40 0C above the glass transition temperature of the material. The nominal
glass transition temperatures of Zeonex-690R is 135 0C.

Fig. 4-1 shows true stress-strain curves' for Zeonex-690R at a strain-rate of 3 x 10-4 S1

at temperatures ranging from 25 C through 160 C. Fig. 4-2 shows true stress-strain curves
at strain-rates of 3 x 10. 3 x 10-2 and 3 x 10-1 s-1 at temperatures ranging from 25 'C
through 180 C. For temperatures less than 7g9. 135 C in Fig. 4-la, we see that in the
glassy region:

(i) The stress-strain curves exhibit a well-defined yield-peak, followed by strain-softening,
and eventual strain-hardening at large strains due to the limited extensibility of the
polymer chains.

(ii) As the temperature increases in the glassy region from 25 C to 130 C, the magnitude
of the yield-peak diminishes, the yield strength decreases with temperature from ~
65 MPa to ~~ 15 MPa, and the amount of strain-hardening observed at large strains
diminishes.

(iii) Upon unloading after compression to strains exceeding 130%, approximately 5% of the
strain is recovered, and there is permanent-set.

In contrast, referring to temperatures above V0  ~ 135 C in Fig. 4-lb, we see that above the
glass transition temperature:

(i) The initial stiffness of the material has dropped dramatically.

(ii) The yield-peak has disappeared.

(iii) The stress-strain response during the loading-phase is highly non-linear and exhibits
strain-hardening. However, the stress levels at large strains are below 3 MPa at 140 C,
and no more than 0.5 MPa at 160 C.

(iv) Upon unloading after compression to strains exceeding 130%, the material exhibits
a highly non-linear unloading response and significant permanent-set. The amount
of permanent-set increases dramatically as the temperature increases form 140 C to
160 0C.

Fig. 4-3 and Fig. 4-4 show a more extensive set of stress-strain curves for Zeonex-690R
at strain rates of 3 x 10-4, 3 x 10-3, 3 x 102, and 3 x 10-1 s- and temperatures of 25 C
through 180 C. Referring to Fig. 4-3 which shows stress-strain curves for Zeonex-690R at
various fixed temperatures below dg and four different strain rates, we see obvious strain-
rate dependent features of the material response. In the low-temperature glassy region,

'As is customary, in order to calculate the deformed cross-sectional area (and thence the true stress),
we have assumed plastic incompressibility to estimate the stretch in the lateral direction of the compression
specimens.
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Figure 4-1: Stress-strain curves in simple compression for Zeonex-690R at various temperatures
ranging from 25 'C, to 160 'C; at a strain rate of 3x 104 s- 1: (a) for temperatures below Vg ~
135 C, and (b) for temperatures above 0g. Note change in scale for the stress axis between various
figures.

19 < 135 0C, the yield strength of the material increases by about 10% for a one-decade

increase in strain-rate at any given temperature. Another important strain-rate dependent

feature is the softening observed at large strains at the highest strain rate of 3 x 10- s-1

at temperatures of 25 C, 70 C, 120 C and 130 0C. This softening is attributable to (near)
"adiabatic" heating at the high strain rates.2 Significant strain rate sensitivity can also be

observed at temperatures above the glass transition temperature in Fig. 4-4; similar to the

behavior below glass transition, the stress levels are higher for higher strain rates.

An important feature of the stress-strain behavior of amorphous polymers is their strain-

rate sensitive response in a temperature range slightly above their "nominal glass transition

temperature." Consider the stress-strain curves for Zeonex-690R in Fig. 4-4 at 140 0C: at the

lowest strain rate of 3 x 10-4 s- the material responds as if it were "above" its glass transition

temperature. However, at the highest strain rate of 3 x 101 s-1, the material exhibits a

glassy-response with a significantly higher stress magnitude, a yield-peak, strain-softening

and subsequent strain-hardening due to chain-locking. Thus, in accordance with well-known

results from frequency-dependent dynamic-mechanical-tests on amorphous polymers, this

result clearly shows that the "glass transition temperature" is not a constant for a material,
and increases as the strain rate increases.

2While we did not measure the actual temperature rise in our specimens, Arruda et al. (1995) have shown

that the surface temperature of a compression specimen of an amorphous polymer, for a test carried out at
20 'C, could increase by as much a 20 'C after a 100% compressive strain at a strain rate of 10-1 s-1.
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Figure 4-2: Stress-strain curves in simple compression for Zeonex-690R at various temperatures
ranging from 25'C, to 180 'C; at strain rates of (a) 3x 10-3 s-1, (b) 3x10-2 --1, n c x01s1
Note change in scale for the stress axis between various figures.
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Figure 4-3: Stress-strain curves in simple compression for Zeonex at strain rates of 3x10-4,

3x10- 4 , 3x10- 4, and 3x10-4s-1 , and at temperatures of 25'C, 70'C, 120 C, and 130 C. Note

change in scale for the stress axis between various figures.
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4.3 Constitutive theory

Since we wish to model the behavior of glassy polymers in the technologically important
temperature range which spans their glass transition temperatures, and since the number
of microscopic relaxation mechanisms in these polymers increases as the temperature is
increased, we base our theory on a "multimechanism" generalization of the classical Kr6ner
(1960) Lee (1969) multiplicative decomposition,

F - Fc(a)FP( C), with det Fe (a) > 0 and det FP (a) > 0, a 1,...., M, (4.1)

where each a denotes a local micromechanism of deformation. Such a multi-mechanism
generalization forms the basis of the earlier work by Buckley and Jones (1995), Boyce et al.
(2000), Dooling et al. (2002), Dupaix and Boyce (2007) and Ames (2007). For each mi-
cromechanism indexed by a, we refer to FP (a) and Fe (a) as the plastic and elastic parts of
F.3

It is important to note from the outset, that each FP(a) is to be regarded as an internal
variable of the theory which is defined as a solution of the differential equation (the flow rule
to be discussed shortly)

F p(a) - DP(a)FP(a) with detFP (a) = 1, and with initial condition FP (')(X, 0) = 1.
(4.2)

The corresponding Fe(a) is then defined by Fe(a) f FFP (aH). Hence the decompositions

(4.1) are not purely kinematical in nature as they are not defined independently of consti-
tutive equations; they are to be viewed as kinematical constitutive equations.

The fewer the "number of micromechanisms," M, which are needed to phenomenologi-
cally describe the response of a material, then the fewer the number of "material parameters"
that are needed to flesh-out the constitutive theory. In Chapter 3 on modeling the response
of amorphous polymers below '0 , we found that a theory with M = 2 was quite adequate. In
order to model the response of these materials, which extends to temperatures which are ap-
proximately 50 C above og, we find that we need to increase the number of micromechanisms
to M = 3. As a visual aid, Fig. 5-6 shows a schematic "spring-dashpot"- representation of
these three micromechanisms:

e The first micromechanism (a = 1): (a) The nonlinear spring represents an "elastic"
resistance to intermolecular (and perhaps intramolecular) energetic bond-stretching.
(b) The dashpot represents thermally-activated plastic flow due to "inelastic mech-
anisms," such as chain-segment rotation and relative slippage of the polymer chains
between neighboring mechanical cross-linkage points. (c) The nonlinear spring im par-

31n a one-dimensional theory of linear viscoelasticity, which is based on a widely-used mechanical analog

of A Maxwell-elements assembled in parallel, the one-dimensioinal strain c is decomposed as

E = e(ct) + ep(), a = 1 M;

the decomposition (4.1) is a three-dimensional, large-deformation, generalization of such a decomposition.
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allel with the dashpot represents an "energy storage" mechanism due to the local
elastic incompatibilities caused by the viscoplastic flow mechanisms. We introduce a
defect energy only for nicromechanism a, 1, via an internal variable A; even for this
microimechanism, the role of such a, stored energy decreases as the molecular mobility
increases when the temperatures approach and exceed Pg.

o The second and third micromechanisms (a - 2, 3): (a) The nonlinear springs
represent resistances due to changes in the free energy upon stretching of the molecu-
lar chains between the mechanical cross-links. (b) The dashpots represent thermally-
activated plastic flow due to slippage of the "mechanical" cross-links, which are rel-
atively strong below Pg, but are progressively destroyed at temperatures above 0g.
The fact that we employ two such mechanisms is necessitated by the experimentally-
observed increased complexity of the response of amorphous polymers as the temper-
ature transitions across the range of temperatures from below Pg to sufficiently above
Pg. We neglect any defect energies associated with mechanisms a = 2, 3.

Our strategy to phenomenologically model the response of the material as the tempera-
ture is increased to Pg and beyond, is as follows:

(i) For temperatures P < dg, we do not allow any plastic flow in the dashpots associated
with micromechanisms a = 2 and a = 3. Thus, since the springs in a = 2 and a = 3
are in parallel, for all practical purposes the three-micromechanism model reduces to
a simpler two-micromechanism model, which we have successfully used in Chapter 3
to model the response of amorphous polymers for temperatures P < Og.

A schematic of the individual contributions from each micromechanism, to an overall
stress-strain curve in compression at a temperature P < Pg is shown in Fig. 5-7a.

(ii) For temperatures P > dg, we allow for plastic flow in the dashpots associated with
micromechanisms a = 2 and a = 3. but quickly drop the plastic flow resistance in
mechanism a = 2 to a very small value, so that for all practical purposes in this
temperature range, only mechanisms a = 1 and a = 3 contribute to the macroscopic
stress.

A schematic of the individual contributions from each micromechanism, to an overall
stress-strain curve in compression at a temperature P > 1g is shown in Fig. 5-7b.

Remark 1: At first blush it might appear possible to combine mechanisms a = 2 and
a = 3 into a single micromechanism, say a = 2, and simply make the modulus associated
with the spring in this single branch to be strongly temperature-dependent -- taking on high
values below Pg and low values above Pg. However, this would lead to incorrect predictions
concerning the amount of "elastic recovery" in circumstances where the polymer is first
heated to a temperature above Pg, subjected to a large deformation which includes large
stretching of the spring, and then cooled to below Pg under traction boundary conditions.
Thus, since by assumption the modulus associated with spring in the single additional branch
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Figure 4-5: A schematic "spring-dashpot"-representation of the constitutive model.

a = 2 increases with decreasing temperature, the amount of "elastic recovery" (spring-
back) upon cooling under traction boundary conditions would be unphysically too large.
Conversely, cooling under displacement boundary conditions, would result in large residual
stresses.

In our discussion above, we have implicitly assumed that the glass transition temperature
og is a constant for each material. However, the "glass transition" actually occurs over a
narrow range of temperatures, and whatever the means that are used to define a glass
transition temperature, 4 such a glass transition temperature is not a constant, but depends
strongly on the strain rate to which the material is subjected. With Do = sym(FF-')
denoting the total deviatoric stretching tensor, let

v V21|Do 1(4.3)

4 Such as the peak in the tan-6 curve in a DMA experiment.
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Figure 4-6: Schematic plots of stress-strain contributions from individual micromechanisins to
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Vr

Figure 4-7: Schematic of dependence of glass transition temperature on the shear strain rate v.
Here or is a reference glass transition temperature at a a low reference shear strain rate vr.

denote an equivalent shear strain rate.? As a simple model for the variation of the glass
transition temperature with strain rate, we assume that

19 or if

" ,+nT log - if
vr

v< u

V > Vr,
(4.4)

where Or a reference glass transition temperature at a reference strain rate vr, and n is a
material parameter. The change in glass transition temperature with strain rate modeled
by (4.4) is qualitatively shown in Fig. 5-8.

The specialized constitutive theory relates the following basic fields:

X =x(X, t),

F=VX, J=detF>0,

F = Fe(a)FP(), a' - 1, 2, 3,

Fe (a), je (a) = detFe (a) - J > 0,

FP (a) JP (a) = det FP(a) 1,

Fe (a) Re (a)Ue (a),

Ce(a) - Fe (a)T Fe (a),

BP(a) = FP(a)FP (a) .

motion;

deformation gradient;

elastic-plastic decomposition of F;

elastic distortions;

inelastic distortions;

polar decomposition of Fe (a);

elastic right Cauchy-Green tensors;

plastic left Cauchy-Green tensors;

5We emphasize that throughout our paper v, vP etc., do not denote Poisson's ratios, but denote equivalent
shear strain rates. The Poisson's ratio is explicitly denoted by v.
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T = T(a), T(")= T((), Cauchy stress;

TR =JTF-: Piola stress:

R3=1 free energy density per unit reference volume:

- 3=1 ' entropy density per unit reference volume:

t) > 0, absolute temperature;

referential temperature gradient;

qR, referential heat flux vector;

qR, scalar heat supply.

In the following subsections we present special constitutive equations for the three mi-
cromechanisms. For brevity, we only present the major results of our specialization the
reader is referred to Chapter 2 for a detailed development of the theory, and Chapter 3 for
the intermediate steps of continuum-mechanical arguments and derivations.

4.3.1 Constitutive equations for micromechanism a = 1

Free energy

The free energy is given by

1) e (1)ce A )(45

elastic energy defect energy

with Oe () an elastic energy, and P (1) a defect energy associated with plastic flow, for a 1.

Also, Icc() and 1A represent lists of the principal invariants of C) and A, respectively.

The "'defect energy" VPl) associated with local microscopic plastic strain incompatibil-
ities, and introduced via the internal variables A, leads to the development of important

back-stresses, and allows one to phenomenologically account for Bauschinger-like phenom-

ena on unloading and reverse loading. In addition, they contribute in an important manner

to the plastic source term in the balance of energy.

The elastic energy 1e (1):

Let
3

CeG) - e f r' & r', with o= A 2 (4.6)
i=1

denote the spectral representation of Ce(l), where (A', A, A) are the positive eigenvalues
of Ue), and (ri, r', r') are the orthonormal eigenvectors of Ce(1) and Ue(l). Instead of
using the invariants Ice(, the free energyV) (1) for isotropic materials may be alternatively
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expressed in terms of the principal stretches, or functions thereof. With

3

Ee(1) = El re i Ee = In Ae, (4.7)
i=1

denoting an elastic logarithmic strain measure, we adopt the following special form for the
free energy Ve(1):6

de(1) =-G|E + -K(trEe0i) 2 - 3 K (tr Eeul)ath(g _ 0) + 1()), (4.8)

where f (9) is an entropic contribution to the free energy related to the temperature-dependent
specific heat of the material. The temperature-dependent parameters

G(i)) > 0, K(7)) > 0, at" (V) > 0, (4.9)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and
Vo is a reference temperature.

For polymeric materials the magnitude of the elastic shear modulus G decreases drasti-
cally as the temperature increases through the glass transition temperature dg of the mate-
rial. Following Dupaix and Boyce (2007), we assume that the temperature dependence of
the shear modulus may be adequately approximated by the following function:

G() = 1(Gqi + Gr) - {(Ggi - Gr) tanh (d - d,)) - M(h - dg), (4.10)

where og is the glass transition temperature, Gg, and Gr (< Ggi) are values of the shear
modulus in the glassy and rubbery regions, and A is a parameter related to the temperature
range across which the glass transition occurs. The parameter M represents the slope of the
temperature variation of G beyond the transition region, with

M 1 -d < (4.11)
Mr 19 > dg.

Next, the temperature dependence of Poisson's ratio vP* of the material is assumed to be

vPo(O) = (v + vP 01) - (v - vo) tanh - g)), (4.12)

with v and Pvf representing values below and above hg, respectively. The temperature
dependence of the bulk modulus K is then obtained by using the standard relation for

6 This is a useful free energy function for moderately large elastic stretches, Anand (1979, 1986).
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isotropic materials
2(1 + vP i(1))

K(3() G(2) 3(1) (4.13)

The temperature dependence of the shear modulus G, the Poisson's ratio vpj. and the bulk
modulus K are schematically shown in Fig. 5-9.

The coefficient of thermal expansion is taken to have a bilinear temperature dependence,
with the following contribution to the thermal expansion term ath (d - o) in the free energy
relation (4.8): { a1q(7) - 7)10)

(ag (e - 1
0) + (a, - agi) (d - 0g)

if ) < d

if V > q).
(4.14)

(4.15)

denoting the spectral representation of A, and with

(4.16)

denoting a defect logarithmic strain measure, we assume a free energy ?P() of the form

V"l) =- B [(In ai)2 + (In a 2 )2 + (ln as)214
(4.17)

where the positive-valued temperature-dependent parameter

B(W) > 0., (4.18)

is a back-stress niodulus. The back-stress modulus B is assumed to be a linearly decreasing
function of temperature, with B vanishing above Og:

B() =(-X(O - 0g)
B (9) 0

if 9 < 09

if ) > Vg,

where X > 0 is a constant.

a -th o)

The defect energy _P():

With

(4.19)

A = ai li oD li,

In A =- In ai 1i & li,



114

Temperature

Figure 4-8: Schematic of temperature-dependence of shear modulus G, bulk modulus K and
Poisson's ratio vP0 '. Note that the ordinate is plotted on a logarithmic scale.

Cauchy stress. Mandel stress. Back-stress. Effective stress

Corresponding to the special free energy functions considered above, the contribution TO)
to the Cauchy stress is given by

(4.20)

where

me B1 -O e (1) (Ee (1). 0) _el) h, ,oMC4l) = B((Eeu ) - 2GEe01 ) + K (tr Ee0l)1 - 3Kath
DEe(l)0

is the corresponding symmetric Mandel stress.

The symmetric and deviatoric back-stress is

Mback = 2 A A) = B lnA.

Further, the driving stress for plastic flow is the effective stress given by

(M )o = Mel - Mback

The corresponding equivalent shear stress and mean normal pressure are given by

(4.21)

(4.22)

(4.23)

and p - trMe(1)
3

-() def 1

9/2
(4.24)

T df j- J1 R4e () Me4() R e I)T

|(Me ))ol,
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respectively.

Flow rule

The evolution equation for FP(1) is

FP () = DP(1 ) FP() (4.25)

with DP) given by

DP ((Mc2f )o , where vP 1 ) v v 2|DP(1 )|. (4.26)

The equivalent plastic shear strain rate vPM is obtained by solving the scalar strength relation

- Y( 1) (A 1), vW), (4.27)

where

AN - (Ce"l, BP(1), A, 19, ) (4.28)

denotes a list of constitutive variables. With the mean normal pressure defined by (4.24)2
and a (total) effective stretch defined by

-V tr C/3 - Ce(): BP (1)/3, (4.29)

as a simplification of the theory, we assume henceforth that the strength function Y( is
independent of A, and depends on Ce() and BP) only through p and A, so that

-r(1 = Y (p, (1), v , vrP (1). (4.30)

We assume further that at a fixed state (9,, (1, )) the strength relation (4.30) is invertible,
with inverse

vPO) = f (9,t-r),p, , () > 0. (4.31)

Next, we restrict the list of the internal variables (') to three positive-valued scalars,

(N M (, Sa, Sb),

where

e p > 0 is an "order-parameter" representing the local change in molecular-packing due
to deformation-induced disordering.
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" Sa > 0 represents a transient resistance to plastic flow coupled to the disordering of
material. The internal variables p and S, are introduced to model the "yield-peak"
which is widely-observed in the intrinsic stress-strain response of glassy polymers.

* Sb ;> 0 represents a dissipative resistance to plastic flow introduced to model "isotropic
hardening" at large strains as the chains are pulled taut between entanglements at
large strains, and there is increasing frictional interaction between the pendant side-
groups; this is in addition to any entropic or energetic contribution from network
chain-stretching.

Thus, the constitutive equation for the equivalent plastic strain rate (4.31) becomes

vP f((1 W, rf (1 ), \ , PS,S) > 0. (4.32)

Finally, guided by the literature (e.g., Eyring. 1936; Fotheringharn et al., 1976; Fotheringham
and Cherry, 1978; Povolo and Hermida, 1995; Povolo et al., 1996; Richeton et al., 2005a,
2006, 2007) and our flow rule in Chapter 3, for the flow function f in (4.32) we choose a
thermally-activated relation in the specific form

0o if < 0.
VPN =VyiQ ~ e (4.33)

jv6 exp exp ( - sinh >if r 0,
C/\kBO 19 kB?

where
/e1 c -1 - (Sa + Sb + apP)p (4.34)

denotes a net shear stress for thermally-activated flow; here a, > 0 is a parameter introduced

to account for the pressure sensitivity of plastic flow. The parameter v( is a pre-exponential
factor with units of 1/time, the term exp(-1/() in (4.33) represents a concentration of "flow
defects," Q is an activation energy, kB is Boltzmann's constant, V is an activation volume,
and m(') is a strain rate sensitivity parameter.

Remark 2: There are many models for the rate and temperature-dependent yield strength
of polymers in the literature which consider plastic flow as a thermally-activated process

(e.g., Eyring, 1936; Robertson, 1966; Argon, 1973). Most of these models give a reasonably
acceptable representation of the variation of the yield strength with temperature and strain
rate, but over limited ranges of these variables. The equation for the plastic shear strain
rate (4.33) used here is motivated by the recent work of (Richeton et al., 2005a, 2006, 2007),
who in turn base their model on the so-called "cooperative" -model of Fotheringham et al.
(1976) , Fotheringham and Cherry (1978), Povolo and Hermida (1995) and Povolo et al.
(1996). Richeton et al. have shown that a flow function of the form (4.33) may be used
to satisfactorily represent the variation of the yield strength of amorphous polymers over a
wide range of strain rates and temperatures. The major difference between the flow function
proposed by Richeton et al. and the one considered here, is that instead of a tensorial back-
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stress Mback (cf., (4.22)) to define an effective stress which drives plastic flow (cf. (4.23)),
they consider a teIperature-dependent scalar internal stress in their theory. This results
in a profound difference between their model and the one considered here, specially in the
ability of the two models to capture unloading and cyclic loading phenomena, as well as
in a proper accounting of the energy dissipated during plastic flow (below -9g). Also, the
three-dimensional theory that they present in § 3 of their 2007 paper is substantially different
in its mathematical structure from that considered here.

Remark 3: In the literature on amorphous materials, the dimensionless parameter ( in the
term exp(-1/() for the concentration of flow defects, is called the normalized equilibrium
free-volume, and given by (e.g., Spaepen, 1977)

-= , (4.35)
v

where vf is a local "equilibrium free volume," a measure of the local packing density of the
amorphous material at a given temperature, and v* is a normalizing constant. Assume that
the variation of vf at temperatures t) < Qg is small, and that for t > 7)g the temperature

dependence of v5 may be approximated by a linear relation

v5 =g + a5('V - Og), (4.36)

where v is the free-volume at dg, and af is the temperature coefficient of expansion of the
free-volume. Thus, for temperatures > 0

exp =exp -f exp - ,f (4.37)
( ,+05(,d - ~g ) 9 - Vg~a5)

and introducing two constant material parameters with dimensions of temperature,

C = (V*/a5) and V) . ("t9 - Vg/a5), (4.38)

we obtain
1 C

exp = exp - , (4.39)

which is the famous Vogel-Fulcher-Tamman (VFT) term, used widely to describe the temperature-
dependence of the viscosity of polymeric liquids near their glass transition temperature (Vo-

gel, 1921; Fulcher, 1925; Tammann and Hesse, 1926).7 Here, instead of manipulating as

7 1nstead of the VFT form (4.39), Richeton et al. (2005a, 2006, 2007) extend their equation for the plastic
shear strain rate to temperatures V > ig, (cf. equation (17) in Richeton et al. (2005a)), by using a Williams-
Landel-Ferry (WLF)-type temperature-dependent expression (Williams et al., 1955)

exp ( = exp ((loge ) + C - g) (4.40)
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above to obtain the VFT-expression

(4.41)
C

for the equilibrium normalized free volume (, we use (4.35) and (4.36) to directly write

(=(g, + d (79 - 79g), (4.42)

where
g dand d = V (4.43)

Uf fj

are constants, with (qi dimensionless, and d with dimensions of inverse temperature. Indeed,
since the variation in ( is expected to be small for temperatures 79 < ig, we assume that

constant for V < 79g, and rewrite (4.42) as

(- i for V < 799 (444)

(gi + d (0 - 79g) for ? > dg.

The simple relation (5.22) is well-defined at temperatures lower than Vg, and has a linear
VFT-type form at higher temperatures; we use it in what follows. The variation of normalized
free volume parameter ( with temperature is schematically shown in Fig. 5-10a.

Further, we find that in addition to a temperature-dependent ( above 1)g, in order to
model the plastic flow response of polymers over a wide range of temperatures spanning
the glass transition temperature, the activation energy Q also needs to be taken to be
temperature-dependent. We assume that it varies as

Q(9) =(QgI + Qr) - j(Qgi - Q,) tanh (d- )), (4.45)

where, Q = Qgi in the glassy regime, and Q = Q, < QgI in the rubbery regime, and as in
(5.8), A is a parameter related to the temperature range across which the glass transition
occurs. The variation of activation energy Q with temperature is schematically shown in
Fig. 5-10b.

where C1 and C2 are constants with dimensions of temperature. As is well-known, using suitable manipula-
tions, the VFT and the WLF forms may be shown to be equivalent. Although the WLF and VFT equations
are equivalent, the slightly simpler form of the VFT equation is often preferred.
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Figure 4-9: Schematic of temperature dependence of (a) normalized free volume ( and (b)
activation energy Q.

Evolution equations for internal variables

In a general form, the internal variables (1) and A are presumed to evolve according to the

differential equations (cf. (2.140) in Chapter 2)

(1) =hi (A(')) vlPD) - Ri (A(')),

dynamic evolution static recovery

(4.46)
S=DP)A + ADP() - G (A(')) v(') - GstaticI(A(),

dynamic evolution static recovery

with the functions hi, R, G, and G functions of their arguments.

Remark 4: In (4.46), the functions RI and Gstatic represent Static recovery (or time recovery,
or thermal recovery), since they do not depend on the plastic strain rate. The static recovery

terms are important in long time situations such as creep experiments over a period of hours

and days at high temperatures. Here, we focus our attention on thermal forming processes

that occur in relatively shorter periods of time (typically less than 5 to 20 minutes), in which

case the slow static recovery effects may be neglected. Accordingly, in what follows, as a

simplification, we neglect the efects of any static recovery in the evolution of the internal
variables.
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(i) Evolution of p and Sa:

We assume that the material disorders, and is accompanied by a microscale dilatation
as plastic deformation occurs, resulting in an increase of the order-parameter (p,8 and
this increase in disorder leads to a change in the resistance Sa, causing a transient
change in the flow stress of the material as plastic deformation proceeds. Accordingly,
the evolution of the resistance Sa is coupled to the evolution of the order-parameter
co. Specifically, we take the evolution of Sa to be governed by9

5a = H vr(), with initial value Sa(X, 0) = Sao, (447)
* (VP(4.47)0

Ha = ha (S* - Sa) , and S*a(v(), , p),

and assume that

- #vP 1), with initial value (p(X, 0) =o (4.48)

# - g (p* - p), with (p* = 0*(vP(), 9) > 0;

here 3 is a shear-induced disordering function.

In the coupled evolution equations for Sa and p, the parameters ha,1g, ,Sa and o are
constants (possibly temperature-dependent). The function Ha represents the strain-
hardening/softening function for the resistance Sa during plastic flow: the material
hardens if Sa < S*, and softens ifSa > S*. The critical value S* of Sa controlling
such hardening/softening transitions is assumed to depend on the current values of the
plastic strain rate, temperature, and the order-parameter p. The function S*, which
controls the magnitude of the stress-overshoot, is taken as

S- a) (4.49)

In the disordering function ,, the parameter cp* represents a strain-rate and temper-
ature dependent critical value for the order-parameter: the material disorders when
(p < p*, and becomes less disordered when (p > *. Considering the temperature and
strain-rate dependence of '4*, it is expected to decrease with increasing temperature at
a fixed strain-rate, and increase with strain-rate at a fixed temperature. We model this
temperature and strain rate dependence of o* using the following phenomenological

8The microscale dilatation is extremely small, and at the macroscopic level we presume the plastic flow
to be incompressible.

9 Coupled differential evolution equations of this type have previously been used to model yield peaks in
granular materials (Anand and Gu, 2000), as well as amorphous polymeric materials (Anand and Gurtin,
2003a; Ames, 2007), and amorphous metallic glasses (Henann and Anand, 2008).
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equation

z ( - if (9 < 9) and (v 2P() > 0),
0* (VPG ig) = -v ~ (4.50)

0 if (9 > dg) or (vP() - 0),

with constants (z, r, s).

Thus, gathering the number of material parameters introduced to phenomenologically
model the yield-peak, we have the following rather large list

(ha, b, So, g, go, z, r, s),

with some of these parameters possessing additional temperature-dependence. We
assume that all but g are independent of temperature. The parameter g in (5.29),
which controls the width of the yield-peak (higher values of g results in a narrower
peak), is assumed to increase linearly with temperature:

g(9) = g1 + g2 V. (4.51)

Using these equations, the evolution of the order parameter p with strain, and corre-
sponding evolution of internal resistance S, is schematically shown in Fig. 5-11a. By
suitable choice of material constants, the coupled evolution equations for the internal
variables o and Se, may be used to model the "yield-peak" in the stress-strain response
of glassy polymers.

Remark 5: Modeling the temperature and rate-sensitivity of the yield-peak over a
wide-range of temperatures and strain rates is known to be complex. If a simpler
theory with fewer material parameters is desired, and if it is deemed that modeling the
yield-peak is not of interest, then there is no need to introduce the internal variables
o and S,, and thereby also the attendant constants in their evolution equations.

(ii) Evolution of Sb:

In most of the literature on amorphous polymers, the rapid increase in stress lev-
els at large deformations has been attributed to entropic-elasticity and the limited-
extensibility of the polymer chains. However, our experience with experiments that
involve both loading to large strains and subsequent unloading, indicate that if in a
corresponding theoretical model the rapid increase in stress levels during loading is at-
tributed entirely to the limited chain-extensibility and entropic-elasticity effects, then
the unloading response is incorrectly predicted - there is too much "elastic recovery"
upon unloading. It is for this reason that we have introduced the internal variable

Sb to model a dissipative resistance to plastic flow which arises at large strains as the
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Figure 4-10: Schematic of the evolution of internal variables (O, Sa, Sb) with strain: (a) evolution
of p and Sa; and (b) evolution of Sb.

chains are pulled taut between entanglements, and there is increasing frictional inter-
action between the pendant side-groups; this resistance is in addition to any entropic
contribution from network chain-stretching.

The evolution of the internal variable Sb is taken to be governed by the differential
equation

$6 = hb (A - 1) (S* - Sb) v), with initial value Sb(X, 0) = S 0. (4.52)

In (4.52) the material parameters are hb and S*. We take hb to be a temperature
independent constant, while the saturation value S* is taken to have the following
temperature dependence

S* (d) (Si + Sr) -- (Sgi - S,) tanh ( O - 'Oq)) - L(? - og), (4.53)

where S.i and S, (< Sgl) are values of S* in the glassy and rubbery regions near the
glass transition temperature 79g9, and L represents the slope of the temperature variation
of S* beyond the glass transition region, with

( L<V - "' (4.54)
Lr 19 > o0.

A schematic of the evolution of Sb with an equivalent strain in a monotonic isothermal
experiment is shown in Fig. 5-11b.

(iii) Evolution of A:
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Finally, the evolution equation for A is taken as

S= DP 1) A + ADP(1 ) - -/A ln A vP1 , A(X, 0) = 1, (4.55)

where ' > 0 is a constitutive paraneter which governs the dynamic recovery of A; we
take it to be independent of temperature. This evolution equation is a generalization
of the non-linear kinematic-hardening rule of the small deformation theory of classical
metal viscoplasticity (e.g., Chaboche, 2008), but here, as in Chapter 3, applied to large
deformation polymer-viscoplasticity. Note that on account of the assumed temperature
dependence of the back stress modulus B in (4.19), the back-stress Mback decreases as
19 approaches zog, and vanishes for all V > dg.

4.3.2 Constitutive equations for micromechanism a = 2

1. Free energy

Let
Fe (2) df j-1/3 Fe( 2), det Fe (2) 1, (4.56)

denote the distortional part of Fe(2) Correspondingly, let

Ce 2 ) de (2))TF( 2 ) -
2 / 3 Ce(2 ), 47

Ci (F )TFe -/C% (4.57)

denote the distortional right Cauchy-Green tensor and consider a free energy function
in the special form 10

e0 (2)Cs , ,) (4.58)

As discussed in Chapter 3, there is a conceptual difficulty with using statistical-
mechanical ideas of the theory of entropic rubber elasticity to describe the strain

hardening due to chain-stretching at temperatures below the glass transition tem-

perature, because at these temperatures the chains do not have sufficient mobility
to sample all possible molecular conformations. For this reason, we employ a simple
phenomenological form for the free energy function 1(2) proposed by Gent (1996):

V (2) ~ ~ ~ (2 _ 112 2 e re2

- atj ln (1 - I ), with I) N trCT, (4.59)

where
p) (d) > 0, and 12)(j) > 3 (4.60)

are two temperature-dependent material constants, with P(2) representing the ground

state rubbery shear modulus of the material, and I,, representing maximum value of

((2) - 3), associated with the limited extensibility of the polymer chains.

' 0Since Je (a) = J, and we have already accounted for a volumetric elastic energy for @(1), we do not allow
for a volumetric elastic energy for @(2) or()
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The Gent free energy function has been shown by Boyce (1996) to yield predictions
for the stress-strain response similar to the entropic-network model of Arrucla and
Boyce (1993a). However, since the Gent free-energy function is phenomenological, we
are free to specify a temperature variation of the moduli 1p2 () > 0 and IY(d) to
fit experimentally-observed trends, rather than those dictated by statistical mechanics
theories of entropic elasticity. The material parameter p( in (5.38) is strongly tem-
perature dependent. Experimental results indicate that the rubbery shear modulus
P (2) decreases with increasing temperature. The empirical function chosen to fit the
experimentally-observed temperature dependence of p( is

2(d) = p2) exp - N(d - 1o)), (4.61)

pj) is the value of p( at the glass transition temperature (Vg), and N is a param-
eter that represents the slope of temperature variation on a logarithmic scale. The
parameter ( ) is taken to be temperature-independent constant

I(d) constant. (4.62)

2. Cauchy stress. Mandel stress

Using (2.131), the free energy (5.38) yields the corresponding second-Piola stress as

Se (2) 0-(2)
2 (4.63)

BgCe(2)

- - 2/ 3 (2) _ - 2 32 1 1 1t C )C(4.64)

and use of (3.22) gives the contribution T(2 ) to Cauchy stress as

T(2) = J-1Fe( 2 )Se()Fe(2)T (4.65)

I, -( 3\- -1 2)

= J- p 1 - 3(2) (B di() , (4.66)
Tn,

where
B df Fe (2) (Fe) (2))T - (4.67)

ds - dis dis

denotes the elastic distortional left Cauchy-Green tensor. Also, from (2.132) and (5.42)
the corresponding Mandel stress is

Me(2) - Ce(2 )Se(2 ) - g(2) 1(9) 3) (C2)(, (4.68)



125

which gives the equivalent shear stress for plastic flow as

-(2) 1M (4.69)

3. Flow rule. Internal variables

The evolution equation for FP( is

FP DP FP, (4.70)

with the plastic stretching DP( given by

D (2)= p(2)Me(2 ) p()df21
D K2T(2) = where vP V2 1 vDPN I (4.71)

is the corresponding equivalent plastic shear strain rate. With S(2) (-d) a positive-valued
stress-dimensioned shear resistance, we take the corresponding strength relation as a
simple power law

m(2)

(2) 1p(2)

where v6 is a reference plastic shear strain rate with units of 1/time, and m 2 is a
positive-valued strain-rate sensitivity parameter. This gives

_ 1/m(m

v1 vp ((2) (4.73)

We assume that S(2) varies with temperature,

S (2)O) =(S () + S) - (Sf - S ) ) tanh (V - 1Og)), (4.74)

where. S( = S  in the glassy regime, and S = S2) (< S() in the rubbery regime,
and as in (5.8), A is a parameter related to the temperature range across which the

glass transition occurs. A high value of S( = S(2 ) leads to vP( ~ 0 when O <ZD gi

og, and as the temperature increases through the glass transition, the value of S(
smoothly transitions to a very low value, allowing for plastic flow above 'og. This
assumption is meant to reflect the major effect of the rapid destruction of a large
fraction of the mechanical crosslinks as the temperature increases beyond tog. Thus,
under a macroscopically-imposed deformation history at temperatures greater than a
few degrees higher than Og, microniechanism a = 2 freely deforms inelastically by
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relative chain-slippage, and there is no further increase in the corresponding elastic
stretch Ue (2), and thereby the corresponding stress; cf. Fig. 5-7b for a = 2.

4.3.3 Constitutive equations for micromechanism a = 3

1. Free energy

As for micromechanism a = 2, we take the free energy in a Gent form:

- 3_ 3 ,

and I) > 3

are two material constants, with p(3 ) representing the ground-state rubbery shear mod-
ulus of the material, and I2 representing maximum value of (I(3) - 3). For simplicity,
these two material constants are assumed to be temperature-independent.

2. Mandel stress. Cauchy stress

Using (2.131), the free energy (5.54) yields the corresponding second Piola stress as

1Se(3) _ j- 2 / 3 (3 ) (I tr Ce (3) Ce(3)dis ) dis
i ]1 

--3n

and use of (3.22) gives the contribution T(3 ) to Cauchy stress as

T(3 = J-1 p (1 (B 3 )o]
- I (3

Also, from (2.132) and (5.56) the corresponding Mandel stress is

M e(3 ) - P (3) ( _ -
13) 3 - dis

17(C)n,
(4.79)

which gives the equivalent shear stress for plastic flow for micromechanism a = 3 as

, e(3) 1 Me(3) (4.80)

3. Flow rule. Internal variables

The evolution equation for FP(3 is

Fp (3) = D((3) F4(81

where

with I = tr Cdi,

p(3) > 0,

(4.75)

(4.76)

(4.77)

(4.78)

g(3) 1 _ (3) I (3)ln 1

(4.81)
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with the plastic stretching DP() given by

Sa) (3) where v ) v v2|DP)| (4.82)

is the corresponding equivalent plastic shear strain rate. 'Ve assume that vP()= 0
when 19 < '0g, and for id > og, with S() a positive-valued stress-dimensioned shear
resistance, we take the corresponding strength relation as a simple power law

) = S(3) ) (4.83)
(3))

where v6 is a reference plastic shear strain rate with units of 1/time, and m9) is a
positive-valued strain-rate sensitivity parameter. This gives

0 if i)<dg,

-p(3) =r(3) 1/m(3) (4.84)

4. Evolution equations for internal variable S(

The internal variable S(3) models the dissipative resistance caused by the sliding poly-
mer chains during the tortuous process of molecular disengagement that has come to
be know as "reptation" at temperatures above 19. The evolution of S 3 is taken to be
governed by

5(3) = h_ (Zdis - 1) v(a), with initial value S(3)(X, 0) = S ;> 0. (4.85)

Here h3 (0) and S( (d) are temperature dependent material parameters, and

Adis -- VtrCdi/3 = BP : Cdi /3 (4.86)

is an effective distortional stretch. The temperature dependence of S(3) and h3 is taken
to obey the following simple forms

S(3= S( exp (- Y(Z - 1) (4.87)

h3 h3 exp (- Z(T' - 79g)). (4.88)
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4.3.4 Fourier's Law

The heat flux is taken to be given by Fourier's law

qR V, (4.89)

with K(79) > 0 the thermal conductivity. The temperature dependence of the thermal con-
ductivity for the three polymers is shown in Fig. 5-12a."

4.3.5 Partial differential equations for the deformation and tem-
perature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR + boll pR X, (4.90)

where boR is the non-inertial body force per unit volume of the reference body, pR > 0 is the
mass density, and

TR = JTF- (4.91)

is the standard first Piola stress, with T given by the sum of (5.13), (5.43) and (5.57).

At this stage of the development of the theory and the concomitant experimental database,
the "thermoelastic coupling" terms in (2.147) which give rise to a temperature change due
to variations of C'(") and A are not well-characterized, nor is the dependence of the specific
heat c, defined in (2.146), on these quantities. Much work needs to be done to characterize
these dependencies. Here, as approximations, (i) we assume that c ~ (d) (independent of
Ce(') and A), and may be obtained from experimental measurements; and (ii) we neglect the
thermoelastic coupling terms, and assume instead that only a fraction 0 '5 w 1 of the rate
of plastic dissipation contributes to the temperature changes. Under these approximative
assumptions, and since we have neglected static recovery of A, (2.147) in Chapter 2 reduces
to

c = -DivqR qR +W (T-(1)vP(1) + j B yI ln A12 ,p (i) + -r(2) 1/ (2) + -r( 3) 1p (3 )) . (4.92)

The temperature dependence of specific heat for the three polymers is shown in Fig. 5-12b. 12

"For Zeonex-690R, the data was obtained from Zeon chemicals. For PC and PMMA, the data was
obtained from the material database of the commercial software program Moldflow.

1 2 For Zeonex, data was obtained from Zeon chemicals. For PC and PMMA see (Bicerano, 1993; Van
Krevelen, 1990).
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Figure 4-11: Temperature dependence of (a) thermal conductivity, and (b) specific heat.

4.4 Fit of the stress-strain curves and material param-

eters for Zeonex-690R, PC, and PMMA

The material parameters appearing in our model were calibrated by fitting the experimental

stress-strain data for Zeonex-690R, PC, and PMMA with the help of a MATLAB implemen-

tation of a one-dimensional version of our model which is detailed in the Appendix B, as well

as three-dimensional finite element simulations using a single element. Under certain circum-

stances, when it became necessary to account for heat generation due to plastic dissipation

and thermal conduction in the simple compression experiments," fully thermo-mechanically-

coupled multi-element simulations were required (cf. Ames, 2007). Our heuristic material

parameter calibration procedure for our model is described in the Appendix B. The material

parameters for Zeonex-690R, PC, and PMMA determined by using this procedure are listed

in Table 4.1.

The fit of the constitutive model to the experimental stress-strain curves for Zeonex-690R,

at various temperatures ranging from 25 C to 180 C and strain rates ranging from 3 x 10-4

to 3 x 10-1 s-, is shown in Fig. 5-13. The fit of the constitutive model to experimental

stress-strain curves for PC (experiments on PC were conducted by Shawn A. Chester), at

various temperatures ranging from 25 C to 175 C and strain rates ranging from 10-
3 

to

1 0
-1 s-1, is shown in Fig. 5-14. Finally, Fig. 5-15 shows the fit of the constitutive model to

the experimental stress-strain curves for PMMA (from Ames, 2007) at various temperatures

ranging from 25'C to 170'C and strain rates ranging from 3 x 10-4 to 10-1 S-1.

For all three amorphous polymers (Zeonex-690R, PC, and PMMA), the specialized con-

stitutive model performs acceptably (but not perfectly!) in reproducing the following major

features of the macroscopic stress-strain response of these materials:

1
Typically to fit the experimental data at strain rates of 0.01 s- and 0.03 s- .
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" For temperatures 0 < dg: (a) the strain rate and temperature dependent yield
strength; (b) the transient yield-peak and strain-softening which occurs due to deform-
ation-induced disordering; (c) the subsequent rapid strain-hardening due to alignment
of the polymer chains at large strains; (d) the unloading response at large strains;
and (e) the temperature rise due to plastic-dissipation and the limited time for heat-
conduction for the compression experiments performed at strain rates 2 0.01 s-1.

* For temperatures 0 > z0g: (a) the extreme drop in initial stiffness at these temn-
peratures, relative to those below z0g: (b) the lack of a yield-peak; (c) the significant
drop in maximum stress levels to ; 5 MPa, relative to ~ 250 MPa at temperatures
below d,,; (c) the highly non-linear, strain-hardening stress-strain response during the
loading-phase; (f) the non-linear unloading response and permanent-set -- for Zeonex-
690R and PC the amount of permanent-set increases dramatically as the temperature
increases, while for PMMA the amount of permanent-set is substantially smaller.

Overall, the model better reproduces the experimentally-observed stress-strain response for
the three materials at temperatures below 19,, than it does for those for temperatures above

90g. However, with "only three micromechanisms" (but, numerous material parameters) we
feel that the model, as it stands, should be useful for modeling, simulation, and design of
various polymer-processing operations, which we turn to next.
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Table 4.1: Material parameters for Zeonex-690R, PC and PMMA

Parameter Zeonex-690R PC PMMA
p (kg m- 3 ) 1010 1200 1200
atg (K- 1 ) 7 x 10-5 6.5 x 10-5 7 x 10--
a (K- 1 ) 12 x 10-5 12 x 10-5 16 x 10-5
V, (S-1) 5.2 x 10-' 5.2 x 10~4 5.2 x 10-4
,0r (K) 404 415 385

n (K) 2.5 2.2 2.2
A (K) 2.0 1.6 1.7

G., (MPa)
Gr (MPa)
Al_, (MPa K-
Ar (MPa K-1
vpoi
vol

Vr

X (MPa K-1)

ap
nt(1)

V (n 3 )
Q9, (J)
Qr (J)
(9q
d (K--)

Sao (AIPa)
ha
b (MPa)
gi
g2 (K-')
po

r
S

SbO (MPa)

11b
S., (MPa)
Lgi (MPa K-'
Sr (MPa)
Lr (MPa K '

482
3.4
0.16
0.034
0.40

0.49

0.7
6.93

0.116
1.73 x 1013
0.16
1.7 x 10-27
1.56 x 10-19
1 x 10-20
0.135
0.015

0
173
5850
-16.17
0.0693
0
0.0055
0.24
0.042

0
0.577
42.7
0.65
1.15
0.029

640
4.0
0.73
0.017
0.37

0.49

1.5
26.0

0.116
1.73 x 1013
0.14
1.62 x 10-27
1.72 x 10-'9
2 x 10-20
0.13
0.01

0
58
5850
-5.66
0.0381
0
0.0058
0.2
0

0
0.173
27.7
1.27
0.69
0.023

300
1.4
10
.003
0.35

0.49

12.2
34.6

0.2

1.73 x 1013
0.22
0.52 x 10-27
1.12 x 10-19
2.5 x 10-20
0.18
0.005

0
70
5850
-5.77
0.0318
0
0.012
0.62
0.052

0
0.577
6.9
1.73
0.0
0.0

(2) (MPa) 2.8 3.5 1.3
N (K-1) 11.1 x 10- 13.5 x 10- 29.0 x 10-3

(2 6.2 6.6 5.0

(2 (s-) 5.2 x 10- 5.2 x 10- 5.2 x 10
4

7m(2) 0.18 0.18 0.22

S(2) (MPa) 87 87 87

S) (MPa) 0.01 0.01 0.01

pj(3) (MPa) 0.75 0.85 0.75
1(3)mn 6.5 12.0 9.0

v,(3 (s-1) 5.2 x 10-4 5.2 x 10- 4  5.2 x 10-4

m(3) 0.18 0.18 0.22

S (MPa) 3.0 2.77 3.1
Y (K-1) 0.19 0.2 0.04
h3 , (MPa) 17.3 16.7 46.6
Z (K-1) 0.178 0.19 0.028

w 10.8 0.8 0.65
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Figure 4-12: Fit of the model to experimental stress-Strain curves for Zeonex-690R at various
temperatures ranging from 25'C to 180'C at four strain rates (a) 3X10-4 S-1, (b) 3 X10-3 S-1 ,
(c) 3x10-2 s , and (d) 35x100 s0. The experimental data is plotted as solid lines, while the fit
is shown as dashed lines.
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Figure 4-13: Fit of the model to experimental stress-strain curves for PC at various temperatures

ranging from 25 C to 175 C at three strain rates (a)10- 3 s-, (b) 102 s-, and (c) 10-1 s-. The

experimental data (courtesy Shawn A. Chester) is plotted as solid lines, while the fit is shown as

dashed lines.
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Figure 4-14: Fit of the model to experimental stress-strain curves for PMMA at various temper-
atures ranging from 25'C to 170'C at four strain rates (a) 3x10-4 S-1, (b) 10- 3 S-1, (c) 10-2 S-1,
and (d) 10-1 s-1. The experimental data (from Ames (2007)) is plotted as solid lines, while the fit
is shown as dashed lines.
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Figure 4-15: Schematic of the plane-strain cruciform forging experiment.

4.5 Validation experiments and simulations

In this section we show the results of some validation experiments (which were not used
to determine the material parameters of our theory), and compare the results of some key
macroscopic features of the experimental results against those from corresponding numerical
simulations. The validation experiments include: (a) a plane-strain forging of PC at a
temperature below dg, and another forging at a temperature above o9g; (b) blow-forming of
thin-walled semi-spherical shapes of PC above Vg; and (b) micron-scale, hot-embossing of
channels in Zeonex-690R above 799.

4.5.1 Plane-strain cold and hot forging of PC

Plane-strain forging experiments at 25 C and 160 C, under isothermal conditions, were
performed on PC specimens (Vg ~ 145 C). The forging operation, cf. Fig. 5-16, converts a
cylindrical specimen with a circular cross-section into a specimen with a cross-section which
is in the shape of a "cruciform." The PC forging specimens had an original diameter of
12.7 mm, and were 12.7 mm deep in the plane-strain direction, which is into the plane of
the paper. The split-dies which impart the cruciform shape to the workpiece, were made
from hardened tool steel. For the experiment conducted at 25 C the interfaces between the
workpiece and the dies were lubricated to minimize frictional effects; however, no lubrication
was used for the experiment conducted at 160 *C due to degradation of the lubricant at high
temperatures. The forging experiments were carried out under displacement control to a
relative die-displacement of 4.6 mm at a constant die-closing velocity of 0.02 mm/s, and then
the die motion was reversed at the same absolute velocity to unload the specimen. After
unloading, the specimen which was forged at 160 C was immediately air-cooled to room
temperature.

For the finite element simulation of the forging process we made use of the symme-
try of the geometry, and only meshed one-quarter of the geometry, as shown in Fig. 5-17.
The quarter-circle of the workpiece cross-section was meshed using 277 ABAQUS-CPE4HT
thermo-mechanically coupled elements, and the cruciform-die was modeled as a rigid surface.
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Rigid surface

Symmetry

Figure 4-16: Quarter-symmetry finite element mesh for the workpiece and the rigid surface used
in the plane-strain cruciform forging simulations.

For the experiment at 25 C the workpiece was well-lubricated, and therefore the contact be-
tween the die and the workpiece was modeled as frictionless. However, since no lubrication
was applied in the experiment at 160 C, the contact between the die and the workpiece was
modeled as frictional, with a high Coulomb friction coefficient of 0.75.

Fig. 4-17a and Fig. 4-17b compare the numerically-predicted and experimentally-measured,
load-unload force versus displacement curves for the forging processes at 25 C and 160 C,
respectively. The numerical simulations are able to reasonably accurately predict load-
displacement behaviors at both 25 C, which is well below o9, as well as at 160 C, which
is 15 C higher than Vg of PC. Note that the maximum force for forging at 25 C is 25kN,
while the maximum force for forging at 160 C is only 0.8 kN.

At the end of the loading process, with the dies still closed, the polycarbonate specimens
conform with the shape of the cruciform forging dies. Upon die retraction and unloading,
the polycarbonate specimens undergo some shape-recovery. For the forging experiment con-
ducted at 25 C there is only a little shape-recovery after unloading, while for the forging
experiment conducted at 160 C there is significant shape-recovery after unloading. After
unloading, and cooling down to room temperature, each forged specimen was sectioned, pol-
ished, and photographed. Fig. 4-18a and Fig. 4-18b compare the experimentally-measured
and numerically-predicted deformed shapes after unloading, die removal, and cooling for
the forgings conducted at 25 C and 160 C, respectively. For both cases the numerically-
predicted final geometry is in reasonably good agreement with that which is experimentally-
measured.
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Figure 4-17: Comparison of the numerically-predicted and experimentally-measured force-

displacement curves for forgings of PC at (a) 25 C and (b) 160 C. Note change in scale for the

force axis between the two figures.
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Figure 4-18: Comparison of the numerically-predicted and experimentally-measured deformed
shapes from the cruciform forgings for (a) the forging at 25 C, top row, and (b) the forging
at 160 0C, bottom row: (i) Experimental macrographs; (ii) deformed meshes after unloading, die
removal, and cooling to room temperature; and (iii) outlines of simulated shapes superimposed over

the experimentally-measured shapes - the solid lines are the edge-geometries from the numerical
simulations, and the circles outline the geometry of the specimens from the experiments.
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4.5.2 Blow-forming of semi-spherical shapes of PC

Next, we consider blow-forming of flat PC sheets into thin-walled semi-spherical shapes
above Vg The starting circular blanks, 102 mm in diameter, were machined from 3 mm
thick PC sheets. The blanks were clamped in a blow-forming fixture; the bottom part of
the fixture was essentially a 50 mm diameter thick-walled cylinder which was attached to a
high-pressure regulated air-supply, and the top clamping plate contained a 50 mm diameter
hole for the polymer to freely expand under pressure. The experiments were performed
under two different processing conditions: (i) at 155 'C under a forming pressure of 20 psi
(0.14 MPa), and (ii) at 160 C under a pressure of 35 psi (0.24 MPa). A schematic of the
temperature-pressure process cycle is shown in Fig. 4-19a. The forming process consists
of three steps: (a) heating from room temperature to the processing-temperature over a
period of 10 minutes; (b) ramping the pressure to the processing pressure in 2 minutes; (c)
holding at the processing-pressure while simultaneously cooling back to room temperature
in 15 minutes; and (d) finally relieving the pressure.

For the finite element simulation of such a process, we make use of the axial-synmetry
of the geometry, and mesh only a slice of the geometry as shown in Fig. 4-19b. The polymer
sheet is modeled using 252 ABAQUS-CAX4HT axi-symmetric, thermo-mechanically-coupled
elements with 5 elements through the sheet thickness. The clamps are modeled as rigid sur-
faces, and surface-interaction between the workpiece and the clamps is modeled as frictional,
with a high Coulomb friction coefficient of 0.9. The pressure was applied at the surface of
the bottom elements, as indicated in Fig. 4-19b. Fig. 4-20a shows an image of a sectioned
one-half of the specimen for the blow-forming experiment conducted at 155 C and 20 psi,
while Fig. 4-20b shows the corresponding numerically-predicted result. Fig. 4-20c shows
a comparison of the experimentally-measured profiles of the specimen cross-sections (solid
lines), against corresponding numerically-predicted profiles (dashed lines): the figure at the
top is for blow-forming at 160 C and 35 psi, and that at the bottom is for blow-forming at
155 'C and 20 psi. The predictions of the bulged-shapes from the simulations are in good
agreement with the experiments.

4.5.3 Micron-scale hot-embossing of Zeonex-690R

Of major importance for creating micron-scale surface features (such as capillary channels for
microfluidic chips) in polymeric substrates is the replication method of micro-hot-embossing.
The basic process of micro-hot-embossing is as follows: the polymeric substrate is heated
to 10 40 C above its glass transition temperature and a rigid stamp containing micron-
scale features is pressed into the heated polymer to allow the polymer to flow and fill the
cavities, transferring the features in the tool to the polymeric substrate. Pressure is then held
and the system is cooled to the demolding temperature (typically 20-60 C below the glass
transition temperature), and the tool is removed from the polymer part. Although there are
numerous reports on successfully micro-hot-embossed microfluidic chips in the literature (cf.,
e.g., Chou, 2001; Bilenberg et al., 2005), the field of polymer hot-embossing process modeling
is still not well developed because of the complex material modeling challenges, and there
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Figure 4-19: (a) Schematic of the temperature and pressure process history for the blow-forming
operation. (b) Half-symmetry finite element mesh used for the axi-symmetric blow-forming simu-
lations.

-Experiment 20 mm
--- Simulation -

(a)

(b) (c)

Figure 4-20: (a) One-half of final shape of the blow-formed PC plate at 155 C and 20 psi.
(b) A three-dimensional representation of corresponding numerical prediction. (c) Comparison of
the numerically-predicted profiles (dashed lines), against corresponding experimentally-measured
traced surface profiles of the specimens (solid lines): the figure at the top is for blow-forming at
160 C and 35 psi (0.24 MPa), and that at the bottom is for blow-forming at 155 C and 20 psi
(0.14 MPa).

9.



140

Plane strain
half-segment

43.5 pm

55 ptm 92 pm

(a) (b)

Figure 4-21: (a) Schematic of the plane-strain tool (not to scale), and (b) SEM micrograph of a
portion of the metallic glass tool.

are only a few recent reports on numerical process-modeling studies for micro-hot-embossing
(cf., e.g., Juang et al., 2002). Here we consider two micro-hot-embossing experiments and
corresponding numerical simulations.

Embossing of a series of long micro-channels in a Zeonex-690R substrate

As a simple example of a micro-hot-embossing experiment and simulation, we first consider
embossing of a series of long channels into a Zeonex-690R substrate (79g ~ 135 C). The
pattern consists of channels which are 55 pmin wide, 43.5 pm deep, and are spaced 92 pm apart.
Fig. A-la shows a schematic of the tool-pattern, and Fig. A-lb shows a SEM micrograph of
a portion of an actual embossing tool made from Zr-based metallic glass.

The hot-embossing experiment was carried out on a servo-hydraulic Instron testing ma-
chine equipped with heated compression platens. The details of our micro-hot-embossing
set-up are provided in Appendix D. A 25mm square, 1 mm thick sheet of Zeonex-690R, and
a 11.7mm square patterned metallic glass tool were aligned and placed between the heated
compression platens. In the micro-hot-embossing experiment, the polymer and the emboss-
ing tool were brought into contact and heated to an embossing temperature 160 C. Once at
the embossing temperature, a compressive embossing force was slowly ramped to 0.41 kN to
produce a nominal pressure of 3 MPa in 60 seconds, and held for 60 seconds before both the
tool and the polymer were cooled down over 10 minutes to the demolding temperature of
85 0C, after which the pressure was removed and the tool was separated from the polymer
substrate. The temperature-force-cycle for the micro-hot-embossing process is schematically
shown in Fig. A-2a.

Since the channels are long relative to their width, and there are a large number of them
aligned in parallel, we employ a plane-strain idealization in our numerical simulation, and
consider only a single half-segment with suitable boundary conditions. Fig. A-2b shows the

-.1 -_
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finite element mesh. The Zeonex substrate is modeled using 742 ABAQUS-CPE4HT plane

strain, thermo-mechanically-coupled elements., and the metallic glass tool is modeled using an

appropriately shaped rigid surface. Contact between the substrate and tool was modeled as

frictional, with a Coulomb friction coefficient of 0.75. The displacement boundary conditions

on the portions AD and BC of the mesh boundary are u1 = 0. while on the portion CD of

the mesh, U1 = u2= 0 are prescribed.

A scanning electron microscope (SEM) image of the embossed pattern is shown in

Fig. A-3a, and the numerically-predicted pattern is shown in Fig. A-3b." We further inves-

tigated the quality of the embossed features using an optical profilometer; Fig. A-4 compares
representative cross-sections of the embossed features in the Zeonex-690R (circles), against

the numerically-predicted channel profile (dashed line) .15 The final geometry of the em-

bossed channels predicted by the numerical-simulation agrees well with the results from the

micro-hot-embossing experiment.

Embossing of a micro-mixer pattern for a microfluidic device in a Zeonex-690R
substrate

Next, we turn our attention to micro-hot-embossing of a pattern with relevance to microflu-

idic applications, and consider a simple micro-mixer design shown in Fig. A-5 (Hardt et al.,
2008). The micro-mixer has two inlets which converge into a single long serpentine mixing

channel with a single outlet. In addition to the serpentine micro-mixing channel, the device

also has many micron-sized markers and other features for alignment and diagnostics (e.g.
rectangular and triangular wells of the order of 100 pm). The mixing channel itself is 50 pm

wide and 38.3 pm deep and the overall dimension of the device is 25 mm by 35 mm.

In order to determine suitable temperature and pressure process conditions for hot-

embossing this micro-mixer geometry in the Zeonex substrate, we did not attempt to model

the full geometry, but considered only the long parallel portions of the serpentine channels,
and modeled these channels using a plane-strain idealization and periodic boundary condi-
tions in our finite element simulations. The Zeonex substrate was modeled using a mesh

consisting of 443 ABAQUS-CPE4HT plane strain, thermo-mechanically-coupled elements,
and the metallic glass embossing-tool is modeled using an appropriately shaped rigid surface;
the finite element mesh is shown in Fig. 4-26. The displacement boundary conditions on the
portions AD and BC of the mesh boundary are u1 = 0., while on the portion CD of the
mesh, Ui = U2 = 0 are prescribed. Contact between the substrate and tool was modeled

as frictional, with Coulomb friction coefficient of 0.75. We chose an embossing temperature

of 160 C, and sought to determine an appropriate embossing pressure, holding time, and

demolding temperature which would result in good replication.

14 The numerical pattern has been mirrored and repeated during post-processing to ease comparison with

the corresponding experimental result.
15 The optical profilometry method that we used to measure the channel profile is not capable of providing

data for the sharp vertical features.
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Figure 4-22: (a) Schematic of the processing conditions for the micro-hot-embossing, and (b)
finite element mesh for the plane-strain simulation. The displacement boundary conditions on
portions AD and BC of the mesh are u1 =0, while on portion CD, U1 = U2 = 0 are prescribed.
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Figure 4-23: (a) SEM micrograph of the micro channels hot-embossed in Zeonex-690R, and

(b) the corresponding numerical prediction. The plane-strain simulation has been extruded and

mirrored to make the comparison more clear.
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Figure 4-24: Comparison of the experimentally-measured (circles) and numerically-predicted

channel profile (dashed line) in Zeonex-690R.
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35 mm

Figure 4-25: Geometry of the microfluidic mixer.

After a few trial simulations, we found that at 160'C, ramping the pressure to 2 MPa

in 30 seconds, and holding the pressure at temperature for 60 seconds would result in a

completely filled die. Fig. 4-27 shows two snapshots of the die-filling process: Fig. 4-27a

shows contours of the equivalent plastic strain 1 after 10 s when the nominal pressure is

0.67 MPa and the die is only partially filled, and Fig. 4-27b shows the contours of equivalent

plastic strain at 90 s when the pressure has been held at 2 MPa for 60 seconds and the die

has completely filled. Our numerical simulations also showed that further cooling down
under pressure to 85'C over a period of 10 minutes, and then demolding, would lock-in the

embossed geometry.
After estimating the process conditions from our numerical simulations, we conducted an

actual embossing experiment for the complete micro-mixer geometry (cf. Fig. A-5) in our

servo-hydraulic testing machine equipped with heated compression platens. The temperature

of polymer and metallic glass tool was increased to the embossing temperature of 160'C,
and a compressive force of 1.75kN was applied to produce a nominal pressure of 2MPa in

30 seconds. The pressure was then held for another 60 seconds at temperature, followed by
cooling down under pressure to 85'C over a period of 10 minutes, after which the pressure

was removed and the tool was quickly removed from the substrate.

SEM images of several different features in the metallic glass tool, along with the corre-

sponding images of the embossed features in the Zeonex-690R, are shown in Fig. 4-28. As

seen in this figure, the micro-hot-embossing process determined from the numerical simula-

tions, when actually executed, was able to successfully reproduce all the major micron-scale

features of the metallic glass tool onto the polymeric substrate.

Defined as f vP()(X)dy in branch 1.



145

275pMm

Embossing Tool

A -

2 D-

1

25 ym

Figure 4-26: Finite element mesh for a plane-strain simulation showing the meshed substrate and
the tool modeled as a rigid surface. The displacement boundary conditions on portions AD and
BC of the mesh are u1 = 0, while on portion CD ui = 2= 0 are prescribed.
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Figure 4-27: Numerically predicted
embossing. (a) Partially-filled die at 10s,

Zeonex-690R deformation history
and (b) filled die at 90 s.

during micro-hot-
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(a) (b)

Figure 4-28: SEM micrographs of (a) features in bulk metallic glass tool, and (b) corresponding
features in micro-hot-embossed Zeonex-690R part.



Chapter 5

Shape memory polymer

5.1 Introduction

An important class of polymers which has gained significant interest over the last decade

is thermally-activated' amorphous shape memory polymers (e.g., Behl and Lendlein, 2007;
Ratna and Kocsis, 2008). A body made from such a material may be subjected to large
deformations at an elevated temperature above its glass transition temperature og. Cooling

the deformed body to a temperature below 7g under active kinematical constraints fixes

the deformed shape of the body. The original shape of the body may be recovered if the

material is heated back to a temperature above dg without the kinematical constraints.

This phenomenon is known as the shape-memory effect. If the shape recovery is partially

constrained, the material exerts a recovery force and the phenomenon is known as force- or

constrained-recovery.

One of the first wide spread applications of shape memory polymers was as heat-shrinkable
tubes (Ota, 1981). Such rudimentary early applications did not necessitate a detailed un-

derstanding or modeling of the thermomechanical behavior of these materials. However,
in recent years shape-memory polymers are beginning to be used for critical biomedical
applications (e.g., Lendlein and Langer, 2002; Maitland et al., 2003; Baer et al., 2007b),
microsystems (e.g., Maitland et al., 2002; Metzger et al., 2002; Gall et al., 2004), re-writable
media for data storage (e.g., Vettiger et al., 2002; Wornyo et al., 2007), and self-deployable
space structures (Campbell et al., 2005). In order to develop a robust simulation-based

capability for the design of devices for such critical applications, one requires an underly-
ing accurate thermo-mechanically-coupled constitutive theory and an attendant validated

numerical implementation of the theory.

'Shape memory polymers which can recover from an imposed deformation by the application of other

external stimuli such as light of a specific frequency also exist (e.g., Lendlein et al., 2005; Jiang et al., 2006);
however, thermally-activated shape memory polymers are most common.
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In the past few years several efforts at experimental characterization of the thermo-
mechanical stress-strain response of a wide variety of shape-memory polymers have been
published in the literature (e.g., Tobushi et al., 1996; Baer et al., 2007a; Gall et al., 2005;
Yakacki et al., 2007; Safranski and Gall, 2008; Qi et al., 2008) In a typical thermo-mechanical
shape memory cycle, the polymer transitions from a viscoelastic rubber-like material into
an elastic-viscoplastic glassy solid during the fixation of the deformed shape, and again into
a rubber-like material when the shape-recovery is actuated. Modeling this complex change
in material behavior poses major challenges. Significant modeling efforts have also been
published (e.g., Liu et al., 2006; Chen and Lagoudas, 2008; Qi et al., 2008; Nguyen et al.,
2008). However, at this point in time, a thermo-mechanically-coupled large-deformation
constitutive theory for modeling the response of thermally-actuated shape-memory polymers
is not widely agreed upon - the field is still in its infancy. The purpose of this chapter is
to present results from of our own recent research in this area.

Specifically, with the aim of developing a thermo-mechanically-coupled large-deformation
constitutive theory and a numerical simulation capability for modeling the response of
thermally-actuated shape-memory polymers, we have

" conducted large strain compression experiments on a representative shape-memory
polymer to strains of approximately unity at strain rates of 10-3 s-1 and 10-1 s-1,
and at temperatures ranging from room temperature to approximately 30 C above
the glass transition temperature of the polymer;

" formulated a thermo-mechanically-coupled large deformation constitutive theory; and

* calibrated the material parameters appearing in the theory using the stress-strain data
from the compression experiments.

Shawn A. Chester has numerically implemented our theory by writing a user-material sub-
routine for a widely-used finite element program ABAQUS/Standard (2009). In order to
validate the predictive capability of our theory and its numerical implementaion, we have

* conducted representative experiments involving complex three-dimensional geometries.
By comparing the numerically-predicted response in these validation simulations against
measurements from corresponding experiments, we show that our theory is capable of
reasonably accurately reproducing the experimental results.

The plan of this chapter is as follows. In §5.2 we describe results of our simple compression
experiments on a chemically-crosslinked thermoset shape memory polymer - tert butyl
acrylate monomer (tBA) with poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker.
This polymer is chosen for study because the shape-memory actuation temperature for this
polymer is close to that of body-temperature - the nominal glass transition temperature for
this polymer is i g 37 C. In §5.3 we give specialized equations for our constitutive theory
and show the quality of the fit of the constitutive theory to the experimentally-measured
stress-strain curves.
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In @5.5 we present results of representative thernio-mechanical cyclic experiments to val-
idate the predictive capability of our theory and its numerical implementation in complex
three-dimensional geometries. By comparing the numerically-predicted response in these
validation simulations against measurements from corresponding experiments, we show that
our theory is capable of reasonably accurately reproducing the experimental results. As a
demonstration of the robustness of the three-dimensional numerical capability, in §5.6 we
show results from a simulation of the shape-recovery response of a stent made from the
polymer when it is inserted in an artery modeled as a compliant elastomeric tube.

5.2 Experimental characterization of the thermo-mech-
anical response

As a representative thermally-actuated shape-memory polymer we chose to characterize
the mechanical response of a chemically-crosslinked thermoset polymer recently studied by
Yakacki et al. (2007). Following a procedure described by these authors, the shape-memory
polymer was synthesized via photopolymerization (UV curing) of the monomer tert-butyl
acrylate (tBA) with the crosslinking agent poly(ethylene glycol) dimethacrylate (PEGDMA),
in the following specific composition: tBA 90% by weight (mol. weight: 128 g/mol) with
PEGDM 10% by weight (mol. weight: 550 g/mol). 2 This polymer is chosen for study
because the shape-memory actuation temperature for this polymer is close to that of body-
temperature the nominal glass transition temperature for this polymer is 0dg 37 C
(Safranski and Gall, 2008).

We have conducted a set of simple compression experiments on this polymer. The cylin-
drical specimens were 6.3 mm diameter and 3.15 mm tall. The compression experiments were
conducted at true-strain rates of 10-3 s-1 and 101 s-1 at 22 C, 30 C, 40 C, 50 C, and
65 0C, up to true strain-levels of ~ 100%. Fig. 5-1 shows representative true stress-strain
curves 3 for the shape memory polymer at strain rate of 10- 3 s-1 at temperatures ranging
from 22 QC through 65 'C, while Fig. 5-2 shows a more extensive set of stress-strain curves
at strain rates of 10-3 s-, and 10-1 s-1, and at temperatures of 22'C, 30'C, 40'C, 50'C,
and 65 C. Referring to Fig. 5-2, the polymer exhibits two distinctly different responses at
temperatures below and above 19g:

0 The stress-strain curves at 22 C and 30 0C are below Vg. At these temperatures the
polymer exhibits a strain-rate and temperature-dependent response typical of a "glassy-

2 The chemicals were mixed in a glass beaker for 2 minutes, and the mixed liquid solution was then
degassed in a vacuum chamber for 10 minutes. The degassed mixture was then injected between two glass
sheets that were separated with spacers. A UV-Lamp was used to photopolymerize the solution at an
intensity of ~ 30 mW/cm2 for 10 minutes. Finally, the polymer was heat-treated at 90 C for 1hour to
complete the polymerization reaction.

3 As is customary, in order to calculate the deformed cross-sectional area (and thence the true stress),
we have assumed plastic incompressibility to estimate the stretch in the lateral direction of the compression
specimens.
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Figure 5-1: Stress-strain curves in simple compression for the shape memory polymer at various
temperatures ranging from 22 'C to 65 'C, at a strain rate of 10- 3 S-1: (a) for temperatures below
Vg 374C; (b) for temperatures above 0g. Note the change in scale for the stress axis between the
two figures.

polymer". That is, a well-defined yield-peak, followed by strain-softening, and eventual
rapid strain-hardening at large strains. Upon unloading after compression to a strain
level of ~ 100%, about 5% of the strain is recovered and the remainder is left as a
"permanent-set" (as long as the temperature is held constant).

* The stress-strain curves at 50 C and 65 C are above o9g. At these temperatures the
material exhibits a "hysteretic-rubber" -like response. That is, the initial stiffness of
the material drops dramatically from its value below Vg, the yield-peak disappears,
and upon unloading there is essentially no permanent set. However, there is significant
hysteresis in the stress-strain response which is significantly rate- and temperature-
dependent.

Of particular interest are the two stress-strain curves at 40 'C, a temperature which is in the
vicinity of the nominal glass transition temperature of 7g ~ 37 0C. At the lower strain rate
of 10-3 s-I the material responds like a "hysteretic-rubber", while at the higher strain rate of
10-1 s- the material responds like a "glassy-polymer." Thus, in accordance with the well-
known result from frequency-dependent dynamic-mechanical-tests on amorphous polymers,
this result shows that the "glass transition temperature" o0g is not a constant for a material

it increases as the strain rate increases.

5.3 Constitutive theory

Amorphous polymers are called thermoplastics when they are not chemically-crosslinked,
and are called thermosets when they are chemically-crosslinked. Both classes of amorphous
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Figure 5-2: Stress-strain curves in simple compression for the shape memory polymer at strain

rates of 10- s- and 10-1 s-1, and at temperatures of 22 'C, 30 0 C, 40 'C, 50 0 C, and 65 'C. Note
the change in scale for the stress axis between various figures.
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polymers behave in a qualitatively similar fashion when deformed below t 2g, but their re-
sponse characteristics above o9 are quite different. As shown in Fig. 5-2, at temperatures
above Zog, after a certain amount of deformation, the crosslinked thermoset material recovers
almost fully upon reverse deformation - a response essential to the shape-memory effect.
Unlike a crosslinked thermoset polymer, an amorphous polymer which is not crosslinked
shows permanent set when subjected to a strain-cycle above og, and is therefore said to be
"thermoplastic" in character.

In Chapter 4 we have shown that a constitutive theory with M = 3 is able to reasonably
accurately predict the thermo-mechanical response of thermoplastic amorphous polymers in
a temperature regime which spans their glass transition temperature. For modeling the re-
sponse of amorphous thermoset shape-memory polymers, we consider three micromechanisms
and adopt and modify the constitutive theory presented in Chapter 4. For simplicity, we
neglect the "defect energy" associated with plastic deformation which leads to a back-stress.
The defect energy was used in Chapters 3 and 4 to allow for modeling the cyclic -loading
and Bauschinger-like phenomena in polymers. Here, since we do not have any experimental
data on cyclic loading for the tBA/PEGDMA shape-memory polymer, we consider a simpler
theory which does not include defect energy. As a visual aid, Fig. 5-5 shows a schematic
"spring-dashpot" representation of our three micromechanisms model for the shape-memory
polymer. These three micromechanisms are intended to represent the following underlying
physical phenomena:

" The first micromechanism (a = 1): The nonlinear spring represents an "elastic"
resistance due to intermolecular energetic bond-stretching. The dashpot represents
thermally-activated plastic flow due to "inelastic mechanisms," such as chain-segment
rotation and relative slippage of the polymer chains between neighboring cross-linkage
points.

" The second and third micromechanisms (a = 2,3): In addition to the chemical-
crosslinks which are present throughout the temperature range of interest in thermoset
polymers, at temperatures below dg we expect that the polymer also exhibits a signifi-
cant amount of mechanical-crosslinking. We conceptually distinguish molecular chains
between mechanical-crosslinks and molecular chains between chemical-crosslinks by in-
troducing two micromechanisms a = 2 and a = 3, respectively. The nonlinear springs
in these two mechanisms represent resistances due to changes in the free energy upon
stretching of the molecular chains between the crosslinks. The mechanical-crosslinks
are expected to be destroyed when the temperature is increased through 7g; the dash-
pot in micromechanism a = 2 represents thermally-activated plastic flow resulting from
such a phenomenon. The micromechanism a = 3 represents chemically-crosslinked
backbone of the thermoset polymer in which the crosslinks do not slip; accordingly we
do not use a dashpot for this micromechanism, and we set FPs) = 1, so that Fe(3 ) = F.

As in Chapter 4, our strategy to phenomenologically model the response of the material
as the temperature traverses Vg is as follows:
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Figure 5-3: A schematic "spring-dashpot" representation of the constitutive model.

(i) For temperatures 19 < dg, we do not allow any plastic flow in the dashpot associated
with micromechanism a = 2. Thus, since the springs in a = 2 and a = 3 are in
parallel, the three-micromechanism model reduces to a simpler two-micromechanism
model, which we have recently successfully used to model the response of amorphous
polymers for temperatures below 79g in Chapter 3.

(ii) For temperatures 79 > iog, we allow for plastic flow in the dashpot associated with
micromechanism a = 2, but quickly drop the plastic flow resistance in mechanism
a = 2 to a very small value, so that for all practical purposes in this temperature
range, only mechanisms a = 1 and a = 3 contribute to the macroscopic stress.

The theory relates the following basic fields:



x =xX, JdtFt),
F =VX, J= det F> 0,

F = Fe (a)FP (a), a = 1, 2, 3,

Fe (a), Je (a) = det Fe (a) -J > 0,

FP (a) JP () - det FP (a) = 1,

Fe (a) -Re (a)Ue (a),

Ce (a) = Fe (a)T Fe (a)

BP (a) FP (a)Fp (a)T

T = E= T(), I

TR JTF~T ,

T(a) - T(a)T

R- E=1 -(a)

qR,

qR,

motion;

deformation gradient;

elastic-plastic decompositions of F;

elastic distortions;

inelastic distortions;

polar decomposition of Fe(a):

elastic right Cauchy-Green tensors;

plastic left Cauchy-Green tensors;

Cauchy stress;

Piola stress;

free energy density per unit reference volume;

scalar internal variables;

absolute temperature;

referential temperature gradient;

referential heat flux vector;

scalar heat supply.

Note that from our constitutive assumption, F 1, such that Fe(3) - F for all motions
and all times.

As is well-known, the "glass transition" in amorphous polymers occurs over a narrow
range of temperatures, and whatever the means that are used to define a glass transition
temperature,4 the glass transition temperature also depends on the strain rate to which the
material is subjected. With Do = symo('F-1) denoting the total deviatoric stretching

tensor, let
v vF Do (5.1)

denote an equivalent shear strain rate. As a simple model for the variation of the glass
transition temperature with strain rate, we assume that

9r+n log -
v,

if < V,

if V> Vr,
(5.2)

where Vr a reference glass transition temperature at a reference strain rate V, and n is a
material parameter.

In the following subsections we present constitutive equations for the three micromech-
anisms discussed above. For brevity we do not give a detailed development; the reader is

4Such as the peak in the tan-6 curve in a DMA experiment.
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referred to Chapters 2, 3 and 4 for the intermediate steps of continuum-mechanical arguments
and derivations.

5.3.1 Constitutive equations for micromechanism a = 1

Free energy

We consider the free energy in the special form

G)=ju(cem d), (5.3)

where Ice() represents a list of the principle invariants of Ce(l) and ) is an energy
associated with intermolecular interactions.

Let
3

Ceu1 ) -2 (A) 2 ri re, (5.4)
i=1

denote the spectral representation of Ce(l), where (A', Ae, A') are the positive eigenvalues of
U'(1), and (ri, re, re) are the orthonormal eigenvectors of C'M and Ue(). With

3

E = E ri 0 r, lI AE, (5.5)
i=1

denoting an elastic logarithmic strain measure, we consider an elastic free energy of the form

(15) - G E + 'K(trEel) 2 -3K (trEe(l))ath(P - do) + fC(o), (5.6)

where f (V) is an entropic contribution to the free energy related to the temperature-dependent
specific heat of the material. The temperature-dependent parameters

G(V) > 0, K(V) > 0, th(i) > 0, (5.7)

are the shear modulus, bulk modulus, and coefficient of thermal expansion, respectively, and
0 o is a reference temperature.

For polymeric materials the magnitude of the elastic shear modulus G decreases drasti-
cally as the temperature increases through the glass transition temperature dg of the mate-
rial. Following Dupaix and Boyce (2007), we assume that the temperature dependence of
the shear modulus may be adequately approximated by the following function:

G 0) = { (Ggi + Gr) - &(Gg, - G,) tanh (d - og) - M(O - og), (5.8)

where 7)g is the glass transition temperature, Gg, and G, (< Ggi) are values of the shear
modulus in the glassy and rubbery regions, and A is a parameter related to the temperature
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range across which the glass transition occurs. The parameter M represents the slope of the
temperature variation of G outside the transition region, with

M Mgi
M,{M

(5.9)
< .9.

79 > d9 .

Next, the temperature dependence of Poisson's ratio vP ' of the material is assumed to be

71Po i - 1 
1 ,,I P -

v (79) = vi+ v PO) 2" , ) tanh (

with i" and vPI representing values below and above qg, respectively. The temperature
dependence of the bulk modulus K is then obtained by using the standard relation for
isotropic materials

K(d) - G(V) (5.11)2(1 + UP
0 (i))

3(1 - 2 vPi(i9))

The coefficient of thermal expansion is taken to have a bilinear temperature dependence,
with the following contribution to the thermal expansion term ath (9 - q90) in the free energy
relation (5.6):

({ Q(9 - 90)
agi( - ~0 0) + (ar - agi)(V - 79g)

if 9 < 7g

if 7 > t9 9 .

Cauchy stress. Mandel stress

Corresponding to the special free energy function considered above, the contribution TV) to
the Cauchy stress is given by

(5.13)

where Me(1), the Mandel stress, is obtained from the elastic free energy function by (5.6),

a e (1) (Ee(1) 9)
Me~) - 10 Ee(I)

which yields

Me() - 2GE + K (trEe(l))1 - 3Kath( - 00)1;

note that Me(1) is symmetric.

(5.10)

a th( -~ 
9

0 ) - (5.12)

(5.14)

(5.15)

T -J--1 Re (1) Me(' Re T
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The Mandel stress is the driving stress for plastic flow in the theory. The corresponding
equivalent shear stress and mean normal pressure are given by

M() e Me and p Me(trMe), (5.16)

respectively.

Internal variables

For the micromechanism a = 1, we restrict the list (1) of internal variables to three positive-
valued scalars

where

* The parameters p > 0 and Sa 0 are introduced to model the "yield-peak" which is
widelv-observed in the intrinsic stress-strain response of glassy polymers. A key mi-
crostructural feature controlling the strain-softening associated with the "yield-peak"
in glassy polymers is the local change in molecular-packing due to deformation-induced
disordering. The variable o, a positive-valued dimensionless "order"-parameter, is in-
troduced to represent such deformation-induced disordering; and a stress-dimensioned
internal variable Sa which is coupled to the microstructural disordering of the material,
represents the corresponding transient resistance to plastic flow.

" The internal variable Sb 2 0 represents a dissipative resistance to plastic flow to
model "isotropic hardening" at large strains as the chains are pulled taut between
entanglements resulting in increasing interaction between the neighboring chains and
pendant side-groups; this is in addition to any entropic or energetic contribution from
network chain-stretching.

Flow rule

The evolution equation for FPM is

PW DP (1 FP, (5.17)

with DPM given by

0 Vp() e
DPN(1 = )1)M where v t DPI.(5.18)

With the mean normal pressure defined by (5.16)2 and an effective stretch defined by

def /3: ,(A rC/3 B/3 (5.19)
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and following our work on amorphous polymers in Chapter 4, we choose a thermally-activated
relation for the equivalent plastic strain rate in the specific form

0 if TQ<0

vP (Q [ 1y (1) /n() (5.20)
y exp exp - sinh Y2k ) if re) > 0

C kB SB19

where
r(I) def ;r1 - (Sa + Sb + ap), (5.21)

denotes a net shear stress for thermally-activated flow; here a, > 0 is a parameter introduced

to account for the pressure sensitivity of plastic flow. The parameter (1) is a pre-exponential
factor with units of 1/time, Q is an activation energy, kB is Boltzmann's constant, V is an
activation volume, and mNl) is a strain rate sensitivity parameter. The term exp(-1/()
in (5.20) represents a concentration of 'flow defects," where ( is a dimensionless parameter
referred as normalized equilibrium free-volume in the literature on amorphous polymers (e.g.,
Spaepen, 1977).

Remark 1: The thermally activated form for the flow function (5.20) with

{ 1), mn, (, Q, V constants, usually holds over a narrow range of temperature. Here, in
order to model the plastic flow response over a range of temperature which spans the glass
transition temperature of the material, (, and Q are taken to be temperature dependent.

With a linear temperature dependence of (, the term exp(-1/() represents the famous
Vogel-Fulcher-Tamman (VFT) term, which is used widely to describe the temperature de-
pendence of viscosity of polymeric liquids near their glass transition temperature (Vogel,
1921; Fulcher, 1925; Tammann and Hesse, 1926). Since the variation of ( is expected to be
small for temperatures below 79g, we assume that =(gi = constant for d < 79 g and take the

temperature dependence of ( as

fgi for 79 < 9 g) (5.22)
,+ d(V - dg fordo> og

The simple relation (5.22) is well-defined at temperatures lower than Vg, and has a linear
VFT-type form5 at higher temperatures.

5Instead of the VFT form, Richeton et al. (2005a, 2006, 2007); Nguyen et al. (2008) have used Williams-
Landel-Ferry (WLF)-type temperature-dependent expression for the plastic shear strain rate to extend to
temperatures 0> 9d. The WLF equation (Williams et al., 1955) can be written as

exp 1 (loge 10) x C1 ( - g)(5.23)
exp exp ( C2_ + V - '09(.3
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The temperature dependance of the activation energy Q is taken as

1 1 (1
Q(T)= (Qg1 + Qr) -(Qg - Q,) tanh (- 9g), (5.24)

where, Q = Qgj in the glassy regime, and Q = Q,(< Qgj) in the rubbery regime.

Evolution equations for internal variables

In a general form, the internal variables (1) can be presumed to evolve according to the
differential equation

hi(A(l)) vP(l) - .Ri(AN), (5.25)

dynamic evolution static recovery

where the functions hl) and R(1) isotropic functions of their arguments and

A( (Ce(, BP, A, (1), d). (5.26)

Remark 2: In (5.25), the functions Ri represent static recovery (or time recovery, or thermal
recovery), since they do not depend on the plastic strain rate. The static recovery terms are
important in long time situations such as creep experiments over a period of hours and days
at high temperatures. Here, we focus our attention on thermal recovery processes that occur
in relatively shorter periods of time (typically less than 10 minutes), in which case the slow
static recovery effects may be neglected. Accordingly, in what follows, as a simplification,
we neglect the effects of any static recovery in the evolution of the internal variables.

Further, the evolution equations for FP( and (1) need to be accompanied by initial
conditions. Typical initial conditions presume that the body is initially (at time t = 0, say)
in a virgin state in the sense that

F(X, 0) = FP )(X, 0) = 1, ('(X, 0) = ( ) (= constant), (5.27)

so that by F - FC(l)FP(l) we also have FeMl(X,0) = 1.

Evolution of p and Sa:

We assume that the material disorders, and is accompanied by a microscale dilatation
as plastic deformation occurs, resulting in an increase of the order-parameter .,6 and this
increase in disorder leads to a change in the resistance S,, causing a transient change in the
flow stress of the material as plastic deformation proceeds. Accordingly, the evolution of the

where C1 and C2 are constants with dimensions of temperature. As is well-known, using suitable manipula-
tions, the VFT and the WLF forms may be shown to be equivalent. Although the WLF and VFT equations
are equivalent, the slightly simpler form of the VFT equation is often preferred.

6 The microscale dilatation is extremely small, and at the macroscopic level we presume the plastic flow
to be incompressible.
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resistance SQ is coupled to the evolution of the order-parameter W. Specifically, we take the
evolution of Sa and W to be governed by

Sa = h (S* - Sa) VP with initial value Sa(X, 0) SaO, (5.28)

g (s* - sP) vPN with initial value (P(X, 0) - oo. (5.29)

In the evolution equations for Sa and so, the parameters ha, g, Sao and Po are constants.
During plastic flow, the resistance Sa increases (material hardens) if Sa < S*, and it decreases

(material softens) if Sa > S*. The critical value S* of Sa controlling such hardening/softening
transitions is assumed to depend on the current values of the plastic strain rate, temperature,
and the order-parameter o. The function S*, which controls the magnitude of the stress-
overshoot, is taken as

* = b(p* -so). (5.30)
In (5.29), the parameter so* represents a strain-rate and temperature dependent critical

value for the order-parameter: the material disorders when so < s*, and becomes less disor-
dered when s > so*. We model the temperature and strain rate dependence of sP* using the
following phenomenological equation

W* (vp (z) 1 -)9)r P(l) if (79 < 79,) and (vP(1 ) > 0),
*(v99 1) = (5.31)

0 if (,L > dg) or (vP(1 ) = 0),

with constants (z, r, s).
Thus, gathering the number of material parameters introduced to phenomenologically

model the yield-peak, we have the following rather large list7

(ha, b, Sa0, g, soo, z, r, s).

Evolution of Sb:

The experiments above og indicate that the nonlinear stress response at large strains is
not purely elastic as the unloading response shows significant hysteresis. It is for this reason
that we have introduced the internal variable Sb to model a dissipative resistance to plastic
flow which arises as the chains are pulled taut between entanglements, and there is increasing
interaction between the long-chain molecules and pendant side-groups; this resistance is in
addition to any entropic contribution from network chain-stretching. For the resistance Sb
we assume

S SbO +Hb(~- 1), (5.32)

7 Iodeling the temperature and rate-sensitivity of the yield-peak over a wide-range of temperatures and
strain rates is known to be complex. If a simpler theory with fewer material parameters is desired, and if
it is deemed that modeling the yield-peak is not of interest, then there is no need to introduce the internal
variables o and Sa, and thereby also the attendant constants in their evolution equations.



161

where A may be increasing or decreasing (i.e., loading or unloading). In (5.32) the material
parameter Hb is temperature dependent and is assumed to have the following temperature
dependence

1 1 1i
HbW() = (Hqi + Hr) - ( Hqi - H,) tanh (9 - d,) - L(O - 5)3

where Hgi and H, (< Hgi) are values of Hb in

transition temperature 9 1 and L represents
beyond the glass transition region, with

L = L -
( Ly.

the glassy and rubbery regions near the glass
the slope of the temperature variation of Hb

(5.34)
7 > 9g.

5.3.2 Constitutive equations for micromechanism a = 2

Free energy

Let
Fe( 2) def j-1/ 3 Fe (2 )dis det Fe (2) 1dis

denote the distortional part of Fe(). Correspondingly, let

C def e ( 2)T( 2 ) J- 2/ 3 Ce(2), (5.36)

denote the elastic distortional right Cauchy-Green tensor and consider a free energy function
in the special form8

(2) = 2) (C , ( ). -

We use a simple phenomenological form for the free energy function 4'(2)

Gent (1996):

with 1() def tr Ce (2)1 dis

(5.37)

proposed by

(5.38)

where
P r (2) > 0, and I(2)() > 3 (5.39)

are two temperature-dependent material constants, with P, representing the ground state
rubbery shear modulus of the material, and I2) representing maximum value of (f2) - 3),
associated with the limited extensibility of the polymer chains.

Experimental results indicate that the rubbery shear modulus P (2) decreases with in-
creasing temperature; the empirical function chosen to fit the experimentally-observed tem-

8Since J (") = J, and we have already accounted for a volumetric elastic energy for /(1), we do not allow
for a volumetric elastic energy for 4,(2) or(3)

(5.35)

(5.33)

(2) _.I tt (2) 1,(,2) In I -2 (2)
_['M
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perature dependence of p(2 is

(2) - f2) exp - N(9 - )(5.40)

where p42 is the value of p(2 at the glass transition temperature, and N is a parameter that

represents the slope of temperature variation on a logarithmic scale. The parameter 1M is
taken to be temperature-independent constant

I(7) z constant. (5.41)

Cauchy stress. Mandel stress

Using the free energy (5.38) yields the corresponding second-Piola stress as

1
Se 2 __ 07)2 -2/3 (2)2 ' -19Ce( 2)

(tr C(2) C
(2 )

which gives the contribution T(2 ) to Cauchy stress as

(A ) (i 211) 3)-1-

1 (2

where
B e( 2) fFe( 2 ) (F (2) j-2/3B

dis dis dis

denotes the elastic distortional left Cauchy-Green tensor.

The corresponding Mandel stress is

f(2) - -
Me(2) Ce(2 )Se(2 ) - A/2) 1 3 (C' ) 2))o,

and the equivalent shear stress for plastic flow is given by

-(2) def 1 M*

Flow rule. Internal variables

The evolution equation for FPP is

P (2) = DP( FP

, i

T J-Fe(2)e( 2 )Fe( 2 )T - J- 1

(5.42)

(B (2)o (5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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with the plastic stretching DP(2 given by

2Me(2)
DPG) =v(2) where vPNNV/-|DPG) (5.48)

is the corresponding equivalent plastic shear strain rate. With S(2) (1) a positive-valued
stress-dimensioned shear resistance, we take the equivalent plastic strain rate to be

v(2) V ( 2 )(2) 1/=n(2) (5.49)

where v. is a reference plastic shear strain rate with units of 1/time, and m,2 ) is a
positive-valued strain-rate sensitivity parameter.

We assume that S(2 ) varies with temperature as

(d) S 2 1) tanh (V - Og)), (5.50)

where, S 2) = S in the glassy regime, and S ( = S(2) (< S ) in the rubbery regime, and
A 2 is a parameter related to the temperature range across which the transition occurs. A
high value of S 2 ) = S leads to vp(2 ) ~ 0 when V < Vg, and as the temperature increases

through the glass transition, the value of S(2) smoothly transitions to a very low value,
allowing for plastic flow above 9g. This assumption is meant to reflect the major effect
of the rapid destruction of a large fraction of mechanical cross-links as the temperature
increases beyond 9g. To ensure a very rapid transition of S(2 ) near Og, we take A 2 = A/20.
Thus, under a macroscopically-imposed deformation history at temperatures greater than a
few degrees higher than iOg, micronechanism a = 2 freely deforms inelastically by relative
chain-slippage, and there is no further increase in the corresponding elastic stretch U, (2)

and thereby the corresponding stress.

5.3.3 Constitutive equations for micromechanism a = 3

Free energy

Let
Fais J -1/3 F, det Fis = 1, (5.51)

denote the distortional part of F. Correspondingly, let

Cdis -(Fdis)- Fdis = J-/C (5.52)

denote the distortional right Cauchy-Green tensor, and consider a free energy function in
the special form

(5.53)(3) = _(C d .
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Similar to the case of micromechanism a = 2, we assume the free energy in the Gent
form as

;(3) _ g(3) I) in (1 - with T43) def tr Cis,1(3 3,

where
g > 0, and I3 > 3

are two material constants. These two material constants are assumed to be temperature-
independent.

Cauchy stress

Using the free energy (5.54) yields the corresponding second Piola stress as

Se - j- 2 / 3 A( 3 ) (I - T,(3)

and the contribution T(3) to Cauchy stress as

T -(3) _ j- 1

where

E (3)

[1 -
1(

tr
3K Cdis (5.56)

(5.57)

def ( ) = j-2/3Bdis = Fdis(Fdis) B (5.58)

denotes the distortional left Cauchy-Green tensor.

5.3.4 Fourier's Law

The heat flux is taken to be given by Fourier's law

(5.59)

with K(z9) > 0 the thermal conductivity.

5.3.5 Partial differential equations for the deformation and tem-
perature fields

The partial differential equation for the deformation is obtained from the local force balance

DivTR boR PRX, (6

(5.54)

(5.55)

_ i (Bais)o

qR = -n VW,

(5.60)
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where boR is the non-inertial body force per unit volume of the reference body, pR > 0 is the
mass density, , and

TR = JTF- (5.61)

is the standard first Piola stress, with T given by T = E _3 T a.

Following the approximations considered in Chapters 3 and 4, (i) we assume that specific
heat depends only on temperature, c (,d); and (ii) we neglect the thermoelastic coupling
terms, and assume instead that only a fraction 0 1 w w 1 of the rate of plastic dissipa-
tion contributes to the temperature changes. Under these approximate assumptions, the
simplified partial differential equation for the temperature is

c) = -DivqR+ qR + w (f(1) ,p (1) f(2) 7'p(2 )) . (5.62)

5.4 Fit of the stress-strain curves and material param-
eters

The material parameters appearing in the specialized model were calibrated by fitting the
experimental stress-strain data for tBA/PEGDMA shown in Fig. 5-2 by following the pro-
cedure described in the Appendix A. These material parameters are listed in Table 5.1. The
stress-strain curves calculated using the specialized model and the material parameters for
tBA/PEGDMA are plotted in Fig. 5-4 as dashed lines. As shown in this figure, the con-
stitutive model reasonably accurately reproduces all the major features of the macroscopic
stress-strain response of the material both in the "glassy-polymer" regime below t. , and
the "hysteretic-rubber" response above g.

Remark 3: There are very few notable models for the time- and temperature-dependent re-
sponse of elastomeric materials in the existing literature (e.g., Lion, 1997; Reese and Govin-
djee, 1998; Bergstr6m and Boyce, 1998; Haupt and Sedlan, 2001; Bergstr6m and Boyce,
2001). Considering the response of the tBA/PEGDMA thermoset shape memory polymer
at temperatures above Vg (cf. Fig. 5-4), we observe a behavior typical of a hysteretic elas-
tomeric material; there is no yield-peak, and the polymer shows significant temperature-
and rate-dependent nonlinear hysteretic behavior upon unloading after deformation to large
strains. The constitutive theory presented here may be used to phenomenologically model
the temperature- and rate-dependent mechanical response of elastomeric materials. In our
constitutive theory, at temperatures above 09 : (i) due to lack of yield-peak, the internal
variables <p and S0 in micromechanism a =1 can be ignored: and (ii) the contribution from
micromechanism a = 2 to the overall stress-strain response is very small and it can be ne-

glected. Therefore, for the special case of hysteretic elastomeric materials, our constitutive
theory reduces from three micromechanisms to two, with only micromechanisms a = 1 and
a = 3 contributing to the overall stress-strain response. This results in a reduced list of
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material parameters
{ ,,Gr M vM o , a (1) m( 1 , V,Q, H, L,,(3 1()1

to phenomenologically model the mechanical response of elastomeric materials.9

Table 5.1: Material parameters for the tBA/PEGDMA shape memory polymer

9The model does not account for the phenomenon of stress-softening (Mullins effect) commonly observed
in certain elastomeric materials.

Parameter Value Parameter Value
p (kg m- 3 ) 1020 b (MPa) 5850

% (K- 1) 13 x 10-5 g 5.8
ar (K- 1 ) 25 x 10- 5  

(po 0

vr (S1) 5.2 x 10- 4  z 0.083
-r (K) 310 r 1.3
n (K) 2.1 s 0.005
A (K) 2.6 Sbo (MPa) 0
Ggi (MPa) 156 Hgl(MPa) 1.56
G. (MPa) 13.4 Lgi (MPa K- 1 ) 0.44
Mgi (MPa K- 1 ) 7.4 Hr (MPa) 0.76
Mr (MPa K- 1 ) 0.168 Lr (MPa K- 1 ) 0.006

0.35 1 0.5

P 0.49 p (MPa) 1.38
0.058 N (K-1 ) 0.045

y (s-) 1.73 x 1013 2) 6.3

m 0.17 v( (s- 1 ) 5.2 x 10
V (i 3 ) 2.16 x 10-27 m(2 ) 0.19

Qgi (J) 1.4 x 10-19 S (MPa) 58

(J) 0.2 X 10-21 S$-9 (MPa) 3 x 10-4

0.14 P(3 ) (MPa) 0.75
d (K- 1) 0.015 T 5.0
Sa0 (MPa) 0 0.7
ha 230
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Figure 5-4: Fit of the model to experimental stress-strain curves for the shape memory polymer
at strain rates of 10-3 s-1 and 3x10~ 3 s-1, and at temperatures of 22'C, 30'C, 40'C, 50'C, and
65 C. The experimental data is plotted as solid lines, while the fit is shown as dashed lines.
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5.5 Validation experiments and simulations

Shawn A. Chester has numerically implemented the theory by writing a user-material sub-
routine for a widely-used finite element program ABAQUS/Standard (2009). In order to
validate the predictive capabilities of our constitutive theory and its numerical implemen-
tation, in this section we show the results of two thermo-mechanical experiments that we
have performed on the tBA/PEGDMA shape-memory polymer, and compare the results
of macroscopic measurements from these experiments against results from corresponding
numerical simulations. The validation experiments considered below are

(i) Measurement of the force-versus-time response of a ring-shaped specimen which was
subjected to the following thermo-mechanical history: the specimen was heated to a
temperature above Vg of the material, the ring was then compressed into an oval shape,
the compression grips were then held fixed while the specimen was first cooled to a
temperature below Og, and then heated back to its initial temperature above i9g. We

call an experiment of this type a constrained-recovery experiment.

(ii) Measurement of the displacement-versus-time response of a planar specimen in the
shape of a diamond-shaped lattice which was subjected to the following thermo-
mechanical history: the specimen was compressed between two platens at tempera-
ture above 79g of the material, the compression platens were then held fixed while the
specimen was cooled to a temperature below 79g. The constraint of the platens was
then removed, and the specimen was heated to a temperature above g and allowed to
freely recover its shape. We call an experiment of this type an unconstrained-recovery
or a free-recovery experiment.

Both thermo-mechanical experiments were conducted on an EnduraTEC Electroforce 3200
testing machine equipped with a furnace. The temperature of the polymer was measured
by using a thermno-couple attached to the specimen. Transient heat conduction within the
polymer was neglected since the effect was small. Consequently, in the numerical simulations
we prescribed the measured temperature profile to all nodes in the finite element mesh.

5.5.1 Force-time response of a ring-shaped specimen subjected to
a constrained-recovery experiment

The flat specimen, 3 mm thick, was ring-shaped with two extension arms which were used for
gripping the specimen. The ring portion of the specimen had an outer diameter of 11.9 mm
and an inner diameter of 6.3 mm, while the extension arms were each 12.7 mm long and
4.1 mm wide. The experimental set-up with the tBA/PEGDMA specimen mounted in place
within the furnace of the EnduraTEC testing machine is shown in Fig. 5-5. The top and the
bottom flat surfaces of the extension arms were rested against the base of the grips, and the
vertical sides were securely tightened in the grips.

The specimen was subjected to the following thermo-mechanical history: (i) it was heated
to 58 C and gripped; (ii) the bottom grip was fixed in place while the top grip was moved
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downwards at a velocity 0.01 mm s- for a total displacement of 2.5 mm to deform the ring;
(iii) the grips were then held fixed in their positions and the specimen was first cooled to
32 C and then heated back to 58 C. The displacement and temperature histories for the
experiment are shown in Fig. 5-6a. The reaction forces during the experiment were recorded
using a load-cell, and the measured force-versus-time curve is shown in Fig. 5-6b.

For the finite element simulation of this constrained-recovery experiment we make use
of the symmetry of the geometry, and only mesh one-eighth of the geometry using 537
ABAQUS-C3D8HT thermo-mechanically-coupled elements; Fig. 5-7a. Referring to this fig-
ure, all the nodes on the surface formed by CD extending into the 3-direction were prescribed
displacement boundary conditions which enforced symmetry in the 1-direction, all the nodes
on the surface formed by AB extending into the 3-direction were prescribed symmetry in the
2-direction, and all the nodes on the front surface defined by ABCD were prescribed sym-
metry in the 3-direction. A displacement history was prescribed to the highlighted nodes on
the outer surface of the extension arm such that the displacement history for the complete
geometry matched that of the experiment. The experimentally-measured temperature his-
tory was prescribed to the whole mesh. Fig. 5-7b shows the deformed mesh at the end of
the compression step.

Fig. 5-6b compares the experimentally-measured and the numerically-predicted force-
versus-time curves. The measurements from the experiment show that a compressive force
was generated during the deformation at 58 C. Subsequently, under the fixed-grip conditions,
upon cooling to 32 0C the compressive force gradually reduces and transitions to a state of
tension; and finally, upon heating back to 58 C, the reaction force transitions back to a
compressive state. As shown in Fig. 5-6b, the simulation is able to reasonably accurately
predict the force-versus-time response for the constrained-recovery experiment.

5.5.2 Displacement-time response of a diamond-lattice-shaped spec-
imen subjected to an unconstrained-recovery experiment

The flat diamond-lattice-shaped specimen, Fig. 5-8a, was 50 mm wide, 35 mm tall, and 3 mm
thick. Each diamond-shaped cut-out was a square with 6.5 mm sides with a 1 mm fillet-radius
at the corners; the width of the ligaments forming the lattice was 2.16 mm.

The specimen was subjected to the following thermo-mechanical history: (i) it was com-
pressed between two platens at 60 C at a relative platen velocity of 0.02mm s-1, and the
height of the specimen was reduced from 35 mm to 20.5 mmln this resulted in an increase
in its width from 50 mm to 59.5 mmi; (ii) the platens were held in place and the speci-
men was cooled to 21 'C - the deformed shape is shown in Fig. 5-8b; (iii) the compres-
sion platens were then removed and the specimen was heated to 58 C according to the
temperature-versus-time history shown in Fig. 5-9. The dimensional changes in the spec-
imen during this unconstrained-recovery phase were measured using a video-extensometer.
The experimentally-measured stretches (L/Lo) in the 1- and 2-directions as functions of
temperature and time during the unconstrained heating phase of the experiment are shown
in Fig. 5-10 and Fig. 5-11, respectively.
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Figure 5-5: Experimental set-up for a thermo-mechanical constrained-recovery experiment on a

ring-shaped specimen of tBA/PEGDMA.

1500
Time (s) Time (s)

(a) (b)

Figure 5-6: (a) Histories of the specimen-temperature and the relative-displacement of the grips:

the specimen, initially at 58 C, was compressed and the grips were then fixed in position while the

specimen was first cooled to 32 'C and then heated back to 58 *C; corresponding reaction forces were

measured by a load-cell. (b) The solid line shows the experimentally-measured force-versus-time

curve for the constrained-recovery experiment. The corresponding numerically-predicted response

is shown as a dashed line.
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Figure 5-7: (a) One-eighth symmetry finite element mesh for the ring-shaped polymer. All the
nodes on the surface formed by CD extending into the 3-direction were prescribed symmetry in the
1-direction, all the nodes on the surface formed by AB extending into the 3-direction were prescribed
symmetry in the 2-direction, and all the nodes on the front surface defined by ABCD were prescribed
symmetry in the 3-direction. A displacement history was prescribed to the highlighted nodes on the
outer surface of the extension arm such that the displacement history for the complete geometry
matched that of the experiment in Fig. 5-7b. (b) Deformed mesh.
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(a) (b)

Figure 5-8: Diamond-lattice-shaped specimen: (a) Undeformed specimen. (b) Deformed specimen
in its "temporary shape" at room temperature - deformed at 60 'C, constrained cooling to 21 'C,
and constraints removed.

For the finite element simulation of this experiment we make use of the symmetry of

the geometry and only mesh one-eighth of the geometry, using 1962 ABAQUS-C3D8HT
thermo-mechanically-coupled elements, Fig. 5-12. Referring to this figure, all the nodes on

the 2-3 symmetry plane were prescribed symmetry displacement boundary conditions in the

1-direction, all the nodes on the 1-3 symmetry plane were prescribed symmetry boundary

conditions in the 2-direction, and all the nodes on the front surface were prescribed symme-

try boundary conditions in the 3-direction. The displacement history was prescribed to the

highlighted nodes on the top surface during the hot-deformation and cooling steps. Our nu-

merical simulation included all the steps described above for the thermo-mechanical history,
including the initial hot-deformation, cooling, and finally the unconstrained shape-recovery

with the applied temperature change. The results from the numerical simulation for the

stretch in the 2-direction versus the temperature for the complete thermo-mechanical cy-

cle are shown in Fig. 5-13. Fig. 5-10 and Fig. 5-11 compare the numerically-predicted and

experimentally-measured stretches in the 1- and 2-directions versus temperature and time,
respectively, during the unconstrained heating phase of the experiment. The numerically-

predicted results are in good agreement with experimental measurements.

Finally, the left pane in Fig. 5-14 shows images of the specimen at various temperatures

during unconstrained shape-recovery, while the right pane in this figure shows corresponding

predictions from the numerical simulations.10 The shapes at various temperatures predicted

by the numerical simulation closely match those which were observed in the experiment.

101n Fig. 5-14, for ease of visualization, we have mirrored the simulation results along the symmetry planes.
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Figure 5-9: Time-temperature history for the diamond-lattice-shaped specimen during the un-
constrained heating phase of the experiment.
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Figure 5-10: The solid lines show the experimentally-measured stretch-versus-temperature curves
in the 1- and 2-direction during the unconstrained heating phase of the experiment. The dashed-
lines are the corresponding numerically-predicted results.
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Figure 5-11: The solid lines show the experimentally-measured stretch-versus-time curves in the
1- and 2-direction during the unconstrained heating phase of the experiment. The dashed-lines are
the corresponding numerically-predicted results.
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Figure 5-12: One-eighth symmetry finite element mesh for the diamond-shaped lattice geometry.

All the nodes on the symmetry plane 2-3 were prescribed symmetry in the 1-direction, all the nodes

on the symmetry plane 1-3 were prescribed symmetry in the 2-direction, and all the nodes on the
front surface were prescribed symmetry in the 3-direction. A displacement history was prescribed
to the highlighted nodes on the top surface to obtain a temporary shape that closely matches that
from the experiment.
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Figure 5-13: Numerical simulation results for the complete thermo-mechanical shape-recovery
cycle of the lattice geometry. The lattice was deformed in the 2-direction at 60 C; after which
it was constrained in the 2-direction and was cooled to 21 'C; the constraints were then removed
which resulted in a small elastic recovery; finally, the lattice was heated to 58 C during which, it
recovered almost to its original shape.

5.6 Numerical simulation of insertion of a stent in an
artery

Shape-memory polymers have been proposed as potential materials for stents which expand
and/or support blood vessels, and several experimental demonstrations of this concept have
been published in the literature (e.g., Wache et al., 2003; Yakacki et al., 2007; Baer et al.,
2007b). However, to the best of our knowledge, no reports of a numerical-simulation capa-
bility that can aid in understanding the performance of shape-memory-polymer-based stents
exist in the current literature. As a demonstration of the robustness of our three-dimensional
numerical-simulation capability in what follows we show results from a simulation of the
shape-recovery response of a stent made from tBA/PEGDMA when it is inserted in an
artery, with the latter modeled as a tube made from a nonlinear elastic material.

In our simulation we considered a cylindrical stent made from tBA/PEGDMA with
diamond-shaped perforations, similar to those in the planar geometry considered in the
previous subsection. The stent was modeled to have an initial length of 8 mm, and the outer
and inner diameters of the stent were modeled as 8 mm and 7 mm, respectively. For the
artery, we assumed a tubular geometry with an inner diameter of 5 mm, a wall thickness
of 0.35 mum, and a length of 50 mm. The artery was modeled as an incompressible elastic
Neo-Hookean material with a shear modulus of 33.33 kPa.
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Figure 5-14: Comparison of (a) the experimentally-observed, and (b) the numerically-predicted
recovered shapes at various temperatures during the unconstrained-recovery phase of the experi-
ment.
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The stent was subjected to the following thermo-mechanical history: (i) it was radially
compressed above tg at 60 C to reduce its outer diameter to 4.7 mm; (ii) cooled under
kinematical constraints to 22 C at a rate of 0.1 'C s-1 to fix its deformed shape; (iii) the
constraints were removed; (iv) following which it was inserted into an arterial tube; and (v)
was heated back to 60 'C at a rate of 0.1 'C s-1 to allow the stent to attempt to recover its
initial shape under the constraints imposed by the artery.11

Due to the symmetry of the problem in our simulation we considered only one-eighth of
the stent geometry, which was modeled using 1077 ABAQUS-C3D8HT thermo-mechanically-
coupled elements, Fig. 5-15. The displacement boundary conditions prescribed to the stent
were as follows: symmetry in the 1-direction for all the nodes on the surface defined by
edge CD extending into the 3-direction; symmetry in the 2-direction for all the nodes on the
surface defined by edge AB extending into the 3-direction; and symmetry in the 3-direction
for all the highlighted nodes on the front surface. To apply the initial deformation above dg,
all of the nodes at the outer diameter were given an inward radial displacement.

The finite element mesh for the artery consisted of 1500 ABAQUS-C3D8H elements: 2
elements through the thickness, 50 elements along the length., and 15 elements around the
one-quarter circumference. For the artery, the displacement boundary conditions ni = 0,
a2 = 0 and U3 = 0 were applied for all the nodes on the face perpendicular to the 3-direction
and away from the stent; symmetry in the 3-direction was applied to all the nodes that were
on the face perpendicular to the 3-direction and close to the stent. Contact between the
stent and artery was modeled as frictionless.

Predictions from the numerical simulation for the outer-diameter of the stent at different
temperatures during the imposed thermo-muechanical history of insertion of a stent in an
artery are shown in Fig. 5-16. The simulation results in Fig. 5-16 show that the outer
diameter of the stent recovered from 4.74 mm to 6.06 mm by the time the temperature
reached 47 C during heating; further heating to 60 C only increased the outer diameter
from 6.06 rmn to 6.22 mim: that is, 90% of the total shape-recovery occurred by the time the
stent was heated to 47 C. Fig. 5-17a shows the initial undeformed stent, while Fig. 5-17b
shows the deformed stent after radial compression at 60 C. Fig. 5-17c shows snapshots of
the stent inside the artery during shape-recovery at 22 C, 42 C, and 60 C.

"'We emphasize that this a purely numerical exercise; no actual stent for application in humans is expected
to be heated to 60 C!
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Figure 5-15: One-eighth symmetry finite element mesh for a vascular stent. The displacement
boundary conditions prescribed were: symmetry in the 1-direction for the nodes on the surface
formed by edge CD extending into the 3-direction; symmetry in the 2-direction for the nodes on
the surface defined by edge AB extending into the 3-direction; and symmetry in the 3-direction for
the highlighted nodes on the front surface.
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Figure 5-16: Predictions from the numerical simulation for the outer-diameter of the stent at
different temperatures during the imposed thermo-mechanical history of insertion of a stent in an
artery: (i) the tBA/PEGDMA stent was radially compressed at 60 C to reduce its outer diameter
from its initial 8 mm value to 4.7mm; (ii) the compressed stent was cooled to 22 C; (iii) the
constraints were then removed and the stent recovered to a diameter of 4.74 mm at 22 'C; finally
(iv) the stent was inserted into an artery and was heated to 60 C during which its outer diameter
recovered to a value of 6.22 mm.



Undeformed shape at 60 C
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Figure 5-17: Numerically-predicted thermo-mechanical shape-recovery cycle for the vascular

stent; for clarity the mesh has been mirrored along relevant symmetry planes to show the full
stent and artery. (a) Undeformed original stent. (b) Deformed stent. (c) Shape-recovery of the

stent inside the artery with temperature.
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Chapter 6

Concluding remarks

We have presented a thermo-mechanically coupled large-deformation isotropic elastic-visco-
plastic theory for amorphous polymers for the purpose of simulation and design of important
polymer processing operations, and for predicting the relationship between processing meth-
ods and the subsequent mechanical properties of polymeric products. In this thesis:

" We have developed the following specialized thermo-mnechanically coupled, large-deform-
ation constitutive theories: (i) a constitutive theory for amorphous polymers below
their glass transition temperature for a wide range of strain-rates; (ii) a constitutive
theory for amorphous polymers in a temperature range which spans their glass tran-
sition; and (iii) a constitutive theory to model the shape memory response of shape
memory polymers.

* We have generated a relatively complete set of stress-strain data for a technologically
important amorphous thermoplastic cyclo-olefin copolymer Zeonex-690R by conduct-
ing a suite of simple compression experiments on Zeonex-690R to large strains exceed-
ing 130%, including loading and unloading; at strain rates of 3 x 10- s-1, 3 x 10- s-1,
3 x 10-2 s-1 , and 3 x 101 s-, in a temperature range from room temperature to ~ 40 'C
above the glass transition temperature of the material. Stress-strain data for a chermi-
cally cross-linked shape nemory polymer has also been generated for strains ~ 100%.
at strain rates of 10-3 s, and 10- s- 1 , in a temperature range from room tempera-
ture to ~ 30 C above the glass transition temperature of the material. The polymer
was fabricated via photopolymerization of a tert-butyl acrylate (tBA) monomer with
the cross-linking agent poly(ethylene glycol) dimethacrylate (PEGDMA).

" Detailed calibration procedures for the material parameters that appear in our the-
ories have also been presented. Following these procedures, we have obtained mate-
rial parameter values for (i) three technologically important thermoplastic amorphous
polymers Zeonex-690R, PC and PMMA, and (ii) a tBA/PEGDMA thermoset shape
memory polymer.
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" An implicit time-integration procedure for our thermo-mechanically coupled theory
was developed and implemented by Shawn A. Chester to create a numerical simulation
capability for the finite element program ABAQUS/Standard (2009). Using this sim-
ulation capability, polymer processing operations such as micro-hot-embossing, ther-
moforming, and blow-molding as well as thermo-mechanical shape-recovery response
of shape memory polymers have been successfully simulated.

" Results for the following macro-scale validation experiments which involved inhomoge-
neous deformations are presented: (i) isothermal fixed-end reversed torsion test on PC;
(ii) high-speed normal-impact of a circular plate of PC; (iii) isothermal plane-strain
cold- and hot-forming operations on PC; (iv) isothermal, axi-symmetric hot-forming
operations on Zeonex-690R; (v) blow-forming of thin-walled semi-spherical shapes in
PC; (vi) force-time response of a ring-shaped tBA/PEGDMA shape memory polymer
specimen subjected to a constrained-recovery experiment; and (vii) unconstrained-
recovery response of a diamond-lattice-shaped specimen of tBA/PEGDMA shape mem-
ory polymer. In addition to validating the accuracy of our models and their numerical
implementations, these experimental results could also serve the purpose of verifying
the predictive capability of other models.

* We have used numerical simulations to successfully determine suitable temperature,
pressure and hold-time process conditions for micro-hot-embossing of various features
in Zeonex-690R. We have also conducted corresponding micro-hot-embossing experi-
ments on Zeonex-690R to verify the predictive capability of our theory and its numerical
simulation capability. Numerical simulation approaches such as the ones demonstrated
in this thesis can be used to determine optimum processing conditions for micro-hot-
embossing without a need for costly experimentation.

6.1 Future directions

While much has been accomplished, there are several important areas in which further
research should be conducted. Some of the future research could include:

" An important extension of our theory will be to account for crazing and cavitation and
to include suitable damage and failure criteria for amorphous polymers to model the
fracture initiation from cracks and notches.

* Our constitutive theory does not contain any intrinsic material length-scale and there-
fore cannot capture length-scale dependent phenomenon such as increase of hardness
with decreasing indentation depth at nano-length-scales. For such applications, our
theory will need to be extended; maybe following the approaches which are recently
being developed for metallic materials where material length-scale phenomena are mod-
eled via dependencies on plastic strain gradients (e.g., Anand et al., 2005; Lele and
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Anand, 2009; Gurtin and Anand, 2009). It is important to note that at this point the
physical origins of ",gradient effects" in polymers are not clear.

* Classical plasticity theories for amorphous polymers such as the one used here assume a
flow rule in which the direction of plastic flow is co-directional with the stress deviator
(a Mises-type flow rule). Although this is a reasonable approximation at the macro-
scale, it is not able to accurately predict the shear-yielding micromechanism of plastic
flow in which plasticity occurs by closely spaced shear-bands. Modified flow-rules such
as "double-shearing"' (cf. Anand and Gu (2000); Anand and Su (2005); Henann and
Anand (2008)) instead of Mises-type flow rule may be considered to more accurately
predict the shear-bands.

" The important physical micromechanisms need to be investigated at the molecular
level. Tools such as Molecular Dynamics simulations could be used to investigate the
effects of evolving polymer micro-structure at the molecular level on the macroscopic
mechanical response.

" Actual use of shape-memory polymers in devices is still quite limited. The major rea-
son for this is that due to the low stiffness of these polymers above their glass transition
temperature, very small forces are generated during constrained-shape-recovery. This
prevents use of these polymers in numerous applications in which reasonably high ac-
tuation forces are required. In the future, our study can be extended to model and sim-
ulate the response of composites made from shape-memory polymers and superelastic
alloys (e.g. Nitinol wires) to achieve desired, application-specific, recovery/actuation
forces from components made from these materials.
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Appendix A

Material parameter estimation
procedure for temperatures below the

glass transition

A.1 Introduction

In this appendix we briefly outline a procedure for estimating values of the material parame-
ters in the constitutive model described in Chapter 3. For an isotropic theory such as the one
presented in Chapter 3, it is most convenient to use an implementation of a one-dimensional
version of our model in the computer program MATLAB to conduct appropriate simula-
tions to estimate the material parameters. We illustrate our material parameter calibration
procedure for Zeonex-690R; the procedure for PC and PMMA is essentially identical.

A.2 One-dimensional version of the constitutive the-
ory

In this section we present an approximate one-dimensional version of the model described in
chapter 3, which substantially aids in the calibration of material properties from experimental
data. The approximation is primarily in that we cannot account for Poisson's type lateral
contractions, and attendant volume changes, in a one-dimensional setting. The underlying
constitutive equations relate the following basic fields:

U > 0, stretch,
uP, plastic stretch,
Ue - UUP-1, elastic part of the stretch,

= ln U, logarithmic strain,
Ee = ln U', logarithmic elastic strain,
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(<O, Sa, Sb) scalar internal variables,
A > 0 squared stretch-like internal variable,
,d > 0, absolute temperature,

=e )(Ue, d) +t( 2)(U, 9) + @P (1) (A, d), free energy density,
Cauchy stress.

A.2.1 Free energy. Stress

For #0) we use a simple linear elastic form for the free energy

(1) = - E (Ce)2 - E a (9 - do)Ee + f(7) (A.1)
2

where E(V) > 0 is Young's modulus, a is the coefficient of thermal expansion, do is a
reference temperature, and f(,) is an entropic contribution to the free energy related to the
specific heat of the material. This free energy contributes a component

(1) = E ce - Ea(, -,do), (A.2)

to the total Cauchy stress o.

Next, for 47P (1), consider a symmetric positive definite squared-stretch-like tensor A which

satisfies det A = 1. Let (ai, a2, a3 ) denote the set of principal values of A, with a1a 2a 3  1.
We assume a plastic energy of the form

P B [(In a1 )2 + (In a 2)2 + (In a3 )2 ], (A.3)

where B(O) > 0 is a back-stress modulus. With 0 .(back) denoting a stress from this free en-
ergy, standard relations of finite deformation incompressible elasticity give the corresponding
principal values of the back-stress as

(back) -2a./ (A.4)

with P an arbitrary "pressure," so that in a simple tension/compression, with (bac) _Oback
(back) (back) _Ur2  -U 3  0

8avI P(1
Uback = 2a1 -- 2a 2  - (A.5)

When the free energy is given by (A.3), (A.5) reduces to

aback B (1na, - Ina 2 ), (A.6)
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or equivalently, with a1 = A, and a2 =a 2 = A-1/2

3
aback = -B In A. (A.7)

2

In a one-dimensional setting, the driving stress for plastic flow is the effective stress given
by

f=o -
Tback, (A.8)

and the equivalent tensile stress and the mean normal pressure are

- lof|I and p 1a), (A.9)
3

respectively.

For d,(2) consider first a symmetric positive definite stretch tensor U which satisfies
det U 1. Let (U1 , U2 , U3 ) denote the set of principal stretches, with U1 U2U3 = 1. The first
invariant 1 of the squared-stretch tensor U 2 in three-dimensions is defined by

I1 f U1 + U2 + U3. (A.10)

In terms of 11, the Gent (1996) free energy is

=(2) 1 I-3 (A.11)
2 Im

where p(d) > 0 and ,, > 3 are two material parameters, with p representing the ground
state rubbery shear modulus of the material, and 1m representing the upper limit of (I1 -3),
associated with limited chain extensibility. With or denoting the contribution to the Cauchy
stress from this free energy, standard relations of finite deformation incompressible elasticity
give the the principal values of the corresponding stress as

(2)(2)
(-2 U, -P (A.12)

Ui '

with P an arbitrary "pressure." In simple tension/compression, with o( a 2) and o 2 )
(2)

2 =0, we get

(2)(2) 1(2) (91 oil (2)_ _

o -U 2  U2 U 2 ( - U) (A.13)OU1 0U 2  &l BU1  OU2  ol

or equivalently, with U1 - U and U2 = U3 = -1/2,

or = 2 (U2 - U 1 ), (A.14)aI1l
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and hence, for the Gent free energy (A.11),

(2) = p

The total Cauchy stress in simple tension/compression is

1)- + 5T2).

A.2.2 Flow rule

The evolution equation for UP is

7 = DPUP UP(0) - 1,

DP = esign(o1 l), eP > 0,
def--

c -- (Sa + Sb + ap),

0

do exp [sinh ( -' IT
kB 7 2 kB7

(A.17)
if c < 0,

if a- > 0.

Here eP is the equivalent tensile plastic strain-rate, and ae denotes a net equivalent ten-
sile stress for thermally activated flow; ap is a pressure-sensitivity parameter; eo is a pre-
exponential factor with units of s1; Q is an activation energy; kB is Boltzmann's constant;
V is an activation volume; and m is a strain rate sensitivity parameter.

When e > 0, (A.17), using (A.8) and (A.9), may be inverted to give

51 1 - ± +2kb. 1 eK_
o() - oback|+ --a, 51) Sa + Sb + sinh-1 (A.18)

3 V e*) .A)

with

e*) o exp - . (A.19)

A.2.3 Evolution equations for the internal variables Sa, <p, Sb, and
A

The internal variables Si and <p are taken to obey the coupled evolution equations:

5_ = ha (S* - Sa) er, with S* = b (<p* - <p), and Sa(0) = Sao;

(A.15)

(A.16)

_11 -3 (U2 - U1) .
Im

(A.20)
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and

g (* - o) eP, with o(0) = o,

d (z(1if (V < Vc) and (0 > 0).
and 0* (ep, 79) = Vc er

0 if (1 ;> zc,) or (eP = 0), (A.21){dg + n1 In - for e >
where 'Ic = (er

799 for eP < e,

with {ha, b, SaO, Po, z, r S, r, n} constants, and g temperature-dependent.
The evolution of Sb is taken to be governed by

Sb = hb (A - 1) (S* - SO) e, with initial value Sb(0) Sbo > 0, (A.22)

where
Sf(U 2 +2U-- 1 )/3 (A.23)

is an effective plastic stretch, hb a constant, and S* temperature-dependent.
Also, the evolution equation for A is taken as

A = 2 A DP - 7(AlnA) iP, A(0) = 1, (A.24)

where y > 0 is a constitutive parameter which governs the dynamic recovery of A.

A.2.4 Evolution equation for temperature

For one-dimensional tests at the highest strain rates, which may be approximated as adia-
batic, the temperature is taken to evolve according to

c7- (7, = B- oc +I7|n Al e2rP (A.25)

A.3 Material parameter calibration

With the full three-dimensional and simplified one-dimensional version of the theory in place,
we are in position to estimate the material parameters/functions appearing in the theory by
fitting the experimental data. We illustrate our material parameter calibration procedure
for Zeonex-690R; the procedure for PMMA and PC is essentially identical.

We have implemented the one-dimensional model of Section A.2 in MATLAB using an
explicit integration scheme, and we use it to calibrate the material parameters from the
experiments described in Chapter 3. The one-dimensional calibration process consists of
four sequential steps which are outlined in this section. The four steps cover calibration
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of the following aspects of the stress-strain response: (1) elastic modulus; (2) initial yield
stress; (3) large strain behavior; and (4) yield-peak and back-stress.

A.3.1 Elastic modulus

For polymeric materials the magnitude of the Young's modulus E decreases as the temper-
ature increases. We assume that the temperature dependence of the Young's modulus may
be adequately approximated by (cf. (3.77))1

E() = Eo - ME(E - Og)

where EO and ME are constants. Using the experimental data for the E versus V, we estimate

Eo = 1350 MPa, ME 0.45 MPa K~1 .

A.3.2 Initial yield stress

Most previous models for amorphous polymers have identified the peak stress in a stress-
strain curve from a simple compression test as a "yield stress" for the material. Since the
stress-peak is associated with the transient disordering of the material, and the actual level
of a peak is very dependent on the initial thermal history of the material, here we follow
a different approach. We identify a "yield stress" in a compression experiment as a back-
extrapolated value of the intersection of the initial elastic slope with the tangent to the
stress-strain curve at a strain of, say, 0.4, a strain level by which all transients of the yield-
peak have died out, and the chain-locking effects giving rise to the stress-strain curve are
minimal. Accordingly, at this point in the calibration procedure we ignore the effects of the
yield-peak and define the "yield stress" as the intersection of the pre-peak stress-strain curve
with the back-extrapolated tangent to the stress-strain curve at approximately 0.4 strain;
this is shown schematically in Fig. A-i. 2

Since
I - back = (5) - Jback) sign(S 1) - Uback)

and since in a monotonic compression test

sign(o 1 ) - oback) = sign(o 1 ) - sign(gback),

we have
1) - Oback 1 0(i) 1 - I backI

'We ignore all rate-sensitivity of the initial stiffness.
2This is a non-standard definition of the yield stress for polymeric materials.
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Figure A-1: Schematic showing the "yield stress" defined as the intersection of the pre-peak
stress-strain curve with the back-extrapolated tangent to the stress-stain curve at a strain of 0.4.

and hence, from (A.18),

I - -) lI - Sa + Sb + |back| + 2kb1 sinh-1 [VP . (A.26)
3 V e*(V) _

Thus, neglecting the contribution from the internal variables Sa(which is associated with the
transient yield peak) and the contribution from Sb (since this only manifests itself at large
stretches), for fully-developed flows when e ~ e (taken to be positive in compression) and
with Jolo = y , (A.26) gives the following approximate expression for yield stress O-, as a
function of temperature '0 and strain rate e:

CIP yr~l *2kBdsn-(1 - o ~ oback(9) + sinh () (A.27)

where we have introduced the notation

Uback Ubck(9)|. (A.28)

Here, Uback(V) represents a temperature-dependent saturation value of the back-stress in
compression.3 is always a positive valued scalar internal stress which leads to isotropic

3 For the purpose of obtaining material parameters associated with the "yield stress," we ignore the
evolution of the back-stress and use the temperature-dependent saturation value for the back-stress as an
internal stress in the one-dimensional theory. In order to make connection with the work of Richeton et al.
(2005a, 2006, 2007), one may identify arackG ) with their internal stress o-('). Note, however, that in the

work of Richeton et al., o-j(i)
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hardening, whereas in our more general theory the back-stress may in general be positive
or negative, and is not only temperature dependent, but also evolves with strain to give
rise to kinematic hardening. Because of the assumed temperature dependence (3.79) of the
back-stress modulus, oback decreases linearly with temperature,

Uback= R(Og - '9) for V < Og. (A.29)

where R is a material parameter. Finally, recalling (A.19),

e*('0) = co exp k (A.30)

To summarize, from (A.27), (A.29), and (A.30), there is a list of six material parameters

{ap, V m, R, so, Q }(A.31)

that must be calibrated from the experimental data for o- as a function of strain rate e
and temperature V. The value of the pressure-sensitivity parameter ap is not determinable
from simple compression experiments alone. As reviewed by Crist (1997), for amorphous
polymers the pressure-sensitivity parameter a, in simple tension/compression for PMMA is

0.35, that for PC is ~ 0.2, and for amorphous polymers is generally in the range 0.1 to
0.4. We are not aware of any data for the pressure sensitivity of yield for Zeonex in the
literature. Here, we assume that

a,~ 0.2 (A.32)

for Zeonex. This reduces the list (A.31) to

{ V m, R, so, Q }, (A.33)

which need to be calibrated from the experimental data for o-y as a function of strain rate e
and temperature V.

Following the back-extrapolation method of Fig. A-1, values of the yield stress o-y as
a function of temperature V and strain rate e have been estimated from the compression
stress-strain curves for Zeonex in the temperature range 25 C to 130 C at four strain-rates.
The ratio of these yield stresses to test temperatures, o/0, as a function of the logarithm
of strain-rate, log10 e are shown in the Eyring-plot of Fig. A-2a. Estimated isotherms have
been drawn to visually connect the yield points for a given test temperature. For a given
temperature we have only four data points spanning a relatively narrow strain-rate range,
which makes fitting the flow function (A.27) difficult. However, by utilizing the shifting
and superposition ideas of Richeton et al. (2005a, 2006), we can form a master curve of all
16 data points at a single reference temperature that covers a much wider range of strain
rates. To obtain the master curve, the experimental data is shifted along both axes by
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temperature-dependent shift factors defined below:

Horizontal shift:

Vertical shift:

A(log 10 e) = - ))7 i eshift

A =H,,
'd 7shift

(A.34)

where -d is the temperature of the experiment, i)sh1ift is the temperature that the data is shifted
to, and Hh and H, are shift parameters. Richeton et al. (2005a, 2006) have argued that these
shift factors may be equated with the material parameters appearing in the cooperative flow
model such that

Hh= kB 11110 -

Ht,= -a*h(9 = 0)

(A.35)
-Rog.

The master curve constructed at T0 shift ~ 'g = 408 K using the shift factors

H,, 5.7 x 103 K, H, = -70 MPa.

is shown in Fig. A-2b., and the values of Q and R, calculated using (A.35), are

Q - 1.81 x 10-19 J,

For a master
(A.27) vanishes,

and R = 0.172 MPa K-'

curve constructed at 19shift = dg, the back-stress term from the flow function
and (A.27) simplifies to

- 2k B -

o99 V 3
(A.36)

with the list of unknown parameters reduced to {eo, V, n}. A non-linear least-squares fitting
method was used in MATLAB to obtain these parameters from the shifted experimental data.
This gives

V = 1.14 x 10-2 7 in3, and n = 0.16,

and the resulting fit of (A.36) to the shifted data at 408K is shown in Fig. A-2b as a solid
line.

A.3.3 Stress-strain response at large strains

Here, we focus on estimating the material parameters: (1) y and 1m, in the expression (A.15),
together with the temperature dependence of t given in (3.82); and (2) hb and S*, together
with the temperature dependence of S* given in (3.81) - parameters which account for the
stress increase associated with chain-locking at large stretches.

eo = 1.8 x 10o"ls-1, -

sinh-1 , d
[(g _ ')
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Figure A-2: (a) Ratio of compressive yield stress to temperature as a function of logarithm of
strain rate. The data plotted as bullets (e) are the yield stress values estimated from the compression
experiments, and the dashed lines are estimated isotherms. (b) Master curve constructed at 408 K
by shifting the yield stress data. The shifted experimental data is plotted as triangles (A), and the
solid line indicates a fit of flow function to the master curve.

To begin, we neglect the transient response associated with the yield-peak and set Wo =

Sao = 0, and correspondingly ignore the evolution equations (A.20) and (A.21) for W and
Sa; we return to determining the material parameters appearing in these coupled evolution
equations later. We also ignore the evolution of the back-stress, and set it constant, using
the temperature-dependent saturation value, such that

0-back(79) = aback(d) sign(uback) = -R(Og - 0) for _ < g, (A.37)

and determine material parameters associated with the evolution of the back-stress later.
Below the glass transition temperature, the parameter Im is presumed to be temperature-

independent, as is the parameter h 2 in the evolution equation (A.22), while the temperature-
dependence of p(7) and S*(d) is presumed to follow

p{(9) = po - N(d - 79.) for V < O, (A.38)

and
S*(V) = 11 - 12 V for V < Vg, (A.39)

(cf., (3.82) and (3.81)). Using the one-dimensional MATLAB implementation of the model,
together with the material parameters estimated to this point, estimates for the desired
parameter list

{ po, N, Im, Sbo, hb, 11, 12}
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are relatively easily obtained by curve-fitting both the loading as well as the unloading
response at large strains for the stress-strain data at the lowest strain rate.4 A few trials
give the estimates as

yo = 3 MPa, N = 6.2 x 10-2 MPa K-, Im = 6.2,
h2= 6.24, 11 = 130 MPa, 12= 0.27 MPa K 1 .

A.3.4 Yield-peak and back-stress evolution

Finally we calibrate material parameters associated with the yield-peak and the back-stress
evolution. This last step in the calibration procedure is an iterative process, and requires
fitting the transient stress-overshoot in the simple compression stress-strain response together
with the creep response, iteratively, several times in order to get a good fit. The steps in the
iterative procedure are listed below.

Step 1:

The parameters related to the change of back-stress Oback with strain and temperature
are -y and X (cf. (A.24), (3.79)). To begin, we note that for compression

DP = -er, (A.40)

and we may then rewrite the evolution equation for A (A.24) as

A = -(2 + y In A) A er. (A.41)

It follows then that the saturation value of A in compression is

A* = exp (--. (A.42)

Combining this result with the equation for the back-stress (A.7) gives the saturation value
of the back-stress as a function of the material parameters B() and -y

B(O)
Oback() 3 '(A.43)

Equating the saturation value for the back-stress using (3.79) and (A.29) 1 we obtain

X (79 - 1) -R (.43 - R( - )= , (A.44)
4The internal variable Sb, together with its evolution (A.22), is essential for a proper modeling of the

unloading response of the material after large strains. We assume that the material begins in a well-annealed,
"ground" state and take Sbo to be zero. For PMMA the experimental data, to which the model is fit, to
does not include data at very large strains, therefore we ignore the material parameters associated with the
isotropic hardening at large strains and set hb, 11, 12 to be zero for this material.
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and since R has already been determined, we obtain the fixed value for the ratio X/-y.

Step 2:

In this step we estimate a value for -y, and calculate the corresponding value for X from
(A.44) to get an estimate for the parameters involved in the evolution of the back-stress.
This leaves one with a list of parameters {SaO, ha, b, o, g, (p*} in the evolution equations
(A.20) and (A.21) for V and Sa to calibrate the yield-peak.

We assume the material begins in a well-annealed "ground-state," so that we may take
the initial value of the order parameter W and stress like internal resistance Sa to be zero,

Wo = 0 and SaO = 0.

To find {ha, b, g, so*}, several simulations are performed using different values of parameters to
approximately match the shape of the yield peak at the various strain rates and temperatures.
As an aid to the iterative curve-fitting procedure, Fig. A-3 shows how the parameters
{ha, b, g, P*} affect the shape of the yield-peak. The parameter ha controls the initial slope
of the yield peak, the parameters b and p* control the height of the yield peak, while the
parameter g controls the width of the yield-peak.

Step 3:

With the parameters for yield-peak estimated, one returns to refining the values of the
material parameters in the back-stress evolution. To get refined estimates for the recovery
parameter -y and the temperature sensitivity parameter X for the back-stress modulus B,
we first note that -/ controls the rate of saturation of the back-stress. This is shown in
Fig. A-4a, where the back-stress versus axial strain response is shown for varying values of
7 at a constant ratio of B/y: as y increases, the back-stress approaches its saturation value
more rapidly.

The parameters -y and B significantly affect the creep response of the material.' In order
to get more refined estimates for these parameters, we turn to a limited set of available data
for room-temperature creep of Zeonex shown in Fig. A-4b as solid lines. The value of 7 is
chosen such that that the creep response is adequately represented, as shown by the dashed
lines in Fig. A-4b.

Steps 2 and 3 are iteratively repeated until the yield-peaks in the total stress-strain
response of the material, as well as the creep response are satisfactorily calibrated.

Once {ha, b, g, W* } are determined for each stress-strain curve, we have found that to a
good approximation, the parameters ha and b may be taken as constants; g as temperature
dependent, and W* as both temperature and strain rate dependent. The temperature depen-
dence of g was then fit to the functional form (3.80), while the temperature and strain rate
dependence of W* was fit to the functional form (A.21); Fig. A-5 shows a schematic of the
variation of W* with temperature and strain rate.

'Cyclic tension-compression stress-strain curves at different temperatures may also be used to fit the
back-stress parameters, but we have not conducted the necessary extensive set of such experiments.
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The material parameters for Zeonex that give a reasonable fit for the yield peak for the

range of temperatures and strain rates under consideration, and also adequately reproduce

the limited creep data, are

= 300,

z = 0.0055,

n = 1.6,

100

b 10.13 x 103 MPa,

r 0.24,

7 12,

0.2 0.3
True Strain

= -28,

= 0.042,

= 0.7 MPa K- 1 ,

cn4(

g2 = 0.12,

P, = 3 x 10-4 s-1

0.2 0.3
True Strain

Figure A-3: Schematics of the effects
the yield-peak. Arrows indicate changes

of the material parameters {hi,b, g, o*} on the shape of
as the values of the respective parameters are increased.
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Figure A-4: (a) The dependence of the evolution of back-stress on the material parameter -Y:
effect of sequentially doubling the material parameter -y from 5 to 160 on the back-stress for a
constant ratio of B/-y. (b) Creep test results under simple compression at two stress levels below
the yield-peak (solid lines), together with one-dimensional MATLAB simulations (dashed lines).
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A.4 Parameters for the three-dimensional model

Except for the list of parameters {vo, ap, V Sao, ha, b, g1, g2, Sbo, hb, Il, 2, r, 7}, the values of
the one-dimensional material parameters are unchanged when used in the three-dimensional
equations. Noting that

TV = o-e, o- =/3T, e = (A.45)

the list of parameters {vo, a , V, Sao, ha, b, g1, 92, Sbo, hb, li, 12, ur, Y} may be converted from
the one-dimensional compression form to the three-dimensional shear form using

o = vo ,

s (comp) __ (shear)
aO - aO I

9(CaMP) =v/3 g (shear)
1 1

h(comP) = - h shear)
b b

<y cOmP) - N/ 7(shear)

(comp) - v a(shear) V(comP) - 1 V(shear)

h(comP) - N hshear) , b(cOmP) - v'3b(shear)

(comp) - shear) co ) _ (shear)

ho sear bO
1(COMP) _ F3 1 (shear) 1 (comp) - .F3 (shear)

2 2r

Further, to convert the temperature dependence parameters
to those for the shear modulus G, we use the standard relations

GEo=Go (1 +v_
2 (1 + vpoi) '

ME
2 (1 + vpo)

(A.46)

for the Young's modulus E

(A.47)

with vpOi assumed to be temperature-independent in the temperature range under consider-
ation.

The material parameters for the three-dimensional theory that were determined by fol-
lowing the procedure described in this Appendix are listed for Zeonex-690R, PC, and PMMA
in Table 3.1 of Chapter 3.
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Appendix B

Material parameter estimation
procedure for a temperature range

which spans the glass transition

B.1 Introduction

In this appendix we briefly outline our procedure for estimating values of the material param-
eters in the constitutive model described in Chapter 4. For an isotropic theory such as the one
presented in Chapter 4, it is most convenient to use an implementation of a one-dimensional
version of our model in the computer program MATLAB to conduct appropriate simula-
tions to estimate the material parameters. We illustrate our material parameter calibration
procedure for Zeonex-690R; the procedure for PC and PMMA is essentially identical.

From the outset we acknowledge that for any given material, the list of material pa-
rameters is rather long, and that the parameter values that we determine are not unique.
However, having apologized for these features of our list of material parameters in advance,
we know of no other theory which is able to phenomenologically (or otherwise) reproduce
the complicated response of these materials over the ranges of strains, strain-rates, and
temperatures considered in Chapter 4.

B.2 One-dimensional version of the constitutive theory

In this section we present an approximate one-dimensional version of the model, which
substantially aids in the calibration of material properties from experimental data. The
approximation is primarily in that we cannot account for Poisson's-type lateral contractions,
and attendant volume changes, in a one-dimensional setting. The underlying constitutive
equations relate the following basic fields:
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a = 1, 2, 3

stretch,

elastic-plastic decomposition of U,
elastic part of the stretch for each a,
plastic part of the stretch for each a,
absolute temperature,
free energy density,

Cauchy stress.

B.2.1 Variation of the glass transition temperature 19 with strain
rate

Let
(B.1)

denote an equivalent tensile strain rate. We assume that

'r-

{r + n log-

if e < r

if e > e,
(B.2)

where 'or a reference glass transition temperature at a reference strain rate er, and n is a
material parameter.

B.2.2 Constitutive equations for a = 1

1. Free energy. Cauchy stress. Back-stress. Effective stress

With
e (1) - ln Ue ()

denoting a logarithmic elastic strain, we assume that

(B.3)

(B.4)

where A > 0, is a squared stretch-like internal variable.
linear elastic form for the free energy

Oe(1) - 1E e (1)2

2

For O () we use a simple

Eath (79 - 90)ee (1) + f(,d), (B.5)

where E(9) > 0 is a Young's modulus, ath(79) is a coefficient of thermal expansion,
V0 is a reference temperature, and f() is an entropic contribution to the free energy
related to the specific heat of the material. The temperature dependence of the Young's
modulus E is taken in the same form as that for the shear modulus G in (5.8), while

212

U > 0,

U = Ue (a)Up (a)

Ue(a)

o- = E ao(),

b0 e (1)(ee (1), IV) + P (1)(A),d),
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the temperature dependence of the coefficient of thermal expansion is as in (4.14). This
free energy contributes a component

o-) = E ce () - Eath (1 ~ _0), (B.6)

to the total Cauchy stress o.

Next, for V (), first consider a symmetric positive definite squared-stretch-like tensor
A which satisfies det A = 1. Let (ai, a 2, a3 ) denote the set of principal values of A,
with a1a2a3 =1. Then as in (4.17), the defect energy is

V)P (1) = B [(in ai) 2 + (in a 2 )2 + (in a3 )2 ], (B.7)

where B(V) > 0 is a back-stress modulus, with temperature dependence given in
(4.19). With 0 -(back) denoting a stress from this free energy, standard relations of finite
deformation incompressible elasticity give the corresponding principal values of the
back-stress as

a (back) _( - P, (B.8)

with P an arbitrary "pressure." In simple tension/compression, o back) =Oback and

o( back) ( back) = 0, and hence

a90 () 8a0 ()
O-back = 2a1- - 2a 2  = B (ln a -ln a2), (B.9)

or equivalently, with ai = A, and a 2 = a3 = A-

3
Uback = -B In A. (B.10)

2

In a one-dimensional setting, the driving stress for plastic flow is the effective stress
given by

of = o-) - 0back, (B.11)

and the equivalent tensile stress and the mean normal pressure are

(1 df 1 ()- 1 (1)

oeff and p =-- , (B.12)

respectively.

2. Flow rule

The one-dimensional version of the flow rule (4.26) is that

with P (1) > 0. (B.13)DP(') = eP(1)sign(o-03)),&P (1) = DP (1)UP (1)
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With (Sa, Sb) two positive-valued stress-dimensioned internal variables, and a, a pressure-
sensitivity parameter, let

0e df &M - (Sa + Sb + api) (B.14)

define a net equivalent tensile stress, then equivalent tensile plastic strain rate eP) is
taken to be given by

0
ep(1) = .1

160 exp (. exp ' sinh ( 7e
kB' 2kBo .

In the scalar flow rule (B.15), (e , V, m(), ap) are taken to be constants, while (C, Q)
are assumed to be temperature- dependent, with the dependencies given in (5.22) and
(4.45), respectively. When ePD) > 0, the scalar flow rule (B.15), using (B.11) and
(B.12), may be inverted to give the strength relation

1 2k'19
ol) - obackl + a ) - Sa + Sb + sinh- 1

3 V
(B.16)

where

* = em exp exp ( (B.17)- Q )

3. Evolution equations for the internal variables p, Sa, Sb, and A

Together with (Sa, Sb, A), we introduce another internal variable o.
variables Sa and p are taken to obey the coupled evolution equations:

The internal

Sa = ha (S* - Sa) ?(I) with S* = b (p* - p), and Sa(0) = Sao;

where

z
0

with P(0) = wo,

(1) 

where

for ( 9 < 'g) and (P) > 0),

for (d > 79g) or (eP(l) - 0).

(B.19)

Here (ha, b, Sao, o, z, r, s) are taken to be constants, and g is taken to be temperature-
dependent, cf. (4.51).

The evolution of Sb is taken to be governed by

$b= hb (A - 1) (Sb - S) e wa0

1/m()

if o< 0,

if c> 0.
(B.15)

= g (P* - P) e('),

(B.18)

Sb (0) = SO ;> 0,1 (B.20)with initial value

eP(1) m(1>-
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where
Az , (U +2U)/3 (B.21)

is an effective stretch, hb a constant, and S* temperature-dependent, cf. (4.52).

The one-dimensional form of (4.55) is the following evolution equation for A:

A= 2 ADP) -- y(AlnA) eP(1) A(O) = 1, (B.22)

where -y > 0 is a constitutive parameter which governs the dynamic recovery of A.

B.2.3 Constitutive equations for a = 2

1. Free energy. Cauchy stress

For ease of notation, suppress for the time being the superscript a = 2. For V', consider
first a symmetric positive definite, unimodular stretch tensor Ue. Let (U, U2, U3)
denote the set of principal stretches of Ue, with UeUeUe = 1. The first invariant I1 of

(Ue) 2 is
11 = U 2 + Ue 2 + Ue2. (B.23)

With o denoting the contribution to the Cauchy stress from free energy 4, which is
presumed to be a function of I1, standard relations of finite-deformation incompressible
elasticity give the principal values of o- as

O i = Ue- P, (B.24)
* Die

with P an arbitrary "pressure." In simple tension/compression, with o, o- and

o2 = U3 = 0, we get

o=Uee- = - U - U =2 (U 2 -u 2 ), (B.25)

or equivalently, with Uf = Ue and U2 = U3 = Ue -1/2

= 2 (Ue 2 - Ue-). (B.26)
aIl

Reinstating the superscript (2) for micromechanism a = 2, the Gent (1996) free energy

in terms of I (Ule(2)) + (U (2)) 2 + (U (2)) 2 is

'(2) y ln 1 - I 32 , (B.27)
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which with (B.26) gives the contribution o() to total one-dimensional Cauchy stress
o as

I1(23)
((Ue(2) - (Ue(2) ) ,)

where p52) (d) > 0 and I2) > 3 are two material parameters, with the temperature
dependency of p 2 ) given in (5.40).

2. Flow rule

The evolution equation for UP (2) is

Upj(2 )= DP U DP()= e)sign(o )

p2 = (2) ( )) 1/m(2)

0 S(2)

with P(2 ) the equivalent tensile plastic strain-rate. The parameters (e 2), m (2)) are
constants, and S(2) temperature-dependent, cf. (5.50).

B.2.4 Constitutive equations for a = 3

1. Free energy. Cauchy stress

For a free energy function of the form

1 I3)
(B.30)

(B.29)

where I(3) j (Ue(3)) 2

contribution
+ (Ue(3)) 2 + (U3 2 analogous to the

S(3) (3) i i(3)1
((Ue(3) 2 - (U

case a = 2, we have the

e(3) 1) (B.31)

to the total one-dimensional Cauchy stress o.
temperature-independent material parameters.

2. Flow rule

The evolution equation for UP (3) is

-D (3)Up (3)

0

e (3) (I-(3) 1/

Here p(3 ) > 0 and I3 > 3 are two

DP 3 = P(3)sign(oG3 )

if 9 < 9 g,
m(3)

if 79 > 79g

),' (B.32)

a(2) = P(2) (B.28)

----------

03) _ _ A(3) '3)
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where ePO) is the equivalent tensile plastic strain-rate, and the parameters (60, m( 3)
are constants, while S(3) evolves, as discussed below.

3. Evolution equations for internal variable S(3):

The evolution of S(3 ) is taken to be governed by

( h3 (A - 1) ep() with initial value S() (0) = S(3) > 0, (B.33)

where
A . (U + 2U)/3, (B.34)

is an effective stretch, and h3 (d) and S( (9) are temperature-dependent material pa-
rameters, (4.88).

B.2.5 Evolution equation for temperature

For one-dimensional tests at the highest strain rates, which may be approximated as adiabatic,
the temperature is taken to evolve according to

c) = w (&u() 0(1) + 1 B -y I In A l2 a(l) + l52)ep(2) + lOr(3)j . (B.35)

B.3 Material parameter calibration

We have implemented the one-dimensional version of the constitutive theory in MATLAB
using an explicit integration scheme, and we use it to calibrate the material parameters from
the experiments described in Chapter 4. The one-dimensional calibration process consists of
four sequential steps which are outlined in this section. The four steps cover calibration of
the following aspects of the stress-strain response: (1) elastic modulus and rate dependence
of 19g; (2) initial yield stress; (3) large-strain behavior; and (4) yield-peak and back-stress.

B.3.1 Temperature dependence of E and strain rate dependence
of o0g

The temperature dependence of the modulus E is taken in the same form as that for G in
(5.8):

E(O) =(Egi + Er) - 1(Egi - E,) tanh (d - Vg) - ME I - Lg), (B.36)

where

ME = '9g (B.37)
ME, > 79g,
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Figure B-1: Fit of elastic modulus E to phenomenological function (B.36).

and dg is the rate-dependent glass transition temperature, cf. (B.2). Experimental values
of E were estimated from the initial slopes of the experimentally-measured stress-strain
curves at small strains, at the various different temperatures and the four different strain
ratees. The reference strain rate e, in (B.2) was chosen as the slowest rate 3 x 10-4 S-1 in
our experiments, and the elastic modulus data was fit to (B.36) and (B.2). The resulting
material parameters for the fit shown in Fig. B-1 are

e, = 3 x 10-4 S-1 , V, = 404 K, n = 2.5 K,
Eg, = 1350 MPa, E, = 10 MPa, A= 2.0 K, MEg = 0.45 MPa K- 1 , ME, = 0.1 MPa K-

B.3.2 Initial yield stress

1. Initial yield at temperatures below P9

First we consider the material parameters related to the flow stress at temperatures
below Vg. Since the stress-peak is associated with the transient disordering of the
material, and the actual level of a peak is very dependent on the initial thermal history
of the material, here we follow a different approach. We identify a "yield stress" in a
compression experiment as a back-extrapolated value of the intersection of the initial
elastic slope with the tangent to the stress-strain curve at a strain of, say, 0.4, a strain
level by which all transients of the yield-peak have died out, and the chain-locking
effects giving rise to the stress-strain curve are minimal. Accordingly, at this point
in the calibration procedure we ignore the effects of the yield-peak and define the
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Figure B-2: Schematic showing the "yield stress" defined as the intersection of the pre-peak
stress-strain curve with the back-extrapolated tangent to the stress-stain curve at 0.4 strain.

"yield stress" as the intersection of the pre-peak stress-strain curve with the back-
extrapolated tangent to the stress-strain curve at approximately 0.4 strain; this is
shown schematically in Fig. B-2.

Since
o U'1- Oback (Or(1) - Uback) sign(o) )- oback)

and since in a monotonic compression test

sign(oM - Oback) = sign(od1 ) = sign(gback),

we have
I - back| ( _ Oback|,

and hence, from (B.16),

2k V e() m(1)~1 --9_ Or(') Sa + Sb + |backI + 2kb7) sinh- 1  PMj9 ) . (B.38)
3 /V [*(V) .

Thus, neglecting the contribution from the internal variables Sa(which is associated
with the transient yield peak) and the contribution from Sb (since this only manifests
itself at large stretches), for fully-developed flows when eP(M ~ (taken to be positive in
compression) and with 1o04| - , (B.38) gives the following approximate expression
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for yield stress o- as a function of temperature P and strain rate e:

1 - o- ~oac (79) + 2B9sinh-1 ,~l (B.39)

where we have introduced the notation

o(c bdef (B.40)abc ( I) back (P9)

Here, ou*ack(P) represents a temperature-dependent saturation value of the back-stress
in compression.1 Because of the assumed temperature dependence (4.19) of the back-
stress modulus, otack decreases linearly with temperature,

backf(PgP-) for P P g, (B.41)

where R is a material parameter. 2

Finally, recalling (B.17), (5.22), and (4.45),

e*() = e exp exp ( for P Pg. (B.42)

To summarize, from (B.39), (B.41), and (B.42), there is a list of seven material param-
eters

{ap, e ,') m (,) V, (gi, Qgj, R}

that must be calibrated from the experimental data for o- as a function of strain rate
e and temperature P for temperatures below Pg. The value of the pressure-sensitivity
parameter a, is not determinable from simple compression experiments alone. As
reviewed by Crist (1997), for amorphous polymers the pressure-sensitivity parameter
a, in simple tension/compression for PMMA is ~ 0.35, that for PC is ~ 0.2, and for
amorphous polymers is generally in the range 0.1 to 0.4. We are not aware of any
data for the pressure sensitivity of yield for Zeonex in the literature. Here, we assume
that a, ~ 0.2 for Zeonex. The parameter e(), represents an attempt frequency for

For the purpose of obtaining material parameters associated with the "yield stress," we ignore the
evolution of the back-stress and use the temperature-dependent saturation value for the back-stress as an
internal stress in the one-dimensional theory. In order to make connection with the work of Richeton et al.
(2005a, 2006, 2007), one may identify oback(d) with their internal stress oa(O). Note, however, that in the
work of Richeton et al., oj (z) is always a positive valued scalar internal stress which leads to isotropic
hardening, whereas in our more general theory the back-stress may in general be positive or negative, and
is not only temperature dependent, but also evolves with strain to give rise to kinematic hardening.

2For the purpose of fitting the parameters associated with the yield points in the glassy regime, the
rate dependence of the glass transition temperature is neglected and for this step of material parameter
calibration procedure, we assume the glass transition temperature to be constant and assume o9 = or = 404
K for Zeonex.
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the plastic flow, and we assume that it has the classical value 1013 s- for the three

polymers.

Following the back-extrapolation method of Fig. B-2, values of the yield stress %, as

a function of temperature 1 and strain rate e have been estimated from the compres-

sion stress-strain curves for Zeonex in the temperature range 25 C to 130 C at four

strain-rates. The ratio of these yield stresses to test temperatures, Oy/t, as a function

of the logarithm of strain-rate, logi0 e are shown in the Eyring-plot of Fig. B-3a. Esti-

mated isotherms have been drawn to visually connect the yield points for a given test

temperature. For a given temperature we have only four data points spanning a rela-

tively narrow strain-rate range, which makes fitting the flow function (B.39) difficult.

However, by utilizing the shifting and superposition ideas of Richeton et al. (2005a,
2006), we can form a master curve of all 16 data points at a single reference temper-

ature that covers a much wider range of strain rates. To obtain the master curve, the

experimental data is shifted along both axes by temperature-dependent shift factors

defined below:

Horizontal shift: A(logio e) = Hh :
(d Oshift (B.43)

Vertical shift: A () = H,
79~ ~ 19 1shift

where d is the temperature of the experiment, 19shift is the temperature that the data

is shifted to, and Hh and H, are shift parameters. Richeton et al. (2005a, 2006) have

argued that these shift factors may be equated with the material parameters appearing

in the cooperative flow model such that

H Qgi
kB ln 10' (B.44)

HV = -back (7 = 0) ROg.}

The master curve constructed at l9shift = Or = 404 K ~ 70g using the shift factors

Hh = 4.91 x 103 K, Hv = -69.5 MPa ,

is shown in Fig. B-3b, and the values of Qgi and R, calculated using (B.44), are

Qgi = 1.56 x 10-19 J, and R = 0.172 MPa K- 1.

For a master curve constructed at 19shift = 404 K ~Og, the back-stress term from the

flow function (B.39) vanishes, and (B.39) simplifies to

Ty _ 2 1kB / - sinh-[ - m(1 (B.45)
g ~_( sih [*(9g))'j
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with the list of unknown parameters reduced to {(,g, V, mul) }. A non-linear least-
squares fitting method was used in MATLAB to obtain these parameters from the
shifted experimental data. This gives

(gl = 0.135 V = 0.98 x 10-2 7 m 3 , and m 1l - 0.16,

and the resulting fit of (B.45) to the shifted data at 404 K is shown in Fig. B-3b as a
solid line.

2. Initial yield at temperatures above '

As the temperature is increased through the glass transition region, the yield stress
drops off very rapidly to negligibly small values. In our model, as the temperature
increases through the glass transition, the characteristic strain rate e* rapidly increases,
leading to a relatively fast drop in the yield stress. At temperatures above ?g, the values
for the yield stress ou were estimated to be the stress value at ~ 0.04 strain. For the
estimated values of the yield stress, corresponding values for characteristic strain rate
e* were calculated using relation (B.39) for each experiment above 9g. With e* defined
as

e* (7) - efl exp exp -(B.46)0 ~kB 79

where the additional temperature dependence of ( and Q govern the change in char-
acteristic strain-rate e*(d) through the glass transition. With (5.22) and (4.45) rep-
resenting temperature dependence of ( and Q, we are left to determine (Qr, d). To
determine these two material parameters, values of e* that were obtained from the
experiments were fit for temperatures above d-g. The selected values of e* along with a
fit of function (B.46) are shown in Fig. B-4 for following values of material parameters

Qr = 1.0 x 10 -2 J, and d = 0.015 K 1 .

B.3.3 Stress-strain response at large strains

This part of the calibration procedure was divided into two steps: (i) material parameter cal-
ibration for temperatures above 79g; and (ii) material parameter calibration for temperatures
below o .

1. Large strain response above 7,

For temperatures above og, we allow for network slippage corresponding to micromech-
anism a = 2 and select material parameters (S(2), e2), m(2 )), such that the flow stress
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Figure B-3: (a) Ratio of compressive yield stress to temperature as a function of logarithm of
strain rate. The data plotted as bullets (e) are the yield stress values estimated from the compression
experiments, and the dashed lines are estimated isotherms. (b) Master curve constructed at 404
K by shifting the yield stress data. The shifted experimental data is plotted as triangles (A), and
the solid line indicates a fit of flow function to the master curve.
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Figure B-4: Fit of characteristic strain-rate i* versus temperature above the glass transition
temperature 'g. Symbols indicate selected value for fitting and lines indicate fit of function given
in (B.46).
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associated with (B.29) is negligibly small. We accomplish this by taking

S - 0.02 MPa, e(2) 3 X 10 4 s-1 ) =0.18,

where the value of a is the slowest strain rate of our experiments, and the value
of m(2) is a suitably large value at these high temperatures. Thus, in the calibration
procedure above og, we may neglect the small contribution from U(2 ) and set

a (1) + 7(3)

Thus, for 9 > d9 the nonlinear increase in stress at large stretches depends primarily
on (i) the evolution of the internal variable Sb in micromechanism a =1 according to
(B.20); and (ii) the values of the elastic parameters (p), IZ), the values of the flow
parameters (e(3) m(3)), and the evolution of the internal variable S(3) in micromecha-
nism a = 3.

Using the one-dimensional MATLAB implementation of the model, together with the
material parameters estimated up to this point, the stress-strain response at a given
strain rate and temperature, can be fit by adjusting values of (hb, SbO, S[) for a = 1,
and the values (pM), I , e0, m , h3, s3)) for a = 3. In the lists above (hb, Sbo) and

(p(3), 3 3) m(3)) are presumed to be temperature-independent, the initial value of
(3)the internal variable Sb is set to Sbo = 0, the reference plastic strain rate e is taken

as 3 x 10 4 S1 (the slowest strain rate of our experiments), while the temperature-
dependence of S*(P), S(3) (V), and h3 (70) is presumed to follow

S*(9) = Sr - Lr (9 - ( 9g + 2.5A)) for 9 > 79g, (B.47)

S(3) ('d) - S(3) exp -Y 1 - 0g)) (B.48)

and h3(') = h3g exp Z(79 - g)). (B.49)

Estimates of the values of the desired material parameter lists

(hb, Sr, Lr)

for a = 1, and

(p),If ms) S , ,hag, Z)

for a = 3 are obtained by trial-and-error curve-fitting both the loading and unloading
response at large strains for the stress-strain data at temperatures above Vg. A few
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trials give the estimate as

hb 1.0, S, = 2.0 MPa, Lr = 0.05 MPa K 1 ,
(3) 0.75 MPa, = 6.5, m(3) =0.18,

S(3) 5.3 MPa Y = 0.19 K- 1, h3= 52.0 MPa, Z = 0.178 K 1 .

2. Large strain response below 'g

Here, we focus on estimating the material parameters: (i) pt(2) and I in the expression
(B.28), together with the temperature dependence of p(2) given in (5.40); and (ii) S*,
together with the temperature dependence of S* given in (4.53) - parameters which
account for the stress increase associated with chain-locking at large stretches.

To begin, we neglect the transient response associated with the yield-peak and set

po = SO = 0, and correspondingly ignore the evolution equations (B.18) and (B.19)
for sp and Sa; we return to determining the material parameters appearing in these
coupled evolution equations later. We ignore the evolution of the back-stress, and set
it constant, using the temperature-dependent saturation value, such that

(- --0) if i9 o

Uback() o*ack(7O sign(bck) = g (B.50)
bac\/b~ac) ~~0O if V > 9gi

and determine material parameters associated with the evolution of the back-stress
later. Also we select a large value for the material parameter S() = 150 MPa to

allow for the assumption e2) 0. The parameter I, is presumed to be temperature-
independent while the temperature dependence of p (2)() and S* (0) is presumed to
follow

(2 () = P(2) exp (- N(O - dg)), (B.51)

and
S*(79 ) = Sgl - Lgi (o - (70g + 2.5A) for O < 9g, (B.52)

(cf., (5.40) and (4.53)). Using the one-dimensional MATLAB implementation of the
model, together with the material parameters estimated to this point, estimates for
the desired parameter list

(pg), N, IM , SgiI Lg)

are relatively easily obtained by curve-fitting both the loading and unloading response
at large strains for the stress-strain data at the lowest strain rate. A few trials give
the estimates as

p -) = 2.8 MPa, N = 11.1 x 10-3 K , I = 6.2,

3g, = 74 MPa, Lgi = 1.13 MPa K-1 .
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B.3.4 Yield-peak and back-stress evolution

Finally, we calibrate material parameters associated with the yield-peak and the back-stress
evolution for temperatures below 79g. Both the back-stress and yield-peak are observed to
vanish above the glass transition temperature of the material. This step in the calibration
procedure is an iterative process, and requires fitting the transient stress-overshoot in the
simple compression stress-strain response together with the creep response, iteratively, sev-
eral times in order to get a good fit. The steps in the iterative procedure are listed below.

Step 1:

The parameters related to the change of back-stress aback with strain and temperature
are y and X (cf. (B.22), (4.19)). To begin, we note that for compression

DP() = -?(1), (B.53)

and we may then rewrite the evolution equation for A (B.22) as

A = -(2 + 71n A) A e(). (B.54)

It follows then that the saturation value of A in compression is

A* = exp -_ . (B.55)

Combining this result with the equation for the back-stress (B.10) gives the saturation value
of the back-stress as a function of the material parameters B(79) and -y

B(0)
ofbackB9) = 3 (B.56)

Equating the saturation value for the back-stress using (4.19) and (B.41) we obtain

3 4~9 = 9 R(tog - d) -> X =- R , (B.57)
7 3

and since R has already been determined, we obtain the fixed value for the ratio X/y.

Step 2:

In this step we estimate a value for -y, and calculate the corresponding value for X from
(B.57) to get an estimate for the parameters involved in the evolution of the back-stress.
This leaves one with a list of parameters {SaO, ha, b, Soo, g, sO*} in the evolution equations
(B.18) and (B.19) for p and Sa to calibrate the yield-peak.
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We assume the material begins in a well-annealed "ground-state," so that we may take

the initial value of the order parameter o and stress-like internal resistance Sa to be zero,

oo = 0  and Sao = 0.

To find { h, b, g, W*}, several simulations are performed using different values of param-

eters to approximately match the shape of the yield-peak at the various strain rates and

temperatures. The parameter ha controls the initial slope of the yield peak, the parameters

b and W* control the height of the yield peak, while the parameter g controls the width of

the yield-peak.

Step 3:

With the parameters for yield-peak estimated, one returns to refining the values of the

material parameters in the back-stress evolution. To get refined estimates for the recovery

parameter -y and the temperature sensitivity parameter X for the back-stress modulus B,
we first note that y controls the rate of saturation of the back-stress. As 'y increases, the

back-stress approaches its saturation value more rapidly.
The parameters -y and B significantly affect the creep response of the material.3 In order

to get more refined estimates for these parameters, we turn to a limited set of available data

for room-temperature creep of Zeonex shown in Fig. B-5 as solid lines. The value of -y is
chosen such that the creep response is adequately represented, as shown by the dashed lines

in Fig. B-5.
Steps 2 and 3 are iteratively repeated until the yield-peaks in the total stress-strain re-

sponse of the material, as well as the creep response, are satisfactorily calibrated. Once

{ ha, b, g, p* } are determined for each stress-strain curve, we have found that to a good

approximation, the parameters ha and b may be taken as constants; g as temperature de-

pendent, and p* as both temperature and strain-rate dependent. The temperature depen-
dence of g was then fit to the functional form (4.51), while the temperature and strain rate

dependence of p* was fit to the functional form (B.19).
The material parameters for Zeonex that give a reasonable fit for the yield-peak for the

range of temperatures and strain rates under consideration, and also adequately reproduce

the limited creep data, are

ha = 300, b = 10.13 x 103 MPa, gi = -28, g2 = 0.12,

z = 0.0055, r = 0.24, s = 0.042, = 12,

X = 0.7 MPa K 1 .

3Cycic tension-compression stress-strain curves at different temperatures may also be used to fit the
back-stress parameters,. but we have not conducted the necessary extensive set of such experiments.
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Figure B-5: Creep test results under simple compression at two stress levels below the yield-peak
(solid lines), together with one-dimensional MATLAB simulations (dashed lines).
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B.4 Parameters for the three-dimensional model

Except for the list of parameters

{r v, vO(, ap, V, Sa0, ha, b, gi, g2, 7,-Y Sb0, hb, Sgi, Lgj , Sr , L,, 6 l vr S7 , S1 v g S7 h39 },

(B. 58)
the values of the one-dimensional material parameters are unchanged when used in the

three-dimensional equations. Noting that

TV = 0-, o- = v'r, S= - (B.59)

the parameters listed in (B.58) may be converted from the one-dimensional compression
form to the three-dimensional shear form using

Vr=V3r

V(shear) = o )

b(shear) (comp)

(.~shear) _ 1 (comp)

S~shear) (comp

L(shear) - 1 (comP)

S(2)(shear) - 1 S(comp)

h(shear) - 1 (omP)
3g 3 3g

(1)=

V6 -~ 00'
S(shear) _ s(comp)

aO 73 ao

(shear) 1 (comp)
91 -- 3 91

S(shear) I Sonp)
b0 bO

L(shear) - (comp)

(2)

(3) = v/. (3)
P6 V0

a(shear) 1_ a(comp)

h(shear) - 1 h(conP)
a .13 a

(shear) _ 1 (comp)
, 92 - 3 92

h(shear) 1 h(comp)b ~~ b

S~shear) _ 1 S(comp)

S(2)(shear) 
(comP)

S(3)(shear) 1 S (comp)
9 779

Further, to convert the temperature dependence parameters for the elastic modulus E to
those of the shear modulus G, we use the following standard relations

Egi
Gi=Gg 2 (1 +v )' 0

Er

2 (1 + vr?0 )

MEgl
2 (1+ Vo)

MEr
Mr 

-2(1+vr
0 1

)

The material parameters for the three-dimensional theory that were determined by fol-
lowing the procedure described in this Appendix are listed for Zeonex-690R, PC, and PMMA
in Table 4.1 of Chapter 4.

(B.60)

(B.61)
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Appendix C

Matlab code for the one dimensional
model

% 1D Matlab code

00% Model for amorphous polymers which spans their glass transition

Micromechanism based model: 3 micromechanisms
Material parameters in this file are for Zeonex 690R

%% Note this code also uses following two matlab source codes:
%%% (i) plotxy.m file for creating stress-strain plots
%%% (ii) cycle.m file that returns vectors of [x and time] for cyclic x

%%% Created: July 2009 by Vikas Srivastava
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function []=amorphous-final()
clc
clear all
close all

% Select options for simulation options

nreversals =

nincr =

peakf lag =

isothermal =

thermocycle=
CTEFlag =

1;
2000;
1;

0;
0;

0;

number of reversals
increments per reversal
yield-peak or not
adiabatic or isothermnal
thermocycle or pure mechanical deformation
include coefficient of thermal expansion

%Select option for load control of displacement control simulation

% control = 'load';

control = 'displ;

% stress control
% strain control

231
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Plot options

%color-case = 'color';
color-case = 'bw';

f ig-f ormat = 'other ' ;
%fig-format = 'paper';

fig-case = 'rate'; % puts selected temperatures in one figure for each rate
%fig-case = 'theta'; % puts strain rates in one figure for each temperature

experiments = 1;

simulations = 1;

% 1 to plot experiments
% 1 to run and plot simulations

% 1 2 3 4
edot = [3e-1 3e-2 3e-3 3e-4]; % 1/s
min-edot = 1;

max-edot = 1;

% 1 2 3 4 5 6 7 8
thetaO = [25 70 120 130 140 150 160 180] + 273; % matrix of test temperatures
min-theta = 1;

max-theta = 4;

mystrain = 0; % for simulations to desired strain, 0: max strain in experiment

maxx = 1.3; % desired maximum strain for simulation

% This is to override the max y-axis of the plots.

% leave it commented to set it automatically

switch fig-case
case 'theta'

maxy-axis = [260; 160; 120; 120; 120; 25; 6; 3]
case 'rate'

if (max-theta > 5)
maxy-axis = [6; 6; 3; 3];

else
maxy-axis = [260; 260; 260; 260];

end
end

maxx-axis = 1.6;

minx-axis = 0;

miny-axis = 0;

% This is to load experimental stress--strain data
load( 'Zeonex690RCompStrain-Stress-Time2.mat') ;
exp{1, :} = {c25-3el c70_3el c120_3el c130-3el c140_3el c150-3el c160_3el c180_3e1};
exp{2, :} = {c25_3e2 c70_3e2 c120_3e2 c130_3e2 c140_3e2 c150_3e2 c160-3e2 c180_3e2};
exp{3, :} = {c25-3e3 c70_3e3 c120_3e3 cl30.3e3 c140_3e3 c150_3e3 c160.3e3};
exp{4, :} = {c25-3e4 c70_3e4 c120_3e4 c130.3e4 c140_3e4 c150_3e4 c160_3e4};
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x = [0.9 0.9 0.9 0.9 .7 .9 1.32 1.32;

0.85 0.85 0.85 0.85 0.85 1.32 1.32 1.32;
1 1 1 1 0.7 1.32 1.32 .2;

1 1 1 1 1.32 1.32 1.32 .2];

y = [180 95 64 35 18 10 5.5 2.3;
120 80 50 30 10 4.9 2.7 0.7;

170 103 67 28 13 2.8 0.9 0.1;
146 100 57 15 2.8 0.85 0.43 0.1];

% Set color of plot lines
% AoId = get (gca, 'ColorOrder');
switch fig-case

case 'rate'
switch color-case

case 'color'
A=[ 0 0 0; 0.6 0 0.6; 0 0.2 0.6; 0 0.6 0.8;

0 0.6 0.4; 1 0 0; 0.2 0.8 0.2;
1 0.6 0; 0.8 0.2 0; 0 00];

A=A(min-theta:max-theta,:);
case 'bw'

A=[ 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0];

A=A(1: (max-theta-min-theta+1),:);
end
figstart = min-edot-1;
maxy = zeros(max-edot-figstart,1);

case 'theta'
switch color-case

case 'color'
A= [ .85 .16 0; 0 .5 0; 0 0 1;0 0 0;

.85 .16 0; 0 .5 0; 0 0 1;0 0 0;];

A=A(min-edot:max-edot,:);
case 'bw'

A=[ 0 0 0;
set(0, ' DefaultAxesLineStyleOrder','

end
figstart = min-theta-1;
maxy = zeros (max-theta-figstart,1);

end

set(0,'DefaultAxesColorOrder',A)

if experiments

% PLOT EXPERIMENTS

for j=min-theta:max-theta
for i=min-edot:max-edot
switch fig-case

case 'theta'
fig-num =j
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case 'rate'
fignum =

end

figure(fig-num);
plotXY(exp{i}{j})
hold all
maxy(fig-num-figstart)=max(max(exp{i}{j} (: ,2)) ,maxy(fig-num-figstart));

if exist('maxy-axis', 'var')
axis ( [minx-axis maxx.axis miny-axis maxy-axis (f ig-num)])

else
axis ( [minx-axis maxx-axis miny-axis maxy(fig-num-figstart)])

end
end

end

else
end

if simulations

% PLOT 1D SIMULATIONS

for j=min-theta:max-theta
for i=min-edot :max-edot
switch fig-case

case 'theta'
fig-num = j;

case 'rate'
fig-num = i;

end

if mystrain
% simulation to maxx if mystrain is 1

else
maxx = max(exp{i}{j}(:,1)); % simulation to max strain in experiment

end

matsim{i}{j}=amorphous.general (thetaO (j) , edot (i) , maxx, nreversals,...
nincr,pe-ak-f lag, isothermal, thermocycle, CTEFlag, control);

figure (f ig-num)
plotXY(matsim{i}{j}, '--') % plot function for stress vs. strain
hold all

maxy(fig-num-figstart)=max(max(matsim{i}{j} (: ,2)) ,maxy(fig-num-figstart));
if exist ('maxy-axis ', 'var')

axis ( [minx-axis maxx-axis miny-axis maxy-axis (fig-num)])
else

axis ( [minx-axis maxx-axis miny-axis maxy(fig-num-figstart) ])
end
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end
end

else
end

% Add plot decorations
for i=(figstart+l):(figstart+length(maxy))

figure(i)
switch fig-case

case 'theta'
text(0.05,0.95*maxy-axis(fig-num), [num2str(theta0(i)-273),' C'],...

'FontSize',48,'Interpreter','tex')

for j=1: (max-edot-min-edot+l)
legend-text{j} = [num2str(edot(j+min_edot-1)), /s];

end
legend(legendtext, 'FontSize',38, Location', 'north')
legend boxoff

case 'rate'
filename-eps = ['e-zeonexI strrep(num2str(edot(i),'%1.Oe'),'-00',''.)

'_ num2str(theta0(min-theta)-273) 'c_' ...
num2str(thetaO(max-theta)-273) 'cI color-case '.eps'];

filename-png = ['m-zeonex_' strrep(num2str(edot(i),'%1l.Oe'),' 00','')
'_' num2str(thetaO(min-theta)-273) 'c-' ...
num2str(theta0(max-theta)-273) 'c_' color-case '.png'];

text(0.05,0.95*maxy-axis(fig-num), [num2str(edot(i)),' 1/s'],...

'FontSize' ,42,'Interpreter','tex')
for j=1: (max-theta-min-theta+l)

k = j+min-theta-1;
legend_text{j} = [num2str(thetao(k)-273),' C'];

end
end

'Position', [0.1300
'XMinorTick','On')
'YMinorTick','On')

0.1100 0.7750 0.8150]);

switch (fig-format)
% Formatiing types for the stress strain plots

case 'other'
general format

set(gcf,'Units', 'Inches');
set(gca,I'FontSize',28)
xlabel('True Strain','FontSize',28)

ylabel('True Stress, MPa',I'FontSize',28)

set( get( gca, 'XLabel' ), 'Interpreter',
set( get( gca, 'YLabel' ), 'Interpreter',

set(gcf,'PaperSize', [15 8.25]);

set (gca,
set (gca,
set (gca,

'latex'
'latex' );
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set(gcf,'PaperPosition', [1.75 4.25 5 2.5])
set(gcf,'Position',[2.5 2.0 10 7.5])

case 'paper'
% formatting for manuscripts
set(gca,'FontSize',42)
set (gcf, 'Units', 'Inches');
set(gcf,'Position',[2 0.2 1.5*10. 1.37*7.5])
xlabel('True Strain', 'Interpreter','latex','FontSize',48)
ylabel('True Stress (MPa)','Interpreter','latex','FontSize',48)

if (simulations==1)
if(strcmp(fig-case,'theta')==1)

h = legend(legend-text, 'FontSize' 140, 'Location', 'North');
set(h, 'Box', 'off')

else
legend-text = 'Experiment';
h = legend(legend-text, 'Location', 'North');
set(h, 'Box', 'off')

if (max-theta > 4)
if (max-edot < 3)
text(.5265,5.2,'-- Model

else
','FontSize',42);

text(.5265,2.6,'-- Model','FontSize',42);
end

else
text(.5265,222,'--- Model','FontSizel,42);

end
end

else
end

if (strcmp(fig-case, 'rate' )==1)
if (max-theta > 4)

switch (max-edot)
case 4

text (.87*maxx-axis, 2
text .87*maxx-axis, 0
text .87*maxx-axis, 0

case 3
text
text

case 2
text
text
text

case 1
text
text

140C',
150C',
160C',

'FontSize',38)
'FontSize',38)
'FontSize',38)

.87*maxx-axis,2.5, '150C', 'FontSize' ,38)

.87*maxx-axis,0.8, '160C', 'FontSize' ,38)

.87*maxx-axis,4

.87*maxx-axis, 2

.87*maxx-axis, 0

150C',
160C',
180C',

'FontSize',38)
'FontSize',38)
'FontSize',38)

.87*maxx-axis,5.4,'160C', 'FontSize',38)

.87*maxx-axis,1.8, '180C', 'FontSize',38)
end
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else
switch (max-edot)

case 4
text ( 87*maxx-axis, 210,
text ( 87*maxx-axis, 150,
text(.87*maxx-axis,90,'
text (.87*maxx-axis, 50,

case 3
text ( . 87*maxx-axis, 230,
text ( . 87*maxx-axis, 160,
text (.87*maxx-axis,125,
text(.87*maxx-axis,70,'

case 2
text ( .87*maxx-axis,240,
text ( .87*maxx-axis, 160,
text (. 87*maxx-axis, 125,
text(.87*maxx-axis,70,'

case 1
text(. 87*maxx.axis,200,
text (. 87*maxx-axis, 150,
text(. 87*maxx-axis, 110,

'25C'
'70C'!,7C

1.20C'!,

130C' ,

'25C'
' 70C '1,
'12CC'
130C',

' 25C' ,
'170C',

'120C'
130C',

25C'
70C'
120C'

'FontSi ze '

'FontSize'
'FontSize'
'FontSize'

'FontSize'
'FontSize'

'FontSize
'FontSize'

' FontSize '
'FontSize'

'FontSize
'FontSize'

,38)
,38)
,38)
,38)

,38)
,38)
' ,38)
,38)

,38)
,38)
' ,38)
,38)

FontSize' ,38)
FontSize' ,38)
'FontSize' ,38)

text(.87*maxx-axis,80, '130C','FontSize',38)

end
end

end
end

end

% Reset color order

Aold=[ 0 0 1.0000;

0 0.5000 0;

1.0000 0 0;
0 0.7500 0.7500;

0.7500 0 0.7500;

0.7500 0.7500 0;

0.2500 0.2500 0.2500];

set(0,'DefaultAxesColorOrder',Aold);
set (0, 'DefaultAxesLineStyleOrder', '-');

function [stress-strain] = amorphous-general (thetao,edot,maxx,nreversals, ...

nincr,peak-flag,isothermal,thermocycle,CTE-flag,control)

switch (control)-
case 'load'
% For stress control analysis

if (thermocycle==l)

sigmamax = -0.43e6; % Pa



loadtime
sigmadot

thetaO
thetaCold
thetaHot
thetaDotC
thetaDotH
Nstepl
Nstep2
Nstep3
reheating

500; % s
abs(sigmamax/loadtime);
155 + 273; % K
50 + 273; % K
160 + 273; % K

1; % K/s
1; % K/s
2000;
1000;
1000;
0;

% Pa /s

[sigma,t,theta] = ThermoMechCyclelc(sigmamax,sigmadot,thetao,thetaCold,.
thetaHot,thetaDotC,thetaDotH,Nstepl,Nstep2,Nstep3,reheating);

else
sigmadot = 2.4e6;
sigmamax = -48e6;
sigmamin = 0;

tcreep = 3600;

% stress rate
% max stress

[sigma,t]= creep([sigmamax], [sigmadot], [tcreep], [nincr], [nincr]);
end

= length(sigma);
= zeros(N-1,1); % strain history

case 'disD'
% For strain control analysis

if (thermocycle==1)
emax = -0.5;

edot = 3e-3;

thetaO = 160 + 273; % K
thetaCold = 50 + 273; % K
thetaHot = 160 + 273; % K

thetaDotC = 1; % K/s
thetaDotH = 1; % K/s
Nstepl = 2000;

Nstep2 = 1000;

Nstep3 = 1000;
reheating = 0;

[e,t,theta] = ThermoMechCycle(emax,edot,thetaO,thetaCold,thetaHot,...
thetaDotC,thetaDotH,Nstepl,Nstep2,Nstep3,reheating);

else
emax
emin
[e,t]

end
N
sigma

= -maxx; % max strain
= 0; % min strain

= cycle(emax,emin,edot,nreversals,nincr);

= length(e); % maximum number of strain points
= zeros(N-1,1); % stress history set up
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%

% 1D MODEL FOR AMORPHOUS POLYMERS STARTS HERE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0- 0.%% %%%

% Branch 1 has linear elastic behavior with a dashpot that provides yield

stresses below Tg as well above Tg. Dashpot slips easily above Tg.

% Branch 2 has non-linear elastic behavior with a dashpot which is rigid

% below Tg but slips easily above Tg to account for network slippage.

Branch 3 has non-linear elastic behavior with a dashpot which is rigid

% below Tg but slips above Tg.

% Static recovery is neglected.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Material properties

= 3; % number of micro

= 1.3807e-23; % Joules/Kelvin
mechanisms

% Reference rate and reference glass transition temperature

edot-r = 3e-4; % reference strain rate

Tg-r = 273 + 131; % Tg in K for 3e-4 /s strain rate

% Rate dependence of Glass Transition Temperature

n = 2.5; 6 K

if (edot<edot-r)
Tg = Tg-r;

else
Tg = Tg-r+ n*log(edot/edot-r);

end

% Young's
E-gl
E-r
Mgl
M-r
Del

Modulus parameters for branch 1
= 1.35e9; % glassy value at Tg, Pa
= 10e6; rubbery value, Pa

= 0.45e6; % slope in glassy region, Pa/K

= 0.1e6; % slope in rubbery region, Pa/K

= 10/5; % width of transition, K

% Back Stress for branch 1
gamma = 12; % recovery term

r1 = 1.72e5;

X = rl*gamma/3; % Pa/K

% Pressure sensitivity of branch 1
alpha-p = 0.2;

% Flow parameters for branch 1.
edotlO = 1.0e13; % pre--exponential factor, /s

alpha
kB



= 0.16;
= 1.56e-019;
= le-20;

= 9.8e-28;

= 0.135;

= 0.015;

% glassy activation energy, Joules
% rubbery activation energy, Joules
% glassy activation volume, m^3

% Stress like internal resistances for branch 1
Sa-O = 0; %Pa
Sb_0 = 0; % Pa
ha = 300;

hb = 1;

% Order parameter for branch 1
phiO = 0; % initial value of order parameter

% Parameters for saturation value of order parameter for branch 1
z = 0.0055;

r = 0.24;

s = 0.042;

b = 10.13e9; % Pa
gl = -28;

g2 = 0.12; % /K

% Parameters for saturation value of Sb for branch 1
Sbstar.gl = 74.Oe6; % Pa
L-gl = 1.13e6; % Pa/K
Sbstar-r = 2.Oe6; % Pa
L_r = 0.05e6; % Pa/K

%i Elastic
mu0_2
NN
Im2

parameters
= 2.8e6;

= 11.le-3;

= 6.2;

% Flow Darameters for
edot2-0 = 3e-4;

S2-gl = 150e6;

S2-r = 0.02e6;

m2 = 0.18;

% Elastic parameters
mu3 = 0.75e6;

I-m3 = 6.5;

% Flow parameters
edot3_0 = 3e-4;

m3 = 0.18;

S3_g = 5.3e6;

hS3-g = 52e6;

YY = .19;

for the Gent Spring in branch 2
% Pa

% 1/K

branch 2
% pre-exponential factor, /s
% Pa
% Pa

for the Gent Spring in branch 3

for branch
//s

% Pa
Pa

%. /K
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ml
Q1-gl
Q1_r

V1
zeta-gl
dd



ZZ = 0.178;

% Specific heat

c1 = 2120;

c2 = 8;

% J/(kg-C)
% J/(kg C^2)

% Fraction of the total heat dissipated that gives temperature rise

omega = 0.8;

- Density
rho = 1010; % kg/m^3

% coefficient of thermal expansion
alpha-gl = 7e-5; % /K
alpha-r = 12e-5; K

% Initialization of variables

= zeros(N,alpha);

= 1;

- zeros(N,alpha);

= 1;

= zeros(N,1);

= 1;

= zeros(N,alpha);

= zeros(1,alpha);

= zeros(N,alpha);

= zeros(N,alpha);

% elastic stretch history. N rows and alpha columns
% Set the first element of the elastic stretch to 1
% plast ic stretch history
% Set the first element of the plastic stretch to 1

% stretch like internal variable history
% Set the first element of A to unity

% T history, matrix of N rows and alpha columns
% Teff history, matrix of N rows and alpha columns
% Teff history, matrix of N rows and alpha columns

Dp = zeros(1,alpha);
sigma-bar= zeros(N,alpha);

phi = zeros(N,1);

phi(1) = phio;

Sa(1) = Sa_0;

Sb(1) = Sb-0;

gamma-p = zeros(1,alpha);

if (thermocycle==l)

else
theta = zeros(N,1);

theta(1) = theta0;

end
0% 00% 000% 00000%%%% 0%0%0%%% 0%% 0000%% 000%0% 00%%%%%%%%%%%%%%%%%%%000000000000

%0000000000000000 ~0~000

% /K
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Ue
Ue(1,:)

Up
Up (1,:)

A
A(1)

T
Tef f
Tback
edot -p
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% Begin computation

for n=l:N-1

%%%%%%%%%%%*6%6%6%%%%%%%00%00%0%0%%0 %0%%0

% Temperature dependence of material parameters

if theta(n)<Tg
Me = M-gl;
B = -X*(theta(n)- Tg);
L = L-gl;

CTE-delTheta(n) = alpha-gl* (theta (n) -298);
else

Me = M-r;
B =0;
L L-r;
CTE-delTheta(n) = alpha-gl* (theta (n) -298) + (alpha-r-alpha-gl) * (theta (n)-Tg);

end

if (CTE-flag==l)
% if CTE-flag=1 then include CTE effect

else
CTE-delTheta(n) = 0; % No CTE effect

end

Eyoung = 0.5* (E-gl+Er)-0.5* (Egl-E-r)*tanh( (theta (n)-Tg) /Del)-Me* (theta (n)-Tg);
Q1 = 0.5*(Q1-gl + Q1_r) - 0.5*(Qlgl - Qlr)*tanh((theta(n)-Tg)/Del);

zeta = zeta..gl+ 0.5*dd*(theta(n) - Tg + sqrt((theta(n)-Tg)^2));

g = gl + g2*theta(n);
Sb.star = 0.5*(Sbstar-g +Sbstar.r)-0.5*(Sbstar-gl-Sbstar.r) ...

*tanh((theta(n)-Tg)/Del) - L*(theta(n)-Tg);

mu2 = muO_2*exp(-NN* (theta(n)-Tg));
S2 = 0.5*(S2-gl + S2-r) - 0.5*(S2_gl - S2_r)*tanh((theta(n)-Tg)/Del);

S3_0 S3_g*exp(-YY*(theta(n)-Tg));
hS3 = hS3_g*exp(-ZZ*(theta(n)-Tg));
S3(1) = S30;

Cp = cl + c2*(theta(n)-Tg);
00000%000%0%00%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delt = t(n+1) - t(n);

U = exp(e(n));

Ue(n,:) = U./Up(n,:);

% Calculate stress in branch 3

= Ue(n,3)^2 + 2/Ue(n,3);Il-3
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eff-stretch3(n) = (I1_3 - 3)/I-m3;

T(n,3) = (mu3/(1-ef fstretch3(n)))* (Ue(n,,3)2 - 1/Ue(n,3));

Teff (3) = T(n,3);

sigma-bar(3) = abs(Teff(3));

% Calculate stress in branch 2

11-2 = Ue(n,2)^2 + 2/Ue(n,2);

eff stretch2(n) = (I1-2 - 3)/I-m2;

% assume chain breakage at eff-stretch of 0.85 at room temperature

if (eff-stretch2(n) < 0.85)
else

eff-stretch2(n) = 0.85;
end

T(n,2) = (mu2/(l-eff-stretch2(n)))*(Ue(n,2)^2 - 1/Ue(n,2));

Teff(2) = T(n,2);
sigma-bar(2) = abs(Teff(2))

% Calculate stress in branch 1

Tback(n,l) = 3/2*B*log(A(n,l));
Teff(1) = T(n,l) - Tback(n,l);

p-bar(1) = -(1/3)*T(n,1);

sigma-bar(1) = abs(Teff (1)) - alpha-p*p-bar(1) - Sa(n) - Sb(n);

% Calculate the plastic flow in branch 1

estar1 = edotl0 *exp(-l/zeta)*exp(-Q1/(kB*theta(n)));

if (sigma-bar(1) > 0)
edot-p(n+1,1)= estarl*( sinh(sigma-bar(l)*Vl/(2*kB*theta(n))) )^(1/ml);

else
edot-p(n+1,1)= 0;

end

% Calculate the plastic flow in branch 2

if (sigma-bar(2) > 0)
edot-p(n+1,2) = edot2-0 *(sigmaubar(2)/S2)^(l/m2);

else
edot-p(n+1,2) = 0;

end

% Calculate the flow in branch 3

if (sigma.bar(3) > 0)
edot-p(n+1,3) = edot3_0 *(sigma-bar(3)/S3(n))^(1/m3);
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else
edot-p(n+1,3) = 0;

end

Calculate plastic stretching

Dp = (sign(Teff) .* edot-p(n+1,:));

Update Up

Up(n+l,:) = Up(n,:) + delt*Dp .* Up(

Update total plastic strain

gamma-p(n+1,:) = gamma-p(n,:) + delt

Update stress/strain

switch (control)
case 'load'

T(n+1,1) = sigma(n) - T(n,

e-el = T(n+1,1)/Eyoung
Ue(n+1,1) = exp(e-el);
U = Ue (n+1, 1) *Up (n+

e(n+1) = log(U);
case Idisp'

U = exp(e(n+1));
Ue(n+1,:) = U./Up(n+l,:);
e-e (1) = log(Ue(n+1,1));
T(n+1,1) = Eyoung*e-e(1) -

sigma(n+1) = T(n+1,1) + T(n,:

n, : ) ;

*edot-p (n+1,:);

2)- T(n,3);
+ CTE-delTheta (n);

1, 1) ;

Eyoung*CTE-delTheta(n);
2) + T (n, 3) ;

end

Update internal variables
% %% %%%%%% %% %% %% % % % % %% %% %%%%%%%0.0..%% %% %% %%%% %%% %%%%%

% update A

Adot = 2*Dp (1) *A (n, 1) - gamma*A (n, 1) *log (A (n, 1) )*edot-p (n+1, 1);
A(n+1) = A(n, 1 ) + delt*Adot;

% evolution of order parameter

if theta(n)> Tg
phi-star(n) = 0;

else
if edot-p (n+1, 1) <0

phi-star(n) = phi(n);
else

phi-star (n) = z* ((1-theta (n) /Tg) ^r) * (edot-p (n+1, 1) /edot-r) s;
end

i 2 --- - -------------
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end

phi-dot = g * (phi-star(n) - phi(n)) * edot-p(n+1,1);

phi(n+1) = phi(n) + phi-dot * delt;

% evolution of Sa and Sb for branch 1

Sa-star (n+1) = Sa_0 + b* (phi-star (n) - phi (n+1))

if (peak-f lag==l)
Sadot = ha *(Sa-star(n+1) - Sa(n)) * edot-p(n+1,1);

else
Sadot = 0;

end

traceC = U^2 + 2/U;

lambda(n+l) = sqrt(traceC/3);

DynamicEvolution = hb*(lambda(n+1)-1)*(Sb-star - Sb(n))* edot-p(n+1,1);
StaticEvolution = 0;

Sbdot = DynamicEvolution + StaticEvolution;

Sa(n+l) = Sa(n) + Sadot * delt;

Sb(n+l) = Sb(n) + Sbdot * delt;

% evolution of S3 for branch 3

S3dot = hS3*(lambda(n+1)-1)* edot-p(n+1,3)
S3(n+l) = S3(n) + S3dot * delt;

% Calculate temperature rise due to dissipation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -6%%%

if (thermocycle==l)
% do nothing temperature comes from the temprature profile

else

% Calculate temperature rise for adiabatic case

if isothermal
theta-dot = 0;

else
arg1(n) = edot-p(n,1)*(abs(Teff (1)));

arg2(n) = edot-p(n,2)*(abs(Teff(2)));
arg3(n) = edot-p(n,3)*(abs(Teff (3)));
arg4(n) = edot-p(n,l)*(0.5*B*gamma*(log(A(n,l)))^2);

if (edot > 0.09) % only highest rate is treated as adiabatic

if ((theta(n) >410) &&(theta (n) <430))
theta-dot = 0;

else
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theta-dot = omega* (arg1 (n) +arg2 (n) +arg3 (n) +arg4 (n) ) / (Cp*rho);
end

elseif (edot > 0.009)
theta-dot = 0.25*omega* (argl(n)+arg2 (n)+arg3 (n) +arg4 (n) ) / (Cp*rho);

else

theta-dot=0;
end

end
theta (n+1) = theta (n) + theta..dot * delt;

end

end
%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%"%%%%%

% End computation

stress-strain= [-e -sigma/le6 t];
hold all

return



Appendix D

Micro-hot-embossing experimental
set-up

D.1 Introduction

We have designed and fabricated an experimental set-up to carry out micro-hot-embossing

experiments. In this appendix we present details of our micro-hot-embossing set-up. The

schematic Fig. D-1 of micro-hot-embossing assembly fits with our servo-hydraulic Instron

testing machine and a high-temperature furnace as shown in Fig. D-2. Amorphous polymers

are poor thermal conductors; accordingly, in order to heat the polymer substrate uniformly,
we also used heated steel platens in addition to the furnace. During hot-embossing, the bot-

tom platen and collar used in the micro-hot-embossing assembly were heated with cartridge

heaters, and thermocouples inserted into the platen and the collar were used to control the

temperature. To maintain a good alignment between the embossing tool and the polymer

substrate during the embossing, the embossing tool was attached to a cylindrical base with

a spherical backing at the upper end. A tight clearance was maintained between the cylin-

drical base and the heated tool collar. For micro-hot-embossing, the polymer substrate was

placed between a polished surface at the bottom and a metallic glass embossing tool on the

top. The area near the periphery of the polymer substrate was vertically clamped by the

heated collar.

D.2 Component drawings
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-Spherical seat

Embossing tool

Heated tool collar

-Polymer substrate

Polished backing

Lower heated platen

Figure D-1: Schematic of the micro-hot-embossing test set-up.
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Figure D-2: Image of the experimental set-up used for micro-hot-embossing.

Figure D-3: Image of various micro-hot-embossing set-up components.
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