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ABSTRACT

It is found that the possible low-frequency, quasigeostrophic
motions in a rotating and stratified channel with a wavemaker at one
end include: (i) standing waves whose amplitudes are damped expo-
nentially away from the forcing, and (ii) baroclinic internal Kelvin
waves, trapped to the right hand wall when facing in the direction
of phase propagation. The Kelvin waves are excited only if the wave-
maker transfers mean energy to the fluid. The standing waves, on
the other hand, carry no energy and thus serve mainly to provide
continuity between the wavemaker and the fluid.

When the bottom of the channel is inclined to the horizontal by
a small angle CC , topographic oscillations are possible. These waves
behave like topographic Rossby waves if the forcing frequency is
greater than SA and if the ratio ' is small. 3 is TrAn or, L is the
width of the channel, H is the mean depth, F is the Coriolis para-
meter and #V is the Brunt-Vaisala (or buoyancy) frequency. It is
determined that topographic Rossby waves cannot exist in the channel
if N/gr 9f.2Z .

If the wavemaker frequency is smaller than sA# , and if '-~ 0Y),
the topographic oscillations become bottom-trapped, decaying away
from the bottom boundary in a distance of 0(k-F/NAI), where /< is the
horizontal wave length. The phase and energy of the bottom-trapped
wave both move to the left of an observer who is facing shallow water.
The standing oscillations of the flat-bottom case exist as complex hori-
zontal wave number solutions to the topographic wave dispersion
relation. Although these waves have propagating phase when S -O
they are still trapped to the forcing, and do not transfer net energy
from the wavemaker to the fluid.

The Kelvin waves are basically unchanged when the bottom is
sloped if their down-channel wave length is large relative to the slope
parameter = .

A laboratory experiment to isolate and study the bottom-trapped
waves in such a channel is devised and experimental parameters are
chosen.

Thesis Supervisor: R .C. Beardsley
Title: Associate Professor of

Oceanography
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Chapter I Introduction

Rhines (1970) first studied the quasigeostrophic theory for oceanic

flow including the effects of both topography and continuous stratification.

He predicted the existence of bottom-trapped internal waves, which are

essentially buoyancy waves (of frequency 0~: MS/n 9 , where 0
is the inclination angle of the bottom away from horizontal) trapped near the

bottom boundary. In the low frequency limit (T<< f , N<</A ) , these

wave modes decay exponentially away from the boundary with a decay

length of O(EK)where f is the Coriolis parameter, ,\/ is the Brunt-

Vaisala (or buoyancy) frequency, and X is the horizontal wave length.

Rhines found that these bottom-trapped waves exist as eigenmodes in a

linearly stratified fluid for a number of special geometries.

Suarez (1971) next investigated the way in which these low

frequency topographic oscillations propagate and are generated over

topography. He found that Rossby waves do not efficiently excite bottom-

trapped waves, but rather excite other topographic modes with a horizontal

(and thus vertical) velocity node on the bottom boundary surface. Suarez

also found that when the scales of an initially imposed disturbance are

smaller than AI, where H is the mean depth, the resulting motions

consist of a steady current and the bottom-trapped wave. Suarez shows

that the only part of a steady geostrophic flow affected by a region of

sloping bottom is the part of the flow which comes in contact with the

bottom. The steady flow develops a velocity node on the bottom, and the

bottom-trapped waves are induced to transport the "bottom energy" of the
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initial flow. Suarez suggests that this is the most important role of bottom-

trapped waves -- to release the ocean interior from the constraints imposed

by topography.

Although there are many ocean regions in which the horizontal scale

of the observed motion is smaller than .__ , bottom-trapped waves have

not been directly observed. There is, however, observational evidence

which indicates that motion is intensified toward the bottom. Riser (1974)

reviews the attempts to explain bottom-intensification, and presents data

from the MODE-O experiment which confirms the intensification of motion

with depth over sloping regions. Riser shows that the data may not be

inconsistent with the bottom-trapped wave theory of Rhines.

A laboratory experiment designed to isolate and study bottom-trapped

waves would be very useful in confirming the existing theory of bottom-

trapped waves and perhaps provide more insight into their role in the

ocean. It was decided to model the waves in a long channel because of the

simple geometry and the simplicity of forcing the fluid with a wavemaker.

This thesis examines the possible wave motions in a rotating and

continuously stratified channel, and proposes an experiment designed to

isolate bottom-trapped oscillations in the laboratory. The thesis is orga-

nized as follows: a theoretical study of the wave motions allowed in the

channel is made in Chapter 2, the wavemaker problem (matching the fluid

modes to a specified forcing in one end of the channel) is outlined in

Chapter 3, and finally, Chapter 4 describes the laboratory experiment

designed to isolate and study bottom-trapped waves.



Chapter II Wave Motion In A Rotating-stratified Channel.

In this chapter, the low-frequency wave modes for the semi-infinite

channel (Figure 1) will be examined. The vertical coordinate is E , the

cross-channel coordinate is Y and the along-the-channel coordinate is X .

The channel sidewalls are at >/= 0 and Y= L , and the top is at Z= H. The

bottom, inclined slightly away from the horizontal by the angle oC. , is at

7=S, where -S is defined as 772 OC . We will examine the fluid response

to a general forcing applied at X.= 0 , and will consider motion only to the

left of an observer at the origin who is facing in the *A Y (upslope) direc-

tion.

The linearized, inviscid Boussinesq equations are

(2.1) a -U - -A
(momentum equation) ,

(2.2) V0 (cont

(2.3)

inuity equation) , and

(equation of incompressibility).

A A

k is the vertical unit vector, A12 is the rotation vector - k , and

fluid velocity vector ( 7, V, W) . The density is written O = o (I

10(Xv Ys Jo is the mean density, 1(-,) is the deviation from

mean due to the initially imposed stratification, and (0(x, y, ,

density deviation due solely to the fluid motion. P is the deviation

hydrostatic pressure divided by the mean density ; however, P

24 is the

/0(a)-

the

is the

from
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Figure 1.

Geometry of the Channel.
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will henceforth be referred to as simply "pressure" .\ is the Brunt-

Vaisala (buoyancy) frequency (A 2  - ) which we assume will

be constant, and 9 is the gravitational acceleration.

In component form, the equations are

(2.4) Y- F V=-P

(2.5)V -A Fit

(2. 6) Wi-P

j/,V, = C

(2.8)/t . --

, and

where F =212.

The boundary conditions are

(2.9) W= O

(2.10) V= 0

at 2. = A

atY = 0, L- and

(2.11) WI= S Vat Z - S .

In addition to these explicit boundary conditions, we also demand

(2.7)



that none of the variables P, Z, /0 grow without bound as --> O.

After the possible modes of oscillation are determined, we complete the

problem by matching the fluid to a forcing function at 'X 0 (wavemaker

problem) .

We first separate the time dependence from the spatial dependence

by writing

(2.12)

The equations become (dropping primes):

(2.13)16W;*'V=P

(2.14) 6a -Pf

(2. 15) /- 0,PZ

(2.16) /6 -

(2.17) - V 0

Eliminating from (2.15) and

(2.18) W -

, and

(2.16) yields



We use the horizontal momentum equations (2.13 and 2.14) to express 24
and V in terms of the pressure:

(2.19) U

(2.20) V - 2 2f

, and

Substituting 2.18, 2.19, and 2.20 into the continuity equation (2.17) and

the boundary conditions, we arrive at

(2.21) P1
V- d ,=o

(2.22) P =0

, with the boundary conditions

at F= H ,

(2.23) f -0 /= 0 at = o

(2.24)/T

, L, and

at Z= S

We now scale X and 5 by the width of the channel ( L) , and scale 2

by the zero-slope height (//). After scaling, the governing equation

becomes

, with the boundary conditions

( -r! C-.'
NI-6- ;) /% = S (-fy +P I*g i

2 =0(2.24) pxx P,
it



(2.25) E O

(2.26)

(2.27) 2

at Z=1 ,

P = 0 at = 0, _-L, and

= C (P /- SP.) at 7- = .

The non-dimensional parameters appearing in 2.24 - 2.27 are defined

as follows-

(L)4 . -2 , and

S

We first solve for the case of a flat-bottom ( E.=0 ) channel.

this case the bottom boundary condition (2.27) becomes

(2.28) Z = 0 at Z = 0 , and together with 2.25, this requires that

the vertical structure be COS 4 f. ,

If we separate the remaining variables by writing

(2.29) qaios bc

the equations* become

=.e" CS4 XG ,7,' F7V-)

4.= /, 2, 3j. . . . .



(2.30) Fet -0(A ) Ry1j w it

(2.31) S F ) k 0 at O, 1 .

We now solve (2.30) and (2.31) for two cases: it real and k imaginary.

Real k implies wave motion along the X -coordinate while imaginary '

denotes exponential behavior in }.

CASE 1 -- Real /

The only solution to 2.31 is

k
(2.32) F ey) , which satisfies 2.31 at all j! and not

just at the end points, i.e., V 0 . The dimensional pressure is then

(2.33) P = ARe fc&.e -kAfT/16e a 16S _49)_

The arbitrary constant CA. has dimensions k as Pis pressure divided

by density.

Using 2.18 - 2.20 we obtain for the velocity:

(2.34) AC = OS
No'

(2.35) / ~ 0

with
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(2.36) W=2 TW a H/

The dispersion relation is obtained from the governing equation 2.30:

(2.37)

dimensional form this is

(2.38) ( 2

0 , and in

kA _V

The solutions 2.33 - 2.38 identify the motion as a baroclinic set

, 2 , 3 . .. .) of internal Kelvin waves. The phase speed is

(2.39) . Differentiating (2.38) with- (S7J8

respect to A we obtain

(2.40)

The right hand side of 2.40 is always positive, which means that the phase

speed ( OP ) and the group velocity ( C.= E ) always have the same

sign. Energy propagates at the group velocity, hence the phase and energy

of the waves move in the same long-channel ( X) direction. We are con-

sidering motion only in the negative X portion of the channel and therefore

2

2

N
Ek



demand that energy be allowed to propagate only in the- X. direction (away

from the forcing at X = ). We therefore restrict (and hence Cp ) to

have negative sign. Under this constraint, the dispersion relation is

(2. 41) h =

V S. k is plotted in Figure 2 for several values of . We note
Al

that /6~/< A , and that for a given frequency, an increase in vertical

scale (/H) is accompanied by an increase in horizontal wavelength (GO(if ).
The figure also confirms that the phase speed and group speed are negative.

Figure 2.

Kelvin wave dispersion relation for the first, fifth and tenth vertical modes.



It is instructive to consider constant frequency curves in wave

number (, 4) space. Figure 3 is such a plot where A L and r4f#

are the non-dimensional horizontal ( X) and vertical ( ) wave numbers,

respectively. In the channel, the top and bottom boundaries fix rir//to

values 77, 27T, 371,. . . , and this effect is illustrated by the dashed hori-

zontal lines in the figure.

=. _ = 5
N NZ NH

N~ __

N

Figure 3.

Constant frequency curves in wave number space for Kelvin waves.



We see that for a given frequency ( r~<Al), two waves of equal

horizontal wave number exist simultaneously. The vertical wave numbers

( t A- 7' ) of the two have opposite sign, and the two waves combine to

form standing motion in the vertical.

The cross-channel structure of the Kelvin wave is e '-

indicating that the waves decay exponentially away from one sidewall. The

phase speed is negative hence the trapping is against the L

sidewall. The motion is trapped by rotation but otherwise unaffected by it.

(Note the absence of fin 6, Cp, Cy.) A rough sketch of the Kelvin wave

is shown in Figure 4.

The cross-channel E -folding decay length is given by .

DIRECTION OP PRAQSE. PRQPAG 4-10t4

1NSTN-rN-ECS STaEAmuE PATTERN

cRoSS-CtAANEL SwcrARE.

PLAkNr V= L

Figure 4.

Kelvin Wave



CASE 2 -- Imaginary /.

If we let A= -I , then the behavior of the motion is exponential

in ', and equations 2.30 and 2.31 become

(2. 42)

(2.43) - =

The solution is

(2.44) F(C) = I. IrF -sin X71 V- A 's 2 X I

The dimensional pressure is then

(2.45) PCX, 

I If Of

In this case, a barotropic (4, 0 ) mode is allowed. Using 2.18 - 2.20,

we obtain for the velocity:

(2. 46) 0 N e [ 4, 4"- Co-g

* [d~~4.1r,)z 7 /T ) , with

at =0.1

, where

=e An C 7r-E

+2-, ( ' AA" .- ) S/'VA7)
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The solution represents standing oscillations whose amplitudes decay

(in X) away from the point of forcing. I: the context of our wavemaker

problem, we must have rA- >0 to insure that the amplitudes decay away

from the wavemaker. The frequency and wave numbers are related by

using 2.42.

(2. 49) --? zf -0A!T$

In dimensional form, this is

(2.50) 2

In the low frequency limit (d. 6 /< ) , 2.50 becomes

(2.51) -A - and the e -folding

decay length (. -coordinate) is given by

(2.52) . -L-



which may be rewritten as

(2.53) A7
L.

- [ (-RT) ,s (4 7r) 2
,CL 4 -~

for several horizontal ( w ) and vertical (A- )

modes is plotted in Figure 5.

Figure 5.

Decay of Standing Waves

'he S. fL

L

.5
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:FLWe see in the figure that the least trapped mode for any is the first

cross-channel (f2= )' , barotropic ( AO ) mode (with Ae = z ) , and
01

that the trapping increases with increasing .F

The standing oscillations provide continuity between the fluid and

the wavemaker, and as we shall see later in this chapter, they are incapable

of transporting energy across planes X constant.

Now that we have examined the modes in a flat bottom channel, let us

return to equations 2.24 - 2.27 and solve for the case of small slope, 6<<1.

We can transform the bottom boundary condition to hold on a constant

surface by means of a coordinate transformation introduced by Phillips (1957) .

We define a new coordinate system, (), ,7), where . The
/- C',

surface Z= becomes the constant surface 0 while the surface

i!.= I remains constant, 1. (See Figure 6.)

Figure 6.

Transformation of the bottom boundary to a constant surface.



We must similiarly transform equations 2.24 - 2.27.

derivatives transform as follows:

(2.54) (4
(2.55)

(2.56) -

2 E2 (-'
(2
( /-E

(2.57)

r45. 2 ( '-

C U- 
_

(1)z CdI
)

In the new system, the equations become:

(2.58) p "1

2 ( -j)( + 2e

2( +2 p

S2(/ -/) (C -A e Y -

+- ,+'- '

P 7 0

:Q,(2.59)

( -(2.60) ., i 9 -'') ?o z 0 at :0, ,

4-

P77*

The 'Y , V , and Z

-AC/-6Gtf

J )
r7 I -

-.-) P1
zC ly-

74 .. )(1-A C Y



24

(2.61) I () 7 EtjX+iLF I
cv' yO.

We now expand / in powers of E: P E.

and separate out the Y-dependence by writing P ( -2: G ) ( )

We will solve two cases: Case 1 in which 0 ( k ) 0 ) ,C( e)-=O( )
and Case 2 in whichO( k) 0 (0) 0 <G)= 0 ( ). We assume that

.,<<.1. throughout the following analysis in order that the perturbation expan-

sion be valid.

CASE 1 0 (6) ( O(/t)=O (E )

The CO governing equation is

(2.62)0 v ' 2 ,with the boundary conditions:

(0)
(2.63) = at 0 ,1,

(0)

(2.64) k G-0 4s Gy= 0 at 0,.I.

This is essentially the same set of equations solved for Case 1 of the flat-

bottom channel analysis. The solution is (dropping superscripts)

(2.65) - 3 ,yielding for the

lowest order pressure:

(2.68) ) ,A- /-/
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These baroclinic Kelvin waves persist (to lowest order) when the

bottom is sloped because the particle motion accompanying Kelvin waves is

along contours of constant fluid height ( V= 0 )

CASE 2 0 (6 )= O (S), O(A/9)=O(0

The E governing equation is

(2.67) 2 =, with the

boundary conditions

(o)
(2.68) G = 0

(2.69) G = O

(2.70) S6' =7

B is now ' -

at Y= 0 , 1

at 7=1 , and

k h G' at 7= C

since 6~<< -f, dcF< A/ . The boundary conditions

(2.68) require that the Y-dependence by /' ; 7 .



Let -,,'XV and write Sh )rIy. The set of equations

2.67 - 2.70 then becomes

(2.71) ) O , with the

boundary conditions

(2.72) 0 at 7 =1, and

(2.73)98F(7 ) h F 7) at O.

The solution to 2.71 and 2.72 is

(2.74) (?) where

yielding for the pressure

(2.75) P(IAe1C

This solution was studied in detail by Rhines (1970). The motion arises

due to the sloping bottom, and will be referred to as a topographic wave.

The dispersion relation is obtained from the bottom boundary

condition, and is



(2.76) = S C h C O t1 /t

Dimensionally, this is

(2.77) s - 1- , where k, and/a

are now dimensional quantities. Replacing 1- in 2.77 by

'(A A' we have

(2.78) 6~ = -- CoA

The dispersion relation will be discussed in detail, but let us first exa

the vertical structure of the topographic motion.

In the low frequency limit, M -- Fand . Thus the

horizontal velocity components have the vertical structure

COsh ^:'"^( 7 -.z) . ( 7 is non-dimensionalized by// ).

The vertical structure of the horizontal velocity amplitude is plotted in

Figure 7 for several values of .

1g 0 '.jJ<;4#

mine

Figure 7.

Vertical structure of the topographic wave.



We see that the motion is strongly trapped to the bottom when - Z1,

but is essentially barotropic when I The vertical 4 -folding

decay length of the trapped waves is 0(- We will now see that when

is small, the motion resembles that of topographic Rossby waves.

In the limit of small 7, and the dispersion
F g .7

relation (2.78) becomes

(2.79) 0A- -/, (k:24 )-

which is the formula for topographic Rossby waves. Note the absence of

in the dispersion relation, indicating that the motion is not a buoyancy

oscillation. This is expected because the motion is essentially barotropic

when

The phase speed,

I-E
(2.80) , has the opposite sign of .

This means that if E >0 (shallow water to the north, or 4 V direction)

there is always a component of phase propagation to the west (or -X direction).

The down-channel group velocity,

(2.81) :----- -k , is bi-directional, depending on the
6 k L (k ' z)
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relative sizes of /? and f. These results are summarized by the plot of

constant frequency curves in wave number space (Figure 8). The wave

numbers are non-dimensionalized by L , and the effect of the sidewalls in

fixing ,Aeto values 72Tis indicated by the horizontal dashed lines.

a-- 1

k L

-Tr

Figure 8.

Constant frequency curves in wave number space

for topographic Rossby waves.
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We see in the figure that the down-channel group velocity, , changes

sign where . If is fixed, the presence of vertical walls allows

two sets of incident and reflected pairs of waves -- one set lying to the left

of the lines k2 X , and the other set lying to the right (see Figure 9) .

672c-

LL

zir

rI

2.1*

Figure 9.

Diagram of the waves allowed for fixed

at a given value of -.



31

The left pair has down-channel group velocity to the East (#/ X) and the

right pair has westward group velocity. Each pair consists of an incident

and reflected wave, and the two add to produce standing motion along the

coordinate. The net result is two propagating waves of different wave

length. The two have the same direction of phase propagation, but the

opposite direction of energy propagation.

Having investigated the topographic wave behavior when k211 ,

let us now examine the case 1. We have already seen that these

waves are trapped to the bottom and will henceforth refer to them as bottom-

trapped waves.

KIN h KNM
As - becomes greater than 1 .p rapidly approaches 1,

and the dispersion relation (2.78) becomes

(2.82) 1 -)!/-

The phase speed, -- , has the opposite sign of S (the phase moves to the

left of an observer who is facing shallow water) as does the X-component

of group velocity, : -S 2(f2). Therefore, both the phase and

energy of the bottom-trapped waves move to the west. These results are

summarized in Figure 10, which is a plot of constant f curves in wave
SM

number space. The effect of vertical walls (in fixing I to the values

IT , 2.71 , . . .) is shown by the dashed lines.



Figure 10.

Constant frequency curves in wave number space

for the bottom-trapped waves. The dashed lines indicate

the discrete values of . allowed by the sidewalls.

We see that at a given frequency, a single incident-reflected pair of

waves is excited for each cross-channel ( 7?) mode. Each pair adds to

produce a single propagating (down-channel) wave exhibiting standing

motion along the cross-channel ( T) axis. A rough sketch of a single mode

of the bottom-trapped wave is shown in Figure 11.



/NSTA44r4NCO SJTREAMLINE PATERN

Figure 11.

The bottom-trapped wave.

Figure 10 shows that for a given wavemaker frequency (6-< SAl) all

of the cross-channel ( 7Z) modes will be excited. This is unlike the case

of topographic Rossby waves in which only a finite number of the cross-

channel modes are excited at a given frequency.

Thus far we have only looked at the limiting cases of K andF



p1 1 ,and will now solve the complete dispersion relation,

.. ~. If we scale k and Z by I ,the

dispersion relation may be written:

(2.83) k x) where,SM (A~tzY ) fLC

?and fare non-dimensional. Solutions ( /A, X) to 2.83 were computed

for several values of #/'and a,
fornse al v e oF a , and the results are sketched (as

constant curves in wave number space) in Figure 12. We see that when

~3 S/, the curves of constant form closed semi-elliptical curves in

the wave number space, looking much like the curves in the topographic

Rossby wave limit. The curves have a mean radius of : -± ) P
2 SiM (;L /= 25"

and when C'< SAY, the curves are no longer closed, but resemble parabolas

which rapidly become linear away from the origin. These parabolas belong

to the bottom-trapped regime of topographic waves in which a single wave

is excited with a given 2 -wave number. The dashed horizontal lines again

show the effect of the sidewalls in quantizing e .

For fixed frequency, we see that the sidewalls have the effect of

restricting the number of topographic waves excited to a finite number.

NtIn fact, if is greater than -. 22. , none of the topographic Rossby

waves will be excited for any frequency. This is easily seen in Figure 13,

which shows constant frequency curves plotted in wave number space

scaled by --. This plot places the - dependence on the axes and

therefore summarizes the plot in Figure 12. At the "topographic Rossby



H=.25
-L

13 Ir= .3oi=
0 S-= .a ,

4/2~ 4
1t4N r

3.

Figure 12.

Constant frequency curves for topographic waves.

k and f. are non-dimensional wave numbers.

J. A



wave cut-off" frequency of d'= SAI, the topographic Rossby wave curve

reaches its maximum ordinate value of -. 67 . The largest value of I i

then HI - (foi ,while the smallest l allowed by the vertical

walls is W ( 7L=1 mode) . Hence 6 must be smaller than if even

one topographic Rossby wave mode is to be excited.

4

o E t.o25
Sr/

A -

Figure 13.

Constant frequency curves for topographic waves.

and - are dimensional wave numbers.
.L



If we are to see even the first topographic Rossby wave mode in the channel,

we must insure that (i) 6 ESI-and (ii) i-< . 22 . On the other hand,
fL

all of the bottom-trapped wave modes exist as long as the excitation (wave-

maker) frequency is less than SM. The bottom-trapped waves are thus

easily isolated in the channel and a laboratory experiment to study their

behavior can easily be designed to eliminate the topographic Rossby waves.

If the wavemaker frequency is less than SA/we have the bottom-

trapped topographic waves and the Kelvin waves to match to the wavemaker

at X= 0 . As will be seen in more detail, a wavemaker whose motion is

symmetric in , i.e., 5 ? d""'i =0, cannot excite Kelvin waves.

Assuming that we have such a wavemaker, we are left with only the

bottom-trapped waves. A problem now arises because the set of bottom-

trapped modes is not complete. There are an infinite number of wavemaker

vertical profiles (of X-velocity) which the set 5 ( ) cannot com-

pletely describe. In the matching problem, we decompose the X-velocity

of each bottom-trapped wave mode as well as the X-velocity of the wave-

maker into complete orthogonal sets F , Z s 7 and then

equate coefficients of the cosine functions. The following is a rough outline

of the matching problem -- the details will be given in Chapter 3.

Considering only the vertical structure of the wavemaker, we expand

the X-component of the wavemaker velocity in the complete set

{Ao#'k4aCOS W_ 7/ , i 1.

(2.84) A. 4g 2 Aff f



We similiarly expand all of the bottom-trapped modes:

(2.85)

Equating coefficients of the cosine terms in 2.84 and 2.85, we find that

(2.86) AOCa 0 o 0 = 4 ,and

(2.87) 7- aat A g

Writing 2.86 and 2.87 in matrix notation, we have

A oi a02 Lq03 -

(2.88) A - 'Z /2, 2/3 -

A c2xi Z2-2- dZ3. -

which must be solved for the unknowns 6, ( 2 ,... . In practice, we

truncate the matrix at an equal number of rows and columns, and then

form the inversion matrix to find OCn. The success of this method depends

on whether or not the values obtained for C(nconverge to a fixed number as

more and more elements of the matching matrix are retained. The values

do not converge in general, as illustrated by the following example.



39

Suppose the wavemaker excursion is zero in the bottom half of the

channel and finite in the top half. Bottom-trapped waves cannot be excited

since no energy is supplied to their "region of motion". We must have more

modes (other than bottom-trapped) if we are to match the fluid to a general

wavemaker. The problem is resolved by reconsidering the case of the

flat-bottom channel. Recall that we found standing modes trapped near the

wavemaker which provided continuity between the wavemaker and the fluid.

We will show that these standing modes still exist when 6 is increased

above zero.

Recall the topographic dispersion relation ( E > 0 , Case 2):

(2. 89) ~ ~y~ ~ ~A--~~

We previously considered only real solutions k and X to this equation,

and will now see that there are also complex solutions which become

the 7.-decaying standing oscillations of the flat-bottom case when E -. 0

Before we find the complex solutions, however, let us examine the structure

of the corresponding wave.

The pressure of the topographic wave for complex A'. , and fis

where k (PI ,and 6Z & 16
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The cross-channel boundary conditions require that Sirt (Y'ri2 o
at =O,L . This implies that ? -V , a real number. Hence

I must be purely real. 2.90 is rewritten as

(2.91) p a ;-6

which

represents two waves with wave vectors ( C, C, ± 6 ) . We insist that

the amplitude decay (-d) be positive, i.e., C{-< O , so that the motion

does not grow away from the wavemaker ( in the negative X direction) .

The two phase propagating waves add to create standing motion in the

vertical. Although there is phase propagation, energy cannot be carried

down the channel. The motion decays away from the wavemaker (in a

distance of 0 ( ) , and the only sink for the energy is fluid friction,

which is zero in our inviscid problem. We now find these complex

solutions.

Written in terms of 144W. , 2.89 becomes

(2.92) -7/ 7 = [ z- ($".... 4'(2.92) 7,

where /4is non-dimensional (scaled by // ). We find the complex/'IX

solutions by solving

(2.93) 6K '-r r/ ] TaPnA (cZ7'.iL)



for a. and Z . Separating the real and imaginary parts of 2.93, we

obtain two simultaneous transcendental equations in the unknowns Z and

Sgt I (a*- 6 )' i SWA/2. .~Sin Z. 6Q= ( -)f/-(,7--) -~)1/FS7#2~~Sn2 !(2.94) 0 #62 (akb)~ 4 L COS26t Sinhlc )71

0S IM7y a 6 I - if [ Si A> 2 aZ S i n 2 61:
(2.95) O (- ) -

The solutions ( t, 6 ) to these equations were found graphically with the

aid of the M.I.T.- I.P.C. computer for the first ( ??1) mode, and the

results are shown in Figure 14. This is a plot in ( Q, b ) space for con-

SNtinuous values of S ranging from zero to very large.

When < 1, purely real values of ( £> O) are allowedS/M
corresponding to the bottom-trapped waves. These exist simultaneously

with the complex (// O ) solutions and are plotted on the a-axis

in Figure 14. Note that when 0 (flat-bottom) we indeed recover

the standing oscillations (low frequency) obtained in the earlier flat-bottom

analysis. As the value of increases from zero, the roots ( a, b )

migrate from the points ( 0,), ( 0 ,7), ( , 27) .... , to the points

(0 , E), ( 0 , ), ( 0 , ,2 ..... along curved paths.

The points k= C+/-c =( C, d) similiarly migrate from points on

the imaginary axis to points slightly higher on the same axis. (See Figure

15.)
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Complex / solutions to the topographic wave

dispersion relation. Numbers on curves denote values of

.. 6.

The inner curves are for . = - , and the outer curves are for I .=f
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Figure 15.

Plot in ( C, d) space for the complex wave number k d
Horizontal structure is e ' l

The down-channel structure is (kx- , so in the limits

-~ +0 (flat-bottom) and - >>1 , the down-channel behavior is

SNlexponential (decay) rather than oscillatory. In the limit --- >>1 , the

vertical structure (Figure 14) becomes COS4 ( '4 7 = !< 7

(A= 1 ,3,5,7,....), which is zero on the bottom for all vertical (Ii)

modes. This limit is interesting, because the horizontal velocities (Wand V)

have this structure, and hence are zero on the bottom. These modes cannot be



matched to a wavemaker having non-zero excursion at the bottom -- the

bottom-trapped waves arise to fill this role. This is similiar to Suarez'

(1971) analysis in which a steady geostrophic flow instantaneously comes

in contact with a region with sloping bottom, i. e. , C= 0 at t = and

E >0 for t > 0 . The response, as illustrated by Suarez, is shown in

Figure 16. For > 0 , the steady flow has a node at the bottom, and the

bottom-trapped wave arises to continue the "flow of energy" near the bottom.

The initial geostrophic current may be vertically dependent -- the only part

of the flow that induces bottom trapped oscillations is its value at the bottom.

Carrent ./ wve

Figure 16.

Diagram illustrating the vertical structure

of geostrophic currents. From Suarez (1971).



In the case of the wavemaker problem, a component of flow across constant

depth contours may be induced. The standing oscillations (providing con-

tinuity between the fluid and the wavemaker) then have horizontal velocity

nodes at the bottom, and the bottom-trapped wave is necessary to complete

the coupling in the vertical.

We have already indicated that the Kelvin and bottom-trapped waves

carry energy down the channel from the point of forcing, and that the

standing waves do not. Although this is obvious, we may check this asser-

tion by forming a mechanical energy equation. The original equations are

(2.96) 'L '2J

(2.97) A - .

(2.98) V -

(2.99) V= 0

(2.100) W/i/= 0

20-C 1VP-t?

,and

O , with the boundary conditions

at 0=4C ,

at Z =1 , and

(2.10i1) the d o

Forming the dot

at Y:sY

product of 24

(2.102) 2d (-

with all the terms of (2.96) we obtain

L-M ) - NJ-
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The terms on the right hand side of 2.102 were obtained with the help of

2.97 and 2.98. Rearranging 2.102, we write

(2.103) 2 N 2. 1f(P21)
N'V

The term on the left is the time rate of change of kinetic and potential

energy, and the term on the right represents the divergence of energy

flux. By integrating 2.103 over planes X constant, we obtain a

statement of the mean energy balance across these planes:

(2.104) S ., 2 )
Io 0J.s=0

We define the symbol

(2.105) (E)<=>

kinetic plus potential.

We have V

< , with , to write

- (7. P Z)> . Eis the total energy,

The right hand side of 2.105 is evaluated as follows:

and (

(2.106) 4
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The bottom boundary condition (2.101) states that / S at Z= Y/ ,

hence the last two terms in 2.106 cancel. The right hand side of 2.105 is

then L

(2.107) -K7 OX

Now S

is zero, since V- O at L

(2.108) (E,> +

S d which

for all . . The energy equation is then

P . =O.

If F/>2 (the divergence of energy flux) is zero, then energy

cannot increase or decrease in time across planes X constant. For our

wavemaker problem, this means that energy does not propagate down the

channel, and would correspond to the case where the wavemaker does not

transfer mean energy to the fluid. We will compute the energy flux of the

various wave motions after we transform 2.108 to the ( 2 ) coordinate

system. Non-dimensionally,

- jze I-E~[S[zJ~, y

[VU0 , -



The mean energy flux in the

(2.110) < PLO - § 7J
V 0

where 4 ' now implies integration over the plane bounded byz o,.

and I.o, I . For the flat-bottom channel, E = o and I:Z.

(i) Fla+-Bottom Kelvin Waves

cze C;kA

\and

(2.111)< P2>=

2

c~4

C44 24 7-z

2k

a%-!c(kA )&-s-)

07 G SAyrzx dyctr

Upon performing the

(2.112) < A =

-integration, we have

2f

and finally,

(2.113) <PML> 6 ,

(2.114) <P>, 2AC (a9-6~) ( -6-Ii4J

We e tha U> : 0 and energy propagates down the channel

and

(Y-IV I)system is then

7 -0

zkAF
) f C&O" ire .4 z
ESO

e04 244 1, - C<) (/- e

We see that



away from the wavemaker.

(ii) Flat-Bottom Standing Oscillations

( Z-decaying)

For the low frequency case ( d-<< 6</\ ), PZ-- is

Then <~ Co!4i

00

which is zero. Since the energy flux is zero, no energy propagates down

the channel.

(iii) Bottom-Trapped Waves
2Kk X.-6t)

P~~ ~ zz-- ; -k r/44it-- t(r 7 - C and

the mean energy flux is

The first integral is zero, but the second is 0 (E). The energy flux

divergence is also O ( E ) and this is due to the fact that the group

velocity associated with low frequency oscillations is in general a small

quantity.



Summary of the Results

In a semi-infinite channel (Figure 1) whose fluid is forced by a

wavemaker at one end, the following oscillatory motions are possible:

Flat-Bottom

(1) Standing Oscillations, trapped to the wavemaker, with no

net phase or energy propagation. The motion serves to pro-

vide continuity between the fluid and the wavemaker. If the

wavemaker puts no net energy into the fluid, the standing

waves serve to insulate the forcing from the main body of

fluid since the amplitude of the motion decays rapidly away

from the wavemaker.

(2) Baroclinic Internal Kelvin Waves. These arise when the

wavemaker motion is non-symmetric in the cross-channel
4

coordinate , i.e., S JVM C1 AO, and mean energy

is put into the fluid. The waves propagate (both phase and

energy) down the channel and are trapped against the L

sidewall by rotation.

Sloping Bottom

(1) The Standing Oscillations of the flat-bottom case now have

phase propagation down the channel, but are still trapped to

the wavemaker and cannot transport energy down the channel.

(2) Topographic Oscillations with vertical structure 0 ( )



These are:

(i) Topographic Rossby waves if .. <-<
-FL

and c~ e S/ , and

(ii) Bottom-trapped waves if / 3../ and 6~~<S/ .

These decay exponentially away from the bottom in a

length of and have westward components

of phase and group velocity.

(3) The Baroclinic Kelvin Waves of the flat-bottom case are

virtually unchanged. The cross-channel ( ) velocity

component is zero and the fluid particles do not cross planes

of constant fluid height when the bottom becomes sloped.

The Kelvin waves have large (^)(j) down-channel wave-

length.



Chapter III The Wavemaker Problem

Now that we know the possible modes, this chapter will outline the

wavemaker problem -- matching the fluid modes to an arbitrary forcing

function at ~L.= 0

The problem involves matching the X -velocity of the fluid to the

-velocity of the wavemaker (at the wavemaker) , and is made tractable by

linearizing the wavemaker motion so that the matching takes place at X= 0.

Let be the X-displacement of th- wavemaker. (See Figure 17.)

The inviscid fluid in contact with the paddle also has this displacement;

therefore, the X -component of the fluid velocity ( 2U ) at the wavemaker

is given by

(3.1) 4 +'A/

If we scale i by 0.. (the particle excursion in the X- Y plane), V by

0. 6 ( 6 is the paddle frequency) , and W by 4v 6 ( av is the

particle excursion in the E- E plane) , 3.1 becomes

(3.2) 6- = + Q* -I a~

The ( E) superscript denotes non-dimensional variables. If we further

scale d. by g -, ( X, ) by (the horizontal scale of the motion) , and

. by (the vertical scale of the motion) , 3.2 becomes (dropping 's)



Figure 17.

The wavemaker.



(3.3) cZ1f f= a 6~ azcv9

or,

4 a

Expanding the left hand side of 3.4 in a Taylor series about .= O , we

d UE t')=O) 4-..

4a r0 A

Then if dg <<.I-

,= C and write

(3.6) -

, and du rf< we perform the matching at

The available fluid modes are (for C! S /V , and at X.= O )

Kelvin:

(3.7) ~z ~#YC~?r 7
§-

Note: We allow energy to propagate only away from the forcing, because

(3.4) UF

find

(3.5)

4 vS aa -mW

./ a, M W .F

( XO = (.) X

+ a je V 37



the channel is infinitely long. Since the group velocity has the sign of the

phase speed, we must keep - <B TA-
Bottom-Trapped:

(3.8)
;~WcraC4L//" (7-i)[

and

. -decaying standing waves

+ ,, X.(

We match these y-velocity modes (summing over A. and -r. ) to the wave-

maker, (wM = .

If we write

(3.10) M$tx Qe6

then

c O-t(3.11) w n - + 34 3 .. )

We then rewrite 3.4, 3.5, 3.6 to obtain

(3.9) 14&-A.'6_".C4-wt(?*AaA iC4 6"A (1-1) C44 0-t



(3.12)
K24

(3.13) 1 ->. =

(3.14) R414.

6i~~~f} 4(YC"46 # X&A -

C", and

4 6~6-t ',6 i ~ o-i)OC4e 7t7r

6~ is fixed by the wavemaker frequency, and the matching becomes:

(3.15)

4- 'n , and

(3.16) ITy,.~

4.21
'4-

-2:X4 '(Y

Z1O(X 4 21A.07)

67.(7 ,-'04.

c --k r,-

The wavemaker is constrained by a no-net mass flux condition:

(3.17) 0
#:o =0 7

The fluid is similiarly constrained, and we see that each mode does indeed

satisfy 3.17.

A.- S/ F, edA

/N,. > CO-4 X r (..

r7



By writing

(3.18) *'%

we decompose the paddle motion into a complete orthogonal set and satisfy

3.17. We now expand F, G , /i , I in complete orthogonal sets

1 S f7 , and equate cosine coefficients of the fluid and the

wavemaker to perform the matching. Expanding the fluid set, we have

(3.20) o t X,7 " oIy

+ I e ,and

(3.2 1) as 7 x

Performing the matching (3.15, 3.16) using 3.18, we have



(3.22) A-

(3.23) d

(3.24) 2 C 4-

(3.26) e ~o

(3.27) O 4- 6 -A?'~~5" ~.

3.22 - 3.24 are the result of matching the COS 6F_ dependence while 3.25 -

3.27 are the result of matching the S/b 6d dependence.

We see that by choosing a wavemaker whose mean cross-channel

motion is zero, i.e. , S then Ey g O , and

no Kelvin waves are excited. Upon making this selection, the matching

problem becomes:

(3.28) +C1 /9,sc +-n 6,1

-9.;, o -"' = ' 0)-j



(3.29)

Rewriting 3

016

If 2

CCK4 4  ZL(e A 0

CC".,49

1.28 and 3.29 in matrix form, we h

b-6 a"O I awi. 6,

6 a -m 0 10/I

6 -u a

In the matching matrices, the number of rows is determined by the number

of cross-channel (7M) modes and the number of vertical (if ) modes, while

the number of columns is determined by the number of complex/ (4 )

modes. If actually solving for OC , i and /6", we truncate the matching

matrices at a finite number of modes, then perform the inversion operations.

The actual calculation of the matching will not be done here, as we are

merely interested in isolating the purely bottom-trapped waves for laboratory

study, and this is quite easily done since the complex/h modes decay

rapidly away from the wavemaker.

ave

and



Chapter IV Proposed Laboratory Experiment

In designing a laboratory experiment to isolate and study bottom-

trapped waves in a salt-stratified fluid, several factors must be considered.

For example, we have seen that we must have 6~<Sh4 in order to excite

the bottom-trapped waves.

The general plan is to construct a long channel with a wavemaker in

one end. (Figure 18.) The frequency and amplitude of the fluid motion is

fixed by the wavemaker. The wavemaker motion will be symmetric in the

cross-channel coordinate, hence no Kelvin waves will be excited. As long

as is less than L , both the purely bottom-trapped (real )

modes and the standing (complex/4. ) modes are produced. The bottom-

trapped waves propagate to the left of an observer who is facing shallow

water, hence the wavemaker must be installed in the end of the channel

which is to the right of an observer who is looking up the slope. The

bottom-trapped waves should be easily isolated from the complex waves

since the latter are trapped to the wavemaker.

In choosing the stratification and rotation, we must consider the

subtle flow induced when constant density surfaces terminate on sloping

boundaries. In a rotating experiment, the constant density surfaces

(isopycnals) are paraboloids, and therefore intersect vertical boundaries

at some angle Q( (see Figure 19) . This implies that a density gradient

( r is the radial coordinate in the rotating system) exists on planes

of constant depth, i.e., planes perpendicular to gravity, particularly at

the sidewall. If the boundaries are insulated (true for salt stratification) ,



Figure 18.

Geometry of the channel with wavemaker installed.



the density gradient cannot drive salt through the wall, and a flow is

induced along the wall which adjusts the isopycnals in such a way that

the radial density gradient vanishes at the wall. Under laboratory con-

ditions the magnitude of this flow is very small (0 ) where L

is the radius of the container, and is the buoyancy-reduced gravity.

We must consider this flow if the magnitude of the flow under study is also

small.

Figure 19.

Isopycnals in a rotating cylinder.
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Obviously, a semi-infinite channel cannot be constructed; however,

the channel will be made as long as possible, subject to the limitations of

turntable capacity, plexiglass strength and the size of the laboratory. It

is hoped that viscous damping will insure that the waves do not reach the

end of the channel opposite the forcing so that the idealized wavemaker

problem will be approached. The sloping bottom is made up of machined

plexiglass wedges of slope S , hence S can be no smaller than that which

can accurately be machined.

We wish to optimize the "observability" of the waves so we will select

parameters of f, N , L and H such that the resulting group velocity

and vertical e -folding length of the bottom-trapped motion tend to enhance

detection, and at the same time insure that the standing modes decay rapidly

away from the wavemaker. The horizontal g -folding decay length of the

standing modes is never more than . I (see Figure 5) . This means that the

complex/L (standing) modes and the realAz (bottom-trapped) modes are

easily separated, since the latter are freely propagating down the channel.

We will also need to estimate the horizontal viscous decay length of the

wave motion for two reasons: (1) as previously stated, we desire that the

motion be completely damped before it reaches the end of the channel, and

(2) we don't want the motion damped out by viscosity before it can be easily

observed.

Finally, we must have 1. § < , Es 1 and .

in order to utilize the small slope, linear and inviscid theory of Chapter 2.

In addition, the low frequency limit may be approached by insuring that



The above important parameters -- frequency (6) , down-channel

group velocity (C k), vertical e-folding length ( ) e ) , and horizontal

viscous decay length ( bL) of the bottom-trapped waves are now discussed

in detail.

Beginning with the bottom-trapped wave dispersion relation, we have:

(4.1) 0

For convenience, we set

Then GO

FsA1 ,where =~ (1 k
/ ~~1~~*I-

kn <"9n .
ka,~: c(A

This may be approximated as

is >:.f.

d- c( SA provided that the

The group velocity is

(4.2) '9

and if =o->.

/<'/IA) fG

, then

(4.3) 5k sN
K3

Both COh ONf
values of oC .

KH I

and O c62. are plotted in Figure 20 for two

(10Aargument



We see that the second term of 4.3 may be neglected if kRN- I1 , and

that

(4.4)

The vertical

e) N

With k c.

(4.5) =

e -folding length of the motion is given by

k 2

this becomes

E (7 ( +

The percent (of channel depth) e -folding length is -
o cc=.Z
A or.=I

COTh H At

-LL r(/A2) -
FL

Figure 20.

Relative sizes of C704

f V
3: and



An estimate of the horizontal viscous decay length for the bottom-

trapped waves may be obtained by considering the classical homogeneous

spin-down time, 2l ( E is the Ekman number, ( a) ).

(4.6) S .where 7/ is the kinematic

viscosity. h is the vertical scale of the motion and is to be approximated

by,/ Ae

Thus

and the viscous decay length is then

(4.8) LL I 71-

In summary, we have the following important experimental parameters:

(i) s~~/V

(ii) = ( -A
( / r)

(i ) ( 7 - .E (0<

(iv) La = Z 7j (! ( -- 0
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Several values of the above for 77 -. (first cross-channel mode) and

C= 0 - - were computed, and the results are plotted in Figure 21.

Fixing the channel parameters to S . and L= 25crm , and setting

): .0/ CPaSe , we have for eC= /2.:

= .o45 (sec~) C ~ foA/ (cm/sec) ,

) 713 and L) 83T(c~rn)N

For a first experiment, we set I and A 2 , yielding d~~= .09

C k -c ,)e 3. 5cm , and D. 3 C<>.

If the paddle excursion is Gcmn , the maximum paddle velocity is

41. (6ce' = 2./fo 4--.6 , and the Rossby number for this speed is

Notes On The Experimental Apparatus

A 2m x 50 cm x 25 cm plexiglass channel was constructed, and eight

wedges of slope S = 0.1 were machined for the sloping bottom. The

channel is mounted on aluminum I-beams which are attached to the ultra-

stable air bearing turntable designed by Saunders and Beardsley (1972) .

The rotation period is monitored by a magnetic reed switch connected to a

digital counter.

The wavemaker consists of a rubber sheet held fixed from the fluid

surface to mid-depth, with linearly increasing amplitude toward the channel

bottom. The paddle frequency is adjustable by means of a Bodine Speed
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Figure 21.

Parameters of the first ( 'n=) bottom-trapped mode.



control motor.

The channel is linearly stratified by the method of Oster (1965) while

rotating to speed up the fluid equilibrium process with less mixing. The

density gradient is monitored by a continuous output, vertically-tracked

conductivity probe. The results of these conductivity "casts" are displayed

on an X-Y recorder.

Visualizing The Flow

Baker's (1966) thymol blue technique is perhaps the most precise

method of measuring small fluid velocities, but it is not very practical here,

due to the great quantity of fluid involved (in excess of 70 gallons) .

Commercially available adjustable-density polystyrene beads cannot

be adjusted to the required density of d6. -7:O (6 7 [-IJ/O),

as the beads have a maximum density of 0~- ~0 . A technique of manu-

facturing neutrally buoyant floats is now being perfected in which molten

paraffin is mixed with metal powder to produce beads with the desired

buoyancy. These floats would be inserted in the channel (during filling)

at various depths, then photographed to reveal wavelengths, trapping

lengths and fluid velocities.
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