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Abstract

Advances in integrated circuit manufacturing technologies have enabled high density on-
chip integration by constantly scaling down the device and interconnect feature size. As a
consequence of the ongoing technology scaling (from 45nm to 32nm, 22nm and beyond),
geometrical variabilities induced by the uncertainties in the manufacturing processes are
becoming more significant. Indeed, the dimensions and shapes of the manufactured de-
vices and interconnect structures may vary by up to 40% from their design intent. The
effect of such variabilities on the electrical characteristics of both devices and intercon-
nects must be accurately evaluated and accounted for during the design phase. In the last
few years, there have been several attempts to develop variation-aware extraction algo-
rithms, i.e. algorithms that evaluate the effect of geometrical variabilities on the electrical
characteristics of devices and interconnects. However, most algorithms remain computa-
tionally very expensive. In this thesis the focus is on variation-aware interconnect parasitic
extraction.

In the first part of the thesis several discretization-based variation-aware solver tech-
niques are developed. The first technique is a stochastic model reduction algorithm (SMOR)
The SMOR guarantees that the statistical moments computed from the reduced model are
the same as those of the full model. The SMOR works best for problems in which the
desired electrical property is contained in an easily defined subspace. The second tech-
nique is the combined Neumann Hermite expansion (CNHE). The CNHE combines the
advantages of both the standard Neumann expansion and the standard stochastic Galerkin
method to produce a very efficient extraction algorithm. The CNHE works best in prob-
lems for which the desired electrical property (e.g. impedance) is accurately expanded in
terms of a low order multivariate Hermite expansion. The third technique is the stochas-
tic dominant singular vectors method (SDSV). The SDSV uses stochastic optimization in
order to sequentially determine an optimal reduced subspace, in which the solution can be
accurately represented. The SDSV works best for large dimensional problems, since its
complexity is almost independent of the size of the parameter space.

In the second part of the thesis, several novel discretization-free variation aware ex-
traction techniques for both resistance and capacitance extraction are developed. First we



present a variation-aware floating random walk (FRW) to extract the capacitance/resistance
in the presence of non-topological (edge-defined) variations. The complexity of such algo-
rithm is almost independent of the number of varying parameters. Then we introduce the
Hierarchical FRW to extract the capacitance/resistance of a very large number of topolog-
ically different structures, which are all constructed from the same set of building blocks.
The complexity of such algorithm is almost independent of the total number of structures.

All the proposed techniques are applied to a variety of examples, showing orders of
magnitude reduction in the computational time compared to the standard approaches. In
addition, we solve very large dimensional examples that are intractable when using stan-
dard approaches.

Thesis Supervisor: Luca Daniel
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Since the early stages of integrated circuit technologies in the 1960s, the density of de-

vices on the chip has been following the famous Moore's law [58]. Nonetheless, for the

past few years people have been questioning the ability of integrated circuit manufacturing

technologies to maintain the current rate of scaling and to progress into future technol-

ogy nodes [75]. Among the variety of reasons justifying such concerns, is the fact that

as the technology scales down, the uncertainty in the manufactured shapes increases. In-

deed, despite the use of advanced design for manufacturability (DfM) techniques [47], the

resulting shapes on wafer are still different from those intended by the designer (see Fig-

ure 1-1). Such geometrical variations include phenomena such as shape variations (e.g.

corner rounding) due to the lithography process, in addition to line edge roughness and

width variations due to etching, as well as thickness variations due to chemical mechanical

polishing (CMP). In addition to the before-mentioned on-chip variations, off-chip inter-

connect structures suffer from surface roughness variations resulting for instance from the

standard square-pulsed electroplating processes.

For the most part, evaluating the effect of shape variations on the electrical characteris-

tics of the manufactured structures has relied on geometrical measures. In other words, the

electrical characteristics of the manufactured structures are evaluated based on the proxim-

ity of the manufactured shapes to the drawn ones. Recently, there is emerging recognition



Drawn No OPC OPC-correction Fabricated

Cross section of 65nm technology Cross section of off chip interconnect

Figure 1-1: Top figure: Top view illustrating that fabricated structures are different than the
drawn ones despite the use of opc [69]. Lower left figure: cross section in 65nm technology
demonstrating significant width and thickness variations. Lower right figure: cross section
in an off-chip interconnect structure showing significant surface roughness [9]

among process engineers and designers that such geometrical measures are not sufficient.

In fact, it is widely accepted [3] that manufactured shapes on wafer will be different from

those drawn by designers in the layout (notice for instance the presence of highly irregular

contours in the SRAM cell fabricated in a 45nm technology despite the use of lithographic

improvement techniques, such as optical pre-correction and resolution enhancement Fig-

ure 1-2). Consequently, it is very important to evaluate the effect of such shape variations

on the electrical characteristics of the manufactured devices and interconnects [5]. In this

thesis the focus is primarily on developing variation-aware extraction tools, that can effi-

ciently predict the effect of geometrical variations on the electrical properties (resistance,

capacitance, inductance or full impedance) of interconnect structures (see Figure 1-3).

While variations induced by manufacturing process variabilities are very important,

they are by no means the only type of variations that we care to account for. Indeed, vari-

ations can also be induced by the designer in order to optimize the design. For instance,

designers typically try different layouts (or arrangements of the design components) in or-

der to achieve certain design objectives. Such design trials are considered topologically

induced variations. Similarly, designers typically try different dimensions or relative dis-



Figure 1-2: A photograph of the top view of wafer shapes of the active areas of an SRAM
cell in a 45nm technology
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Figure 1-3: General structure of a variation-aware solver

tances between components in order to choose the optimal and most robust design dimen-

sions. Such trials are considered deterministic non-topological variations. Other applica-

tions (different than design optimization) in which designer induced variations are evident

include the pre-characterization of capacitance tables [46, 22] and the generation of param-

eterized reduced order models [64].

1.2 Maxwell's Equations

Computing the electrical characteristics (st

interconnect structures relies on solving M

V x E(r, t) =

V x H(r, t) =

V EE(r, t) =

V -p$(r, t) =

ich as resistance, capacitance or impedance) of

axwell's equations:

dH(r, t)
dt

d5(r, t)
E +t i-(r, t)

dt

pyv(r, t)

(1.1)

(1.2)

(1.3)

(1.4)0



where E(r, t), H(r, t) are the electric and magnetic fields respectively, P is the permeabil-

ity, E is the permittivity, pvis the volumetric charge density and J(r, t) is the current density

vector.

In the rest of this thesis we assume all material properties are linear. Hence the resulting

system of equations is linear and without loss of generality, it can be fully analyzed by just

considering time harmonic excitations exp(-jwt), where w is the angular frequency:

V x E(r) = jwpH(r) (1.5)

V x H(r) = -jwE5(r) + f(r) (1.6)

V -ES(r) = pv(r) (1.7)

V -pH(r) = 0 (1.8)

Finally, we will use the constitutive equation relating the current density to the electric

field in conducting media

$(r) = o-f(r) (1.9)

where o is the conductivity of the media.

1.3 Standard Field Solver Classification

Field solvers are computational tools, which are used to numerically solve partial differ-

ential equations such as the Maxwell's equations (1.5-1.8). Typically the input to such

solvers is the description of both the geometry and material properties. The final output is

the desired electrical characteristic of the structure, such as the capacitance, resistance or

even full impedance. Standard field solvers can be classified into discretization-based and

discretization-free solvers. Moreover, discretization-based solvers can be classified into

both differential and integral equation based solvers (Figure 1-4).

Discretization-based differential-equation methods are used to solve formulations of

the Maxwell's equations, which involve the differential local operators. Such methods gen-

erally produce sparse linear systems of equations. Example of such methods, include both
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Figure 1-4: Typical classification of field solvers based on their solution technique

the finite difference (FD) and finite element methods (FEM). They are particularly suit-

able if the domain of computation is closed and includes complex or even inhomogeneous

material configuration, e.g. capacitance table generation [22] or resistance extraction [211.

The FEM has also been applied to more complex extraction applications [84]. A variety of

commercial tools have been developed based on the FEM, e.g. HFSS by Ansoft [2].

Discretization-based integral-equation methods are used to solve formulations of

the Maxwell's equations, which involve the Green's function based global operators. Such

methods generally produce dense linear systems of equations. Example of such methods

include the boundary element method (BEM) and the partial element equivalent circuit

method (PEEC). They have gained particular importance during the last two decades due

to the development of the "fast" matrix vector product algorithms, such as multipole expan-

sion [59], pre-corrected FFT [63], SVD-compression [44], H-matrix [30] and hierarchical

techniques [81]. Such algorithms facilitate solving the linear systems of equations in al-

most linear complexity. Consequently, such methods have rendered integral equation based

algorithms extremely efficient for electrical extraction applications. Examples of publicly

available BEM-based tools are FastCap [59], FastHenry [43] and FastMaxwell [23]. Ex-

amples of commercially available BEM-based tools include EMX by Integrand [35].

Discretization-free solvers rely on using random walk methods in order to solve the

partial differential equations. Such methods typically do not rely on assembling any linear



systems of equations. There are a variety of algorithms falling under the discretization-

free category such as the floating random walk (FRW) [31], walk on boundary [67] and the

Brownian Motion (BM) methods [52]. In particular, the FRW has been successfully applied

to both capacitance and resistance extraction [13]. The FRW is particularly useful for very

large size applications, in which the main objective is to compute the self capacitance of

some particular wire (net). Examples of commercially available codes based on the FRW

are Magma's QuickCap [51].

1.4 Variation-Aware Field Solver Classification

State of the art variation-aware solvers (recall Figure 1-3) can also be divided into dis-

cretization based and discretization free solvers (see Figure 1-5). Variation-aware discretization-

based solvers can be divided into two different categories [33], namely, non-intrusive and

intrusive. "Non-intrusive" algorithms rely on computing the solution of the problem at

different points in the parameter space by using any standard deterministic field solver.

The solution anywhere in the space can then be obtained by interpolating between the

computed solutions at the different sample points. Examples of non-intrusive algorithms

include the well-known Monte Carlo method (MC) [79], and the stochastic collocation

method (SCM) [77]. "Intrusive" solvers rely on expanding the unknown in terms of some

basis polynomials. The unknown coefficient vectors of the expansion are then computed us-

ing specialized solvers. Examples of intrusive algorithms include the Neumann expansion

method [85, 18], and the stochastic Galerkin method (SGM) [28]. Notice that the SGM

is also known as the stochastic finite element method (SFE). The first part of this thesis

is primarily concerned with both improving existing discretization-based variation-aware

field solvers and developing new ones.

On the other hand, we are not aware of any variation-aware discretization-free solvers.

In the second part of this thesis we will introduce very efficient discretization-based variation-

aware solvers.
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Figure 1-5: Typical classification of variation-aware field solvers

1.5 Variability Classifications

There are a variety of ways to classify the different types of variations (Figure 1-3). In this

thesis we will divide the variations based on their geometrical characteristics into topo-

logical and non-topological variations (see Figure 1-6 and Figure 1-7). Non-topological

variations are those that are defined by changing just the dimensions or the material prop-

erties of a given nominal structure. such structure is generally the one intended by the

designer. Such variations can either be stochastic (such as manufacturing process induced

variations) or deterministic (such as designer induced variations)'. On the other hand, topo-

logical variations are those produced by rearranging the sub-modules of a structure in order

to produce a different one. Such variations are typically deterministic and are commonly

induced by the designers during the early design exploration phase, in order to study the

impact of topology on electrical characteristics of the structure.

1.6 Variability-Solver Pairing

In Figure 1-8 we summarize the list of solvers, which are most suitable for handling each

variability class. Notice that all entries with a check-mark (in black) are currently available

in the literature, whereas those without a check-mark (in red) are developed throughout this

1Notice that deterministic process variations are ofter times referred to as systematic variations [8]



Figure 1-6: Typical classification of manufacturing and design variabilities

thesis.

With the exception of Chapter 9, in this thesis we will be primarily developing al-

gorithms to handle non-topological variations. Furthermore, we will focus primarily on

stochastic non-topological variations. That is mainly because solvers which can handle

stochastic variations can equally (up to a change of norm, not change in algorithm) handle

deterministic variations (see Figure 1-8).

1.7 Outline

This thesis is divided into three parts. The first part is primarily dedicated to discretization-

based variation-aware solver algorithms. The general objective is to solve a linear system of

equations in which the system matrix elements are nonlinear functions of a large number of

random parameters. Part I starts with Chapter 2 which includes the necessary background

and previous work on discretization-based variation-aware extraction algorithms. In Chap-

ter 3 we present our contributions to the existing non-intrusive methods. In particular, we

present a Krylov subspace recycling algorithm and a stochastic model order reduction algo-

rithm (SMOR). In Chapter 4 we present our contributions to the existing intrusive methods.

In particular we present a Combined Neumann Hermite Expansion method (CNHE) and a
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Figure 1-7: Example of non-topological and topological variations

Fast Stochastic Galerkin method (FSGM). In Chapter 5 we present a new intrusive algo-

rithm which we called the stochastic dominant singular vectors method (SDSV).

The second part of this thesis is dedicated to discretization-free methods. Chapter 6

summarizes the standard floating random walk method. Chapter 7 summarizes our general-

ized floating random walk algorithm, which extends the standard FRW to efficiently treat,

in a unified framework, cases which include multiple dielectric layers, floating potential

metal fills and mixed Dirichlet-Neumann boundary conditions. In Chapter 8 we present

our variation-aware FRW algorithm to efficiently extract the capacitance of a very large

number of topologically similar structures in a complexity that is practically independent

of the number of configurations. Finally in Chapter 9, we present our hierarchical FRW to

extracts the capacitance of topologically different structures, which are all composed of the

same set of submodules (motifs).

The third part of this thesis starts with a Chapter 10 in which we compare the perfor-

mance of the main algorithms presented in this thesis on a variety of medium size and large

size examples. We also make recommendations on how to choose a particular algorithm for

a given application. We then follow with the conclusion and the future work in Chapters 11

and 12, respectively.
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Figure 1-8: Example of appropriate solver corresponding to each variability type. Solvers

with a check-mark are currently available in the literature. Solvers without the check-mark
are developed throughout the rest of this thesis.

1.8 Contributions

The following is a list summarizing the contributions presented in this thesis:

1. In Chapter 3 we develop the statistical-moment-preserving stochastic model order

reduction method (SMOR). The SMOR employs projection-based model reduction

techniques in order to reduce the complexity of solving the stochastic linear system.

In the SMOR the projection matrix is carefully chosen such that the statistical mo-

ments computed from the reduced model match exactly those computed from the full

model. Our method bridges the gap between both the stochastic simulation and the

parameterized model reduction communities [26].

2. In Section 4.1 we develop a modified inner product in order to efficiently compute

the coefficients of the projection of the system matrix elements on the space of mul-

tivariate Hermite polynomials. The theorem exploits the sparse dependence of the



matrix elements on the parameter space to reduce the time required to compute the

Hermite expansion by up to 10 orders of magnitude. This theorem facilitates apply-

ing any algorithm, which is based on the polynomial chaos expansion, to electrical

extraction applications [19, 16].

3. In Section 4.2 we develop the combined Neumann Hermite expansion (CNHE) for

variation-aware extraction in the presence of a large number of correlated random

variables. The CNHE method combines the best features of both the standard Neu-

mann expansion and the standard polynomial chaos expansion techniques, while

avoiding their computational complexities. The CNHE also facilitates using the stan-

dard non-intrusive "fast" solvers and can therefore handle very large structures in

very large dimensional parameter spaces [19, 16].

4. In Chapter 5 we develop the stochastic dominant singular vectors method (SDSV),

which is a novel intrusive simulation technique based on finding the stochastic dom-

inant singular vectors in the solution space. We also proposed a new method for

compressing the coefficient matrices of the system matrix Hermite expansion. Fur-

thermore, we presented three different relaxed variants of the algorithm, in which,

instead of finding the dominant singular vectors, we find "almost" dominant singu-

lar vectors. Our algorithm has an unprecedented low complexity, which is almost

equivalent to solving just the standard non-stochastic system [17].

5. In Chapter 7 we develop the generalized floating random walk (GFRW) algorithm

to efficiently extract the capacitance of complex structures in the presence of multi-

layered dielectric media, floating metal fill and mixed Dirichlet-Neumann boundary

conditions [24, 20].

6. In Chapter 8 we develop a path-recycling-based variation-aware floating random

(VAFRW) algorithm. To the best of our knowledge, this is the most efficient al-

gorithm to extract the capacitance in the presence of non-topological variations. The

complexity of the VAFRW is for all practical purposes totally independent of the size

of the parameter space [24, 20].



7. In Chapter 9 we develop the hierarchical floating random (FRW) algorithm, which

is the first hierarchical algorithm for capacitance extraction that resolves the global

interactions without the need to assemble/solve a large linear systems of equations.

Instead our H-FRW resolves the global interactions using Monte Carlo simulations of

Markov Chains. The hierarchical FRW is a very efficient algorithm for topological-

variation-aware capacitance extraction [25].
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Chapter 2

State of the Art in Solvers and

Variation-Aware Extraction

2.1 Discretization-Based Field Solvers for Impedance Ex-

traction

As mentioned in Chapter 1, there are a variety of field solver formulations. In this the-

sis we will use, as an example, the mixed potential integral equation (MPIE) formula-

tion [65, 41, 42, 34]. The main reason for choosing the MPIE is its generality and its

efficiency in extracting different electrical parameters, such as resistance, capacitance, in-

ductance and impedance. In a general impedance extraction setting the MPIE describes

the relation between the volumetric current density J(r) inside the conductor, the surface

charge distribution p(r), and the electric potential #(r):

+(r) jW G(r,r')f(r')dr' = -V#(r) (2.1)
ac 41

j G(r, r')p(r')dr' = #(r) (2.2)
47re s

V J(r) = 0 (2.3)

h f(r) = jop(r), (2.4)



where G(r, r') is the Green's function, V, S are the conductors volume and surface area,

respectively, o, is the conductor conductivity, E is the complex dielectric constant including

dielectric losses, p is the magnetic permeability, w is the angular frequency in radians.

The special case of the standard electro-quasi-static (EQS) capacitance extraction prob-

lem is described by imposing just equation (2.2). The special case of the standard magneto-

quasi-static (MQS) resistance and inductance extraction problem is described by imposing

just equations (2.1) and (2.3).

2.1.1 Discretization

A standard procedure for solving (2.1)-(2.2) involves discretizing the current density f(r)

and the charge density p(r) using piecewise constant basis functions (PCBF). For the

charges, we use PCBF supported on triangular or quadrilateral surface panels. For the cur-

rent density, we use PCBF supported on rectangular filaments. Discretization in the pres-

ence of random variations is a difficult task. Indeed, the only way to discretize a structure

using a constant number of basis, while still allowing the structure to vary (see Figures 2-1

and 2-2), is to use stochastic basis function (i.e. basis that have a stochastic support):

Ni

p(r) = bi(r) (2.5)

- N2 I
J(r) = Bi (r) (2.6)

a2

where

bi(r) = 1 r on surface of panel i (2.7)
0 otherwise

1 r in volume of filament i

0 otherwise

where Ni and N2 are the total number of surface panels and volume filaments, respectively;

qi is the unknown constant charge on panel i, I, is the unknown constant current inside of



filament i, Si is the surface area of panel i, ai is the cross-sectional area of filament i.

The stochastic nature of the basis functions stems from the observation that Si, bi(r), aj,

and Bi(r) are stochastic. Another way to understand the stochastic nature of the basis

function, is to realize that in order to keep the total number of surface panels and volume

filament constant while still allowing the geometry to vary, is to allow the discretization

elements themselves to vary. To emphasize such stochastic nature we will explicitly write

the parameter dependence:

bi(r, p) = 1 r on surface of panel i parameterized by vector p (2.9)
0 otherwise

Bi(r, p) = 1 r in volume of filament i parameterized by vector p (2.10)
0 otherwise

where p is a vector of random parameters describing the variations in the geometry. Finally,

notice that throughout the rest of this thesis the total number of charge and current density

unknowns will be called N = Ni + N2 .

alto

Parameterized discretization with parameter (t),
instantiation of the discretization (to)

a2 1l 1131
An instantiation of the discretization (tj)

Figure 2-1: Discretized conductor surface using parameterized basis functions.

The discretized current and charge distributions (2.5-2.6) are substituted in (2.1)-(2.2).

A standard Galerkin testing is then used to obtain the dense branch impedance matrix as

shown for instance in [42]. Notice that due to the use of Galerkin testing, the test functions
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Figure 2-2: Discretized conductor volume. Conductor upper surface is rough. The thick-
ness of every filament in a random variable.

are stochastic. Current and charge conservation constraints (2.3)-(2.4) can then be imposed

using mesh analysis as described in [421 to obtain a linear system:

MZ(p)MT Im(p) = Am, (2.11)

where M is the very sparse mesh incidence matrix, Aqm is the known RHS vector of

branch voltages, Im(p) is the vector of unknown mesh currents, and

Z(p) =[R(p) + jwL(p) 0 (2.12)
0 r2p

The elements of the resistance, partial inductance and coefficient of potential matrices are

given by:

Rij(p)

Li (p)

]7i(p)

f
VM(p)

' d3r
ai (p)aj(p)

I I
V3(p) 1i(p)

I I
S, (p) Si(p)

G(rr') d3r'd3r,
ai (p)aj (p)

G(r,' d2r'd2r,
Si(p)S3(p) '

(2.13)

(2.14)

(2.15)

where V (p), ai (p) are the stochastic volume and cross sectional area of filament i, respec-



tively, and Si(p) is the stochastic surface area of panel i. The integrals (2.13-2.15) are

stochastic functions of the random process, since the integration domain is described by

random variables in p. Throughout the rest of the thesis we assume that the length of p is

Np. More details related to the stochastic description of p follow in the next Section 2.2.

Using (2.11), the variation-aware impedance extraction problem can be abstracted as

the solution of a general stochastic system

A(p) x(p) = b (2.16)

where A(p) = MZ(p)MT is a dense matrix of size N x N, b = /o#2 is the known

RHS, and the objective is to obtain the complete distribution of the N x 1 mesh current

vector x(p) = Im(p). Notice that the special cases of MQS impedance extraction, and

EQS capacitance extraction are obtained by making the following substitutions:

" for MQS impedance extraction

A(p) = M (R(p) + jwL(p)) MT;

* for capacitance extraction A(p) = I'(p), while b = # is the known potential on the

panels, and the objective is to obtain the distribution of charge vector.

In electrical extraction applications, the output quantity y(p) (e.g. capacitance or ad-

mittance) is written as a linear function of the unknown vector x(p)

y(p) = cTx(p) (2.17)

where c is a column vector of size N x 1. In certain applications, such as capacitance

extraction, we might be interested in more than a single output quantity (e.g. all coupling

capacitances between a target conductor and all surrounding conductors). In such cases the

output is a vector rather than a scalar, and the vector c becomes a matrix C.

In the rest of this part of the thesis we will present algorithms for solving the general

abstracted setup (2.16) independent of the underlying application. However, we will also



present specific details to resolve computational challenges arising when (2.16) is obtained

by discretizing the integral equation formulation of Maxwell's equations.

2.2 Random Variability Modeling

In this thesis we will assume that the vector p of random process variations is described by

a multivariate Gaussian probability density function. We will further assume that in general

such random variables are spatially correlated. Based on the spatial correlation function,

we divide the variations into strongly spatially correlated and weakly spatially correlated

variations.

As an example of strongly spatially correlated variations, we consider surface rough-

ness in "off-chip" interconnects. More precisely, the volume of the conductors V is bounded

by rough surfaces S, which we assume is described by a discretized stochastic Gaussian

process:

exp (-0.5pTE-1p) (2.18)W(p) = 2 (2.18)
(27r) 0 -54 E '

and

E(I = 2 e 112 (2.19)

where Lc is the correlation length, Pk E p is the surface height at location rk, and E E RNP x Np

is the covariance matrix. Notice that in general we will assume that the correlation func-

tion is Gaussian (2.19) in order to guarantee the smoothness of the surface. However, other

correlation functions, such as exponential, have been also applied in the literature [74].

As an example of weakly spatially correlated variations, we will consider the case of

"on-chip" interconnect width and height variations. In such case we will in general as-

sume that the random parameters in p represent uncorrelated Gaussian variations in the

geometrical dimensions (e.g. width and height) of the interconnects. Consequently, the

joint probability density function of such random Gaussian variations is a product of the

individual random variations.

p)1 e -
(2.20)P(p) =HI exp -0.5 20(.20

i=1 /f-r(i1



2.2.1 Karhunen-Loeve Expansion

If the vector p is composed of correlated random variables (for instance p could be the

rough surface height at different locations) then a Karhunen Loeve expansion (or in other

words a truncated Singular Value Decomposition SVD) is used to expand the random pro-

cess as a summation of independent random variables [48],

p ~ E [p] + M v/ X , (2.21)

where ' is the vector of independent Gaussian random variables with zero mean and unit

variance, and M and A are the eigenvectors and eigenvalue matrices of the correlation

matrix E

EM = MA. (2.22)

The elements of the matrix A(p) in (2.16) are then expressed as a function of the expanded

random process:

Aij (p) = Aij (E [p] + M/AVAi). (2.23)

2.2.2 Polynomial Chaos Expansion

To simplify computations, expression (2.23) is often times expanded in terms of orthogonal

basis polynomials T k (4) in the variable 4. Such expansion is referred to as polynomial

chaos expansion [761.
K

A(p) = Ai'i(4) (2.24)
i=O

where K is a function of both No, the order of the orthogonal polynomial expansion, and

NM, the number of dominant eigenfunctions obtained from the Karhunen Loeve expan-

sion [7]:

No (+M )- (
K = 1 + E .m (2.25)

n=1 (



A complete Askey scheme has been developed [781 to choose the set of orthogonal poly-

nomials such that its weighting function is the probability density function of the set of

independent random variables 4. For the particular case of Gaussian random variables, the

set of probabilistic Hermite polynomials is the standard choice

Ai = < A(p), j(#) > (2.26)

/ / exp(-49

(2-r) 2
M1 nNM

= E [A(#),Fi(#)] (2.27)

For more details on the probabilistic Hermite polynomials and the normalization constants

see Appendix A.6.

Despite the fact that the exponential function in (2.26) is separable, the fact that A(p)

in (2.23) is dependent on all the independent random variables in vector ' used to expand

the random process, results in an integral (2.26) of very large dimension NM independent

of No. Such integrals are computationally impractical to evaluate. Several techniques have

been proposed to avoid this inherent complexity, such as Monte Carlo integration (not to

be confused with Monte Carlo simulation), and sparse grid integrations [27]. Nevertheless,

the problem of calculating a large number of such integrals in a computationally efficient

framework remains one of the bottlenecks of any stochastic algorithm that relies on the

polynomial chaos expansion. In Section 4.1 we propose a new theorem to overcome this

inherent difficulty.

2.2.3 Mathematical Assumptions

Unless explicitly otherwise stated, throughout this part of the thesis we will make the fol-

lowing assumptions:

1. The number of unknowns N is constant over the entire parameter space. Basically

we are assuming that we are starting with a fine enough discretization that is accurate

even for the most extreme parameter values. Or in other words, we do not need to

discretize each time the parameter values vary, but instead the support of the basis is



parameterized and changes dynamically, while still maintaining the desired level of

accuracy.

2. The linear system of equations (2.16) is non-singular at any point in the parameter

space. It is very obvious that such an assumption holds only if the linear system is

representing an accurate discretization of a physical structure. It is furthermore obvi-

ous that this assumption cannot hold if the parameter set is modeled using a Gaussian

probability density function since such a distribution implies that the parameter val-

ues have a nonzero probability of being arbitrary away from their nominal values.

To avoid such complications, we will always truncate and renormalize the Gaussian

probability density function to its 3- limits. However, we will abuse the terminology

and refer to the truncated Gaussian PDF as a Gaussian PDF.

2.3 Non-Intrusive Sampling Methods

In non-intrusive sampling based methods, the system (2.16) is solved Ns times, for differ-

ent realizations of the random process p, obtaining the set of solutions {x(pi), x(p 2 ),

-- , x(pNs)}. The statistical characteristics of x(p) are then computed from the ob-

tained solution set (samples). The computational complexity of sampling based methods

is O(Nsp(N)), where p(N) is the complexity of solving a single system. Examples of

non-intrusive methods include the Monte Carlo method [57], and the stochastic collocation

method (SCM) [54, 77].

In Monte Carlo methods the parameter space is sampled randomly. The statistics can

then be computed from the random samples. However, building a closed form parameter-

ized expression for the output quantity is very complicated (as complicated as interpolation

in high dimensional spaces). The main advantage of Monte Carlo methods is that its com-

plexity is theoretically independent of the dimension of the parameter space. The main

disadvantage of Monte Carlo methods is the need for a very large number Ns, since the

convergence is very slow 0( ).

In the stochastic collocation method (SCM) the problem of constructing a parame-

terized expression for the output function is solved by expanding the output in terms of



multivariate orthogonal polynomials:

K

y(i) = ZyTI4) (2.28)
i=1

where the coefficients are then computed using the quadrature-based samples

I. K

Yi = ]) = y(71)4i(q)P(q#)aq, (2.29)
q=1

where #/ and aq are the quadrature points and the associated weights, respectively. Differ-

ent quadrature schemes have been proposed in literature. In particular, sparse grid quadra-

ture schemes (such as Smolyak construction [71]) have been proposed to efficiently com-

pute integrals of moderate dimensions and Monte Carlo methods have been proposed to

compute integrals of large dimensions. The main disadvantage of the SCM is that a very

large number of sample points is required in order to efficiently sample large dimensional

parameter spaces.

2.3.1 Discussion of Non-Intrusive Methods

The main advantage of non-intrusive methods is the ability to use the well-developed state

of the art deterministic solvers in order to solve the individual linear systems in reduced

complexity. In particular, by using the so-called "fast" solvers [59, 43, 1], the complexity

of solving the linear system is reduced from 0(N 2 ) to 0(N log (N)) or even 0(N).

Another advantage of the non-intrusive methods, which has not yet been fully exploited,

is that the linear systems produced by the sampling methods are all "similar". One way to

exploit such similarity is by solving the linear systems using iterative Krylov subspace

methods combined with recycling of the Krylov subspaces [11, 62, 80]. Another possible

way to exploit such similarity is to adopt some of the techniques developed in the projection

based model reduction community [14, 64, 10]. A third way to exploit such similarity is

to combine both the model reduction techniques and the Krylov recycling techniques in a

unified framework.



Finally, it should be noted that the main complexity associated with sampling based

method is the challenge of accurately and sufficiently sampling a high dimensional param-

eter space. This challenge is faced by many different research communities. Over the years

many techniques have been developed, such as quasi-Monte Carlo sampling [60], Latin

Hypercube sampling [56], importance sampling [29], Monte-Carlo Markov Chain [32],

optimization-based sampling [10, 72] and many more. The field of stochastic solvers has

not yet exploited many of those techniques. The reason might be that more fundamental

critical problems are still being addressed and have not been yet fully resolved.

2.4 Intrusive Neumann Expansion Method

The stochastic system matrix A(p) in (2.16) is first written as A(p) = Ao + AA(p), a

sum of a deterministic expectation matrix Ao = E[A(p)] and a stochastic matrix AA(p).

Second, A(p) is substituted in the linear system (2.16), and the inverse is expanded using

the Neumann expansion to obtain:

x(p) = xo - AO AA(p)xo + AO AA(p)Ao'AA(p)xo +... (2.30)

where xo = A0 1b. The above series converges provided that

max pA(Ao aA(p))| < 1. (2.31)

The required statistics of the unknown current vector x(p) can then be obtained from (2.30),

however, such computation (even just the average) is computationally very expensive [28,

86]. As an example, let us consider computing the average of (2.30)

E [x(p)] = E [xo] - E [A- 1 A (p)xo] + E [A0-1A A (p)Ao A (p)xo] + . . . (2.32)

Using E [xo] = xo and E [AA (P)] = 0, equation (2.32) is rewritten as:

E [x(p)] = xo + A0-IE [AA (p)A'AA (p)] xo ± .+ (2.33)



The main complexity is associated with the term E [AA(p)AO1 AA(p)], which involves

computing the expectation of the product of two stochastic matrices separated by a deter-

ministic matrix. This term can be rewritten using the Kronecker product 0 and the vector

operator vec(.) as 1:

E [AA (p)A 1 AA (p)] = vec-- (E [AA (p)T 0 AA (p)] vec(A- 1 )) (2.34)

The complexity of storing and evaluating (2.34) is O(N 4 ), which is computationally pro-

hibitive. The complexity of computing the statistics increases even more dramatically if the

order of the term in the Neumann expansion is increased and/or if we compute high order

statistical moments.

A couple of techniques have been proposed to reduced the complexity of comput-

ing (2.34) [85, 18]. In particular, the variation-aware capacitance extraction algorithm

in [85] relies on using the H-matrix [30] to sparsify both A0 1 and AA(p)T 0 AA(p)-

The final complexity of the algorithm is O(Nlog2 N). On the other hand, the variation-

aware resistance/inductance extraction algorithm in [18] relies on using "stochastic" high

order basis functions in order to reduce N (without reducing the complexity of the problem

O(N 4 )). Both [85, 18] are specialized for very particular applications. Moreover, they

are useful only for computing the average and possibly a low order approximation of the

variance. It is very hard to generalize such algorithms to general or more complex applica-

tions. Furthermore, computing high order statistics using such a method is for all practical

purposes computationally impossible.

2.4.1 Variants of the Neumann Expansion

Another disadvantage of the Neumann expansion technique is that it does not reveal any

information on the values of the electrical properties at particular points in the parame-

ter space. Instead, in such technique only the statistical moments of the distribution are

computed. The ability to estimate the electrical characteristic at particular points in the

'When the vector operator is applied to a matrix A of dimension N x N the result is a vector of size N 2 x I
obtained by stacking the columns of the matrix into a large vector. Using Matlab's notation vec(A) = A(:)



parameter space is generally essential for both designers and fabrication process control

engineers.

To avoid such disadvantage, a couple of variants of the Neumann expansion algorithm

have also been proposed in the literature. Such algorithms typically rely on combining the

Neumann expansion algorithm with another expansion in order to simplify both computing

the statistics and evaluating the value of the output at points in the parameter space. In

particular, in [281 the Karhunen Loeve expansion has been combined with the Neumann

expansion to develop the improved Neumann expansion, which is efficient for a class of

problems in which the system matrix is linear in the variations. Unfortunately, such a

condition is typically not satisfied for electrical extraction applications. Another technique

which combines the Taylor expansion with the Neumann expansion was developed by [391.

Such a technique is only valid for small perturbation analysis and cannot be generalized to

handle large variations. Indeed the technique in [39] can be considered as a high order

sensitivity analysis.

2.5 Intrusive Stochastic Galerkin Method (SGM)

The stochastic Galerkin method (SGM) has been developed by Ghanem [28]. It has been

traditionally called the stochastic finite element method. In SGM the system matrix A(p)

is first expanded using polynomial chaos (2.26). The unknown x(#) is then written as

an expansion of the same orthogonal polynomials x(#) = EK0 Xj Tj (#), where xj are

unknown vectors. Both expansions are then substituted in (2.16)

K K

AiT i(i)[ x Wj() b. (2.35)
i=O j=0

A Galerkin testing, i.e. projection on the space of the same set of orthogonal polynomials,

is applied to obtain a linear system of equations.

K K

i=0 j=0

W {, ... , K} (2.36)



Equation (2.36) is equivalent to a linear system of the form

AR = b, (2.37)

where

'iOO Yi1O . .. iKO

K K iY01 ^ill * '' iK1 A
i=0

YiOK 'Yi1K ' iKK

/ )T ~ 
T

= x T ... T b= bT 0 .-. 0 ,

'Yije = ('i'(),F(), iFt(4)) and 0 is the Kronecker product. The size of this linear system

is O(NK), i.e. the original system size N, times K the total number of multivariate or-

thogonal polynomials used to expand the random function. Notice that for a moderate size

100-dimensional parameter space, K is 5, 000. Solving the corresponding linear system

would require O(K 2 N2 ) time complexity when using an iterative solver, and O(K 3 N3 )

time complexity when using a direct solver. Such complexity would result in an extremely

inefficient electrical extraction algorithm, probably much worse that Monte Carlo simula-

tion.

2.5.1 SGM Research Directions

Ongoing research in the SGM focuses primarily on reducing the complexity of solving (2.37).

To achieve such a goal some attempts have been directed towards using the so-called dou-

bly orthogonal polynomials in order to decouple the large system matrix [4, 12]. However,

such a technique suffers from several drawbacks. In particular, it is only applicable if the

system matrix is a first order expansion of the random parameters. This is a severe limita-

tion since it is an assumption not valid in many problems. Furthermore, in such technique

the multivariate basis are constructed using tensor products. Consequently, the number of



independent system solves grows exponentially with N,, which deems such a technique

less efficient than standard non-intrusive methods for large dimensional parameter spaces.

Another research trend is to represent the unknown in terms of a reduced space. Ex-

amples of techniques typically used to build a reduced basis for the unknown include using

an approximated Karhunen-Loeve expansion of the unknown [55], using the generalized

spectral decomposition [61] and using stochastic reduced basis [68]. The first technique

is computationally very expensive due to the use of the Neumann expansion. The second

algorithm is also very expensive due to the need to compute all the basis of the reduced

space at once. The final algorithm is exactly equivalent to applying the full orthogonal-

ization Krylov subspace method (FOM) [66] to the full SGM (2.37), and therefore cannot

really be considered efficient.

Other attempts have been made toward using approximate "fast" algorithms, such as

fast multipole, in order to reduce the complexity of solving the linear system of equations

generated by the stochastic Galerkin method. Unfortunately, thus far such attempts have

not been successful.
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Chapter 3

Contributions to Non-intrusive Methods

As mentioned in Section 2.3, non-intrusive methods rely on sampling the parameter space

p (or equivalently i4) at different points in the space 'l and solving the linear system

A('=)x() b (3.1)

YNAl) = cTx(k) (3.2)

It is apparent that in non-intrusive methods (sampling-based methods) we need to solve a

very large number of "similar" systems. This similarity is due to the fact that all systems

share the same topology and just differ by the numerical values of the geometrical dimen-

sions parameterizing the topology (see Figure 3-1). Such similarity has not been explicitly

exploited by non-intrusive stochastic methods. The objective of this chapter is to exploit

such similarity in order to reduce the average total computational time required for solving

a large number of "similar" configurations. We do that using two different techniques:

* We develop Krylov subspace recycling strategies, which enable reusing the compu-

tations performed during the solution of one linear system in order to reduce the

computational effort required for solving another linear system.

Specifically, we first present a new deterministic Galerkin Krylov Recycling (GKR)

algorithm, which improves standard Krylov subspace recycling for the solution of the

large number of similar linear systems, produced by sampling the space of random
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Figure 3-1: Two similar structures. Can solver exploit such similarity?

geometrical variations. In addition, we investigate different strategies to determine

the sequence in which the linear systems are solved to achieve maximum recycling.

Finally, we provide a proximity measure to quantify the degree of similarity between

sample linear systems. Such proximity measure is used to cluster the systems into

subgroups such that the explored subspace is only shared among similar systems.

We use projection based model reduction to reduce the complexity of solving the

stochastic linear system (by reducing its dimension). We present and proof a tech-

nique to build the projection matrices such that the statistical moments (and/or the

coefficients of the projection of the stochastic vector on some orthogonal polynomi-

als) computed from the reduced system are the same as those computed from the

original system.

Notational Note. Throughout this chapter, we will freely interchange between the

notations Ak and A(#).
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3.1 Non-intrusive Sampling using Galerkin Krylov Method

for Recycling (GKR)

In this section we discuss a Krylov subspace technique that is based on orthogonalizing the

residual with respect to the Krylov search space via a Galerkin projection. We will refer

to our algorithm as Galerkin Krylov method for Recycling (GKR). The recycling aspect of

our algorithm is discussed in the next subsection. Notice that the proposed algorithm differs

from the full orthogonalization method (FOM) [66], since we do not use the Hessenberg

decomposition, nor do we choose the orthogonal basis vectors such that they are compatible

with such decomposition.

To solve a linear system Akxk = b using GKR, at iteration n + 1, the unknown vector

is first expressed as Xk = Qn+lzk, where Qn+1 E C(Ak, b) is an orthogonal matrix of

size N x (n + 1) in the Krylov subspace of Ak and b. Matrix Qn+1 is constructed by

augmenting the space spanned by Qn by the orthogonal projection of the residual on the

compliment of Qn:

(In - QQ") rn
qn+1 = ||(In - QQ ) rn

Qn+1 = [ Qn qn+1] (3.3)

Choose the
residual of a
particular

line
-171ic

S

Us Ite
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A Galerkin projection is then used to orthogonalize the residual AkQn+lZk -b with respect

to the subspace spanned by Qn+1:

QnH+1AkQn+lZk ~-~ Qn+1b = 0.

Notice that matrix Q k+1AkQn+1 is assembled by extending the matrix Qn AkQn available

at step n:

QHAkQn Qn"Akgn+1Qn+1AkQn+1 = (3.
qn+1AkQn n+1Akqn+1

Only the following two matrix-vector products are required at each step: Akqn+1 and

q"+ 1Ak. Furthermore, Givens rotation-based QR decomposition [66] is used to efficiently

compute Zk. The proposed algorithm can handle non-symmetric non-positive definite ma-

trices, which is essential since many of the system matrices generated via field solvers (e.g.

coefficient of potential matrix generated by a collocation method) are not symmetric and

are often numerically non-positive definite.

3.1.1 Krylov Subspace Recycling using GKR

The main idea behind Krylov subspace recycling is to cheaply test if the solution of system

k + 1 is contained in the subspace explored during the solution of systems 1 to k. If

the solution is contained in the subspace, then it can be cheaply and easily computed.

Otherwise, the current subspace is expanded until it includes the solution of system k + 1

(to the desired accuracy). Two important steps are required in order to do such a test:

1. Map the explored subspace into the Ak+1-space

2. Find the best representation of the RHS in the projected space

The fundamental premise behind recycling algorithms is that both the above steps can be

implemented efficiently. The mapping of the explored subspace Qn+I onto Ak+1-space

involves the product

Ak+1Qn+1- (3.5)



Computing the matrix-matrix product (3.5) is generally very expensive. However, for cases

in which the matrices can be expressed as

Ak = Ao + Ak (3.6)

where AO is some nominal matrix and Ak is some sparse, low rank, or sparsifiable matrix,

then the product (3.5) can be computed very efficiently. In this subsection we will consider

cases in which Ak is sparse. In particular, we will consider similar linear systems generated

by structured (e.g. sparse grid) sampling of a weakly coupled physical parameter space.

Such parameter spaces are typically used to model on-chip width and thickness variations,

but not the strongly coupled off-chip surface roughness variations. For more details on the

sparsity patterns of the matrices Ak see Subsection 4.3.1.

The second step, which involves finding the optimal presentation of the RHS in the

mapped space, typically requires solving a linear system. In the majority of Krylov sub-

space algorithms the generation of the subspace and the solution of such linear system are

closely coupled (e.g. using A-orthonormalization in GCR or Hessenberg decomposition in

GMRES)1. Such coupling (which corresponds to additional coupling between the left and

right sides of Figure 3-2) typically simplifies solving the linear system, however it presents

a huge overhead when using recycling to solve multiple linear systems. As explained next,

our proposed algorithm gets rid of such unnecessary coupling.

In GKR, when solving the system Ak+lxk+1 = b, we first use the explored subspace

Q,+1 (explored during the solution of systems 1 to k) to find an approximate solution

QH+1Ak+19n+1zk+1 -= QH+1b. (3.7)

We efficiently compute the term

QH +Ak~ ~~ = Q~+AoQn±l + QH/lk1nl (3.8)
n+1Ak+19n+1 n n+ + 4 n+1Ak+1On+1- 09

'For more details examine the standard recycling algorithms in Appendix A.3. In particular, for the
A-orthonormalization in GCR examine step 4 in Algorithm 21, and for the Hessenberg decomposition in
GMRES examine step 4 in Algorithm 22



by using the following remarks:

1. Both terms in (3.8) are computed using the idea proposed in (3.4).

2. The first term is computed only once and then shared among all the linear systems.

3. The second term is relatively very cheap to compute since it involves the sparse

matrix Ak+1-

We then efficiently solve (3.7) using the Givens rotation-based QR decomposition [66]. If

the residual b-Ak+lQn+lzk+1 is small, then we proceed to the next system. Otherwise, we

use (3.3) to update the explored subspace until the residual becomes sufficiently small. Due

to the assumed "similarity" between the linear systems, we expect that some sufficiently

large Qn+1 (but of dimension much less than N) will include the solution of all linear

systems Aixi = b. Notice that the expanded subspace can then be used to solve any

subsequent system without the need for any special manipulations.

Algorithm 1 Galerkin Krylov for Recycling (GKR)
1: n <- 0, Qn +- b
2: for each linear system k do
3: qn+1 +- [1

4: repeat
5: Qn+1- [ Qn (Inxn - QnQn)qn+1 ]
6: compute QH+1AkQn+1
7: solve for Zk, (Q+1AkQn+1) Zk = QH'+1b.

8: rk <- b - AkQn+l1zk
9: n +- n + 1

10: qn+1 - rk

11: until convergence achieved
12: end for

The main advantage of Algorithm 1 is that the construction of the matrix Qn+1 (Step 5)

is independent of the matrix Ak. This is the fundamental difference from the GMRES

recycling algorithm which requires a matrix dependent Hessenberg decomposition, and

from the GCR recycling algorithm which requires a matrix based orthogonalization.



3.1.2 Concurrent Krylov Subspace Recycling

In general all the linear systems Aix, = b are available before any linear system solves.

Consequently, we are at liberty to solve such systems in any particular order. In fact, we

are even at liberty to solve the linear systems concurrently. In particular want to determine

the sequence in which the linear systems are solved such that the amount of recycling

is maximized. Four different algorithms, providing different options for the concurrent

solution of all the given linear system, are investigated in this subsection (see Algorithm 2).

Namely, one can choose to process first a linear system with the minimum (m) or maximum

(M) residual, and one can make such a choice after each iteration (F: fine grain), or after

each complete linear system solve (C: coarse grain).

1. Option (M) guarantees to monotonically reduce the maximum residual over all sys-

tems. In addition, the search direction associated with the largest residual is more

likely to reduce the residual of a larger number of linear systems, since it is a direc-

tion that has not been explored before.

2. On the other hand, the benefit of choosing the system with the minimum residual

(Option (m)) is that with a large probability the number of unsolved systems will be

reduced, and therefore the incremental work per step will be reduced. Option (m)

in Algorithm 2 also indicates that with a high probability the linear systems will be

solved sequentially, ordered based on ascending residual norm. On the other hand, a

larger number of iterations will be probably needed to explore the entire space.

3. In option (C) a system is first chosen, then fully solved. The resulting subspace

is then used to compute an approximate solution for all remaining systems. Then

according to options (m) or (M) a next system is chosen and the process is repeated.

Consequently, option (C) is a sequential algorithm, however, the sequence in which

the linear systems are solved is determined dynamically (see Figure 3-3) based on

the magnitude of the residual following each system solve.

4. On the other hand, in option (F) the residual of all remaining systems is updated

concurrently. This option results in a strictly parallel algorithm (see Figure 3-3). This



observation clarifies most of the advantages and disadvantages of such option. In

particular, the main advantage is that the amount of available up to date information

is maximized at every iteration, which enables us to make the best informed choices

(i.e. choose the most appropriate system to proceed with). On the other hand, the

main disadvantage is that all systems have to be uploaded to the memory at once,

which in many cases constitutes a memory bottleneck. Moreover, the communication

of information between systems might result in a significant computational overhead.

Algorithm 2 Concurrent Krylov Subspace Recycling Framework: Fine Grain (ml, MF),
Coarse Grain (mC, MC)

1: h <- 1, rh <-- b
2: while some systems still need to be solved do
3: Q <- Aorh, where 0 is the index of the nominal system
4: for each unsolved system k do
5: Akrh <- Q + (Ak - Ao)rh
6: do algorithm iteration (GCR orthogonalization, or GMRES Hessenberg form, or

GKR QR for system solve)
7: get residual rk
8: if coarse grain (mC or MC) AND rk < threshold then
9: h +- argminf{rk} (or h <- argmax{rk}) over all unsolved systems.

10: end if
11: end for
12: if fine grain (mF or MF) then
13: h <- argmin{rk} (or h <- argmax{rk}) over all unsolved systems.
14: end if
15: end while

3.1.3 Proximity Measure for Subspace Recycling

Given the fact that in non-intrusive methods we typically need to solve a very large number

of systems, it might be the case that not all the systems share the same small subspace, but

rather clusters of linear systems share the same small subspaces. It is therefore important

to group such systems based on their proximity, in order to guarantee reducing the com-

putation per iteration, and possibly even the number of iterations. We propose to use as a

cheap proximity measure between the system Aixi = b and another system Akxk = b the
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following quantity

d(Ak - A2 , xi) =11 (I - QiQ')(Ak - Aj)xj 112, (3.9)

where Qj is an orthogonal matrix whose column span is the Krylov subspace IC(Ai, b),

explored during the solution of the linear system Aixi = b. The following proposition

demonstrates that the proximity measure is small when the solution of the two systems are

similar.

Proposition 3.1.1. If max A(A- 1 (Ak - As)) < 1 and d(Ak - A2 , xi) = 0, then a second-

order approximation for Xk can be obtained by recycling the subspace Qj.

Algorithm 3 summarizes how the proposed proximity measure can be used to effec-

tively cluster the set of linear systems such that maximum recycling is achieved. Notice

that given a solution xi and the explored subspace Qt for the system Aixi = b, the proxim-

ity measure d(Ak - A2 , xi) is computed in 0(N) for every unsolved systems Akxk = b.

Only those unsolved systems with small d(Ak - A2 , xi) are considered nearby systems of

Aixi = b.



Algorithm 3 Linear System's Clustering for Efficient Recycling
1: i +- 0

2: n -- 1 (n is the cluster counter)
3: while some systems still need to be solved do
4: solve Aixi = b for xi building orthogonal Q, s.t. column span of Q, is C(Ai, b).
5: for each unsolved linear system k do
6: D(k, n) <- d(Ak - Ai, xi) using (3.9)
7: end for
8: Solve together using recycling all systems for which D(k, n) is smaller than thresh-

old.
9: i <- argmaXk {Imin D(k, n)}, over all unsolved systems k

n
10: n <- n +
11: end while

3.2 Statistical Moment Preserving Model Order Reduc-

tion

An apparent parallel research area is that of parameterized linear model order reduction

(PROM). In particular, there is clear similarity between non-intrusive variation-aware solvers

and multi-point-matching projection-based model reduction methods [64], since both of

them inherently rely on solving the given linear system at different sample points in the

parameter space. In this section we develop an efficient non-intrusive variation-aware ex-

traction algorithm, by using a multi-point matching projection-based model reduction ap-

proach. In particular, we develop a method to generate the projection matrix, such that the

statistical moments of the original system (or equivalently the coefficients of the projection

of the statistical quantities on some space of orthogonal polynomials) are preserved when

computed from the reduced system.

Important Notice: Most applications encountered in the parameterized model re-

duction literature are characterized by small dimensional parameter spaces (e.g. < 20).

The objective in such applications is to generate small order models (e.g. 0(10)). On the

other hand, in variation-aware extraction we are instead faced with applications charac-

terized by very large dimensional parameter spaces (> 100). The objective is to generate

reduced models of 0(1000), since such models will be computationally significantly faster

to simulate than any available non-intrusive or intrusive method. Furthermore, while for



parameterized model order reduction the model generation cost is less of an issue because

it can be done offline, in variation-aware extraction the model generation cost is absolutely

critical since it typically represents more than 90% of the total computation time.

3.2.1 Main Theorem

Our objective is to construct the basis for the reduced space (the right projection matrix)

such that the statistical moments computed from our reduced model match exactly the

statistical moments computed from the original system

E[Qf]=JY()kp (#)dT1 J (CT A(#) -b) kP(#)d-

Nq

~ ( aq(c A(-q b)k(q) (3.10)

q=1

where P(#) is the multivariate probability density function (PDF) associated with 4, aq are

the weights associated with the quadrature points 4 and Nq is the total number of quadra-

ture points required by the numerical quadrature scheme used to calculate the integral (Nq

increases as k increases).

Instead of (or in addition to) preserving statistical moments, we might be also interested
K

in matching the coefficients fi of the projection of the solution y(if) = E #i/i(#) on
i=O

the space of multivariate polynomials, Wi(4), orthogonal with respect to the probability

measure P(#), e.g. Hermite polynomials [78]:

= (y(4),4Wi(4)) = Jy(#)i(#)P(#)d4

Nq

~ aqCTA(-)4q bi(q)P() (3.11)
q=1

Theorem 3.2.1 below provides a way to achieve both objectives, i.e. matching of the

statistical moments, and matching of the coefficients for a multivariate Hermite represen-

tation of the solution.



Theorem 3.2.1. IFU is an orthonormal projection matrix and

colspan{U} - span {b, A(' 1)-b, A(4 2 ) 1 b, - , A(N ).1.}

where { : q = 1,--- , Ng} is a set of quadrature points such that (3.10) and (3.11) are

exactly integrable for some choice of orthogonal polynomials T' (#) THEN

and

where the reduced output y

E [y(4)k] = [yr (#)k]

(y(4), WJ'(4)) = (yr(i), Wi(4))

,(4) is given by

yr(#) = cTU(UH A(#)U) lUHb

Proof Using a quadrature rule with the given points on the reduced system we obtain:

Nq

E [yr(#)] = [ (cTU(UHA(4q)U)1U H )kp(q)
q=1

Nq

= S aqcTU(UHA(-4)U)-lUHbPi( )
q=1

Using first lemma 3, and then lemma 2 in [14] the common term in both expressions be-

comes:

cTU(UHA(4)U)-UHb = CTUUH A(-6lb = CT A(-1-'b

therefore

Nq

E [y,(q)k] = ( aq(cT A(j9)"b)kp()
q=1

(yr(K), 'i ()) = S aqcT A(14q)- 1b (4q)P(4q) =< y(i7), 4i() >
q=1

(3.12)

(3.13)

(3.14)

(yr ( ), Fi (#))

-- E [Y%#k]



It should be noted that even if the integration rule does not accurately compute the

moments of the full system, the moments computed from the reduced system will match

those numerically computed using the full system.

Theorem 3.2.1 does not rely on a particular integration rule. Consequently we are

at liberty to choose any of the available numerical integrations schemes, including but

not limited to Monte Carlo, Quasi Monte Carlo, importance sampling, tensor products, or

sparse grid products. Furthermore, since what we really want is to accurately represent the

space spanned by U, rather than to accurately compute the integral, we are at liberty to

use even those complicated optimization methods for sampling point selections [10]. For

simplicity, we will construct U using sparse grid quadrature schemes if the parameter space

dimension is less than 100 and Monte Carlo integration otherwise.

3.2.2 Proximity Measure for Computational Efficiency

Stacking the solutions at all quadrature points in one projection matrix would result in

three different problems, namely, it would require a very large number of linear system

solves and would result in a large-dimensional and ill-conditioned projection matrix. The

standard solution for the second and third problems (which does not address the first one)

is to compress the projection subspace using a singular value decomposition (SVD).

We propose here instead an alternative solution that addresses all three problems at the

same time. Specifically, before solving a particular large system at a new quadrature point

77q, we propose to compute instead the following residual

r('4) = b - A(#')x,.('4) = b - A(#4)U (UH A(')U)' U b

If the norm of the residual is large, then the current subspace does not faithfully represent

the solution and therefore needs to be expanded with the solution of the new system or-

thogonalized with respect to the current subspace. If, on the other hand, the norm is small

then the solution at the new sampling point is accurately represented using the currently

explored subspace and does not need to be added to the basis. The advantage of using



such a proximity measure is that only one matrix-vector product is done in the original

space O(N 2 ) and all the rest of the computation, i.e. computing x,(#), is done in the re-

duced space, and is therefore very efficient. Notice that a similar residual measure was used

in [72] to determine the points at which the parameter space should be sampled.

Algorithm 4 Stochastic Model Reduction Method for Solving Linear Systems with Ran-
dom Matrices.

1: U <- b

2: q <- 0

3: for each quadrature point '4 do
4: q +- q + 1
5: generate linear system A('4).
6: compute xr(q) <-U (UHA(- )U) 1 UHb
7: compute residual r('9) < b - A('f)xr(q).

8: if I1r(qq)II > theshold thenIlbJl
9: solve for x('4), A('4)x('4) = b

10: extend the basis U with x(q) - UUHX()
11: end if
12: end for

Algorithm 4 summarizes our complete stochastic model reduction variation-aware ex-

traction approach. The complexity of computing the Galerkin projection in Step 6 of Algo-

rithm 4 is reduced by using the multivariate Hermite expansion of the system matrix (2.24).

More precisely, each time the basis Ur+1 = [Ur u is expanded from Ur by u, the re-

duced system matrix can be updated as follows

K

UH1A(#)Ur+1= UH1AjUr+1'Fi(#)

i=O

where

UH rH UAiUr UH Aiu[ Ai Ur U I (3.15)
u H IUH AiUr Uu

Since the terms U7 Ai, AiUr and UY AiUr are readily available at iteration r + 1, we only

need to compute Aiu and uHAi.



3.2.3 Further Model Enhancement

Following the computation of an appropriate projection matrix, the reduced model is con-

structed. The validity of such model is verified by computing the residual produced by the

model at randomly generated points in the parameter space. If the residual is large at any of

the testing points then the solution at such a point is used to expand the projection matrix.

The validation of the model is terminated when the success rate, i.e. the number of systems

with residual smaller than a certain threshold, is larger than some preset percentage (e.g.

99%). The reduced model can then be used to estimate the unknown vector at any sample

point in the parameter space. Notice, that the addition of such basis to the projection matrix

still guarantees the preservation of the statistical moments (or the projection coefficients).

In fact, any addition to the projection subspace does not affect the moments, but only adds

to the accuracy of the model.

3.2.4 Computational Complexity

The computational complexity of our method is O(NsN2 ), where Ns is the final size of

the reduced space. The main computational advantages of our method is that in large di-

mensional problems an accurate model is constructed using a number of solves Ns much

smaller than that required by the non-intrusive stochastic collocation method (SCM) Nq.

This is primarily because the unknowns at many of the points in the parameter space can

be accurately computed using the reduced model, which is computationally extremely effi-

cient.

3.2.5 Relation to non-intrusive methods and to variational TBR

The main connection between our method, the non-intrusive stochastic collocation method

(SCM) [77], and the variational TBR (vTBR) [64] is the fact that the sample points are

generated based on a suitable quadrature scheme. In both our method and in SCM, any

number of statistical moments can be explicitly preserved. This allows for proper choice

of the integration scheme based on the order of the statistical moments to be preserved. On

the other hand, in vTBR first and second order statistics are coincidentally enforced, since



vTBR approximates the Grammian (which is also the covariance matrix) using quadrature.

Consequently, any statistical moments of more than second order cannot be preserved.

Furthermore, if the objective is to preserve just first order statistics then vTBR results in

extra unnecessary computations since it implicitly preserves second order statistics. Con-

sequently, variational-TBR can be considered a special case of our more general statistical

moment matching technique in which the covariance matrix is preserved E [xxT].

On the other hand, both our method and vTBR use explicitly the projection approach.

This allows for the efficient truncation of the model by finding a reduced basis to represent

the column span of the solution vectors at the different sample points. This is not the

case of the stochastic collocation method, in which the solution at all the sample points

are explicitly used to construct the model. Consequently, for large dimensional parameter

spaces the stochastic collocation method becomes inefficient.

3.3 Results

3.3.1 On-chip Parameter-Variation using GKR and SMOR

In this section we show a typical on-chip parasitic extraction example with 16 conductors.

In a cross-section view, the conductors are arranged on a 4 x 4 regular grid. This geometry

is often used to construct the capacitance look-up table necessary for efficient full chip

extraction. The nominal dimensions of the conductors are 42nm width and 31nm height.

The nominal separation between the conductors is 42nm. Each conductor is discretized in

30 segments, resulting in a total of N=481 unknowns (including one unknown potential

since this is a 2D problem). The width of each conductor is assumed an independent

Gaussian random variable with standard deviation 15.75nm, resulting in Np = 16

We first compare our new Galerkin Krylov Recycling (GKR) from Section 3.1 with

the standard GCR and GMRES Krylov subspace recycling (Appendix A.3). To allow for

maximum reusage of the subspace, we sample the parameter space using a second order

sparse grid Smolyak constructions, resulting in a total of 561 grid points. We compare the

details of the different simulations in Table 3.1.



Table 3.1: Table Comparing the Performance of Different Recycling Algorithms

Algorithm Property Time [sec] # iterations # MV-products
GCR no recycling 436 14102 14102

our GKR MF 162 129 62010
our GKR mF 198 152 67741
our GKR MC 174 133 62742
our GKR jJ mC 149 160 56073

GCR recycling MF 195 124 61059
GCR recycling mF 204 154 62355
GCR recycling MC 204 158 56815
GCR recycling mC 194 130 62207

GMRES recycling ME 800 388 197096
GMRES recycling mF 230 203 93204
GMRES recycling MC 253 214 93905
GMRES recycling mC 190 207 76904

The four different combinations of residual choice and concurrent granularity are given

the indices M,m,fc, for max, min, fine grain, and coarse grain respectively (see Algo-

rithm 2 in Section 3.1.2). In all cases we observe that the coarse grain minimum residual

implementation is the most efficient algorithm within the non-intrusive class. This is due

to the fact the in our implementation the delta matrices are not sparse enough and therefore

algorithms that will result in fast system elimination perform better than those that do not.

In addition, we observe that both our Galerkin Krylov Recycling (GKR) and the standard

GCR recycling perform better than the GMRES recycling. Since we have a large number

of similar linear system, the overhead encountered in GMRES recycling to minimize the

residual of a particular system is unnecessary. Instead it suffices to ensure orthogonality of

the residuals with respect to the explored subspace, given that the algorithm will undoubt-

edly explore a larger subspace.

Next we use our SMOR algorithm on the same example. We assume that a second order

stochastic expansion can accurately represent the variations in both the system matrix and

the vector x. We use a total number of 561 quadrature points to construct the basis. Such

quadrature points are placed according to a second order sparse grid Smolyak construction.

When using our proximity measure, to avoid solving systems that do not add sufficiently
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Figure 3-4: Histogram of the error of the proposed model at 1000 randomly generated
points in the parameter space for the small grid example

to the column span of the projection matrix, our approach only generated a total of only 32

basis.

The total time required by our approach is 198 seconds as opposed to 436 seconds re-

quired by the standard SCM, or the 149 seconds required by the fastest recycling algorithm.

Consequently, for this particularly small example our approach is 2.2 x faster than the SCM

and 1.3 x slower than GKR (mC) algorithm. We tested the accuracy of our reduced model

by computing the solutions at 1000 randomly generated points, and comparing them to the

full system. Figure 3-4 shows a histogram of the resulting error. We observe that the error

is less than 3% for 98% of the simulated structures. We then used our reduced model to

compute the second order statistical moments and all second order Hermite coefficients of

the projection of the output capacitances, and observed a 1% match compared to the SCM.

3.3.2 Large On-Chip Example using SMOR

This is an example of 100 conductors arranged on a 10 x 10 grid. Each conductor is of size

45nm x 30nm. Each conductor is discretized using a total of 50 unknowns resulting in

a total of 5000 unknowns. The width of each conductor is assumed to be an independent

Gaussian random variable with variance of 20% the nominal width. The total number of

random variables is 100. Using a second order sparse grid construction would require

more than 20,000 simulations. Instead we choose to use a total of 5000 Monte Carlo

simulations to build the basis and another 5000 simulations to test the accuracy of the

I I __ T -
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Figure 3-5: Histogram of the error of the proposed model at 5000 randomly generated
points in the parameter space for the large grid example

model. We observe that only 112 basis are required to achieve an accuracy of better than

2% in the residual estimation for 99.5% of the cases under study (see Figure 3-5). This

means that our algorithm is about 130 times faster than the sparse grid technique and at

least 65 times faster than Monte Carlo method. The statistical moments up to first order

and all coefficients of the projection of the output capacitances on the space of first order

Hermite polynomials, computed using our approach and the standard collocation method

match up to 1%. Accuracy of higher order statistics could not be validated, since it is not

possible to run a stochastic collocation method on this problem to be used as a reference.

3.3.3 Off-Chip Surface Roughness using SMOR

This example is a parallel place capacitor, where the upper surface is characterized by a

rough surface (see Figure 3-6). The rough surface is described by a Gaussian PDF of

o = 1, and correlation length L = 1. The plate surfaces are 20L x 20L. The distance

between the plates is 5L. The total number of unknowns discretizing both plates is 21,000.

The total number of independent random variables describing the stochastic surface is 323.

The total number of orthogonal polynomials required for a second order description of the

stochastic capacitance is 52,650. The total number of sparse grid nodes, i.e. independent

solves, required for a second order accurate expansion is more than 200,000. This number

is even larger than N = 21, 000. We therefore sample the parameter space at 1,500 points
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the proposed model at 1500 randomly generated

using the Monte Carlo sampling method. The size of the resulting projection matrix is

997. This projection matrix is then used to compute the solution of a different set of 1,500

instantiations of the structure. Each instantiation is solved using fastcap [59]. The results

computed using the reduced model and using the exact model are compared in Figure 3-7.

We observe that 99.9% of the cases exhibit error less than 5%. The probability density

function of the mutual capacitance between both plates is shown in Figure 3-8. The non-

Gaussian nature of the curve is clearly visible and the deviation between maximum and

minimum capacitances is about 10% from the mean. In terms of computational efficiency,

our algorithm is two orders of magnitude more efficient than the stochastic collocation

method.
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Chapter 4

Contributions to Intrusive Stochastic

Methods

In this chapter we present advancements and enhancements to the available intrusive stochas-

tic methods and associated mathematical machinery in order to make them computationally

more efficient.

1. Modified Inner Product We introduce a modified inner product to efficiently com-

pute the coefficients of any polynomial chaos expansion (in particular of Hermite

expansions) without computing any large dimensional integrals. Our algorithm is

exact in the sense that it computes the exact coefficient as the standard Hermite ex-

pansion. The computational efficiency stems from exploiting the fact that a single

matrix element depends on a very small number of the physical parameter.

2. Combined Neumann Hermite expansion (CNHE): a new intrusive method, presented

in Section 4.2, for strongly correlated problems in which the Hermite expansion is

combined with the Neumann expansion to compute efficiently the complete statisti-

cal characteristics of the unknown vector. This algorithm is particularly suitable for

impedance extraction of off-chip rough surface interconnects.

3. Fast Stochastic Galerkin Method (FSGM): an efficient and accelerated approach, pre-

sented in Section 4.3, for solving the large linear system produced by the Stochas-

tic Galerkin Method when the physical parameter space is weakly correlated. Our



accelerated algorithm uses the precorrected FFT algorithm and it exploits the fact

that in weakly correlated problems, a single matrix element typically depends on a

small number of the varying parameters. This algorithm is particularly suitable for

impedance extraction of on-chip interconnects in the presence of width and height

variations.

Notational Note: Throughout this chapter we will refer to a vector that includes only

a subset of the elements of another vector using an underline symbol. For instance, p a

vector of length D is related to p a vector of length N, in the following manner: D < N,

and all elements in p are also in p.

4.1 Modified Hermite Chaos Expansion

Let us introduce a new inner product to overcome the main computational difficulty asso-

ciated with applying a polynomial chaos expansion, namely the need to calculate integrals

of very high dimensionality (2.26). Our inner product applies to any probability density

function of the parameters (e.g. Gaussian, Uniform, Beta) and the corresponding polyno-

mial chaos expansion (e.g. Hermite, Laguerre, Jacobi). For simplicity of exposition we

will assume Gaussian distributed parameters with the associated Hermite polynomials.

Definition 4.1.1. Let our modified inner product (., -) be defined by

(f(p), I()y = JJf(p)WI'(#)W(p, i)dpd, (4.1)
Pri

where
exp (-O.5vTCf v)

W(p, D+N

(27) 2 lCvl
and Cv is the correlation matrix between p and ' and

( (E[p pT] E[p #T]
v - ~ Cv = E[vv T]=

E[g pT] E[g QT]



where E is the expectation operator; 77 is an at most No element subvector of i upon

which the No order Hermite polynomial IF!No (i) = IF No (if) depends, and |Cv is the

determinant of the correlation matrix Cv.

Theorem 4.1.1. The Hermite polynomials TI(ij) are orthogonal with respect to our modi-

fied inner product (4.1).

Proof The complete proof is in appendix B.2. l

Theorem 4.1.2. The coefficients fi of the standard Hermite expansion of the function f (p)

can be calculated using our modified inner product:

f = (f (p), Fi(#)) = (f (p), Fi(#))W (4.2)

Proof The complete proof is in appendix B.3. 0

Theorem 4.1.3. The maximum dimension of the integrals in (4.2) required to obtain the

Hermite expansion using our modified inner product is D + No, where D is the length of

vector p and No is the order of the Hermite polynomial.

In other words, the dimension of the integral in (4.2) is independent of the number of

orthogonal random variables NM used for expanding the random process.

Proof The proof follows directly from the application of Theorem 4.1.2, however, it re-

mains to be shown that the correlation matrix E[pqT] is known. The calculation of this

correlation matrix depends on the particular technique used to generate the set of basis ran-

dom variables i. For instance, for any Karhunen Loeve based expansion (KL-expansion),

we can write component vector p = Iip, where I1 is a rectangular identity matrix to choose

the appropriate elements of the vector p. Using (2.21):

E[pi-] = I1MRE[fr7]

= iiMvXE[##ifi2
= iiMVSij
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Figure 4-1: A matrix element represents the mutual interaction between discretization ele-

ments. Consequently, it depends on a small number of geometrical variables.

where j= i and 12 is a rectangular identity matrix to choose the appropriate elements of

the the vector .

Using our modified inner product, we can easily calculate the expansion coefficient Ai

in (2.24):

Ai = (A(p), WI'(?7))v = A(p),j( )W(p, ij)dpdj (4.3)

P 'li

The main computational advantage of using our modified inner product in Defini-

tion 4.1.1 to compute the coefficients of the Hermite chaos expansion stems from the fact

that NM, the total length of the vector ', can be easily on the order of 100, whereas D,

the length of the vector p, is at most 7 (three components for the source panel/filament

dimensions and three for the test panel/filament dimensions and one for the separation be-

tween the panels/filaments, see Figure 4-1), and No, the order of the expansion, is typically

2 (since a second order expansion is sufficient for most applications). Consequently, the

dimension of the integral for a second order polynomial expansion is reduced from 100 to

9. In terms of required computation time, our modified inner product accelerates the com-

putation of the coefficients as compared to the standard tensor rule of a q-point quadrature

scheme by a factor of q91 (for q=8 this corresponds to a speedup of 82 orders of magnitude),

and as compared to Monte Carlo integration or sparse grid integrations by a factor of (NM )4

(for NM=100, q=8 this corresponds to a speedup of a factor 107).



4.2 Combined Neumann and Hermite Expansion Method

In this section we will develop a new intrusive method which exploits the best features

of both the stochastic Galerkin method (SGM, Section 2.5) and the Neumann Expansion

Method (Section 2.4). The approach in this section is ideal for impedance extraction in the

presence of surface roughness.

We propose a combined approach where we use the Neumann expansion (2.30) to avoid

the complexity of solving a large linear system, and we use the modified polynomial chaos

expansion to simplify the calculation of the statistics of the RHS vector. This combined

approach is implemented by first expanding A(p) in terms of Hermite polynomials using

the modified inner product (4.1)

K

A(p) = Ao + AiZi(#) (4.4)
i=1

and then substituting this expansion in the Neumann expansion (2.30):

x(4) = Ag1b - A ( Aiqfi() AO1 b + (4.5)

K K

+ AO1 ( Aixi() A 1 ( Aiqfi() AO'b+... (4.6)

From (4.6) we observe that the problem has been transformed from solving a huge linear

system into doing instead a large number of small matrix-vector multiplications, or small

linear system solves. Before proceeding with the time and memory complexity analysis

it is worth mentioning that in general we are not interested in the entire unknown vector

x(#), but ratherjust in some linear combination of its components y(#) = cTx(#) related to

quantities at the ports of the structure under analysis. For instance, y(,q) could represent one

or more port currents for admittance extraction, or port charge for capacitance extraction.

For a single port, equation (4.6) is simplified to:

K K K

y(#) ~ Yo - ZzTuipi(#) + EEvtyi(#)4'j(r), (4.7)
i=1 i=1 j=1



where yo = cTxo, xo = A- 1 b, zo = Ao TC, Ui = Aixo, vi = Af zo, and tj = A-1 uj. No-

tice that the complexity of evaluating (4.7) is significantly less than that of evaluating (4.6)

due to the use of the adjoint equations to compute zo and vi.

Algorithm 5 Combined Neumann Hermite Expansion (CNHE)
1: Compute the coefficient matrices Ai using (4.3) as in Theorem 4.1.2.
2: Solve the nominal Aoxo = b and adjoint problems AT'zo = c for x0 and zo, respec-

tively.
3: for each coefficient matrix Ai do
4: U <- Aixo

5: vi +- ATzo
6: Solve Aotj = uj for tj
7: end for
8: Use (4.7) to assemble the second order expansion for the required output y(r/) (for

instance the input current).

4.2.1 CNHE Complexity Analysis

Memory

Our algorithm requires computing the matrices A0 and Aj, which might wrongly indicate

that the total memory requirement is O(N 2 ) + O(KN 2 ). However, as obvious from Al-

gorithm 5, all the computations involve only matrices of size N x N. Consequently, our

algorithm has the same memory complexity O(N 2 ) as sampling based approaches. Fur-

thermore, our algorithm is very memory efficient if compared to the O(N 4 ) complexity of

the standard Neumann expansion, or the O(K 2 N2 ) complexity of the standard stochastic

Galerkin method.

Time

We will base our analysis on using iterative methods. We solve a total of K unique lin-

ear systems for O(Kp(N)), where p(N) is the complexity of solving one system. In ad-

dition, we compute K matrix-vector products O(KN 2 ) and K1 5 vector-vector products

O(NK 5 ). The final complexity is therefore O(KN 2 ). This means that our algorithm

is very time efficient if compared to the O(N 4) complexity of the standard Neumann ex-

pansion, the O(N 2 K15 ) complexity of the standard stochastic Galerkin simulation, or the



O(NsN 2 ) complexity of the Monte-Carlo like algorithms, where Ns is the number of in-

dependent solves.

Parallelizability

One of the main advantages of the proposed algorithm is its inherent parallelizability as is

evident from (4.7). Since there is practically no communication required between the dif-

ferent processors, the computational time required to calculate the different matrix-vector

and vector-vector products can be reduced by Nproc, the number of available processors.

4.3 "Fast" Stochastic Galerkin Method (FSGM)

In this section we propose an efficient algorithm to solve the large Stochastic Galerkin

Method linear system (see (2.37) in Section 2.5). The proposed approach is an alternative

to the CNHE approach for problems in which the Hermite expansion coefficient matrices

{A, : i > 0} are sparse. Such problems include parasitic extraction of on-chip interconnect

structures in the presence of width and thickness process variations.

Throughout this section we will use the same notation as that introduced in the Sec-

tion 2.5. However, we will sometimes refer to the set of orthogonal polynomials {jk(i) :

k = 0, ... , K} using a multiple indexing scheme. For instance, we refer to the second

order polynomials using the double index ij (#), with the understanding that the mapping

between k and the pair (i, j) is 1-to-1. Consequently,

o(= 1 'io() = IF WJ! (i) = - 1 1i/) = (4.8)

Recall that one of the main problems associated with solving the linear system (2.37)

using direct methods (e.g. Gaussian elimination) is the need to store a very large matrix of

size KN x KN. Solving such system with direct methods is therefore almost impossible

for any practical value of K and N. On the other hand, if iterative methods (such as

GMRES) are used, then only the product of AR needs to be computed. Instead of first

constructing the entire A and then computing its product with R, we compute the matrix-



vector product using the expression

K K

v(p) = A(p)x(p) = [[ AixiIFi (K)'j (i). (4.9)
i=0 j=0

Notice that because (2.37) is constructed using a Galerkin projection, we only care about

terms in (4.9) that reside in the space of multivariate Hermite polynomials spanned by the

testing polynomials. To obtain such terms the product Wi(#)Tj(4) is expanded in terms

of Hermite polynomials. Table 4.1 summarizes how the product of any two second order

Hermite polynomials is expanded in terms of other Hermite polynomials. Note that in

Table 4.1 all high order polynomials (those that have more than 2 indices) do not contribute

to the second order expansion. Using Table 4.1, the matrix-vector product can be re-written

as follows
K

v(p) = VmJm(K), (4.10)
m=O

where

Vm = Aixj (WFi(q),Fj (4), Im(4)) (4.11)

Algorithm 6 Computation of the Matrix Vector Products vm in (4.11)
1: Vm <- 0

2: for i = 0: K do
3: for J=0: Kdo
4: if 4x9i' 3 has a component in the second order space (see Table 4.1) then
5: U <- Aixj
6: for all m such that (Ti'xI, I m) # 0 do
7: Vm +- Vm + U
8: end for
9: end if

10: end for
11: end for

Algorithm 6 represents an efficient implementation of (4.10). Several observations con-

tribute to the computational efficiency of our algorithm. From a memory point of view,

since we never assemble A, we only need to store the K matrices Ai. Consequently, our

algorithm requires only O(KN 2 ) storage. From a computational point of view, our algo-

rithm exploits the fact that the matrix A is sparse, and given its Kronecker product based



Table 4.1: Expansion of product of multivariate Hermite polynomials in terms of Hermite
polynomials. 9I' stands for any second order Hermite polynomial.

9 4 ', 919! I Second order Im, s. t.
(9A95 X9 fM) > 0

"'k 10 T k2 0 'kik 2  Xkik2

"'k 1 0 X9k 10 '\/F4kiki ±00 +X'kiki, T00

T k10 "'k 2 k 3  
4'kik 2k3  0

X9k 1 0 4 'k 2 k 2  "fk1 k2k2  0

X'k10 T ki k3  \/W'kikik3 + 'Fk0 "'kO

"'k 10 4
kiki V3XIkikiki + V'2XJk 10 __k10

"'k 1 k1 XF k2 k 2  X'k1 k1 k2k2  0

XIkiki T ki k i  V'J $kikik 1 k1  2\/~l'klkl + Xkk 00 9kiki, 'OO

"'kiki "'k2k3  'Fkikik2k3  0

'Fkiki 'Fklk3  \/3'I'kikikik + "'kik3

"'k1 k2 Tkik2 
24'kikik 2k2 + \'v kiki + '\/1 qIk 2k2 + X'00 X9kiki, X9k 2k2 , "'00

"'kik2  X'kik 3  \ k/ kikkk2k3  + 'Ik 2 k3

'1'k 1k2 Tk 3 k4  "9k 1 k2 k3k4  0

construction (see (2.37)) it can be assembled using only K distinct submatrices, namely

A2 . That fact is exploited in Step 5 of Algorithm 6, where Aixj is computed only once and

then added to the relevant components.

4.3.1 Exploiting the Particular Sparse Structure of Ai

The total number of matrix vector products, i.e. the sparsity of the two dimensional ma-

trix in Fig 4-2, is O(KNp), or O(K 1 5 ). This means that the computational complexity of

Algorithm 6 is reduced from O(K 2 N2 ) to O(K'-5 N2 ). Unfortunately, this is still compu-

tationally very expensive. To further reduce the computational complexity of the algorithm

we now need to exploit the sparsity of the coefficients matrices A2 .

Recall from Section 2.2 that the random geometrical parameters in vector p (such

as wire heights and widths) in the on-chip extraction problem are assumed uncorrelated.

Therefore, any matrix element Aij (p) in (2.16) is determined only by the independent pa-

rameters describing the dimensions of the source and test conductors and the separation

between them. Consequently, the number of parameters on which a single matrix ele-



150

0 50 100 150
nz = 5049

Figure 4-2: Sparsity pattern of the product table. Example of a 16 variable second order
expansion, i.e. N, = 16, No = 2 and K = 153. The number of non-zeros elements is
0(K15 ).

ment depends is very small compared to the total number of parameters. This observation

means that the coefficient matrices will be relatively sparse, and therefore the matrix vector

product computational effort will be significantly reduced using sparse matrix techniques.

Figure 4-3 shows four of the most typical sparsity patterns for both first and second order

terms. Examples of geometrical variations producing Figure 4-3 are demonstrated in Fig-

ure 4-4. To understand such figures recall that the system matrix of (2.16) is constructed

using integral equation methods. Consequently, the sparsity pattern corresponding to each

variation in a conductor location or dimensions is a strip of rows and columns. Further-

more, notice that the sparsity pattern of second order variations is generated by intersecting

the patterns of first order variations.

Observation 4.3.1. The sparsity pattern of the coefficient matrices is as follows:

1. the average matrix A 0 (projection of A(p) on the constant term) is dense and has

O(N 2 ) nonzero elements.
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Figure 4-4: Examples of typical variations producing the sparsity patterns in Figure 4-3.

2. the coefficient matrix resulting from projecting A(p) on first or second order Hermite

polynomials involving only one variable has at most 0 (N) nonzero elements.

3. the coefficient matrix resulting from projecting A(p) on second order Hermite poly-

nomials involving two variables has at most 0(1) nonzero elements.

From the previous observations, it is clear that the only expensive matrix vector product

is that involving the constant projection matrix A0 . This matrix is multiplied by all the

components of x(p). For ease of notation we will assemble all the vectors x3 into a large

matrix X, such that x3 is in column j of X. The cost of the matrix vector product AoX is

O(N 2 K), the cost of the rest of the matrix vector products is at most O(K"5 N).

4.3.2 Handling Matrix Vector Products involving the Average Matrix

We use the precorrected fast Fourier transform (pFFT) to accelerate the matrix vector prod-

uct AoX. Since AO is the mean of the stochastic system matrix, it has exactly the same

structure of the deterministic system. Consequently, we can use our available pFFT imple-

mentation [23] to compute the matrix vector product in asymptotic complexity O(KNlogN).



This means that the final complexity of our entire algorithm is just O(K N log N). Our

complete FSGM is summarized in Algorithm 7.

Algorithm 7 FSGM (embedded in GMRES) to solve (2.37)
1: compute Ai for expansion (2.24) using (4.3)
2: 40 +- b (from (2.37))
3: n +- 0

4: ||r|| <- ||40||
5: while ||r|| > threshold do
6: Qn <- reshape En from KN x 1 to N x K
7: get vm from Alg. 6 starting from i = 1 instead of i = 0 and using x +- Qn(:, j)
8: use pfft to compute V <- AoQn.
9: vm +- Vm + V(:, m)

10: assemble i n+1 by stacking all vm in a vector
11: use in+1 to compute n+ 1 and ||r using the standard GMRES step
12: n - n +1
13: end while

4.4 Results

4.4.1 Validation of the Second Order Hermite Expansion

In this example we verify the accuracy of a second order multivariate Hermite polynomial.

In Figure 4-5 we show the accuracy of expanding the matrix elements corresponding to a

2D capacitance extraction formulation in the presence of width and thickness variations.

The total number of random parameters is 100. We show the values of a complete matrix

row (i.e. the interaction of one element with all the other elements in the structure) com-

puted using the analytical integrations versus its approximation using the expansion at a

randomly generated sample of the 100-parameter vector. The maximum percentage error

over all values is less than 0.075%.

In Figure 4-6 we show the accuracy of expanding the matrix elements corresponding

to a 3D capacitance extraction formulation in the presence of width and thickness varia-

tions. The total number of random parameters is 295. We show the values of a complete

matrix row (i.e. the interaction of one element with all the other elements in the structure)

computed using the analytical integrations versus its approximation using the expansion
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Figure 4-5: Hermite polynomials expansion of the matrix elements of a 2D problem with
width/height variations. Upper left is a comparison of the values of a row of the system
matrix computed using the exact integration routines versus our expansion for randomly
generated values of the 100-parameters. Upper right figure is the percentage error.

at a randomly generated sample of the 295-parameter vector. In Figure 4-6 we show the

histogram of the maximum percentage error (over all elements in a row of the matrix) for

1000 randomly generated points in the 295-dimensional parameter space. The maximum

error is less than 0.5% for all the values.

In Figure 4-7 we show the accuracy of expanding the matrix elements corresponding

to a 3D capacitance extraction formulation in the presence of surface roughness. The total

number of random parameters is 201. We show the dominant (largest in magnitude) values

of a matrix row (i.e. the interaction of one element with the other elements in the structure)

computed using the analytical integrations versus its approximation using the expansion at

randomly generated values of the parameters. The maximum error is less than 2% over all

values.

4.4.2 CNHE Accuracy Validation on Small Highly Correlated Prob-

lems (Surface Roughness)

Using two relatively smaller examples, in this section we verify the accuracy of our Com-

bined Neumann Hermite Expansion (CNHE) algorithm proposed in Section 4.2. The ex-

amples had to be chosen small enough to be accurately discretized and simulated using

10,000 very accurate Monte Carlo simulations as a golden reference.

The first example is a single 50pum wide, 0.5mm long, and 15pum thick microstrip line.
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Figure 4-6: Hermite polynomials expansion of the matrix elements of a 3D problem with
width/height variations. Left figure is a comparison of the values of a row of the system
matrix computed using the exact integration routines versus our expansion for randomly
generated values of the parameters. Right figure is a histogram of the percentage error at a
1000 randomly generated samples of the 295-dimension parameter vector.
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Figure 4-7: Comparison of the values of a row of the system matrix computed using the
exact integration routines versus our expansion for randomly generated values of the 201-
dimensional parameter space. Maximum expansion error is less than 2%.

89

35

30-

25-

i10

: 0. 0 0 .1S 0.15 0.2 0.20 0,3 0. OA. 0.45



The upper surface of the line is highly irregular and is described with a Gaussian random

process of standard deviation o = 3pum, and correlation length Lc = 50pm. We use a total

of 200 unknowns to model the current density inside of the microstrip line, and a total of

19 independent random variables to model the rough surface. The number of orthogonal

polynomials for a second order (No = 2), 19-variables (NM = 19) Hermite expansion

of the system matrix is computed from (2.25), and is equal to K = 210. A comparison

of the complete statistical distributions of the DC input resistance of the microstrip line,

as obtained from our CNHE algorithm, from Monte Carlo analysis, and from the standard

SGM method with our modified inner product 4.1 is shown in Figure 4-8. We observe very

good agreement between all techniques. The mean of all three distributions is identically

equal to 0.0122. The standard deviation for both Monte Carlo and SGM is identically equal

to 0.001, while our CNHE computes the standard deviation 0.00097, which corresponds to

a 3% error.

500
A CNHE

450 - Monte Carlo
8 SGM

400-

350 -t-

LL 300-

D250 -
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100 -
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Figure 4-8: Comparison between the probability density function of the microstrip line
obtained from the reference Monte Carlo, SGM improved by Theorem 4.1.2 to setup the
matrix, and our complete new algorithm (CNHE).

The second example is a similar, but longer (1mm) microstrip line, with roughness de-

scribed by a different correlation length Lc = 25pm. The total number of random variables

required to model such a rough surface is 96. Although still very simple, this structure

is already too complex for the standard SGM method which would require a matrix size

106 x 106, i.e. more than 10"GB of memory. Note that, since in this problem the ge-

ometrical parameters (describing the surface roughness) are highly correlated, our FSGM



algorithm in Section 4.3 cannot be employed to reduce the memory and speed requirements

of the standard SGM. Using our new CNHE technique, we instead encountered no difficul-

ties computing efficiently and accurately for instance the statistics of the input resistance of

such an interconnect structure. The average input resistance obtained from our CNHE al-

gorithm is 0.0243Q as compared to 0.0241Q obtained from reference (10,000 Monte Carlo

simulations). The standard deviation is 8.64 x 10-4 as compared to 8.73 x 10--4 from the

Monte Carlo reference, demonstrating less than 1% error. Such results verify the accuracy

of our CNHE. The time and memory performance on both microstrip lines examples are

instead included in the comparison table in Section 4.4.4.

4.4.3 CNHE on a Large Example with Surface Roughness

In this example we demonstrate how our CNHE algorithm can be used to extract surface

roughness effects on the current distribution inside of a two turn inductor. The inductor has

a side length of 1000pm and cross sectional dimensions of 60pm x 15pm. The frequency

band of interest is from 1MHz to 1GHz. The inductor is discretized using 2, 750 non-

uniform segments such that the skin depth at the highest frequency N2/wpo- = 2pm is

accurately captured. The time and memory performance of this large example will be

summarized in the following Section 4.4.4. Here we compare instead the results obtained

from different Gaussian rough surface realizations, i.e. different standard deviations o

and different correlation lengths Lc. The considered surfaces are characterized by (o =

3pm, Lc = 50pm), (o = 3pm, Le = 5pm) and a completely smooth and deterministic

surface. We have observed that the imaginary part of the input impedance divided by jw

(inductance) typically decreases by less than 5% as a consequence of the surface roughness.

On the other hand, the real part of the input impedance (resistance) increases by about 10%

to 20% as a consequence of the roughness. In addition, we have observed that the standard

deviation of the impedance distribution is proportional to the correlation length.

In Figure 4-9 the probability density functions of the real part of the input impedance

at 1GHz are shown for both small Le = 5pm and large Lc = 50pm correlation length,

respectively. We observe that the standard deviation of the real part of the input impedance



Figure 4-9: Probability density function of the real part of the input impedance at 1 GHz for
correlation lengths Lc = 5pm and Le = 50pum. The resistance of the non-rough surface
structure is 0.22Q, which is 9.8% smaller than the mean of the Le = 5pim distribution and
11.3% smaller than the mean of the Le = 50pm distribution.

is increased by a factor of 5 when the correlation length increases from Le = 5pm to

Lc = 50pm for the same standard deviation. The fact that the standard deviation decreases

with the decrease of correlation length (increase of surface randomness) is a consequence

of the cancellation effects resulting from the distributed nature of the surface.

4.4.4 CNHE Computational Complexity Comparisons

In this section we compare the computational performance of the non-intrusive Monte

Carlo based algorithms, the standard Neumann expansion method, the standard Stochastic

Galerkin Method (SGM) and our Combined Hermite-Neumann expansion method (CNHE)

on four different interconnect structures, namely,

" the first single microstrip example (200 unknowns, Le = 50pam) described in Sec-

tion 4.4.2,

" the second single microstrip example (400 unknowns, Lc = 25pm) in Section 4.4.2,

" a two-wire transmission line (800 unknowns, Lc = 50pm),

* and the 2-turn square inductor (2750 unknowns, Le = 50pm) described in Sec-

tion 4.4.3.



Table 4.2: Time and Memory Performance Comparison of Monte Carlo, Neumann Expan-
sion, Stochastic Galerkin Method (SGM) and the combined Neumann-Hermite expansion
(CNHE)

The upper surface of all the structures is assumed to be rough. Note once again that the

FSGM cannot be applied because the geometrical parameters are highly correlated. Notice

GKR is less efficient in this highly correlated large problem than standard Monte Carlo

analysis. This is due to the fact that GKR requires the difference between the system

matrices to be sparse, which can only be achieved if a structured sampling technique is

used, for instance (sparse grid sampling). However, for highly correlated large problems,

sparse grid sampling requires significantly more sample points than that required by the

Monte Carlo method to achieve the same accuracy. This in turn explains the inefficiency of

the GKR algorithm for the following large examples.

The comparison results (memory and time requirements) are summarized in Table 4.2.

All the simulations have been run in MATLAB on Intel Xeon, CPU 3.4GHz, 4-processor,

4GB RAM. Parameter NM in Table 4.2 indicates the number of independent random vari-

ables used to expand the random process, and it corresponds to the dimension of the inte-

Example Technique & Properties for Memory Time
5% accuracy (MATLAB)

Short Monte Carlo, 10,000 0.32 MB 24 min.
Microstrip Neumann, 2ndorder 0.32 MB 1 min.

Line SGM, NM=19 58 MB (12 days)
DC only SGM+ Thm. 4.1.2, NM=19 58 MB 120 min.

our CNHE, NM=19 0.32 MB 1.8 min.
Long Monte Carlo, 10,000 1.2 MB 2.4 hours

Microstrip Neumann, 2 "d order 1.2 MB 0.25 hours
Line SGM, NM=96 (72 GB)

our CNHE, NM=96 1.2 MB 0.5 hours
Trans- Monte Carlo, 10,000 10 MB 16 hours

mission Neumann, 2 nd order 10 MB 24 hours
Line SGM, NM=105 (300 TB) -

10 freq. our CNHE, NM=105 10 MB 7 hours
Two-turn Monte Carlo, 10,000 121 MB (150 hours)+
Inductor Neumann, 2 nd order 121 MB (828 hours)+
10 freq. SGM, NM=400 (800 PB)

our CNHE, NM=4 00 121 MB 8 hours +



grals required for calculating the coefficients of the Hermite expansion when not employing

our modified inner product in 4.1 and Theorem 4.1.2. However, using our modified inner

product the dimension of the integral is 4 independent of the number of random variables

NM. The number beside the Monte Carlo label in Table 4.2 indicates the total number of

simulation runs. The note "10 freq." in the table indicates results of a 10 point frequency

sweep. The frequency band of interest is from 1MHz to 1GHz. Brackets indicate estimated

values. The + superscript indicates running the simulation on the 4 cores in parallel. It

can be immediately inferred from the table that our CNHE algorithm is the only practical

algorithm for problems of large size.

4.4.5 On-chip Parameter-Variation using FSGM

In this section we use the same 16-conductor 2D on-chip example presented in Section 3.3.1.

The objective is to use our "Fast" Stochastic Galerkin Method (FSGM) presented in Sec-

tion 4.3 to obtain an analytic expansion of the capacitance matrix as a function of the width

variations. The capacitance computed using the stochastic model are then compared to

those computed using exact simulations. Our target is an error of at most 2% over all the

sampled geometries. The total number of terms in a 16-variable second order expansion is

K = 153. The total time to construct the expansion is approximately 2 hours. This time is

not added to the total simulation time since, it can always be done offline, parallelized on

several machines and optimized such that it becomes fairly insignificant. The total number

of unknowns is KN, i.e. 153 x 481 = 73,593. The total solution time is 52sec.

Figure 4-10 shows the probability density function of the capacitance between two

nearby conductors. It is obvious that the capacitance distribution is approximately Gaussian

and that the second order model captures all nonlinearities quite accurately. This is further

demonstrated in Fig. 4-11, in which we show the error between the actual capacitance

and that computed using the second order stochastic model (resulting from our stochastic

simulation) for a total of 10,000 randomly selected sample points in the parameter space.

We observe that a total of 97% of test cases exhibit error less than 2% compared to the

exact simulations.
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Table 4.3: Table Comparing the Performance of Different Algorithms

Algorithm Property Time [sec] # iter. # MV-prod.

SGM - N/A (need 40GB) -

our FSGM - 52 43

GCR no recycling 430 14102 14102

our GKR ME 162 129 62010

our GKR mF 198 152 67741

our GKR MC 174 133 62742

our GKR mC 149 160 56073

GCR recycling MF 195 124 61059

GCR recycling mF 204 154 62355

GCR recycling MC 204 158 56815

GCR recycling mC 194 130 62207

GMRES recycling ME 800 388 197096

GMRES recycling mF 230 203 93204

GMRES recycling MC 253 214 93905

GMRES recycling mC 190 207 76904

Our FSGM is then compared to a standard non-intrusive method accelerated by stan-

dard GCR and GMRES Krylov subspace recycling (Appendix A.3), and by our new Galerkin

Krylov Recycling (GKR) from Section 3.1. Looking at Table 4.3 we observe that our in-

trusive FSGM significantly outperforms all the non-intrusive Krylov subspace recycling

algorithms in this example.



Chapter 5

Novel Intrusive Method

Let us recall that the main idea behind all stochastic solvers is to represent the solution as

a product of two unknowns, one in the deterministic space and the other in the stochastic

space.

x() = U(#)v(#) (5.1)

In most algorithms, in order to avoid having a non-linear representation, one or the other

terms is assumed known and the other is then computed. For instance,

1. In SGM, the known is v(#) = h(#) (see (5.3)) and the unknown is U, which is

deterministic of size N x K.

2. In any non-intrusive solver (e.g. MC, SCM, SMOR) the known is v(#) = 6(4 - 4o)

and the unknown is U, which is deterministic of size N x 1.

3. In model reduction techniques the known is U, which is deterministic of size N x r,

and the unknown is v(#), which is stochastic of size r x 1.

4. In stochastic projection methods the known is U(#), which is stochastic of size N x r,

and the unknown is v, which is deterministic of size r x 1. A method will be presented

in Section 5.2.3 of this chapter.

5. In Neumann expansion methods, the known is U(#), which is stochastic and is as-

sumed to live in the Krylov subspace of )C(A--1A(), A- b). The unknown is v,



which is deterministic and is obtained directly from the coefficients of the Neumann

expansion (instead of solving any linear systems).

It has been recently recognized that model reduction based algorithms are very efficient

in handling stochastic problems. This is primarily due to the fact that the stochastic lin-

ear system is assembled by introducing variations to a nominal structure. Such variations

only change the shape of the structure but not its topology. Consequently, the resulting

solutions tend to share similar characteristics and therefore live in a subspace which can be

accurately spanned using a reduced set of basis. The main research interest is therefore to

choose a reduced basis that best represents the solution space. Two interesting techniques

have been proposed. In [55] the Neumann expansion is used to find an approximation of

the covariance matrix of the solution. The Karhunen-Loeve expansion of the approximate

covariance matrix is then used to find an optimal reduced basis. The proposed technique

suffers however from all the drawbacks of the Neumann based techniques and is compu-

tationally very expensive. The second technique [61] tries to simultaneously find both U

and v(#) by using the so-called generalized spectral method. In such method, both U and

v(#) are computed simultaneously using a fixed point iteration, such that the residual is

orthogonalized with respect to the space spanned by U and v(#). Due to the use of the

Galerkin projection (residual orthogonalization rather than minimization) the entire matrix

U must be computed simultaneously, which is computationally very expensive. Further-

more, the notion of optimality is defined with respect to the Galerkin projection, rather than

the Petrov Galerkin projection, which results in suboptimal basis.

In this chapter we present a novel "intrusive" algorithm, which relies on identifying

a small number of dominant directions that best span the overall deterministic-stochastic

solution space. We present a variety of techniques to help efficiently identify the dominant

subspace. Our algorithm, which we call the stochastic dominant singular values (SDSV)

method, has an unprecedented low complexity O(N 2 + N4). Since even in worst case

application Np (the dimension of the parameter space, i.e. the number of uncorrelated

parameters) is typically several orders of magnitude smaller than N (the size of the linear

system, i.e. the number of discretization elements), from a practical point of view the com-

plexity of our algorithm is basically just O(N 2 ), making it independent of the dimension



of the parameter space.

5.1 Stochastic Dominant Singular Vectors (SDSV) Method

5.1.1 Main Algorithm

To avoid the complexities associated with the standard stochastic solvers, we suggest the

use of a nonlinear representation of x(#), where both the deterministic component as well

as the stochastic component are assumed unknown. To better understand the idea behind

our work let us consider expressing x(#) in terms of its dominant basis:

K r r

x(#) = [xEi~i() = Xh(#) = Z -uiuiih(#) = uiv'h(#). (5.2)
i=O i=O i=O

r
where E o-jui[ is the SVD of X, u- i = vi and r is the total number of dominant basis

i=1
and h(#) is a vector of the Hermite orthogonal polynomials:

h(#) = WO() T1() ... FK (#) . (5.3)

Note that vT h(#) is a scalar polynomial and that (5.2) can therefore be expressed as

r

x(#) = vih(#)ui (5.4)
i=O

where ui is an unknown vector of length N and vi is an unknown vector of length K

representing a direction in the stochastic space.

The Key Idea. We propose to decompose the solution vector x(#) in the form of the

summation (5.4) and find its components sequentially, i.e. at every iteration n of our algo-

rithm we solve only for u, and v,. These vectors are computed such that they minimize the

norm of the residual at iteration n.
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of size Nr+Kr.

To achieve our objective we first substitute (5.4) in (2.16) to obtain

NK to nonlinear

A(q) Z v'h(#)ui = b(#) (5.5)
i=O

Assume that at step n of our algorithm we know all vectors ui, vi : i = 0, ... , n - 1 and

define
n

xn= vih(#)ui = Xn_1(K) + v'h(#)un
i=O

and

rn(i) = b(4) - A(i)xn(#)

(5.6)

(5.7)

Equation (5.7) can be put in a recursive form by using (5.6)

r,(#)= b(#) - A(#)xn_1 (#) - A(#)v h(i()un

= rn_1 (#) - A(#)vTh(#)un (5.8)

where xO = 0 and ro = b.

As mentioned above, at step n of our algorithm we find un and vn such that the stochas-
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tic norm of the residual r,(#) is minimized

min IIrn(#)| I'
Un ,Vn

where the objective function

||irn(#)|| I S in= | _(#)| - 2E [u A() T vTh(#)rn-_1((i)]

+E [U A ()TvT h(q)A(#)unyVTh(q)]

(5.9)

(5.10)

One approach to minimizing (5.9) is to set the gradient f' of the objective function

f = ||rn(#)J 1 to zero, which can be achieved using Newton's method, i.e. solving at each

iteration the linear system

Avn
(5.11)f i (

where f" is the Hessian of the objective function.

f 
= (

f"I 
= ( d2 f

du2

d 2f
dvndun

df
dU

df
dvn

(5.12)

(5.13)
d2

f
dundv

d2
f

dv2

where

df
dU

df
dVn

= -2E [A(#) T vTh(#)rn-_(#)] + 2E [A(i) T vTh(#)A(#)unVTh(#)]

= -2E [u A(#) Trn_1(#)h(#)] + 2E [U A(#)T A (#)unVTh()h(#)]

d2 f
du2 = 2E [A( )T vnh(ii)A(#)v h()]nu

d2f
dv2

- 2E [uT A(#)T A(#)unh(#)h(#)T]

(5.14)

(5.15)

(5.16)

(5.17)
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d2u = -2E [h(i)rn_1(q) T A(7)] + 4E [v h(i)h(4)u A(q) T A(j)] (5.18)
dyndun

For efficient implementation, the expressions for f' and f" are given in terms of the PCE
K

(Hermite) expansion of both the system matrix A(#) = E Ai Ti(4) and the residual vector
i=O

rn(q) = Rnh(#). The implementation details are omitted, however, the resulting expres-

sions are summarized in Appendix B.4.

The number of the free optimization parameters (length of both un and vn) is O(N +

K), which means that at every iteration we only need to solve a linear system of the same

size for a complexity O(N + K) 2. Such minimization is performed only r times, where r

is the number of dominant basis of x(4). Note, typically r < K ~ N. Consequently, the

complexity of our algorithm scales with just O(N 2), practically independent of the number

of parameters. A more detailed complexity analysis will follow in Section 5.1.4. Note

that we use the norm of the residual as an indicator of the accuracy of the solution. In

other words, we keep looking sequentially for dominant basis until the norm of the residual

becomes smaller than a given threshold.

Algorithm 8 presents a complete summary of our proposed algorithm. Note that both

unknowns un and v, are combined into a single vector z.

Algorithm 8 The Stochastic Dominant Singular Vectors Method (SDSV)

1: x(ij) <-- 0, r(ij) <- b(#)
2: u, <- xo, the solution of the nominal problem
3: vn -e

4: z <- (u vn)

5: while ||r()|2 > Threshold do
6: repeat
7: form first derivative f' as in (5.12)
8: form Hessian f" as in (5.13)
9: solve linear system f"Az = -f

10: z <- z + Az
11: un <-- z(1 : N, 1), vn <-- z(N + 1I N +K, 1)

12: until II'I < Threshold
13: x(#) <- x(#) + unvnh().
14: r(q) <-r(q) - A(#)unvTh(q).

15: un <-- xO
16: vn <- ei
17: Z <-- (u vT)
18: end while
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Important Note. The solution of the linear system (5.11) can also be implemented

using a matrix-free Newton's method or a standard fixed-point iteration.

5.1.2 Convergence Analysis

The following theorem summarizes the convergence properties of our algorithm.

Theorem 5.1.1. For any nonsingular matrix A (#) the sequence of residuals |r, (#) || is

strictly decreasing for any non-zero update of the solution unv T h(i7) (5.6).

Proof The optimal u,, and vn occur when the gradient of the nonlinear objective func-

tion (5.10) is zero. Taking the derivative of (5.10) with respect to u" we obtain:

0 = E [-A T (#)vTh(#)rn_1(#) + A(#)T A(#)un VTh(#)vT h(#)] (5.19)

Multiplying (5.19) by u r and substituting the resulting expression in (5.10)

||rn( )| = |irn_1(ii)|| - ||A(#)unvnh(#)||} (5.20)

Since A(4) is nonsingular, the vector A(#)unvnh(q) is non-zero for any non-zero update

to the solution unvnh(#). Consequently ||A(? )unvTh(#) || > 0 and |lrn(#)| 12 < ||rn_1(#)| 12

5.1.3 Fast Stochastic Matrix Vector Product

The computational complexity of our algorithm is mainly determined by a matrix vector

product of the form A(#)un (see (5.10)). If the system matrix is expanded in terms of

the multivariate Hermite polynomials, then such a matrix vector product is computed in

O(N 2 K)
K K

A(#) = ZAi'Fi(#)un = FAun i(#) = Th(#) (5.21)
i=0 i=0

where we have called the result of this product t(#) = Th(#). The standard method

for computing T is to form the products Aiun successively, i.e. successively computing

103



the columns of T. Instead, we will consider computing the rows of T successively (see

Figure 5-2). Note that the kth row of T is formed by taking the product of the kth row of

each Ai with u,. Collect all such rows in a single matrix Ak c RK xN in which the ith row

is the kth row of matrix Aj, i.e. Ak(i, :) = Ai(k, :). Use the SVD of Ak = UKxqSqxqVNxq

to compute the product of Ak (after decomposition) with u, in O(Nq + Kq), where q is

the total number of dominant basis of Ak. The transpose of the resulting vector is the kth

row of matrix T. Repeating such a process for every row, the total complexity of forming

A(#)u, is 0(N 2 q + KNq) ~ 0(N 2 ). For the more general case of computing A(#)w (#),

i.e. the product of a parameter dependent matrix and a parameter dependent vector, we

use the SVD to represent the vector w(#) in addition to the previous algorithm. Similar

arguments reveal that the complexity is O(q4N 2 + KNq4 + K3/2 Nq) ~- O(N 2 ), where 4

is the number of dominant basis of w(#).

Important Observation. The q dominant basis of the matrix Ak need to be computed

only once as a pre-processing step, while computing the Hermite expansion of A(#), and

stored for later usage. We use the standard power iteration method to compute the dominant

basis. We assume that q < N, K.

The existence of a low-rank approximation for every Ak is supported by the structure

of the matrix A(#), in particular the fact that every matrix entry in the kth row of A(#)

depends on the discretization element k and depends primarily on the small subset of pa-

rameters affecting elements in close proximity to element k. We verify such observation in

our experimental examples.

5.1.4 Complexity Analysis

All subsequent analysis is based on solving the linear system (5.11) using Krylov subspace

iterative methods such as GMRES.

Memory: The proposed algorithm requires storing the system matrix of (5.11) which

is of memory complexity 0((N + K) 2 ). For efficient implementation one might want to

load to the memory all the coefficient matrices A of the Hermite expansion of A(#), which

requires a memory of 0(N 2 ma2 + KNqmax) , where qma, is the maximum dominant basis
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Figure 5-2: Illustration of the fast matrix vector product algorithm to compute a single row.

Must repeat algorithm for each row. System matrix compression is implemented only once

at the system setup phase. Total memory requirements to store A(i#) is Nrmax
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for any row following the fast stochastic matrix vector product algorithm in Section 5.1.3.

Time: Most of the computational time is spent on both the matrix filling and the sys-

tem solve. The most expensive part of the matrix filling is the assembly of f, which

has to be formed at every iteration due to the change of vn. Note that since we are us-

ing a Krylov subspace method for solving the linear system, we do not need to compute

explicitly the matrix-matrix product in d{. Instead, given n and vi (the guesses to the

unknown vectors obtained from the Krylov iteration) we propose to first compute the prod-

ucts w() = A(4)fi for a complexity O(N 2 + KN) as discussed in Section 5.1.3. Then

the product A(#)Tw(#) is computed for an additional complexity of O(N 2 + K3 /2 N) as

discussed in Section 5.1.3.

The complexity of solving the linear system using Krylov subspace methods is 0(N +

K) 2 = O(N 2 + NP). Consequently, the total complexity of our algorithm is O(N 2 +

NK3 /2 ). In general K 3/2 < N and the total complexity is O(N 2 ), which corresponds to

the asymptotic complexity of solving just a single nominal system. This is superior to any

other algorithm available in literature since it basically means that the complexity of our

algorithm is practically independent of the number of parameters.

5.2 Variants of the SDSV Method

5.2.1 Relaxing the Optimization Problem

Consider a large dimensional problem, e.g. one in which the original system size is N =

20, 000 and the size of uncorrelated parameters Np = 300 (the total number of orthogonal

polynomials for a second order Hermite expansion K ~_ 50, 000). The size of the linear

system to be solved is 0(N + K) ~ 0(70, 000), which might become prohibitive. To

manage such large size problems we propose the following relaxation. We first determine

the component of the residual with the largest norm

kmax = arg max |R- I(:, k)||
k
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Table 5.1: Components of both the system matrix and
ponent of the residual.

vn contributing to a particular com-

where as mentioned previously rn_1(#) = Rn_ 1h(7). Then determine the components of

vn that have a contribution to the direction kmax of the maximum residual. In other words,

find all the components j of vn that, when multiplied with the system matrix, will result in

some component in the direction kmax.

j : (A(#) Tj, W'Fkm.a) # 0

The number of such components is 0 (Np) as can be inferred from Table 5.1. We then solve

a relaxed version of the optimization problem in which only the Np identified components

of vn are allowed to vary, while all the other components are fixed to 0. Consequently, the

reduced problem is of size O(N + Np) 0 O(20,300).

5.2.2 Stochastic Iterative Method

In this algorithm we will present another alternative that again does not find the optimal

solution, but just a "good" one. Using (5.19) and (5.20), we can write the following relation:

||r+1()||12 = |rn( )112 - (A(#)unv'h(#), rn(#))S. (5.22)
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It is obvious from (5.22) that the value of the objective function is minimized when the

vector A(4)unv'h(#) is aligned with rn(4).

Main Idea: Instead of optimal alignment we will settle down for good alignment. In

other words, we will enforce

Aouv h(#) = ridi(#) (5.23)

where AO is the average of E [A(#)]; r1 and di (#) are the dominant deterministic and

stochastic directions of the residual rn (K). Such vectors can be computed using the standard

power iteration. Equation (5.23) can be easily solved to obtain

Aoun = r1

vTh(ij) = di(i)

Algorithm 9 summarizes our complete approach.

Algorithm 9 The stochastic iterative method: An approximate SDSV Method
1: xo(#) <- 0, ro(ii) +- b(#), n <- 0
2: while |rn(#)II > Threshold do
3: use power iteration to compute r1 and di (i), the dominant deterministic and stochas-

tic directions of rn(i)
4: solve for un, Aoun = r1

5: vh(ij) <-d~g

6: rn+1 (#) <- rn(#) - A(#)unvnh(#)
7: xn+1 (#) +- XnK() - unvTh(4)
8: n - n +1
9: end while

Computational Complexity: The complexity of the power iteration is that of a small

number of matrix vector products, i.e. O(NK). The complexity of the system solve is

O(NlogN), since such a system can be easily accelerated using "fast" matrix vector prod-

uct algorithms (e.g. precorrected FFT or fast multipole). The worst case complexity of

the residual update is O(KN 2 ). However, in practical implementations the matrix A(K)

is either composed of one dense matrix and K - 1 sparse matrices or represented using

a law rank approximation. In the former case the complexity of the residual update is
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O(N 2 + KN), while in the latter it is O(N 2 r), where r is the maximum order of the

low rank representation. Consequently, the complexity of our algorithm scales as O(N 2 ),

independent of the size of the parameter space.

5.2.3 A Stochastic Krylov Method

Instead of actually solving the optimization problem we can build basis for x(#), using a

stochastic Krylov algorithm. Recall that in standard deterministic algorithms (e.g. GMRES

and GCR) the Krylov subspace K(A, b) is the same space as KC(A, r), and that the latter is

usually the one used to build a basis for the solution.

Our idea is to develop a stochastic Krylov algorithm. However, we want to use basis for

our space that have the form of uvTh(#), which immediately eliminates using the complete

residual in order to build the search subspace. Instead, we will only use the dominant basis

of the residual to build the search subspace.

K

r(i) = R(i)h(#) = [ridi(#) (5.24)
i=1

At every iteration we first get the dominant direction of r(#) and use it to extend the

basis U(#).

Un+[() Un(#) rid1 (q) (5.25)

Notice that such an algorithm can be interpreted as a model reduction algorithm, in which

the left and right projection matrices are stochastic. The solution is then computed as

x(K) = U(Mz

where

Z = IE [U(#)H A(q)HA(q)U(ij)] 1 E [U(#)H A(#)Hb] (5.26)

Important remarks

1. The idea of orthogonalizing the basis vectors in U(#) is not directly applicable in

our algorithm. That is because the difference of two vectors of the form u (vTh(q))
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is not directly expressible using a single vector of the same form. Consequently, we

opt to avoid the orthogonalization step.

2. A(7)U(#) is a stochastic matrix, which is computed recursively by computing only

the product of the system matrix and the last vector added to U(#). Consequently, the

matrix E [U(#) TA(#)T A(4)U(#)] can be incrementally computed using a single

matrix vector product at every iteration. However, the price we pay is that such

matrix has to be stored following each iteration. We store it in the form of a three

dimensional array of size RNxKxn (see Algorithms 10 and 11 for more information

about the implementation details).

3. The main computational complexity in our algorithm is the requirement to store the

matrix-matrix product A(#)U(7). To avoid performance deterioration due to large

memory requirements, we propose to use a restart method [66]. In such a method, the

stored search direction are destroyed after a fixed number of iterations (determined

primarily by the size of memory). A new matrix is rebuilt from scratch. The mono-

tonic decrease of the error norm is guaranteed, however, the speed of convergence is

reduced since the previous subspace is neglected.

Algorithm 10 Stochastic Krylov Method
1: r <- b

2: AU <- []
3: repeat
4: u <- randn(N)

5: while power iteration did not converge do
6: u <- RRTx
7: normalize u
8: end while
9: v <- RTu

10: AU +- AU AuvTh]

11: solve E [UTATAU] z = E [UT ATb]
12: r = b - AUz
13: until ||r||s < threshold

Theorem 5.2.1. The solution z minimizes the norm of the residual in the subspace U(i7)
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Algorithm 11 Computing the unknown z at iteration n + 1

Mnxn 0
1: Mn+1xn+1 +- I0o 0
2: for i = 1 : n+1 do

3: M(n + 1,li) <-- 0
4: fork= 1 : Kdo
5: M(n + 1, )< M(n + 1, i) + AU[:, k, n + 1]T A
6: end for
7: M(i, n + 1) -M(n + 1, i)
8: end for
9: b(n + 1) +- 0

10: fork= 1 : Kdo
11: b(n + 1) +- b(n + 1) + AU[:, k, n + 1]TB[:, k]
12: end for
13: solve for z, Mz = b

U[:, k, i]

Proof

= b - A()U())U( ) +

=E [b T b - 2b TA(#)U(#)z + zTU(#)T A (#)T A(#)U(#)z]

minimizing the norm of the residual with respect to z we obtain

dE [r(j)T r(ij)]

dz
E [U(z)TA( )TA(6)U(q)]z

= E [-2U(q)T A() T b + 2U(#)T A(#)T A(ij)U(#)z] = 0

= E [U(#) T A(#)Tb]

5.3 Results

5.3.1 Validation of Low Rank Matrix Approximation

In this subsection we demonstrate the efficiency of the matrix compression algorithm pre-

sented in Section 5.1.3. Our example system matrix is generated from the 3D capacitance

extraction formulation in the presence of surface roughness. The total size of the ma-

trix is N = 21, 000 and the total number of independent random variables is Np = 201
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Figure 5-3: Part of the SVD spectrum of the matrix A1 . Only 4 dominant modes are
required for 99.9% accuracy.

(K = 20503). Figure 5-3 shows the some of the singular values of the matrix A1. It can be

inferred from the figure that with only 4 dominant right and left singular vectors the matrix

can be approximated to 99.9% accuracy.

It is important to understand that such a preprocessing step, means that K is reduced

from 20,503 to 4, corresponding to a reduction ratio of more than 5000.

5.3.2 Small On-Chip 2-D Capacitance Extraction

The first example is the 16-conductor on-chip 2-D structure discussed in detail is Sec-

tion 3.3.1. Recall that the number of discretization elements is N = 481 and the total

number of parameters Np = 16. The total number of terms required for a second order

Hermite expansion is K = 153. We set our algorithm to terminate when the norm of the

residual is less than 10-4. We observe that a total of 64 directions are sufficient to represent

the solution to the desired accuracy (see Figure 5-4). In a Matlab implementation, the so-

lution is obtained in 25sec, which is a factor of 32 x faster than the standard SGM, a factor

of 2 x faster than the accelerated SGM and a factor of 4 x faster than the SCM.

Using the relaxed formulation in Section 5.2.1, the same accuracy is obtained in just

12.5sec using a total of 78 search directions. In other words, the total simulation time is

reduced by a factor of 2x, while the number of iterations (dominant search directions) is
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Figure 5-4: Residual norm versus iteration for the full optimization problem and the relaxed
optimization problem

increased by around 20% (see Figure 5-4).

5.3.3 Large On-Chip 2-D Capacitance Extraction

The second example is a large 2-D structure consisting of 100 conductors, arranged on a

10 x 10 grid. The details of the example have been discussed in Section 3.3.2. Recall

that N = 5000, Np = 100 and K = 5151. A total of 142 dominant bases are required

to reach a residual of norm 10-4. Using the computed x(#), we are able to estimate the

capacitance of 99% of a 1000 randomly generated structures with accuracy better than

1%. The complete problem (142 search directions) is solved in the time required to solve

just 2000 deterministic systems. Our algorithm is 10x faster than the second order sparse

grid SCM, which requires more than 20, 000 deterministic solves for the same accuracy.

The problem cannot be solved using the standard SGM due to memory constrains (system

matrix requires about 200TB).
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Figure 5-5: One instantiation of a on-package I/O plate pad with very rough surface.

5.3.4 Large On-Package I/O Pad 3-D Capacitance Extraction

In this example we compute the self capacitance of a large plate (I/O package pad) placed

in the 3-dimensional space at z = 0. The surface width and length are 100pm x 100pm

(Figure 5-5). The surface of the plate is very rough. The roughness is described by a

Gaussian multivariate PDF and a Gaussian correlation function. The standard deviation is

10 pm and the correlation length is 10 pm. The plate is discretized using N = 20, 000

triangular panels. The rough surface is described using a total of 91 random variables. The

total number of orthogonal polynomials is K = 4278. Using the suggested fast matrix

vector product algorithm (see Section 5.1.3), the maximum number of modes required to

store any matrix row is qmax = 60. Consequently, the cost of computing the matrix vector

product is just 60N 2 . Using just 122 dominant search directions we reduce the norm of the

residual to less than 10~. The total time (not including the system matrix expansion time)

required to solve the entire problem is 47minutes. This is at least a factor of 100 x faster

than the combined Neumann Hermite expansion and a factor of 120 x faster than the best

sampling-based method.
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Rough surface

Figure 5-6: 2-turn Inductor with upper rough surface. Part of the surface magnified.

5.3.5 Large On-Package 3-D Impedance Extraction

The final example is a 2 turn inductor similar to the structure in Section 4.4.3 (see Figure 5-

6). The side length of the inductor is 1mm and the turns are 60pm in width and 15pm

in thickness. The surface of the inductor is rough with a correlation length of 10pm and

a variance of 3pm. The inductor is discretized using N = 2750 volume filaments, and

the surface is described using a total of Np = 400 independent random variables. Using

a Matlab implementation of our algorithm, the structure is simulated in 4hours. as com-

pared to 32hours using the CNHE, an estimated 150hours using the SCM, and an estimated

828hours using the standard Neumann expansion. Notice that the SGM fails in this exam-

ple due to excessive memory requirements (800,000 TB). In conclusion, our algorithm is

a factor of 8x faster than the CNHE, a factor of 37x faster than the best sampling-based

approach and a factor of 200 x faster than the standard Neumann expansion.
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Chapter 6

Background on Floating Random Walk

(FRW)

6.1 The Standard FRW

The FRW algorithm [13] is a stochastic algorithm for solving a deterministic Laplace equa-

tion problem subject, in its standard version, to Dirichlet boundary conditions. In this sub-

section we summarize how the FRW computes the potential 0(r) at a point r E Q, where

Q is the domain external to a group of conductors (e.g. the region of open space delim-

ited by the surfaces of conductors ij, and k in Figure 6-1). Each conductor is assigned a

known constant potential, and the boundary at infinity is assumed at zero potential, i.e. the

boundary of Q is described by Dirichlet boundary conditions. The core idea of the FRW

consists of using recursively the Green's Theorem to express the potential at any point in-

side Q as linear combination (i.e. infinite dimensional integral) of the known potentials at

the boundaries of Q. This is achieved by starting from the observation that the potential

#(r) at any point r c Q can be expressed in terms of the potential #(rM)) at the boundary

Si of a surrounding homogeneous sub-domain:

#(r) = Pi(r, rM))#(r(1))dr(1 ), (6.1)

Si
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Figure 6-1: Typical random walk path from conductor i to conductor j.

where P1 (r, r(1)) is a Green's function derived from the solution of the Laplace equation

with Dirichlet boundary conditions (an example is given in Appendix B.5). Recursion is

then used to express the potential #(r(')) in terms of the potential of the boundary S2 of

another homogeneous domain enclosing the point rl).

#(r) = fP2(rN'), r )#(r )dr, (6.2)

S2

Substitute (6.2) in (6.1) to obtain

#(r) = J dr(1 P1(r, r(1)) J dr (2)P2 (r(1), r(2 )#(r(2 )), (6.3)
S1 S2

The process can then be repeated indefinitely to obtain:

#(r) = lim dr(1)P1(r,r(1)) dr(2)P 2(r(1),r(2)) x ... x

S1 S2

x ... x -dr(")P(r(-1), r(") )q(r(n)). (6.4)

Sn
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The following observations enable efficient computation of the multi-dimensional inte-

gral (6.4):

Observation 6.1.1. The Green's function P (r(- 1), r )) can be interpreted as a probability

density function, since it is always positive, and since its integral over Si is one. Such

probability density function can be interpreted as the probability of picking a point r) on

the boundary Si of the homogeneous domain surrounding the point r(-'). As we will see

in the following few paragraphs, this probability density function will assume the meaning

of the probability of moving from the point r(-') to the point r(').

Observation 6.1.2. In the floating random walk algorithm the domain boundary Si is the

boundary of the largest homogeneous square/circle (in 2D) or cube/sphere (in 3D) having

the point r(-') in its cente, and not including any conductor By construction, Si will

overlap in part at least with one conductor surface, where the potential is known and the

recursion can terminate. The region of space delimited by the boundary Si will be denoted

as a "transition domain".

Following these two observations, the multidimensional integral (6.4) is computed by

the FRW using Monte Carlo integration, where only one quadrature point is selected for

each integral over a transition domain boundary. The sequence of quadrature points on the

boundary of different transition domains can be interpreted as a "random walk (or path)"

from a transition domain to another, whose stopping criterion is achieved when a step of

the walk falls within a small distance c from a surface with known potential (e.g. conductor

surface). The expected value of the potential is then given by

IE[<(r)] = <Dm (6.5)
m=1

where E[.] is the expectation operator and <Dm is the potential obtained at the termination

of the path m (starting from location r and terminating at some point with known potential

<Dm), and M is the total number of paths. It can shown that the average potential (6.5) is an

unbiased estimator of the potential at point r. Algorithm 12 summarizes the procedure.

The above algorithm for potential computation can be easily used for capacitance ex-
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Algorithm 12 Standard FRW for Homogeneous Media
1: #(r) <- 0, M <-- 0
2: Pick a point r at which we desire to compute the potential.
3: repeat
4: M+- M+ 1
5: i <- 1, r() <- r, PathIsIncomplete +- true

6: while PathIsIncomplete do
7: Construct a transition domain as in observation 6.1.2
8: Pick a point r(i+1) on the boundary of domain according to the transition proba-

bility (observation 6.1.1)
9: if r(i+1) has a prescribed potential CD (i.e. lies on a conductor boundary) then

10: # (r) <- (r) + <

11: PathIsIncomplete <- false
12: else
13: i+1
14: end if
15: end while
16: until convergence or maximum iteration count achieved
17: 0 (r) +-"rM

traction. To compute for instance the capacitance Cj between conductor i and conductor

j, we can set conductor j at unit potential, while setting all the other conductors at zero

potential.

Cj = qjlei = JE(r) - f dr = E (-V#(r)) - f dr, (6.6)

So So

where So is a closed surface, called Gaussian surface, surrounding conductor i, n is the

corresponding normal h, E is the permittivity, and E(r) is the electric field vector. The

potential #(r) can be expressed using (6.4) since it is the solution of the Laplace equation

with Dirichlet boundary conditions (all conductors except for j are at zeros potential). The

final capacitance formula is given by:

Co = - i dr po p dr "P1(r, r()) P1(r, r(1)) x
j J poP1 (r, rul))
So S1

X dr(2 2(r (1, r() X f dr("nP(r"~, r("M () (6.7)

S2  Sn

where V, = n- V and VP 1 (r, r(1)) is computed analytically from the analytical expression
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for P1 (r, r(')) (see Appendix B.5). Similar to the potential computation, the multidimen-

sional integral (6.7) is computed using standard Monte Carlo integration by choosing one

quadrature point for each integral. However, the first point of each path is randomly se-

lected using a random variable po uniformly distributed over the close surface So surround-

ing conductor i. The capacitance Cij is then computed by averaging the contributions of

all the M paths from

Czj =M Wbm, (6.8)
m=1

where for the mth path,

or = EP,(,(6.9)
Wm poP1(r, r(1)) '

and the potential <Dm at the end of the path, given the boundary conditions, is

1 if path m terminates on conductor j
4Drm = (6.10)

0 otherwise

Simplifying

CiZ Win. (6.11)
path m terminates

on conductor j
One can further observe that the FRW paths used to calculate Cij are not affected by the

numerical value of the conductor potentials. Therefore, one single run of the FRW can

provide all the entries for column i of the capacitance matrix by simply re-using (6.10)

and (6.11) for each entry (i, j).

6.1.1 Discussion on the FRW

The FRW algorithm has a variety of computational advantages. Foremost, the algorithm

does not require any memory utilization, except for a single output capacitance matrix. This

is very attractive since one of the main bottlenecks of deterministic algorithms is the large

memory requirements which in many cases renders efficient accurate computations impos-

sible. In addition, the random walk algorithm is inherently parallel. This feature should be

appreciated in light of the recent advances and trends in multithreaded, multicore computer
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architectures. The total time complexity required of the FRW is T = twalk-, where twalk

is the time required for a single random walk and Np is the number of processors. The

single walk time twalk is composed of

1. The time to compute the random variable wm (only once).

2. The time to compute the transition domain corresponding to a given transition point

(Figure 6-1) (repeated at every step). This time dominates the walk time, since the

necessary computations involve geometrical manipulations.

3. The time to compute the next point in the path (repeated at every step).

4. The time to evaluate the stopping decision (repeated at every step).

The above discussion reveals that twalk is linearly proportional to the number of steps

of a single random walk (path length). This in turn explains why structures characterized

by a dense conductor configurations (which typically exhibit small average path lengths)

perform best with FRW. Fortunately, such structures are very common in integrated circuit

capacitance extraction applications. Notice also that such structures are the hardest to sim-

ulate using the standard discretization based methods, which makes FRW methods very

appealing for large scale capacitance extraction applications.

6.2 Standard FRW in Multi-layered Media

The standard floating random walk algorithm can handle arbitrary layered media. This is

achieved by treating the interfaces between the dielectric layers as constraints on the tran-

sition domain size and consequently as intermediate stopping points [13] (see Figure 6-2).

The difference between a conductor surface and a dielectric interface is that the potential of

the former is known, while that of the latter is unknown. Consequently, after stopping at a

dielectric interface, the random walk is resumed from there. The continuations are repeated

until the walk terminates at a conductor surface. If we consider current technologies with

multiple thin layered dielectric configurations, such an algorithm becomes very time con-

suming, since the average transition domain size can become very small. A more efficient
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Figure 6-2: Standard floating random walk algorithm in multilayered media. Transition
domains constrained by dielectric interfaces.

approach was derived for simple dielectric configurations [36]. It relies on pre-computing

(using a stochastic algorithm) and tabulating the transition probabilities offline. These val-

ues are then recalled during the actual walk. Unfortunately, this approach is limited to a

small number of dielectrics and is hard to generalize since it requires the precomputation

and tabulation of the transition probabilities associated with all possible transition domains

necessary to complete the random walk. Furthermore, it does not seem to exploit the possi-

bility of computing the layered Green's function using a deterministic algorithm, nor does

it benefit from the distinct advantages of computing the layered Green's function online

rather than offline. In Section 7.3 we present a novel algorithm that solves the above two

problems.

6.3 Standard FRW for Floating-Potential Metal Fill

"Charge neutral floating potential metal fill" are small pieces of metal inserted in empty

areas of the layout to facilitate planarization. They are commonly referred to as just "fill".

There are basically two different techniques that are currently used to extract the capaci-

tance of multi-conductor structures in the presence of fill. The first is to extract the complete

capacitance matrix for all the conductors and the fill, and then use the standard capacitance
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reduction algorithm to compute the desired conductor capacitance matrix Cc.

Ce= (Cec -C CfcCef) (6.12)

where Cc, Ccf = C', and Cf are respectively the conductor self capacitance matrix,

the conductor-to-fill mutual capacitance matrix, and the fill self capacitance matrix. Note

that when doing a full extraction, the fill is not considered at a floating potential, and is

assigned either zero or unit potential. Therefore, the problem of floating potentials is basi-

cally bypassed. A clear disadvantage of such technique is that it requires the computation

of a much larger capacitance matrix, which is always very expensive and in many cases

undesirable.

A second technique, presented in [6], consists of imposing explicitly a charge neutrality

condition for the fills, and using a finite difference scheme to directly approximate the

derivative term in the equation

J Vt(r)dr = 0, (6.13)
rF

where IFE is the surface of the fill. The derivative approximation relates the potential of

the fill to the potential of a nearby surface, and thereby acts as a walk from the fill to such

nearby surface. The problem with this technique is that the distance between the fill and

the next step is very small, and the walk tends to stagnate at the fill surface. In Section 7.1,

we demonstrate that our generalized algorithm is an alternative technique, which solves the

fill extraction problem efficiently and accurately.

6.4 Standard FRW for Homogeneous Neumann Bound-

ary Conditions

The path reflection algorithm [50] is generally used to mimic the Neumann boundary con-

ditions within the standard floating random walk (see Figure 6-3). Despite its efficiency to

treat straight boundaries, this reflection algorithm is not suitable for more general boundary

configurations (e.g. at corners or irregular boundaries). In Section 7.1 we demonstrate how
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Figure 6-3: Standard reflection algorithm
tions.

used to handle the Neumann boundary condi-

our generalized floating random walk can handle Neumann boundary conditions without

the need for path reflection.
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Chapter 7

Generalized Floating Random Walk

Algorithm

Unfortunately, the FRW, in its state of the art, is a very limited algorithm that works pre-

dominately for the capacitance extraction of simple homogeneous Dirichlet problems (see

for instance the specialized and quite inefficient algorithms required in order to handle mul-

tilayered configurations [36] or floating-potential metals [6]). In this chapter we present a

new generalized framework for the FRW, which includes handling multilayered or inhomo-

geneous dielectric regions, floating-potential metal fill and resistance extraction, including

both Neumann and mixed Dirichlet-Neumann boundary conditions.

7.1 Generalization of the Floating Random Walk

One of the main advantages of the floating random walk algorithm is that it relies only on

the existence of the transition probability, rather than on the particular form of the transition

probability density function. This fact inspires generalizing the FRW from cases where one

knows a closed form transition probability (e.g. centered homogeneous square domain) to

more complex cases where one can compute a transition probability, for instance with

any available numerical technique. Among complex problems are three dimensional non-

Manhattan type geometries with inhomogeneous media, and problems described by mixed

Dirichlet and Neumann boundary conditions.
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In the generalized FRW (GFRW) setup we might want to make sure that the walk does

not reach certain parts of the transition domain boundaries. Consider for example a region

of the transition domain boundary that is touching a conductor with unspecified potential

(Figure 7-1). If we were to select a point on such regions, the walk will not be able to

proceed.

Definition 7.1.1. The parts of the boundary of a given transition domain on which we do

not want the walk to proceed are called "forbidden ". The remaining parts of the boundary

on which we allow the walk to proceed are called "allowed".

Definition 7.1.2. The transition probability from any point r1 inside of a given transition

domain Q to a point r' on the allowed boundary FA of the transition domain is defined as

a function P(r1 , r') that satisfies the following three conditions

#(r)= j P(r, r')#f(r')dr' (7.1)

1 JP(r, r')dr' (7.2)

P(rj, r') > 0 V r' c PA, r, c Q. (7.3)

The following theorem summarizes cases in which such a transition probability can be

properly defined:

Theorem 7.1.1. Consider a Laplace equation

Vr,(r)V#(r) = 0 (7.4)

ND

defined on a non-simply connected multi-medium domain, Q = U Qj (see Figure 7-1 and
i=1

Figure 7-4), where each subdomain medium is defined by K(r) = Ki if r G Qj

IF at least part of the domain boundary is assigned Dirichlet conditions (allowed part)

#(r) = #(r), r E PD (7.5)

and the remaining part (forbidden part) is fully covered either by homogeneous Neumann
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conditions

V,#O(r) = 0, r E 1 N (7.6)

or by flux neutrality,

I r(r)V,#q(r)dr = 0 (7.7)

FF

THEN there exists a transition probability from any internal point of the domain to the

allowed part of the boundary (i.e. with the Dirichlet conditions).

Proof The complete proof is given in Appendix B.7.

As we will show in details in Sections 7.3, 7.4 and 7.5 conditions (7.5), (7.6) and (7.7)

can cover the vast majority of practical problems of interest in VLSI electrical extraction.

Algorithm 13 summarizes the main steps of our generalized floating random walk al-

gorithm. These steps apply to any Laplace equation problem regardless of it's complex-

Algorithm 13 Template of Generalized Floating Random Walk (GFRW)
1: Pick a point.
2: repeat
3: Generate a transition domain surrounding the point and satisfying the conditions of

Theorem. 7.1.1
4: Compute the transition probability using any available technique. (e.g. finite differ-

ence in Section 7.2)
5: Pick a point on the boundary according to the computed transition probability.
6: until stopping criterion is met.

ity. Notice that generating random variables following any arbitrary transition probability,

as required in step 5 of Algorithm 13, is implemented using the inverse transform sam-

pling [15] coupled with a standard uniform number generator (e.g. Matlab's rand 0).
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Figure 7-1: A generalized transition domain including charge neutral metal, multilayered
media and described by a mixture of Neumann and Dirichlet boundary conditions. Both
allowed and forbidden boundaries clearly identified.

7.2 A General Technique to Compute the Probability Den-

sity Function

One simple way to enforce (7.4), (7.5), (7.6) and

obtaining the linear system

El

0

E31

E12

I

0

E13

0

E33

51

OF

(7.7) is to use the finite difference method,

0

0

(7.8)

where Ell, E 12 and E13 are the standard extremely sparse finite difference matrices dis-

cretizing the Laplace operator in (7.4). The second row of the matrix corresponds to the

discretization of the Dirichlet condition (7.5) and <bo is a vector containing the known nu-

merical values of the potential on the allowed part of the boundary. E3 1 and E33 in the

third row discretize conditions (7.6) and (7.7), and #F is a vector of potentials at the grid

points on the forbidden boundary of the transition domain. This system of equations can
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be reduced by eliminating the intermediate variable GF to obtain

er = P OA, (7.9)

where matrix P = - (En - E 1 3 EE 3 1 ) E12 . We can observe that (7.9) is a discretized

version of (7.1), and since it was obtained by enforcing the conditions (7.4), (7.5), (7.6)

and (7.7) in Theorem 7.1.1, then P automatically also satisfies (7.2) and (7.3) in discretized

form

Pi >0 Vi,j

and represents therefore the desired transition probability density function in discretized

form. Specifically, Pij is the probability of moving from internal point i on the finite

difference discretization grid, to a point j on the allowed boundary of the transition domain.

Notice that in order to compute the random variable wm (see for instance (6.11)) associated

with every path, we need to compute the gradient of the probability density function in the

direction of the normal to the Gaussian surface So. Since we compute the entire matrix P,

we can compute numerically the required gradient using a finite difference approximation

to the operator V.

7.3 Applications of the GFRW to Non-Homogeneous Di-

electric Medium

In this section we show in details how to use Theorem 7.1.1 to extract capacitance in non-

homogeneous dielectric media. Let rK, be the dielectric constant E, of the different dielectric

media. As mentioned before in Algorithm 13, the transition domains are constrained by

surrounding conductors (Figure 7-3), and not by dielectric interfaces. In this specific ca-
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Figure 7-2: A generalized floating random walk in multilayered media. Walk is not con-
strained by the dielectric media.

pacitance extraction setup there are no forbidden boundaries (Neumann or flux neutrality),

therefore (7.9) is reduced to

P = -E- En, (7.10)

In order to further optimize our approach we note that each transition point does not

necessarily need to be in the center of the transition domain, as prescribed by the standard

FRW algorithms. In fact, one can simply use the appropriate row of matrix P, representing

the desired transition probability from any given point inside of the non-homogeneous

dielectric transition domain to its boundary.

Since the transition domains are determined only by the geometry, which is fixed at

every step for every walk, and since the computational domain can be fully covered by a

small number of unique transition domains, the transition probabilities (7.10) need to be

calculated only for a small number of such domains. It should be further emphasized that

transition domains and probabilities calculated in the first random walk can be re-used in all

the subsequent walks. Moreover, the required memory to store the transition probabilities is

insignificant (typically one can store up to 150 different 3D transition probability matrices

in less that 2GB).
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A single step of our generalized FRW for non-homogeneous dielectric media is finally

summarized in Algorithm 14, where the transition probabilities are computed incrementally

only for the needed transition domains and then stored for efficient re-use.

Algorithm 14 A Single Step of the Generalized FRW for Non-Homogeneous Dielectric
Media

1: for a given transition point do
2: Search for a precomputed transition domain fully enclosing the given point
3: if precomputed domain found (e.g. point 1 in Figure 7-3) then
4: Interpolate from precomputed transition probability and proceed to next transition

point
5: else {precomputed domain not found (point 2 Figure 7-3)}
6: Generate new transition domain such that it extends to all neighboring conductors,

fully enclosing the new point. (Note: the new point will not be generally in center
of the new domain)

7: Call finite difference routine and compute (7.10), the full transition probability
matrix for a grid of points within the interior of the domain

8: Update database with new transition domain and corresponding transition proba-
bilities

9: end if
10: end for

Note that in general VLSI applications the dielectric medium is stratified, such that the

value of the dielectric constant varies only in the z-direction. In such cases one does not

need to use 3D finite difference and can instead efficiently compute the transition proba-

bility using analytical spectral analysis in the x-y domain and 1D finite difference for the

z-direction.

7.4 Application of the GFRW to Floating Potential Metal

Fill

As mentioned in Section 6.3, a "fill" is a charge neutral metal with floating potential. We

notice that (7.7) in Theorem 7.1.1 can be exploited to impose charge neutrality, therefore

our GFRW can be used to handle fill extremely efficiently. Specifically, Theorem 7.1.1

suggests constructing the transition domain such that it fully encloses one or more fill, and

it extends as much as possible without including any other conductors. Finally, when using
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Figure 7-3: Typical non-homogeneous dielectric media. Transition point 1 lies within one
of the transition domains (solid boundaries) for which the transition probabilities have been
precomputed. Transition point 2 will require the generation of a new transition domain
(dashed boundary) and the computation of all its transition probabilities.

for instance finite difference (as in Section 7.2) to compute numerically the PDF, one can

simply notice that the charge neutrality is captured by the third row of (7.8).

7.5 Application of the GFRW to Resistance Extraction

When performing resistance extraction, one needs to solve the Laplace equation in a closed

domain with Dirichlet conditions at the ports, homogeneous Neumann boundary conditions

at the external boundaries of the domain, and current conservation condition at ports (per-

fect conductors) not connected to a voltage source, i.e. floating ports (see Figure 7-4). Since

the current conservation condition can be captured by the flux neutrality condition (7.7) of

Theorem 7.1.1, we can use our generalized FRW to handle resistance extraction. Specifi-

cally, Theorem 7.1.1, with is being the conductivity c-, suggests constraining the transition

domains only with the boundaries of the solution domain, while allowing such transition

domains to fully enclose one or more floating ports (see Figure 7-4). The homogeneous

Neumann and the current conservation conditions define the forbidden boundaries of any

transition domain. All other boundaries are allowed.
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Neumann boundary

Figure 7-4: A top view of a typical 2D IC resistor. For resistance extraction ports 1 and
2 are assigned unit and zero potential, respectively. The net current flowing through the
floating potential port is assumed zero.

7.6 Results

All results in this section are obtained from a Matlab implementation of our algorithms

running on an Intel Duo CPU at 2.40 GHz with 2GB of memory. For fair comparison,

also the standard FRW and BEM algorithms have been implemented in Matlab on the

same platform. Unless explicitly stated, all FRW results have been obtained from a serial

implementation. It should be noted that the FRW (both the standard and our algorithms)

are embarrassingly parallel, therefore the computational time is expected to be divided by

the total number of processors.

Notice that, to avoid complications associated with paths straying away, in our FRW

implementations each structure in the following examples is embedded in a bounding box

of dimensions 20 x larger than the maximum dimension of the smallest hypothetical box

which encloses the entire structure. The bounding box is centered around the center point

of the structure. The contribution of any path reaching such bounding box is added to the

self capacitance of the conductor from which the path originated.
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Figure 7-5: Example of a numerically computed PDF P(r'), r('+')), where r(+) is the
variable parameterizing the contour of a transition square. The discontinuities in the curve
correspond to the changes in the dielectric constants.

7.6.1 Generalized FRW for Dielectrics

In this example we show implementation results of the numerically obtained PDF, and the

effect of using a non-centered transition domain on the speed of convergence of the GFRW

(Algorithm 14 in Section7.3). The geometry is composed of 20 conductors (Figure 8-

5) embedded in a multilayered dielectric stack composed of a substrate with dielectric

constant E = 11.9, and 10 successive layers of dielectric constants ranging from 2.2 to 4.4,

and finally a half space of free space. The capacitance matrix is computed using both the

standard FRW and the GFRW. We have observed that using our new PDF the average path

length is reduced from 19 to 6 steps, consequently, the solution time is reduced by a factor

of 3. We further observed that the number of unique PDF computations is on the order of

1000, which is very small compared to the total number of random walks (- 105). This

in turn explains why the average walk cost remains approximately the same. Finally, we

show in Figure 7-5 a sample PDF computed for a portion of the dielectric stack.

7.6.2 Resistance Extraction

In this example we extract the resistance of the 2-D, 3-port, T-shaped interconnect structure.

The normalized lengths of the horizontal and vertical segments of the structure are 15 and
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7 units, respectively. The normalized widths are 3 and 2 units respectively. The total

number of FRW paths is chosen such that the standard deviation of the computed resistance

is less that 2%. We have observed that due to the small size of the geometry, only 134

different PDF computations are required to complete a total of more than 1 million walks.

Consequently, the time required to compute the PDFs is negligible compared to the total

simulation time. We have further observed that the PDF, associated with transition domains

partly subject to Neumann boundary conditions, tend to bias the direction of the path toward

the boundary with the Neumann conditions. Constructing the transition domains such that

they are centered around the transition points might cause the walk to stagnate because

the average size of the domain would approach zero. However, in our approach we avoid

stagnation by combining our GFRW with large non-centered transition domains. In this

example the simulation time of our GFRW is 10% less than that obtained using just the

standard reflection algorithms.

7.6.3 A Large 3D Example with Fill and Multilayers

In this subsection we present a three dimensional example composed of three metal lay-

ers (Figure 7-6). The first (lower most) layer has a dielectric constant of 5, and includes

three parallel conductors 60nm wide, 60nm thick and 1400nm long. The upper most layer

includes 3 parallel conductors (90nm wide, 90nm thick and 1400nm long) orthogonal to

those in the lower most layer. This layer has a dielectric constant of 4. The second layer in-

cludes fill (metal structures of floating potential) arranged on a regular grid of size 10 x 10.

Each fill is a cube of dimension 70nm. The separation between the fill is 70nm. The total

number of conductors including the fill is therefore 106. Our GFRW can easily handle this

structure by surrounding the entire layer of fill with a single transition domain, as described

in Section 7.4. The probability density matrix associated with the fill transition domain is

computed in 5minutes using finite difference discretization.

Three elements contribute to a significant performance improvement of our GFRW

over the standard FRW. First, the standard FRW needs to compute the complete 106 x 106

capacitance matrix (including the fills), while our GFRW can compute directly the smaller
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Figure 7-6: A 3D bus structure including fill and multilayers.

6 x 6 matrix of interest between the wires. Second, the standard FRW would be forced to

compute the same complete 106 x 106 capacitance matrix even in the those cases when

only a few or even one single coupling capacitance between two wires is desired, while

our GFRW can compute individually any required wire capacitance. For instance, when

computing the capacitance between the central wire on the top layer and the central wire

in the bottom layer, for the same final accuracy of 10%, our GFRW is around 8000 x faster

than the standard FRW. Third and most importantly, for any given accuracy, the standard

FRW needs orders of magnitude more paths to compute the wire capacitances shielded by

intermediate fill, while our GFRW simply bypasses the fill altogether. For instance, when

choosing a final target accuracy of 2% our GFRW had no problem achieving the target in

24 minutes (as compared to an estimated 4 months required by the standard FRW).

In order to compare our GFRW to BEM we have implemented a dedicated BEM using

the free-space Green's function, discretizing the interface between layers, and handling

metal fills by enforcing the charge neutrality condition as described in Section 6.3 or [83].

The performance of the Matlab implementation of our GFRW (24min) is just minimally

better than the performance of our Matlab implementation of the dedicated BEM (25min).

The computed results match up to 2%.
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Chapter 8

Variation-Aware Floating Random Walk

In this chapter we argue that the floating random walk (FRW) algorithm [13] can be mod-

ified in order to efficiently extract the capacitance/resistance of a very large number of

similar structures (configurations) in a time almost completely independent of the num-

ber of configurations. With similar structures we primarily mean structures constructed

by introducing non-topological variations (variations defined by dimensional changes) to a

nominal structure, or structures constructed by applying small topological variations to a

nominal structures (such as adding a small number of conductors to an existing structure).

We present a new efficient variation-aware extraction framework based on recycling

the paths of the FRW. Two important and general applications are provided to prove the

validity of such algorithm, namely sensitivity and structured incremental analysis. Before

proceeding with our variation-aware algorithm we will give several definitions.

Definition 8.0.1. A "valid transition domain " is a domain for which the relation between

the potential of any internal point and the potential of the boundary points can be de-

scribed by a proper transition probability function. A generalized form of such domains

was introduced by Theorem. 7.1.1 in Section 7.1.

Definition 8.0.2. A "valid path" is a path in which every transition point is bounded by a

valid transition domain. In addition, the path must terminate at a conductor surface. If it

does not terminate at a conductor surface, then it is called "incomplete".

Definition 8.0.3. The "path dependence list" is the set of conductors that constrain the
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transition domains of the path or that can potentially overlap with one or more transition

domains of the path, once altered by some allowed parameter perturbation.

Definition 8.0.4. A set of "similar geometries" refers to a parameterized template of a

geometry. When the parameter space is sampled, and a particular geometry is instantiated,

such resulting geometry is referred to as a "configuration ".

The objective of the next subsection is to develop a general framework for using FRW

in variation-aware extraction. More precisely, the goal is to efficiently compute the capaci-

tance matrices of all configurations of a set of similar geometries.

8.1 Main Algorithm for Path Recycling

One of the main advantages of the floating random walk algorithm is the fact that the algo-

rithm is inherently local. This locality is twofold. First, the FRW computes the unknown at

a very specific location (as opposed to discretization based methods in which the unknown

everywhere is computed). Second, each floating random walk path typically explores only

a small part of the geometry. In this chapter we are primarily interested in the second type

of locality, which implies that each single path has generally a very sparse path dependence

list, i.e. the number of conductors in the path dependence list is very small compared to the

total number of conductors as will be shown in an example in Section 8.4.2 (Figure 8-8).

Such a property is even more emphasized in typical VLSI structures with a large density

of conductors, where the paths are typically very short and confined. More specifically,

assume that one were to compute the capacitance of a given nominal configuration. Now

modify the size of some of the conductors by perturbing some of their parameters. One

can observe that many of the paths used in the nominal configuration do not depend on the

perturbed conductors. Consequently, such paths can be mapped to the new configuration

and be completely reused to compute the capacitance of the new configuration.

Even the paths that depend on a perturbed conductor can be partially reused in the new

configuration. Specifically one can truncate them and complete them by resuming the walk

from the first non-reusable transition domain affected by the change in configuration. Since
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the number of paths that require updating is very small compared to the total number of

paths, our path recycling FRW algorithm will obtain almost instantly the solution for the

new configuration. The complete procedure is formalized in Algorithm 15.

Notice that all the paths associated with the capacitance extraction of a given configura-

tion need to be statistically independent. However, different configurations do not require

to have statistically independent paths. Moreover, in some special cases, such as sensitivity

analysis, where the output depends on the difference between the capacitances of two dif-

ferent configurations, sharing the same paths is not only an advantage but even a necessity

to ensure numerical accuracy (see Theorem 8.2.1).

Algorithm 15 Path Recycling
1: while not all configurations tagged do
2: Tag one of the untagged configurations
3: repeat
4: Generate a path for the last tagged configuration
5: for each untagged configuration k do
6: Map current path to configuration k
7: if not valid in configuration k then
8: truncate and complete path
9: end if

10: Use path to update capacitance matrix of configuration k
11: end for
12: until convergence of the last tagged configuration
13: end while

In our experiments we have observed that in many cases the number of paths that need

to be truncated and completed is actually very small. Furthermore, in many cases there

are efficient ways to determine the sequence in which the configurations are tagged based

on some measure of similarity, such that the majority of paths are reused between similar

configurations.

8.1.1 Memory Management

One can observe that Algorithm 15 avoids having to calculate and store all the paths for

a configuration and then map them and check them for every new configuration. Algo-

rithm 15 adopts instead a much more efficient "path-by-path" idea. That means that a path
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is first generated, then mapped to all configurations, then checked for validity and finally

updated if necessary. Once recycled in all configurations, the path is discarded and one

moves on to another path. The main advantage of solving for all configurations simulta-

neously is that the algorithm does not require additional memory utilization to store the

details of every simulated or re-simulated path (e.g. transition points, transition domains,

and the conductors constraining the transition domains of every path). Consequently, the

variation-aware FRW preserves one of the main advantages of the original FRW algorithm,

namely, the fact that it requires minimal memory usage.

8.2 Sensitivity Analysis

In this section we demonstrate that the path recycling FRW algorithm can be used to enable

efficient finite-difference-based capacitance sensitivity analysis of the capacitance matrix

with respect to a large number of independent variations. Recall that to compute the sensi-

tivity of a particular quantity Z (here Z refers to either the capacitance or the resistance),

with respect to a parameter P, using the finite difference (FD) sensitivity analysis, one

needs first to solve the nominal configuration to compute Z(Po), then perturb slightly by

AP the parameter of interest and compute Z(Po + AP), and finally compute the sensitivity

as:
0Z _ Z(Po + AP) - Z(P0 )

OF A.P(8.1)aP AP

As long as the perturbation is small, the finite difference sensitivity for a positive parameter

perturbation is the same as for a negative perturbation. Consequently, we are free to choose

the most convenient sign. One of the key ideas in this section is to always choose geometri-

cal perturbations that "reduce" the size of the conductors as opposed to "increasing" them

(as demonstrated by the AP shift in the lower conductor k in Figure 8-1). In this case the

computational domain occupied by the transition domains during the computation of the

nominal capacitance is simply extended, and therefore every single one of the transition

domains and random walk sequences can be reused in the perturbed configuration without

any truncation. However, paths that were previously terminating at the perturbed surface of
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Figure 8-1: Path continuation following small perturbation in conductor K. Most path

proceed as path (a). A small number of paths (proportional to change in capacitance)

proceeds as path (b)

a conductor are now obviously not touching it in the perturbed configuration, and therefore

must be continued until they stop at a conductor in the perturbed configuration. This indi-

cates that a capacitance difference between the nominal and the perturbed configurations

can be observed by the FRW only if at least one path in the nominal configuration termi-

nates at one of the conductor surfaces belonging to the subset of surfaces that will undergo

perturbation.

Algorithm 16 summarizes our proposed procedure for computing the sensitivity matrix

element ! of the capacitance vector representing the capacitances between a specific

conductor i (target) and all other N conductors in the system j = 1, 2, ... , N, with respect

to the set of parameters {Pk : k = 1, 2, ... , K}. In such algorithm we compute incre-

mentally and simultaneously all the capacitances Ct, where in configuration k we perturb

parameter k and k = 0 corresponds to the nominal unperturbed configuration.
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Algorithm 16 Combined Nominal and Sensitivity FRW Solver
1: Generate K configurations by changing parameter Pk by APk (conductor dimensions

are "reduced" as opposed to "increased")
2: Initialize Ck <- 0 for all conductor pairs (ij) and configurations k.
3: Initialize path counter m <- 0.
4: repeat
5: m+-m+1
6: Compute one path of FRW for the nominal configuration k = 0 starting from con-

ductor i
7: Let j be the index of the conductor at which the path terminated.
8: Add value of path to the nominal capacitance C9.
9: for each perturbed configuration k = 1 : K do

10: if path terminates at an unperturbed surface of j then
11: Add value of path to capacitance Ck
12: else
13: Continue path (e.g. path 2 in Figure 8-1) until it terminates on some conductor

1
14: Add value of continued path to Ck
15: end if
16: end for
17: until desired accuracy achieved
18: for each perturbed parameter k=1:K do
19: for each conductor j=1:N do

ack k -C/~O.
20: - = c oj

20: Pk - mAPk
21: end for
22: end for
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- Uoid
Figure 8-2: Worst case scenario. All the edges are perturbed, consequently all paths have

to be continued

8.2.1 Complexity Estimation

In this section we show that for all practical purposes (not from a formal complexity analy-

sis) the complexity of Algorithm 16 is independent of the number of parameters K. Let us

assume the worst case scenario where all conductors in the configuration are perturbed as

described in the beginning of this Subsection 8.2 (see Figure 8-2). This means that all the

random walk paths will undergo step 13 in Algorithm 16, which can be interpreted as a ran-

dom walk starting at a distance APk away from the surface of conductor j, and continuing

until it terminates on any conductor and in particular, most likely on conductor j itself (path

a in Figure 8-1). The change in the capacitance value is intimately related to the number of

paths that terminate at a conductor different from j (path b in Figure 8-1). Since the differ-

ence between the capacitance of the nominal and perturbed systems is typically very small,

it is very reasonable to expect (and we have actually observed experimentally) that the ma-

jority of such paths terminate back at conductor j in one iteration (path a in Figure 8-1), or

few more iterations in rare cases. Since the incremental cost of computing the capacitances
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of the perturbed configuration is proportional to the length of the continuation paths, the

total cost of computing the finite-difference-based sensitivity matrix is not more than 2 x

the cost of solving just the nominal capacitance. This very conservative estimate indicates

that our method, despite being finite difference based, has a computational complexity that

is independent of both the number of parameters (unlike standard finite-difference method)

and the number of output capacitances (unlike standard adjoint method). Consequently, our

proposed algorithm is computationally superior to both the adjoint method and the standard

finite-difference method.

8.2.2 Error Analysis

In this subsection we derive error bounds for the sensitivity analysis as suggested in our
.= - M ()M (k

algorithm. Define the random variables C9= ' E W and C = 1 E (k, where
m=1 m=1

M is the total number of random walks, {w} I and {$w$} are sequences of independent

identically distributed (i.i.d.) random variables associated with the nominal and perturbed

random walks, respectively. The mean of both random variables will be denoted as yo

and pk, respectively. Due to the path continuation process (which results in path sharing),

the pairs (w , W ) are correlated. The capacitance sensitivity A with respect to a

deterministic parameter perturbation AP as obtained from the FRW is defined as:

8CgCk - C9.=9 i .1 (8.2)
aPk A Pk

In the following theorem we summarize some of the properties of our proposed capacitance

sensitivity estimator.

Theorem 8.2.1. The sensitivity, as obtained from (8.2), is an unbiased estimator of the

average finite difference sensitivity. Furthermore, the variance of this estimator is given

by:

aCr _ var(w(0)) + var(w(k)) - 2cov(w(o), w(k))var =. (8.3)
PP M A P

Proof Complete proof in Appendix B.6.
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We observe that the standard deviation of the estimator decreases asymptotically as

o( M). We further note that the correlation between the different paths enhances the

accuracy of the sensitivity estimator. Note that the sample covariance is computed from the

Pearson product-moment correlation coefficient:

cov(w(), w(k)) -_ I)) - POPk, (8.4)
m=1

where po and Pk are the average of the nominal and perturbed random walks respectively.

Notice, that computing the sample covariance is computationally very cheap, 0(M).

8.3 Large Variational Analysis using Quadrature Sampling

Another example where our path recycling algorithm proves to be really efficient is the

solution of a large set of configurations constructed by sampling the parameter space using

very specific techniques (e.g. tensor or sparse grids as in Appendix A.5), as opposed to

general random sampling. This case is more complicated than the sensitivity analysis since

the involved variations are large and cannot be assumed infinitesimal. Furthermore, in this

case conductors must both be allowed to shrink and to expand. Obviously when conductors

are decreased in size, the same exact method used for the sensitivity would work just fine.

However, when instead a given conductor is increased in size, any path that includes such a

conductor in its path dependence list will become at least partially useless for the perturbed

configuration.

In this section we propose a way to select an optimal sequence of configurations so

that path recycling is maximized when such configurations are constructed using sparse

grid sampling. Assume that the total parameter set describing the geometrical variations

is composed of K parameters. Assume that a set of configurations is constructed based

on sampling the parameter space using Smolyak algorithm. Assume B ̂  is the nominal

configuration. This nominal is constructed by taking the union of all conductors in all

configuration (see Figure 8-3). The nominal configuration is also referred to as the mas-

ter configuration. Any configuration can be constructed from the master configuration by
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Figure 8-3: Nominal configuration, also called master, constructed by taking the union of
all conductors in all configuration.

shrinking the conductors.

Assume Bf is the subset of configurations in which the parameters indexed by the j-
tuple j = (ii, i 2 ,... , ij) E {1, - -, K}j are different from their nominal values. In other

words, B!' would contain configurations of order j, i.e. only j parameters are allowed

to change at the same time. In Algorithm 17 we propose to simulate the configurations

in a top-down (breadth-first) fashion, i.e. starting from the nominal configuration BO and

completing the configurations according to their order B. , B', - , BK (see Figure 8-4).

The partitioning operation in steps 2 and 8 in Algorithm 17 consists of dividing the paths

into groups pi,, such that each group includes all the paths that need to be at least partially

recomputed when parameter il is perturbed. Note that these groups are not mutually exclu-
K j

sive. Steps 6 and 10 in Algorithm 17 implicitly assume that the paths in U k \ f Pi,
k=1 1=1

can be reused to compute the capacitance of the current configuration Bf, as proven by the

following proposition

K

Proposition 8.3.1. All paths in the set U prh \ pi can be reused when simulating
k=1 1=1

configuration B!f within Algorithm 17.

K j
Proof If a path p E U Pik \ [ pi,, then it belongs to at most m of the groups pi, defined

k=1 1=1

by the partition operation in step 2, where m < j. Therefore based on the breadth-first

ordering structure of Algorithm 17 the path p was already simulated in a configuration of
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order m and can be reused to populate the random walks of B .

Algorithm 17 Optimal FRW for computing configurations based on grid sampling

1: Simulate the nominal configuration BO.
2: Partition paths of nominal configuration Bi into groups p.
3: for configuration order j = 1 : L do
4: for each configuration in B do

K

5: for each path p E U pi, do
k=1

j
6: if p E lpi, then

l=1
7: Recompute path p.
8: Add recomputed path to appropriate groups.
9: end if

10: Add value of path p to the appropriate capacitance of configuration B!f

11: end for
12: end for
13: end for

From Proposition 8.3.1 we observe that the number of resimulated paths (i.e. the car-

dinality of the set fl p is less than min Ni,, where Ni, is the cardinality of pi, Conse-
l=1 l~=1,--,

quently, the number of re-simulated paths decreases as the number of varying parameters

increases.

To the best of the authors' knowledge, the presented algorithm is the only variation-

aware extraction algorithm, for which the incremental computational effort required to

solve high order perturbations is strictly non-increasing as a function of the perturbation

order.

8.4 Results

All results in this section are obtained from a Matlab implementation of our algorithms

running on an Intel Duo CPU at 2.40 GHz with 2GB of memory. For fair comparison,

also the standard FRW and BEM algorithms have been implemented in Matlab on the

same platform. Unless explicitly stated, all FRW results have been obtained from a serial

implementation. It should be noted that the FRW (both the standard and our algorithms)
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Figure 8-4: Configuration arranged in a tree structure. Simulation sequence is breath first.

are embarrassingly parallel, therefore the computational time is expected to be divided by

the total number of processors.

Notice that, to avoid complications associated with paths straying away, in our FRW

implementations each structure in the following examples is embedded in a bounding box

of dimensions 20 x larger than the maximum dimension of the smallest hypothetical box

which encloses the entire structure. The bounding box is centered around the center point

of the structure. The contribution of any path reaching such bounding box is added to the

self capacitance of the conductor from which the path originated.

8.4.1 Capacitance Sensitivity Analysis (small variations)

The effectiveness of our combined nominal and sensitivity FRW solver in Algorithm 16 is

demonstrated by computing the sensitivities of a 20 conductors structure (Figure 8-5) to

variations in the conductor geometries. Conductor 14 in Figure 8-5 is the target conductor

for which we extract the capacitance vector (of length 20). Configuration k is constructed

by reducing simultaneously the width and thickness of conductor k by 2%, while keeping

all other conductors in their nominal size. The total number of configurations including the

nominal is 21. Configuration 21 is the nominal. In Figure 8-6 we compare the capacitances
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Figure 8-5: Two-dimensional cross-sectional-view of 20 conductors geometry.

C14,19 obtained from our FRW algorithm with those obtained from a standard boundary

element method (BEM) for all different configurations. The total number of FRW paths is

chosen such that the standard deviation of the computed capacitances is less that 1%. From

Figure 8-6 we infer that the absolute variation C(ig - C21) computed using the FRW is

within 1% of that computed using the BEM. This is due to the error cancellation resulting

from the correlation (path sharing) between the perturbed and nominal configurations. The

sample correlation coefficient is approximately 0.8. In Figure 8-7 we plot the percentage
CM -C (21

relative variation in the capacitance C 2 1 ' x 100 for the different configurations i.
14,19

The total time required to complete the sensitivity analysis, i.e. compute the sensitivity

matrix representing the sensitivities of the 20 output capacitance with respect to the 20

varying parameters, using our variation-aware FRW is only a factor of 1.39 larger than (i.e.

1.39x) the nominal simulation time. Notice that the standard finite difference sensitivity

analysis would require 20 x the nominal simulation time since the time grows linearly with

the number of parameters. Similarly, the standard adjoint sensitivity analysis would require

20 x the nominal simulation time since the time grows linearly with the number of output

capacitances. Furthermore, our FRW implementation is about 2 times slower than our

BEM for the nominal structure. Consequently, our FRW sensitivity analysis is about 10 x

faster than the BEM finite difference sensitivity analysis and about 10 x faster than BEM

adjoint sensitivity analysis [73].
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Figure 8-8: Percentage of paths dependent on a particular number of conductors.

8.4.2 Capacitance Variational Analysis (large variations)

In this subsection our general path recycling FRW Algorithm 15 in Section 8.3 is used to

efficiently compute capacitances of configurations produced by large geometrical pertur-

bations of the conductors in Figure 8-5.

First, in Figure 8-8 we demonstrate the sparse dependence of the nominal random walk

paths on the overall set of conductors. We observe that more than 73% of all paths are re-

sponsible for the self-capacitance and therefore end at the target conductor without touch-

ing any other conductor. Another 18% of the paths depend only on 2 conductors. We further

observe that almost all the rest of the paths depend on no more than 3 or 4 conductors. Con-

sequently, any perturbation affecting more than 5 conductors can be simulated with almost

no additional effort. Such sparse dependence constitutes the fundamental strength of the

FRW.

We first generate 9 different configurations by expanding conductors 13 and 15 (i.e.

the right and left conductors surrounding conductor 14) by factors of (0, 0), (12.5%, 0),

(25%, 0), (0,12.5%), (0,25%), (12.5%, 12.5%), (12.5%, 25%), (25%, 12.5%) and (25%, 25%),

respectively. The accuracy of the variational analysis presented in Section 8.3 is demon-

strated in Figure 8-9 by comparing the capacitances C18,14 and C13,14 obtained from our

algorithm with those obtained from the standard boundary element method. The accuracy

is better than 5% for all configurations. Furthermore, in Figure 8-10 we show the simula-
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Figure 8-10: Cumulative simulation time for handling additional configurations using FRW
as compared to the estimated standard time.

tion time required to compute the capacitance of 9 different configurations using the FRW

algorithm as compared to the linear increase in time typical of the standard method without

path recycling. The sublinear complexity of our algorithm is clearly demonstrated.

Finally, we validate our variation aware Algorithm 17 in Section 8.3 by computing the

capacitance matrix of all configurations produced by sampling the 20-dimensional space

using sparse grid constructions with Q=2,3,4, and 5 (Q defined in Appendix A.5). The

total number of configurations is 41, 861, 12341, and 135751, respectively. The relation

between the number of configurations and the average simulation time per configuration
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Figure 8-11: Log-log plot demonstrating the reduction in the average simulation time with
the increase number of configurations. Configurations constructed based on the 5th order
sparse grid.

is shown in Figure 8-11. We observe that the average simulation time per configuration is

reduced when the number of similar configurations are increased. Practically speaking, the

time required to solve a total of 30,000 configurations is the same time required for solving

less than 50 independent configurations, or equivalently the average simulation time per

one solve is reduced by 600 x. The time required to compute all 30,000 configurations

using our Matlab implementation of our variation-aware FRW algorithm is about 50min,

compared to about 4 hours required by the Krylov-recycling-based BEM. This corresponds

to 5 x speedup.
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Chapter 9

Hierarchical Floating Random Walk

Algorithm

With the adoption of restricted design rules (RDR) [47] and ultra regular fabric paradigms [37]

for controlling design printability at the 22nm node and beyond, there is an emerging

need for a layout-driven, pattern-based parasitic extraction of alternative fabric layouts.

Such paradigms are imposing two requirements of micro and macro regularity on the lay-

outs. "Micro" regularity is achieved by restricting shape edges to lie on a restricted design

grid that also imposes stringent directionality on shape orientation. "Macro" regularity is

achieved by using a very restricted set of litho-friendly logic cells.

Such regularities have motivated using a relatively small number of optimized (litho-

friendly and robust) layouts as building blocks to construct any arbitrary structure [37].

These building blocks will be referred to subsequently as "motifs". A designer typically

examines different arrangements of the "motifs" in order to choose the "optimal" (in terms

of printability, area, and electrical performance) design. Consequently, from an extrac-

tion view point, there is a need to develop tools that are aware to topological variations.

Consider for instance Figures 9-1 and 9-2. Figure 9-1 represents a layout that has been de-

composed into 6 motifs. The arrangement of these motifs constitutes one "configuration".

Figure 9-2 is a different arrangement of the same motifs present in Figure 9-1. This is a

second configuration. The number of configurations resulting from such steps is potentially

very large, i.e. O(NM!), where NM is the number of motifs.
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Figure 9-1: Domain decomposition of a hypothetical structure. Structure is composed of
8 different subdomain. Each subdomain with its enclosed shapes constitute a layout motif.
The arrangement of these motifs constitutes one configuration.

Figure 9-2: An alternative layout configuration made of the same set of motifs defined in
Figure 9-1.

In this chapter we present the hierarchical floating random walk algorithm, which we

will show can compute the capacitances of all 0(N!) configurations in a highly efficient

manner. The efficiency of the algorithm is near-optimal in the sense that it is practically

independent of the number of configurations.

9.1 Hierarchical Floating Random Walk (HFRW)

Any hierarchical algorithm is composed of three fundamental steps, namely

1. Domain decomposition: the computational domain is partitioned into smaller subdo-

mains (building blocks)
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Figure 9-3: Process of connecting two different motifs. Some boundary nodes are trans-
formed into interface nodes. In resulting combination, each node has a unique global index
and possibly multiple local indices (one for each motif it belongs to).

2. Resolving the local interactions: each domain is computed independently

3. Resolving the global interactions: domains are connected together

Different algorithms differ by the details of the last two steps. In the following method we

will resolve the local interactions by computing a Markov Transition Matrix (MTM) for

each domain. Furthermore, we will resolve the global interactions by constructing a large

Markov Chain from the computed MTMs and simulating such a chain using random walk

methods.

9.1.1 Domain Decomposition

The first step of our HFRW is a domain decomposition, in which we partition the domain

into motifs (see Figure 9-4). For the sake of presenting our idea, motifs are assumed to

be relatively independent structures, that contain dense metal configurations, and that have

regular interfaces that can be easily recomposed together to construct different configu-

rations. In practical extraction flows, such motifs will be determined by the technology

and the associated standard library (especially with the employment of fabric-aware design

methodologies, ultra regular fabric paradigms and restricted design rules (RDR)).
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9.1.2 Resolving Local Interaction: Markov Transition Matrix

The second step of HFRW is to generate independently for every motif a complete Markov

transition matrix (MTM), representing the probability of moving from any point on the

boundary of the motif to either any other point on the boundary of the motif, or any point

on a conductor surface inside of the motif.

In order to compute the MTM, the boundary of the motif is first discretized into NB

smaller segments. The MTM is of size NB x (NB + Nc), where Nc is the number of

conductors inside the motif. The MTM is stochastically generated by initiating a large

number of paths from each of the center points of the NB segments. Such paths are allowed

to proceed within the motif and only stop when they reach one of the motif boundary points,

or a conductor surface inside the motif. Every time a path starting from point i on the motif

boundary reaches another point j on the boundary or on a conductor surface (all the points

on a single conductor are given the same index), the matrix entry (i, j) is incremented by

1. The final step in the computation of MTM is to normalize the rows of the matrix by

dividing each row by its total sum.

The generation of the MTM is very simple since the typical motif is small and dense,

and therefore the paths are typically short. Furthermore, since the number of stopping

points is large, the average path length is small. Moreover, since every motif can be han-

dled independently, and even every point on the boundary of any motif can be handled in-

dependently, the generation of the MTMs is "embarrassingly" parallelizable. Algorithm 18

summarizes the computation of the MTM for a given set of Nm motifs.

Clearly, the proposed algorithm requires storing the MTM of each motif. A large

amount of memory would be required if the number of motifs is large and if each MTM is

fully dense. None of the two conditions are likely to occur in practical layouts. In partic-

ular, if the motif boundary points are numbered judiciously, the Markov transition matrix

will be sparse and structured (see for instance Figure 9-8) and often banded with small

bandwidth. Such banded structure is expected because distant points are likely to have

very small transition probabilities. The MTM storage requirement will therefore be mini-

mal. In fact, even if the MTM is dense, it can easily fit in the local storage of a GPU for a
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GPU-based parallel implementation of HFRW.

Algorithm 18 Generation of MTM Tk for motif M within HFRW
1: for each motif MA do
2: Tk <- 0
3: for each boundary point i of motif MA do
4: repeat
5: generate a FRW path starting from point i and directed inside of motif Mk
6: if path terminates at point j on the boundary then
7: §(i, j) <- k(i, j)+ 1
8: break
9: else if path terminates at a conductor 1 inside motif M k then

10: Tk(i, NB + 1) <- _r(i, NB -+ 1) + 1
11: break
12: end if
13: until convergence is achieved
14: S =sum(Tk(i,:))
15: 7(i, :) (i,:)

16: end for
17: end for

9.1.3 Resolving the Global Interactions

The third step is the recomposition step, in which the different motifs are combined to-

gether to construct different configurations of interest (see Figure 9-2). Notice that when

motifs are combined together some of the boundaries of the motifs become interfaces in the

constructed configuration. To keep track of the arrangement of the motifs each boundary

and interface in the configuration is divided into segments, and each center point of every

segment is given a global index (see Figure 9-3). We use simple maps to relate the global

index of every interface/boundary point to its local index within every motif it belongs to.

Note that boundary points belong to a single motif, while interface points belong to at least

two motifs.

Algorithm 19 describes how the capacitance vector of a particular conductor I is ex-

tracted using the HFRW. According to this algorithm, the complete HFRW path consists of

a standard FRW path inside the first motif and a sequence of Markov transitions between

points on the motif interfaces (see Figure 9-4). The Markov transition part of the HFRW
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Interfaces between motifs

Configuration
boundary

Figure 9-4: Details/Terminology of the HFRW algorithm.

(walk on interfaces) does not require any geometric manipulations, such as transition do-

main determination, and is therefore extremely efficient. The HFRW path terminates when

it reaches either a conductor or a configuration boundary. In the former the HFRW path

value is added to the value of the capacitance between conductor I and the conductor at

which the path terminates. In the latter the value of the HFRW path is added to the self

capacitance of conductor I.

Algorithm 19 HFRW for a given configuration
1: repeat
2: generate a FRW path from conductor I fully contained in its motif M reaching either

a conductor inside M or a point on the boundary of M
3: if path reached a point on the interface between motifs then
4: repeat
5: choose one of the motifs to which the point belongs
6: Use MTM of new motif to make a transition
7: until transition reaches a conductor or a configuration boundary
8: end if
9: if transition terminated on a conductor then

10: add value of path (6.9) to capacitance C(I, L), where L is the index of the termi-
nating conductor

11: else {transition terminated on configuration boundary}
12: add value of path (6.9) to self capacitance C(I, 0)
13: end if
14: until convergence achieved
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9.1.4 Comparison between HFRW and standard hierarchical domain

decomposition

The fundamental difference between our hierarchical floating random walk algorithm and

the standard hierarchical FEM/BEM algorithms is in the way we resolve the global interac-

tions. The vast majority of other hierarchical algorithms [82, 49, 38, 40] rely on assembling

a large linear system of equations in order to resolve the global interactions. Instead, in our

algorithm we resolve the global interaction by using the random walk method in order to

simulate the large Markov Chain constructed when connecting the motifs together. Conse-

quently, our method completely avoids any large linear systems and scales very well with

the size of the problem.

Several advantages follow from such main difference. In particular, our method is em-

barrassingly parallel, which enables it to take advantages from multithreaded and multicore

computer architectures. More importantly, the resolution of the global interaction step us-

ing our method becomes computationally extremely cheap. Consequently, our method is

ideal for fabric-aware extraction, i.e. extraction of a large set of configurations all con-

structed from the same set of motifs. This is the subject of the next section.

9.2 Fabric-Aware 3D HFRW Algorithm

In this section we present an algorithm for 3D capacitance extraction of a large number of

configurations constructed by different recompositions of a set of motifs. Recall that if we

have NM motifs then there are O(NM!) possible different configurations. Algorithm 20

summarizes the steps of our proposed approach.

Since all configurations are constructed from the same set of motifs, the MTMs for each

motif can be precomputed separately as shown in Step 2. The complexity of this part of the

algorithm depends linearly on the number of motifs O(NM), and does not depend on the

total number of configurations.

Step 6 (standard FRW) in Algorithm 20 is independent of the configuration structure,

and therefore it is implemented once per motif and reused for all configurations. This step
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Algorithm 20 HFRW for all configurations
1: for each motif Mk do
2: use Algorithm 18 to compute MTM TEk
3: end for
4: for each desired capacitance matrix column C(1,:) do
5: repeat
6: generate a FRW path from conductor I reaching either a conductor inside the

same motif or a point on the boundary of the motif
7: for each configuration do
8: use MTMs to walk on interfaces and terminate on a conductor or configuration

boundary
9: add value of HFRW path to appropriate capacitance

10: end for
11: until convergence achieved
12: end for

is very efficient since the standard FRW requires short paths when the boundary of the

domain is close to the conductor as in the case of a motif.

The remaining part of each HFRW path depends on the particular recomposition of

the motifs, therefore it must be implemented separately for each configuration. Since this

part of the algorithm does not involve any geometrical manipulations it is extremely cheap.

Consequently, the bottleneck of the algorithm are Steps 2 and 6, and the complexity of our

algorithm is almost completely independent of the total number of configurations.

9.3 Theoretical Analysis of HFRW

Many standard "Absorbing Markov Chain" theorems and well known results can be ex-

ploited to certify properties of our HFRW algorithm once we show how it is possible to

appropriately construct a large Markov Transition Matrix T for the entire configuration:

T= Q R 9r=[QR](9.1)
L0 I

where Q is the transition probability matrix between "transient states" (in our case any

point on the interface between motifs as shown in Figure 9-5); R is the transition probabil-

ity matrix from the transient states to the "absorbing states" (in our case all the conductors

164



Figure 9-5: Transition to interfaces (transient states) contribute to the Q matrix and transi-
tion to conductors and configuration boundaries (absorbing states) contribute to R.

and any point on the external configuration boundary). Matrices 0 and I simply define

the behavior of the absorbing states: once an absorbing state is reached the probability to

remain in it is one, and consequently the probability to transition to any other state is zero.

The upper part [ Q R ] of the Markov Transition Matrix T can be related to the individual

Markov Transition Matrices of each motif using the Law of Total Probability

[ Q R (i, j) = zeach motif k

or in other words, the sum of the probabilities of choosing motif Mk in step 5 of Algo-

rithm 19 multiplied by the conditional probabilities of transitioning from point i to point j,

given the choice of motif Mk. Notice that

P[i -+ j |i E Mk={
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where Tk(i, j) is the MTM of motif Mk constructed by Algorithm 18. Also notice that in

the simple 2D uniform media case:

P[i E Mk]=

1/2

1/4

0

i on interface edge of 2D MAk

i on interface vertex of 2D Mk

otherwise

and in the simple 3D uniform media case:

P[i 6 Mk] =

1/2

1/4

1/8

0

i on interface surface of 3D Mk

i on interface edge of 3D Mk

i on interface vertex of 3D MAk

otherwise

Having cast our HFRW algorithm as an Absorbing Markov Chain problem it is easy to

rigorously answer many legitimate questions using the literature available on that topic [45].

For instance, the following theorem can be used to prove the termination of each HFRW

"path" in a finite number of transitions, and to even provide a precise estimate on the aver-

age number of transitions before termination.

Theorem 9.3.1. Assume that HFRW starts at a point i on an interface between motifs (i.e.

a transient state), then the average length of the walk on interfaces, or expected number of

transitions before reaching a conductor or the configuration boundary (i.e. an absorbing

state) is finite and is given by the row sum of the i-th row in the "fundamental matrix"

N = (I - Q)--.

Proof The proof follows directly from Theorem 3.3.5 in [45].

166



- ~ Empty motifs to mimic infinity boundary conditions

Figure 9-6: Geometry partitioned into different motifs. Empty motifs at the boundary
(shown only partially) are used to mimic the infinity boundary condition.

9.4 Results

9.4.1 Accuracy Validation

The first example validates the accuracy of the proposed algorithm. The 2D geometry for

this example is shown in Figure 9-6, and is composed of 12 conductors. To implement

our HFRW, the geometry is divided into 4 different motifs. In addition, empty motifs are

used at the boundary (shown only partially in Figure 9-6) to mimic the infinity boundary

condition.

The time required to compute the MTM for all motifs is half the time required to sim-

ulate all 12 conductors using the standard FRW. We extracted the capacitance between a

target conductor in motif 1 (see Figure 9-6) and all the other 11 conductors using both our

HFRW and the standard FRW. The time required for our HFRW is approximately half that

required for the standard FRW for the same accuracy. Therefore the time required for our

complete algorithm is about the same time (1.01 x) required for the standard FRW. When

compared to a standard FRW with 2 x 106 different random paths to guarantee convergence,

our approach obtained for all extracted capacitances a 1% accuracy.
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9.4.2 A 2D Fabric-Aware Extraction Example

In this example we use the same motifs used in Figure 9-6 (from the previous exam-

ple 9.4.1) to construct a total of 4! = 24 different configurations, corresponding to all

possible different recompositions of the four internal motifs. The capacitance matrices of

each of the configurations are computed using both our HFRW and the standard FRW. All

the values of the computed capacitances for each configuration are within 2% of the values

computed using the standard FRW. The total time to compute all 24 capacitance matrices

using our HFRW is about equal (1.1 x) to the time required to compute the capacitance ma-

trix of just one configuration using the standard FRW. This corresponds to a 21 x speedup.

9.4.3 A Large 3D Example

In this subsection we demonstrate that the HFRW can also be used to treat 3D structures

very efficiently. The example under consideration is a 5 layer structure (Figure 9-7). Each

layer has its own (different) dielectric constant. Two of such layers each contain a total

of 100 cubic shaped conductors arranged on a 10 x 10 grid. The size of each conductor

is 100nm. These small conductors represent for instance "metal fill", i.e. small floating

conductors inserted in empty regions of the layout to facilitate the planarization. The other

three layers each contain 3 parallel long wires of dimensions 1 00nm x 1400nm x 1 00nm.

The wires are separated by 100nm. Each of the five layers is 300nm thick. Each layer is

treated as a motif. We recompose such motifs to construct a total of 120 different configu-

rations. Note that each configuration will include a total of 209 total conductors. For each

configuration we extract four different capacitances. The largest of the 5 MTMs, each as-

sociated with one of the 5 layers, has size 1536 x 1636, and is 95% sparse (Figure 9-8). The

time required to compute all 5 MTMs is approximately 15 minutes in a code implemented

in Matlab and running on a Intel Duo CPU at 2.4GHz with 2GB of memory. Such time can

be significantly reduced by using C/C++ code and by using a parallel implementation of

the algorithm. After the MTMs are computed, the subsequent computational time required

to solve all possible 120 configurations is 15 minutes in Matlab on the same machine (5min

in Matlab on three parallel processes) as opposed to an estimated time of about 1800min
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Figure 9-7: A five layers, 209 conductor structure. Each layer is treated as a motif.

1000

1500 -
0 200 400 600 800 1000 1200 1400 1600

nz= 137362

Figure 9-8: A typical sparsity pattern of the Markov Transition Matrix (MTM) for a motif
including 100 cubic conductors.

required to solve all configurations using the standard FRW. This corresponds to a 60x

speedup.

9.4.4 Verification of Theoretical Analysis

In this subsection we use the 2D example in Subsection 9.4.1 to verify Theorem 9.3.1. We

first assemble the global Markov Transition Matrix T as described in Section 9.3. Then

using Theorem 9.3.1 we compute the average path length of any path starting from the

boundary of motif 1. The average path length is shown in Figure 9-9 using the red squares.

Notice that the x-axis is just the index of the starting point on the boundary of motif 1.

We then initiate a total of 5,000,000 FRW paths from points on the boundary of the first

motif (at least 1000 paths are initiated from any point). Such paths are allowed to progress

until they either reach a conductor surface or a point on the "infinity" boundary. We then

169



2.6 _a
:3

E 2-

1.8-

0 50 100 150 200 250 300
starting point on boundary of module 1

Figure 9-9: Theoretical path length average versus experimental path length average.

compute, for every boundary point, the average length of the FRW paths until termination.

This length is plotted using the blue diamonds in 9-9. Extremely good matching is observed

between the experimental results and the theoretical estimates. Finally, we observe that the

average path length starting from any point on the boundary is less that 3, which in turn

explains further why the path continuation part is extremely efficient.
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Part III

Conclusions and Future Work
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Chapter 10

Summary and Comparison of Various

Methods

10.1 Summary of Various Methods

In this thesis we have presented a variety of techniques for variation aware interconnect

parasitic extraction. Following is a summary of those techniques:

1. The stochastic model order reduction algorithm (SMOR), in Section 3.2, is applica-

ble to the extraction of any electrical property (e.g. resistance, capacitance, induc-

tance and full impedance) in the presence of any type of non-topological variations

(width/thickness or surface roughness). It's accuracy is constrained by the initial dis-

cretization, i.e. the method does not support adopting the number of the discretization

elements based on the values of the varying parameters. The SMOR works best for

low/medium dimensional parameter spaces or parameter spaces with very well de-

fined structures. The variations in the computed output quantities (e.g. R, L, C or Z)

can be very large, provided they live on some easily defined low dimensional mani-

fold. The SMOR fully exploits "fast" field solver techniques. The SMOR relies for

efficiency on the Hermite expansion of the system matrix. The SMOR fully exploits

parallelization.

2. The Combined Neumann Hermite Expansion Method (CNHE), in Section 4.2, is
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applicable to the extraction of any electrical property in the presence of any non-

topological variation. It's applicability is constrained by the convergence of the Neu-

mann expansion, which is only guaranteed if the input variability results in a small

change in the system matrix. The main computational advantage of the CNHE is

obtained from exploiting the adjoint method, which is only efficient for small dimen-

sional output spaces. Furthermore, the variability of the output quantity (R, L, C,

Z) should be accurately described using a low order multivariate expansion in the

parameter space, since the complexity of evaluating high order terms is very large.

The CNHE exploits fast field solver techniques. The CNHE fundamentally relies on

the Hermite expansion of the system matrix. The CNHE can exploit parallelization.

3. The stochastic dominant singular vectors (SDSV), in Chapter 5, is applicable to the

extraction of any electrical property in the presence of any non-topological variation.

It's accuracy is constrained by the initial discretization, i.e. the method does not

support adopting the number of the discretization elements based on the values of

the varying parameters. The SDSV is very suitable for large dimensional parameter

spaces. The output space can be very complex, provided the output lives on a low

dimensional manifold. One important difference between the SDSV and the SMOR

is that the manifold of the computed electrical property (R, L, C, Z) is automatically

computed by the SDSV while it is manually provided to the SMOR. Variants of

the SDSV can fully exploit fast solver techniques. The SDSV relies on computing

the Hermite expansion of the system matrix. Moreover, it also requires additional

manipulation to identify the dominant direction of the system matrix.

4. The variation-aware FRW (VAFRW), in Chapter 8, is suitable only for capacitance

and resistance extraction. The VAFRW is particularly suitable for extracting the

large coupling capacitances (including self capacitance) of a given conductor, in

the presence of large-dimensional structured edge-based variations, e.g. variations

produced by sampling the parameter space using a sparse grid quadrature scheme.

VAFRW cannot efficiently handle material property changes. The main advantage

of the VAFRW is that its complexity is almost independent of both the structure size
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Table 10.1: Summary of the important properties of all developed algorithms

Alg. Application Problem Parameter Input Output Output
Size Space Size Variability Space Size Variability

SMOR R, L, C, Z Large Medium cont. by Large Low dim.

Chp. 3.2 init. disc. manifold

CNHE R, L, C, Z Large Large Small Small Low

Chp. 4.2 conv. of N.E order

SDSV R, L, C, Z Large Large cont. by Large Low dim.

Chp. 5 init. disc manifold

VAFRW C, R Very Very structured Small Large
Chp. 8 self large large weakly coupled

H-FRW C, R Very Very topological Medium Large

Chp. 9 self large large

and the parameter space size. The VAFRW is embarrassingly parallelizable.

5. The hierarchical FRW (HFRW), in Chapter 9, is suitable for both capacitance and

resistance extraction. The HFRW is most suitable for computing the strong cou-

pling capacitances in the presence of topological variations. The main advantage of

the HFRW is that its complexity is almost independent of the number of different

configurations. The HFRW is embarrassingly parallelizable.

In Table 10.1 we summarize the general properties of the presented algorithms. Notice

the use of the following abbreviations: "cont. by init. disc." for "controlled by initial

discretization", "Low dim. manifold" for "low dimensional manifold", and "conv. of N.E."

for "convergence of Neumann expansion". One can use such a table to choose the most

appropriate technique for the application at hand.

10.2 Comparison Results of Various Methods

In this section we compare the performance of the techniques we have presented, namely,

the stochastic model order reduction method (SMOR), the combined Neumann Hermite

expansion (CNHE), the stochastic dominant singular vector (SDSV), and VA/H-FRW. No-
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tice that we have combined both the VA-FRW and the H-FRW to produce a single efficient

algorithm called the VA/H-FRW. All algorithms are tested on the following four examples:

1. Large 3D On-Chip capacitance extraction example in the presence of width and

thickness variations. This example is composed of 6 conductors arranged on top

of 289 small metal fill as shown in Figure 10-1. The red conductor (in the middle of

the second layer) is the target conductor for which we want to compute the capaci-

tance vector. The total number of discretization elements is N=25,788 and the total

number of parameters is Np=295.

2. Large 3D parallel-plate capacitance extraction example in the presence of surface

roughness. This example is composed of 2 square plate conductors of size 20 sep-

arated by a distance of 1 Figure 10-3. The upper plate is very rough (o = 0.2 and

Lc = 1). The total number of discretization elements is N=21,000 and the total

number of parameters is Np=323.

3. Large 3D impedance extraction in the presence of random geometrical variations.

This example (shown in Figure 10-4) is composed of four different inductors. The

dimensions of every wire (total of 48) is an independent random variable. For the

discretization based methods, the total number of discretization elements is N=10358

and the total number of parameters is Np = 48.

4. Large 3D impedance extraction in the presence of random surface roughness. This

example (shown in Figure 10-4) is composed of four different inductors. The upper

surface of each conductor is assumed rough. For the discretization based methods,

the total number of discretization elements is N=10358 and the total number of pa-

rameters is Np = 400.

All algorithms are optimized for computational efficiency. Whenever applicable, we exploit

parallelization, computational reuse (e.g. table look-ups), numerical approximations, data

compression and any other available implementation tricks (provided the accuracy thresh-

old is met). Table 10.2 summarizes the comparison results. Notice that we are reporting
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Table 10.2: Comparison of the performance of the best previous method, SMOR, CNHE,
SDSV, VA/H-FRW for four different examples. N for SMOR, CNHE and SDSV corre-
sponds to the total number of discretization elements. P/K for SMOR, CNHE and SDSV
corresponds respectively to the total number of parameters and the total number of orthog-
onal polynomials (dimension of the basis) used to describe the variability. The percentage
beside the Time (e.g. 3% and 8%) refers to the accuracy threshold. Reported times are all
in hours.

Ex.1: 3D-cap.
param. var.

N=25K, P/K=295/44K
Ex.2: 3D-cap.
rough surface

N=21K, P/K=323/53K

Ex.3: 3D-imp.
param. var.

N=10K, P/K=48/1K

Ex.4: 3D-imp.
rough surface

N=1OK, P/K=400/8 1K

Time 3%
Time 8%
Memory

Time 3%
Time 8%
Memory

Time 3%
Time 8%
Memory

Time 3%
Time 8%
Memory

Previous

(600)
60

20GB
(650)

65
20GB

10
10

10GB

(1400)
(140)
16GB

I CNHE
(1200)

12
20GB

(260)
13

20GB

6
6

10GB

(720)
36

16GB

I SDSV

8
6

20GB

12
7

20GB

8
8

10GB

12
10

16GB

I SMOR

(24)
12

20GB

(70)
14

20GB
7
7

10GB

(56)
28

16GB

I H/VA-FRW

1
0.25
5MB

6
2

20MB

two different times corresponding to 3% and 8% accuracy thresholds. Notice further that

the entries in the table are rounded to simplify comparing the results.

From the table and our previous results and discussions, we can

sions related to the relative performance of the various methods:

draw several conclu-

1. The VA/H-FRW is the best method to extract the resistance or capacitance in the pres-

ence of non-topological variations in the metal (not in the material properties). Such

methods scale extremely well with the size of the problem and with the dimension of

the parameter space.

2. The H-FRW is the best method to extract the resistance or capacitance in the presence

of topological variations. Such method scales extremely well with the number of

independent configurations.

3. The SDSV is the best method to extract the impedance in the presence of large di-
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Figure 10-1: Large Capacitance Extraction Structure. Discretized using a total of 25788
different panels.

mensional non-topological variations. Despite the need for a large setup time, such

method scales extremely well with the dimension of the parameter space.

4. The CNHE is the best method to extract the impedance in the presence of small

dimensional non-topological variations, provided that the output is accurately de-

scribed using a low order multivariate expansion in the parameter space. Such method

requires solving linear systems which only involve the average matrix. Furthermore,

such methods utilize the adjoint concepts to significantly reduce the computational

effort.

5. The SMOR is the best method to extract the impedance in the presence of small di-

mensional non-topological variations, provided that the output is a high order multi-

variate expansion in the parameter space. Such method fully exploits fast field solver

techniques and therefore significantly reduces the solution time of the independent

linear system solves.
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Figure 10-2: Residual versus iteration count as computed by the SDSV for the 295-
conductor (parameter-variation) capacitance extraction example.
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Figure 10-4: Array of 4 Inductors.
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Figure 10-5: Details of the fine conductor volume discretization (4-inductor array).
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Chapter 11

Conclusions

In this thesis we have presented a variety of algorithms and techniques both to enhance the

efficiency of existing variation-aware extraction algorithms and to develop new variation-

aware extraction algorithms. In particular, we have proposed two important mathematical

machineries to facilitate applying any Hermite polynomial based algorithms in electrical

extraction applications:

1. In Section 4.1 we have proposed a new inner product to compute the coefficients of

the projection of the multivariate system matrix elements on the space of multivariate

Hermite polynomials in a complexity that is independent of the size of the parameter

space. Our algorithm reduces the complexity of computing the multivariate Hermite

expansion of the system matrix by more than 5 orders of magnitude.

2. In Section 5.1.3 we have presented a new algorithm to compress the stochastic system

matrix A(#). Our algorithm relies on the physical interpretation of the rows of the

system matrix. The proposed algorithm is used only once as a preprocessing step

to compress the entire system matrix. Using our new algorithm the number of basis

functions used to represent a matrix row is typically reduced by more that 3 orders

of magnitude.

We have also presented two important enhancements to existing discretization-based variation-

aware extraction algorithms, in particular
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1. In Chapter 3 we have increased the efficiency of non-intrusive stochastic solvers by

exploiting the similarity among the different linear systems of equations generated

by sampling the parameter space. In particular, in Section 3.1 we have proposed

the Galerkin Krylov for Recycling (GKR) method, which reduces the complexity of

solving a large number of similar linear systems by efficiently recycling the Krylov

subspace. Our GKR provides up to a factor of 5 reduction in the computational time.

In Section 3.2 we have also proposed a projection based model reduction approach

(SMOR), which guarantees that the statistical moments computed from the reduced

model are exactly equal to those computed from the full original model. We have

formalized a theorem which details the sufficient conditions which must be imposed

on the projection matrix, such that the statistical moments are equal whether com-

puted from the original model or the reduced one. The proposed SMOR reduces the

computational time of the best non-intrusive method by about 1 order of magnitude

for problems with large dimensional parameter spaces.

2. In Section 4.2 we have proposed a Combined Neumann Hermite Expansion (CNHE)

method. This new method combines the advantages of both the Neumann expan-

sion (size of resulting system is the same as nominal system) and the stochastic

Galerkin method (ease of computing statistics). Furthermore, the method can uti-

lize fast solvers. The method uses an adjoint-like approach to reduce the complexity

of solving complex variation-aware extraction problems by several orders of mag-

nitude. The CNHE is particularly suitable for problems characterized by densely

coupled parameter spaces (e.g. extraction in the presence of surface roughness).

Unlike the standard Neumann Expansion method, the CNHE facilitates computing

a Hermite expansion for the output quantity. Furthermore, for large dimensional

problems the CNHE is typically more that three orders of magnitude faster than the

standard Neumann Expansion method. Moreover, the CNHE can compute the solu-

tions of densely coupled problems that are not solvable using the standard stochastic

Galerkin method.

Finally, we have proposed three new variation-aware extraction algorithms:
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1. In Chapter 5 we have presented the stochastic dominant singular vectors method

(SDSV). The method relies on finding an optimal reduced basis in order to represent

the unknown solution. We have also presented a couple of (computationally very

efficient) variants of the main algorithm, which rely on finding suboptimal (rather

than an optimal) basis. The SDSV and all its variants have optimal scaling with

the dimension of the parameter space, in the sense that the complexity is almost

independent of the size of the parameter space. The main disadvantage of the method

is that it requires a relatively large setup time. However, it remains (to the best of

our knowledge) the only discretization-based method, which can handle very large

size problems, e.g. problems in which the total number of discretization elements

N > 20, 000 and the total number of independent parameters Np > 200.

2. In Chapter 7 we have generalized the standard FRW such that it efficiently han-

dles multilayered media, floating potential metal fills, and mixed Dirichlet-Neumann

boundary conditions. Furthermore, in Chapter 8 we have developed the VAFRW,

which is a method that relies on path recycling in order to efficiently extract the

capacitance of a very large number of "similar" configurations. More particularly,

the VAFRW is best suited for extracting the self and large coupling capacitances of

the same target conductor in all similar configurations. With similar configurations

we mean, configurations that are constructed by applying edge perturbations (width,

height, and relative distance variations) to some nominal configuration. The VAFRW

is most efficient if the configurations are constructed by structured sampling of the

parameter space, e.g. sampling the parameter space using some quadrature scheme.

The VAFRW is optimal in the sense that its complexity is almost independent of the

dimension of the parameter space. When computing the variation-aware capacitance

of a structure in the presence of a large number of varying parameters, the VAFRW

provides more than 4 orders of magnitude reduction in computational time as com-

pared to the standard FRW algorithm. The VAFRW cannot be used for impedance

extraction.

3. In Chapter 9 we have developed the Hierarchical-FRW algorithm for variation aware
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resistance/capacitance extraction in the presence of topological variations. The algo-

rithm relies on hierarchical methodologies to subdivide the computational effort into

two parts, namely, resolving the local interactions and resolving the global interac-

tions. The HFRW resolves the local interactions by solving some appropriate PDE

inside of a closed domain to compute a Markov Transition Matrix. On the other hand,

the global interactions are resolved by simulating an appropriate Markov Chain using

a Monte Carlo method (i.e. without the need for any linear system solves). In the

HFRW, resolving the local interactions is more computationally expensive than re-

solving the global interactions. Consequently, the complexity of solving a large num-

ber of topologically different configurations which are constructed from the same set

of building blocks is optimal, in the sense that it is almost independent of the number

of total configurations. When extracting the capacitance of a large number of config-

urations all constructed from the same set of building blocks, the algorithm provides

more than 2 orders of magnitude reduction in computational time compared to the

fastest available discretization-based and discretization-free solvers.
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Chapter 12

Future Work

In this section we will suggest some possible research directions that emerged from this

thesis. In some of these possible research directions, we will demonstrate preliminary

results.

12.1 Fast Stochastic Matrix Vector Product using Fast-

Multipole

The science (or art) of fast matrix vector product algorithms has benefited the extraction

community for the last decades. Developing a fast matrix vector product to handle param-

eterized/stochastic matrix-vector products of the form

A(p)x(p) (12.1)

is therefore an essential step towards moving stochastic algorithms to the mainstream ex-

traction flow. We have presented a few ideas throughout this thesis primarily directed

towards the compression of the system matrix. However, we believe that maintaining a

hierarchical structure of the parameter space, such that far interactions are associated with

a low dimensional parameter space and nearby interaction are associated with the fine de-

scription of the parameter spaces can result in a very efficient fast algorithm.
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12.2 Computing Optimal Basis for the Stochastic System

Matrix

The expansion of the system matrix in terms of orthogonal polynomials typically results

in a very large number of terms, which in general constitutes the computational bottleneck

of stochastic solvers. However, since the stochastic system matrix is known, we should

consider finding a reduced set of basis to represent such matrix

A(q) = ZAidi(ij)
i=O

(12.2)

We want to find Ai and di (q) such that the norm of the residual is minimized

E [a(# )di(#)]

E [a(#)afh(#)]

= E [aid ()]

= E [afTaidi(#)h()]

which leads to

E [a(if)di(7)]
E [d?(0)]

E [h(#)a(#)T ] a

a

= aT aiE [di(#)h(#)]

Using di(#) = #Th(#) we obtain

(12.3)

ao ... aK1i

a Ti
ao

ai

aI T 8K
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Combining both equations we obtain the following eigenvalue problems

ao ... aK 23i 2
aTK

a T

ao - aK :T 1 2  2ailIai

aTK

The above eigenvalue problems are very expensive, however, it is interesting to see if

one can cheaply find approximations to the dominant directions 3. The standard Hermite

expansion can then be projected on such directions such that the total number of terms in

the expansion is significantly reduced.

12.3 Application of Developed Algorithms to Different Re-

search Fields

Several other research fields have been facing the same or at least similar challenges as the

ones we have been solving in this thesis. We believe that many of the algorithms presented

in this thesis can be put to use in such applications. One example is given in [53], in which

the forward problem involves solving the 1-D diffusion equation:

O= _ 0 v(x)U +S(x7t)

Ou B
(X= 0)= (x= 1)= 0

ax Ox
u(x, t = 0) = 0. (12.4)

where S(x, t) is the given source term and v(x) is the diffusion coefficient. The diffusion

coefficient is assumed to be random and to follow:

M(x) = log(v(x) - VO) (12.5)
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Figure 12-1: Residual versus iteration count.

where M(x) is a Gaussian process. More details related to the description of the problem

are in [53].

Using our SDSV method on this simple example we were able in 2 seconds to reduce

the residual by 10 orders of magnitude (Figure 12-1). More work is needed to solve the

same problem in multi-dimensions and to use more complex descriptions of the random-

ness encountered in the problem.

12.4 Applying the FRW to Full-Impedance Extraction

Extending the FRW algorithm to handle full impedance extraction, would enable using path

recycling ideas to develop very efficient variation-aware impedance extraction algorithms.

The main challenge is that the partial differential equations governing the impedance ex-

traction formulations are not solely dependent on the Laplace operator. In fact, such equa-

tions involve both complex operators (e.g. Helmholtz) and relatively complex conservation

laws. That said, in [52] a Brownian Motion based algorithm has been presented to effi-

ciently solve the Helmholtz equation. We want to combine such idea, with novel method-

ologies to enforce the conservation laws, in order to solve the impedance extraction prob-

lem using random walk methods.
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Appendix A

Mathematical Machinery

A.1 Capacitance Extraction in 2D

In the two-dimensional space (extending to infinity), the potential #(r) is given by [701

(r) = #0 +

p(r)dr = 0

G(r, r')p(r')dr'

where 0 is a constant unknown potential and IF is the boundary of the conductor surfaces.

Notice that unlike the 3D case, the potential is not zero at infinity. Instead the charge is

forced to vanish at infinity.

A.2 Analytical Integration Formulas

For 2D, for a rectangular surface panel, the collocation integral is given by

log(x 2 + y 2 )dx = -x log(X 2 + y2 ) - 2 X - ytan-1 x)
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For 3D, for a rectangular surface panel, the collocation integral is given by

I l
x-2 I +y2 + z2 d

S

x sinh- 1( ) + y sinh-1( X )-z ta-1 )
Nx2 + z2 Vy2 + 2 Z Vx2 + y2 + z 2 s

For 3D, for a rectangular volume filament, the collocation integral is given by

J dxdydz =
V x 2 +y2 + z 2

xy sinh-1( Z )+ xz sinh-( ) + yz sinh 1 ( x

VIx2 + Y 2 V 2 + 2 Vy 2 +z 2

X 2 1 Z Y2 1 XZ Z2Y-- tan-( yz- tan-( xz- tan-12 x x 2-- y2 + z 2  2 y x 2 + y 2 + z 2  2 z x2 + y2+ Z2 V

A.3 Standard Krylov Subspace Recycling

One fundamental characteristic of the linear systems produced by the sampling methods

is that they are all "similar". Such similarities can be exploited using iterative methods

combined with recycling of the Krylov subspaces shown for instance in Algorithm 21 and

in Algorithm 22, where to simply notation we denoted A(pk) as Ak.

In Algorithm 21 and 22, the columns of Q span the recycled subspace constructed

by adding the subspaces (columns of Qk) of each system k. Although all Ak are dense

matrices, the matrices Ak - Ak-1 are in some cases very sparse. In addition, matrix T =

AklQ in both algorithms does not need to be computed because it is already available

when solving system k. Consequently, computing the residual of system k on the explored

subspace Qk requires only O(N) operations. Furthermore, the fundamental relations in

the standard Krylov subspace algorithms are slightly modified. As an example consider

the Hessenberg decomposition in the GMRES Algorithm 22 which would normally read

AQ = QH, while in subspace recycling reads AkQ = QkHk. We further notice that it

is important to keep the size of the common subspace Q under control, in order to prevent

the cost of even one projection to approach O(N 2 ).

190



Algorithm 21 Standard GCR Krylov Subspace Recycling
1: Q - [ 1]
2: for each system k do
3: if Q is not empty then
4: Compute matrix Qk such that AkQk = T + (Ak

is an orthogonal matrix.
5: Solve for Zk such that rk = AkQkzk - b and rk

- Ak-l)Q, where T = AklQ

is orthogonal to AkQk
6: else
7: Qk -- b

8: end if
9: while || rk ||> threshold do

10: Extend Qk +- [ Qk Akrk ] such that T = AkQk is an orthonormal matrix

11: Solve for Zk such that rk = AkQkzk - b and rk is orthogonal to AkQk
12: end while
13: Q <-Qk

14: Xk +- Qkzk

15: end for

Algorithm 22 Standard GMRES Krylov Subspace Recycling
1: Q<- []
2: for each system k do
3: if Q is not empty then
4: Compute orthonormal matrix Qk such that T + (Ak - Ak_1)Q = QkHk , where

T = AklQ and Hk is Hessenberg.
5: Solve for Zk such that the norm of rk = AkQzk - b is minimized
6: else

Qk '

end if
while || rk ||> threshold do

Compute q such that T = AkQk = [ Qk q ] Hk, and [ Qk
thonormal matrix, and Hk is Hessenberg
Solve for zk such that the norm of rk = AkQkzk - b is minimized

Qk <-- [ Qk ]
end while
Q +- Qk without the last column

Xk +- QZk
end for

q ] is an or-
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The final and most important observation is that the asymptotic complexity of solving

Ns linear systems with recycling is still O(Ns N 2 ). In other words, recycling can only pro-

duce constant speedup factors, and cannot change the order of complexity of the problem.

A.4 Projection-based Model Reduction

In projection methods the unknown is assumed to live in a subset of the N-dimensional

space spanned by a small number of basis vectors, i.e. x = Uz, where U E RNxr is a

collection of r basis vectors. Using the reduced representation of x and using some left

projection matrix V C RrxN the reduced system and output are given by:

VAUz = Vb

y = cTU (VAU)-i Vb

One standard way to construct the projection matrix U is to use multi-point matching tech-

niques in which the columns of U are the solution of the linear system at different values

of the parameter vector. Note that the similarity between projection based model reduc-

tion methods and non-intrusive stochastic simulation methods stems from the fact that both

methods rely on solving the linear system at multiple points in the parameter space.

One standard way to construct the left projection matrix is to let V = UH, i.e. use a

Galerkin projection

y = cTU (UHAU) UHb

A.5 High Dimensional Parameter Space Sampling using

Sparse Grids

One of the main objectives when dealing with variation-aware extraction is to derive param-

eterized models for the desired electrical property e.g. capacitance or resistance. The ma-

jority of techniques used to generate such models include the fundamental step of sampling
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the parameter space. A standard sampling scheme for one-dimensional parameter spaces

is to choose sample points coinciding with the nodes of a Q-point quadrature scheme. This

is especially useful when the parameter is associated with a probability density function

(PDF). In such case, one chooses the quadrature scheme, such that its weighting function

is the PDF (i.e. Hermite-Gaussian quadrature for Gaussian PDF, or Laguerre-Gaussian

quadrature for uniform PDF). Let us call the set of 1D sample points SM = P- : 1 <

i < Q}. .A simple way to generalize such sampling technique to D-dimensional spaces

is through tensor products S(D) -)0 ... 0 112,. '',}D

Unfortunately, the tensor product construction suffers from the disadvantage that the total

number of sampling points is QD, which grows exponentially with the dimension. This

phenomena is also known as "curse of dimensionality".

One advantageous approach to dealing with this challenge is to sample the parame-

ter space using the Smolyak sparse grid construction [27]. In such construction the total

number of sample points N. depends polynomially on the number of parameters. The grid

points in such construction are given by S(D) _ (l)(1) ... :P(') i )E N1}, where
D

i = [ii,- ,iD], N = {i E ND Zid = D + Q}, and N' = 0 for Q < 0. Similar
d=1

to tensor grid constructions, Smolyak constructions provide bounds on grid interpolation

errors as function of the order of the construction.

A.6 Hermite Polynomials

In this thesis we use the "probabilistic" orthonormal Hermite polynomials. In ID such

polynomials are given by

' 1 k(l) (ik 2 dk 2
'(7k) exp(-) exp( ) (A.3)

k! 2d 2

where qi C (-oo, oc). The associated weighting function is the standard Gaussian PDF
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The first four polynomials are

'io(71) = 1

1 (1) = 971

v/1 2 1)1

4'3(771) = (n - 311)

1
'V4(T1) = 24 - 6r1 + 3)

The multivariate extension is obtained by taking the product of first order terms. The

degree of a multivariate term is determined by the sum of the degrees of the univariate

terms.

A.7 Continuous Karhunen Loeve Expansion

Starting from the Mercer theorem, we know that:

00

C(r,r') = OAi (r)#i(r') (A.4)
i=1

where #i (r) is an orthonormal basis forming the eigenfunctions of C(r, r'), and Ai are the

corresponding eigenvalues. Using the orthogonality of the the eigenfunctions we obtain

C (r, r')#Oi(r') dr' = AiOi (r) (A.5)

Finally, noting that

C(r, r') = E [p(r)p(r')] (A.6)

we can easily deduce that
0o

p(r) = V3#Aj(r),iq (A.7)
i=z1

where r, is a set of zero mean, unit variance random uncorrelated random variables (for our

purpose we will use the standard Gaussian random variables).
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A.8 Stochastic Inner Product and Stochastic Norm

We define the stochastic inner product between the vectors u(4) and v(#) to be

- fu~i'v~~)exp (-O.5i4) d
- I V (2 7 0)O.5Np ~7

where E [-] is the expectation operator.

Consequently, the stochastic norm of a vector u(i7) is |Iu(#)||s = (u(#), u(#)) =

E [I|u(#)||12].

Proposition A.8.1. The stochastic inner product (v(#), u(#)) between two stochastic pro-

cesses is equal to the standard deterministic Euclidean inner product (V (:), U(:)) = V ( :)HU(:)

between the two vectors containing the polynomial chaos expansion coefficients of the two

stochastic processes v(), u( W)

Proof

= E [v(i7)Hu(#)]
KK

= E v W (#)j:us Wp(#)
0= j=0 .

K K

v u iUE [Wi(6 (#)] A
i=O j=0

K

= v HUk HU(:) = (V(:), U(:))
k=0

(A.8)

where U and V E RNxK are the matrices including respectively all the components ui and

vi E RNx1 : i = 1,... , K as defined by the unknown vector in (2.37). l
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Appendix B

Proofs

B.1 Proof of Proposition 3.1.1

Proof Let Xk xi + Ax and AA= Ak - Aj. If max A(Ai A) < 1, then using the

Neumann expansion Ax is expressed as

o

AX S (-AT-zA)k Xi

k=1

If d(LAA, xi) = 0 then AAXi is contained in the subspace spanned by Qj and AAXi = Qiz

for some vector z. The leading term in the Neumann expansion is

Ax =-Al AAXi

AjAx = -- AXi

A2 Ax (B.1)

Notice that the solution of (B.1) is a second order accurate approximation for Ax. Since Qj
spans IC(Ai, b) and the right hand side of (B.1) is in Qj, then Ax is in the space explored

during the solution of xi. l
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B.2 Proof of Theorem 4.1.1

Proof

W(p, #)PFi(i7)'Vj(#)dpd#

= Jii(K) ( f)( W(p, i)dp) d7

1P
0

if i = j

otherwise
(B.2)

where P(ij) is the Gaussian probability density function associated with the standard Her-

mite expansion. The relation f, W(_p, #)dp = P(#) is a result of the interpretation of the

weighting function as a probability density function (PDF), and on the fact that integrating

the multivariate probability density function with respect to a subset of its random variables

is still a PDF for the remaining subset of random variables. L

B.3 Proof of Theorem 4.1.2

Proof

f (p)I~(#)W(_p, i7)dpd

= f f(p)i(i) W(Ap,#)dpidpd'
P P1

= W(Ap, #)f (p)Tji#)dApd?7

where Ap is a vector containing the elements of vector p in addition to any NM - No -

D other elements of vector p. The choice of those extra elements is arbitrary for the

sake of proof provided those elements are distinct from the elements of p. The vector

containing those other elements is denoted by p1. The second identity is the result of

198

fi = (f (P),I Ti(0) W



integrating a multivariate PDF over a subset of its random variables. Next we use a variable

transformation to express Ap and ' in terms of 4. To do that recall from the definition of

the modified inner product that

(B.3)exp (-O.5vTCjIv)
I(Ap, i) =

(27) 2 V/ C

Ap
v=

Recall further that the relation between the parameter vector p and the uncorrelated random

variables 4is obtained from the Karhunen Loeve expansion (2.21). This means that we can

express

Ap~ M11 M12 A
V = =q

0 I1
(B.4)

This relation facilitates computing the submatrices of the correlation matrix Cv

E[Ap APT]

E[Ap iT]

E[- ApT ]

= Mn~1i + M12M12

= M12

=1M2

which when substituting in (B.3) leads to

exp (-0.5 C41fi)
(Ap,)dv= NM

(2-r) 2 /CvI

where

M 1

M12

)M M1 1 + M12M12 M12
MW )-
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Using the block matrix inverse formula we obtain

(MnMB1) -

-M2 (M 1 1MB 1

- (M MB 1 M 12

I+ MT2 (M 1MB) M12

Using the explicit inverse formula (B.5) to compute the new correlation matrix we obtain

AC- 1A I

The Jacobian of the transformation can be related to the determinant of Cv by

MICv I M il = |Mul = |1 .

Substituting all relations in (B.3) we obtain

WN(A.XP, i)
_ exp (-0.5rf'j)

(27r) 2

fi J7P( p)f(p)i(if)d

= (f (p),Th(?)) (B.6)

B.4 Expressions for (5.11)

f = ||rn(p)||2

2 U A Tvn(j)R 1(:, k) +
ij,k

K

u, Anv (j')Aivn(j)un -
k=1 ij,k ij,k

||R_1(:,k)||2 
)

(B.7)
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A summary of the expressions required to assemble f':

2 YA'vn(j) Aiv(j)un - 2 A'v(j)R_ 1 (:, k)
d~ = jkij,k ij,k

K

=1 ( ziAj vl( Z A un -2 u AT Rn_1(:, k)

A summary of the expressions required to assemble f":

u Tl A T

ij=l,k ij,k

A vn(j) ) - 2 E Rn,(:, k)T Ai
ij=l,k

As an example, the last expression can be efficiently implemented using the Hermite

expansion as

K/

= 2
k=1 (

Eu
ij=l,k

ui Avn j) ij=k

AT ZAivn(j) -2ZRn_(:,k) T

ij,k / ij=l,k

where we use the notation E to indicate a summation over all i, j : (HiHj, Hk) # 0, the
ij,k

notation E to indicate a summation over all i : (HjH, Hk) # 0, the Matlab notation
ij=l,k

Rn_ 1(:, k) to indicate the kIh column of the matrix Rn_ 1 and the notation Vn(j) to indicate

the jIh element of vector vn.
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df
dVn (1)

d 2
nu

d 2 f

d 2 f

dVn (l)dUn

= 2AVn (j)Z Avn(j)
k=1 ij,k ij,k

K

= 2 U A T Aun
k=1 ij=mk ij=l,k

K (2

k=1\

d 2 f
dVn(l)dUn

A)

U T A TV,(j

(1: n i
ijk



B.5 A simple Transition Probability

The transition probability (Green's function) from a point r = (X, y) inside of the domain

of a 2D rectangular homogeneous domain in the x-y plane, oriented such that the length in

the x-direction is a and that in the y-direction is b, is given by:

Z - sin(fx) sinh("fy)
asinh b aa

2sin("x) sinh("in(b - y))

y'o sin("n y) sinh("1f7 x)

"f y) sinh("f (a - x))00 2 sin(' y') *

b sinh( 'a) Sl
n=O b

r' (X', b)

r= (X', 0)

r= (a, y')

r' =(0, y')

M

m=1

M
E Y(Wo)

(m=1
- , 0 ) 2 + Z(W() - p1)2 -

m=1
M

- 2 (o)
m=1

M

- Po) Z
m=1

((k)- p4)

We use the independence of the random variables to eliminate all the cross terms resulting

from both the squaring and cross-multiplication of summations to obtain:

var (AC) = M 2 __

- 2E
m=1

E(wo) - po)(ok) -

M=1

P[k))

1
=M (var(w()) + var(w(k)) - 2cov(w(0 ), w; (k))

202

P(r, r')

B.6 Proof of (8.3)

var (AC) E

=2
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B.7 Proof of Theorem 7.1.1

Using the standard Green's function technique to solve the Laplace equation with the cor-

responding boundary conditions we define the following partial differential equation

eiV 2G(r, r') = J(r - r')

G(r, r') = 0 r' C ED, VnG(r, r') = 0 r' E EN

G(r, r') = Go, frF VG(r, r')dE' = 0 r' E rF

where FD and EN are the boundaries with the Dirichlet and Neumann boundary conditions,

respectively. EF is the boundary of the charge neutral fill. Go is an unspecified constant

representing the potential of the fill. The existence of such Green's function is guaran-

teed from the fact that the Poisson equation has a unique solution for the mixed boundary

condition case.

Using the integral equation formulation for each domain, summing the obtained rela-

tions over all domains and realizing that the sum of the integrals vanish at the dielectric

boundaries, we obtain

(r) = J (r')VnG(r, r') - G(r, r')Vn#O(r')dr' (B.8)

rDU FN U F

Using the prescribed boundary conditions of both the potential and the Green's function:

# J #(r')V.G(r, r')dr' (B.9)

rD

The transition probability density function from any internal point to a point of the allowed

part of the boundary is given by P(r, r') = VnG(r, r'). To prove that such a probability

function sums to one we use the divergence theorem and the partial differential equation

defining the Green's function:

1 = VnG(r, r')dr' = V.G(r, r')dr' (B.10)
rD
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Finally, we need to prove the positivity of VnG(r, r'). The main idea is to prescribe a

potential of 6(r' - rB) to the Dirichlet (allowed) boundary and use (B.9) to obtain:

#(r) = VaG(r, rB). (B.11)

Consequently, to prove positivity it is sufficient to demonstrate that #(r) is between 0 and

1, i.e. the potential at any point within the domain must be smaller than the maximum

potential at the Dirichlet boundary and larger than the minimum potential of the Dirichlet

boundary. This is achieved by noting that the solution of the Laplace equation is a har-

monic function for each dielectric domain. Therefore such solutions satisfy the maximum

principle, i.e. the maximum potential is either at FD,FN, jF or on the interfaces between

the dielectric layers. We will demonstrate that this maximum (minimum) cannot be at PN,

FFor the dielectric interfaces and that therefore the maximum and minimum potentials are

onFD-

Assume such maximum is at a dielectric interface, then at the interface V,#(r) has

opposite directions, which would imply using Gauss' law that there is charge accumula-

tion at the interface. Since there are no charges accumulated at dielectric interfaces, by

contradiction the maximum is not at an interface.

Assume such a maximum is on jFF, then the gradient vector of the potential at FF is

directed outwards, which as a consequence of Gauss' law means there is a charge accumu-

lation at the fill. Since the fill is charge neutral we reach a contradiction.

Assume that the maximum potential is at FN, then at a point infinitesimally away from

the boundary and inside the domain the value of the potential is equal to that at the bound-

ary, which by the maximum principle implies that the solution is constant. Since the Dirich-

let boundary is excited using a non-constant potential we reach a contradiction.
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B.8 Efficient Computation of the PDF of Stratified dielec-

tric Media

The transition probability from the center of a cube with z-direction stratification to the

cube boundaries is the superposition of the six potentials at the center when each side of

the domain is excited with unit potential, while all other sides are held at zero potential.

For the two cases in which both the x- or y-directed sides are at zero boundary conditions

such computation is straight forward. Consider the case when all sides of the domain are

at zero potential except for the upper z-plate:

#(x, y, z) = A(m, n) sin(nLfx) sin(TLy)#z(kz(n, m)z)
n'm Lx LY

z2 _r 2  mw 2(i _L)2

4 < #(x, y, Lz), sin(zx) sin(mly) >
A (m,rn) Lx L

A~~m, n) =z LL#(kz (m , n) Lz)'

where

dz(k, z) = ( cosh(kzz) sinh(kzz) ) fJ Tk,k+1 0

i= cosh(kzzi+) sinh(kzzi+)

ei sinh(kzzi+1 ) - cosh(kzzi+1)

Note the function #z is computed using the transmission matrix theory such that the bound-

ary conditions at the z-directed layers and interfaces are satisfied. The transition probability

is such case is therefore

4 sin ("1 x') sin(-ms' n~r m r
PDF = 4 'sin( x) sin(7'Ty)#Oz(kz(n, m)z)SL Lyz(kz(m,n)Lz) L L

The case in which the z direction is held between zero potential is more involved. Consider

for example the case in which all surfaces are at zero potential except that at y = Ly. To

obtain kz we need to numerically solve the following second order ordinary differential
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equation
= -0kz2#2 (B.12)

Fi (z -) = Ei+1 ,+W), 20 ,#(z

where zi are the coordinates of the boundaries separating the layers and Lz is the total

length of the transition domain in the z-direction.

The numerical solution of (B. 12) is much simpler than that of the original partial differ-

ential equation, since (B. 12) is one-dimensional rather than three-dimensional. Following

the computation of the modes in the z direction, the potential at the center is expressed as:

#(x, y, z) = A(kz, n) sin( 7r x) sin(kyy)#z(kz, z)
kz,n

(n7x) >x 2X< (x, LY, z), sin( z)> sin(ky Ly) YA(k, no)#z(kz, z)
Lx 2 Y kz , Z

Since the functions #5(kz, z) are not orthogonal, i.e. < #z(kz), z), #2(kj , z) # 0 >, the

transition probability is given by

PDF = ZUTM-V

M(i, j) =< #z (k0), z), # z(kj), z) >z

sin (n"x')#Oz(kzo z')M(ij) = < ,

0.5)x sin(kYyL)

U(i) =sin (n7 x) sin (kYY)#Oz(k0), z)
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