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ABSTRACT

Empirical orthogonal functions (FOFs) are used to
analyze the patterns of rainfall over the Pacific Ocean.
The main area of activity is found to be located over the
Kiribati region (0 175E), with areas of opposite sign
over Australia and over the Caroline Islands (8N 160E).
Seasonal maps of the EOF are drawn up, and identifications
of the patterns found with large scale features of the
atmosphere are made. Correlations are performed between
the time series of the first eigenvalue of the EOF of
rainfall and a number of other quantities. It is found
that there are strong correlations between the EOF of
rainfall first eigenvalue time series and indices of the
Pacific sea surface temperature, with the rainfall time
series lagging the sea surface temperatures by up to three
months. There are weaker but still significant correlations
between the EOF time series and an index of Australian
rainfall, with the Australian rainfall index leading the
EOF time series by a month. An index of the strength of
the Hadley circulation is observed to lead the EOF time
series by a year, while an inverse correlation of the
index follows the EOF time series by a season. An hypoth-
esis is made that the center of rainfall activity over
Kiribati may be a significant source of energy for the
tropical circulation.
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CHAPTER ONE

INTRODUCTION

The variations of rainfall over the Pacific Ocean

are of crucial importance for a clear understanding of

the general circulation. Latent heat release is an impor-

tant factor in the maintenance of the general circulation,

and the largest variations in the tropical atmospheric

heating are those due to latent heat release (Webster,

1972). The Pacific Ocean is the largest ocean, and exerts

the greatest influence on the atmosphere of any ocean.

Since latent heat release is closely associated with rain-

fall, a study of rainfall patterns and variations over the

Pacific would be likely to shed new light on the processes

that govern changes in the general circulation.

Of equal importance from a.practical basis is the

problem of forecasting rainfall in the Pacific and in the

surrounding continental areas. The nations that bound the

Pacific comprise some of the most densely populated nations

on earth. The effects of large variations in the temporal

distribution of rainfall in these countries are at times

literally matters of life and death. Adequate and steady

rainfall is particularly important for the poorer third

world nations which operate in large part on a subsistence

economy. However, it is also true that for a country such

as Australia, which has a marginal climate in many respects
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in its northern section (Gentilli (1971)), variations in

rainfall can cause the loss of millions of dollars worth

of property through the agency of drought or flood. The

problem of forecasting is therefore obviously one which

has the potential for yielding important results.

As an introduction to the methods used in this paper,

it might be worthwhile to review work that has been done

on related topics: specifically, the Southern Oscillation,

its relation to Pacific and Australian rainfall, and work

on Empirical Orthogonal Functions (EOF) of rainfall over

the Pacific.

Much work has been done recently on the phenomenon

of the Southern Oscillation, which was first thoroughly

investigated by Walker (1923-1937). The oscillation is

defined as a fluctuation in pressure between the equator-

ial western Pacific and the southeast Pacific: when the

pressure over one area is high, it tends to be lower than

the other. A Southern Oscillation index is defined as

being positive when pressure is high in the southeast

Pacific. Typically, the pressure records of a number of

different stations are combined to form an index. For

example, one of the most commonly used is the pressure at

Tahiti minus the pressure at Darwin. This oscillation

seems to have a number of strong effects on the global

circulation. Troup (1965) noted that there seems to be an

equatorial east-west circulation in the Pacific that is
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modulated by the Southern Oscillation (hereafter referred

to as the SO). This circulation was named the Walker

circulation by Bjerknes (1969). Later authors found such

East-West circulations occurred across the globe: Boer

and Kyle (1974) found that their presence was not limited

to the Pacific alone.

The SO also has effects on the circulation-patterns

and on sea surface temperatures (SST) in various parts of

the globe. Bjerknes and Rowntree (1972) demonstrated that

there was a link between the equatorial Pacific and the

midlatitudes through the SO. The SO has also been used in

a number of studies as a tool to predict the SST in various

regions and thereby to predict the rainfall.

The most spectacular change in the SST in the Pacific

region is associated with the phenomenon known as El Nino.

This is an increase in the SST off the Peru coast which is

associated with a number of large-scale changes in the

atmospheric circulation. During a period of El Nino, the

Walker circulation is much weaker than normal, as shown

by Bjerknes and other authors. It is associated with

increased rainfall over much of the central and eastern

Pacific, and decreased rainfall over the western Pacific.

Quinn and Burt (1972) have shown that the SO can be used to

predict periods of heavy rainfall over the equatorial

Pacific, while Quinn (1974) has shown that the SO can be

used to predict the occurrence of El NinoS:. Donguy and
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Henin (1980) noted that the appearance of El Nino in the

eastern Pacific was followed by drought in the southwest

Pacific.

Other authors have suggested mechanisms for the

development of rainfall anomalies over the Pacific area.

Wright (1977) suggested that a positive feedback mechanism

accounted for the well-known persistence of rainfall

anomalies over the central Pacific. Fleer (1981) noted

that rainfall in this region was mostly dominated by a

multi-year signal, and that the annual cycle was irrela-

vent to the distribution of rainfall amounts. Nicholls

(1981) has also investigated the possibility of positive

feedback mechanisms, this time in Indonesia, as a possible

long-term prediction tool over that region and over

northern Australia.

Northern Australia is an area that has been sug-

gested as a likely region for the study of long-term

predictability of rainfall and other climatic variables

(Nicholls (1982)). Rainfall over Northern Australia is

predominantly governed by the location and intensity of

the Inter-Tropical Convergence Zone (ITCZ) during the

southern summer. Only certain exposed coastal regions

receive significant rain in this area during the southern

winter (Gentilli (1971)). Berson (1961) has suggested

that the primary factor behind the development of the

Australian monsoon is the northern hemisphere winter
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intensification and southward extension of the Hadley

circulation. However, Kraus (1954) and Troup (1961) also

showed that rainfall in the northern section of Australia

was negatively correlated with the mean meridional pressure

gradient at 200 mb in the southern hemisphere. Pittock

(1975) has shown that there is a strong correlation between

the SO and Australian rainfall, particularly over the in-

land subtropics. This conclusion has been confirmed by

Stoeckenius (1981), who also noted other teleconnections

with the SO in other parts of the globe. Streten (1981)

showed that the annual rainfall over northern Australia

was related to the SST of the surrounding ocean areas:

during wet years, the SST was high, while the opposite was

true during dry years. Moreover, Newell et al. (1982)

showed that teleconnections between the SO and SST for

various lag times extended to significant levels across

the entire Pacific. Thus it seems reasonable to assume

that there are further well-defined relationships between

SST patterns in the Pacific and the variations of

Australian rainfall.

Since Kidson (1975) has identified the SO with the

first eigenvectors of pressure, temperature and rainfall,

it might also be assumed that worthwhile results could

arise from an examination of the EOF pattern of rainfall

over the Pacific. EOFs were first applied to meteorologi-

cal analysis by Lorenz (1956). Kidson (1975) performed
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an EOF analysis of various parameters for the tropics, but

only used ten years of data. His data distribution over

the Pacific was also poor. This study uses more than

twenty years of data, and the best available distribution

of stations over the Pacific. To the best knowledge of

the author, no EOF study of Pacific rainfall has been

done since Kidson's work.

To sum up, the author hopes to demonstrate some

relationships between the large-scale fluctuations of the

ocean and the atmosphere in the Pacific Ocean, and also to

show connections between these fluctuations and the changes

in northern Australian rainfall. Using the technique of

EOF analysis and by making some physical arguments, it is

also hoped that some of the mechanisms which govern these

teleconnections can be elucidated.



- 13 -

CHAPTER TWO

DATA AND ANALYSIS

The data for this work was taken from a number of

different sources. Monthly rainfall data was taken in

part from the Monthly Climatic Data for the World pub-

lished by the WMO. Data was also obtained from the World

Weather Records. This data was read off and punched in

by hand. Other rainfall data was taken from a Pacific

rainfall data set compiled by Klaus Wyrtki, a similar data

set compiled by John Kidson, and from an atlas of Pacific

Rainfall published by Taylor (1973).

The data is of varying quality. Some stations have

a number of years of data missing, while others fail to

report for individual months. It was decided to exclude

from consideration those stations that had more than five

percent or so of their data missing over the timespan of

the study (1951-1974). This assumption is not based on

any statistical analysis of the situation, but it seems

to be a reasonable estimate of the number of data points

that could be missed without the EOF pattern being ser-

iously affected.

Missing points were excluded from the calculation

of the EOF. Normalized deviations from the mean over the

period of the study were used. The normalization was

accomplished by dividing the deviations by the standard
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deviation of the individual month in question, for each

station. A seasonal stratification of the EOF was also

carried out by including only those points for those months

in each season in the calculation.

The geographical distribution of the data set is

somewhat uneven (see Figure 1). The most completely

covered region is the area near the intersection of the

equator and the dateline, where there are a number of small

islands of considerable importance to the climatological

record. On the other hand, the sparsest region of data

is the eastern Pacific Ocean near the equator, where there

are no stations at all. Similarly, in the southeast

Pacific there is only one station:Easter Island. Another

disappointment is the lack of any adequate stations in

Indonesia, an important region in that it is one of the

primary sources of vertical motion for the Walker circula-

tion. Nevertheless, the station distribution is adequate

for the purposes of this study.

Outliers were eliminated by the requirement that any

point that was more than 7.0 standard deviations above the

mean for that month was to be discarded. Again, while

there seems to be no hard and fast rule on such a restric-

tion, inspection of rainfall records indicates that this

restriction encompasses all observed variations while leav-

ing room for obviously bad points to be discarded. In

addition, much of the data was checked by hand to insure
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that such points were either corrected or discarded.

Other EOF studies have often used a slightly differ-

ent method of approach than that used for this study. The

most common method of approach has been to divide the area

of study up into a number of grid points and thereby

analyze the field by interpolation between existing

stations (see for example Craddock and Flood (1969),

Kidson(1975) and Arkin(1982). To test to see if the method

used in this study is valid, correlations between rainfall

at a station near the center of the EOF first eigenvalue main

maximum (see Figure 2) and rainfall at all other stations

in the data set were performed. The EOF values are defined

as the eigenvectors of the variance-covariance matrix of

the system (see Appendix). Since this work uses normalized

deviations of rainfall, the matrix elements of the variance-

covariance matrix are simply the correlation coefficients

of each point with itself and every other point in the data

set. The test correlation coefficients calculated essentially

reproduced the observed EOF pattern. Thus, although slightly

different eigenvectors might be produced if the data set had

been interpolated to give grid point values, it seems safe

to say that the same overall pattern would have been produced.
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CHAPTER THREE

RESULTS

(I) EOF Analysis

The first Eigenvalue of the EOF of rainfall accounts

for 7.7% of the variance (Fig. 2)... The main area of activity

of the EOF first Eigenvalue is located in the central

west Pacific, in the Kiribati region, on the equator near

the dateline. This maximum is counterbalanced by a number

of smaller minimums: in the Cook Islands near 20* South

169 degrees West, off the northeast coast of Australia,

and in the Pacific North of New Guinea. These are the

major regions of oscillation, although there are smaller,

less significant minimums over the Hawaiian Islands and

near Wake Island.

The pattern of the main center of activity clearly

resembles the pattern found by Kidson (1975) (Fig. 3).

The only real difference is the extension of the area of

positive EOF through Midway Island (28N 177W). There is

another region of some slight difference over northeast

Australia, where the intensity of the minimum is greater

than in Kidson's results, and also over the Cook Islands,

where Kidson's zero line is displaced further to the South

than in these results. Overall, however, the pattern re-

sembles Kidson's work both in intensity and in geographi-

cal location.
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As previously pointed out, there is no data in the

eastern Pacific on which to base an assumption about the

variability in this region. Kidson also had the same diffic-

ulty with his analysis. There may be large scale non-seasonal

variability in this region, but we have no way of knowing

whether this is the case or not. Inspection of data from

some partial records of some stations in the Galapagos Islands

(lS 90W) does indeed show considerable variability, but it

is difficult to say how this variability relates to the calc-

ulated EOF of rainfall time series.

The variation in the first eigenvalue EOF pattern

from season to season is quite noticeable. The center of

activity remains over the central west Pacific year round,

but it shifts north and south slightly with the sun. In

the northern spring (March-May), (Fig. 4), the main cen-

ter is located near the equator; major minimums are over

northern Australia, and near Guam (13N 144E). In the

northern summer (June-August), (Fig. 5), the center of

activity shifts slightly northwards, and a distinct mini-

mum develops near Pago Pago (13S 172W). A large area of

positive sign extends across the western Pacific into the

Phillipines. The Australian minimum is displaced further

south, and Darwin (12S 131E) has a positive sign. There

is also a large area of positive sign over the Austral

Islands (25S 140W).
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In the northern autumn (September-November), (Fig.6),

the main center of activity shifts south of the equator,

and the large area of positive sign over the Western

Pacific vanishes, to be replaced by a strengthening area

of negative sign. The Pago Pago minimum observed in the

summer weakens, and a new area of low values forms near

New Caledonia (21S 166E). The Australian mainland re-

verts to negative values. The Hawaiian Islands are in a

small minimum, as they are year-round. Finally, in the

northern winter (December-March), (Fig. 7), the center of

activity is located somewhat south of the equator. Major

minimums are located across the southwest Pacific from the

east of Australia through Fiji (18S 178E) to Rarotonga

(22S 160W), and in the northwest Pacific from the southern

Phillipines through Guam to the eastern Caroline Islands

(8N 160E).

The second eigenvalue, (Fig. 8) which accounts for

5.0% of the variance, shows maximum values over the Austral

Islands, and over the Phillipines and the Carolines. The

major minimum is over Australia. The main center of

activity is over the Phillipines. Comparing the second

eigenvalue to Kidson's results, (Fig. 3) there is

some agreement. Kidson's main maximum is over the Caro-

lines, with a secondary maximum over the Austral Islands,

as in our results. Although his major minimum is over

the South Pacific near 30 degrees south 160 degrees west,
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this is not significant because of the lack of data in this

region. Thus our pattern for the second eigenvalue bears a

good resemblance to Kidson's results.

One point to note is the low proportion of the var-

iance accounted for by the first and second eigenvalues.

As Kidson points out, this is typical of the smaller

scale patterns of rainfall variations, as opposed to the

larger scale variations of variables such as temperature

and pressure.

EOFs were calculated for other eigenvalues.

Craddock and Flood (1969) proposed a method by which the

significance of eigenvalues could be determined. Their

method was to plot the natural logarithm of an eigenvalue

against its ordinal number. The pattern that they ob-

tained for all of their large eigenanalyses resembles that

obtained for this study (see Figure 9). They proposed

the ad hoc statement that "in meteorology, noise eigen-

values are in geometrical progression", and thus eigen-

values whose plots lie along an approximate straight line

may be safely discarded. For our purposes, this would

mean that eigenvalues below about number 15 could be dis-

pensed with.

This may be true from a collective standpoint in

that the field reproduced from a combination of these

eigenvalues may differ only negligibly from the original
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field. However, this does not mean that, individually, all

the eigenvalues are accurate representations. North et al.

(1982) give a rule of thumb for deciding if an EOF pattern

is useful. The sampling error AX is defined

AX X X(2/N)l/2

where X is the eigenvalue and N is the number of points

in each time series. The rule is that if two eigenvalues

lie within AX of each other, the EOF patterns are sub-

ject to mixing errors and are thus not resolved.

Persistence in the time series is accounted for by

calculating the autocorrelation function of each time

series. The persistence is here loosely defined as the

time required for the autocorrelation function to fall

below the 95% significance level of the time series.

The individual persistences for each station are then aver-

aged to obtain an estimate of the overall persistence.

The average persistence is calculated to be about

1.6 months. To apply this results to North's formula,

N is divided by the average persistence to obtain a new

figure for the number of truly independent points. In

our case (see Table 1), the first four eigenvalues are

averaged to obtain
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AX 1240 (2/(288/1.6))

f'u 130

The separation between the first, second and third

eigenvalues is greater than the sampling error, while the

separation between the third and the fourth eigenvalues is

less. Thus, the observed EOF patterns for the third and

fourth eigenvalues are not likely to be good representations

of the true patterns.

The time series of the first eigenvalue (Fig. 10)

predictably resembles Kidson's time series, (Fig. 3) over

the time period that Kidson used for his study.

(II) Relationships with Other Quantities

Lagged correlations were calculated between the

first eigenvalue EOF time series and a number of other

significant quantities. The most important quantity for

the production of rainfall over the tropical Pacific is

likely to be the SST over that region. Therefore, corre-

lations were calculated with an EOF time series of

Pacific SST, and with an equatorial zonal mean SST (ZMT).

The EOF time series of Pacific SST (Fig. 11) is

taken from data used in Weare, Navato and Newell (1976),

supplied by the authors. Non-seasonal variations in the

EOF pattern for the SST were extracted from the original

data. The data used ran from 1951 to 1973. A table of
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correlations of various quantities is seen in Table 2.

The correlation of the time series of the first eigen-

value of the EOF of SST with the first eigenvalue of the

EOF of rainfall is quite pronounced: the highest correla-

tion is 0.761, with the SST leading the rainfall by one

month.

The ZMT data (Fig. 12) was supplied by Dr. A. Navato.

The ZMT is defined as the average SST along the meridian

2.5 degrees south from the coast of South America to 140

degrees west. The data is taken from ship reports. The

highest correlation occurs for the ZMT leading the rainfall

by three months, with a correlation of 0.677. Thus in

both cases the SST changes precede the changes in rainfall

over the center of activity. The ZMT is a particularly

useful indicator in that the temperature across the

eastern Pacific at that latitude is a useful indicator

of El Nino outbreaks and associated phenomena.

Since northern Australia is in a zone of opposite

variability from the center of activity, it was thought

useful to examine correlations of the EOF time series with

an Australian ranfall index, (Fig. 13) and with individual

Australian stations. The Australian rainfall index was

calculated by adding the normalized departures from the

long-term means of the cube root of rainfall of the eleven

Australian stations included in the EOF study, over the

period 1951-1974. The cube root of the rainfall was
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chosen because rainfall is not normally distributed with

time, and thus any index of raw rainfall data might be

dominated by high rainfall amounts at one or two points

(see, for example, Stidd (1953)). The added cube root

normalized departures were then smoothed by taking five-

month running means, this being the typical timescale of

the "wet" or the monsoon season (December-April) over

northern Australia. Strictly speaking, some of the sta-

tions included in the index do not have a monsoonal

climate, but they are all much wetter during the summer

than during the winter.

The results show that the highest correlation be-

tween the index and the EOF is -0.419, with the index

leading the EOF by one month. This result is significant

at the 99% level, if we assume that the smoothing in-

volved in the rainfall index reduces the number of inde-

pendent points by a factor of five.

If we look at the results of correlations of the

EOF with some individual Australian stations, some inter-

esting results emerge. Four stations were correlated

(see Table 3). The results show that none of them have

as high a correlation as the rainfall index, although

they all exhibit the same behaviour in terms of time lag.

The time lags range from almost a contemporary correla-

tion in the case of Darwin (94120) to lags of two months,

with the rainfall preceding the EOF, in the case of
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Mackay (94367) and Brisbane (94578).

Since the rainfall over northern Australia is

heavily seasonal, it might be worthwhile to examine

correlations over just the period of the monsoon (December-

April). The EOF was monsoonally stratified: that is,

only the monsoon months were included in the calculation.

The Australian rainfall index was also taken for these

months. The results (Table 4) show the same behaviour

as already observed: The rainfall index leads the EOF by

one month, with a correlation of -0.438.

The large scale variations observed in the tropics

might be expected to influence the mid-latitudes.

Accordingly, figures were obtained for the meridional

temperature gradient in the mid-latitudes (Fig. 14) in

the following manner. The seasonal values for the geopoten-

tial difference between the surface and 100 mb for the

tropics (30N-30S) and temperate regions (30-60) were ob-

tained from the data set used by Angell and Korshover

(1978). To obtain a measure of the meridional temperature

gradient in each hemisphere, the individual seasonal

values for the temperate regions in each hemisphere were

subtracted from the individual values for the tropics.

Thus if the geopotential difference between the surface

and 100 mb is large in the tropics and small in the tem-

perate regions, a large meridional temperature gradient

at low levels is implied.
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The results (Table 2) show that there is a definite,

although not automatic, relationship between the intensity

of rainfall in the central west Pacific and the meridional

temperature gradients. Highest leading correlation of the

seasonally averaged EOF with the southern hemisphere tem-

perature gradient is 0.344, with the rainfall leading the

gradient by one season. The correlation with the northern

hemisphere gradient is comparable, with the highest leading

correlation being at a lag of one season also, at 0.320.

Both of these correlations are significant at the 99% level,

although the percentage of the variance explained is com-

paratively small. If the gradients in both hemispheres

are added to obtain a value for the total gradient, the

same behaviour is observed: a leading correlation of

0.374, with the rainfall leading the gradient by one

season.

One interesting aspect of these results is the

existence of the maximum correlation in the temperature

gradients about a year before the rainfall variations.

This correlation is in all cases stronger than the leading

correlation. This may possibly indicate some mid-latitude

influence on the sequence of events which trigger the El

Nino. In all of these results, however, the amount of the

variance explained is low, and it would be difficult to

make firm conclusions about these influences.
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CHAPTER FOUR

INTERPRETATION OF RESULTS

(I) Interpretation of EOF Patterns

As an aid in interpreting the EOF patterns, Taylor's

(1973) rainfall atlas was used to find areas of agreement

between patterns of the first eigenvalue of EOF of rain-

fall (Fig. 2) and the actual large scale features that

are seen in the atmosphere. The large area of maximum

EOF intensity over the Pacific may be identified with a

long dry tongue on Taylor's map extending westwards along

the equator. The large positive area over the southwest

Pacific in the EOF pattern may be identified with the

South Pacific Convergence Zone. Similarly the maximum

in the ITCZ over the Carolines may be identified with a

similar positive area in the EOF pattern.

Comparing the summer and winter EOFs with Taylor's

July and January maps, (Figs. 15 and 16) we find that in

Taylor's maps, the large area of low precipitation is much

further west in July in the equatorial region than in

January. Similarly, the large EOF maximum in the central

Pacific is much further west in July than in January.

The agreement with the SPCZ is not as clear, as there is

an area of negative activity over Samoa in July that does

not correspond to an area of high rainfall, but rather to

an area of low rainfall. In any event, the main indica-

tions of the EOFs are in terms of variability: a positive
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area has high rainfall when a negative area has low

rainfall. One clear indication of the northern winter

EOF is that the entire southwest Pacific region, with

the exception of New Zealand, has low rainfall during the

southern summer when the area near Kiribati has high

rainfall. This confirms the results, among others, of

Donguy and Henin (1980), who noted that El Nino years

correspond to drought conditions in the southwest

Pacific, since most of the rain in this region occurs in

the southern summer. The same pattern is also true for

the northern spring EOF.

(II) Atmosphere-Ocean Interactions

The ZMT is observed to lead the EOF of SST by two

months and the EOF of rainfall by three months. A pos-

sible explanation for this result is the fact that mid-

latitude contributions to the EOF of SST time series play

an important part, as Weare et al. (1976) note in their

discussion of their results. The lag between the EOF of

SST and the EOF of rainfall is understandable in terms of

a geographical lag from the area of ZMT maximum in the

eastern Pacific to the area of maximum rainfall activity

in the central Pacific. If we take the typical velocity

of westward flowing ocean currents in the region to be

60 cm/sec (Picard (1979)), then for an SST anomaly to

travel about 7000 km from the center of ZMT activity
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(110W) to the center of rainfall activity (180*) would

take approximately 110 days, or close to the observed

three-month lag in the correlations.

If we look at some observed SST anomaly propagation

patterns, we see approximately the same propagation

time. Using figures from Newell (personal communication)

and SST data supplies by J. Hsiung (see Figures 17 and18),

we find that the average propagation time from the center

of the ZMT activity to the center of activity of rainfall

near the dateline is approximately three months.

Julian and Chervin (1978) note that the strength of

the South Equatorial Current is inversely related to the

SST anomalies over the eastern central Pacific (5N-5S,

80W-180). The South Equatorial Current is a cool current,

and when it weakens, the advection of cold water into the

eastern Pacific apparently diminishes, and the water in

this region starts to heat up. Presumably, this would

tend to support Bjerknes' feedback hypothesis. The hypo-

thesis in part is that increased rainfall over the Pacific,

caused by higher SSTs, leads to latent heat release and

a stronger Hadley circulation, which leads to stronger

trade winds at the surface, which in turn leads to lower

SSTs, and so on, a negative feedback process. This hypo-

thesis is supported by Reiter (1978), who notes the very

strong contemporary correlation between central equator-

ial Pacific rainfall and the strength of the equatorward
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meridional components of the Pacific trade winds. However,

Wyrtki (1975) states that there is no evidence for weaker

trade winds in the eastern Pacific, and that strong

trade winds in the central Pacific cause a buildup in

sea level over this area. When these winds relax, Wyrtki

says, the accumulated water flows eastward as an internal

wave and creates a thicker layer of warm water off Peru,

which prevents upwelling.

As a further test of this theory, wind data for the

central Pacific supplied by J. Hsiung for the point 160W

ON (Figure 19) was compared with the ZMT. From inspection,

there seems to be some relationship between the strength

of the zonal wind at this location, although it is far

from unequivocal. This theory is still debatable (see

Newell (1979)).

The choice of this point is significant in that it

is normally located in a region of divergence, south of

the Line Islands. Surface moisture flux divergence maps

were calculated by the author under the following assump-

tions. The surface air moisture content q was taken from

Weare et al. (1980). The 10 m wind v was taken to be

characteristic of the entire surface layer, from 1000 to

900mb. The winds were obtained from Klaus Wyrtki. The

moisture flux divergence is defined as

1 \Q 3(Q cos$
surface R 3 A 3

cos$
where Q 1 / qudp

and Q1andg f qvdp
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The surface moisture flux should give a good indication of

the moisture sources and sinks over the ocean, because

there is little in the way of low level stratiform precipi-

tation over the equatorial Pacific. Moreover, Cornejo-

Garrido and Stone (1977) found that increased precipitation

in the western Pacific is likely caused by moisture conver-

gence, and that this area of convergence corresponds to an

area of low evaporation, and thus is a moisture sink. Sim-

ilarly, the less cloudy southeast Pacific is a moisture source.

The results (see Figures 20 and 21) show a similar

pattern to Figures 15 and 16. During El Nino years, the

region near the point taken for Figure 19 shows westerly

anomalies and typically much higher rainfall than normal.

During non-El Nino years, this area shows easterly

anomalies and much reduced rainfall. One would expect

that these easterly anomalies would pump moisture west-

wards, perhaps to Indonesia and the Carolines, and perhaps

ultimately to Australia. This may be one reason why those

areas are out of phase with the main center of activity

of the EOF of rainfall.

To digress for a moment, one interesting fact about

the area of high EOF variability is the enormous amount

of energy that is put into the atmosphere during El Nino

conditions in this area. Rao et al. (1976) have compiled

an atlas of ocean rainfall estimates from satellite

measurements. They supply a map of rainfall intensities
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for January 1973 (an El Nijio year) and January 1974 (a

non-El Nino year). If we assume that the main area of

rainfall variation is between 157.5E-157.5W and 8N-8S,

and that this variation continues for six months, a

typical timescale for wet periods over this region, we

obtain a total extra latent heat release over this area

of about 1.3 x 1024 Joules. Newell (1979) gives data

for the change in tropospheric free air temperature

(Figure 22). Typically, it can be seen that changes in

the free air temperature over a timescale of one year are

about 1.7 degrees C. The latent heat release over the

central Pacific corresponds to a heating variation for

the atmosphere from 3km-10km over the global strip 20N-20S

of about 2.1 degrees C. Therefore clearly, if only from

energy considerations, it is possible that this area

could modulate the non-seasonal behaviour of the tropo-

spheric free-air temperature as a whole.

(III) Connections to Australian Rainfall

The main problem to explain with the results of

correlations with Australian rainfall is the tendency of

the Australian rainfall index to precede the full estab-

lishment of the EOF pattern of rainfall by approximately

one month. One clue to this result might be that northern

Australian stations tend to precede the EOF less than

southern stations as shown in Table 3. Darwin, in the
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extreme north of the country, has an almost contemporary

correlation with the EOF. One explanation for this re-

sult could be that the more southerly stations are more

influenced by the mid-latitudes, and thus in some sense

are less "pure" than the far northern stations.

One other point to note is that the Indonesian re-

gion substantially influences rainfall over northern

Australia (Nicholls (1982)). Thus the rainfall regime

over Australia is not a simple function of rainfall over

the central Pacific, and other influences are undoubtedly

at work here.

(IV) Mid-latitude Connections

The results shown here for correlations between

the EOF of rainfall and the meridional temperature gra-

dients offer some tentative support to Bjerknes'

hypothesis. The release of latent heat over the central

Pacific is shown to result in a stronger Hadley circula-

tion one season later. In addition, a weak Hadley cir-

culation is seen to precede the establishment of a high

ZMT (Figure 23). Unfortunately, the correlations are

low. In particular, it would seem unrealistic to assume

that it would take as much as three seasons for a

weakened Hadley circulation to results in a high ZMT.

Investigations by Barker (1982) have shown that the

establishment of a high ZMT precedes the establishment of
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high global relative angular momentum (RAM), another

measure of the strength of the Hadley circulation, by

one month. The RAM is defined, from Newell et al. (1972):

2 a 3 p 2RAM= f0 f 2 [u] cos $d~dp
9 $

One problem with our seasonal averages of meridional

temperature is that they are just that: seasonal, and

not monthly. Finer scale variations are therefore lost.

In addition, the meridional temperature gradient is not

measuring exactly the same phenomenon as the RAM.

Obviously closer analysis of this problem is required.
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CHAPTER FIVE

CONCLUSION

The author has completed a comprehensive study of

the EOF patterns of rainfall over the Pacific, and inden-

tified the major centers of activity. The author has also

demonstrated a close relationship between the time series

of the EOF of rainfall pattern and the time series of the

EOF of SST in the Pacific. A close relationship between

the EOF of rainfall and the Pacific equatorial ZMT was

also shown. A firm relationship between the EOF of rain-

fall and an index of northern Australian rainfall was

demonstrated, and a more tentative relationship was

found between the EOF of rainfall and the intensity of

the Hadley circulation, a relationship that requires

further study.

Promising areas for future research include inves-

tigations of moisture fluxes from the Kiribati area

across to Indonesia as a possible mechanism for increased

Indonesian rainfall and possibly Australian rainfall; a

closer study of the mechanisms that govern the strength

of the South Equatorial Current as a possible predictor

of El Nino; and a closer study of the energetics of the

variations of latent heat release over the Kiribati area

and over Indonesia as possible "engines" for the tropical

circulation.
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APPENDIX

EOF ANALYSIS

Following an analysis by Verstraete (1978), it is

claimed that the rationale for the use of Empirical

Orthogonal Functions is that one wants to find a series

of linear combinations of functions that carry a large

portion of the variance of the original data set without

being redundant or subject to mixing errors. We define

a matrix of observations X.. at location I and time J:
1J

X = X2
X(21

X' ... X
ml np

where N is the number of stations and p is the number of

different time observations. Suppose there exist two

matrices Y and Z such that

X = YZ . . .(1)

where = yy1 = I

zz1  =D . . .(2)

and I is the identity matrix and D is a diagonal matrix.

Transposing (1), we obtain

X1= Z1 Y1 . .(3)
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multiplying (1) and (3) gives

XX = YZZY = YDY

Since YY = I

Y1XX1Y = D

Y is therefore found by solving the eigenvalue

problem. The rows of Y are the eigenvectors of the matrix

XX 1, and the corresponding diagonal elements of D are

the associated eigenvalues. If X is a matrix of devia-

tions Xkj - i where X is the long-term mean value of

the field X at point I, XX1 is the variance-covariance

matrix of the system. In addition, it can be proved that

tr(XX1) tr(D)

which implies that the sum of the eigenvalues d. is equal

to the total time-variance of the data set.

These eigenvalues can be ranked in terms of the

amount of variance explained, with the first eigenvalue

becoming the eigenvalue that explains the largest propor-

tion of the variance.
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Figure 17. Time series of Pacific SST for indicated
locations, from Newell (personal communication),
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TABLE 1. Statistics of EOF
calculation

Variance Explained (%)

1 1819.5 7.661

2 1189.0 5.007

3 1009.9 4.252

4 942.2 3.967

5 811.2 3.416



Lag
(Months)

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.419 0.524 0.614 0.690 0.742 0.761 0.751 0.735 0.664 0.603

+0.208 +0.298 +0.406 +0.505 +0.586 +0.634 +0.659 +0.669 +0.677 +0.626 +0.580

-0.087 0.041 0.169 0.269 0.320 0.245 0.124 -0.043 -0.211 -0.358 -0.304

-0.014 0.203 +0.287 0.344 0.326 0.039 -0.134 -0.261 -0.338 -0.357

+0.020 +0.208 +0.313 +0.374 +0.316 +0.099 -0.093 -0.263 -0.395 -0.370

-0.196 -0.241 -0.310 -0.358 -0.400 -0.419 -0.409 -0.347 -0.315 -0.259

0.336

TABLE 2. Correlations of the EOF of rainfall first eigenvalue
time series with various; quantities (positive lag
means EOF lags quantity) (1951-1974).

(Note: Lags for starred quantities (*) are in seasons,
not months.)

EOF of SST

ZMT

N.H. Meridional
Temperature
Gradient

*

S.H. Meridional
Temperature
Gradient

*

Total Meridional
Temperature
Gradient

Australian Rain-
fall Index

-0.171

-0.140

-0.142



-5 -4 -3 -2 -1

Lag -
(Mon'ths)

0 1 2 3

TABLE 3. Correlation of the EOF of rainfall first
eigenvalue time series with normalized
rainfall indices of various Australian
stations, 1951-1974.



-- Lag
(Months)

+0.052 +0.061 -0.010 -0.110

-l

-0.293 -0.433 -0.438 -0.401 -0.244 -0.100 -0.054

TABLE 4. Correlation of the monsoonally stratified EOF of
rainfall first eigenvalue with the monsoonally
stratified Australian rainfall Index.


